Berti: an Accurate Local-Delta Data Prefetcher

Agustin Navarro-Torres*, Biswabandan PandaT, Jesus Alastruey-Benedé”,
Pablo Ibafiez*, Victor Vifials-Yufera*, and Alberto Ros*

*Dept. Informdtica e Ingenieria de Sistemas - I3A, Universidad de Zaragoza, Zaragoza, Spain
"Dept. of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
iComputer Engineering Department, University of Murcia, Murcia, Spain
Email: agusnt@unizar.es, biswa@cse.iith.ac.in, jalastru@unizar.es, imarin@unizar.es, victor@unizar.es, aros@ditec.um.es

Abstract—Data prefetching is a technique that plays a crucial
role in modern high-performance processors by hiding long
latency memory accesses. Several state-of-the-art hardware
prefetchers exploit the concept of deltas, defined as the difference

between the cache line addresses of two demand accesses.

Existing delta prefetchers, such as best offset prefetching (BOP)
and multi-lookahead prefetching (MLOP), train and predict
future accesses based on global deltas. We observed that the
use of global deltas results in missed opportunities to anticipate
memory accesses.

In this paper, we propose Berti, a first-level data cache
prefetcher that selects the best local deltas, i.e., those that

consider only demand accesses issued by the same instruction.

Thanks to a high-confidence mechanism that precisely detects
the timely local deltas with high coverage, Berti generates
accurate prefetch requests. Then, it orchestrates the prefetch
requests to the memory hierarchy, using the selected deltas.

Our empirical results using ChampSim and SPEC CPU2017
and GAP workloads show that, with a storage overhead of just
2.55 KB, Berti improves performance by 8.5% compared to a
baseline IP-stride and 3.5% compared to IPCP, a state-of-the-
art prefetcher. Our evaluation also shows that Berti reduces
dynamic energy at the memory hierarchy by 33.6% compared
to IPCP, thanks to its high prefetch accuracy.

Keywords-data prefetching; hardware prefetching; first-level
cache; local deltas; accuracy; timeliness

I. INTRODUCTION

Data prefetching techniques play an important role in
hiding long-latency memory accesses. Hardware prefetchers
learn memory access patterns and fetch data into the cache
hierarchy before time so that future memory accesses get
cache hits. Data prefetching techniques can be employed
either at the private first-level data cache (L1D), second-level
cache (L2), or at the shared last-level cache (LLC).

Most of the recently proposed storage-efficient spatial
prefetchers target L2 [13], [17], [35], [38], [50]. Exceptions
are the multi-lookahead offset prefetching (MLOP) [48]
and the instruction pointer classifier-based prefetching
(IPCP) [40], which are L1D prefetchers. It is well known
that an L1D prefetcher provides better performance than
an L2 prefetcher as the prefetched lines are brought into
L1D and not till L2. In addition, an L1D prefetcher sees
unfiltered memory access patterns and can predict the future

>100 100
g
5 75 75
19
Q
< 50 50
<
I
@ 25 25
2
£ 0 0
N O D D O N O D D O
o \»“'OQ \»”Oqo \%g \”1\ P o \0% \\’\’Ogo \”: < \”1\ P
OF o8 o™ o OF oCf o™ oS
W R (,?Q % W R (oq? QX
SPEC17-Memint GAP

(a) Accuracy of L1 and L2 prefetchers.

> 2.0 2.0
2
©g18 1.8
=
Suwq6 1.6
To :
EE14 1.4
o ©
Z51.2 1.2
[a)]
1.0

N O P PO
W SV WY

A A0 (P (P O
o < ?)“\ge‘?‘ ®

\4 QN . R A
[OXRNE) O R <O
WK N R o2
SPEC17-Memint GAP

(b) Dynamic energy consumption normalized to no prefetching.

Figure 1. Prefetch accuracy and dynamic energy consumption of the
memory hierarchy for state-of-the-art prefetchers (IPCP [40], MLOP [48],
SPP-PPF [17], and Bingo [13]) averaged across single-threaded traces from
memory-intensive SPEC CPU2017 [55] and GAP [14] workloads.

accesses better than an L2 or LLC prefetcher. L1D also
sees a sequence of virtual addresses as compared to physical
addresses at the L2 and LLC, which can facilitate cross-
page prefetching [24]. Also, compared to L1D, additional
contextual information is not easy to propagate to L2 and
LLC, such as instruction pointer (IP) [36], which is usually
available at the L1D (e.g., Intel’s IP-stride at the L1D [20]).
However, designing a high-performance L1D prefetcher is
hindered by (i) storage overhead, (ii) starved L1D bandwidth,
(>iii)) L1D pollution because of inaccurate prefetching, and
(iv) narrow scope for aggressive prefetching because of the
limited size of the prefetch queue (PQ) and the miss status
holding registers (MSHR).

State-of-the-art data prefetchers push the limit of single-
thread performance with average performance boosts of

3% to 5% [13], [17], [35], [40]. However, as shown in
Figure 1(a), these prefetchers load a large number of useless
blocks, ranging from 22.6% to 35.1% for SPEC CPU2017
and from 35.8% to 81.2% for GAP workloads, which
results in sub-optimal performance and additional dynamic
energy consumption [34]. Figure 1(b) shows that state-of-
the-art prefetchers significantly increase the dynamic energy
consumption at the memory hierarchy (caches and DRAM) up
t0 30.1% and 86.9% for SPEC CPU2017 and GAP workloads,
respectively.

Our proposal, Berti, provides an accuracy of almost 90%,
which translates into a dynamic energy overhead of only
9.0% and 14.3% for SPEC CPU2017 and GAP, respectively.

Our approach. We ask the following simple question in
designing our approach: “for an LID access to address X,
what is the timely and accurate delta (d) that should be used
for prefetching?” The best offset prefetcher (BOP) inspires us
to ask this question [38]. However, our approach is different
from BOP and other offset prefetchers [29], [48]. Our key
observation is that the best delta for access is dependent
on the local contextual information, such as an instruction
pointer (IP), and it varies based on the context (e.g., the best
delta for IPy is different from IPy). We argue that prefetching
based on global (context-agnostic) deltas results in missing
opportunities [39].

We propose Berti, a cost-effective, per-IP best request time
delta L1D prefetcher that makes a strong case for timeliness
and accuracy. For each IP, Berti learns the deltas that result in
timely prefetch requests, and issue prefetch requests only for
the deltas predicted to provide high coverage, which translates
to overall high prefetch accuracy. Sited at the L1D and
seeing all virtual addresses generated by the processor, Berti
orchestrates the prefetch requests to the memory hierarchy.
Our Berti prefetcher is inspired by Berti from DPC-3 [46].

Accurate and timely local deltas. We define local delta as
the difference in cache line addresses between two demand
accesses that are issued by the same IP. The definition of
delta differs from the definition of stride, being the later the
difference between addresses of consecutive load accesses
with the same IP. For example, an IPx that accesses the
following cache line addresses: X, X+2, X+4, X+6, sees a
sequence of strides as follows: +2, +2, and +2. In this case,
the stride is 2. However, access X+6 sees the following deltas:
+6, +4, and +2. Figure 2 shows an example differentiating
strides, local deltas, and timely local deltas. If the goal of
a prefetcher is to cover address 15, then the prefetcher can
initiate prefetching with deltas +3, +5, and +8 whenever
it sees the demand accesses to addresses 12, 10, and 7,
respectively. However, if we consider time to prefetch address
15, then deltas of +3, +5, and +8 will not completely mitigate

the L1D miss latency, as they will be late prefetch requests.

Instead, if a prefetcher issues a request for address 15 with
deltas of +10 or +13 on demand accesses to address 5 or 2,
respectively, it can prefetch address 15 well ahead of time.

L 7 10 12 15
timeline *

| | stride (+3) |
local deltas (+8, +5, +3),
| time to fetch address 15 |

B

timely local deltas (+13, +10)

2

Figure 2. Strides, local deltas, and timely local deltas. The values on
the timeline (2, 5, 7 ...) represent the addresses referenced by the same
instruction.

With Berti, we find the #imely local deltas, and compute
its respective coverage. We prefetch using deltas that used to
show high coverage, which translates to overall high prefetch
accuracy as we show in this work. We call these deltas the
accurate and timely deltas.

Contributions. We make the following key contributions:

« We motivate the need for a local L1D delta prefetcher
to achieve a high coverage with accurate and timely
prefetch requests (Section II).

« We propose Berti, a highly-accurate prefetcher that
learns timely local deltas and predicts their coverage
with high confidence. High accuracy (almost 90%) is
achieved by only triggering prefetch requests for deltas
with high coverage. Berti incurs a storage overhead of
only 2.55 KB (Section III).

« Our evaluations show that for SPEC CPU2017 and GAP
workloads, Berti consistently outperforms a baseline
IP-stride prefetcher (8.5% average speedup). It also
surpasses the highly-competitive state-of-the-art IPCP L1
prefetcher (3.5% average speedup), which is a significant
uplift in performance, pushing further the limits of
hardware prefetchers. Berti is equally effective with
multicore heterogeneous mixes. Overall, Berti provides
the best trade-off in performance, storage overhead,
and energy consumption of the memory hierarchy
(Section IV).

II. RECENT WORKS AND MOTIVATION
A. Recent advances in data prefetching

Data prefetching plays an important role in designing
high performance processors. Recent developments in this
field mainly come from the last two data prefetching
championships, DPC-2 [2] and DPC-3 [7], co-located with
ISCA 2015 and ISCA 2019, respectively.

Best offset prefetching (BOP). The winner of DPC-2 is
a degree-one L2 prefetcher that finds an offset that provides
the maximum likelihood of future use at the L2 cache [38].
An offset of k means that a cache line is k cache lines
away from the current demand address. BOP takes timeliness
into account while selecting the best offset per application

phase. Multi-lookahead offset prefetching (MLOP) [48] is an
extension on BOP that is motivated by Jain’s Ph.D. thesis [29].
MLOP considers multiple lookaheads for each offset and
selects the offset and lookahead covering a specific cache
miss. Both BOP and MLOP treat the demand addresses
in isolation, and for each demand access, trigger prefetch
requests based on the prefetch offset!. In general, MLOP
provides better prefetch coverage than BOP.

Variable Length Delta Prefetching (VLDP). This spatial
data prefetcher uses multiple histories of deltas between
successive cache lines observed within an operating system
(OS) page to predict the future memory accesses in other
OS pages [50]. One of the key features of VLDP is that it
uses multiple prediction tables and makes predictions based
on different lengths of history in terms of deltas.

Signature path prefetching (SPP). This state-of-the-art
delta prefetcher predicts irregular strides at the L2 cache [35].
SPP works by relying on the signatures (hashes of consecutive
strides) observed within an OS page to index into a table
that predicts future deltas. SPP uses a lookahead mechanism
that recursively finds out deltas to prefetch until a delta falls
below a confidence. Perceptron prefetch filtering (PPF) is
a filter that further improves the effectiveness of SPP by
deciding whether to prefetch into L2 or not [17]. In general,
SPP combined with PPF (SPP-PPF) provides better prefetch
coverage than VLDP.

Bingo. This L2 prefetcher makes a case for associating
spatial access patterns to both short (such as IP) and long
events (such as IP, IP+offset, and memory region) and
selecting the best pattern for prefetching [13]. A key point
of Bingo is the use of only one hardware table for both
short and long events. This table enables multiple predictions
from a single entry, providing better coverage than single-
event prefetching. In general, Bingo outperforms VLDP and
SPP-PPF for SPEC CPU2017 traces. However, it requires
significantly more storage than VLDP and SPP-PPF.

Instruction pointer classifier prefetching (IPCP). The
winner of DPC-3 is a state-of-the-art L1D data prefetcher
that is composite in nature [40]. It classifies an IP into three
classes: constant stride (CS), complex stride (CPLX), and
global stream (GS). IPCP uses three lightweight prefetchers
that issue prefetch requests according to the IP class. If it
fails to classify an IP into one of the three classes, it uses a
next-line prefetcher.

B. Motivation: why a new delta prefetcher?

Why not a global delta prefetcher? We observe that
finding the best delta for an entire application results in
missing opportunities because the best delta varies based on
the program context, e.g., an IP or the OS page. Figure 3
shows the best deltas selected by BOP (red line) and Berti

'For BOP and MLOP, we use the term global delta instead of offset for
the rest of the paper.

64 — — 1.0
56
48 — 0.8
S840)
33 -0.6 §
g2 043
m 16 — — o
8 —_ -0.2
0 —
-8 o -0.0
IP
Figure 3. Best delta selected by BOP (based on global deltas) and Berti

(based on per-IP local deltas) for mc£-1554B. Prefetch coverage is shown
in grayscale. BOP selects +62 as the best delta (red line), which is not
always accurate and provides a coverage of only 2%.

(gray lines) for different IPs of the mc£-1554B benchmark.
We can see that the best delta is different for distinct IPs
making a strong case for prefetching local, timely deltas
instead of a global best delta (oblivious to per-IP best deltas).
We can also see that the global delta (+62) as selected by
BOP does not cover all cache accesses, and it is not the best
delta. For mcf-1554B, BOP provides coverage of only 2%,
whereas Berti, that selects local deltas (per IP), provides better
coverage as shown in Figure 3. As we will see in Section 1V,
the use of a global delta may be beneficial in some cases
(e.g., in CactuBSSN), but this is not the common case.
Why not existing local L1D prefetchers? A conventional
IP-stride prefetcher covers consecutive constant strides and
not necessarily timely deltas. For example, IP 0x401cb0
from 1bm-2676B generates the following stride sequence:
+1, +2, +1, +2, ... +1, +2. For this pattern, an IP-stride
prefetcher will provide zero coverage and will not gather
enough confidence to prefetch either with stride +1 or
+2. IPCP’s CPLX prefetcher will be able to detect this
pattern. However, IPCP ignores the timeliness of prefetching.
In contrast to IP-stride and IPCP’s CPLX prefetcher, a
more timely, accurate, and flexible approach would be to
prefetch with deltas +3 or +6 that provide 100% coverage.
Moreover, for the irregular stride sequence: -1, -5, -2, -
1, -4, -1 associated to IP 0x402dc7 from mcf-1554B,
IPCP’s CPLX prefetcher fails to predict a pattern through
its lookahead based on confidence. However, a local delta
prefetcher with a delta of -1 can provide better coverage.
Effect of out-of-order loads at the L1D. In an out-of-
order processor, memory accesses get reordered due to out-
of-order scheduling. Hence, the training of a delta prefetcher
may be affected by the ordering of memory accesses. Let’s
consider a loop with a single IP accessing memory addresses
1,2,3,4,5, 6, and 7 with constant strides of +1, +1, +1, +1,
+1, +1. An out-of-order processor can reorder, for example,
the accesses to addresses 2 and 3, resulting in the following
sequence of addresses: 1, 3, 2, 4, 5, 6, 7 and strides +2, -1, +2,
+1, +1, +1 at the L1D. This cannot be covered by an IP-stride
or an IPCP’s CPLX prefetcher unless a specific mechanism
can provide the commit order [24], [56]. However, timely

deltas have the important property of seeing past accesses
already in order, thus there is no requirement of such in-order
commit mechanisms. Indeed, the last three accesses in our
example will see the following past deltas: address 5 will
see +4, +2, +3, +1, address 6 will see +5, +3, +4, +2, +1,
and address 7 will see +6, +4, +5, +3, +2, +1 that is, all
possibilities regardless of their order. The prefetcher then can
choose the timely deltas that can provide the best coverage
from these set of values.

III. BERTI: A LOCAL-DELTA PREFETCHER

Berti is a data prefetcher sited at the L1D, where it can see
all the requests generated by the processor and orchestrate
the prefetch requests to the memory hierarchy. Berti makes
a strong case for prefetch accuracy. For each IP, it selects
the deltas” that are timely and computes their respective
local coverage. High accuracy is achieved by only using
deltas with high coverage. Additionally, Berti is trained with
virtual addresses, which helps in finding larger deltas and
facilitates cross-page prefetching. Next, we describe how
Berti performs training and prediction. Then, we propose a
simple and cost-effective hardware implementation.

A. Training the prefetcher

The goal of the training mechanism is to estimate the
coverage of each seen delta, considering only those deltas
that would result in a timely prefetch. The training consists
of the following actions: measuring fetch latency, learning
timely deltas, and computing the coverage of the deltas.

Measuring fetch latency. In order to learn the deltas
that are timely it is necessary to measure the time required
to fetch data to the L1D, i.e., the L1D miss latency. This
measurement is performed for any cache line in L1D, both
for demand misses and prefetch requests. Computing latency
for prefetch requests is fundamental because, in an ideal
scenario, there would not be L1D misses but just L1D hits
due to timely prefetch requests. In addition, the latency of
prefetch requests may be larger than the latency of demand
requests due to prefetch queue (PQ) contention or L1D port
contention. Fetch latency can be measured by keeping a
timestamp for any L1D miss inserted into the MSHR and
any prefetch request inserted into the PQ. On an L1D fill,
the latency is simply computed by subtracting the stored
timestamp from the current one.

Learning timely and accurate deltas. Once the fetch
latency is obtained for each L1D fill, our prefetcher can
precisely learn timely deltas, given that the history of accesses
and timestamps by the same IP is recorded. By searching in
the history of recent accesses and comparing the timestamp
of each previous access with the timestamp when a prefetch
should be issued to be timely, the accesses that would
trigger timely prefetch requests are detected. Deltas are then

2For the rest of the paper, unless specified we use the terms delta and
local delta interchangeably.

5 7 10

4
!
|

)

timeline ~
|
! time to fetch 10

(a) Access address 10: no timely delta found.

. . 2 5 7 10 12
timeline *

time to fetch 12 J

\—/
timely delta (+10)

(b) Access address 12: one timely delta found.

10 12 15

timeline

oo
-—- - oW
~

T
!
|
L

time to fetch 15 J

——

timely deltas (+13, +10)

(c) Access address 15: two timely deltas found.

Figure 4. Learning timely deltas.

computed by subtracting the address of each timely request
in the history from the current address. Figure 4 depicts how
timely deltas are detected. All addresses represented in the
timeline are accessed by the same IP. When address 10 is
demanded and its fetch latency computed (Figure 4a), the
history of accesses for that IP is searched, from the point in
time, a timely prefetch should have been triggered. In this
case, no previous accesses are found. After accessing address
12 and computing its fetch latency (Figure 4b), a timely
delta corresponding to address 2 is found. That is, address
2 should initiate the prefetch request for 12 in order to be
timely. The timely delta +10 is therefore learned. Similarly,
when computing the latency for access 15 (Figure 4c), two
deltas, +10 and +13, are detected as timely.

Berti triggers the procedure to learn timely deltas for
each miss that would have occurred in the baseline, which
translates to two scenarios. First, when a demand miss fills
the L1D with the requested data. Second, when a cache line
brought into L1D by a prefetch request is demanded (i.e.,
misses that would have occurred without a prefetcher). Berti
does not learn deltas on a cache fill caused by a prefetch
request since its demand time is not known. Therefore, it is
necessary to keep the latency of prefetch requests until the
core demands the cache line.

Computing the coverage of deltas. On every search in
the history, Berti obtains a set of timely deltas. Deltas that
frequently appear in the searches would cover a significant
fraction of misses, while deltas that rarely appear would
result in low coverage. It is easy to compute the coverage
by dividing the number of occurrences of a delta by the
number of searches in the history. For example, in Figure 4,
after three accesses, the delta +10 has the higher coverage,
being in two out of three searches (66.7%). If the same

access pattern continues, the delta +10 will reach close to
100% coverage. It is important to note that this local (per
IP) coverage translates into accuracy. If a delta covers 100%
of cache lines, since each access-delta pair results in only
one prefetch request, that delta will bring 100% accuracy.

B. Prediction: issuing prefetch requests

Once we know the deltas and their associated coverage,
we can orchestrate the prefetch requests across the cache
hierarchy. Based on both the coverage of each delta and the
L1D MSHR occupancy, we decide which deltas to use and
till which cache level to prefetch. We use four watermarks to
decide where to issue the prefetch requests. If the coverage
of a delta is above a high-coverage watermark and the
L1D MSHR occupancy is below the occupancy watermark,
then prefetch requests using that delta get filled at all the
cache levels till L1D. Otherwise, if the coverage is above a
medium-coverage watermark, irrespective of the L1D MSHR
occupancy, prefetch requests get filled till L2. Finally, if the
coverage is above a low-coverage watermark, requests get
filled only in the LLC.

To generate a prefetch request, we add the selected delta
to the address of the current access and the resulting address
is inserted in the PQ. Requests in the PQ are processed in a
first-in-first-out (FIFO) order. Since our prefetcher is trained
with virtual addresses, the generated prefetch requests are
also in the virtual address space. A prefetch request obtains
the physical address from the L2 translation look-ahead
buffer (STLB). If the translation misses in the STLB, the
prefetch request is dropped. If the translation is obtained, the
prefetch request checks if the target block is already present
in the cache it wants to fill. In case of a miss, the block is
prefetched, and the request is inserted into the MSHR.

C. Hardware implementation

As outlined in Figure 5, Berti can be implemented with
a small hardware budget and using simple structures and
logic. Next, we describe the structures required to train the
prefetcher and decide on the prefetch requests to issue to
each cache level.

Measuring fetch latency. In order to be able to measure
the fetch latency, the MSHR is extended with a 16-bit field
(represented in Figure 5 in gray) that stores a timestamp on
a demand L1D miss. Similarly, the PQ is also extended with
an analogous field that stores the timestamp when a new
prefetch request is added. The timestamp can be obtained
from the clock of the local processor [47] or any other metric
to approximate time (e.g., number of cache accesses). In our
implementation, we use the former. When a prefetch request
misses L1D, the timestamp is transferred from the PQ to the
newly allocated MSHR entry. On an L1D fill, the latency of
the request can be computed with a simple subtraction. The
latency is stored using 12 bits. If an overflow is detected
when computing the latency, it is set to zero, and therefore not

L1D access
History table

VA ‘ VA IP, VA
L1D cache . e |
| way 0 way 1 way 11 ﬂ K =
1= Write| Search| 2
L1 dTLB A ‘_1 i
| ‘Hitﬁ &
4 = L | R O R J g
2 | N
PA' : 9_,2 Table of deltas
STLB —>L —— — :{
= > . 1 3
§ MSHR g & g
z 3
a l—#

Next cache level (L2)

Figure 5. Berti design overview. Hardware extensions are shown in gray.
IP tag line address timestamp
History table ‘ 7 | 24 | 16 ‘
e e
& B e
Pg & delta S delta 5
Table of deltas | 10 [4] 13 149 - | 13 140

Figure 6. History table and Table of deltas entry format.

considered for learning timely deltas. Based on our empirical
results, on average across GAP and SPEC CPU2017 traces,
we see 1.08 overflows per kilo L1D fills.

Learning timely deltas. To be able to learn timely deltas,
the most recent accesses need to be tracked. The History
table (see Figure 5) records that information and is organized
as an 8-set, 16-way cache with a FIFO replacement policy
and indexed and searched with the IP. The format of each
entry in the history table is depicted in Figure 6. Each entry
keeps a tag corresponding to the seven least significant bits of
the IP (after removing the bits used for indexing the cache),
the 24 least significant bits of the target cache line address,
and a 16-bit timestamp. A new entry is inserted in the history
table (Write port in Figure 5) either on-demand misses (Miss
arrow from the L1D in Figure 5) or on hits for prefetched
cache lines (Hit, in Figure 5). The virtual address (VA) and
the IP (IP, VA arrow in Figure 5) are stored in the new entry
along with the current timestamp (not shown in the figure).

The search for timely deltas (Search port in Figure 5) is
performed either on a fill due to a demand access (Fill arrow
from the MSHR in Figure 5) or on a hit due to a prefetched
cache line (Hit), in Figure 5). In the first case, the search is
done using the information from the MSHR (IP, VA, latency
arrow in Figure 5). In order to enable the search on L1D
hits, we keep the latency of the prefetch request (12 bits)
along with each entry in the L1D (see Figure 5 L1D shadow
part). Alternatively, an L1D shadow tag could be employed.
A latency field set to zero indicates either an overflow when

computing the latency or an already demanded cache line.
In that case, a search in the history table is not performed.
Otherwise, the search is done when the demand hit takes
place, using the stored latency (Latency arrow in Figure 5),
which is reset after the search. On every search, the 16-ways
of the history table are looked up for a matching IP tag.
A maximum of eight timely deltas, the ones corresponding
to the youngest entries that would result in timely prefetch
requests, are collected.

Computing the coverage of deltas. The results of each
search in the history table (7imely deltas arrow in Figure 5)
are accumulated in the Table of deltas, a 16-entry fully-
associative cache with a FIFO replacement policy. The format
of each entry in the table of deltas is depicted in Figure 6.
Each entry consists of a 10-bit tag (based on hash function
of the IP), a 4-bit counter, and an array of 16 deltas, each
of them containing the delta itself (13 bits), the coverage (4
bits), and the status (2 bits) indicating till which cache level
to prefetch. The counter is increased on each search in the
history table. For each timely delta found during the search,
its coverage counter is increased. When the counter overflows
(its value increases to 16), we compute the coverage. Deltas
that cross the high-coverage watermark (65% of coverage,
i.e., a coverage value higher than 10) set their status to
L1D_pref. Deltas in between the high-coverage watermark
and the medium-coverage watermark (between 65% and 35%,
i.e., a coverage value lower or equal than 10 and higher
than 5) set the status to L2_pref. The maximum number of
deltas selected for any of those status is bounded to 12. The
remaining deltas’ status is set to No_pref (i.e., do not issue
prefetch requests for this delta). Once the status is set, the
counter and the array of confidences are reset, and a new
learning phase begins.

While warming-up the status fields, prefetch requests
are also issued if at least eight deltas have been gathered,
increasing the high-coverage watermark to 80%, as with
just four deltas the prefetcher needs more confidence. Our
empirical study shows that using watermarks higher that 65%
leads to high accuracy.

Although Berti opens the possibility of prefetching to
LLC only for low-coverage deltas, our evaluation showed
no performance improvements when choosing this option.
Hence, we set the low-coverage watermark to 35% (equal
to the medium-coverage one), to disable prefetching to LLC
only.

In order to constantly learn new deltas, evictions of deltas
may be necessary. On the arrival of a non stored delta,
deltas with less than 50% coverage in the previous phase
are candidates for evictions in the current phase. To this end,
if the coverage when selecting the L2_pref status is lower
than 50%, the status is set to L2_pref_repl. The eviction
policy selects the delta with lower coverage whose status is
L2 _pref_repl or No_pref. In case no such delta exists, the
new delta is discarded.

Table I
STORAGE OVERHEAD OF BERTI.

[Structure | Storage |
History | 8-set, 16-way (128-entry) cache, FIFO replace- | 0.74 KB
table ment policy. Each set: 4 bits (replacement policy).

Each entry: 7-bit IP tag, 24-bit address, 16-bit
timestamp
Table of | 16-entry, fully-associative, 4-bit FIFO replace- | 0.62 KB
deltas ment policy. Each entry: 10-bit IP tag, 4-bit
counter, and an array of 16 deltas (13-bit delta,
4-bit coverage, 2-bit status)
PQ + 16+16 entries, 0.06 KB
MSHR 16-bit timestamp per entry
L1D 768 cache lines, 12-bit latency per line 1.13 KB
[Total [255 KB |

Issuing prefetch requests. On every L1D access, the
table of deltas is searched looking with a matching IP (/P
VA arrow pointing to the table of deltas in Figure 5). Since
we use an L1D with two read ports and one write port, the
table of deltas requires three search ports. The deltas with
status L1D_pref or L2_pref are added to the current VA to
form the prefetch requests that are inserted into the PQ (Pref.
requests arrow in Figure 5). Those prefetch requests get filled
into all cache levels till L1D when the status is L1D_pref
and the MSHR occupancy is below 70% (the occupancy
watermark). Otherwise, prefetch requests get filled till L2.

Storage overhead. Berti does not require any complex
operation (e.g., multiplications) nor complex logic. Our
history table has two read ports and one write port. The
latency of this structure is two cycles, based on CACTI-
P [37]. Since prefetching training is out of the critical path
of memory accesses, the history table does not affect the cycle
time. The storage requirements of Berti, whose breakdown
per structure is provided in Table I, is just 2.55 KB.

1V. EVALUATION
A. Simulation Methodology

We use the recently modified version of ChampSim [9],
a trace-driven simulator used for the 2nd and 3rd Data
Prefetching Championships (DPC-2 [2] and DPC-3 [7]).
Recent prefetching proposals [13], [17], [40], [48] are also
coded and evaluated on ChampSim. The recently modified
ChampSim extends the one provided with the DPC-3 with a
decoupled front-end [45] and a detailed memory hierarchy
support for address translation that further improve the
baseline performance. Caches are non-inclusive, although
Berti can work similarly with exclusion policies just by
bypassing the allocation of memory blocks at the LLC. We
faithfully model DRAM, including the queuing delays that
contributes to the variable access time because of close vs.
open page, page hit vs miss, DRAM bank conflicts, etc.
Table II summarizes our system configuration, mimicking an
Intel Sunny Cove microarchitecture [5], [6], [23].

We evaluate Berti with single-core and multi-core sim-
ulations. We warm-up the caches for 5S0M sim-point in-

structions [49] and collect statistics for the next 200M
sim-point instructions. For multi-core simulations, we use
heterogeneous mixes of single-threaded traces. For each mix,
when a core finishes its 200M instructions, it gets replayed
until all the cores finish their respective 200M instructions.
For both single- and multi-core, we report performance in
terms of IPC improvement (speedup) with respect to an L1D
with an IP-stride prefetcher. We use the geometric mean to
average the speedups obtained by the different single-thread
traces.

Energy model. We also report the dynamic energy
consumption of the memory hierarchy. We obtain the energy
consumption of reads and writes to tag and data arrays at
each cache level and DRAM with CACTI-P [37] and Micron
DRAM power calculator [3]. Then, we compute the total
energy expenditure by accounting for the number of accesses
of each type across the memory hierarchy. We use 22 nm
process technology for our energy calculations.

Workloads. We use traces from SPEC CPU2017 [55] and
single-threaded GAP benchmarks [14]. We limit our study
to memory-intensive traces (Memlnt), i.e., those that showed
at least one miss per kilo-instruction (MPKI) at the LLC in
our modeled baseline system. All GAP traces (20) and 44
SPEC CPU2017 traces are memory-intensive.

SPEC CPU2017 traces were generated with the reference
inputs. Both real (Twitter, Web, Road) and synthetic (Kron,
Urand) graphs were used as input for the GAP benchmarks.

We also report performance for the CloudSuite bench-
marks [22]. All traces are publicly available [4], [8], [10].
For multi-core experiments, we simulate 200 random hetero-
geneous mixes from SPEC CPU2017 and GAP.

Berti and variable cache fill latency. Modern memory
hierarchies can have variable cache fill latency that comes
from sources like MSHR contentions at the private and shared
caches, read queue (RQ) and write queue (WQ) contentions
at various levels of caches and DRAM controller. At the
DRAM level, memory access time gets affected because of
row buffer conflicts, bank conflicts, etc. Our simulator reflects
all this variability. One of the primary reasons we propose
Berti is because of the variable response latency. Even non
uniform cache access (NUCA) LLCs with multiple banks
can cause variable fill latency. For example, suppose in a
NUCA LLC with two banks an IP sees local deltas of +1
and +2 that get mapped to bank-1 and bank-0, respectively,
and the latency to bank-0 is different from bank-1. Even in
this case, Berti is able to learn the best deltas while looking
at the history, facilitating timely and accurate prefetching.
Note that in our experiments, the fill latency ranges from
22 to 2098 cycles with an average of 278 cycles averaged
across SPEC CPU2017, GAP, and CloudSuite benchmarks
and multicore mixes.

Evaluated Prefetching Techniques. We compare the
effectiveness of Berti with high performing L1D and L1D+L2
prefetchers. As Berti is an L1D prefetcher, we first compare

Table II
SIMULATION PARAMETERS OF THE BASELINE SYSTEM.

Core Out-of-order, hashed perceptron branch predictor [32], 4 GHz
with 6-issue width, 4-retire width, 352-entry ROB

TLBs L1 iTLB/dTLB: 64 entries, 4-way, 1 cycle
STLB: 2048 entries, 16-way, 8 cycles

MMU 2-entry PSCLS, 4-entry PSCL4, 8-entry PSCL3, 32-entry

Caches PSCL2, searched in parallel, one cycle

L1I 32 KB, 8-way, 4 cycles

L1D 48 KB, 12-way, 5 cycles, with a 24-entry, fully associative
IP-stride prefetcher [18]

L2 512 KB 8-way associative, 10 cycles, SRRIP [31], non-
inclusive

LLC 2 MB/core, 16-way, 20 cycles, DRRIP [31], non-inclusive

MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM One channel/4-cores, 6400 MTPS [19], FR-FCFS, 64-entry

con- RQ and WQ, reads prioritized over writes, write watermark:

troller 7/8th

DRAM 4 KB row-buffer per bank, open page, burst length 16, trp:

chip 12.5 ns, trep: 12.5 ns, teas: 12.5 ns

Table III
CONFIGURATIONS OF EVALUATED PREFETCHERS.

SPP-PPF [17] 256-entry ST, 512-entry 4-way PT, 8-entry GHR, Per-
ceptron weights with the following entries: 40964,
2048x2, 1024x2, and 128x1 entries, 1024-entry

prefetch table, 1024-entry reject table

Bingo [13] 2 KB region, 64/128/4K-entry FT/AT/PHT
MLOP [48] 128-entry AMT, 500-update, 16-degree
IPCP [40] 128-entry IP table, 8-entry RST table, and 128-entry

CSPT table

its performance with prefetchers designed for L1D (no
prefetching at the L2), and then with multi-level prefetching
combinations. The L1D prefetchers are i) MLOP [48] (DPC-
3, 3rd place), an extension of the BOP (DPC-2 winner), and
ii) IPCP (DPC-3 winner published at ISCA 2020 [40]). For
multi-level prefetching, we evaluate two state-of-the-art L2
prefetchers along with MLOP and Berti at the L1D: SPP-
PPF [17], [35] and Bingo [13]. We also compare with a
multi-level IPCP that uses IPCP both at the L1D and L2.
The evaluated prefetchers have been briefly described in
Section II-A. For all prefetchers, we use a highly tuned
implementation as provided by the authors and tune it again
for the parameters mentioned in Table II. Fine tuning was an
easy exercise as all the competing prefetchers use ChampSim
for their evaluation. Table III shows the configurations used
for all the evaluated prefetchers.

B. Speedup vs. storage requirements

Figure 7 summarizes the speedup of the evaluated prefetch-
ers with respect to IP-stride for SPEC CPU2017 and GAP,
along with their storage requirements. L1D prefetchers are
shown with a circle, L2 prefetchers with a square, and multi-
level (L1D+L2) prefetchers with a diamond.

Among the L1D prefetchers, Berti achieves the highest
speedup with a size similar to IPCP, the prefetcher with
the lowest storage budget. With only 2.55 KB of storage
overhead, Berti improves performance by 8.5% over IP-stride

1.12
=
© Berti+,SPP-PPF
= 1101 eBerti+Bingo
2 .Berti -
© 1.08 MLOg+B|ngo
£ MLOP+SPP-PPFO

OBingo

3 1.06 | IPCP+IPCP SPP-PPF 9 ¢
= 4 o <¢|PCP+Bingo
3 o IPCP+SPP-PPF
$1.04<|PCP
g Muop
(%3]

1.02 el ...

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Storage requirement for prefetching (KB)

Figure 7. Speedup vs. storage requirements. Speedup is normalized to
L1D IP-stride and averaged across memory-intensive SPEC CPU2017 and
GAP traces. X+Y denotes prefetcher X at L1D and prefetcher Y at L2.

and 3.5% over IPCP, the state-of-the-art L1D prefetcher.

The Berti+SPP-PPF multi-level prefetcher obtains the
highest speedup (10.2%, additional 1.5% on top of Berti
at L1D) among all multi-level combinations with 41.8 KB
combined storage for L1D and L2 prefetchers. However,
the highlight of Figure 7 is that Berti at L1D without any
prefetching at L2 outperforms all the multi-level prefetching
combinations that do not include Berti.

C. Performance of Berti as an LI1D Prefetcher

Figure 8 shows the speedup achieved by the L1D prefetch-
ers for SPEC CPU2017 and GAP. Berti is the best prefetcher
across both suites. On average, Berti at the L1D improves
performance by 11.6% and 1.9% for SPEC CPU2017
and GAP, respectively. All three prefetchers achieve good
speedups for SPEC CPU2017, and Berti outperforms IPCP
and MLOP by 2.8% and 3.0%, respectively. The speedup
differences are more significant with the GAP traces, where
Berti is the only L1D prefetcher that improves IP-Stride, by
up to 1.9%, while IPCP and MLOP are 2.9% and 7.8% below,
respectively. Overall, across SPEC CPU2017 and GAP traces,
Berti outperforms IP-stride and IPCP by 8.5% and 3.5%,
respectively. This is significant performance improvement on
top of the high-performing state-of-the-art IPCP prefetcher.

Figure 9 shows the individual speedup for the memory-
intensive SPEC CPU2017 and GAP traces. For CPU2017,
Berti achieves similar or significantly better results than the
other prefetchers on all traces except for Cact uBSSN. In this
benchmark, we observe that the memory access instructions
follow stride patterns. However, there are hundreds of these
instructions executing interleaved. Therefore, to track the
local behavior of instructions in this benchmark, Berti
would need very large history and delta tables. In contrast,
prefetchers that detect patterns in the global address stream
do not have this problem, as is the case with MLOP or
the IPCP GS class. Barring the exception of CactuBSSN
where global deltas perform better than local deltas, Berti
shows that local deltas are prevalent across a large number
of benchmarks and it accurately selects them.

[MLOP [IPCP EEE Berti

1.15

o 1.10

3 1.05

o

g 1.00

1 0.95
0.90

SPEC17-Memint GAP

Figure 8. Speedup of L1D prefetchers compared to a system with L1D
IP-stride for memory-intensive SPEC CPU2017 and GAP traces.

A key observation is that the state-of-the-art prefetchers do
not consistently improve performance over IP-stride across
all workloads, but Berti only shows a small degradation of
2.6% with respect to IP-stride for mcf_s-1536.

For SPEC CPU2017, Berti achieves its best result for
mcf_s-1554 where it provides speedups of 1.89x, 1.65x,
and 1.49x with respect to IP-stride, IPCP, and MLOP,
respectively. MLOP and IPCP achieve performance at least
1% below IP-stride on five and eight traces out of 44,
the worst case being in mcf_s-782 with drops of 16.0%
and 21.9%, respectively. In mcf_s-782, only three IPs
(0x4049de, 0x4049e5, and 0x4049cc) represent the
75% of all L1D accesses. MLOP uses a global delta to
prefetch that is affected by the interleaving of accesses from
these three IPs. IPCP uses the CS and CPLX class prefetchers
but with an accuracy below 25%.

As for GAP, Berti is the best prefetcher for all the
benchmarks but three (bfs-8, bfs-10 and bfs-14). It
consistently achieves similar or better results than IP-stride
for all traces, while MLOP and IPCP perform worse than
IP-stride in 12 and 16 benchmarks, respectively. In some
cases, the MLOP slowdown is very significant, for example,
17.7% in sssp-3. We have also analyzed the behavior of
the prefetchers in one of the GAP applications, namely bc—5.
All bc—5 IPs show a rather chaotic memory access pattern
except for one that is very regular. IP-stride and Berti, by
separately tracing the IPs, detect the regular IP pattern and
prefetch correctly for it. They do not prefetch for the other
IPs. MLOP fails due to the use of a global delta. The accesses
issued by IPs with irregular pattern prevent discovering a
global delta and therefore the prefetcher issues very few
requests, and is not able to prefetch correctly for the regular
IP. IPCP detects the delta pattern for the regular IP through its
CPLX component, and prefetches correctly for it. However,
the GS component generates many useless prefetches that
drastically decreases the accuracy of IPCP and results in the
loss of performance shown in Figure 9.

Accuracy. Figure 10 shows the accuracy of the L1D
prefetchers. Berti is a very accurate prefetcher. On average,
about 87.2% of its prefetched lines are useful compared to
62.4% for MLOP and 50.6% for IPCP. The effectiveness of
IPCP is driven by the performance of several tiny prefetchers:
a global stream prefetcher (GS class), a constant stride

1.4 1.6 1.4 1.7 1.4
1'511,4 1'611,6 1.9 1.5 [MLOP [3 IPCP EEE Berti l]_,sljl]_j 1'411,4
1.4 Wy Wy y y~ Wy Wy
1.3
8t
©1.01 1 -
50.99
0.8 [
0_7,,,,,,,,,,,,,,,,,/,\,,/,\,,,,,,,,,,/,\,,,,,,,,,\
Q A0 AXx O O N N VR0 (M WD> AV o DoAY X A0 OCRXWYAYAD OO N2V N A0 o> A0 O D™D
\,%"’,9"6:\“’ O%Q’qu’bgq’q@f) '\j,;b '\‘96)'\/@%(,’&\(5@9’@69:\%0;%%’}&“)& D‘QQWQ;\’»@ ,vab‘?vq@ bé\ %Qb 6,«,(;\,@&0 :,;L(p@(ﬁ%q@ ‘750%%\9@%%,9\’@ «?’qé‘?cﬂ?é”w@@oéy
2 (.«("/‘a/l‘a/"a/i\ee/(‘}?/é?/é?'é?’ é’c“’(‘5’é’é/e?e?/g?/@?/@?@?@?Q R ’{\i’l{\i’}o&#«{/\‘“’(&"@"’(&“’&“’@b"o&/‘?b?/b?'b?‘fo?ro?'@"’é”@@’eﬁ\@%v
S Q,b&’/,z;\?’q;\"'\$ & F&EEE Q)o;v&‘o&‘o FEFEEET T EESF oSS ?QQQ.Q.@@@@& FORRSIRS ‘30(‘/0
St et O X S & A S FE N
(J’b(’ (’,bc, c?’(' + PO ‘\& 07 «O” <O OQ/
(a) Memory-intensive SPEC CPU2017
([C3 mMoP =3 IPCP mEE Berti
1.1
%1.0 I I I I
°
[
- | | | | | | | | |
S Nz 2 bl o > 2 2 > > pe] © o s %) bel o > 2 bel
« OCN « « *56\, \o‘&,\' & (5/,\/ é’” & e Q&,\ Q«\/ & ™ &Q,\z g‘oQ” &L)Q (;?Q @Q}?
s s O
©
(b) GAP
Figure 9. Speedup with Berti as an L1D prefetcher for (a) 44 SPEC CPU2017 and (b) 20 GAP memory-intensive traces normalized to L1D IP-stride.

Geomean-all corresponds to the geometric mean of all the 95 SPEC CPU2017 traces.

prefetcher (CS class), and a complex stride prefetcher (CPLX
class) that work in tandem. For regular access patterns, the
CS prefetcher provides high accuracy. However, for complex
access patterns, the effectiveness of the CPLX prefetcher
is low, with an accuracy of 52.7% and 9.8% for SPEC
CPU2017 [55] and GAP [14] workloads, respectively.

MLOP, like Berti, is based on the detection of the best
timely deltas. However, it achieves much lower accuracy.
The improvement of Berti over MLOP is mainly due to two
factors: i) MLOP uses global deltas for the whole application
while Berti detects different deltas for each IP. As we have
shown in Section II-B, benchmarks such as mcf generate
different delta patterns for each IP. ii) Berti uses a stringent
policy to decide which deltas to use for issuing prefetch
requests into L1D, as we have described in Sections III-B
and III-C, while MLOP generates prefetch requests for the
best delta with each lookahead regardless of its confidence.

Timeliness. The darker part of each bar in Figure 10
represents the prefetch requests whose retrieved data arrive
late to L1D. Almost all prefetch requests generated by Berti
are timely, while MLOP and IPCP produce a significant
number of late requests. IPCP does not use any mechanism
to adapt the prefetch requests timing to the miss latency,
while MLOP and Berti do. However, Berti achieves better
timeliness than MLOP due to specific and timely deltas for
each IP.

=
o
o

L1D Prefetch Accuracy

e ge®

\v—s&"‘de W e g

(a) SPEC17-Memint (b) GAP

Figure 10. Prefetch accuracy at the L1D. Percentages of useful requests
are broken down into timely (gray) and late (black) prefetch requests.

Coverage. Figure 11 shows demand misses per kilo
instructions (MPKI) at the L1D, L2, and LLC with and
without L1D prefetchers. Berti and IPCP achieve a similar
reduction of misses in L1D (8.7% in GAP, 33.4% in SPEC
CPU2017) and slightly higher than MLOP. However, Berti
manages to eliminate more misses than IPCP and MLOP at
L2 and LLC due to its line preloading policy directed by
the L1D prefetcher. The biggest differences are observed in
GAP, where Berti reduces LLC demand misses by 17.7% and
12.4% compared to MLOP and IPCP, respectively. Similarly,
Berti reduces L2 demand misses by 6.7% and 5.6% compared
to MLOP and IPCP, respectively.

B No-pref IP-stride [MLOP [IPCP HEE Berti
50 90
> 801 K
Z 407K 70 s
s 601 &N
301 & 1TEN
T & & 50 ;.;§
S 2048 404 N
51K BN 301 BN
3 =N SN
010 SN 201 BN
5N BN
N 101 B
0 T) T 0B v
L1D L2 LLC L1D LLC
(a) SPEC17-MemiInt
Figure 11. Prefetch coverage in terms of average L1D, L2, and LLC

demand MPKIs for all L1D prefetchers.

#% Berti+SPP-PPF
= Berti

MLOP+Bingo
MLOP+SPP-PPF
1.15
o 1.10
3 1.05
]
2 1.00
V1 0.95

IPCP+IPCP
774, Berti+Bingo

0.90

Figure 12.
stride.

Spedup with multi-level prefetching normalized to L1D IP-

D. Multi-level prefetching performance

Figure 12 shows the speedup achieved with the multi-
level prefetching combinations compared to a system with
IP-stride. We select the best five multi-level prefetching
combinations out of all possible combinations of L1D and
L2 prefetchers. Multi-level prefetching combinations do not
offer a significant performance boost. The best multi-level
prefetching combinations without Berti are MLOP+Bingo
for SPEC CPU2017 and MLOP+SPP-PPF for GAP. In both
cases, these combinations achieve a similar speedup to Berti
alone, with a storage requirement 22 and 18 times higher,
respectively. IPCP at L1D and L2 (IPCP+IPCP), with a
meager hardware budget as Berti, achieves a significantly
lower speedup than Berti alone at the L1D, especially in
GAP, with a difference of 4.6%.

Adding a prefetcher at the L2 cache along with Berti
at the L1D achieves a moderate performance gain. The
most significant gain is 2.0% and is obtained with the
Berti+Bingo configuration in the memory-intensive subset
of SPEC CPU2017 traces. Given the high hardware cost of
the L2 prefetchers, the configuration with Berti alone at the
L1D seems to be a better design in terms of performance
and storage trade-off.

Coverage. Figure 13 shows demand MPKIs at the L1D,
L2, and LLC for the multi-level prefetching combinations.
We also show MPKIs without prefetching at L2 for ease of
analysis. MLOP+Bingo and MLOP+SPP-PPF decrease MPKI
relative to MLOP alone in both L2 and LLC consistently
across all suites (maximum reduction in MPKI from 13.8 to
11.7 at L2 for SPEC CPU2017). Adding a prefetcher at L2
is less effective for IPCP and Berti. In both cases, MPKIs

10

[MLOP =3 IPCP v#7; Berti+Bingo
MLOP+Bingo IPCP+IPCP *e® Berti+SPP-PPF
MLOP+SPP-PPF . Berti

15
v
o
=
2101
©
£
[
a
L2 LLC
(a) SPEC17-MemiInt
Figure 13. Prefetch coverage in terms of average L2 and LLC demand

MPKIs with multi-level prefetching.

BN LIDtol2 [L2toLLC [J LLC to DRAM
& 2.00
©
51.754
kel
& 1.50
£ 1.251
2 1.00

IP-Stride MLOP MLOP MLOP IPCP IPCP Berti Berti Berti
+ + + + +
Bingo SPP-PPF IPCP Bingo SPP-PPF
(a) Memory-intensive SPEC CPU2017

(W (1Dtol2 33 [2toLLC [LLCto DRAM|
& 2.00
©
51.754
kel
g 1.504
£ 1.251 J:H
3 = 1

0 4
IP-stride MLOP MLOP MLOP
+ +
Bingo SPP-PPF
(b) GAP

Figure 14. L2, LLC and DRAM demand and prefetch traffic normalized
to no-prefetching.

IPCP IPCP Berti Berti
+ +

Bingo SPP-PPF

Berti

IPCP

at L2 and LLC decrease for SPEC CPU2017 but remain
the same or even increase slightly when working with the
irregular access patterns of GAP. As a result, the MPKIs at
the L2 and LLC achieved by Berti at the L1D are always
better than those obtained by multi-level prefetchers with no
Berti, except for MLOP+Bingo in SPEC CPU2017.

E. Memory hierarchy traffic and energy

Figure 14 shows the traffic between the different levels
of the memory hierarchy (demand and prefetch requests)
for different prefetching combinations normalized to no
prefetching. All prefetchers increase traffic as a result of the
useless blocks they request. For the systems with prefetcher
only at the L1D, we can observe how the traffic increase
is inversely proportional to the prefetcher accuracy for
SPEC CPU2017 (refer Figure 10). Consequently, Berti is
the prefetcher with the lowest traffic increase at all levels.
For GAP, MLOP increases traffic marginally, despite its low
accuracy, because it detects few patterns and generates scarce
prefetch requests. Berti increases traffic with L2, LLC and

IP-stride
[MLOP
MLOP+Bingo
2.0

MLOP+SPP-PPF
== IPCP
IPCP+IPCP

mm Berti
w## Berti+Bingo
s Berti+SPP-PPF

e
=
©

Normalized
Dynamic Energ

N
o N b~ O
N

SPEC17-Memint

Figure 15. Dynamic energy consumption in the memory hierarchy
normalized to no-prefetching.

DRAM by 1.0%, 9.2% and 13.9% respectively, whereas IPCP
increases traffic at these three levels around 90%.

The L2 prefetchers Bingo and SPP-PPF added to MLOP
and Berti on L1 significantly increase traffic with LLC
and DRAM, especially at GAP due to the irregular access
patterns. MLOP+Bingo induces 69.0% additional off-chip
traffic compared to MLOP alone, while Berti+Bingo adds
67.2% additional off-chip traffic compared to Berti alone.

Energy efficiency. Figure 15 shows the average dynamic
energy consumption in the memory hierarchy (L1D, L2, LLC,
and DRAM) normalized to no prefetching. As expected, there
is a direct correlation between traffic and energy consumption
overheads in the memory hierarchy. If we focus on the state-
of-the-art L1D prefetchers, Berti consumes the least extra
energy for SPEC CPU2017 (9.0% vs. 29.1 and 30.1% for
MLOP and IPCP), despite achieving the highest speedup
(see Figure 8). As for GAP, the energy overheads of Berti
and MLOP are similar (14.3% vs. 14.2%), and significantly
lower than for IPCP (86.9%). Berti is the only prefetcher
that manages to translate its dynamic energy increase into
speedup. The L2 Bingo and SPP-PPF prefetchers on top of
MLOP and Berti significantly increase energy consumption,
especially in the case of Bingo for GAP, with increases of
over 60% with respect to MLOP and Berti alone.

F. Effect of constrained DRAM bandwidth

So far, we have considered the latest DDR5-6400 channel
per four cores that provides 6400 million transfers per
second (MTPS) with a per-core DRAM bandwidth of approx.
12.8 GBps. This Section evaluates prefetchers with DRAM
bandwidth configurations such as DDR4-3200 (MTPS of
3200) and DDR3-1600 (MTPS of 1600) [19]. Figures 16
and 17 show the effect of DRAM bandwidth on speedup for
L1D and multi-level prefetching, respectively. When moving
from 6400 to 1600 MTPS, the performance loss is negligible
for all the prefetchers with GAP traces and moderate for
SPEC CPU2017 traces (maximum reduction of 4.1% with
Berti and Berti+SPP-PPF).

G. CloudSuite performance

Figure 18 shows speedup with the CloudSuite bench-
marks for L1D and multi-level prefetching combinations.

11

[o MIOP & IPCP o Bert
1.15 1.05
a —_— —
> 1.10 1 1.00 1
S e
1 o— o
2 1.05 A 0.951
%]
1.00 - - — 0.90 - - -
6400 3200 1600 6400 3200 1600
MTPS MTPS
(a) SPEC17-MemiInt (b) GAP
Figure 16. Performance of L1D prefetchers in constrained DRAM

bandwidth, in MTPS.

© MLOP+Bingo o IPCP+IPCP e Berti+SPP-PPF
o MLOP+SPP-PPF ¢ Berti+Bingo
1.15 1.05
— R - —

Sir0f——3——"2| 1.00¢* —
s O———————p— —a
2 1.05 1 0.95 1
0

00 -~ T T 0.90 -~ T T

6400 3200 1600 6400 3200 1600
MTPS MTPS
(a) SPEC17-MemiInt (b) GAP
Figure 17. Performance of multi-level prefetching in constrained DRAM

bandwidth, in MTPS.

Classification is one benchmark where all the prefetch-
ers fail except Berti, thanks to its high prefetch accuracy.
Note that for some of the benchmarks like cloud9 and
nutch, even an ideal L1D prefetcher (L1D with a hit rate of
100%) fails to provide significant performance, which shows
that there is limited scope for data prefetching. The primary
reason for this trend is that the L1D MPKI of CloudSuite
without prefetch is low: 6.9 on average, with a maximum
of 14.5, while the average L1D MPKI of SPEC and GAP
is 42.2 and 83.6, respectively. On the other hand, the L1I
MPKI of CloudSuite traces are higher than SPEC and GAP
traces.

H. Interaction with a temporal prefetcher

We simulate managed irregular stream buffer (MISB)
prefetcher [59], a storage efficient version of ISB [30] at L2
with MLOP, IPCP, and Berti at L1D, as shown in Figure 19.
ISB is an address correlation-based data prefetcher that
correlates cache accesses at a new indirection level named
structural address space. Berti with MISB improves the
effectiveness of multi-level prefetching for CloudSuite traces,
in particular for Cassandra and Classification. For
SPEC CPU2017 and GAP, MISB performs worse than
SPP-PPF with MLOP and Berti at the L1D. Note that the
performance improvement with CloudSuite comes with a
storage overhead of 98 KB with MISB, out of which 32 KB
is used for the metadata cache and 17 KB for the Bloom
filter.

1 MLOP =3 IPCP w#» Berti+Bingo
MLOP+Bingo IPCP+IPCP @@ Berti+SPP-PPF
MLOP+SPP-PPF Emm Berti

1.10
Q
3 1.051
]
2 1.001
n

0.95-

Figure 18. Speedup for CloudSuite.

1 MLOP =3 IPCP = Berti

MLOP-+SPP-PPF
KX MLOP+MISB

IPCP+IPCP
B IPCP+MISB

@™ Berti+SPP-PPF
wenex Berti+MISB

1.2
§ 1.1
@ 1.0 73
3] L
i &>
» 0.9 |_:;: < 3

SPEC17 Memint GAP Cloud

Figure 19. Speedup with and without MISB.

L. Multi-core performance

Figure 20 shows speedup on a 4-core simulated system
averaged across 200 randomly generated heterogeneous mixes

based on memory-intensive SPEC CPU2017 and GAP traces.

Among the L1D prefetchers, Berti performs the best with
a performance improvement of 16.2%, outperforming both
MLOP and IPCP on average. There are only nine mixes
in which MLOP and/or IPCP gain more than 10% over

Berti, and CactuBSSN is part of seven of these mixes.

Berti outperforms competing prefetchers for majority of the
mixes that do not have CactuBSSN. Overall, Berti performs
better because in the case of multicore systems, per core
available DRAM bandwidth goes down because of cross-core
contention. Thanks to Berti’s timely and accurate deltas, it
is still able to deliver high coverage even in the presence of
shared DRAM bandwidth contention.

Berti at L1D also outperforms other multi-level prefetching
combinations making a strong case for Berti as an L1D-only
prefetcher. Note that Berti outperforms MLOP+Bingo, the
combination of the second place and first place prefetchers
in the 4-core evaluations at the DPC-3.

J. Sensitivity to design choices

Effect of L1 and L2 watermarks. Figure 21 shows
the effect of L1 and L2 confidence watermarks on overall
speedup averaged across single-core SPEC CPU2017 and
GAP benchmarks, normalized to the baseline system. Our
chosen watermarks, more than 65% for L1 and in between
35% to 65% for L2 provide the sweet-spot in terms of
prefetch accuracy and prefetch coverage. Usage of extremely
small or extremely large watermarks affect both coverage and
accuracy, and negatively affects speedup. Interestingly, a large

12

[MLOP MLOP+Bingo w#» Berti+Bingo
= IPCP MLOP+SPP-PPF & Berti+SPP-PPF
Em Berti IPCP+IPCP
1.18
1.16
o
3 1.144
o
2 1.12
2]
1.10
1.08 T b
Single-level Multi-level

Figure 20. Summary of multi-core speedups relative to a system with L1D
IP-stride prefetcher.

001071001071 091041.05,089/087
L8 1.07/100105.07105) 0410110991088
107105).001071.001.05 10230
Lot 10109 100108106105 03
100]105).09108)1.073.09
0100109 100007

2 1081 09

109

1.09

1.10
0.84

H

1.05

i
=}
=

1.00

e
o|o
| =

0.95

=
o

L1D confidence
0 10 20 30 40 50 60 70 80 90100

-0.90

i
o
N
—
o
®
©

=
o
N
=
o
(o)

-0.85

i
o
=
=
o
<)

. ! . . ! . -0.80
50 60 70 80 90 100

0 10 20 30 40
L2 confidence
Figure 21. Normalized speedup with different L1D and L2 confidence

watermarks averaged across memory intensive SPEC CPU2017 and GAP
benchmarks. Speedup is rounded to two decimal places (1.085 is rounded
to 1.09).

number of watermark configurations provide similar benefit
in terms of speedup. Our chosen high watermarks provide
maximum speedup with the maximum prefetch accuracy.

Effect of the size of Berti tables. Figure 22 shows
the effect of the size of the Berti tables (history table,
table of deltas, and the number of deltas) on speedup.
Decreasing the size of the table of deltas by a quarter
degrades performance by 12.1%, whereas decreasing the
number of deltas by a quarter reduces performance by 1.2%.
Also, doubling/quadrupling the size of the tables provides
a marginal performance gain. CactuBSSN is one outlier
where increasing the table sizes to 1024 entries with 1024
sets improve performance by 22%.

Effect of the latency counter. In our evaluations, we use a
12-bit latency counter per line at the L1D. When we increase
its size to 32 bits, performance is not improved. However,
using a small 4-bit timestamp, we see a performance drop
from 1.16 to 1.07, and from 1.02 to 0.98, for SPEC CPU2017
and GAP, respectively.

Effect of cross-page prefetching. As Berti is an L1D
prefetcher and operates on virtual addresses, it does cross-
page prefetching as long as prefetch requests get a hit in the
STLB. To understand the utility of cross-page prefetching,

m History Table ¢® Table of deltas o Num. Deltas]

1.10 o o
£1.05
el
(9]
[
& 1.00
0.95 T T T T v
0.25X 0.50X 1X 2X 4X
Figure 22. Speedup vs. size of Berti tables and number of deltas. 0.25x

to 4x correspond to one-fourth and four times, respectively.

we evaluate Berti, where we do not issue prefetch requests
(but keep training) that cross an OS page. We see an average
performance drop from 1.02 to 1.01 and 1.16 to 1.10 for GAP
and SPEC CPU2017 traces, respectively. The performance
drop shows that most of the deltas selected by Berti are
within the OS page boundary of 4 KB.

V. RELATED WORK

In Section IV we presented a quantitative comparison
of Berti with recent hardware prefetching techniques [13],
[17]1, [35], [38], [40], [48]. In this Section we compare other
relevant prefetching techniques qualitatively.

Temporal prefetchers. Temporal prefetchers track the
temporal order of cache-line accesses (and not the deltas) [12],
[27], [30], [33], [52], [57]. Temporal prefetchers usually
demand hundreds of KBs of storage, which demands the
storage of prefetch metadata in the off-chip memory. Some of
the recent works on temporal prefetching are in the pursuit of
improving the storage overhead without affecting the prefetch
coverage [58], [59]. Berti, on the other hand, incurs a storage
overhead of just 2.55 KB per core.

Spatial prefetchers. Compared to temporal prefetch-
ers, spatial prefetchers are lightweight in terms of stor-
age overhead and usually learn memory access patterns
within a small spatial region of a few KBs. Conventional
prefetchers like stride [20] and stream [24], [28], [53] are
already deployed on commercial processors. Timely Stride
prefetching improves the timeliness of conventional stride
prefetchers [60]. However, it does not provide better prefetch
coverage when compared with state-of-the-art L1D and
L2 prefetching techniques. Spatial prefetchers like Spatial
Memory Streaming (SMS) [53] (similar to Bingo) usually
learn single repeating deltas or bit patterns within a spatial
region, where a set bit denotes a cache line that should be
prefetched. All these techniques do not consider prefetch
timeliness.

Kill the program counter (KPC) proposes a holistic
cache replacement and prefetching framework [36]. However,
the prefetching technique is similar to SPP, with similar
performance improvements as SPP. Multi-level adaptive
prefetching based on performance gradient tracking [44] (3rd
place in DPC-1 [1]) is one of the first proposals that propose a
correlation between an IP and delta sequences. DSPatch [16]

13

tunes a hardware prefetcher based on available DRAM
bandwidth and selects memory access patterns based on
prefetch accuracy (if the available DRAM bandwidth is low)
and prefetch coverage (if the available DRAM bandwidth
is high). Overall, SPP-PPF performs marginally better than
SPP+DSPatch.

Machine learning for hardware prefetching. Machine
learning (ML) has been used for microarchitecture research,
and ML techniques for data prefetching have been proposed
in recent years [15], [25], [51]. In ISCA 2021, a prefetch-
ing competition with ML techniques shows that non-ML
techniques still outperform with limited storage. However,
ML techniques have the potential to learn highly complex
memory access patterns, and Pythia [15] shows that with a
high performing L2 prefetcher. Berti is an L1D prefetcher
in contrast to Pythia, and with Berti at the L1D, we find
negligible performance improvement with Pythia (less than
1%).

Prefetch filters and throttling mechanisms. Similar to
PPF [17] and DSPatch [16], there are proposals that control
the aggressiveness of prefetchers by controlling its prefetch
degree and distance, or decides whether to prefetch into
the L2 or to the LLC [11], [21], [26], [41], [42], [43],
[54]. These techniques incur additional storage and perform
well for conventional prefetchers with low prefetch accuracy.
However, with Berti, the accuracy is significantly higher than
prior prefetching techniques, and the implicit confidence
mechanism acts like a prefetch throttler.

VI. CONCLUSIONS

We proposed Berti and made a case for an L1D prefetcher
based on local, timely deltas. Berti learns the best delta to
prefetch, keeping timeliness (in the form of time to prefetch
an address) and prefetch accuracy in mind. We showed that
Berti could learn varieties of memory access patterns. We
quantified the effectiveness of Berti across SPEC CPU2017
and GAP workloads, and showed high prefetch accuracy and
timely prefetching into the cache hierarchy. On average, Berti
outperforms state-of-the-art L1D and L2 prefetchers. Berti is
equally effective even in the constrained DRAM bandwidth
scenarios and also for multi-core mixes. Berti consumes the
least dynamic energy at the memory hierarchy among all
state-of-the-art prefetchers. In summary, Berti provides high
prefetch accuracy, timely prefetching, and good coverage
with a limited storage overhead of 2.55 KB per core.

ACKNOWLEDGEMENTS

This work was supported by MCIN/AEIL/10.13039/
501100011033 and by “ERDF A way of making Europe”
(grants PID2019-105660RB-C21, RT12018-098156-B-C53),
the European Research Council (ERC) under the Horizon
2020 research and innovation program (grant agreement No
819134), and by Government of Aragon (T5820R research

group).

APPENDIX
A. Abstract

This artifact contains all the information necessary to
reproduce the main experiments in the paper. We describe
how the required software and the elements that compose it
can be obtained, and how to run the artifact.

B. Artifact Check-list & Meta-information

¢ Program: ChampSim

« Compilation: GNU GCC 7.5.0

« Data set: SPEC CPU2017 traces from 3™ Data Prefetch-
ing Championship
(http://hpca23.cse.tamu.edu/champsim-traces/speccpu/)

+ Run-time environment: an AMD64 processor

o Hardware: tested on an AMD EPYC 7702P

e Metrics: speedup and L1D Accuracy

o Output: three PDF files with graphs, single-thread
memory-intensive SPEC CPU2017 speedup and L1D
accuracy

« How much disk space is required?: approximately 22
GB

« How much time is needed to prepare the workflow?:
approximately 30 minutes

+ How much time is needed to complete experiments?:
approximately 1 hour 30 minutes (running in parallel,
using 127 threads)

« Publicly available?: yes

o Code licenses (if publicly available)?: GPL-3.0

o Archived (provide DOI)?: 10.5281/zenodo.6921331

C. Description

1) How to access: The software can be obtained from
GitHub: https://github.com/agusnt/Berti- Artifact

Use the following command to clone the repository:
$ git clone
https://github.com/agusnt/Berti-Artifact

2) Software Dependencies: We test the artifact on a system
with these features:

o Ubuntu 18.04.6 LTS
o Linux Kernel 5.4.0
o Python 3.6.9
o Bash 4.4.20
« GCC75.0
e Curl 7.61
« Python3 Packages
— matplotlib 3.3.4
— pprint 0.1
— numpy 1.19.1
— scipy 1.54
However, in our tests, new GNU/Linux systems were able
to run the artifact. Only newer GCC compilers may raise

errors in execution. In order to ease the process of running
the artifact, we provide two options in the main script: (1)
The —g flag downloads and builds GCC 7.5.0 from scratch,
and (2) —d uses Docker to build the simulator. The Python3
Packages can be installed using pip3.

3) Data sets: The traces for the full set of experiments
were downloaded from different championships. However,
for this artifact only the SPEC CPU2017 traces from the
3 Data Prefetching Championship (http://hpca23.cse.tamu.
edu/champsim-traces/speccpu/) are needed. These traces are
automatically downloaded by the artifact. GAP (from ML
for Computer Architecture and Systems https://sites.google.
com/view/mlarchsys/) and CloudSuite (from the 27 Cache
Replacement Championship https://crc2.ece.tamu.edu) are
also used in the paper, so all results in the paper are easily
reproducible by updating our scrips.

D. Installation & Experimental workflow
The artifact is ready to be built and run automatically by
executing the run. sh script. The overall flow is as follows:

1) Clone the artifact:
$ git clone

https://github.com/agusnt/Berti-Artifact

2) Enter the cloned repository:
$ cd Berti-Artifact

3) Run the script:
$./run.sh
Optionally, you can speed up the simulations by
running them in parallel:
$./run.sh -p [number of threads]
In case of an error while building the artifact or running
the simulations, try compiling instead with the Docker
flag; it can be used along with the parallelization option
(-p):
$./run.sh -d

E. Evaluation and expected results

The artifact provides speedup and L1D accuracy results for
the memory-intensive single-thread SPEC CPU2017 traces
at the end of the simulation. The execution of the artifact
prints the following information:

Building with Docker

Running in Parallel

Download SPEC CPU2017 traces [44/44]
Building Berti... done
Building MLOP... done
Building IPCP... done

Building IP Stride... done

Making everything ready to run...

Running... done

Results, it requires numpy,
maptlotlib and pprint

Parsing data... done

SPEC CPU2017 Memory Intensive SpeedUp

done

scipy,

http://hpca23.cse.tamu.edu/champsim-traces/speccpu/
https://github.com/agusnt/Berti-Artifact
http://hpca23.cse.tamu.edu/champsim-traces/speccpu/
http://hpca23.cse.tamu.edu/champsim-traces/speccpu/
https://sites.google.com/view/mlarchsys/
https://sites.google.com/view/mlarchsys/
https://crc2.ece.tamu.edu

Prefetch Speedup L1D Accuracy
IPCP 09% 64.9%
MLOP 08% 68.0%
Berti 12% 88.0%
Generating Figure 8
SPEC_CPU2017-MemInt... done
Generating Figure 9(a)... done
Generating Figure 10
SPEC_CPU2017-MemInt... done
Removing Temporal Files... done

It generates three graphs in PDF format named
fig8.pdf, fig9.pdf and £1igl0.pdf, in the working
directory (where run. sh is placed).

FE Experiment customization

We implement two options to run the artifact in system
with newer GCC compilers: (1) . /run.sh -g downloads
and builds GCC 7.5.0 from scratch to build the artifact, and
(2) ./run.sh —d builds the artifact with Docker.

To speedup the artifact we provide a —p [number of

threads] flag that allows to run the experiments in parallel.

The remaining parameters of our script are: —v verbose

mode, —h a help menu, —c deletes all temporal files, i.e.

traces.

G. Notes

The L1D accuracy reported by ChampSim is calculated
differently from the reported by the artifact. Instead, the L1D
accuracy reported by the artifact is calculated as:

L1DPrefetchLate + L1DPrefetchTimely
L1DPrefetchFill

Our L1D accuracy formula represents the unnecessary
traffic generated by the prefetcher, i.e. an accuracy of 90%
indicates that there is 10% of unnecessary traffic. The
nominator includes all successful prefetches (timely or late),
prefetches that have not caused unnecessary extra traffic, and
the denominator represents the data brought into the cache
by the prefetcher.

REFERENCES

[1] “The Ist data prefetching championship (dpc-1),” Feb. 20009.
[Online]. Available: https://jilp.org/dpc/

[2] “The 2nd data prefetching championship (dpc-2),” Jun. 2015.
[Online]. Available: https://comparch-conf.gatech.edu/dpc2/

[3] “Micron dram power calculator,” Dec. 2015.
[Online]. Available: https://www.micron.com/-
/media/client/global/documents/products/technical-
note/dram/tn4007_ddr4_power_calculation.pdf

15

[4] “Cloudsuite traces for champsim,” Nov. 2017. [Online].
Available: https://www.dropbox.com/sh/pgmnzfr3hurlutq/
AACciuebRwSAOzhJkmj5SEXBa/CRC?2_trace?dl=0&
subfolder_nav_tracking=1

[5] “SunnyCove microarhcitecture,” May 2018. [Online].
Available: https://en.wikichip.org/wiki/intel/microarchitectures/
sunny_cove

(6]

“SunnyCove microarhcitecture latency,” May 2018. [Online].
Available: https://www.7-cpu.com/cpu/Ice_Lake.html

[7] “The 3rd data prefetching championship (dpc-3),” Jun. 2019.
[Online]. Available: https://dpc3.compas.cs.stonybrook.edu/
[8] “SPEC CPU 2017 traces for champsim,” Feb. 2019.
[Online]. Available: https://hpca23.cse.tamu.edu/champsim-
traces/speccpu/index.html

[9] “ChampSim simulator,” May 2020. [Online]. Available:
http://github.com/ChampSim/ChampSim

[10] “GAP traces for champsim,” Mar. 2021.
[Online]. Available: https://utexas.app.box.com/s/
2k54kp8zvrqdfaa8cdhfquvexwh7yn85/folder/132804598561
[11] J. Albericio, R. Gran, P. Ibafnez, V. Vinals, and J. M. Llaberia,
“Abs: A low-cost adaptive controller for prefetching in a banked
shared last-level cache,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. §, no. 4, pp. 19:1-19:20,
Jan. 2012.

[12] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Domino temporal data prefetcher,” in 24th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2018,
pp. 131-142.

[13] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and
H. Sarbazi-Azad, “Bingo spatial data prefetcher,” in 25th Int’l
Symp. on High-Performance Computer Architecture (HPCA),
Feb. 2019, pp. 399-411.

[14] S. Beamer, K. Asanovié, and D. A. Patterson, “The GAP
benchmark suite,” CoRR, vol. abs/1508.03619, Aug. 2015.
[15] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Sub-
ramoney, and O. Mutlu, “Pythia: A customizable hardware
prefetching framework using online reinforcement learning,”
in 54th Int’l Symp. on Microarchitecture (MICRO), Oct. 2021,
pp. 1121-1137.

[16] R. Bera, A. V. Nori, , O. Mutlu, and S. Subramoney, “Dspatch:
Dual spatial pattern prefetcher,” in 52nd Int’l Symp. on
Microarchitecture (MICRO), Oct. 2019, pp. 531-544.

[17] E. Bhatia, G. Chacon, S. H. Pugsley, E. Teran, P. V. Gratz,
and D. A. Jiménez, ‘“Perceptron-based prefetch filtering,” in
46th Int’l Symp. on Computer Architecture (ISCA), Jun. 2019,
pp- 1-13.

[18] Y. Chen, L. Pei, and T. E. Carlson, “Leaking control
flow information via the hardware prefetcher,” CoRR, vol.
abs/2109.00474, Sep. 2021.

[19] DDR, “DDR standards.” [Online]. Available: https://en.
wikipedia.org/wiki/Double_data_rate

https://jilp.org/dpc/
https://comparch-conf.gatech.edu/dpc2/
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.dropbox.com/sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_trace?dl=0&subfolder_nav_tracking=1
https://www.dropbox.com/sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_trace?dl=0&subfolder_nav_tracking=1
https://www.dropbox.com/sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_trace?dl=0&subfolder_nav_tracking=1
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
https://www.7-cpu.com/cpu/Ice_Lake.html
https://dpc3.compas.cs.stonybrook.edu/
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html
http://github.com/ChampSim/ChampSim
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://en.wikipedia.org/wiki/Double_data_rate
https://en.wikipedia.org/wiki/Double_data_rate

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

J. Doweck, “Inside intel core microarchitecture and smart
memory access,” in Intel whitepaper, 2006.

E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated
control of multiple prefetchers in multi-core systems,” in 42nd
Int’l Symp. on Microarchitecture (MICRO), Dec. 2009, pp.
316-326.

M. Ferdman, A. Adileh, Y. O. Kogberber, S. Volos, M. Al-
isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki,
and B. Falsafi, “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” in /7th Int’l Conf.
on Architectural Support for Programming Language and

Operating Systems (ASPLOS), Mar. 2012, pp. 37-48.

A. Fog, “The microarchitecture of Intel, AMD and VIA
CPUs: An optimization guide for assembly programmers
and compiler makers,” 2020. [Online]. Available: https:
/Iwww.agner.org/optimize/microarchitecture.pdf

B. Grayson, J. Rupley, G. D. Zuraski, E. Quinnell, D. A.
Jiménez, T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum,
V. Sinha, and A. Ghiya, “Evolution of the samsung exynos
cpu microarchitecture,” in 47th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2020, pp. 40-51.

M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan, “Learning
memory access patterns,” in 35th Int’l Conf. on Machine
Learning (ICML), Jul. 2018, pp. 1924-1933.

W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and
I. Hur, “Near-side prefetch throttling: Adaptive prefetching for
high-performance many-core processors,” in 27th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT),
Nov. 2018, pp. 28:1-28:11.

Z. Hu, M. Martonosi, and S. Kaxiras, “Tcp: Tag correlating
prefetchers,” in 9th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2003, pp. 317-326.

S. Tacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G.
Abraham, “Effective stream-based and execution-based data
prefetching,” in 18th Int’l Conf. on Supercomputing (ICS), Jun.
2004, pp. 1-11.

A. Jain, “Exploiting long-term behavior for improved memory
system performance,” Ph.D. dissertation, The University of
Texas at Austin, May 2016.

A. Jain and C. Lin, “Linearizing irregular memory accesses
for improved correlated prefetching,” in 46th Int’l Symp. on
Microarchitecture (MICRO), Dec. 2013, pp. 247-259.

A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High
performance cache replacement using re-reference interval
prediction (rrip),” in 37th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2010, pp. 60-71.

D. A. Jiménez and C. Lin, “Dynamic branch prediction
with perceptrons,” in 7th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Jan. 2001, pp. 197-206.

D. Joseph and D. Grunwald, “Prefetching using markov
predictors,” in 24th Int’l Symp. on Computer Architecture
(ISCA), Jun. 1997, pp. 252-263.

16

[34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

N. S. Kalani and B. Panda, “Instruction criticality based
energy-efficient hardware data prefetching,” IEEE Computer
Architecture Letters, vol. 20, no. 2, pp. 146-149, 2021.

J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilker-
son, and Z. Chishti, “Path confidence based lookahead prefetch-
ing,” in 49th Int’l Symp. on Microarchitecture (MICRO), Oct.
2016, pp. 60:1-60:12.

J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley,
and C. Wilkerson, “Kill the program counter: Reconstructing
program behavior in the processor cache hierarchy,” in
22nd Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), Apr. 2017, pp.
737-749.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques,” in 2011 Int’l
Conf. on Computer-Aided Design (ICCAD), Nov. 2011, pp.
694-701.

P. Michaud, “Best-offset hardware prefetching,” in 22nd Int’!
Symp. on High-Performance Computer Architecture (HPCA),
Mar. 2016, pp. 469—480.

C. Oztiirk, I. B. Karsli, and R. Sendag, “An analysis of address
and branch patterns with patternfinder,” in Int’l Symp. on
Workload Characterization (IISWC), Oct. 2014, pp. 232-242.

S. Pakalapati and B. Panda, “Bouquet of instruction pointers:
Instruction pointer classifier-based spatial hardware prefetch-
ing,” in 47th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2020, pp. 118-131.

B. Panda and S. Balachandran, “Expert prefetch prediction:
An expert predicting the usefulness of hardware prefetchers,”
IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 13-16,
Jan. 2016.

B. Panda, “SPAC: A synergistic prefetcher aggressiveness
controller for multi-core systems,” IEEE Transactions on
Computers (TC), vol. 65, no. 12, pp. 3740-3753, Dec. 2016.

B. Panda and S. Balachandran, “CAFFEINE: A utility-
driven prefetcher aggressiveness engine for multicores,” ACM
Transactions on Architecture and Code Optimization (TACO),
vol. 12, no. 3, pp. 30:1-30:25, Aug. 2015.

L. M. Ramos, J. L. Briz, P. E. Ibafiez, and V. Viials, “Multi-
level adaptive prefetching based on performance gradient
tracking,” The Journal of Instruction-Level Parallelism, vol. 13,
pp. 1-14, Jan. 2011.

G. Reinman, B. Calder, and T. Austin, “Fetch directed instruc-
tion prefetching,” in 32nd Int’l Symp. on Microarchitecture
(MICRO), Dec. 1999, pp. 16-27.

A. Ros, “Berti: A per-page best-request-time delta prefetcher,”
in The 3rd Data Prefetching Championship, Jun. 2019.

A. Ros and A. Jimborean, “A cost-effective entangling
prefetcher for instructions,” in 47th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2021, pp. 99-111.

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

(48]

[49]

(50]

[51]

[52]

(53]

[54]

M. Shakerinava, M. Bakhshalipour, P. Lotfi-Kamran, and
H. Sarbazi-Azad, “Multi-lookahead offset prefetching,” in
The 3rd Data Prefetching Championship, Jun. 2019.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,”
in 10th Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), Oct. 2002, pp.
45-57.

M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson,
S. H. Pugsley, and Z. Chishti, “Efficiently prefetching complex
address patterns,” in 48th Int’l Symp. on Microarchitecture
(MICRO), Dec. 2015, pp. 141-152.

Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan,
and C. Lin, “A hierarchical neural model of data prefetching,”
in 26th Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), Apr. 2021, pp.
861-873.

S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi,
“Spatio-temporal memory streaming,” in 36th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2009, pp. 69-80.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Spatial memory streaming,” in 33rd Int’l Symp.
on Computer Architecture (ISCA), Jun. 2006, pp. 252-263.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback di-
rected prefetching: Improving the performance and bandwidth-

17

[55]

[56]

[57]

(58]

[59]

[60]

efficiency of hardware prefetchers,” in 13th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2007,
pp.- 63-74.

Standard Performance Evaluation Corporation, “SPEC
CPU2017,” 2017. [Online]. Available: http://www.spec.org/
cpu2017

K. Sundaram and A. Radhakrishnan, “Address re-ordering
mechanism for efficient pre-fetch training in an out-of-order
processor,” U.S. Patent 9542323B2, Sep. 2014.

D. A. Varkey, B. Panda, and M. Mutyam, “RCTP: Region cor-
related temporal prefetcher,” in 35th Int’l Conf. on Computer
Design (ICCD), Nov. 2017, pp. 73-80.

H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and
C. Lin, “Temporal prefetching without the off-chip metadata,”
in 52nd Int’l Symp. on Microarchitecture (MICRO), Oct. 2019,
pp- 996-1008.

H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient
metadata management for irregular data prefetching,” in 46th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2019, pp.
449-461.

H. Zhu, Y. Chen, and X.-H. Sun, “Timing local streams:
improving timeliness in data prefetching,” in 24th Int’l Conf.
on Supercomputing (ICS), Jun. 2010, pp. 169-178.

http://www.spec.org/cpu2017
http://www.spec.org/cpu2017

	Introduction
	Recent Works and Motivation
	Recent advances in data prefetching
	Motivation: why a new delta prefetcher?

	Berti: A Local-Delta Prefetcher
	Training the prefetcher
	Prediction: issuing prefetch requests
	Hardware implementation

	Evaluation
	Simulation Methodology
	Speedup vs. storage requirements
	Performance of Berti as an L1D Prefetcher
	Multi-level prefetching performance
	Memory hierarchy traffic and energy
	Effect of constrained DRAM bandwidth
	CloudSuite performance
	Interaction with a temporal prefetcher
	Multi-core performance
	Sensitivity to design choices

	Related Work
	Conclusions
	Appendix
	Abstract
	Artifact Check-list & Meta-information
	Description
	How to access
	Software Dependencies
	Data sets

	Installation & Experimental workflow
	Evaluation and expected results
	Experiment customization
	Notes

	References

