
.

1

TFM en Master in Robotics, Graphics and Computer
Vision

Integration through genetic programming

on heterogeneous systems

Autor

Enrique Bauzá Mingueza

Directores

Adolfo Muñoz Orbañanos, Daŕıo Suárez Gracia

Escuela de Ingenieŕıa y Arquitectura

2022

Abstract

Nowadays, numerous applications in various scientific fields require the integration
of mathematical functions that, due to some of their characteristics, do not have an
analytical expression for their antiderivative. These definite integrals are usually solved
by numerical integration methods, which provide an approximation of the numerical
value of the integral in the integration range. With this type of solutions, a higher
precision of the approximation entails a longer computation time, being necessary a
trade-off between both aspects.

In this work we present a genetic programming algorithm which provides mathe-
matical expressions that approximate the antiderivative of analytically non-integrable
functions. Heterogeneous devices, GPU and multicore CPU, have also been used in
the development of the system to accelerate the parts suitable for it. The advantage of
obtaining these approximate antiderivatives is the reduction of the computation time
necessary to calculate the definite integral of the functions of interest, reducing it to
simply evaluating the expression at the beginning and the end of the integration range.

The experiments performed and the results obtained demonstrate the system’s
ability to approximate several types of functions, including two-dimensional ones, and
in particular its ability to approximate the antiderivatives of analytically non-integrable
functions. In addition, the acceleration provided by the use of heterogeneous devices is
also demonstrated.

Table of Contents

1 Introduction 4

1.1 Objective . 6

1.2 Structure . 6

2 Fundamentals 8

2.1 Evolutionary algorithms . 8

2.2 Symbolic computation . 10

2.3 Computing systems . 12

2.3.1 Heterogeneous hardware . 12

2.3.2 Parallel and heterogeneous programming 13

3 Methodology 16

3.1 Programming languages and libraries 16

3.1.1 Python implementation . 16

3.1.2 DPC++ implementation . 16

3.2 Machine and Compiler Descriptions . 17

3.3 Experiments Metrics . 18

3.3.1 Time Measurement Methodology 18

3.4 Code repository . 18

4 System Description 19

4.1 System Overview . 19

4.2 Individual Representation: Tree structure 19

4.3 Initialization . 20

4.4 Evaluation . 21

4.5 Selection . 22

4.6 Reproduction . 23

4.6.1 Crossover . 24

4.6.2 Mutations . 25

4.7 Replacement . 28

2

4.8 Finalization . 28

4.9 Genetic parameters . 28

5 Random number generation in GPU 30

5.1 Implementation on GPU . 30

5.2 Implementation testing . 32

5.2.1 Generation time comparison . 32

5.2.2 Randomness tests . 32

6 Evaluation 34

6.1 Validation experiments . 34

6.1.1 Function approximation . 34

6.1.2 Genetic integration . 36

6.1.3 Comparison between Sequential and Parallel Versions 38

6.1.4 Integration of no-integrable functions 40

6.2 Single Scattering . 40

6.2.1 Loss function . 44

6.2.2 Function and variable sets . 44

6.2.3 Parallelization . 44

6.2.4 Experiments and results . 45

6.3 Image compression . 46

6.3.1 Loss function . 46

6.3.2 Function and variable sets . 50

6.3.3 Parallelization . 51

6.3.4 Experiments and results . 51

7 Conclusions 58

Bibliography 61

List of figures 63

List of tables 65

3

Chapter 1

Introduction

Nowadays countless applications in all scientific fields require the integration of varied

functions. In many cases, it is not possible to analytically integrate a function by finding

its antiderivative: the integrand might be more complex than an elementary function

or a combination of them, or, simply, such symbolic antiderivative might not exist for

such integrand. In this cases, the only alternative to analytic integration is numerical

integration, that yield an approximation of the integral. There are several algorithms

for approximating a numerical value for a definite integral [1], such as the Trapezoidal

rule, Rectangle rule or Monte Carlo integration. Numerical integration gives us an

approximate solution to the definite integral, and the error of this approximation is

reduced as the number of evaluations of the integrand (samples) increases. Inevitably,

this lead to a trade-off between integration error and computation time which is one of

the main issues in numerical integration.

One specific field where it is necessary to solve integrals and where numerical

integration is commonly used is rendering. Today, most rendering systems use techniques

based on the integration of physical equations of light propagation and, due to the nature

of this equations, this is solved by numerical integration. In particular, one widespread

method in this field is Monte Carlo integration which, basically, consists of randomly

sampling the integrand along the integration range. As it is another case of numerical

integration, the quality of the rendered images (inverse to the integration error) increases

with the number of samples. In some cases, like computer generated films, high quality

images are required, which means hours of rendering for a unique frame or image.

This issue has been addressed through the use of neural networks [2], however, like in

many cases where they are used, the network parameters and architecture are highly

dependant on the specific scene. In the rendering case, it would be tremendously

interesting, in terms of computational time, to have an algebraic expression for the

antiderivative of those light transport equations (or, if not possible, an approximation

of it). In this way we could just evaluate that expression twice (beginning and end of

4

the integration range), significantly reducing the time required to compute the definite

integrals and, ultimately, to render images with increased accuracy.

One way to obtain those approximated algebraic expressions for the antiderivative

can be regression and, although there are multiple and diverse methods for mathematical

regression, in this work we focused on regression through evolutionary algorithms [3, 4].

Evolutionary algorithms (EA) solve optimization problems, inspired by the natural

evolution process where the individual who better adapts to its environment survives

and reproduces. In the case of EA, this adaptation is modelled as a mathematical fitness

to an objective solution. EA are iterative algorithms where a set of potential solutions,

called individuals, conform the population, and, even though there are different subfields

of EA, all of them have common steps in each iteration (or generation):

− First, each individual is evaluated according to a given fitness criteria

− Then the best individuals are selected as parents for the next generation

− The third step is reproduction, where the genetic information from the selected

parents is passed to the next generation by mutation (changes on one parent) or

crossover (combination of two different parents)

− Finally, the new individuals (or some of them) replace part of the old ones to

generate the new population, according to their fitness.

Due to the computationally expensive workload of optimization problems and the

fast development of heterogeneous hardware in the last decade, it is common to apply

heterogeneous computing, where more than one kind of processor are used, to these

optimization tasks. Evolutionary Algorithms are not an exception, we are working

with many independent solutions at the same time, so they present a high degree of

data parallelism [5, 6]. Because of this workload behaviour, they are suitable for

implementation on heterogeneous devices, where we can, for example, accelerate the

population evaluation or divide the original population in several smaller subpopulations

and work with them in parallel, making use of several computing units.

In this work we present a genetic programming regression system using heterogeneous

devices 4. For this system it has been necessary to create a computer algebra library

since we are representing the individuals of the evolutionary algorithm as algebraic

expressions. This computer algebra library includes the representation of the individuals

and some operations such as symbolic differentiation. As we are working with algebraic

expressions, the genetic operators (mutations and crossover) are algebraic modifications

or combinations of those expressions. The evaluation of the population is performed by

5

evaluating each individual at a set of points of the given range and comparing those

values with the evaluation of the objective function at the same points. All the genetic

operators and the initial population generation are random processes so we can say

that this algorithm needs a large amount of random numbers and, in this system, this

random number generation has been implemented on a GPU (5), taking advantage of

the execution throughput of that device to accelerate that process. Finally this system

has been applied to two specific problems of the computer graphics field: rendering

(6.2) and image compression (6.3). For the rendering application the purpose is to

obtain an algebraic expression for the antiderivative of analytically non-integrable light

transport equations (in particular a lower-dimensional case of single scattering). To

obtain this integrals our objective function is the single scattering equation and what

we compare to that is the derivative of the population individuals, so the population is

directly conformed by a set of integrals which are the possible solution. And, for the

image compression application, we look for a bidimensional function which relates the

pixel value to the image coordinates in pixels, so, in this case, the sample points are

the pixel coordinates and the pixel values are our ”objective function”.

1.1 Objective

The main objective of this work is to develop a system capable of obtaining a mathe-

matical expression that serves as an integral for analytically non-integrable functions.

The main component of this system is a genetic programming algorithm, which must

be designed and implemented. In addition, a symbolic algebra library and a repre-

sentation for the individuals of the genetic programming algorithm must be designed

and developed. Heterogeneous systems will also be used to speed up two parts of

the system: the evaluation of the solutions at each iteration of the algorithm and the

generation of random numbers. Finally, the developed system will be evaluated through

several validation experiments and its application to two specific problems: a particular

problem of integration in rendering and image compression.

1.2 Structure

From here on, this document is structured in different chapters as follows:

− Chapter 2: Fundamentals, in this chapter we expose the basic knowledge of

the fields in which we have been working in the project which are: Evolutionary

Algorithms, Computer Algebra and Heterogeneous Systems.

6

− Chapter 3: Methodology, here we describe the tools used in the development

of this project to ease the understanding and reproducibility of the results.

− Chapter 4: System Description, in this chapter we give an overview of

the developed system, explain the individual representation for the evolutionary

algorithm and give a detailed description of each step in the algorithm.

− Chapter 5: Random number generation in GPU, here we explain how we

have leveraged a GPU to accelerate the random number generation in the system.

− Chapter 6: Evaluation: Here we present the applications and results of the

systems in this work. There are several validation experiments, integration of a

low-dimensional version of the single scattering equation and image compression.

− Chapter 7: Conclusions: In this chapter we comment on the conclusions of

the work carried out, evaluate the results and propose future lines of work.

7

Chapter 2

Fundamentals

In the following chapter we will present the main fields in which we have worked during

the development of this genetic integration system. First we will go trough Evolutionary

Algorithms 2.1, the bunch of optimization algorithms which we have used for this work.

Later we introduce Symbolic Computation (or Computer Algebra) 2.2, we have used

this for mathematical expression manipulation. And, finally, we present Heterogeneous

Computation 2.3, a set of hardware and software that can be leveraged to accelerate

certain applications.

2.1 Evolutionary algorithms

Mathematical optimization consists of finding the global maxima or minima of a

function, f , by choosing the best available inputs from a set of alternatives, A. Usually

A is delimited by a set of constraints which defines the search space for the optimization

problem. Given a function: f : A, and depending on what problem is being solved

(minimization or maximization), the optimization can be stated as follows:

Find: x0 ∈ A such that f(x0) ≤ f(x) for all x ∈ A (minimization) (2.1)

Find: x0 ∈ A such that f(x0) ≥ f(x) for all x ∈ A (maximization) (2.2)

The function f may take different names depending on the problem, for minimization

it is often called lost or cost function, for maximization is called utility or fitness function

and in some physical related fields it is called energy function.

An evolutionary algorithm (EA) [3, 4] is an heuristic optimization algorithm

inspired by natural processes of selection and evolution. In these natural processes the

better are the individuals the more likely they are to survive and propagate their genetic

8

material. Roughly, an evolutionary algorithm is a iterative algorithm where a set of

possible solutions, called population, is randomly modified until one of the solutions is

good enough. EA is a broad field with several different subsets of algorithms, but all of

them share the same base of simulating the evolution of an initial population. In 2.1

we can see an overview of the algorithm and its different stages:

− Initialization: In this stage the first generation is created, which can be done

randomly or based on some prior knowledge about the problem. This step is

critical to the algorithm performance, a properly generated first population will

lead to a faster convergence. The number of individuals in this first generation

and the complexity of these ones are key design aspects that will determine the

suitability of the first generation.

− Selection: The first step of every iteration is the selection of the individuals that

are going to reproduce and be the parents for the next generation. This selection

is based on some cost or fitness criteria, so in this stage it is also necessary to

evaluate the population. There are several selection strategies to be implemented

such as roulette wheel selection, where the probability of a individual to be selected

is proportional to its score, or tournament selection, where the parent is the best

individual from a subset of candidates. In this stage it could be interesting to

give a little probability to be chosen to some individuals which are not the best

so that the search space exploration is encouraged. The selection strategy must

achieve a trade-off between search space exploration and convergence speed.

− Reproduction: In this stage the genetic information from the selected parents

is passed to the next generation. There are two genetic operators to perform

the reproduction, mutation and crossover, and its implementation is strongly

dependant on the problem to solve and the representation of the individuals. The

mutation is the operation where a part of the genetic information of one individual

is altered. And the crossover consists of the combination of genetic information

from two different parents to create a new individual. For example, in case the

individuals are represented by bit strings, the crossover operation would consist

of the combination of two substrings from two different parents and a suitable

mutation would be to change one or several bits of the string.

− Replacement: And in this final stage the new individuals, or some of them,

substitutes part of the old ones the generate a new population.

− Ending condition: The algorithm needs an ending condition. This condition

can be based on a cost or fitness criteria (the score is equal or better than a

9

desired score) or on a computation time criteria, usually there is a maximum

number of iterations.

One key aspect of EA related to this work is the high degree of data parallelism that

these algorithms present [5, 6]. In the evaluation step the operations to be performed

on each solution of the population are completely independent from the others, so there

it is a good point to improve the algorithm performance.

2.2 Symbolic computation

Symbolic computation or computer algebra is a computer science area which studies

algorithms and software for mathematical expression manipulation. In contrast to

numerical computation, which is based on approximate floating point numbers, symbolic

computation is focused on exact computation of mathematical expressions containing

variables which have no given value. Other advantage of symbolic computation is the

ability to easily manipulate a mathematical expression before numerically evaluating

it, which leads to several advantages when applied to different problems. A computer

algebra system must include a set of routines to perform usual operations such us

simplification, factorization, indefinite integration, differentiation by chain rule,

In symbolic computation, one efficient and widespread way of representing math-

ematical expression is in form of tree-like structures, like the one in figure 2.2. The

expression trees are composed by two different types of elements: nodes and leaves.

Nodes represent mathematical operators that can be unary (i.e. exponential function)

or n-ary (i.e. product), and this will determine the number of operands for each node.

The other type of elements, leaves, represents constants or variables which acts as the

operands of the nodes. In image 2.3 we can see an example of chain rule differentiation

where a new expression tree is generated by the differentiation of the existing one. These

differentiation is performed recursively from the root to the leaves. Each intermediate

node is treated as a root of a smaller sub-tree.

10

Initialization

Evaluation

Selection

Reproduction

Replacement

End

Ending condition?

Yes

No

Figure 2.1: Evolutionary algorithms common steps.

𝑥𝑥𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

+

𝑒𝑒𝑒𝑒𝑒𝑒

𝑓𝑓 𝑥𝑥 = 𝑒𝑒𝑥𝑥 + sin 𝑥𝑥

Figure 2.2: Mathematical expression represented in a tree srtucture.

11

𝑥𝑥𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

+

𝑒𝑒𝑒𝑒𝑒𝑒

𝑥𝑥𝑥𝑥

𝑐𝑐𝑐𝑐𝑐𝑐

+

𝑒𝑒𝑒𝑒𝑒𝑒

𝑓𝑓 𝑥𝑥 = 𝑒𝑒𝑥𝑥 + sin 𝑥𝑥 𝑓𝑓𝑓 𝑥𝑥 = 𝑒𝑒𝑥𝑥 + cos 𝑥𝑥

Figure 2.3: Mathematical expression differentiation in form of tree structure. f(x) =
exp(x) + sin(x); f ′(x) = exp(x) + cos(x)

Genetic programming [7] is a subset of Evolutionary Algorithms very related to

symbolic computation. The main difference between this subset of Evolutionary Al-

gorithms and others is the representation of the solutions. In Genetic Programming

the individuals are not fix-length and they are traditionally represented as tree struc-

tures, which made these algorithms really suitable for computer algebra systems. The

genetic operators are also adapted to the tree structure. In this case, the crossover is

accomplished by combining both tree structures, as we can see in figure 4.2. For the

mutation, the genetic information can be modified by adding or deleting nodes, which

will increase or decrease the complexity of the solutions respectively, or replacing the

existing ones by randomly generated nodes. Other factors which significantly affect the

algorithm performance are the initial population characteristics (number and complexity

of individuals), the population size and the percentage of individuals which are affected

by genetic operators and replacement between generations. Also, when solving an

optimization problem, the node and leaf sets, which determine what functions and

variables will conform the trees, are highly influential on the algorithm performance, in

case those sets are not fit enough for the problem conditions, the exploration of the

search space will be less efficient leading to more time to reach the final solution or,

even, the inability to reach it.

2.3 Computing systems

2.3.1 Heterogeneous hardware

Until early 2000s, microprocessors based on a single Central Processing Unit (CPU)

achieved a rapid performance improvement and cost reduction in computer applications

by increasing the amount of transistor that fit in the microprocessor. However, energy

12

consumption and heat dissipation issues have limited the increment of the clock frequency

and the level of productive activities that can be performed in each clock period within

a single CPU. Since then, the trend has been to switch to models where multiple

processing units, or processor cores, are used in each chip to increase the processing

power.

One type of these new models is the multicore CPU, which seeks to maintain the

execution speed of traditional sequential programs while moving into multiple cores. A

CPU is designed to optimize sequential code performance. It makes use of sophisticated

control logic to allow instructions from a single thread to execute in parallel or even out

of their sequential order while maintaining the appearance of sequential execution. Also,

this model is provided with large cache memories to reduce the data and instructions

access latencies inherent to complex applications.

Other multiprocessor model is the Graphics Processor Unit (GPU), in contrast with

CPUs, GPUs are focused on the execution throughput of parallel applications. The

design philosophy of GPUs is to optimize for the execution throughput of massive

numbers of threads. This design saves chip area and power by allowing pipelined

memory channels and arithmetic operations to have long latency. The reduced area

and power of the memory access hardware and arithmetic units allows to have more

of them on a chip and thus increase the total execution throughput. Small cache

memories are provided to help control the bandwidth requirements of these applications

so that multiple threads that access the same memory data do not need to all go to the

DRAM. This design style is commonly referred to as throughput-oriented design since

it maximizes the total execution throughput of a large number of threads in exchange

for longer execution time for the individual threads.

And a third commonly used multiprocessor model are Field-Programmable Gate

Arrays (FPGAs). An FPGA is a programmable hardware that can be reconfigured after

manufacturing. It contains programmable logic gates, programmable interconnects,

configurable memory modules and DSPs (dedicated multipliers). We can connect these

elements to implement any arbitrary circuit. Therefore, many accelerators can be

implemented on FPGA to do different computations. FPGAs are already used in many

fields such as signal processing, high-performance computing, machine learning, etc.

Hardware description languages, such as Verilog HDL, are used to program FPGAs

and, usually, the accelerator design time is very large.

2.3.2 Parallel and heterogeneous programming

Today’s applications presents several different workload behaviours, which goes from

data intensive (e.g., image processing, simulation and modelling, data mining, etc) to

13

control intensive (e.g., searching, sorting, parsing, etc). Each of these workload classes

typically executes most efficiently on a specific type of hardware architecture. No single

architecture is best for running all classes of workloads, and most applications presents

a mix of the workload characteristics. For instance, control-intensive applications tend

to run faster on CPUs, whereas data-intensive applications tend to run fast on vector

architectures, where the same operation is applied to multiple data items at the same

time. With so much heterogeneity, developing efficient applications for such a wide

range of different hardware represents a great challenge for software developers. As

hardware becomes more specialized, performance and energy efficiency improves at the

cost of programability. Answering this necessity for more understandable, portable and

flexible code for heterogeneous programming, in the last years, they have appeared

new programming models which hide the complexities of the hardware, such as CUDA,

from NVIDIA, OneAPI, form Intel or OpenCL, all of them supporting joint CPU-GPU

execution of an application.

In parallel programming a initial problem is decomposed into smaller tasks or

processes that can be executed simultaneously using the multiple available compute

resources creating several threads. Based on how these threads communicate and

synchronise we can distinguish between two main parallel programming models: Message

passing model and Shared memory model. In the first one, each processor has its own

local memory, so we have multiple memory spaces and need a communication network

to connect the inter-processor memory. On the other hand, in the Shared memory

model, all processors can access the same memory and same global address space. In

this case the more processors we have the higher is the processor-memory bandwidth.

When working with Shared memory model, the one which concerns us in this work,

we can establish two types of parallelism depending on the problem we are working on:

data parallelism and task parallelism. We have data parallelism in a problem when

there are no dependencies between the data, so it is possible to run the same task on

different data elements simultaneously. For example, adding a constant to each element

of a vector presents data parallelism. And we have task parallelism when it is possible

to run several functions on the same data, for example, we can compute at the same

time the mean and the minimum of a vector. The area of Evolutionary Algorithms is

specially suitable for parallelization as many of the operations that are performed on

the individuals, such as evaluation or mutation, presents data parallelism given that

each individual is independent from the rest.

The potential application speed-up is given by the Amdahl’s Law (2.3), and it

depends on the fraction of parallel code and the number of cores running that code.

14

S =
1

P
C
+ s

(2.3)

Where S is the potential speed-up, C the number of cores, P the parallel code

fraction and s the sequential code fraction.

15

Chapter 3

Methodology

In this chapter we present the programming languages, software, hardware and met-

rics that we have used for the development of the system and the realization of the

experiments.

3.1 Programming languages and libraries

This project, as described in Chapter 4, has been implemented in two programming

languages: Python and Data Parallel C++ (DPC++)/SYCL. The first helped the

prototyping and build the first proof of concept while the second provided the required

support to build a faster heterogeneous solution.

3.1.1 Python implementation

This is a first implementation whose aim is the validation of the genetic algorithm

design decisions (genetic operators, population characteristics, parameters for random

processes, etc). For the symbolic computation, this implementation relies on the Sympy

python library for symbolic mathematics1.

3.1.2 DPC++ implementation

DPC++ [8] is single source, meaning that device and host code can be included in

the same source file. A DPC++ compiler generates code for both the host and device.

Any C++ compiler can compile programs that only use the host subset of DPC++.

DPC++ programs are written in ISO C++ and use the Khronos* SYCL*2 parallel

programming model to distribute computation across processing elements in a device.

DPC++ extends SYCL with features for performance and productivity.

1https://www.sympy.org/en/index.html
2https://www.khronos.org/sycl/

16

https://www.sympy.org/en/index.html
https://www.khronos.org/sycl/

Once validated, the system has been implemented in DPC++ for its optimization

on heterogeneous devices.

One key aspect is the design and implementation of an small symbolic computation

engine that replaces SymPy. Internally, the engine manages the algebraic expressions

with pointer-based tree structures and dynamically allocated nodes. We also have imple-

mented the genetic operators (mutation and crossover) and the population management

functionalities (initialization, replacement, . . .) that are used in both applications,

as well as the analytic differentiation of the algebraic expressions. This library also

provides support for saving, loading and visualization of the algebraic expression.

The implementation of DPC++ from Intel named oneAPI provides many libraries

to accelerate tasks. In particular, this implementation uses the Threading Building

Blocks library (oneTBB) to parallelize the code on the CPU and the oneDPL library to

generate random numbers on a GPU.

Since the image compression application required support for working with images,

we have used the CImg 3 library.

3.2 Machine and Compiler Descriptions

− Hardware: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, 8 virtual cores

and 8GB RAM.

− Compiler: As we are working on heterogeneous devices with DPC++ we need a

suitable compiler. Compiler version and compilation flags for this machine are

shown in table 3.1.

Compiler Version Flags

Intel(R) oneAPI DPC++/C++ Compiler 2022.0.0.20211123
-O3
-fexceptions
-std=c++17

Tabla 3.1: Compiler version and flags

Regarding the compilation flags, -std=c++17 has been included in order to use the

std::clamp function in some steps of the individual evaluation. And we use -fexceptions

for handling possible C++ exceptions.

3https://cimg.eu/

17

https://cimg.eu/

3.3 Experiments Metrics

The main metric of interest for this master thesis is execution time. Quantitative results

of execution time can help to evaluate whether genetic algorithms can efficiently support

computer graphics applications. In the aforementioned machines, other metrics such as

energy consumption tend to correlate with execution time and could be suitable for

follow-up works.

3.3.1 Time Measurement Methodology

To ensure the accuracy of the results, each experiment run is composed by five application

runs performed in the same machine and with the same random seed for each experiment

repetition.

3.4 Code repository

Code from both mentioned implementations in section 3.1 are available in the following

GitHub repository:

https://github.com/EnriqueBM/TFM_EnriqueBauza

18

https://github.com/EnriqueBM/TFM_EnriqueBauza

Chapter 4

System Description

In the present chapter we describe the system we have developed. We explain the

individual representation we have chosen for the genetic programming algorithm and

we go through each one of the steps of the algorithm in detail.

4.1 System Overview

In this work, we have developed a computer algebra system for mathematical regression

based on genetic programming. For a given n-dimensional target function and a sample

dataset, the system output is another function that approaches the target one with

additional properties; e.g., derivable, easy to compute, . . .

To develop this system we first need a specific individual (or chromosome) represen-

tation, this is described in 4.2. On top of this representation, we have to implement the

set of operations described in the following sections such as mutation and crossover (4.7),

selection (4.5) or evaluation (4.4). Also we have to define and implement population

initialization (4.3), population replacement (4.7) and finalization condition (4.8), as

well as the genetic parameters for the algorithm (4.9).

The core of this system is the evolutionary algorithm exposed in this chapter. The

algorithm iterates over an initial population of algebraic expressions until one expression

satisfies a convergence criteria or the maximum number of generations is reached. At

this point, the resulting functions mimics the target function and can replace it in the

destination applications.

4.2 Individual Representation: Tree structure

For the individual representation we have chosen a tree structure, described in 2.2. The

set of functions used for the nodes of the trees are the following:

1. sin, exp and step as unary functions.

19

2. product and addition as n-ary functions.

From the above, the specific functions used in each application are problem dependant

and they are enumerated in the next chapter (6.2 and 6.3) when we explain each problem

in detail. Each n-ary node can have up to four children nodes and, as n-ary nodes are

sums and products, which have commutative and associative properties, any child can

be again of the same type, yielding a n-ary expression with no prior bounds. Finally, as

leaves, we have random constants or the correspondent variables of each problem.

This tree structure has been implemented making use of pointers and dynamic

memory management in DPC++ and with the SymPy libary in Python.

1. Python implementation: In this case we have used an existing computer algebra

library called Sympy1. This library has its own tree-structure representation for

the mathematical expressions, as well as a wide set of mathematical functions

from which we can select the ones required for the problem.

2. DPC++ implementation: In this case we have designed a pointer-based tree

structure representation from scratch in DPC++ making use of struct and union

data types for the dynamic allocated tree nodes. As well as all the computer

algebra functions needed to manipulate that structure.

4.3 Initialization

The initialization step generates the initial population. There are two main aspects of

the initial population that will affect the algorithm performance: the population size

and the initial individuals complexity.

The initial population is generated as shown in algorithms 1 and 2. For a given

number of individuals and a maximum depth, we first randomly select the depth for

each individual between one and the maximum depth and then generate the individual,

randomly as well.

Algorithm 1: Generate pop(maximum depth, n inds)

Input: Maximum depth, number of individuals
Output: Initial population
for i < ninds do

1 depth = random between 1 and maximum depth;
2 individual[i] = Generate tree(depth);

1https://www.sympy.org/en/index.html

20

https://www.sympy.org/en/index.html

Individual generation: Algorithm 2 describes the generation of the trees for each

individual. For a given depth, the function generates recursively, from the root to the

leaves, a random tree. To accomplish this, the children nodes are generated as subtrees

with a smaller depth. The algorithm first check if the given depth is one, in that case

it just generates a leaf which can be a variable, from the variable set, or a random

constant. If depth is greater than one, it randomly selects a unary or n-ary function,

from the function set, and then generates the arguments (several if it is n-ary or just one

for unary functions) by calling recursively the same function with a decreased-by-one

depth. This process is illustrated in figure 4.1.

+

+

𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒

+

𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒

𝑦𝑦 𝑥𝑥

Step 1 Step 2 Step 3

Figure 4.1: Individual initialization. For a given depth of 3 the tree nodes and leafs are
randomly and recursively generated from top to bottom.

Algorithm 2: Generate tree(d)

Input: Depth: d
Output: Random tree

1 if d=1 then
2 Generate random leaf;

3 else
4 Randomly select unary or n-ary function;
5 if function is n-ary then
6 for i < n args do
7 argument[i] = Generate tree(d− 1);

8 else if function is unary then
9 argument = Generate tree(d− 1);

4.4 Evaluation

This stage add the score to each individual. This score computation depends on

the specific optimization problem solved because each problem needs its own cost or

fitness function. But, as we are working with mathematical expressions and trying to

21

approximate an objective function, we will need to evaluate the individuals and the

objective function (which can also be represented in a tree structure) at a given set of

points in order to compare them. In the simplest case, we can compute the score as

e.g. the mean absolute error between the objective and the individual for the given set

of points. Obviously, there are other possible and more complex ways to compute the

score, for example, adding more terms to the score function so that it takes into account

other problem characteristics, as we can see in 6.3 and 6.2 when we explain each solved

problem in more detail. Anyway, the mathematical expression evaluation is a common

feature, so what is inevitably needed, is a function to evaluate each expression at a

point which we can then call iteratively over all the point set. The function to evaluate

an individual at a point is recursive, evaluating from root to leaves. For each evaluation,

it first checks what type of tree element is being evaluated. For leaves we can have

constants, in this case it will return the correspondent real value, or variables, where it

will return the correspondent value of the point component. And for nodes, it will first

evaluate the arguments and then operate the node functions on the argument values.

4.5 Selection

The selection stage consists of determining which individuals will be the parents for

the next generation. The are several suitable selection strategies, and many of them

are focused on selecting the best individuals, making the probability to be chosen

proportional to the score of each individual. The evident advantage of these type of

strategies is a faster convergence as we are always selecting the best individuals of each

generation, but, on the other hand, there is a drawback on the exploration of the search

space which could lead to get stuck on a local minima.

In this stage we select a total of n = population size/2 individuals to be the parents

in the reproduction stage and this selection is performed with replacement.

Tournament selection algorithm: In this system the implemented selection strategy

is a tournament selection, in which a significant smaller random subset of individuals

”compete” to be selected, given more probability to be chosen to the best individuals

within the mentioned subset. With this strategy, although the best individuals have

higher probability to be chosen, not-best individuals have more chance to be chosen

than in other strategies. As the subset for the tournament is random, a worse scored

individual can enter the tournament and, once in the tournament, it has a smaller, but

significant, probability to be chosen. As explained before, in this way we are encouraging

the search space exploration.

22

The tournament selection is implemented as shown in algorithm 3. First, three

random individuals are selected and then a random real number between zero and one is

generated. We also have three selection rates, (r1 > r2 > r3) and r1+ r2+ r3 = 1, which

determines the probabilities of each individual to be selected. The best individual will

be selected with a probability equal to r1 and so on. The higher is r3 the more diverse

will be our population, and therefore, we are encouraging the search space exploration

in exchange for a slower convergence.

Algorithm 3: Tournament selection(population, scores, selection rates)

Input: Current population, their scores and selection rates (r1, r2, r3)
Output: Selected parent

1 Randomly chose ind1, ind2 and ind3;
2 Randomly generate r between 0 and 1;
3 if r < r1 then
4 return best individual;

5 else if r1 < r < r2 then
6 return second best individual;

7 else if r2 < r < r3 then
8 return third best individual;

4.6 Reproduction

In this stage the selected parents (4.5) are combined or mutated to generate the offspring.

For the combination of the genetic information of two parents we have the crossover

operator and for mutation we have three different types. First we select the individual

to which we are applying the operator and then, we apply the correspondent operator

depending on its probability to be applied (rcross > rm1 > rm2 = rm3). This process is

shown in 4, for each of the parents we perform one of the genetic operators and generate

a new individual for the next generation. For crossover it is necessary to select one

more parent that will act as donnor. Each of the genetic operators is explained in the

following sections.

23

Algorithm 4: Reproduction(Parents, reproduction rates)

Input: Parents and reproduction rates (rcross, rm1, rm2, rm3)
Output: Offsprings

1 for i < number of parents do
2 Randomly generate r between 0 and 1;

if r < rcross then
3 Select a donnor from population with tournament selection;
4 offspring[i] = Crossover(parent, donnor);

else if r < rcross + rm1 then
5 offspring[i] = Mutation1(parent);

else if r < rcross + rm1 + rm2 then
6 offspring[i] = Mutation2(parent);

else
7 offspring[i] = Mutation3(parent);

4.6.1 Crossover

𝑥𝑥

𝑦𝑦

+

𝑠𝑠𝑠𝑠𝑠𝑠

Parent

Offspring

+

𝑥𝑥

∗

+

𝑒𝑒𝑒𝑒𝑒𝑒

𝑦𝑦 3

Donor

𝑥𝑥

∗

+

𝑠𝑠𝑠𝑠𝑠𝑠

𝑦𝑦 3

Figure 4.2: Crossover example.

As we are working with tree structures this operator consists of mixing the trees. First,

we need to select one more random individual to act as a ”donnor” in the operation.

Then, we randomly select a random subtree from the parent and replace it by a random

subtree from the donnor. This is shown in algorithm 5, where the subtree is selected by

choosing a random node of the parent tree and and a random depth from that node.

24

Algorithm 5: Crossover(parent, donnor)

Input: Parent and donnor
Output: Offspring

1 Select random subtree from parent;
2 Select random subtree from donnor;
3 Substitutes parent subtree by donnor subtree;

4.6.2 Mutations

In this operation we modify genetic information of a certain individual to obtain a

new one. Since the individuals are represented by trees, this modification consists of

changing the tree elements in some way. In this system we have implemented three

different type of mutations which are explained below.

Mutation 1

+

𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥

𝑥𝑥

+

𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥

+

Parent Offspring

3 𝑦𝑦

Figure 4.3: Mutation 1. A leaf is replaced by a random subtree

This mutation (figure 4.3) consists of replacing a leaf by a randomly generated subtree.

In this way we are adding more genetic content to the individual and increasing its

complexity. This mutation is implemented as shown in algorithm 6, this is a recursive

function which traverse the tree, starting from the root, searching for a random leaf to

replace. First, it checks whether the next element is a node or a leaf (for a n-ary node

it will also choose randomly which child to check). If it is a leaf it will replace it by a

random subtree, on the other hand, if it is a node, it will call the function recursively

at that node until it finds a leaf. The random subtree generation is the same as in

algorithm 2.

25

Algorithm 6: Mutation1(Node)

Input: Parent
Output: Offspring

1 if node is unary then
2 if argument is leaf then
3 Replace leaf by random subtree;

4 else
5 Mutation1(argument);

6 else if node is n-ary then
7 Select random argument;
8 if argument is leaf then
9 Replace leaf by random subtree;

10 else
11 Mutation1(argument);

Mutation 2

+

∗ 𝑦𝑦

+ 𝑠𝑠𝑠𝑠𝑠𝑠

3 𝑦𝑦 𝑥𝑥

+

𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦

𝑥𝑥

Parent

Offspring

Figure 4.4: Mutation 2. Some genetic content is deleted (the left part of the tree is
simplified).

This mutation (figure 4.4) consists of deleting some genetic content from the individual

decreasing its complexity. This is accomplished by removing a leaf or a random subtree

from the individual. The idea behind this implementation is that, sometimes, through

crossover and the first type of mutation, an individual can increase its complexity

without a significant improvement in its score, this can lead to a unnecessarily complex

population which will make the system computationally more expensive.

Also, this mutation is a way to ”restart” some individuals (as it can, occasionally,

26

delete most of the individual information or, even, all the information), which can

be very useful in advanced populations where most of the individuals are genetically

similar. This homogeneous populations are very likely to get stuck in a local minimum

and this mutation is a way to increase the population heterogeneity and encourage the

search space exploration.

This mutation is shown in algorithm 7, here the probability to delete the subtree

from the current node is proportional to the depth of this node, so that the most drastic

changes are less frequent. This is a recursive function which is called on the node

argument if that node has not been selected for the deletion.

Algorithm 7: Mutation2(node, depth)

Input: Node, depth (initially = 1)
Output: Offspring

1 generate r between 0 and 1;
2 if r < mutation prob then
3 delete subtree from current node;

4 else
5 if node is unary then
6 Mutation2(argument, depth + 1);

7 else if node is n-ary then
8 select random argument;
9 Mutation2(argument, depth + 1);

Mutation 3

𝑥𝑥

𝑦𝑦

+

𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥

𝑦𝑦

+

𝑒𝑒𝑒𝑒𝑒𝑒

Parent Offspring

Figure 4.5: Mutation 3.Tree element substitution (sin node replaced by exp node).

In this mutation (figure 4.5) the change in the individual is performed by randomly

substituting the tree elements by other of the same type, nodes by other nodes and

27

leaves by other leaves. This mutation neither increases nor decreases the complexity

and the genetic content of the individual, it just modifies it. The implementation is

shown in algorithm 8.

Algorithm 8: Mutation3(parent)

Input: Parent
Output: Offspring

1 Select random tree element;
2 if element is node then
3 replace by other random node;

4 else if element is leaf then
5 replace by random leaf;

4.7 Replacement

In this stage a part of the current population is replaced by the new generated individuals.

These replacement is based on the score of the individuals in such a way that the worst

half population is replaced by the new individuals. By keeping the best half population

from one generation to the next we are ensuring that the best individual for the new

generation is, at least, as good as the best individual from the previous one.

4.8 Finalization

For the finalization, we can apply, even at the same time, two possible criteria: computa-

tion time, implemented in form of maximum number of generations, and best individual

score. The specific values for these parameters are, obviously, dependant on the specific

problem where the algorithm is applied and they must be tuned for each case. For

example, in a low dimensional problem we can establish fewer maximum generations as

the optimal solution is more likely to be found faster.

4.9 Genetic parameters

The genetic parameters of the algorithm are adjusted to the following values for all

tested applications:

− Population size: There are 1000 individuals for each population. Half of them

are replaced from one generation to the next.

28

− Tournament selection rates: For the tournament selection, the probabilities

to be chosen are 80%, 15% and 5% for the first, second and third candidates

respectively.

− Mutation and crossover rates: For each selected candidate the probabilities

in the reproduction stage are: 50% of performing crossover, 20% for mutation 1

and 15% for mutation 2 and 3.

29

Chapter 5

Random number generation in GPU

As we have seen in chapter 4, this genetic programming system, and all evolutionary

algorithms in general, has a high randomness, which leads to the generation of a large

amount of random numbers. In particular, we are using random numbers in:

− the population initialization (section 4.3), as the depth of the individual is random

and each node of an individual is also randomly generated;

− in the selection step (section 4.5) when we randomly select the individuals for the

tournament and then also in the tournament to select the final parent;

− in the reproduction(section 4.7) step when we decide which genetic operator to

apply and, specially, in those operators, both mutations and crossover, when

we randomly traverse the individual trees, generate random subtrees for adding

complexity, select random subtrees from parents in crossover, . . .

So, for instance, in our case, for a population of 1000 individuals we have thousands

of random number generations just in one iteration of the algorithm. Furthermore,

as we are working with an iterative algorithm this random number generations are

proportional to the experiment duration, which for a experiment of about 100 iterations,

like the ones we expose in Chapter 6, may lead to millions of random number generations.

In this chapter, we expose how we have leveraged heterogeneous hardware, a GPU

in this case, to accelerate this random number generation, and the results of this

acceleration in terms of computation time and randomness quality.

5.1 Implementation on GPU

For this implementation we have used DPC++ (3.1.2) and Intel oneAPI toolkit. Specif-

ically the oneDPL1 library offers several random number engines.

1https://docs.oneapi.io/versions/latest/onedpl/random.html

30

https://docs.oneapi.io/versions/latest/onedpl/random.html

The idea behind this random number generation is to avoid using the C++ standard

libraries for randomness and substitute them by this customized generation, taking

advantage of heterogeneous hardware such as GPU as some performance gains could

be expected from generating the random values on the GPU versus the default CPU

generation.

To speed-up the use of random values, the proposed implementation fills some large

vectors with random numbers in the GPU, and, later, the CPU only reads them.

So the GPU with the oneDPL library fill multiple components of a vector at the

same time at the beginning of the execution. In this way, the generation of each random

number during runtime is just an access to the correspondent memory address where

the number (int or float) is stored, which is faster than a call to a C++ random number

generation. When all the numbers from a vector have been used, the access index is

reset, and the vector is accessed from the beginning again. Although this reusage of

numbers may compromise randomness at first glance, it is not really a problem if the

vectors are large enough as we shall see later on.

The task of filling large vectors with random numbers is especially suitable for its

implementation on GPU or other accelerator because this present a high degree of data

parallelism as all the vector components are independent from each other and can be

generated at the same time.

Regarding the vectors, we need different ones because, specially for integers, we need

random numbers in different ranges depending on what they are going to be used for.

The vectors and correspondent ranges used for the random number generation in the

system are shown in table 5.1. For the real number generation, the generated numbers

can be scaled for the specific purpose we need it; e.g., constants in a certain real range.

Function Data type Range Size
Real number generation for constants and
rates used for random decisions.

Float [0.0, 1.0] 100000

Integer number generation to
determine the type of function (unary, n-ary),
the type of n-ary function (add, product)
or the type of leaf (variable, constant).
Mostly used in random trees generation.

Integer [0, 1] 10000

Integer number generationto determine
the type of unary function (sin, exp, step)

Integer [0, 2] 10000

Integer number to determine
which argument select from a n-ary function.
Used in random tree traversal in genetic operators.

Integer [0, 3] 10000

Tabla 5.1: Different vectors used for random number generation.

31

5.2 Implementation testing

We have compared this implementation to the random number generation using rand()

function from the standar c library. For this comparison, we measure the time of the

random number generation for real and integer numbers and we also compare the

quality of the generated numbers with some tests for randomness [9].

5.2.1 Generation time comparison

This sub-section compares the generation time for both generator, standard and custom.

The experiment consists of generating 30000 random numbers of each type with both

generators, we made 5 repetitions of the experiment and compute the mean time.

Results are shown in table 5.2.

Generator Data type Time [ns]

Stdlib generator
Float 399933.2
Integer 369544.8

Custom generator
Float 50362.4
Integer 37810

Tabla 5.2: Generation time comparison for int and float data types. Mean time of 5
repetitions of the experiment, 30000 random generations per experiment.

In table 5.2, we can see how the float generation is around 8 times faster with the

custom generator, and the int generation is almost 10 times faster with the custom

generator.

5.2.2 Randomness tests

In this sub-section, we perform two common empirical tests on the random distributions

generated with both generators. These 2 empirical tests are the Serial test and the

Run test.

The Serial test consists of verifying that in a sequence of random numbers suffi-

ciently large, the different pairs of possible numbers (two consecutive numbers in the

sequence), (Yj;Yj+1) = (q; r), appear randomly with the corresponding probability. For

this, a random sequence of numbers is generated, and the number of times each of

the tuples, (Yj;Yj+1) = (q; r) occurs for 0 ≤ j < n, appears is counted. In this way, we

have d2 categories and knowing that theoretically the probability of appearance of each

category is the same, pr =
1
d2

, a X2 test is applied on these d2 categories.

And the Run test consists of measuring the length of monotone subsequences in a

sequence of random numbers. A monotone sequence is a sequence that has elements

32

that are either all increasing or all decreasing. The idea behind this test is to check

the correlation between the appearance of long and short subsequences inside a long

enough sequence of random numbers.

To perform these tests we have generated four sequences of random numbers of

30000 numbers each one. In the case of the custom generator we are using vectors of

10000 numbers each one, in this way, taking 30000 numbers, we are forcing to ”reuse”

the numbers from the vectors which, a priori, should be worse for randomness properties.

We have 2 sequences of real numbers generated with both generators and other 2

sequences of integers numbers. Then we have performed both mentioned test over the

integer sequences and the Run test over the float integer given that the Serial test is

not suitable for this sequence as we do no have a finite numbers of categories. Results

are shown in table 5.3.

Generator Sequence Test Result

Custom generator
Float Run Passed

Integer
Serial Passed
Run Passed

Stdlib generator
Float Run Passed

Integer
Serial Not passed
Run Passed

Tabla 5.3: Results of the tests performed over the sequences of numbers generated with
both generators.

So, as these results show, the custom generator has better random proprieties as

it passes the serial test. This, in addition with results in table 5.2, make this custom

generator suitable for the random numbers generation in the system development.

33

Chapter 6

Evaluation

To test our approach, we have applied the solution to two relevant problems in the

Computer Graphics domain: single scattering and image compression. Each problem

requires its own function and variable sets, and, a different loss function to compute

the individual scores. Previously, to validate the system, we have performed some

experiments for less complex and controlled cases that are described in Section 6.1.

6.1 Validation experiments

6.1.1 Function approximation

We have first tested the system on function regression. The idea is to validate the

system ability to accurately approach different functions which are not in the system

function set or a combination of those. This capability is essential for solving more

complex problems. The results are shown in results in figure 6.1, where we can see

plotted both the objective function and the system solution; and table 6.1, where

we have several experiment statistics for the DPC++ implementation as well as the

resultant expression for each experiment. In these first validation experiments we have

used Mean Squared Error between the objective function and the genetic output as loss

function for the individual score computation.

34

3 2 1 0 1 2 3
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
)

Genetic
cos(x)

(a) f(x) = cos(x).

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

Genetic
cos²(x)

(b) f(x) = cos2(x)

4 2 0 2 4
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

f(x
)

Genetic
1/x²

(c) f(x) = 1/x2

6 4 2 0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x
)

Genetic
atan

(d) f(x) = arctan(x)

3 2 1 0 1 2 3
x

2

4

6

8

10

12

14

16

18

f(x
)

Genetic
x²-2x+3

(e) f(x) = x2 − x+ 3

Figure 6.1: Function approximation results. In each subfigure we have the correspondent
objective function and the system output.

35

f(x) Total time [ms] Generations Samples Algebraic expression
cos(x) 6333 88 5000 sin(x+ 1.572)

cos²(x) 37803 200 5000 e
− 1.15sin2(x)

1.1e−1.15sin4(x)

1/x² 224 4 2000 1/x2

atan(x) 40330 180 8000 too complex
x²-2x+3 6850 132 2000 x2 − 1.993x+ 2.984

Tabla 6.1: Function approximation experiments statistics and system output for each
function.

These results show that the approximations are accurate in all cases with very few

error. The obtained expressions are very similar to the objective functions in the cases

where the objective function terms are in the system function set.

6.1.2 Genetic integration

Since the main purpose of the system is to integrate analytically non-integrable functions

we need to test the ability of the system to approximate the antideriative of a certain

function. In these first validation experiments we are not yet working with analytically

non-integrable functions, instead, we are first approximating the antiderivate of inte-

grable functions and comparing it with the analytical integral. For the experiments

in this section, to compute the score of a certain individual, we first derive it and

then evaluate its derivative in the given points. In this way, by fitting the individuals

derivative to the objective function, we are directly obtaining an algebraic expression

which approximates the objective integral in the given range. So, we have used Mean

Squared Error between the objective function and the derivative of the individual as

loss function for the individual score computation. We have tested the algorithm with

several functions, and we can see the results in figure 6.2, were we plot both the integral

of the objective function and the system output in the given range; and table 6.2, where

we can see several experiment statistics as well as the resultant genetic antiderivatives.

The experiments have been also performed with the DPC++ implementation of the

system.

36

3 2 1 0 1 2 3
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x
)

Genetic
1/2(x+cos(x)sin(x)

(a) f(x) =
∫
cos2(x)dx.

4 2 0 2 4
x

20

15

10

5

0

5

10

15

20

f(x
)

Genetic
-1/x

(b) f(x) =
∫

1
x2dx

6 4 2 0 2 4 6
x

0

1

2

3

4

5

6

f(x
)

Genetic
x*atan(x)-0.5*ln(x²+1)

(c) f(x) =
∫
arctan(x)dx

3 2 1 0 1 2 3
x

25

20

15

10

5

0

5

10

f(x
)

Genetic
x³/3-x²+3x

(d) f(x) =
∫
x2 − x+ 3dx

Figure 6.2: Genetic integration. In each subfigure we have the correspondent objective
function and the system output.

∫
f(x)dx Time [ms] Gens Samps Algebraic expression

(x+cos(x)sin(x))
2

442156 2100 5000 x ∗ esin(1.25sin(− x2

3.83
))

-1/x 80567 50 100000 −0.999993/x

x ∗ atan(x)− ln(x2+1)
2

45215 200 8000 −1.615x ∗ sin(sin(sin(sin(−0.204x))))
x3/3− x2 + 3x 10765 200 2000 x3/2.9968− 1.9998x2 + 3.0012x

Tabla 6.2: Genetic integration experiments statistics and system output for each
objective function.

As we can see, the integrals are accurately approximated with very few error in all

cases. The experiments time depends on the number of samples, which directly increases

the number of evaluations, and on the complexity of the function to approximate. More

complex functions means larger algebraic expressions as individuals of the population

which are slower to evaluate. For the functions whose terms are in the system function

set the obtained expression is similar to the analytical integral.

37

6.1.3 Comparison between Sequential and Parallel Versions

When profiling the sequential version of these validation experiments, we noticed that

the expression evaluation at the sample points takes more than 60% of the computation

time in the sequential version. So, taking this into account, we have accelerated that

part of the program. We have used an eight-core CPU. For this parallelization we have

two options: evaluate several of the 1000 individuals at the same time (figure 6.4) or

evaluate one individual at several sample points at the same time (figure 6.3). In figures

6.5 and 6.6 we have the results of the comparison between sequential version and both

parallel versions approximating the objective function f(x) = cos2(x).

𝑥𝑥8𝑖𝑖+0 𝑥𝑥8𝑖𝑖+1 𝑥𝑥8𝑖𝑖+2 𝑥𝑥8𝑖𝑖+3 𝑥𝑥8𝑖𝑖+4 𝑥𝑥8𝑖𝑖+5 𝑥𝑥8𝑖𝑖+6 𝑥𝑥8𝑖𝑖+7 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛. . .

𝑓𝑓(𝑥𝑥8𝑖𝑖+0)

CPU Cores

Samples

Function values

𝑥𝑥0 𝑥𝑥1 . . .

𝑓𝑓(𝑥𝑥8𝑖𝑖+1) 𝑓𝑓(𝑥𝑥8𝑖𝑖+2) 𝑓𝑓(𝑥𝑥8𝑖𝑖+3) 𝑓𝑓(𝑥𝑥8𝑖𝑖+4) 𝑓𝑓(𝑥𝑥8𝑖𝑖+5) 𝑓𝑓(𝑥𝑥8𝑖𝑖+6) 𝑓𝑓(𝑥𝑥8𝑖𝑖+7). . .𝑓𝑓(𝑥𝑥1)𝑓𝑓(𝑥𝑥0) . . . 𝑓𝑓(𝑥𝑥𝑛𝑛)𝑓𝑓(𝑥𝑥𝑛𝑛−1)

𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑥𝑥) 𝑓𝑓(𝑥𝑥) 𝑓𝑓(𝑥𝑥) 𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑥𝑥)

Figure 6.3: Evaluation of several samples in parallel. In this case we are parallelizing
the computation of the individual value at each sample point, so each of the 8 CPU
cores computes the individual function value, f(x), on a different sample point, xi.

38

𝑖𝑖8𝑖𝑖+0 𝑖𝑖8𝑖𝑖+1 𝑖𝑖8𝑖𝑖+2 𝑖𝑖8𝑖𝑖+3 𝑖𝑖8𝑖𝑖+4 𝑖𝑖8𝑖𝑖+5 𝑖𝑖8𝑖𝑖+6 𝑖𝑖8𝑖𝑖+7 𝑖𝑖998 𝑖𝑖999. . .

𝑙𝑙(𝑖𝑖8𝑖𝑖+0)

CPU Cores

Individuals

Individual score

𝑖𝑖0 𝑖𝑖1 . . .

𝑙𝑙(𝑖𝑖8𝑖𝑖+1) 𝑙𝑙(𝑖𝑖8𝑖𝑖+2) 𝑙𝑙(𝑖𝑖8𝑖𝑖+3) 𝑙𝑙(𝑖𝑖8𝑖𝑖+4) 𝑙𝑙(𝑖𝑖8𝑖𝑖+5) 𝑙𝑙(𝑖𝑖8𝑖𝑖+6) 𝑙𝑙(𝑖𝑖8𝑖𝑖+7). . .𝑙𝑙(𝑖𝑖1)𝑙𝑙(𝑖𝑖0) . . . 𝑙𝑙(𝑖𝑖999)𝑙𝑙(𝑖𝑖998)

𝑙𝑙(𝑖𝑖) 𝑙𝑙(𝑖𝑖)𝑙𝑙(𝑖𝑖)𝑙𝑙(𝑖𝑖)𝑙𝑙(𝑖𝑖)𝑙𝑙(𝑖𝑖)𝑙𝑙(𝑖𝑖)𝑙𝑙(𝑖𝑖)

Figure 6.4: Evaluation of several individual scores in parallel. In this case we are
parallelizing the computation of the 1000 individuals scores, so each of the 8 CPU cores
computes the loss function, l(i), on a different individual, ii.

0 25 50 75 100 125 150 175 200
Generation

0

500

1000

1500

2000

2500

3000

3500

4000

Ge
ne

ra
tio

n
tim

e
[m

s]

Sequential
Samps
Inds

(a) Time per Gen.

0 25 50 75 100 125 150 175 200
Generation

0

50

100

150

200

250

300

350

400

Cu
m

ul
at

iv
e

tim
e

[s
]

Sequential
Samps
Inds

(b) Cumulative Time per Gen.

Figure 6.5: Execution time comparison between sequential and parallel implementations.

0 250 500 750 1000 1250 1500 1750 2000
Generation

0

1000

2000

3000

4000

5000

6000

7000

8000

Ge
ne

ra
tio

n
tim

e
[m

s]

Samps
Inds

(a) Time per Gen.

0 250 500 750 1000 1250 1500 1750 2000
Generation

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

tim
e

[s
]

Samps
Inds

(b) Cumulative Time per Gen.

Figure 6.6: Execution time comparison between both parallel versions.

39

In the figures above, Samps corresponds to the parallel implementation where we

evaluate an individual at several sample points at the same time; Inds corresponds to

the parallelization of the 1000 individuals score computation; and Sequential to the

sequential implementation. Figure 6.5 shows that both parallel versions are signifi-

cantly faster than the sequential one, achieving a x3.3 acceleration for the individual

parallelization and x2.4 for the samples parallelization. And in 6.6 we noticed that,

for a longer experiment, both parallel versions are similar. For this specific objective

function evaluating several individuals in parallel is a bit faster than evaluating several

sample points in parallel for the same individual, but this results also depends on the

complexity of the objective function and the number of variables.

6.1.4 Integration of no-integrable functions

In these experiments, we have obtained an algebraic expression which approximates the

integral of two different functions without analytical integral. To measure the accuracy

of the results we have compared the definite integral in a given range with the Monte

Carlo integral in the same range with a high enough number of samples. In table 6.3

we can see the results.

f(x) Time [ms] Generations Integral error
∫
f(x)dx

√
x3 − 1 313193 82 0.7%

(0.342x− 1.435)(0.216sen(x) + 0.1x2−
−1.913) + 1.327x3

x+1.98
− 1.058)

ln(ln(x)) 282633 100 1.15% e
e−2.79x2 (1

x2,43
+x−2.43ln(x))

x+.021

Tabla 6.3: No-integrable functions results

In both cases, the error between the Monte Carlo integral and the ”genetic” integral

is around 1% (0.7% for the first function and 1.15% for the second one) and could

be even lower with more generations and computation time. This can be, definitely,

considered as an accurate approximation of the antiderivative in the experiment range.

6.2 Single Scattering

In light transport, scattering is a physical phenomenon which describes how light is

differentiably affected by a medium while propagating through it. This kind of media,

that can affect the light transport, is called participating media. In this application, we

are targeting the integration of single scattering (a single bounce in the medium) for

the particular case of a point light source in a homogeneous participating medium.

40

Light transport in participating media is modelled by the Radiative Transfer Equa-

tion [10]:

∂L(x, ω)

∂t
= σa(x)Le(x, ω)− σt(x)L(x, ω)

+ σs(x)

∫
Ω

p(x, ω′, ω)L(x, ω′) dω′ (6.1)

where ∂L(ωo)
∂t

represents the differential variation of radiance along the path of light t,

x is the differential point at which the interaction occurs, ω represents the direction

followed by light and ω′ represents the direction of other light paths that reach the

differential point x (Ω is the domain of integration, a sphere). The rest of the symbols

represent the properties of each medium:

− σa is the absorption coefficient, energy that is differentially absorbed by the

medium at every distance unit.

− σs is the scattering coefficient, energy differentially scattered by particles in the

medium at every differential step.

− σt = σa + σs is the extinction coefficient, energy that is either absorbed or

out-scattered.

− p(x, ω′, ω) is the phase function, that defines the angular distribution of light

scattering.

− Le is the medium’s emission.

In order to render participating media, we need to solve Equation 6.1 and obtain the

radiance L(x, ω). Equation 6.1 is a linear ordinary differential equation, and therefore

has an analytical integral solution:

L(x0, ω) = Tr(x0,xt)L(xt, ω)

+

∫ t

0

Tr(x0,xs)σa(xs)Le(xs, ω)ds

+

∫ t

0

Tr(x0,xs)σs(xs)Li(xs, ω)ds (6.2)

where x0 is the origin point of the ray, xs = x0 + sd is a differential point of interaction

at the position parametrized by s (d is the light propagation direction) and t is the

distance from which the light that enters the medium comes from. Tr(x0,xs) is named

transmittance and accounts for all the light that has traversed the medium between

x0 and xs without getting extinguished due to the medium’s properties. Li(xs, ω)

41

represents the in-scattered radiance (energy coming from different light paths) at point

xs. They are defined as follows:

Tr(x0,xt) = e
∫ t
0 −σt(xs)ds (6.3)

Li(xs, ω) =

∫
Ω

p(xs, ω
′, ω)L(xs, ω

′) dω′ (6.4)

For the particular case of homogeneous media, in which the coefficients do not

vary along the volume, transmittance, as defined in Equation 6.3, can be computed

analytically:

Tr(x0,xs) =
e−σt||xs−x0||

σt

(6.5)

Furthermore, we assume an isotropic (constant) phase function:

p(xs, ω
′, ω) =

1

4π
(6.6)

and, last, besides an isotropic phase function, we assume single scattering from a point

light source with emitting intensity Il and position xl, which is a delta function in space,

hence the integral for the in-scattering, as defined in Equation 6.4, is transformed into

Li(xs, ω) =
Ile

−σt||xl−xs||

σt4π||xl − xs||2
(6.7)

which accounts for the inverse square of the point light and the transmittance between

the point light’s position xl and the differential point in the medium xs.

If we only focus on the in scattering term, which is the most challenging part, and

we incorporate Equation 6.7 into the scattering term of the integral version of the

Radiative Tranfer Equation (Equation 6.2), we get:

L(x0, ω) =

∫ t

0

e−σts
σs

σt

Ile
−σt||xl−xs||

4π||xl − xs||2
ds (6.8)

=
Ilσs

4πσt

∫ t

0

e−σt(s+||xl−xs||)

||xl − xs||2
(6.9)

In order to minimize the number of variables for the genetic optimization, we are

going to reparametrize the light’s position with respect to the ray, into two parameters:

light position along the ray (sl) and distance between light and ray (dl) that can be

calculated as follows:

sl = (xl − x0) · d (6.10)

dl =
√

||xl − x0||2 − s2l (6.11)

where d, as discussed earlier, is the propagation direction that fulfils xt = x0 + td.

42

s

dlsl
x0

xl

xt
Figure 6.7: Illustration of setup for single scattering, including starting and ending
positions (x0 and xt), light position (xl) and variables that define the light position
with respect to the ray sl and distance from the light source to the ray dl.

With this parametrization, it is possible to obtain the distance between any point

xs along the trajectory of the ray as

||xl − xs|| =
√
(s− sl)2 + d2l (6.12)

Therefore, the equation to solve, after this change of variable, is

L(x0, ω) =
Ilσs

4πσt

∫ t

0

e
−σt

(
s+
√

(s−sl)2+d2l

)
(s− sl)2 + d2l

(6.13)

Traditionally, this integral would be solved through a numerical integration method,

which very often would be either Monte Carlo integration (random samples along the

trajectory of the ray) or a multistep rectangle rule (commonly called ray marching

[11]).

In this work, our aim is to solve this problem by directly obtaining an algebraic

function, g(s, σt, dl, sl), that approximates the antiderivative of the integrand in Equation

6.13 in such a way that:

∂g(s, σt, dl, sl)

∂s
=

e
−σt

(
s+
√

(s−sl)
2+d2l

)
(s− sl)

2 + d2l
(6.14)

If, using our system, we are able to obtain the function g(s, σt, dl, sl) that satisfies

Equation 6.14, then we will obtain a practical antiderivative that we would only need to,

in the absence of objects that cast shadows, evaluate at the two limits of the integration

range in Equation 6.13.

Dimensionality reduction: For this problem we were originally exploring a four

dimensional space which, by itself, is already a really challenging task. Furthermore,

in our system, the configuration space of the solutions which conform the population

is, theoretically, infinite since our trees have not a maximum size and the genetic

43

operators enable linear and non-linear combinations of the basic functions like function

composition. Taking this into account, we have reduced the original dimensions of

equation 6.14. But, even with this modification, the new single scattering function is

also analytically non-integrable, so obtaining an approximate integral for this equation

is still an interesting application of the system.

This reduction consists of passing from 4 variables to 2, fixing the value of the

extinction coefficient, σt = 0.1, and the light position along the ray, sl = 0.1. So the

problem we are finally going to solve is the following:

∂g(s, dl)

∂s
=

e
−0.1

(
s+
√

(s−0.1)2+d2l

)
(s− 0.1)2 + d2l

(6.15)

6.2.1 Loss function

For this problem we have defined the following loss function:

loss =

∑pn
po

∣∣∣∂g(pi)∂s
− ∂Lo(pi)

∂s

∣∣∣
n

(6.16)

where pi(s, dl) are each of the points in which we are evaluating both expressions,

and n is the total number of samples, so this loss is, basically, the mean absolute error

between the derivative of the individual and equation 6.15.

6.2.2 Function and variable sets

Variable set

This set must contain the amount of variables necessary to explore all the dimensions

of the search space. In this problem we have the two variables, s, dl, of equation 6.15.

Function set

In this problem the basic functions must be analytically differentiable since it is necessary

to compute the individual derivative by chain rule. The function set is composed by

the following functions:

1. sin and exp as unary functions,

2. addition and product as n-ary functions.

6.2.3 Parallelization

Similar to what we saw in the validation experiments 6.1.3, when profiling the sequential

version of the program for this application, we noticed that most of the time was used

44

in the evaluation of the derivative of the genetic output function at a sample point, and,

in this application, we have 200000 sample points. So, under these conditions, we have

parallelized the derivative evaluation at each sample point.

6.2.4 Experiments and results

Versions comparison

In this experiment we can see the comparison in computation time between the two

different implementations of the system: sequential and parallel. The experiment have

been performed under the same conditions: 100 generations as ending condition, same

random seed and same machine (machine in 3.2).

0 10 20 30 40 50
Generation

100

101

102

103

Ge
ne

ra
tio

n
tim

e

Sequential
Parallel

Figure 6.8: Time per generation in logarithmic scale

Figure 6.8 shows the time per generation in logarithmic scale. For the sequential

implementation the execution time is around a half magnitude order greater than for

parallel version. This make sense given that we have used a eight-core machine for the

experiments, so, following the Amdahl Law (equation 2.3), the maximum speed-up

would be x8 and, in this case as, obviously, not all the code is parallelized, we are

obtaining around x5 acceleration.

45

Resultant images

In figures 6.9, 6.10 and 6.11 we can see the resultant images renderized with the

obtained genetic integral and their comparison to images renderized with Monte Carlo

integration. These scenes consist of a point light source in two different (corner and

middle) positions in a homogeneous participating media and an orthographic camera

without shadows. As we only need 2 function evaluations with this genetic integral

to compute the light contribution of a certain light ray, in figures 6.9 and 6.10 we

compare these ”genetic” images with the renderized images obtained with Monte Carlo

integration with 2 samples per pixel and we use as ground-truth two images renderized

with Monte Carlo integration with 1024 samples per pixel.

As we have an analytical expression for the integral, although we are changing

the point light position, we do not have to recompute the integral approximation, we

can generate both images from the same genetic output just changing light position

parameters, dl, when computing the definite integral. Time and convergence statistics

of this experiments are shown in figure 6.13.

As we can see in figures 6.9 and 6.10 the resultant images are quite similar to the

ground-truth images and, contrary to the 2 samples Monte Carlo image, they have

no noise. In figure 6.11 we can see how the Monte Carlo integration based images

improve as the number of samples increase, but even for 256 samples the genetic image

is still less noisy. In figure 6.12 we can see how the most difficult part of the image

to approximate is the area near the light source, this is because of the divergence in

equation 6.15 due to the square distance in the denominator.

6.3 Image compression

The system has been applied to image compression. The idea behind this application is

to represent the image, I(x, y), in form of a bi-dimensional algebraic expression, g(x, y),

where the two variables (x, y) represent the pixel coordinates, height and width, as

shown in 6.17. This is done by taking the pixel values, I(xp, yp), as input data points

and adjusting a bidimensional function to those points.

g(xp, yp) = I(xp, yp) ∀ xp, yp (6.17)

6.3.1 Loss function

For this problem we have defined the following loss function:

46

(a) ”Genetic” image (b) 2 Samples Monte Carlo image

(c) Ground truth image

Figure 6.9: Comparison between images for a scene with a point light source in the
corner of the scene and a participating media.

loss =

∑x
xp=0

∑y
yp=0 |Ig(xp, yp)− I(xp, yp)|

npixels ∗ 255
+ KS(g(x, y), I(x, y)) (6.18)

Where:

− The first term is basically the mean absolute error between the pixel, (xp, yp),

values of the objective image I(x, y) and the image generated by the system

output, Ig(x, y), evaluated in the same pixel coordinates. As the second term is

in the range from 0 to 1, and we want to give them the same weight in the loss

computation, this first loss term is normalized, dividing it by 255.

− The second term is the value obtained by performing the Kolmogrov-Smirnov

47

(a) ”Genetic” image (b) 2 Samples Monte Carlo image

(c) Ground truth image

Figure 6.10: Comparison between images for a scene with a point light source in the
middle of the scene and a participating media.

test [12]. This is a non-parametric test of the equality of continuous or discontin-

uous, one-dimensional probability distributions that can be used to compare a

set of samples with a reference probability distribution, or to compare two sets

of samples. In this particular case it is used to compare the image generated by

the system output, Ig(x, y), and the objective image, taking as sets of samples

the pixels values from the two images. To compare these two sets, as we are

working with discrete values from 0 to 256, we have computed the histograms

for both images, representing the number of pixels for each pixel value, and that

is what we are comparing with the KS test. The histogram comparison with

Kolmogrov-Smirnov test is computed as follows:

48

Figure 6.11: From left to right: ”Genetic” image and 2, 4, 64 and 256 Monte Carlo
images for the first scene.

Figure 6.12: From left to right: Renderized images with the genetic integral obtained
in generation 0, 30, 60, 90 and 120.

KS = max |CmHg(x)− CmHo(x)| (6.19)

where CmHg(x) and CmHo(x) are the cumulative histograms for the generated

and the objective images respectively and x is the pixel value from 0 to 256. So

what we are trying to minimize here is the differences between the cumulative

histograms.

In the first versions we tried to solve this problem without the Kolmogrov-Smirnov

test term, using just pixel to pixel error measurements such as mean absolute error

or mean square error. But, in this first experiments, the system output used to be

homogeneous images whose pixel values were equal or very similar to the average pixel

value, when using mean absolute error, or to the most repeated pixel value (black or

white), when using quadratic error metrics. This was due to the system getting stuck

in a local minimum because the exploration strategy was only based in pixel to pixel

error. So, adding the Kolmogrov-Smirnov test term, we are improving the search space

exploration since we are forcing the output to have the same pixel distribution as the

objective image, and, in this way, the aim of the mean absolute error term is to ”place”

the pixels in the correct image coordinates.

49

0 20 40 60 80 100 120
Generation

0

50

100

150

200

Ge
ne

ra
tio

n
tim

e
[s

]

(a) Time per generation

0 20 40 60 80 100 120
Generation

0

2000

4000

6000

8000

10000

12000

Cu
m

ul
at

iv
e

tim
e

[s
]

(b) Cumulative time

0 20 40 60 80 100 120
Generation

0.06

0.08

0.10

0.12

0.14

0.16

Fi
tn

es
s

(c) Fitness per generation

Figure 6.13: Convergence and time statistics for the single scattering experiment.

6.3.2 Function and variable sets

Variable set

This set must contain the amount of variables necessary to explore all the dimensions

of the search space. In this particular problem we are working with a black and white

image where each pixel value is a function of its image coordinates, p = I(xp, yp), so

the variable set in composed by two variables, x and y, which represents the image

coordinates.

Function set

For this problem the function set is very similar to the previous. The step function is

specially useful in this case due to the common nature of images where we can find

different shapes and elements. The step function can model the edges of the different

shapes of the image. So the function set is composed by the following functions:

1. sin(x), exp(x), ln(x) and step(x) as unary functions,

2. addition and product as nary functions.

50

6.3.3 Parallelization

As in the previous application, when profiling the program execution for this application,

we noticed that most of the time was used in the evaluation of each individual at a sample

point. So, there are two main aspects of the system which are the most interesting to

optimize through parallelization:

− Individual loss computation: This operation, for each individual, is completely

independent from the rest, so this part of the algorithm presents a high degree of

parallelism.

− Pixel evaluation: For each individual we are computing each pixel value, this

computation is also independent between pixels. For a 400x400 image (like the

ones we are using in this application), we have 160000 pixel value computations

to run simultaneously.

6.3.4 Experiments and results

First image compression

In 6.14 and 6.15 we can see the results for bicolor image. In 6.16 we can see the time

and convergence stats for the 110 generations of the experiment.

Figure 6.14: Right: objective image. Left: Genetic output image

51

Figure 6.15: Results after 0, 22, 44, 66, 88 and 110 generations respectively

0 20 40 60 80 100
Generation

0

10

20

30

40

50

60

70

Ge
ne

ra
tio

n
tim

e[
s]

0 20 40 60 80 100
Generation

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

tim
e[

s]

0 20 40 60 80 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

Fi
tn

es
s

Figure 6.16: Time and convergence statistics for the first image compression experi-
ment. Top left: time per generation; Top right: cumulative time; Bottom: fitness per
generation.

In figures 6.14, 6.15 and 6.16 we can see how the objective image is correctly

approximated even for less than 110 generations. The total time of the experiment is

2221 seconds.

The size of the original image is 400x400 and its memory size is 6.9 kilobytes. The

memory size of the text file containing the genetic solution is 2.3 kilobytes.

Second image compression

In 6.17 and 6.18 we can see the results for bidireccional gradient image. In 6.19 we can

see the time and convergence stats for the 110 generations of the experiment.

52

Figure 6.17: Left: objective image. Right: Genetic output image.

Figure 6.18: Results after 0, 22, 44, 66, 88 and 110 generations respectively

0 20 40 60 80 100
Generation

0

1000

2000

3000

4000

5000

6000

7000

8000

Ge
ne

ra
tio

n
tim

e[
m

s]

0 20 40 60 80 100
Generation

0

100

200

300

400

Cu
m

ul
at

iv
e

tim
e[

s]

0 20 40 60 80 100
Generation

0.0

0.1

0.2

0.3

0.4

0.5

Fi
tn

es
s

Figure 6.19: Time and convergence statistics for the second image compression experi-
ment. Top left: time per generation; Top right: cumulative time; Bottom: fitness per
generation.

53

In this case the experiment has been run for 110 generations but the objective image

is accurately approximated earlier. The total time of the experiment is 425 seconds.

The size of the original image is 400x400 and its memory size is 30.2 kilobytes. The

memory size of the text file containing the genetic solution is 451 bytes.

Third image compression

In figures 6.20 and 6.21 we can see the results for a black circle image. In figure 6.22

we can see the time and convergence stats for the 150 generations of the experiment.

Figure 6.20: Left: objective image. Right: Genetic output image.

Figure 6.21: Results after 0, 30, 60, 90, 120 and 150 generations respectively

The results for this specific experiment show how the genetic solution is continuously

getting better, but, in this case, the approximation is not completely accurate for the

150 generations. However, the result would be better for a longer experiment with more

generations.

The size of the original image is 400x400 and its memory size is 14.7 kilobytes. The

memory size of the text file containing the genetic solution is 6.2 kylobytes.

54

0 20 40 60 80 100 120 140
Generation

0

100

200

300

400

Ti
m

e
[s

]

0 20 40 60 80 100 120 140
Generation

0

2500

5000

7500

10000

12500

15000

17500

20000

Cu
m

ul
at

iv
e

tim
e

[s
]

0 20 40 60 80 100 120 140
Generation

0.1

0.2

0.3

0.4

0.5

0.6

Fi
tn

es
s

Figure 6.22: Time and convergence statistics for the third image compression experi-
ment. Top left: time per generation; Top right: cumulative time; Bottom: fitness per
generation.

Serial versus Parallel Comparison

In this experiment we can see the comparison in computation time between the three

different version of the system: sequential, parallelized by pixel evaluation and paral-

lelized by individual loss computation. The experiment have been performed under the

same conditions: 100 generations as ending condition for the black circle experiment,

same random seed and same machine (machine in 3.2).

55

0 20 40 60 80 100
Generation

100

101

102

103

104
Cu

m
ul

at
iv

e
tim

e[
s]

Sequential
Inds. parallel
Pixel parallel

Figure 6.23: Cumulative time per generation in logarithmic scale

In figure 6.23 we have the cumulative time, in logarithmic scale, per generation for

each version. The execution time for both parallel version are in the same magnitude

order but the sequential execution time is significantly higher, about 6 times slower. As

in the previous experiment, this make sense taking into account that we are using an

eight-core CPU.

0 20 40 60 80 100
Generation

0

250

500

750

1000

1250

1500

Cu
m

ul
at

iv
e

tim
e[

s]

Inds. parallel
Pixel parallel

0 20 40 60 80 100
Generation

0

20

40

60

80

100

120

140

Ge
ne

ra
tio

n
tim

e[
s]

Inds. parallel
Pixel parallel

Figure 6.24: Execution time for both parallel versions. Cumulative (left) and time per
generation (right)

Figure 6.24 shows the execution time comparison for both parallel version, by

pixel, and by individuals. In these results we can see that for the first generations

the individual parallelization is faster, but, when the loss decreases and the individual

56

complexity increases the pixel evaluation parallelization is faster. So for longer and more

complex applications it would be better to implement the parallelization by evaluating

several pixel values of one individual at the same time. This observation suggest than an

adaptive parallelism policy able to switch between pixel and individual parallelization

could provide some extra benefit.

57

Chapter 7

Conclusions

In this work, we have designed a genetic programming algorithm for function regression

whose main purpose is the integration of analytically non-integrable functions. The

algorithm consists of randomly modifying a population of algebraic expressions and

selecting the best after each iteration. The chosen modifications, called genetic operators,

and the basic functions, which conform the algebraic expressions, will determine the

search space exploration and, ultimately, the goodness of the function regression. We

have also accelerated the heaviest part of the algorithm, the population evaluation

which means around 60% of the computation time, on a multi-core CPU, obtaining a

considerable reduction on the overall computation time, about half an order of magnitude.

We have also significantly accelerated the random number generation, about 9 times

faster, on a GPU without any drawback on the generated numbers randomness as we

have demonstrated in Chapter 5. However, this significant acceleration in generation

does not translate into an equally significant effect in total execution time because the

random number generation does not have the same computational weight as others

parts such as evaluation.

After performing some validation experiments, we have applied this genetic pro-

gramming system to a specific rendering problem, single scattering, and to image

compression.

− Validation experiments: In these validation experiments, we have confirmed

that the system is able to accurately approximate one dimensional functions and

their integrals, even when these functions are analytically non-integrable. Also, in

these experiments, we see how, for the objective functions which are composed by

the basic functions that are contained in the function set, the resultant algebraic

expression is very similar to the objective one, so we could say that the search

space exploration is satisfactory, which means that the genetic operators are well

chosen and implemented.

58

− Single scattering: In this application, we have seen how the resultant image

is almost equal to the ground-truth one and much less noisy than the 2-samples

Monte Carlo image and even more-samples images. The most important aspect of

these results is the fact that, as we have an algebraic expression for the integral,

in absence of shadows, we only need two function evaluations to compute the

definite integral, which makes much faster the rendering process compared to the

rendering based on Monte Carlo integration which is one of the main problems of

current renders.

− Image compression: In this case we have seen how the system output, a text

file which can be also used as system input to generate the image, is smaller, in

terms of memory size, than the original image for all the cases, so we can say that

the image is effectively compressed. Also, as we are representing the image as a

bidimensional function whose independent variables are the pixels coordinates,

once we have obtained this image function, we can resize the image without losing

quality. The resultant image for the third experiment (section 6.3.4) is not equal

to the original for the given experiment length (150 generations), but we have

seen how the loss in monotonically decreasing. So, for a long enough experiment

the resultant image will eventually be equal to the objective.

In the previous section 6, when comparing the sequential and the parallel versions

for the different applications, we can see that we have achieved a significant acceleration

in the population evaluation, which is the computationally most expensive part of the

algorithm. This speed-up makes it possible to increase the number of generations for

the experiments, which leads to a better approximation, without implying a longer

execution time. This significant acceleration is achieved with a multi-core CPU, but

given the nature of the problem (thousands of individuals and thousands of samples)

and its high degree of data parallelism, it could be very interesting to implement the

system evaluation on other heterogeneous devices with many more computing units

like GPUs of FPGAs.

Limitations and future work: following on from the last thought, probably the

most interesting future work would be the implementation of the function evaluation on

other accelerators like GPU or FPGA. For example, with this enhancement, it would

have been possible to increase the number of generation of the third image compression

obtaining a better result. The complexity of this task lies in the fact that the current

tree structures are implemented using C++ pointers which makes their evaluation

far from trivial in other heterogeneous devices. This implementation will require a

59

modification of the current individual representation.

60

Bibliography

[1] Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier

Corporation, 2007.

[2] David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic

integration for fast neural volume rendering. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 14556–14565, 2021.

[3] Seyedali Mirjalili. Genetic algorithm. In Evolutionary algorithms and neural

networks, pages 43–55. Springer, 2019.

[4] Manoj Kumar, Dr Husain, Naveen Upreti, Deepti Gupta, et al. Genetic algorithm:

Review and application. Available at SSRN 3529843, 2010.

[5] Erick Cantú-Paz. A survey of parallel genetic algorithms. CALCULATEURS

PARALLELES, 10, 1998.

[6] Tomohiro Harada and Enrique Alba. Parallel genetic algorithms: A useful survey.

53(4), aug 2020.

[7] Ajith Abraham, Nadia Nedjah, and Luiza de Macedo Mourelle. Evolutionary

computation: from genetic algorithms to genetic programming. In Genetic Systems

Programming, 2006.

[8] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Penny-

cook, and Xinmin Tian. Data parallel C++: mastering DPC++ for programming

of heterogeneous systems using C++ and SYCL. Springer Nature, 2021.

[9] Dan Biebighauser. Testing random number generators, 2000.

[10] S. Chandrasekhar. Radiative Transfer. Dover Publications, Inc., 1960.

[11] Adolfo Muñoz. Higher order ray marching. In Computer graphics forum, volume 33,

pages 167–176. Wiley Online Library, 2014.

61

[12] Vance W Berger and YanYan Zhou. Kolmogorov–smirnov test: Overview. Wiley

statsref: Statistics reference online, 2014.

[13] Sympy library. https://www.sympy.org/en/index.html.

[14] Eva Cerezo, Frederic Perez, Xavier Pueyo, Francisco Serón, and François Sillion.

A survey on participating media rendering techniques. The Visual Computer, 21,

06 2005.

[15] Wenshi Wu, Beibei Wang, and Ling-Qi Yan. A survey on rendering homogeneous

participating media. Computational Visual Media, 8(2):177–198, 2022.

[16] Ivan De Falco, Antonio Della Cioppa, and Ernesto Tarantino. Mutation-based

genetic algorithm: performance evaluation. Applied Soft Computing, 1(4):285–299,

2002.

62

https://www.sympy.org/en/index.html

List of figures

2.1 Evolutionary algorithms common steps. 11

2.2 Mathematical expression represented in a tree srtucture. 11

2.3 Mathematical expression differentiation in form of tree structure. f(x) =

exp(x) + sin(x); f ′(x) = exp(x) + cos(x) 12

4.1 Individual initialization. For a given depth of 3 the tree nodes and leafs

are randomly and recursively generated from top to bottom. 21

4.2 Crossover example. 24

4.3 Mutation 1. A leaf is replaced by a random subtree 25

4.4 Mutation 2. Some genetic content is deleted (the left part of the tree is

simplified). 26

4.5 Mutation 3.Tree element substitution (sin node replaced by exp node). 27

6.1 Function approximation results. In each subfigure we have the correspon-

dent objective function and the system output. 35

6.2 Genetic integration. In each subfigure we have the correspondent objec-

tive function and the system output. 37

6.3 Evaluation of several samples in parallel. In this case we are parallelizing

the computation of the individual value at each sample point, so each

of the 8 CPU cores computes the individual function value, f(x), on a

different sample point, xi. 38

6.4 Evaluation of several individual scores in parallel. In this case we are

parallelizing the computation of the 1000 individuals scores, so each of

the 8 CPU cores computes the loss function, l(i), on a different individual,

ii. 39

6.5 Execution time comparison between sequential and parallel implementa-

tions. 39

6.6 Execution time comparison between both parallel versions. 39

63

6.7 Illustration of setup for single scattering, including starting and ending

positions (x0 and xt), light position (xl) and variables that define the

light position with respect to the ray sl and distance from the light source

to the ray dl. 43

6.8 Time per generation in logarithmic scale 45

6.9 Comparison between images for a scene with a point light source in the

corner of the scene and a participating media. 47

6.10 Comparison between images for a scene with a point light source in the

middle of the scene and a participating media. 48

6.11 From left to right: ”Genetic” image and 2, 4, 64 and 256 Monte Carlo

images for the first scene. 49

6.12 From left to right: Renderized images with the genetic integral obtained

in generation 0, 30, 60, 90 and 120. 49

6.13 Convergence and time statistics for the single scattering experiment. . . 50

6.14 Right: objective image. Left: Genetic output image 51

6.15 Results after 0, 22, 44, 66, 88 and 110 generations respectively 52

6.16 Time and convergence statistics for the first image compression experi-

ment. Top left: time per generation; Top right: cumulative time; Bottom:

fitness per generation. 52

6.17 Left: objective image. Right: Genetic output image. 53

6.18 Results after 0, 22, 44, 66, 88 and 110 generations respectively 53

6.19 Time and convergence statistics for the second image compression ex-

periment. Top left: time per generation; Top right: cumulative time;

Bottom: fitness per generation. 53

6.20 Left: objective image. Right: Genetic output image. 54

6.21 Results after 0, 30, 60, 90, 120 and 150 generations respectively 54

6.22 Time and convergence statistics for the third image compression experi-

ment. Top left: time per generation; Top right: cumulative time; Bottom:

fitness per generation. 55

6.23 Cumulative time per generation in logarithmic scale 56

6.24 Execution time for both parallel versions. Cumulative (left) and time

per generation (right) . 56

64

List of tables

3.1 Compiler version and flags . 17

5.1 Different vectors used for random number generation. 31

5.2 Generation time comparison for int and float data types. Mean time of

5 repetitions of the experiment, 30000 random generations per experiment. 32

5.3 Results of the tests performed over the sequences of numbers generated

with both generators. 33

6.1 Function approximation experiments statistics and system output for

each function. 36

6.2 Genetic integration experiments statistics and system output for each

objective function. 37

6.3 No-integrable functions results . 40

65

	Introduction
	Objective
	Structure

	Fundamentals
	Evolutionary algorithms
	Symbolic computation
	Computing systems
	Heterogeneous hardware
	Parallel and heterogeneous programming

	Methodology
	Programming languages and libraries
	Python implementation
	DPC++ implementation

	Machine and Compiler Descriptions
	Experiments Metrics
	Time Measurement Methodology

	Code repository

	System Description
	System Overview
	Individual Representation: Tree structure
	Initialization
	Evaluation
	Selection
	Reproduction
	Crossover
	Mutations

	Replacement
	Finalization
	Genetic parameters

	Random number generation in GPU
	Implementation on GPU
	Implementation testing
	Generation time comparison
	Randomness tests

	Evaluation
	Validation experiments
	Function approximation
	Genetic integration
	Comparison between Sequential and Parallel Versions
	Integration of no-integrable functions

	Single Scattering
	Loss function
	Function and variable sets
	Parallelization
	Experiments and results

	Image compression
	Loss function
	Function and variable sets
	Parallelization
	Experiments and results

	Conclusions
	Bibliography
	List of figures
	List of tables

