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This article proposes a nonparametric predictive regression model. The unknown function modeling the predictive relation-
ship is approximated using polynomial Taylor expansions applied over disjoint intervals covering the support of the predictor
variable. The model is estimated using the theory on partitioning estimators that is extended to a stationary time series setting.
We show pointwise and uniform convergence of the proposed estimator and derive its asymptotic normality. These asymptotic
results are applied to test for the presence of predictive ability. We develop an asymptotic pointwise test of predictive ability
using the critical values of a Normal distribution, and a uniform test with asymptotic distribution that is approximated using a
p-value transformation and Wild bootstrap methods. These theoretical insights are illustrated in an extensive simulation exer-
cise and also in an empirical application to forecasting high-frequency based realized volatility measures. Our results provide
empirical support to the presence of nonlinear autoregressive predictability of these measures for the constituents of the Dow
Jones index.
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1. INTRODUCTION

Forecasting is one of the main objectives of time series econometrics. Although the time series forecasting
literature has been dominated by parametric models there has also been progress on nonparametric models.
Kernel-based estimators characterize an important class of nonparametric time series models. In this group, local
polynomial kernel estimators, Nadaraya (1965), Watson (1964) and Fan and Gijbels (1996), have been the main
workhorse in nonparametric time series analysis. These models have been also extended to semiparametric set-
tings such as the partially linear model with dependent data, see Andrews (1994), additive time series regression
models as in Kim et al. (1999), and varying coefficient models as in Cai et al. (2000a), Cai et al. (2000b) and Fan
et al. (2003) for local linear estimators.

Another important class of nonparametric models is characterized by series regressions. Work on these models
was initiated by Tukey, 1947; Tukey, 1961 and developed further by Stone (1985), Chen (1988), Andrews (1991)
and Newey (1997), among others. These methods improve the fit of standard linear regression models by approx-
imating an unknown smooth function by an increasing number of regressors characterized by a set of basis
functions. Representatives of this class are wavelets, power series and splines. These methods have gained pop-
ularity due to their tractability, flexibility and conceptual simplicity. Recent work by Cattaneo and Farrell (2013)
have specialized this class of nonparametric models by considering partitioning estimators in cross-sectional set-
tings. These authors derive optimal uniform convergence rates and asymptotic normality of these estimators in
independent and identically distributed (i.i.d.) settings. Cattaneo et al. (2020) formalize these results further by
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2 J. OLMO

studying their large sample properties. These authors develop pointwise inference methods based on undersmooth-
ing and robust bias correction, and present uniform distributional approximations for the corresponding t-statistic
processes.

One major advantage of parametric time series models compared to nonparametric methods is the possibility
of testing for forecast ability using standard parametric tests. This is particularly the case in traditional ARIMA
type models in which the predictive ability of a model is reflected in the statistical significance of a set of autore-
gressive parameters. More generally, for time series regression models involving a set of predictive regressors,
testing for forecast ability is technically challenging when the regressors are persistent. This has been covered in
the work of Campbell and Yogo (2006), Jansson and Moreira (2006), Lewellen (2004), and Stambaugh (1999),
among others. The statistical estimation and testing of such models requires a treatment beyond the traditional
normal approximations for the regression parameters. The nonparametric literature has also made some progress
on this direction. Juhl (2014) develops a nonparametric test of predictive ability based on a kernel estimator of the
predictive regression model that works in general time series settings. This author develops a test for the signifi-
cance of a regressor without specifying a functional form. The results are used to test the null hypothesis that the
entire predictive function takes the value of zero.

The aim of the current article is to propose a nonparametric predictive regression model based on partitioning
estimators in a stationary setting. The theory on partitioning estimators accommodates power series and different
types of splines as basis functions. We propose an alternative approach in which the unknown function modeling
the predictive relationship between the variables is approximated using polynomial Taylor expansions applied over
disjoint intervals covering the support of the predictor variable. This choice of basis function is conceptually and
empirically superior to power series and splines. Conceptually, for analytic functions (a function that is locally
given by a convergent power series) the approximation offered by the Taylor expansion converges to the true
predictive function as the order of the Taylor polynomial increases. For the remaining class of functions, the
Taylor expansion provides a reliable local approximation that improves as we consider thinner partitions of the
support of the predictor. Importantly, the regression coefficients associated to the Taylor expansion are interpreted
as derivatives of the unknown predictive function evaluated at different knots of the partition. This is not the case
for spline methods. In doing so, we obtain a sample of estimates of high-order derivatives of the unknown function
and not only of the predictive function of interest. Empirically, our choice of partitioning estimator requires a lower
polynomial order to achieve the same fit than spline methods. This is by construction of the Taylor polynomial as
a local expansion around the knots.1

We derive the asymptotic theory for our class of partitioning estimators in predictive regression models. We
adapt the results in Cattaneo and Farrell (2013) and present the uniform convergence of the partitioning estima-
tor under persistence of the predictor variable. We also obtain the asymptotic normality of the estimator that is
extended to the functional space, where we derive the weak convergence of the estimator to a centered Gaussian
process, see also Cattaneo et al. (2020) for a recent contribution on this area. These asymptotic results allow us
to propose pointwise and uniform tests of predictive ability. The main advantage of the proposed procedure is its
flexibility to test for the predictability of a regressor over the entire support of the random variable. This method
provides an alternative to the kernel-based method proposed in Juhl (2014) for predictive regression models. In
contrast to this author, the asymptotic theory of our approach does not rely on U-statistics but on the distribution
of the supremum of a functional process. This distribution is nonstandard and critical values cannot be tabulated.
Nevertheless, we approximate these critical values using the simulation methods in Hansen (1996) and Cattaneo
et al. (2020) adapted to our setting.

These results are illustrated empirically in a controlled simulation experiment and also in an empirical appli-
cation. The simulation experiment studies the predictive ability of our partitioning estimator that is compared
against the predictive ability of the OLS estimator of a parametric AR(1) model for several data generating
processes (DGPs) in terms of mean square prediction error and predictive accuracy. The model comparison

1 Penalized spline methods can provide better fit than our partitioning estimator at the expense of imposing further regularity conditions on the
penalty function, more algebra and more convoluted asymptotic properties. As an extension of the current method, we could propose penalized
partitioning estimators. This is, however, left for future research.

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 3

is done in sample and out of sample. For the in-sample exercise, our empirical results confirm the suit-
ability of the partitioning estimator in general settings. This estimation strategy outperforms the parametric
OLS estimator when the DGPs are nonlinear and is comparable to the OLS estimator when the DGP is a
parametric AR(1) process. For the out-of-sample evaluation period the only instance in which the OLS esti-
mator outperforms the nonparametric partitioning estimator is when the DGP is indeed a linear autoregressive
process.

The simulation exercise also studies the empirical coverage of the forecast intervals associated to the parti-
tioning estimator. We obtain empirical coverage rates close to the nominal ones across sample sizes and DGPs
providing further support to the asymptotic normality of the partitioning estimator. Our simulation results also
provide empirical support to the p-value transformation for obtaining critical values for the uniform predictive
ability test that is applied over the entire compact support of the predictor variable but also over compact subsets.
The results provide satisfactory values of the empirical size and power estimates that are close to one in many
instances.

The empirical section applies this methodology to model the dynamics of the realized volatility and bipower
variation measures constructed from five-minute returns for the constituents of the Dow Jones Industrial Average
index. Using the dataset in Bollerslev et al. (2016), we find strong empirical evidence of predictability for both mea-
sures in sample and out of sample. In both settings, the partitioning estimator provides superior one-period-ahead
forecasts of the conditional volatility than the linear AR(1) model for most stocks. The estimates of the parti-
tioning estimator also reveal strong nonlinearities on the autoregressive function over the support of the outcome
variable.

The rest of the article is structured as follows. Section 2 introduces the model assumptions and the partition-
ing estimator. Section 3 presents results on asymptotic convergence and normality of the estimators, and the
extension to the functional space. In Section 4, we derive pointwise and uniform predictive ability tests and
an algorithm for the practical implementation of the latter. Section 5 presents a simulation exercise to evalu-
ate different features of the partitioning estimator and predictability tests for autoregressive processes in finite
samples. Section 6 contains the empirical application assessing the forecast ability of our methodology for dif-
ferent realized volatility measures for the constituents of the Dow Jones index, and Section 7 concludes. A
separate online appendix contains additional simulations for general nonlinear predictive regression models and
the mathematical proofs with the main results of the article. Tables and figures are collected at the end of this
document.

Throughout the text, we use ||A|| =
(∑q

r=1

∑q
s=1a2

rs

)1∕2
to denote the Frobenious norm of a q × q matrix A, and

||a||2 =
(∑q

r=1a2
r

)1∕2
to denote the L2 norm for a vector a of dimension q. Similarly, ||a||∞ = maxr=1,… ,q |ar| to

denote the corresponding L∞ norm. For a function h(⋅), let ||h||pp = E[|h(y)|p] and ||h||∞ = supy∈𝜒 |h(y)| denote the

Lp and L∞ norms respectively.
p
−−→ denotes convergence in probability,

d
−−→ denotes convergence in distribution

and
w
−−→ denotes weak convergence.

2. ECONOMETRIC THEORY

2.1. The Model

To motivate our partitioning estimator we introduce the following nonparametric predictive regression model:

yt = g(xt−1) + 𝜀t, (2.1)

where xt−1 is a predictor variable observed at time t − 1 and 𝜀t an error term. The function g(xt−1) captures the
relationship between yt and xt−1. We impose the following assumptions on the DGP.

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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4 J. OLMO

Assumption 1. (a) The predictor variable {xt}∞t=−∞ is a 𝛽-mixing stationary process with mixing coefficient 𝛽(n)
satisfying

∑∞
n=1n2

𝛽

𝛿∕(1+𝛿)(n) < ∞, for some 𝛿 > 0. (b) E[|xt|
2+𝛿] < ∞ for some 𝛿 > 0. (c) The random variable

xt ∈ 𝜒 is continuously distributed with Lebesgue density f (x), that is bounded and bounded away from zero
on 𝜒 ⊂ R, with 𝜒 a compact interval in the real line. (d) The random variable 𝜀t is a martingale difference
sequence with respect to xt−1 such that E[𝜀t | xt−1 = x] = 0 and E[𝜀2+𝜂

t | xt−1 = x] < ∞ for x ∈ 𝜒 and some
constant 𝜂 > 0. (e) The function g(x) is (q + 1)-times continuously differentiable on (and extension of) 𝜒 , with
q > 0 fixed.

Assumption 1(a), (b) and (d) allows us to extend the results in Cattaneo and Farrell (2013) from an i.i.d. context
to a time series setting. The 𝛽-mixing condition on xt is necessary in addition to the martingale difference assump-
tion on the error term to accommodate time series models with persistent predictors. This assumption guarantees
the consistency of the sample estimator 1

T

∑T
s,t=1xtxs to E[x2

t ] as T → ∞. This assumption can be relaxed in non-
parametric autoregressive processes in which xt−1 is replaced by lags of the dependent variable. In these cases,
Assumption 1(d) and (e) are sufficient for the time series model to be correctly specified. Assumption 1(c) guar-
antees the existence of nonempty intervals across the partition of the support of the predictor variable. The second
part of the assumption is required for tractability purposes. This condition requires the support of the predictor
variable to be defined on a compact space. This assumption can be relaxed in empirical applications by assuming
that the probability outside the compact support is negligible and only affects the estimation of the unknown func-
tion g(x) in the far tails of the distribution of the predictor variable. Under Assumption 1(d), the error term of the
predictive regression is a martingale difference sequence with respect to xt−1, which implies that xt−1 and 𝜀t are
uncorrelated and that E[𝜀t] = 0. This condition also entails the identifiability condition g(x) = E[yt | xt−1 = x].
Assumption 1(e) extends classical smoothness conditions on nonparametric models by imposing that g(x) is dif-
ferentiable up to order q + 1. This assumption allows us to approximate the unknown function g(x) using Taylor
expansions of order q over disjoint intervals covering the support of the predictor variable.

The partitioning scheme is as follows. The choice of a single predictive regressor allows us to operate in the
real line such that the compact set 𝜒 is given by a closed interval [a, b] ⊂ R. This interval is partitioned into K
disjoint intervals [a, z1+ h1), [zk − hk, zk + hk) and [zK − hK , b], such that zk−1+ hk−1 = zk − hk for k = 2, … ,K − 1.
This partition is characterized by the vector (h1, … , hK) that determines the width of the intervals and the knots
{z1, … , zK}. These knots are a sequence of nondecreasing real numbers (zk ≤ zk+1) that are constructed as the
quantiles from the empirical distribution of the predictive regressor. Quantile knots guarantee that an equal number
of sample observations lie in each interval while the intervals have different lengths. In practice, the partition is
constructed as follows; let x[t] denote the increasing order statistics of the stationary sequence xt, for t = 1, … ,T
such that x[1] < · · · < x[T]. The compact set [a, b] is proxied by [x[1], x[T]] and the set of disjoint intervals is

given by [x[1], x[n])
⋃K−1

k=2 [x[(k−1)∗n], x[k∗n]) ∪ [x[(K−1)∗n], x[T]], with T = nK. The knots of the partition are defined as
z1 = (x[1] + x[n])∕2 and zk = (x[(k−1)∗n] + x[k∗n])∕2, and the adaptive tuning parameters are h1 = (x[n] − x[1])∕2 and
hk = (x[k∗n] − x[(k−1)∗n])∕2, for k = 2, … ,K.

Let [zk − hk, zk + hk) be a generic interval of the partition and, for x ∈ [a, b], let dk(x) be the indicator func-
tion such that dk(x) = 1 if x belongs to the interval and zero, otherwise. Our modeling strategy is to apply
a Taylor expansion of order q ≥ 0 to g(xt−1) around the different knots of the partition. Let zk be such that
dk(xt−1) = 1, then

g(xt−1) =
q∑

m=0

1
m!

g(m)(zk)(xt−1 − zk)
m + R(xt−1, zk), (2.2)

where g(m)(zk) denotes the mth-derivative of g(⋅) evaluated at zk; g(0)(zk) = g(zk) and R(xt−1, zk) =
g(q+1)(ck)(xt−1 − zk)q+1 is the remainder of the Taylor expansion, with ck ∈ (zk − hk, zk + hk). Using the Taylor
expansion in (2.2), we denote the coefficients of the polynomial expansion as 𝛾km =

1

m!
g(m)(zk), for k = 1, … ,K

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 5

and m = 0, 1, … , q such that model (2.1) can be expressed as

yt =
K∑

k=1

q∑

m=0

𝛾km(xt−1 − zk)mdk(xt−1) + �̃�t(xt−1), (2.3)

where �̃�t(xt−1) = 𝜀t + R(xt−1) is the error term obtained from aggregating the remainder of the Taylor expansions

evaluated at the different intervals; R(xt−1) =
K∑

k=1
R(xt−1, zk)dk(xt−1).

Alternative approximations of the predictive regression model (2.1) can be obtained by applying power series
expansions and spline methods over the intervals of the partition. A simple example given by a q-order spline is

yt =
K∑

k=1

q∑

m=0

𝛾

s
km(xt−1 − zk)m+ + 𝜀

s
t , (2.4)

where (xt−1 − zk)+ = max(xt−1 − zk, 0), 𝛾 s
km is a set of regression coefficients associated to the basis functions

and 𝜀s
t is the corresponding error term. More sophisticated methods such as B-splines and penalized splines are

also available in the literature. We, nevertheless, focus on the basis functions obtained from the Taylor approx-
imation in (2.2). These functions are theoretically motivated and provide additional information, compared to
power series and spline methods, on the derivatives of the unknown function g(x) evaluated at the knots of the
partition.

We discard the residual term R(xt−1) in (2.3) for estimation purposes, and consider the predictive regression
model

Y =
K∑

k=1

XkΓk + 𝜀, (2.5)

where Y = (y1, … , yT )′, Xk is a T × (q + 1) matrix with rows Xk,t = (1, xt − zk, … , (xt − zk)q)dk(xt), for t =
0, … ,T − 1, Γk = (𝛾k0, … , 𝛾kq)′ and 𝜀 = (𝜀1, … , 𝜀T )′.

2.2. Estimation

Our partitioning estimator is obtained from applying ordinary least squares to the local polynomials forming the
Taylor expansion in each interval of the partition of the compact set. As mentioned above, the partitioning estimator
may be recast as a series estimator such that

̂Γk = ̂Q−1
k

(

1
Tpk

T∑

t=1

X
′
k,t−1yt

)

(2.6)

with ̂Qk =
1

Tpk

∑T
t=1X

′
k,t−1Xk,t−1 and pk = E[dk(x)] = P{x ∈ [zk − hk, zk + hk)}. For partitions given by equivalent

blocks, this probability is constant across intervals and can be estimated as n∕T , with n the number of observations
in each interval and such that n∕T → 0 as n,T → ∞. In practice, estimation of the probability pk is not required
as this quantity cancels out in the definition of the estimator of Γk.

The model predictions ŷt obtained from a realization xt−1 of the predictor variable are constructed as ĝ(xt−1) =∑K
k=1Xk,t−1

̂Γk = Xk,t−1
̂Γk, with k denoting the knot zk such that dk(xt−1) = 1. This result can be extended to obtain

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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6 J. OLMO

predictions for any value x ∈ 𝜒 as

ĝ(x) =
K∑

k=1

q∑

m=0

�̂�km(x − zk)mdk(x) =
K∑

k=1

vk(x)′̂Γk (2.7)

with vk(x) = dk(x)(1, (x − zk), (x − zk)2, … , (x − zk)q)′. Estimates of the derivatives of g(x) are obtained from this
expression as

ĝ(m)(x) =
K∑

k=1

v(m)k (x)′̂Γk,

where v(m)k (x) is the mth-order derivative of the vector vk(x).
To be able to make inference about the model predictions ĝ(x), for x ∈ 𝜒 , we need to obtain reliable measures

of the standard error of the parameter estimates. Let

̂V(̂Γk) =
1

Tpk

̂Q−1
k
̂Ψk
̂Q−1

k (2.8)

with ̂Ψk =
1

Tpk

T∑

t=1
X
′
k,t−1Xk,t−1e2

t , be an estimator of the variance of the parameter estimator ̂Γk that accommodates

the presence of conditional heteroscedasticity. The corresponding population counterparts of the above sample
covariance matrices are Qk = E[X′

k,t−1Xk,t−1]∕pk and Ψk = E[X′
k,t−1Xk,t−1𝜀

2
t ]∕pk respectively.

2.3. Model Selection

An important aspect of the partitioning estimator developed herein is the choice of the intervals defining the
partition of the compact set. There is a bias-variance trade-off between the number of observations in each interval
and the number of intervals covering the compact set 𝜒 . Increasing the number of intervals reduces the bias of the
approximation at the expense of increasing the variance of the parameter estimators. The constant n denoting the
number of observations in each interval is considered a tuning parameter that is endogenously selected within
the model.

The practical choice of the order of the Taylor expansion q is also of relevance. As discussed above, the
approximation offered by the Taylor expansion improves for higher orders if the Taylor polynomial is convergent
(analytic functions). Otherwise, low orders of the Taylor expansion can perform as well as higher orders, in fact,
high orders may lead to the overfit of the unknown function and may not be desirable for forecasting purposes.
Similar findings are observed for power series and splines; for instance, for splines, the literature usually sug-
gests the choice of a cubic model beyond which the in-sample fit does not generally improve performance. For
these reasons, we consider the choice of the number of terms in the Taylor expansion as another tuning param-
eter. To take explicit account of this choice, we will perform the model selection exercise in sample and out
of sample.

We propose several model selection mechanisms given by the mean square error (MSE), time series methods
such as the Akaike and Bayesian information criteria (BIC), and nonparametric methods for bandwidth selection,
see Mallows (1973), Li (1987) and Wahba (1985). We adapt these criteria to choose the pair (̂K, q̂) that determines
the number of regressors ̃K = ̂K(q̂+1) in the regression model (2.5). By doing so, our procedure implicitly selects
n optimally, as nopt = T∕̂K. Thus, the AIC procedure to optimally select K and q is

{̂KAIC, qAIC} = arg min
{K,q}

{

ln 𝜎2
𝜀

+ 2
(q + 1)K + 1

T

}

, (2.9)

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 7

where 𝜎2
𝜀

is the standard error of the nonparametric regression model under homoscedasticity of the error term.
The BIC is

{̂KBIC, qBIC} = arg min
{K,q}

{

ln 𝜎2
𝜀

+
((q + 1)K + 1)ln T

T

}

. (2.10)

Similarly, we implement Mallows (1973) procedure to select K and q such that

{̂KM , qM} = arg min
{K,q}

{
𝜎

2
e (1 + 2K∕T)

}
. (2.11)

Craven and Wahba (1978) propose a generalized cross-validation method2 that we apply here to select K and q:

{̂KCV , qCV} = arg min
{K,q}

{
𝜎

2
e

(1 − 2K∕T)2

}

. (2.12)

The performance of these methods will be explored in a simulation exercise below.

3. ASYMPTOTIC CONVERGENCE

This section presents convergence results for the approximating function ĝ(x) in (2.7) as well as results necessary
to make asymptotic inference on the pointwise predictions. The section also explores uniform approximations and
convergence results when the estimator is considered a process in x ∈ 𝜒 . First, we introduce the following assump-
tion that introduces some smoothness conditions and suitable convergence rates between the tuning parameters
hk, pk, K, and T .

Assumption 2. (a) 𝜎2(x) = V(yt | xt−1 = x) is continuous and bounded away from zero for x ∈ 𝜒 .
(b) Qk and Ψk are (q + 1) × (q + 1) positive definite matrices, for q fixed and k = 1, … ,K.
(c) Let h = max

{k=1,… ,K}
{hk}, then h → 0 and Th → ∞. Furthermore, we assume hk ≍ K−1 and pk ≍ K−1, with K

the number of intervals of the partition and such that for scalars a and b, a ≍ b denotes that C∗b ≤ a ≤ C∗b for
positive constants C∗ and C∗. Similarly, we assume TK−2(q+1) → 0 as K,T →∞.

The following auxiliary result shows the asymptotic convergence of the sample covariance estimators introduced
above.

Lemma 1. Under Assumptions 1 and 2, we have ||Qk|| = O(1) and ||̂Qk − Qk|| = op (1), for every k = 1, … ,K,
as T →∞.

The following result studies the asymptotic convergence of the partitioning estimator (2.6).

Proposition 1. Under Assumptions 1 and 2, it follows that ||̂Γk − Γk|| = Op(
√

K∕T), for k = 1, … ,K, as
K,T →∞.

This result illustrates the nonparametric character of the partitioning estimator. The convergence of the estimator
is at a nonparametric rate due to the partition of the compact set 𝜒 into K disjoint intervals. These results also
allow us to derive the uniform convergence of the estimator of the functional coefficient.

2 Other more sophisticated model selection procedures for series estimators can be found in the literature, for example, the leave-one-out
cross-validation method of Stone (1974). More recently, Györfi et al. (2002), Cattaneo and Farrell (2013) and Cattaneo et al. (2020) explore
cross-validation and plug-in methods for partitioning estimators obtained from minimizing integrated mean square error measures.

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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8 J. OLMO

Proposition 2. If Assumption 1 holds, with 0∕0 = 0, then

sup
y∈𝜒

|ĝ(x) − g(x)| = Op

(√
K∕T + K−(q+1)

)

. (3.1)

The order Op

(√
K∕T

)

is due to the estimation of the vector Γk and the order Op

(
K−(q+1)

)
is due to the

approximation to the true function by the Taylor expansion over intervals of width O(K−1).
The following result establishes a Bahadur type representation for ĝ(x) − g(x). The estimator of the unknown

function may be represented as an average of serially uncorrelated, zero-mean random variables forming a trian-
gular array based on certain smoothing weights plus a remainder 𝜈T (x) that is a function of the aggregate residual
term R(x). This is possible by assumption 1(e) that guarantees that the error term 𝜀t is a martingale difference
sequence.

Lemma 2. Under Assumptions 1 and 2, the Bahadur representation of the partitioning estimator is

ĝ(x) − g(x) = 1
T

T∑

t=1

ΦT (x, xt−1)𝜀t + 𝜈T (x) + op(1), (3.2)

where ΦT (x, xt−1) =
∑K

k=1vk(x)′Q−1
k X

′
k,t−1∕pk and 𝜈T (x) =

1

Tpk

∑T
t=1

∑K
k=1vk(x)′Q−1

k X
′
k,t−1R(xt−1, zk) is the remainder

term. Furthermore, under the above assumptions, it follows that |𝜈T (x)| = op(1), for x ∈ 𝜒 .

We introduce further notation to formulate the asymptotic distribution of the Bahadur representation.
Let V0(x) = E[Φ2(x)𝜎2(x)] and VT (x) = E[Φ2

T (x, xt−1)𝜀2
t ] that, under assumption 2(a), can be written as

VT (x) = E[Φ2
T (x, xt−1)𝜎2(x)] =

∑K
k=1vk(x)′Q−1

k ΨkQ−1
k vk(x)∕pk. The empirical counterpart of VT is ̂VT (x) =

1

T

∑T
t=1
̂Φ

2

T (x, xt−1)e2
t =

∑K
k=1vk(x)′̂Q−1

k
̂Ψk
̂Q−1

k vk(x)∕pk. The estimator ̂VT (x) does not require knowledge of the prob-

ability pk. This expression cancels out when combined with the estimators ̂Qk and ̂Ψk such that ̂VT (x) is a feasible
estimator.

Lemma 3. Under Assumptions 1 and 2, we have ||̂Ψk − Ψk|| = op (1), for every k = 1, … ,K, as T →∞.

Proposition 3. If Assumptions 1 and 2 hold, for any x ∈ 𝜒 fixed, VT (x) − V0(x)
p
−−→ 0 and ̂VT (x) − VT (x)

p
−−→ 0 as

T → ∞, with VT (x) = O(K).

The following result states the asymptotic normality of the model forecasts.

Theorem 1. Under Assumptions 1 and 2, and any x ∈ 𝜒 fixed, it follows that

√
T

ĝ(x) − g(x)
V1∕2

T (x)

d
−−→N (0, 1) . (3.3)

These results can be extended to the functional space if ĝ(x) is considered a process in x ∈ 𝜒 . Unfortunately,
the stochastic process ĝ(x) is not asymptotically tight and, therefore, does not converge weakly in ∞, where ∞

denotes the set of all uniformly bounded real functions on 𝜒 equipped with the uniform norm. Nevertheless, we
adapt the results in Cattaneo et al. (2020) to our context and construct Gaussian processes that approximate the

finite-sample distribution of
√

T ĝ(x)−g(x)
V1∕2

T (x)
. More formally,

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 9

Lemma 4. Let Assumptions 1 and 2 hold, and assume that (i) Th = o(r−2
T ), with rT some nonvanishing positive

sequence and (ii) sup
x∈𝜒

E[|𝜀t|
2+𝜂 | xt−1 = x] <∞ and T2∕(2+𝜂) (logT)

2+2𝜂
2+𝜂

Th
= o(r−2

T ). Then,

sup
x∈𝜒

|
|
|
|
|
|

√
T

ĝ(x) − g(x)
V1∕2

T (x)
−GT (x)

|
|
|
|
|
|

= oP(r−1
T ) (3.4)

with GT (x) =

T∑

t=1
ΦT (x,xt−1)𝜀t

√
TVT (x)

.

The proof of this result follows from a direct application of Lemma 6.1 in Cattaneo et al. (2020) and is omitted
for space constraints. The definition of GT (x) allows us to obtain a distributional approximation for these stochastic
processes by a sequence of centered Gaussian processes G(x) in ∞. To do this, we introduce the following
assumption.

Assumption 3. In a sufficiently rich probability space, for each x ∈ 𝜒 , there exists a copy G
∗
T (x) of GT (x) and a

Normal random variable 𝜀∗t following a N(0, 1) distribution such that

sup
x∈𝜒

|G∗
T (x) −G(x)| = oP(r−1

T ), (3.5)

where G
∗
T (x) =

T∑

t=1
ΦT (x,xt−1)𝜀∗t
√

TVT (x)
and G(x) is a sequence of centered Gaussian processes in ∞.

Under Assumption 3, the approximation satisfies that

√
T

ĝ(x) − g(x)
V1∕2

T (x)

w
−−→(x) (3.6)

in ∞, with (x) denoting the probability law of the Gaussian process G(x). A formal proof of this result follows
from applying the novel two-step coupling approach in Cattaneo et al. (2020) and is beyond the scope of this
article. This result can be applied for developing hypothesis tests over the support of the predictor variable or
compact subsets of it. To do this, we derive first the asymptotic distribution of the supremum functional.

Theorem 2. Under Assumptions 1–3 and the conditions of Lemma 4, for rT → ∞, it follows that

√
T sup

x∈𝜒

|
|
|
|
|
|

ĝ(x) − g(x)
V1∕2

T (x)

|
|
|
|
|
|

d
−−→ sup

x∈𝜒
|(x)| . (3.7)

The proof of this result follows from applying the continuous mapping theorem to the supremum of the process
on the left hand side of expression (3.6).

4. PREDICTIVE ABILITY TEST

The presence of predictive ability at specific points of the compact support of the predictor variable can be tested
using t-tests for pointwise predictions. The predictive ability at a given point xt−1 = x is given by a value of g(x)
different from zero. Therefore, for xt−1 ∈ 𝜒 , we define the null hypothesis of absence of predictive ability as
H0 ∶ g(xt−1) = 0 and the alternative hypothesis as HA ∶ g(xt−1) ≠ 0. A suitable test for this hypothesis is

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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10 J. OLMO

t
𝛼

=
√

T
ĝ(xt−1)
̂V1∕2

T (xt−1)
, (4.1)

that, under the null hypothesis, converges in distribution to N(0, 1). This result is immediate from the application
of Theorem 1. Similarly, we obtain asymptotically valid pointwise prediction intervals for g(x) as

g(xt−1) ∈ ĝ(xt−1) ± z1−𝛼∕2
̂V1∕2

T (xt−1)∕
√

T , (4.2)

where z1−𝛼∕2 is the critical value obtained from the asymptotic approximation to a Normal distribution.
More interesting is the extension of the test to the functional space. The hypothesis of interest is H0 ∶

g(x) = 0, almost everywhere in 𝜒 , against the alternative HA ∶ g(x) ≠ 0, for some x ∈ 𝜒 . A suitable test
statistic is

DT =
√

T sup
x∈𝜒

|
|
|
|
|
|

ĝ(x)
̂V1∕2

T (x)

|
|
|
|
|
|

. (4.3)

The asymptotic distribution of this statistic, obtained as a direct application of Theorem 2 and given by

DT

d
−−→ sup

x∈𝜒
|(x)| , (4.4)

depends on nuisance parameters given by the covariance kernel of the Gaussian processes and cannot be universally
tabulated. This is the well known Davies (1977, 1987) problem of hypothesis tests under the presence of nuisance
parameters. Hypothesis tests involving nuisance parameters under the null have been widely investigated in the
time series literature and, in particular, in threshold models and structural break testing.

Obtaining asymptotic critical values for this test is difficult. Fortunately, simulation and resampling methods
can be applied to approximate the critical values in finite samples, see Andrews (1993) and Hansen (1996). More
recently, Cattaneo et al. (2020) propose a simulation-based method to implement uniform inference on the parti-
tioning estimator for i.i.d. data. In what follows, we apply a simulation procedure in the same spirit of these authors.
We operate conditionally on a realization of {yt, xt−1}T

t=1 and present a simple plug-in approach to approximate the
infeasible Gaussian processes G(x). Lemma 4 implies that

sup
x∈𝜒

|
|
|
|
|
|

√
T

ĝ(x)
̂V1∕2

T (x)
− ̂GT (x)

|
|
|
|
|
|

= oP(r−1
T ),

where ̂GT (x) =
∑T

t=1
̂ΦT (x,xt−1)e

(0)
t√

T̂VT (x)
and e(0)t is the vector of residuals of the regression model (2.5) under the null

hypothesis H0 of no predictability such that e(0)t = yt. The feasible stochastic processes ̂GT (x) replace the unfeasible

stochastic processes GT (x). Similarly, ̂G
⋆

T (x) denote the corresponding i.i.d. replicas.

Let D⋆

T =
√

T supy∈𝜒 |
̂G
⋆

T (x)| be an independent replica of the test statistic DT . Under the null hypothesis H0,
the distribution of D⋆

T conditional on {yt, xt−1}T
t=1 converges to supx∈𝜒 |(x)|. This asymptotic distribution can be

approximated by generating independent replicas of ̂G
⋆

T (x) =
∑T

t=1
̂ΦT (x,xt−1)e⋆t√

T̂VT (x)
. To do this, we generate a vector of

i.i.d. N(0, 1) random variables {ut}T
t=1 to construct the simulated residuals e⋆t = e(0)t ut. These residuals have the

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 11

same variance of 𝜀t conditional on xt−1 = x. From assumption 3 above, we have

sup
x∈𝜒

|̂G
∗

T (x) −G(x)| = oP(r−1
T ).

Similarly, the p-value of the test given by PH0

{
DT > supx∈𝜒 |(x)|

}
can be approximated in finite samples by

P
{

D⋆

T > DT | {yt, xt−1}T
t=1

}
. Although the distribution of D⋆

T is not directly observed, it can be approximated to
any degree of accuracy by operating conditionally on {yt, xt−1}T

t=1. The algorithm to compute the p-value of the
test is described below.

Algorithm.

1. Construct a partition of the compact set 𝜒 ≡ [a, b] using the intermediate statistics of the stationary sequence
{xt}T

t=1 as discussed above. In particular, choose a = x(1) < x(2) < · · · < x(T) = b and a value for n such

that K = ⌈T∕n⌉. The set of disjoint intervals is given by [x[1], x[n])
⋃K−1

k=2 [x[(k−1)∗n], x[k∗n]) ∪ [x[(K−1)∗n], x[T]].
The Taylor expansions will be evaluated at the center of these intervals with z1 = (x[1] + x[n])∕2 and zk =
(x[(k−1)∗n] + x[k∗n])∕2. The adaptive tuning parameters are h1 = (x[n] − x[1])∕2 and hk = (x[k∗n] − x[(k−1)∗n])∕2,
for k = 2, … ,K.

2. Estimate Γk, for k = 1, … ,K, using the partitioning estimator (2.6) and construct the function ĝ(x) as in (2.7)
for x ∈ [a, b].

3. Construct an equidistant grid of points Zk = {xk1, … , xki} covering each interval [zk − hk, zk + hk), and
let Z = {Z1, … ,ZK} denote the full grid covering the interval [a, b]. Compute the test statistic DT =
√

T supx∈Z

|
|
|
|

ĝ(x)
̂V1∕2

T (x)

|
|
|
|
.

4. For a given realization {yt, xt−1}T
t=1, execute the following steps for b = 1, … ,B:

(a) Generate the sequence {u(b)t }T
t=1 of i.i.d. (0, 1) random variables independent of the data and construct

the simulated residuals e⋆(b)t = e(0)t u(b)t , with e(0)t the vector of residuals of the partitioning estimators
obtained under the null hypothesis H0.

(b) Compute the simulated process ̂G
⋆(b)

T (x) =

T∑

t=1

̂ΦT (x,xt−1)e
⋆(b)
t

√
T̂VT (x)

, for x ∈ Z, with ̂ΦT (x, xt−1) =
∑K

k=1vk(x)′̂Q−1
k X

′
k,t−1∕pk and ̂VT (x) =

∑K
k=1vk(x)′̂Q−1

k
̂Ψk
̂Q−1

k vk(x)∕pk.
(c) Store the bootstrap test statistic

D⋆(b)
T = sup

y∈Z

|̂G
⋆(b)

T (x)|.

This algorithm yields a random sample of B observations from the distribution of supx∈𝜒 |
̂G
⋆

T (x)|. Using the
Glivenko–Cantelli theorem and previous assumptions, the empirical p-value conditional on {yt, xt−1}T

t=1 defined by

p̂⋆T ,B =
1

B

∑B
b=11(D⋆(b)

T > DT ) converges, in probability, to the bootstrap distribution P
{

D⋆

T > DT | {yt, xt−1}T
t=1

}
, as

B → ∞. As mentioned above, this conditional probability converges to the p-value obtained from the asymptotic
distribution of the test statistic DT as T →∞.

5. MONTE CARLO SIMULATIONS

This section studies the predictive ability of our partitioning estimator for linear autoregressive processes using
different evaluation criteria. The section also studies the coverage probability of the asymptotic interval forecasts in
(4.2), the empirical size and power of the t-tests for pointwise predictability and the uniform test for predictability

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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12 J. OLMO

over the compact support of the predictor variable. The section finishes discussing model selection procedures
to optimally determine in sample and out of sample the number of regressors in the nonparametric regression
model characterized by the partitioning estimator. The online appendix extends this analysis to the case of linear
predictive regression models.

5.1. Simulation Design

The simulation exercise focuses on assessing the performance of the partitioning estimator for autoregres-
sive processes since these models are studied in more detail in the empirical application. The choice of this
DGP implies minor adjustments to the above set of assumptions. In particular, it is sufficient to impose the
martingale difference assumption to the sequence of errors for the model to be correctly specified. In contrast,
the compactness of the support of the predictor variable no longer holds in this context if the distribution of
the error is defined over the real line. In this case, we consider an extension of the compact set 𝜒 given by
(−∞, a)

⋃
[a, b]

⋃
(b,∞), such that P

{
x ∈ (−∞, a)

⋃
(b,∞)

}
≤ tol, with tol some tolerance level very close

to zero.
We consider the following DGPs:

(i) yt = 𝜌yt−1 + 𝜀t, (5.1)

(ii) yt = sin(yt−1)yt−1 + 𝜀t, (5.2)

(iii) yt = cos(yt−1)yt−1 + 𝜀t, (5.3)

where 𝜀t is a N(0, 1) distribution independent of yt. The autoregressive coefficient is constant in the first
model and given by 𝜌 = 0.5 throughout experiments. This coefficient is time varying in the remaining
two models and given by the sine and cosine functions. These DGPs are formulated for simulation pur-
poses but knowledge of these parametric forms is not required for estimation or forecasting purposes as
this is done nonparametrically using the partitioning estimator. The number of periods T varies between
T = 200,500, 1000 depending on the experiment, and the number of replications of the DGPs is B = 500
throughout.3

We study the performance of the approximation in (2.5) for different choices of n and q. The choice of n not
only determines the value of hk in the intervals [zk − hk, zk + hk) but also the value of K since T = nK. Therefore,
by choosing n and q we select the number of regressors in the nonparametric model (2.5).

5.2. Predictive Accuracy of the Partitioning Estimator

We study the predictive accuracy of the approximation ĝ(y) for (i) g(yt−1) = 𝜌yt−1, (ii) g(yt−1) = sin(yt−1)yt−1, and
(iii) g(yt−1) = cos(yt−1)yt−1. The competing models are (a) the parametric AR(1) process given by ĝ(yt−1) = 𝜌yt−1,
with 𝜌 estimated using OLS methods, and (b) the partitioning estimator ĝ(yt−1) =

∑K
k=1Xk,t−1

̂Γk introduced in (2.5),
with Xk,t−1 = (1, (yt−1 − zk), … , (yt−1 − zk)q).

To compute the root mean square prediction error (RMSPE) of the model over the support of the outcome
variable yt, we create a grid of points {y1, … , ym} ∈ [a, b], with a the left end point of the sample and b the right

3 In an online appendix, we study the predictive performance of the partitioning estimator for similar DGPs. In these models we replace
the predictor variable yt−1 by an exogenous autoregressive process xt. We explore the performance of the model for different values of the
correlation between the error term and different degrees of persistence of the predictor xt .

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 13

end point. For each yj in the grid, the RMSPE is calculated as

RMSPE(yj) =
1
√

B

√
√
√
√

B∑

b=1

(ĝb(yj) − g(yj))2, (5.4)

where ĝb(yj) = 𝜌byj for model (a) and ĝb(yj) =
∑K

k=1Xk,t−1
̂Γk(b) for model (b); 𝜌b and ̂Γk(b) are the param-

eter estimates obtained from the MC simulations b = 1, … ,B. This loss function can be divided into a
component

∑B
b=1(ĝb(yj) − gb(yj))2 capturing parameter uncertainty (estimation error) and a second component

∑B
b=1(gb(yj) − g(yj))2 that reflects the error between the model specification gb(y) and the true DGP given by g(y).

Importantly, if the DGP is known, the functions gb(⋅) and g(⋅) are the same and the second component of the
RMSPE vanishes. In our simulation exercise, this case is represented by DGP (i) and model (a) above. The latter
model is misspecified, though, if the DGP is generated as in (ii) or (iii). However, the nonparametric approach in
(b) is robust to the choice of DGP.

Figure 1 presents the RMSPE for DGPs (i)–(iii) using the parametric OLS estimator and the partitioning esti-
mator, respectively, and for sample sizes equal to T = 500 and T = 1000. We report the RMSPE for a grid of
points covering 90% of the support of the random variable yt.

4 To do this, we construct a grid of 100 points cov-
ering the compact set [y − 1.64 ∗ 𝜎Y , y + 1.64 ∗ 𝜎Y ], with y and 𝜎Y the sample mean and standard deviation of
{yt}

T0

t=1 obtained from a realization of T0 = 2000 observations from the DGP.
The top panels of Figure 1 consider the autoregressive DGP (5.1). The RMSPE obtained from the parametric

estimator is represented with a dashed red line whereas the RMSPE of the partitioning estimator is reported with a
black dashed line. Unsurprisingly, the results in both panels show considerably smaller values of the RMSPE for
the OLS estimator across values of y ∈ [a, b]. The figure shows some perturbations of the partitioning estimator in
the left and right end points of the partition. The middle panels report the RMSPE for the DGP (5.2). In this case the
OLS estimator is applied to a misspecified AR(1) model whereas the nonparametric partitioning estimator is robust
to the functional form of the autoregressive process. The OLS estimator reports very low values of the RMSPE for
y in a neighborhood of zero. Outside this neighborhood, the RMSPE of the partitioning estimator is significantly
superior. The results for DGP (iii) in (5.3), reported in the bottom panels of Figure 1, are qualitatively similar
to those for DGP (ii): the parametric OLS estimator reports low values of the RMSPE in a small neighborhood
around zero. This is discussed in more detail below.

A related exercise is to compare the predictive ability of both methods. A popular strategy in the forecast-
ing literature is to implement Diebold and Mariano (1995) (DM) test. In this case we compare the predictions
of both models and assess statistically the differences in forecast performance across models using the RMSPE
loss function. To do this, we specialize the definition of the RMSPE in (5.4) and differentiate between in-sample
and out-of-sample measures that are applied to the forecast errors of the competing models. Figure 2 reports
the DM test statistics for the in-sample and out-of-sample periods. To attach a statistical significance to the val-
ues in the figures, we should compare these values against 1.96 and −1.96 to determine if the forecasts of the
partitioning estimator outperform those of the linear autoregressive model or the other way around respectively.
The top panels of Figure 2 present the results for the linear autoregressive model in (5.1). The black solid line
takes values around 2, which suggests the outperformance of the partitioning estimator in sample. In contrast,
the red dashed line takes negative values around −2, suggesting the opposite for the out-of-sample data when
the number of observations is M = 500. The latter analysis illustrates the superior forecast performance of the
linear AR(1) model out of sample. This result is unsurprising given that the DGP is exactly an AR(1) model.
However, in sample, the additional flexibility of the partitioning estimator implies a better fit and a more favorable
DM statistic.

4 The unbounded support of the standard Normal random variable does not allow to extend the grid to the entire support of the outcome
variable.

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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14 J. OLMO

Figure 1. Root mean square prediction error for DGPs (5.1)–(5.3). Left panels correspond to T = 500 and right panels to
T = 1000. The number of observations in each interval [zk − hk, zk + hk) is n = 0.1 × T . Black solid line for the partitioning

estimator and red dashed line for the parametric autoregressive model

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 15

Figure 2. Diebold–Mariano (DM) test statistics for B = 100 simulated series for DGPs (5.1)–(5.3). Left panels correspond to
T = 500 and right panels to T = 1000. The number of observations in each interval [zk − hk, zk + hk) is n = 0.1 × T . Black

solid line for the DM test with in-sample data and red dashed line for the DM test with out-of-sample data

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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16 J. OLMO

The analysis of the DGPs in (5.2) (middle panels) and (5.3) (bottom panels) yields very different findings.
The DM test statistics in Figure 2 indicate a better fit of the partitioning estimator in sample and out of sam-
ple. This result is highly statistically significant for both sample sizes and across the two DGPs in (ii) and (iii).
These exercises highlight the advantages of the nonparametric partitioning estimator when the functional form is
nonlinear.

5.3. Empirical Rejection Rates and Power Analysis of Pointwise Predictability Tests

This section investigates the empirical rejection rates associated to the asymptotic prediction interval (4.2). The
section also studies the empirical power of the pointwise predictability test in (4.1) for different DGPs and sample
sizes. The empirical rejection rates (𝛼B(yj)) are computed as the fraction of times the true observation g(yj) is
outside the forecast interval (4.2) such that

𝛼B(yj) =
1
B

B∑

b=1

1
(

|ĝb(yj) − g(yj)| > z1−𝛼∕2
̂V1∕2

T(b)(yj)∕
√

T
)

, (5.5)

where ĝb(yj) and ̂VT(b)(yj) are the pointwise forecast and associated variance estimator of the DGP for simulation
b = 1, … ,B; z1−𝛼∕2 is the 1−𝛼∕2 quantile of a standard Normal distribution function and 1−𝛼 denotes the nominal
coverage probability of the two-sided asymptotic confidence interval. The grid {y1, … , ym} is constructed as for
the mean square error exercise above. These estimates are reported in the figures as a solid black line. The results
in Figure 3 show excellent empirical rejection rates at 𝛼 = 0.05 across the three DGPs. The asymptotic forecast
interval (4.2) provides an accurate description of the uncertainty about the point forecasts ĝ(y) returned by the
partitioning estimator.

Figure 3 also reports, as dashed red lines, the empirical power of the pointwise predictability tests H0(yj) ∶
g(yj) = 0 against HA(yj) ∶ g(yj) ≠ 0, for j = 1, … ,m. The estimates of the power of the test are obtained from the
following expression:

p̂B(yj) =
1
B

B∑

b=1

1

(
√

T
|
|
|
|
|
|

ĝb(yj)
̂V1∕2

T(b)(yj)

|
|
|
|
|
|

> z1−𝛼∕2

)

. (5.6)

The different panels in the three figures show, in general, high power to reject the null hypothesis of no forecast
ability for the DGPs (5.1) to (5.3). Interestingly, the empirical power significantly drops in regions of the support of
the predictor variable that contain zeros of the function g(y). A zero of the predictor function entails the condition
g(y) = 0, that is interpreted as lack of predictability in nonparametric settings, see Juhl (2014). In these regions the
empirical power converges to the size (0.05) as y approaches the zero of the function. This is observed in the top
panels of Figure 3 that report the power of the test (dashed red line) for the DGP in (5.1). In this model, g(y) = 0
for y = 0. For the DGP in (5.2), the middle panels of Figure 3 show how the empirical power converges to the
nominal size for y = 0. This is so because the function g(y) = sin(y)y is equal to zero in the interval [−2, 2] at
y = 0. Similarly, the power analysis for the DGP in (5.3) exhibits high power to reject the null hypothesis of no
predictability outside the zeros of the function, obtained at y = {−𝜋∕2, 0, 𝜋∕2}, and power values close to the
nominal size when the predictability is evaluated at the zeros. The null hypothesis of absence of predictability is
not rejected at these points. An alternative interpretation is that the pointwise model prediction at these points is
zero.

5.4. Finite-sample Properties of Uniform Test

This section concludes with the analysis of the finite-sample properties of the uniform test of predictive ability.
Table I reports the empirical size and power of the test for Models 1–3 corresponding to processes (5.1) to (5.3)

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 17

Figure 3. Empirical rejection rates and power analysis of pointwise predictability tests for the DGPs (5.1) to (5.3). The null
hypothesis is H0 ∶ g(yj) = 0 against HA ∶ g(yj) ≠ 0, for yj a grid of points covering 90% of the support. Black solid line for
the empirical rejection rates of the confidence interval (5.2) and red dashed line for the empirical power of the predictability
test (4.2). Left panels corresponds to T = 500 and right panels to T = 1000. The number of observations in each interval

[zk − hk, zk + hk) is n = 0.1 × T

respectively. Model 4 corresponds to the null hypothesis of no predictability. The DGP of the latter model is
generated as yt = 𝜀t, with 𝜀t ∼ N(0, 1). The top panel considers T = 200, the middle panel is for T = 500 and the
bottom panel of the table considers the case T = 1000.

The results illustrate the empirical validity of the Wild bootstrap procedure proposed above to approximate
the asymptotic p-value of the uniform test. The test has very strong power to reject the null hypothesis under the
alternative hypothesis of predictive ability and also reports accurate empirical sizes under the absence of predictive

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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18 J. OLMO

Table I. Empirical size and power of uniform test

T = 200 n Model 1 Model 2 Model 3 Model 4

10 0.73 0.34 0.23 0.15
15 0.94 0.46 0.50 0.11
20 0.98 0.58 0.64 0.08
25 0.99 0.73 0.76 0.06
30 1.00 0.75 0.87 0.06
35 1.00 0.79 0.88 0.08
40 1.00 0.86 0.91 0.05

T = 500
25 1.00 0.72 0.84 0.05
38 1.00 0.89 0.98 0.04
50 1.00 0.96 0.98 0.04
63 1.00 0.94 0.99 0.05
75 1.00 0.95 0.99 0.05
88 1.00 0.90 0.98 0.05

100 1.00 0.94 0.98 0.04
T = 1000

50 1.00 0.96 0.99 0.04
75 1.00 0.96 0.99 0.02

100 1.00 0.95 1.00 0.02
125 1.00 0.95 0.99 0.02
150 1.00 0.94 0.99 0.04
175 1.00 0.94 0.99 0.06
200 1.00 0.94 0.99 0.04

Note: This table reports the empirical size and power of uniform test (4.4) for sample sizes T = 200,500, 1000 and different values of n.
Number of simulations is B = 500.

ability (Model 4). The results do not show great improvement as the sample size increases. Larger values of n for
T = 200, 1000 seem to favor accurate test size estimates. On the other hand, for small values of n, we observe
minor size distortions.

As an additional exercise, we also test for the presence of predictive ability for compact subsets of the sup-
port of the random variable. We consider the DGP (ii) given by g(y) = sin(y)y as an illustrative example. This
process takes values close to zero for values of y in a neighborhood of zero and exhibits predictability for val-
ues of y different from zero. To measure the power of the uniform test in this setting we consider different
closed intervals [−a, a], for a = 0, 0.2, 0.4, 0.6, 0.8, 1. Figure 4 reports the rejection probabilities of the uni-
form test for each compact subset. The x axis corresponds to the value a that characterizes the interval [−a, a]
and the y axis reports the empirical rejection probability. We obtain a curve that is increasing with a, reflect-
ing the increase in predictive ability of the function g(y) as the compact subset includes values more distant
from zero.

5.5. Optimal Choice of Tuning Parameters

The tuning parameters characterizing the partitioning estimator are the number of intervals K and the order of the
Taylor expansion q. In Section 2.3, we discussed five alternative methods to optimally choose these quantities.
We implement these methods using the three DGPs discussed above and differentiate between an in-sample and
an out-of-sample analysis, with particular emphasis on the out-of-sample case. The simulation setup is analogous
to previous examples. The out-of-sample set is given by M = 500 observations and we consider n = ⌈cT⌉, with c
ranging between 5% and 20% and T = 100,500, 1000 such that K = ⌊T∕n⌋ ≈ 1∕c. Potential orders for the Taylor
expansion are q = 1, 2, 3.

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 19

Figure 4. Empirical power of the uniform test (4.4) restricted to the compact subsets [−a, a], with a = 0, 0.2, 0.4, 0.6, 0.8, 1.
The sample size is T = 1000 and number of observations in each interval [zk − hk, zk + hk) is n = 100

Table II. Out-of-sample optimal choice of the tuning parameter n

Model T RMSE M CV AIC BIC

AR(1) 100 17.842 18.886 19.032 18.696 18.954
(2.302) (1.224) (1.000) (1.533) (1.127)

500 85.840 92.758 93.736 91.466 92.902
(13.58) (7.114) (6.000) (8.733) (7.053)

1000 165.8 184.7 188.1 181.15 184.8
(35.28) (16.09) (12.59) (19.08) (15.79)

sine(1) 100 18.042 19.218 19.354 18.936 19.124
(2.586) (1.218) (0.983) (1.543) (1.178)

500 85.436 92.612 95.646 89.74 91.596
(14.83) (9.129) (6.246) (10.97) (9.471)

1000 156.2 177.8 184.85 169.2 176.5
(37.307) (22.375) (15.643) (28.42) (22.61)

cos(1) 100 17.846 19.024 19.174 18.686 19.036
(2.431) (1.250) (1.000) (1.666) (1.141)

500 85.588 93.304 95.738 91.012 92.742
(16.30) (8.612) (6.132) (10.65) (8.421)

1000 164.5 184.15 191.15 175.6 182.45
(35.31) (19.83) (13.35) (26.71) (20.59)

Note: This table reports the optimal value of the tuning parameter n under the different criteria described in Section 2.3. The out-of-sample
size is M = 500. Standard errors are shown in parentheses. The number of simulations is 500.

Tables II and III report the optimal values of n and q respectively, for the out-of-sample setting. The in-sample
setting is available from the author on request. The in-sample case is more conservative than the out-of-sample
exercise yielding a larger order of the Taylor expansion and a larger value of K, implying more regressors and a
better fit of the data. The out-of-sample case avoids the overfit of the nonparametric regression. Table II suggests
that the optimal value of n is about 15%–20% of the sample size T , implying values between 15 and 20 for
T = 100; between 75 and 100 for T = 500, and between 150 and 200 for T = 1000. The specific optimal choice

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668
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20 J. OLMO

Table III. Out-of-sample optimal choice of the Taylor expansion q

Model T RMSE M GCV AIC BIC

AR(1) 100 1.032 1.000 1.000 1.042 1.042
(0.187) (0.000) (0.000) (0.219) (0.219)

500 1.154 1.000 1.000 1.204 1.218
(0.417) (0.000) (0.000) (0.493) (0.508)

1000 1.316 1.008 1.000 1.364 1.374
(0.617) (0.089) (0.000) (0.651) (0.653)

sine(1) 100 1.408 1.082 1.01 1.446 1.452
(0.538) (0.274) (0.099) (0.558) (0.562)

500 2.25 1.898 1.584 2.286 2.286
(0.562) (0.447) (0.505) (0.533) (0.533)

1000 2.424 2.102 1.922 2.472 2.484
(0.563) (0.429) (0.363) (0.534) (0.523)

cos(1) 100 1.194 1.022 1.002 1.196 1.206
(0.465) (0.159) (0.045) (0.475) (0.489)

500 2.546 1.744 1.148 2.580 2.590
(0.759) (0.916) (0.467) (0.738) (0.739)

1000 2.744 2.576 1.816 2.820 2.866
(0.546) (0.759) (0.914) (0.494) (0.452)

Note: This table reports the optimal order q of the Taylor expansion under the different criteria described in Section 2.3. The out-of-sample
size is M = 500. Standard errors are shown in parentheses. The number of simulations is 500.

of n also depends on the loss function but there is ample agreement across methods. The RMSE loss function
reports the smallest values of n and the CV the largest. The underlying theory supports these choices. This is so
because the RMSE does not penalize the number of regressors in the model and, therefore, entails a smaller n (a
larger number of regressors) than for the other loss functions. In contrast, the other measures penalize, to different
extents, regression models with many regressors. The standard errors provide further validity to the optimality
results.

Table III provides empirical evidence on the optimal order of the local Taylor expansions. In general,
the results are quite robust across loss functions and DGPs. As the sample size increases, the model can
accommodate more regressors and the optimal choice of q is given by higher order expansions. More specif-
ically, for T = 100 the optimal choice is q = 1, however, as T increases the optimal choice of q is
close to 3.

6. EMPIRICAL APPLICATION

We focus our empirical investigations on the high-frequency based volatility measures dataset analyzed in Boller-
slev et al. (2016). These authors consider the 27 Dow Jones constituents as of September 20, 2013 that are traded
continuously from the start of the sample until the end. Data on these individual stocks comes from the TAQ
database. The sample starts on April 21, 1997 and ends on December 31, 2013, yielding a total of 4,202 obser-
vations for the DJIA constituents. Table 2 in Bollerslev et al. (2016) provides the summary statistics for the daily
realized volatilities (RV). We use a subset of the realized measures provided in Bollerslev et al. (2016), in particu-
lar, we focus on the realized volatility measures (RVt) initially explored in Andersen et al. (2003) and the bipower
variation (BPVt) measures of Barndorff-Nielsen and Shephard (2004), both obtained from five-minute intraday
squared returns.

Figure 5 reports the scatter plot for both RVt and BPVt measures for the first firm of the dataset given by American
Express (AXP). This figure shows clear evidence of nonlinearity for the raw measures RVt and BPVt, whereas the
log transformation suggests a linear relationship between the variables. Both panels in Figure 5 provide empirical

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668
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NONPARAMETRIC PREDICTIVE REGRESSION MODEL 21

Figure 5. Panel (a) presents the scatter plot of (Vt−1,Vt) for AXP firm with Vt the realized volatility measures constructed at
5 minute frequencies. Panel (b) presents the scatter plot for (ln Vt−1, ln Vt). Top panels for Vt = RVt and bottom panels for

Vt = BPVt

Figure 6. Predictions of RVt constructed from 5-minute returns given by the linear AR(1) model (solid red line) and the
partitioning estimator (solid black line). Panel (a) corresponds to AXP firm and panel (b) to BA firm

evidence of the existence of predictability for the realized volatility measures over time. Importantly, whereas
the linear AR(1) model is a suitable model for the log realized volatility measures it is not for the raw volatility
measures. In this section, we investigate the suitability of the partitioning estimator and compare its predictive
ability against the AR(1) model.5

5 We focus on the raw data for RVt and BPVt . Unreported results show the excellent performance of the AR(1) model for the log transformation
of the volatility measures. We should note, however, that the predictions of the log realized volatility measures need to be transformed to obtain
meaningful predictions of the raw realized volatility, which is generally the object of interest.

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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22 J. OLMO

Figures 6 reports the predicted value of g(y), for y in the support of the random variable RVt, for both
models. The black solid line corresponds to the forecasts of the partitioning estimator and the red dashed
line to the forecasts of the linear autoregressive model of order one. Figure 7 reports the out-of-sample
predictions over the evaluation period given by the last M = 2000 observations of the sample. The
nonparametric model is constructed with K(q + 1) = 33 regressors, with K = 11 corresponding to
n = 200 observations inside each interval [zk − hk, zk + hk), for an in-sample period of T = 2202
observations, and q = 2, as suggested by the model selection simulation exercise. The top panels of
Figure 7 plot together the in-sample realized volatility (RVt) forecasts and the actual observations for the
AXP firm. The bottom panels report the out-of-sample forecasts and actual out-of-sample realized mea-
sures. The forecasts of the nonlinear model are less volatile than the forecasts of the linear AR(1) pro-
cess.

The performance of both methods is assessed through the comparison of the adjusted R2 coefficients
for the in-sample and out-of-sample evaluation periods. R1 corresponds to the R2 measure of the para-
metric AR(1) model and R2 corresponds to the partitioning estimator. Theoretically, the in-sample period
should favor the partitioning estimator because the number of regressors is substantially larger and the
out-of-sample period should report fairer comparisons. The in-sample results in Table IV confirm, for most
firms, the outperformance of the partitioning estimator. This is reflected in a larger R2 statistic. Impor-
tantly, such improvements of the partitioning estimator are also observed over the out-of-sample evaluation
period. This is clearly the case for MCD, BA, HD, MMM, IBM, MRK, CSCO, INTC, MSFT, JNJ, WMT,
DIS, KO, and PG. For a few firms such as AXP, UTX, and VZ the improvement is for the RV mea-
sure but not for the BPV . For the PFE stock return volatility, the improvement in out-of-sample goodness
of fit is for the BPV measure only. Finally, for the remaining firms, the AR(1) model provides superior
out-of-sample forecasts. The differences in forecast ability between models are also confirmed in most cases
by the Diebold-Mariano test. Results on these tests for individual stocks are available from the author on
request.

Figure 7. Top left panel reports the observed 5-minute returns realized volatility for AXP firm. The in-sample evaluation
period is plotted as a black line and the predicted values obtained from the partitioning estimator as a red line. Top right panel
reports the same time series using the AR(1) model. Bottom panels report the same figures for the out-of-sample evaluation
period. In-sample period given by T = 2202 observations and out-of-sample period given by M = 2000 observations. Number

of observations in each cell is n = 200 for the partitioning estimator
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Table IV. Adjusted R2 coefficients for the constituents of S&P 500 index

Firm RV BPV Firm RV BPV Firm RV BPV Firm RV BPV

AXP GE MCD TRV
R1 in 0.356 0.397 0.224 0.273 −0.109 0.004 0.348 0.342
R2 in 0.458 0.458 0.389 0.411 0.179 0.213 0.444 0.373
R1 out 0.308 0.334 0.484 0.472 0.083 0.061 0.388 0.348
R2 out 0.312 0.272 0.275 0.271 0.217 0.257 0.153 0.134

BA HD MMM UNH
R1 in 0.131 0.197 0.318 0.305 0.230 0.222 0.084 0.070
R2 in 0.327 0.338 0.447 0.440 0.371 0.363 0.233 0.226
R1 out 0.514 0.519 0.367 0.350 0.106 0.057 0.419 0.409
R2 out 0.535 0.534 0.497 0.490 0.158 0.158 0.362 0.382

CAT IBM MRK UTX
R1 in 0.274 0.219 0.291 0.330 0.092 0.201 0.303 0.380
R2 in 0.390 0.355 0.411 0.429 0.243 0.319 0.404 0.470
R1 out 0.561 0.608 0.427 0.396 −0.020 −0.034 0.401 0.386
R2 out 0.208 0.234 0.469 0.438 0.192 0.207 0.468 −0.028
CSCO INTC MSFT VZ
R1 in 0.406 0.391 0.491 0.460 0.409 0.445 0.243 0.393
R2 in 0.498 0.475 0.587 0.562 0.502 0.503 0.374 0.422
R1 out 0.455 0.463 0.358 0.428 0.499 0.468 0.429 0.492
R2 out 0.539 0.521 0.500 0.526 0.522 0.498 0.506 0.307

CVX JNJ NKE WMT
R1 in 0.295 0.309 0.295 0.237 0.025 0.046 0.218 0.289
R2 in 0.399 0.393 0.356 0.338 0.278 0.267 0.377 0.411
R1 out 0.384 0.263 0.247 0.273 0.478 0.440 0.337 0.335
R2 out 0.040 0.012 0.406 0.425 0.427 0.427 0.434 0.461

DD JPM PFE XOM
R1 in 0.376 0.363 0.429 0.439 0.015 0.049 0.352 0.343
R2 in 0.445 0.438 0.572 0.535 0.247 0.259 0.454 0.447
R1 out 0.492 0.491 0.519 0.510 0.457 0.426 0.421 0.304
R2 out 0.288 0.307 0.405 0.445 0.444 0.442 0.211 0.182

DIS KO PG
R1 in 0.202 0.290 0.278 0.335 0.247 0.364
R2 in 0.294 0.357 0.405 0.424 0.358 0.440
R1 out 0.463 0.497 0.273 0.384 0.272 0.258
R2 out 0.511 0.518 0.398 0.506 0.400 0.431

Note: This table reports the adjusted R2 for the in-sample and out-of-sample exercises. R1 denotes the coefficient associated to the AR(1)
process and R2 the coefficient associated to the partitioning estimator. The number of in-sample observations is 2202 and the number of
out-of-sample observations is M = 2000. The number of observations in each interval [zk − hk, zk + hk) is n = 200. This implies K = 33
regressors in the partitioning estimator regression model.

7. CONCLUSIONS

This article proposes a nonparametric predictive regression model that is approximated using Taylor expan-
sions of low order (q ≤ 2) applied over disjoint intervals covering the support of the predictor variable. The
model is estimated using the theory on partitioning estimators developed in Cattaneo and Farrell (2013) that
we extend to a predictive framework with stationary, 𝛽-mixing predictors and a model error that is a martin-
gale difference sequence. We derive the asymptotic properties of the partitioning estimator that are applied to
test for the presence of predictive ability. We develop an asymptotic pointwise test of predictive ability using
the critical values of a Normal distribution, and a uniform test of predictability over the compact support of
the predictor variable, with asymptotic distribution that is approximated, in finite samples, using Wild bootstrap
methods.

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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The application of these results for modeling and forecasting nonparametrically different realized volatility
measures for the 27 constituents of the Dow Jones highlights the strong predictive ability of this model that out-
performs the standard AR(1) model for most stocks. Importantly, we also find overwhelming evidence on the
existence of nonlinearities on the dynamics of the raw realized volatility measures. Whereas log transforma-
tions of these measures are linear, the raw measures are highly nonlinear, in particular for the upper tails of the
distribution.

ACKNOWLEDGMENT

Jose Olmo acknowledges financial support from project PID2019-104326GB-I00 from Ministerio de Ciencia e
Innovación and from Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID).

DATA AVAILABILITY STATEMENT

We focus our empirical investigations on the high-frequency based volatility measures dataset analyzed in Boller-
slev et al. (2016). These authors consider the 27 constituents of the Dow Jones Industrial Average Index as of
September 20, 2013. These stocks are traded continuously from the start of the sample until the end. Data on these
individual stocks comes from the TAQ database.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

REFERENCES

Andersen TG, Bollerslev T, Diebold FX, Labys P. 2003. Modeling and forecasting realized volatility. Econometrica
71:579–625.

Andrews DWK. 1991. Asymptotic normality of series estimators for nonparametric and semiparametric regression models.
Econometrica 59(5):307–345.

Andrews DWK. 1993. Tests for parameter instability and structural change with unknown change point. Econometrica
61(4):821–856.

Andrews D. 1994. Asymptotics for semiparametric models via stochastic equicontinuity. Econometrica 62(4):43–72.
Barndorff-Nielsen OE, Shephard N. 2004. Power and bipower variation with stochastic volatility and jumps. Journal of

Financial Econometrics 1(2):1–37.
Bollerslev T, Patton A, Quaedvlieg R. 2016. Comparing predictive accuracy. Journal of Econometrics 192(1):1–18.
Cai Z, Fan J, Li R. 2000a. Efficient estimation and inference for varying coefficient models. Journal of the American Statistical

Association 95(4):888–902.
Cai Z, Fan J, Yao Q. 2000b. Functional coefficient regression models for nonlinear time series. Journal of the American

Statistical Association 95(4):941–956.
Campbell J, Yogo M. 2006. Efficient tests of stock return predictability. Journal of Financial Economics 81(4):27–60.
Cattaneo M, Farrell M. 2013. Optimal convergence rates, bahadur representation, and asymptotic normality of partitioning

estimators. Journal of Econometrics 174(1):127–143.
Cattaneo M, Farrell M, Feng Y. 2020. Large sample properties of partitioning-based series estimators. The Annals of Statistics

48(3):1718–1741.
Chen H. 1988. Convergence rates for parametric components in a partly linear model. Annals of Statistics 16(5):136–146.
Craven P, Wahba G. 1978. Smoothing noisy data with spline functions. estimating the correct degree of smoothing by the

method of generalized cross-validation. Numerische Mathematik 31:377–404.
Davies RB. 1977. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika

64(2):247–254.
Davies RB. 1987. Hypothesis testing when a nuisance parameter is present only under the alternatives. Biometrika 74(1):33–43.
Diebold FX, Mariano RS. 1995. Comparing predictive accuracy. Journal of Business & Economic Statistics 13(3):253–263.
Fan J, Gijbels I. 1996. Local polynomial modelling and its applications. In Monographs on Statistics and Applied Probability,

Chapman & Hall/CRC Press, London, UK.
Fan J, Yao Q, Cai Z. 2003. Adaptive varying-coefficient linear models. Journal of the Royal Statistical Society, Series B

65(4):57–80.

wileyonlinelibrary.com/journal/jtsa © 2022 John Wiley & Sons Ltd J. Time Ser. Anal. (2022)
DOI: 10.1111/jtsa.12668

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12668 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [02/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NONPARAMETRIC PREDICTIVE REGRESSION MODEL 25

Györfi L, Kohler M, Krzyzak A, Walk H. 2002. A Distribution-Free Theory of Nonparametric Regression Springer-Verlag,
New York.

Hansen BE. 1996. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica
64(2):413–430.

Jansson M, Moreira M. 2006. Optimal inference in regression models with nearly integrated regressors. Econometrica
74(4):681–714.

Juhl T. 2014. A nonparametric test of the predictive regression model. Journal of Business and Economic Statistics
32(3):387–394.

Kim W, Linton O, Hengartner N. 1999. A computationally efficient oracle estimator for additive nonparametric regression
with bootstrap confidence intervals. Journal of Computational and Graphical Statistics 8(4):278–297.

Lewellen J. 2004. Predicting returns with financial ratios. Journal of Financial Economics 74(4):209–235.
Li K-C. 1987. Asymptotic optimality for cp, cl, cross-validation and generalized cross-validation: discrete index set. Annals of

Statistics 15(3):958–975.
Mallows CL. 1973. Some comments on cp. Technometrics 15(4):661–675.
Nadaraya EA. 1965. On nonparametric estimates of density functions and regression curves. Theory of Applied Probability

10(1):186–190.
Newey WK. 1997. Convergence rates and asymptotic normality for series estimators. Journal of Econometrics 79(1):147–168.
Stambaugh R. 1999. Predictive regressions. Journal of Financial Economics 54(4):375–421.
Stone M. 1974. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series

B (Methodological) 36(2):111–147.
Stone CJ. 1985. Additive regression and other nonparametric models. The Annals of Statistics 13(2):689–705.
Tukey JW. 1947. Nonparametric estimation ii. statistically equivalent blocks and tolerance regions. Annals of Mathematical

Statistics 18(5):529–539.
Tukey JW. 1961. Curves as parameters and touch estimation. Proceedings of the Fourth Berkeley Symposium United States,

Cambridge, MA.
Wahba G. 1985. A comparison of gcv and gml for choosing the smoothing parameter in the generalized spline smoothing

problem. The Annals of Statistics 13(4):1378–1402.
Watson GS. 1964. Smooth regression analysis. Sankhya 26(1):359–372.

J. Time Ser. Anal. (2022) © 2022 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12668

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12668 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [02/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	HYPERTARGET {SECTION*.1{}A nonparametric predictive regression model using partitioning estimators based on Taylor expansions}
	1 INTRODUCTION
	2 ECONOMETRIC THEORY
	2.1 The Model
	2.2 Estimation
	2.3 Model Selection

	3 ASYMPTOTIC CONVERGENCE
	4 PREDICTIVE ABILITY TEST
	5 MONTE CARLO SIMULATIONS
	5.1 Simulation Design
	5.2 Predictive Accuracy of the Partitioning Estimator
	5.3 Empirical Rejection Rates and Power Analysis of Pointwise Predictability Tests
	5.4 Finite-sample Properties of Uniform Test
	5.5 Optimal Choice of Tuning Parameters

	6 EMPIRICAL APPLICATION
	7 CONCLUSIONS

	
	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT
	Supporting Information
	References

