
ar
X

iv
:1

91
0.

02
15

1v
3

 [
cs

.D
S]

 1
5

Ja
n

20
21

1

Towards a Definitive Compressibility Measure

for Repetitive Sequences
Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza

Abstract

Unlike in statistical compression, where Shannon’s entropy is a definitive lower bound, no such clear measure exists for the
compressibility of repetitive sequences. Since statistical entropy does not capture repetitiveness, ad-hoc measures like the size z
of the Lempel–Ziv parse are frequently used to estimate it. The size b ≤ z of the smallest bidirectional macro scheme captures
better what can be achieved via copy-paste processes, though it is NP-complete to compute and it is not monotonic upon symbol
appends. Recently, a more principled measure, the size γ of the smallest string attractor, was introduced. The measure γ ≤ b lower
bounds all the previous relevant ones, yet length-n strings can be represented and efficiently indexed within space O(γ log n

γ
),

which also upper bounds most measures. While γ is certainly a better measure of repetitiveness than b, it is also NP-complete to
compute and not monotonic, and it is unknown if one can always represent a string in o(γ log n) space.

In this paper, we study an even smaller measure, δ ≤ γ, which can be computed in linear time, is monotonic, and allows
encoding every string in O(δ log n

δ
) space because z = O(δ log n

δ
). We show that δ better captures the compressibility of repetitive

strings. Concretely, we show that (1) δ can be strictly smaller than γ, by up to a logarithmic factor; (2) there are string families
needing Ω(δ log n

δ
) space to be encoded, so this space is optimal for every n and δ; (3) one can build run-length context-free

grammars of size O(δ log n
δ
), whereas the smallest (non-run-length) grammar can be up to Θ(logn/ log log n) times larger; and

(4) within O(δ log n
δ
) space we can not only represent a string, but also offer logarithmic time access to its symbols and efficient

indexed searches for pattern occurrences.

Index Terms

Data compression; Lempel–Ziv parse; Repetitive sequences; String attractors; Substring complexity

I. INTRODUCTION

The recent rise in the amount of data we aim to handle is driving research into compressed data representations that can

be used directly in compressed form [2]. Interestingly, much of today’s fastest-growing data is highly repetitive: genome

collections, versioned text and software repositories, periodic sky surveys, and other sources produce data where each element

in the collection is very similar to others.

Since a significant fraction of the data of interest consists of sequences, compression of highly repetitive text collections

is gaining attention, as it enables space reductions of orders of magnitude [3]. Statistical compression, however, is unable to

capture repetitiveness [4]. Large space reductions are instead achieved with other kinds of compressors, such as Lempel–Ziv [5],

grammar compression [6], and the run-length-compressed Burrows–Wheeler transform [7].

A fundamental question is how much compression can be achieved on repetitive collections, or alternatively, how to measure

data (compressibility by exploiting) repetitiveness. Unlike statistical compression, where Shannon’s notion of entropy [8]

is a clear lower bound to what compressors can achieve, a similar notion capturing repetitiveness has been elusive. Beyond

Kolmogorov’s complexity [9], which is uncomputable, repetitiveness is measured in ad-hoc terms, as the result of what specific

compressors achieve. A list of such measures on a string S[1 . . n] includes:

Lempel–Ziv compression [5] parses S into a sequence of phrases, each phrase being the longest string that occurs starting

to the left in S. The associated measure is the number z of phrases produced, which can be computed in O(n) time [10].

Bidirectional macro schemes [11] extend Lempel–Ziv so that the source of each phrase may precede or follow it, as long

as no circular dependencies are introduced. The associated measure b is the number of phrases of the smallest parsing. It

satisfies b ≤ z = O(b log n
b) [12], but computing b is NP-complete [13].

Grammar-based compression [6] builds a context-free grammar that generates (only) S. The associated measure is the size

g of the smallest grammar (i.e., the total length of the right-hand sides of the rules). It satisfies z ≤ g = O(z log n
z) and,

while it is NP-complete to compute g, grammars of size O(z log n
z) can be constructed in linear time [14], [15], [16].

Run-length grammar compression [17] allows in addition rules A → Bt (t repetitions of B) of constant size. The measure

is the size grl of the smallest run-length grammar, and it satisfies z ≤ grl ≤ g and grl = O(b log n
b) [12].

Collage systems [18] extend run-length grammars by allowing truncation: in constant space, we can refer to a prefix or a

suffix of another nonterminal. The associated measure c satisfies c ≤ grl, b = O(c), and c = O(z) [12].

A previous partial version of this article appeared in Proc. LATIN 2020 [1].
Tomasz Kociumaka is with IEOR Dept., University of California, Berkeley, U.S. Gonzalo Navarro is with Millennium Institute for Foundational Research

on Data (IMFD), Dept. of Computer Science, University of Chile, Chile. Nicola Prezza is with Ca’ Foscari University of Venice, Italy.

http://arxiv.org/abs/1910.02151v3

2

Burrows–Wheeler transform (BWT) [19] is a permutation of S that tends to have long runs of equal letters if S is

repetitive. The number r of maximal equal-letter runs in the BWT can be found in linear time. It is known that
b
2 ≤ r = O(b log2 n) [12], [20].

CDAWGs [21] are automata that recognize every substring of S. The associated measure of repetitiveness is e, the size of the

smallest such automaton (compressed by dissolving states of in-degree and out-degree one), which can be built in linear

time [21]. The measure e is always larger than r, g, and z [22], [23].

Lex parsing [12] is analogous to Lempel–Ziv parsing, but each phrase must point to a lexicographically smaller source. The

lex parsing is computed in linear time. Its number of phrases, v, satisfies b
2 ≤ v ≤ 2r and v ≤ grl [12].

For each measure x above, we can represent S[1 . . n] in space O(x) (meaning O(x log n) bits in this article). As seen, the

measures form a complex hierarchy of dominance relations [3], where b asymptotically dominates all the others. A problem

with b (and also z, c, r, and v) is that it is unknown how to access S (i.e., extract any character S[i]) efficiently (say, in

no(1) time, i.e., without decompressing much of it) within space O(b) (or O(max(z, c, r, v))). This has been achieved in time

O(log n), but only within space O(z log n
z) [15], [14], O(e) [24], O(r log n

r) [25], O(g) [26], and even O(grl) [27], the latter

of which is O(b log n
b) and subsumes all the other spaces. Providing direct access to the sequences is essential for manipulating

them in compressed form, without ever having to decompress them.

Just accessing the string is not sufficient, however, for many applications. One of the most fundamental text processing tasks

is string matching: find all the occurrences in S of a short string P . This is particularly challenging when the string S is

large and scanning it sequentially is not viable. We then resort to indexes, which are data structures offering no(1)-time string

matching (and possibly other more sophisticated capabilities) over a collection of strings. Statistically compressed text indexes

are already mature [28] but, as explained earlier, are insensitive to repetitiveness. Various more recent compressed indexes build

on the repetitiveness measures above; see a thorough review [29]. The smallest of those find the occ occurrences of P [1 . .m]
in O(grl) space and O(m log n+ occ logǫ n) time, for any constant ǫ > 0 [27], or O(r) space and O(m log log σ + occ) time

over an alphabet of size σ [25], [30]. Just counting the number of occurrences can be done in space O(g) (not O(grl)) and

time O(m log2+ǫ n) [27], or space O(r) and time O(m log log σ) [25], [30].

A relevant recent development in measuring repetitiveness is the concept of string attractor [31]. An attractor Γ is a set of

positions in S such that any substring of S has an occurrence covering a position in Γ. Since γ = O(b) [31], the size of the

smallest attractor asymptotically lower bounds all the repetitiveness measures listed above; however, it is unknown if one can

represent any string in O(γ) space. We can in space O(γ log n
γ), within which we can also access any symbol of S in time

O(log n
γ) [31], and even support indexed text searching [32] within time as low as O(m + (occ + 1) logǫ n) for locating all

the occurrences and O(m+ log2+ǫ n) time for counting them [27]. It is known that grl = O(γ log n
γ) [27], though grl can be

smaller than γ log n
γ by up to a logarithmic factor, log n

γ , so the slower index of size O(grl) offers better space in general.

In terms of measuring repetitiveness, both γ and b share some unsatisfactory aspects. Both are NP-hard to compute [13],

[31], and both are non-monotone when S grows by appending characters at the endpoints of the string [3], [33].

A. Our contributions

In this paper, we study a new measure of repetitiveness, δ, which arguably captures better the concept of compressibility in

repetitive strings and is more convenient to deal with. Although this measure was already introduced in a stringology context [34]

and used to build indexes of size O(γ log n
γ) without knowing γ [27], its properties and full potential have not been explored.

It is known that δ ≤ γ for every string, that δ can be computed in O(n) time [27], and that z = O(δ log n
δ) [34]. Further, δ

is insensitive to string reversals and alphabet permutations, and monotone upon appending symbol, unlike γ, b, or z [3], [33].

We prove several further properties related to δ:

1) In Section III, we show that δ can be strictly smaller than γ, by up to a logarithmic factor. More precisely, for any n and

δ, there are strings with γ = Ω(δ log n
δ). We therefore show that the already known upper bounds γ, b, c, z = O(δ log n

δ)
are tight for every n and δ.

2) In Section IV, we show that O(δ log n
δ logn) bits, a space one can reach by Lempel–Ziv compression due to z =

O(δ log n
δ), is indeed tight: for every n and δ, there are string families that need Ω(δ log n

δ logn) bits to be represented.

Instead, the upper bound O(γ log n
γ) [31] is not known to be tight.

3) In Section V, we show that not only the Lempel–Ziv parsing, but also run-length context-free grammars, can always

represent a string within O(δ log n
δ) space, thus also v, grl = O(δ log n

δ). However, standard context-free grammars

cannot: for every n and δ, there strings satisfying g = Ω(δ log2 n
δ / log log

n
δ). In particular, if δ = n1−Ω(1), this lower

bound simplifies to g = Ω(δ log2 n/ log logn), which is almost a logarithmic factor away from δ log n
δ = Θ(δ logn).

4) In Section VI, we combine our preceding result with previous ones on run-length grammars [27] to show that, within space

O(δ log n
δ), we can not only represent a string but also provide access to any position of it in time O(log n), compute

substring fingerprints in time O(log n), find the occ occurrences of any pattern string P [1 . .m] in time O(m logn +
occ logǫ n) for any constant ǫ > 0, and count them in time O(m log2+ǫ n). Furthermore, we show that the block tree data

structure [35], which provides access to string symbols and substring fingerprints in time O(log n
z), is of size O(δ log n

δ),
improving upon our first result and on previous analyses and variants of block trees [31], [32], [36].

3

II. BASIC CONCEPTS AND THE MEASURE δ

We consider strings S[1 . . n] as sequences of |S| = n symbols S[1], . . . , S[n], each drawn from an alphabet Σ = {1, . . . , σ}.

For simplicity, we assume that every symbol of Σ appears in S, though our results hold as long as σ = nO(1). The concatenation

of strings S and S′ is denoted S · S′; we can also identify individual symbols of Σ with the corresponding string of length 1.

A substring of S is denoted S[i . . j] = S[i] · · ·S[j] and the empty string is denoted ε.

We assume the transdichotomous RAM model, which is a word RAM model on a machine word of Θ(logn) bits.

Consequently, when we measure the space in words (the default), we consider that each word holds Θ(logn) bits. Therefore

O(x) space is equivalent to O(x log n) bits of space.

The measure δ was recently defined by Christiansen et al. [27, Sec. 5.1], though it is based on the expression dk(S)/k,

introduced by Raskhodnikova et al. [34] to approximate z. The set of values dk(S) are known as the substring complexity of

S, so δ is a function of it. In this section, we summarize what is known about δ.

Definition II.1. Let dk(S) be the number of distinct length-k substrings in S. Then

δ = max{dk(S)/k : k ∈ [1 . . n]}.

Lemma II.2 (cf. [34, Lemma 3]). It always holds that z = O(δ log n
δ).

Proof. Raskhodnikova et al. [34] proved that if dℓ(S) ≤ m · ℓ for every ℓ ≤ ℓ0, then z ≤ 4(m log ℓ0 +
n
ℓ0
). Plugging ℓ0 = n

δ
and m = δ, we conclude that z ≤ 4(δ log n

δ + δ) = O(δ log n
δ).

Since γ, b, and c are O(z), these three measures are all upper bounded by O(δ log n
δ). Additionally, we conclude that

grl ≤ g = O(z log n
z) = O(δ log2 n

δ), and note that r = O(δ log δmax(1, log n
δ log δ)) has been proved recently [20]; the latter

bound is also known to be tight for any δ between Ω(1) and O(n).
Before we proceed, let us recall the concept of an attractor.

Definition II.3 (Kempa and Prezza [31]). An attractor of a string S[1 . . n] is a set of positions Γ ⊆ [1 . . n] such that every

substring S[i . . j] has an occurrence S[i′ . . j′] = S[i . . j] that covers an attractor position p ∈ Γ ∩ [i′ . . j′].

Lemma II.4 ([27, Lemma 5.6]). Every string S satisfies δ ≤ γ.

Proof. Every length-k substring has an occurrence covering an attractor position, so there can be at most kγ distinct substrings

of length k, that is, dk(S)/k ≤ γ for all k ≤ n.

Lemma II.5 ([27, Lemma 5.7]). The measure δ can be computed in O(n) time and space given S[1 . . n].

Proof. One can use the suffix tree or the LCP table of S to retrieve dk(S) for all k ∈ [1 . . n] in O(n) time, and then compute

δ from this information.

Finally, we note some obvious positive properties of δ as a compressibility measure: it is insensitive to reversing the string

and to alphabet permutations, and it is monotone when we add/remove prefixes/suffixes to/from S. Other measures, like z, b,
or γ, are not monotone, z is sensitive to reversals, and v and r are also sensitive to alphabet permutations [3], [33].

III. LOWER BOUNDS ON ATTRACTORS

In this section, we show that there exist string families where δ = o(γ); in fact, δ can be smaller by up to a logarithmic

factor. More precisely, for any string length n and value δ ∈ [2 . . n], we build a string satisfying γ = Ω(δ log n
δ). This shows

that the bound γ ≤ b ≤ z = O(δ log n
δ) is asymptotically tight.

We build our results on (variants of) the following string family.

Definition III.1. Consider an infinite string S∞[1 . .], where S∞[i] = b if i = 2j for some integer j ≥ 0, and S∞[i] = a

otherwise. For n ≥ 1, let Sn = S∞[1 . . n]. We then define the string family S = {Sn : n ≥ 1} as the set of the prefixes of S∞.

We first prove that the strings in S satisfy δ = O(1) and γ = Ω(logn).

Lemma III.2. For every n ≥ 1, the string Sn satisfies δ ≤ 2 and γ ≥ 1
2⌊logn⌋.

Proof. For each j ≥ 1, every pair of consecutive bs in S∞[2j−1 + 1 . .] is at distance at least 2j . Therefore, the only distinct

substrings of length k ≤ 2j in S∞[2j−1 + 1 . .] are of the form a
k or aibak−i−1 for i ∈ [0 . . k). Hence, the distinct length-k

substrings of S∞ are those starting up to position 2j−1, S∞[i . . i + k) for i ∈ [1 . . 2j−1], and the k + 1 already mentioned

strings, for a total of dk(S∞) ≤ 2j−1 + k + 1. Choosing j = ⌈log k⌉, we get dk(S∞) ≤ 2⌈log k⌉−1 + k+ 1 ≤ 2log k + k = 2k,

yielding that δ(Sn) ≤ 2 holds for every n.

Next, observe that, for each j ≥ 0, the substring ba
2j−1

b has its unique occurrence in S∞ at S∞[2j . . 2j+1]. The covered

regions are disjoint across even integers j, so each one requires a distinct attractor position. Consequently, γ(Sn) ≥
k
2 holds

for all integers n ≥ 2k and k ≥ 0. Choosing k = ⌊logn⌋, we get γ(Sn) ≥
1
2⌊logn⌋.

4

We can now show that, for every integer 2 ≤ δ = o(n), there are strings satisfying γ = ω(δ); that is, γ can be asymptotically

larger than δ.

Theorem III.3. For every length n and integer value δ ∈ [2 . . n], there is a string S[1 . . n] with γ = Ω(δ log n
δ).

Proof. Let us first fix an integer m ≥ 1 such that n ≥ 4m− 1 and decompose n−m+ 1 ≥ 3m into
∑m

i=1 ni = n−m+ 1
roughly equally (so that ni ≥ 3 and ni = Ω(n

m)). We shall build a string S over an alphabet consisting of 3m− 1 characters:

ai and bi for i ∈ [1 . .m] and delimiters $i for i ∈ [1 . .m). For this, we take S(i) to be the string Sni
of Definition III.1, with

the alphabet {a, b} replaced by {ai, bi}, and we define S = S(1) $1 S
(2) $2 · · · $m−1 S

(m), which is of length n.

Notice that, for each k ∈ [1 . . n], we have dk(S) ≤ (m − 1)k +
∑m

i=1 dk(S
(i)) because every substring contains $i or is

contained in S(i) for some i. Since dk(S
(i)) ≤ 2k by Lemma III.2, we have that dk(S) ≤ (3m−1)k, and thus δ(S) ≤ 3m−1.

In fact, δ(S) = 3m− 1 because d1(S) = 3m − 1. Furthermore, γ(S) ≥
∑m

i=1 γ(S
(i)) ≥

∑m
i=1

1
2⌊logni⌋ = Ω(m log n

m) =
Ω(δ log n

δ), where the first inequality holds because the alphabets of S(i) are disjoint and the second is due to Lemma III.2.

This construction proves the theorem for δ = 3m− 1 and n ≥ 4m− 1. If δ < 3
4n and δ mod 3 6= 2, we use m = ⌊ δ+1

3 ⌋
and initially construct a string S of length n− (δ+1) mod 3 ≥ 4m− 1. Next, we append (δ+1) mod 3 additional delimiters,

which results in each of the measures δ(S), γ(S), and n increased by (δ+1) mod 3. Finally, we note that if δ ≥ 3
4n = Ω(n),

then the claim reduces to γ = Ω(δ) and therefore follows directly from Lemma II.4.

IV. LOWER BOUNDS ON TEXT ENTROPY

In this section, we prove that there are string families that cannot be encoded in o(δ logn) space: for every length n and

every integer value δ ∈ [2 . . n], there is a string family whose elements require Ω(δ log n
δ) space, or Ω(δ log n

δ logn) bits, to

be represented. Therefore, using O(δ log n
δ) space is worst-case optimal for every δ. This is a reachable bound, because every

string can be represented within O(z) ⊆ O(δ log n
δ) space. In comparison, it is not known if the upper bound O(γ log n

γ) to

encode every string family [31] is also tight.

We consider a family of variants of the infinite string S∞ of Definition III.1, where the positions of bs are further apart and

slightly perturbed.

Definition IV.1. The family Sp is formed by all the infinite strings S over {a, b} where the first b is placed at S[1] and, for

j ≥ 2, the jth b is placed anywhere in S[2 · 4j−2 + 1 . . 4j−1]. The family Sp

n consists of the length-n prefixes of the infinite

strings of the family Sp, that is, Sp

n = {S[1 . . n] : S ∈ Sp}.

Lemma IV.2. For every integer n ≥ 1, the family Sp

n needs Ω(log2 n) bits to be encoded.

Proof. In our definition of Sp, the location of the jth b can be chosen among 2 · 4j−2 positions, and each combination of

these choices generates a different string in Sp

n as long as n ≥ 4j−1. Hence, |Sp

n| =
∏i+1

j=2(2 · 4
j−2) = 2Ω(i2) = 2Ω(log2 n) for

i = ⌊log4 n⌋. To distinguish strings in Sp

n, any encoding needs log |Sp

n| = Ω(log2 n) bits.

Lemma IV.3. For every length n and integer δ ∈ [2 . . ⌈ 3n
4 ⌉), there exists a family of length-n strings of common measure δ

that needs Ω(δ log2 n
δ) bits to be encoded.

Proof. As in the proof of Lemma III.2, we prove that the measure δ for any string S ∈ Sp

n is at most 2. Starting from position

4j−1 + 1, the distance between any two consecutive bs is at least 4j . Therefore, the distinct substrings of length k ≤ 4j are

those that start at position i ∈ [1 . . 4j−1] and those of the form a
k or a

i
ba

k−i−1 for i ∈ [0 . . k), which yields a total of

dk(S) ≤ 4j−1 + k + 1. Choosing j = ⌈log4 k⌉, we get dk(S) ≤ 4⌈log4 k⌉−1 + k + 1 ≤ 4log4 k + k = 2k. By definition of δ,

we conclude that δ(S) ≤ 2 for every S ∈ Sp

n. Thus, by Lemma IV.2, encoding Sp

n requires Ω(δ log2 n
δ) bits.

We now generalize the result to larger δ. As in the proof of Theorem III.3, let m ≥ 1, n ≥ 4m−1, and n−m+1 =
∑m

i=1 ni,

where ni = Ω(n
m) and ni ≥ 3. Let S(i), of length ni, be built from some S ∈ Sp

ni , with a replaced by ai and b replaced

by bi. Finally, let S∗ = S(1) $1 S
(2) $2 · · · $m−1 S

(m). Since dk(S
(i)) ≤ 2k as per the previous paragraph, it holds, just as

in the proof of Theorem III.3, that δ(S∗) = 3m − 1. Let S∗
n be the set of possible strings S∗ of length n we obtain by

choosing the strings S(i). Even fixing the lengths ni, we have |S∗
n| =

∏m
i=1 2

Ω(log2 ni), and thus we need at least log |S∗
n| =

∑m
i=1 Ω(log

2 ni) = Ω(m log2 n
m) = Ω(δ log2 n

δ) bits to encode a member of the family. The case where δ < 3
4n is not of the

form 3m− 1 is handled as in the proof of Theorem III.3.

Lemma IV.4. For every length n and integer δ ∈ [2 . . n], there exists a family of length-n strings of common measure δ that

needs Ω(δ log n
δ log δ) bits to be encoded.

Proof. Recall the string Sn of Definition III.1 and fix an integer m ≥ 1. Let Sr

n ⊆ {a, b1, . . . , bm}n be the family of

strings obtained from Sn by replacing every b with br for some r ∈ [1 . .m]. Since |Sr

n| = m1+⌊logn⌋, we need at least

log |Sr

n| = Ω(log n logm) bits to represent a string in Sr

n.

On the other hand, as in the proof of Lemma III.2, the distinct substrings of length k ≤ 2j in Sr

n ∈ Sr

n are those starting

in Sr

n[1 . . 2
j−1] and those of the form a

k or aibra
k−i−1 for i ∈ [0 . . k) and r ∈ [1 . .m]. Thus, dk(S

r

n) ≤ 2j−1 + 1 + km.

Choosing j = ⌈log k⌉, we get dk(S
r

n) ≤ k(m+ 1), and therefore δ(Sr

n) ≤ m+ 1.

5

Similarly to the proof of Theorem III.3, let n ≥ 4m − 1 and n − 3m + 1 =
∑m

i=1 ni, where ni = Ω(n
m) are positive

integers. Let us choose any S
(i)
ni ∈ Sr

ni
and define S∗ = S

(1)
n1

$1 S
(2)
n2

$2 · · · $m−1 S
(m)
nm S′, where, in principle, S′ = a

2m.

Consider the distinct length-k substrings of S∗ for k ≤ 2j . These include the (at most) k(m − 1) substrings containing a

delimiter $i (with i ∈ [1 . . k)) and the (at most) 2j−1 ·m substrings starting within the first 2j−1 position of some S
(i)
ni (with

i ∈ [1 . . k]). As argued in the previous paragraph, the remaining substrings are of the form a
k or aibra

k−i−1 for r ∈ [1 . .m]

and i ∈ [1 . . k); note that this analysis includes substrings overlapping S
(m)
nm and S′ = a

2m despite the lack of delimiter between

them. Consequently, we get dk(S
∗) ≤ k(m − 1) + 2j−1m + km + 1 ≤ (3m − 1)k, setting j = ⌈log k⌉. At the same time,

m+1 ≤ d1(S
∗) ≤ 2m, because S∗ contains m− 1 delimiters, a, and between 1 and m distinct symbols br with r ∈ [1 . .m].

We conclude that m + 1 ≤ δ(S∗) ≤ 3m − 1. We now modify S′ so that δ(S∗) = 3m − 1. For this, we replace the

subsequent symbols S′[2m], S′[2m− 1], . . . by fresh delimiters $m, $m+1, . . ., stopping as soon as dk(S
∗) ≥ (3m− 1)k holds

for some k ∈ [1 . . n]. Since each value dk(S
∗) grows by at most 1 per delimiter added, we have δ(S∗) = 3m − 1 upon

termination of the process. Moreover, d1(S
∗) grows by exactly 1 per delimiter added, so the process terminates in at most

3m− 1− (m+ 1) = 2m− 2 steps, which means that S′ is long enough to fit the delimiters.

We then obtain a family of possible strings S∗[1 . . n] of common measure δ = 3m− 1. Note that the suffix S′ is uniquely

determined by the prefix containing the strings S
(i)
ni . Even fixing the lengths ni, the number of possible strings S∗ we obtain

by choosing the strings S
(i)
ni is

∏m
i=1 |S

r

ni
| =

∏m
i=1 m

1+⌊log ni⌋ >
∏m

i=1 m
logni . We thus need at least

∑m
i=1 logni logm =

Ω(m log n
m logm) = Ω(δ log n

δ log δ) bits to encode a member of the family.

The case where δ < 3
4n is not of the form 3m−1 is handled as in the proof of Theorem III.3. For δ ≥ 3

4n, on the other hand,

we construct a different family of length-n strings with common measure δ, with strings of the form S = $π(1) · · · $π(δ) · $
n−δ
π(δ)

for a permutation π of [1 . . δ]. Each length k ∈ [1 . . n] satisfies dk(S) = min(δ, n− k + 1), so δ(S) = δ. Since there are δ!
possible strings S, we need Ω(δ log δ) = Ω(δ log n

δ log δ) bits to represent family members.

From the two lemmas above, we obtain the desired result:

Theorem IV.5. For every length n and integer δ ∈ [2 . . n], there exists a family of length-n strings of common measure δ that

needs Ω(δ log n
δ logn) bits to be encoded.

Proof. Follows from Lemmas IV.3 and IV.4 since max(log δ, log n
δ) = Ω(logn) and since log δ = Ω(log n

δ) for δ ≥ ⌈ 3n
4 ⌉.

V. BOUNDS ON GRAMMAR SIZES

In this section, we study the relation between δ and the sizes of the smallest context-free grammar and run-length context-free

grammar generating S, denoted by g and grl, respectively. As observed in Section II, Lemma II.2 implies g ≤ grl = O(δ log2 n
δ).

Our first contribution is a lower bound construction for g: for every length n and value δ ∈ [2 . . n], we construct a string S
satisfying g = Ω(δ log2 n

δ / log log
n
δ).

Rather surprisingly, the situation for run-length context-free grammars is very different: we prove that grl = O(δ log n
δ),

which is tight due to Theorem III.3 and grl = Ω(γ). Our argument is constructive and we derive a randomized algorithm that,

in O(n) expected time, constructs a run-length context-free grammar of size O(δ log n
δ) generating a given string S.

A. A lower bound on grammar size

For convenience, among all context-free grammars generating a single string S, we only consider straight-line programs

(SLPs), where the right-hand side of each production is of size exactly 2. We denote by slp(S) the minimum number of

symbols (terminals and non-terminals) in any SLP generating S. Each context-free grammar generating S can be transformed

to an SLP, and thus slp(S) = Θ(g(S)) holds for every string S.

Our construction relies on the family Sp

n of Definition IV.1 and the following consequence of Lemma IV.2.

Corollary V.1. For every integer n ≥ 1, there exists a string Sp

n ∈ Sp

n satisfying slp(Sp

n) = Ω(log2 n/ log logn).

Proof. Recall that each string S ∈ Sp

n is binary and therefore can be encoded in O(slp(S) log slp(S)) bits: every symbol is

assigned a ⌈log slp(S)⌉-bit identifier (with 0 and 1 reserved for a and b, respectively) so that each production is encoded

using O(log slp(S)) bits. At the same time, Lemma IV.2 proves that every encoding distinguishing members of Sp

n requires

Ω(log2 n) bits. In particular, our SLP-based encoding uses Ω(log2 n) bits for some string S
p

n ∈ Sp

n. This string satisfies

slp(S
p

n) log slp(S
p

n) = Ω(log2 n), and therefore slp(S
p

n) = Ω(log2 n/ log logn).

Note that the proof of Corollary V.1 does not apply to run-length context-free grammars because a production of the

form A → Bt may need Θ(log t) bits to represent the exponent t. In fact, since δ(Sp

n) = 2 holds for n ≥ 3, the upper

bound grl = O(δ log n
δ) proved in the next section shows that grl(S

p

n) = O(log n); generalizing Corollary V.1 to run-length

context-free grammars is therefore inherently impossible.

Corollary V.1 shows that g = Ω(δ log2 n
δ / log log

n
δ) is possible for δ = 2 and any length n ≥ 3. We generalize this

construction to arbitrary δ ∈ [2 . . n] as in the proof of Lemma IV.3. Our argument requires the following auxiliary lemma.

6

Lemma V.2. Consider a string S = L·R. If the alphabets Σ(L) of L and Σ(R) of R are disjoint, then slp(S) ≥ slp(L)+slp(R).

Proof. Our goal is to construct SLPs generating L and R with slp(S) symbols in total. Let us fix an SLP generating S
with slp(S) symbols. To generate L (R), we start from the SLP of S and remove every terminal not in Σ(L) (Σ(R)). Then,

transitively remove nonterminals with empty right-hand sides and suppress nonterminals with right-hand sides of length 1.

Now consider a rule A → BC in the SLP of S: either C disappears in the SLP that generates L, or B disappears in the

SLP that generates R, or both. In all cases, the rule survives in at most one of the two SLPs; therefore the total number of

symbols in the SLPs we build for L and R is at most slp(S). Consequently, slp(L) + slp(R) ≤ slp(S).

Theorem V.3. For every length n and integer value δ ∈ [2 . . n], there is a string S[1 . . n] with g = Ω(δ log2 n
δ / log log

n
δ).

Proof. As in the proof of Lemma IV.3, let m ≥ 1, n ≥ 4m − 1, and n − m + 1 =
∑m

i=1 ni, where ni = Ω(n
m) and

ni ≥ 3. Moreover, let S = S(1) $1 S
(2) $2 · · · $m−1 S

(m), where S(i) is obtained from the string S
p

ni ∈ Sp

ni of Corollary V.1 by

replacing every a with ai and every b with bi. Note that S belongs to the family constructed in the proof of Lemma IV.3, and

thus δ(S) = 3m− 1. Furthermore, since the alphabets of strings S(i) (for i ∈ [1 . .m]) and $i (for i ∈ [1 . .m)) are pairwise

disjoint, Lemma V.2 yields slp(S) ≥
∑m

i=1 slp(S
(i)) =

∑m
i=1 slp(S

p

ni) = Ω(m log2 n
m/ log log n

m).
This construction proves the theorem for δ = 3m− 1 and n ≥ 4m− 1. The case where δ < 3

4n is not of the form 3m− 1
is handled as in the proof of Theorem III.3. Finally, we note that if δ ≥ 3

4n = Ω(n), then the claim reduces to g = Ω(δ) and

therefore follows from Lemma II.4 due to γ = O(g).

B. An upper bound on run-length grammar size

In this section, we prove that every string S ∈ Σn can be generated using a run-length context-free grammar of size

O(δ log n
δ). We obtain our grammar in the process of building a locally consistent parsing on top of S. Our parsing is based

on the recompression technique by Jeż [16], who used it to design a simple O(n)-time algorithm constructing a (standard)

context-free grammar of size O(z log n
z). More specifically, we rely on a very recent restricted recompression by Kociumaka et

al. [37], which delays processing symbols generating long substrings. Birenzwige et al. [38] applied a similar idea to transform

the locally consistent parsing of Sahinalp and Vishkin [39].

1) Run-length grammar construction via restricted recompression: Both recompression and restricted recompression, given

a string S ∈ Σ+, construct a sequence of strings (Sk)
∞
k=0 over the alphabet A of symbols defined as the least fixed point of

the following equation:

A = Σ ∪ (A×A) ∪ (A× Z≥2).

Symbols in A \ Σ are non-terminals with productions (A1, A2) → A1A2 for (A1, A2) ∈ A × A and (A1,m) → Am
1 for

(A1,m) ∈ A×Z≥2. With any A ∈ A designated as the start symbol, this yields a run-length straight-line program (RLSLP).

The following expansion function exp : A → Σ+ retrieves the string generated by this RLSLP:

exp(A) =











A if A ∈ Σ,

exp(A1) · exp(A2) if A = (A1, A2) for A1, A2 ∈ A,

exp(A1)
m if A = (A1,m) for A1 ∈ A and m ∈ Z≥2.

Intuitively, A forms a universal RLSLP: for every RLSLP with symbols S and non-terminals Σ ⊆ S, there is a unique

homomorphism f : S → A such that f(A) = A if A ∈ Σ, f(A) → f(A1)f(A2) if A → A1A2, and f(A) → f(A1)
m if

A → Am
1 . As a result, A provides a convenient formalism to argue about procedures generating RLSLPs.

The main property of strings (Sk)
∞
k=0 generated using (restricted) recompression is that exp(Sk) = S holds for all k ∈ Z≥0,

where exp : A → Σ+ is lifted to exp : A∗ → Σ∗ by setting exp(A1 · · ·Aa) = exp(A1) · · · exp(Aa) for A1 · · ·Aa ∈ A∗.

The subsequent strings Sk, starting from S0 = S, are obtained by alternate applications of the following two functions which

decompose a string T ∈ A+ into blocks and then collapse blocks into appropriate symbols. In Definition V.4, all blocks of

length at least 2 are maximal blocks of the same symbol, and they are collapsed to symbols in A × Z≥2. In Definition V.5,

there are no blocks of length more than 2, and all blocks of length 2 are collapsed to symbols in A×A.

Definition V.4 (Restricted run-length encoding [37]). Given T ∈ A+ and B ⊆ A, we define rleB(T) ∈ A+ to be the string

obtained as follows by decomposing T into blocks and collapsing these blocks:

1) For i ∈ [1 . . |T |), place a block boundary between T [i] and T [i+ 1] unless T [i] = T [i+ 1] ∈ B.

2) Replace each block T [i . . i+m) = Am of length m ≥ 2 with a symbol (A,m) ∈ A.

Definition V.5 (Restricted pair compression [37]). Given T ∈ A+ and disjoint sets L,R ⊆ A, we define pcL,R(T) ∈ A+ to

be the string obtained as follows by decomposing T into blocks and collapsing these blocks:

1) For i ∈ [1 . . |T |), place a block boundary between T [i] and T [i+ 1] unless T [i] ∈ L and T [i+ 1] ∈ R.

2) Replace each block T [i . . i+ 1] of length 2 with a symbol (T [i], T [i+ 1]) ∈ A.

7

The original recompression uses rleB with B = A and pcL,R with A = L ∪R. In the restricted version, symbols in A \ B
and A\ (L∪R), respectively, are forced to form length-1 blocks. In the kth round of restricted recompression, this mechanism

is applied to symbols A whose expansion exp(A) is longer than a certain threshold ℓk.

With this intuition, we are now ready to formally define the sequence (Sk)
∞
k=0 constructed through restricted recompression.

Construction V.6 (Restricted recompression [37]). Given a string S ∈ Σ+, the strings Sk for k ∈ Z≥0 are constructed as

follows, based on ℓk := (87)
⌈k/2⌉−1 and Ak := {A ∈ A : | exp(A)| ≤ ℓk}:

• If k = 0, then Sk = S.

• If k > 0 is odd, then Sk = rleAk
(Sk−1).

• If k > 0 is even, then Sk = pcLk,Rk
(Sk−1), where Ak = Lk ∪Rk is a uniformly random partition into disjoint classes.

It is easy to see that exp(Sk) = S indeed holds for all k ∈ Z≥0. As we argue below, almost surely (with probability 1),

there exists h ∈ Z≥0 such that |Sh| = 1. In particular, an RLSLP generating S can be obtained by setting Sh[1] as the

starting symbol of the RLSLP derived from by A. While this RLSLP contains infinitely many symbols, it turns out that we can

remove symbols that do not occur in any string Sk. Formally, for each k ∈ Z≥0, let us define the family Sk := {Sk[j] : j ∈
[1 . . |Sk|]} ⊆ A of symbols occurring in Sk. Observe that each symbol in S0 belongs to Σ and, for k ∈ Z+, each symbol in

Sk was either copied from Sk−1 or obtained by collapsing a block in Sk−1. Consequently, the family S :=
⋃∞

k=0 Sk satisfies

S ⊆ Σ ∪ (S × S) ∪ (S × Z≥2). In other words, for every non-terminal A ∈ S, the symbols on the right-hand side of the

production of A also belong to S. Hence, the remaining symbols can indeed be removed from the RLSLP generating S. As

the size of resulting run-length context-free grammar is proportional to |S|, we are left with the task of bounding E[|S|].
2) Analysis of the grammar size: Our argument relies on several properties of restricted recompression proved in [37]. Due

to the current status of [37] being an unpublished manuscript, the proofs are provided in Appendix A for completeness.

Fact V.7 ([37]). For every k ∈ Z≥0, if exp(x) = exp(x′) holds for two fragments of Sk, then x = x′.

Corollary V.8 ([37]). For every odd k ∈ Z≥0, there is no j ∈ [1 . . |Sk|) such that Sk[j] = Sk[j + 1] ∈ Ak+1.

Recall that exp(Sk) = S for every k ∈ Z≥0. Hence, for every j ∈ [1 . . |Sk|], we can associate Sk[j] with a fragment

S(| exp(Sk[1 . . j))| . . | exp(Sk[1 . . j])|] = exp(Sk[j]); these fragments are called phrases (of S) induced by Sk. We also define

a set Bk of phrase boundaries induced by Sk:

Bk = {| exp(Sk[1 . . j])| : j ∈ [1 . . |Sk|)}.

Lemma V.9 ([37]). Let α ∈ Z≥1 and let i, i′ ∈ [α . . n − α] be such that S(i − α . . i + α] = S(i′ − α . . i′ + α]. For every

k ∈ Z≥0, if α ≥ 16ℓk, then i ∈ Bk ⇐⇒ i′ ∈ Bk.

Lemma V.10 ([37]). For every k ∈ Z≥0, we have E[|Sk|] < 1 + 4n
ℓk+1

.

Lemma V.10 can be used to confirm that almost surely |Sk| = 1 holds for some k ∈ Z≥0.

Corollary V.11. With probability 1, there exists k ∈ Z≥0 such that |Sk| = 1.

Proof. For a proof by contradiction, suppose that ε := Pr[min∞k=0 |Sk| > 1] > 0. In particular, this yields E[|Sk|] ≥ 1 + ε for

every k ∈ Z≥0. However, Lemma V.10 implies limk→∞ |Sk| ≤ 1 + limk→∞
4n

ℓk+1
= 1, a contradiction.

Our main goal is to prove that E[|S|] = O(δ log n
δ) (Corollary V.17). As a stepping stone, we show that E[|Ak+1∩Sk|] = O(δ)

holds for all k ∈ Z≥0 (Lemma V.14). The restriction to symbols in Ak+1 is not harmful because every symbol in Sk that does

not belong to Ak+1 forms a length-1 block that gets propagated to Sk+1. The strategy behind the proof of Lemma V.14 is to

consider the phrases induced by the leftmost occurrences of all symbol in Ak+1 ∩ Sk. Using Lemma V.9, we construct O(δ)
fragments of S of total length O(ℓkδ) guaranteed to overlap all these phrases, and we show that these fragments in expectation

overlap O(δ) phrases induced by Sk. The latter claim is a consequence of the following generalization of Lemma V.10.

Lemma V.12. For every k ∈ Z≥0 and every interval I ⊆ [1 . . n), we have

E[|Bk ∩ I|] < 1 + 4|I|
ℓk+1

.

Proof. We proceed by induction on k. For k = 0, we have |Bk ∩ I| = |I| < 1 + 4|I| = 1 + 4|I|
ℓ1

. If k is odd, we note that

Bk ⊆ Bk−1 and therefore E[|Bk ∩ I|] ≤ E[|Bk−1 ∩ I|] < 1+ 4|I|
ℓk

= 1+ 4|I|
ℓk+1

. Thus, it remains to consider even values k > 0.

Claim V.13. If k > 0 is even, then, conditioned on any fixed Sk−1, we have E
[

|Bk ∩ I|
∣

∣ Sk−1

]

< 1
4 + |I|

2ℓk
+ 3

4 |Bk−1 ∩ I|.

8

Proof. Let us define

J = {j ∈ [1 . . |Sk−1|) : Sk−1[j] /∈ Ak or Sk−1[j + 1] /∈ Ak},

JI = {j ∈ J : | exp(Sk−1[1 . . j])| ∈ I} ⊆ Bk−1 ∩ I.

Since A /∈ Ak yields | exp(A)| > ℓk, we have |JI | < 1 + 2|I|
ℓk

. Moreover, observe that if j ∈ [1 . . |Sk−1|) \ J , then Sk−1[j]
and Sk−1[j + 1] are, by Corollary V.8, distinct symbols in Ak. Consequently,

Pr[Sk−1[j] ∈ Lk and Sk−1[j + 1] ∈ Rk] =
1
4 .

Thus, the probability that pcLk,Rk
(Sk−1) places a block boundary after position j ∈ [1 . . |Sk−1|) \ J is 3

4 . Therefore,

E
[

|Bk ∩ I|
∣

∣ Sk−1

]

= |JI |+
3
4 (|Bk−1 ∩ I| − |JI |) =

1
4 |JI |+

3
4 |Bk−1 ∩ I| < 1

4 + |I|
2ℓk

+ 3
4 |Bk−1 ∩ I|.

Since the partition Ak = Lk ∪Rk is independent of Sk−1, Claim V.13 and the inductive assumption yield

E[|Bk ∩ I|] < 1
4 + |I|

2ℓk
+ 3

4E[|Bk−1 ∩ I|] < 1
4 + |I|

2ℓk
+ 3

4 + 3|I|
ℓk

= 1 + 7|I|
2ℓk

= 1 + 4|I|
ℓk+1

.

Next, we apply Lemmas V.9 and V.12 to bound the expected size of Sk ∩Ak+1.

Lemma V.14. For every k ∈ Z≥0 and every string S ∈ Σ+ with measure δ, we have E[|Sk ∩ Ak+1|] = O(δ).

Proof. Let us fix integers α ≥ 16ℓk and m = 2α+ ⌊ℓk+1⌋. Moreover, define

L = {i ∈ [0 . . n−m] : S(i . . i+m] = S(i′ . . i′ +m] for some i′ ∈ [0 . . i)}

and

P = {i ∈ [1 . . n] : i− α /∈ L}.

Claim V.15. We have |Sk ∩ Ak+1| ≤ 1 + |Bk ∩ P |.

Proof. Let Sk[j] be the leftmost occurrence in Sk of A ∈ Ak+1 ∩ Sk. Moreover, let p = | exp(Sk[1 . . j))| and q =
| exp(Sk[1 . . j])| so that S(p . . q] = exp(A) is the phrase induced by Sk corresponding to Sk[j].

We shall prove that j = 1 or p ∈ Bk ∩ P . This will complete the proof of the claim because distinct symbols A yield

distinct positions j and p.

For a proof by contradiction, suppose that j ∈ (1 . . |Sk|) yet p /∈ Bk∩P . Since p ∈ Bk holds due to j > 1, we derive p /∈ P ,

which implies p−α ∈ L. Consequently, there is a position p′ ∈ [α . . p) such that S(p−α . . p−α+m] = S(p′−α . . p′−α+m].
In particular, S(p − α . . p + α] = S(p′ − α . . p′ + α], so Lemma V.9 yields p′ ∈ Bk. Similarly, due to q − p = | exp(A)| ≤
⌊ℓk+1⌋ = m− 2α, we have S(q − α . . q + α] = S(q′ − α . . q′ + α] for q′ := p′ + | exp(A)|, and therefore q′ ∈ Bk holds due

to q ∈ Bk. Lemma V.9 further implies Bk ∩ (p′ . . q′) = ∅ = Bk ∩ (p . . q). Consequently, S(p′ . . q′] is a phrase induced by Sk,

and, since p′ < p, it corresponds to Sk[j
′] for some j′ < j. By Fact V.7, we have Sk[j

′] = Sk[j] = A, which contradicts the

choice of Sk[j] as the leftmost occurrence of A in Sk.

Consequently, it remains to prove that E[|Bk ∩ P |] = O(δ). For this, we characterize P as follows.

Claim V.16. The set P can be covered by O(δ) intervals of total length O(mδ).

Proof. Note that P ′ =
⋃

i∈P (i−α . . i+m−α] is a superset of P . Moreover, each position j ∈ P ′∩ [m. . n−m] is contained

in the leftmost occurrence of a length-m substring of S and then S(j −m. . j +m] is the leftmost occurrence of a length-2m
substring of S. Consequently, |P ′ ∩ [m. . n − m]| ≤ 2mδ. Since P ′ \ [m. . n −m] = (1 − α . .m) ∪ (n −m. . n + m − α]
is of size O(m), we conclude that |P ′| = O(mδ). Next, recall that P ′ is a union of length-m integer intervals. Merging

overlapping intervals, we get a decomposition into disjoint intervals of length at least m. The number of intervals does not

exceed 1
m |P ′| = O(δ).

Now, let I be the family of intervals covering P obtained using Claim V.16. For each I ∈ I, Lemma V.12 implies

E[|Bk ∩ I|] ≤ 1 + 4|I|
ℓk+1

. By linearity of expectation and the bounds in Claim V.16, this yields the claimed result:

E[|Bk ∩ P |] ≤ |I|+ 4
ℓk+1

∑

I∈I

|I| = O(δ + 4δm
ℓk+1

) = O(δ).

The proof of our main bound E[|S|] = O(δ log n
δ) combines Lemmas V.10 and V.14.

Corollary V.17. For every string S of length n and measure δ, we have E[|S|] = O(δ log n
δ).

Proof. Note that |S| ≤ 1+
∑∞

k=0 |Sk \Sk+1|. We combine two upper bounds on E[|Sk \Sk+1|], following from Lemmas V.10

and V.14, respectively.

9

First, we observe that Construction V.6 guarantees Sk \Sk+1 ⊆ Sk∩Ak+1 and thus E[|Sk \Sk+1|] ≤ E[|Sk∩Ak+1|] = O(δ)
holds due to Lemma V.14. Secondly, we note that |Sk \Sk+1| = 0 if |Sk| = 1 and |Sk \Sk+1| ≤ |Sk| otherwise. Consequently,

Markov inequality and Lemma V.10 yield

E[|Sk \ Sk+1|] ≤ E[|Sk|]− P[|Sk| = 1] = E[|Sk|]− 1 + P[|Sk| ≥ 2] = E[|Sk|]− 1 + P[|Sk| − 1 ≥ 1]

≤ E[|Sk|]− 1 + E[|Sk| − 1] = 2E[|Sk|]− 2 ≤ 8n
ℓk+1

.

Thus, E[|Sk \ Sk+1|] = O((78)
k/2n).

We apply the first or the second upper bound on E[|Sk \ Sk+1|] depending on whether k ≥ 2 log8/7
n
δ . This yields

∞
∑

k=0

E[|Sk \ Sk+1|] = log8/7
n
δ · O(δ) +

∞
∑

i=0

O
(

(78)
i/2δ

)

= O(δ log n
δ).

Consequently, E[|S|] = 1 +O(δ log n
δ) = O(δ log n

δ) holds as claimed.

Finally, we note that Corollaries V.11 and V.17 allow bounding the size of the smallest run-length grammar generating S.

Theorem V.18. Every string S[1 . . n] satisfies grl = O(δ log n
δ).

Proof. We apply Construction V.6 on top of the given string S. By Corollaries V.11 and V.17, the random choices within

Construction V.6 can be fixed so that |S| = O(δ log n
δ) and |Sk| = 1 holds for sufficiently large k. We build a run-length

grammar with symbols S. Each symbol A ∈ Σ is a terminal symbol, each symbol A = (A1, A2) ∈ A×A is associated with

a production A → A1A2, and each symbol A = (A1,m) ∈ A×Z≥2 is associated with a production A → Am
1 . It easy to see

that the auxiliary symbols A1, A2 belong to S and that the expansion of each symbol A (within the grammar) is exp(A). In

particular, if we set the only symbol of Sk for sufficiently large k as the starting symbol, then the grammar generates S.

C. Efficient construction of a small run-length grammar

In this section, we convert the proof of Theorem V.18 to a fast algorithm generating a run-length grammar of size O(δ log n
δ).

Proposition V.19. There exists a randomized algorithm that, given a string S of length n and measure δ, in O(n) expected

time constructs a run-length grammar of expected size O(δ log n
δ) generating S.

Proof. The algorithm simulates Construction V.6 constructing S, which can be interpreted as a grammar generating S (see the

proof of Theorem V.18). Each symbol A ∈ Σ is stored explicitly, each symbol A = (A1, A2) ∈ A ×A keeps pointers to A1

and A2, and each symbol A = (A1,m) ∈ A× Z≥2 keeps m and a pointer to A1. Additionally, each symbol A is augmented

with | exp(A)| and an identifier idk(A) for every k such that A ∈ Sk, where idk : Sk → [1 . . |Sk|] is a bijection. The inverse

mappings id
−1
k are implemented as arrays.

The string S0 = S is given as input. In order to construct S0 and id0, we sort the characters of S and assign them consecutive

positive integer identifiers. This step takes O(n) time due to the assumption σ = nO(1).

In order to construct Sk, Sk , and idk, we process Sk−1 depending on the parity of k. If k is odd, we scan Sk−1 from

left to right outputting subsequent symbols of Sk. Initially, each symbol A ∈ Sk is represented as (idk−1(A1),m) (if A =
(A1,m) ∈ Sk \ Sk−1) or as idk−1(A) (otherwise). Suppose that Sk−1[j . .] is yet to be processed. If | exp(Sk−1[j])| > ℓk or

Sk−1[j] 6= Sk−1[j+1], we output idk−1(Sk−1[j]) as the next symbol of Sk and continue processing Sk−1[j+1 . .]. Otherwise,

we determine the maximum integer m ≥ 2 such that Sk−1[j
′] = Sk−1[j] for j′ ∈ [j . . j +m), output (idk−1(Sk−1[j]),m) as

the next symbol of Sk, and continue processing Sk−1[j +m. .]. (By Fact V.7, (Sk−1[j],m) /∈ Sk−1 in this case.) Note that

the symbols in Sk are initially represented as elements of [1 . . |Sk−1|]∪ [1 . . |Sk−1|]2. Sorting these values allows constructing

symbols in Sk \ Sk−1 and the identifier function idk in O(|Sk−1|) time.

If k is even, we first randomly partition Ak into Lk and Rk . Technically, this step consists in iterating over symbols A ∈ Sk−1

and appropriately marking A if | exp(A)| ≤ ℓk. Next, we scan Sk−1 from left to right outputting subsequent symbols of Sk.

Initially, each symbol A in Sk is represented as (idk−1(A1), idk−1(A2)) (if A = (A1, A2) /∈ Sk−1) or as idk−1(A) (otherwise).

Suppose that Sk−1[j . .] is yet to be processed. If Sk−1[j] /∈ Lk or Sk−1[j + 1] /∈ Rk, we output idk−1(Sk−1[j]) as the next

symbol of Sk and continue processing Sk−1[j + 1 . .]. Otherwise, we output (idk−1(Sk−1[j]), idk−1(Sk−1[j + 1])) as the next

symbol of Sk and continue processing Sk−1[j + 2 . .]. (By Fact V.7, (Sk−1[j], Sk−1[j + 1]) /∈ Sk−1 in this case.) Note that

|Sk| ≤ |Sk−1| and that the characters of Sk are initially represented as elements of [1 . . |Sk−1|] ∪ [1 . . |Sk−1|]2. Sorting these

values allows constructing symbols in Sk \ Sk−1 and the identifier function idk in O(|Sk−1|) time.

The algorithm terminates when it encounters a string Sh with |Sh| = 1, marking the only symbol of Sh as the starting symbol

of the grammar. The overall running time is O(
∑h

k=0 |Sk|), which is O(
∑h

k=0
n

ℓk+1
) = O(n) in expectation by Lemma V.12.

The expected grammar size is O(δ log n
δ) by Corollary V.17.

Finally, we adapt the algorithm to output a small grammar in the worst case.

10

Theorem V.20. There exists a randomized algorithm that, given a string S of length n and measure δ, constructs a run-length

grammar of size O(δ log n
δ) generating S. The running time is O(n) in expectation and O(n log n) w.h.p.

Proof. We compute δ using Lemma II.5 and determine an upper bound on the expected size of the grammar produced using

Proposition V.19, as well as an upper bound on the expected running time of the algorithm of Proposition V.19.

Then, we repeatedly call the algorithm of Proposition V.19 with a time limit of 4 times the expected running time. If the

call does not finish within the limit, we interrupt the execution and proceed to the next call. Similarly, we proceed to the next

call if the size of the produced grammar exceeds 4 times the expected size. Otherwise, the grammar is of size O(δ log n
δ), so

return it to the output.

By Markov’s inequality, each call is successful with probability at least 1
2 . Consequently, the number of calls is constant in

expectation and O(log n) with high probability. Since each call has a time limit of O(n), this yields the claimed upper bounds

on the overall running time.

VI. ACCESSING AND INDEXING IN δ-BOUNDED SPACE

Christiansen et al. [27, Appendix A] showed how, given a run-length context-free grammar of size grl generating a string S,

we can build a data structure of size O(grl) that supports access and indexed searches on S. A direct corollary of their results

and Theorem V.20 is that we can not only represent a string within O(δ log n
δ) space, but also support fast access and indexed

searches within that space. We can also support the computation of Karp–Rabin signatures [40] on arbitrary substrings of S.

Corollary VI.1. Given a string S[1 . . n] with measure δ, there exists a data structure of size O(δ log n
δ) that can be built in

O(n log n) expected time and (1) can retrieve any substring S[i . . i+ ℓ] in time O(ℓ+logn), (2) can compute the Karp–Rabin

fingerprint of any substring of S in time O(log n), and (3) can report the occ occurrences of any pattern P [1 . .m] in S in

time O(m log n+ occ logǫ n), for any constant ǫ > 0 fixed at construction time.

Proof. Points (1), (2), and (3) follow from Theorem V.20 combined with Theorems A.1, A.3, and A.4 of Christiansen et

al. [27], respectively. Those structures are built in O(n log n) expected time, which dominates the O(n) expected time needed

to build the run-length grammar.

On the other hand, no known O(grl)-space index can efficiently count the number of times P [1 . .m] occurs in S. Christiansen

et al. [27, Appendix A] instead show an index of size O(g) that can count in time O(m log2+ǫ n) for any fixed constant ǫ > 0.

We now show that the same can be obtained within space O(δ log n
δ). Though this space is always Ω(grl) (Theorem V.18), it

can be o(g) (Theorem V.3).

Later, we show how the results of Corollary VI.1 can be improved in some cases by using block trees [35] instead of

grammars. The block tree is a data structure designed to represent repetitive strings S[1 . . n] in O(z log n
z) space while

accessing individual symbols of S and computing fingerprints in time O(log n
z), that is, faster than in Corollary VI.1 when z

is not too small. We show that the block tree is easily tuned to use the worst-case-optimal O(δ log n
δ) space while retaining

its access time.

A. Counting

As explained, it is possible to count how many times P [1 . .m] occurs in S in space proportional to any context-free grammar

generating S. The idea, however, has not been extended to handle run-length rules of the form A → Bt. Christiansen et al. [27,

Section 7] accomplished this only for their particular run-length context-free grammar, of size O(γ log n
γ). We now show that

their result can be carried over to our run-length grammar of Section V.

We start proving a technical point about our grammar, which we will need to establish the result.

Definition VI.2 ([41]). A period of a string S[1 . . n] is a positive integer p such that S[p+ 1 . . n] = S[1 . . n− p]. We denote

the smallest period of S with per(S).

Lemma VI.3 (cf. [20, Lemma 6.17]). For every rule of the form A → Bt in our run-length grammar, per(exp(A)) = | exp(B)|.

Proof. Observe that | exp(B)| is a period of exp(A) because exp(A) = exp(B)t. Thus, by the Periodicity Lemma [42],

per(exp(A)) = per(exp(B)) = 1
s | exp(B)| holds for some integer s ≥ 1. For a proof by contradiction, suppose that s > 1.

Let ℓ be the minimum level such that A occurs in Sℓ, and let us fix an occurrence of A in Sℓ. In each string Sk with

k ∈ [0 . . ℓ], this occurrence corresponds to a fragment xk satisfying exp(xk) = exp(A). Note that xℓ = A and xℓ−1 = Bt.

Consequently, for each k ∈ [0 . . ℓ), we have xk = Y t
k for some string Yk ∈ A+; in particular, Y0 = exp(B) and Yℓ−1 = B.

Let us fix the largest k ∈ [0 . . ℓ) such that Yk = Zs
k for some string Zk ∈ A+; note that k is well defined due to

per(Y0) =
1
s |Y0| and k < ℓ − 1 due to per(Yℓ−1) = |Yℓ−1| = 1.

Let us decompose xk into st equal-length fragments xk = zk,1 · · · zk,st, and note that zk,i = Zk for i ∈ [1 . . st]. Consider

the partition of Sk into blocks that are then collapsed to form Sk+1. Since xk gets collapsed to xk+1, block boundaries are

placed before zk,1 and after zk,st. Since zk,1 · · · zk,s = Yk gets collapsed to a fragment matching Yk+1, a block boundary is

11

also placed between zk,s and zk,s+1. However, according to Definitions V.4 and V.5, block boundaries are placed solely based

on the two adjacent symbols, and therefore a block boundary is placed between every Zk[|Zk|] and Zk[1] and, in particular,

between zk,i and zk,i+1 for all i ∈ [1 . . st). Consequently, each fragment zk,i is collapsed to a fragment of Sk+1, which we

denote zk+1,i. Since exp(zk+1,i) = exp(zk,i) = exp(Zk) holds for all i ∈ [1 . . st], Fact V.7 yields a string Zk+1 ∈ A+

satisfying zk+1,i = Zk+1 for all i ∈ [1 . . st]. This implies Yk+1 = Zs
k+1, contradicting the choice of k. Hence, s = 1.

We are now ready to establish the main result.

Theorem VI.4. Given a string S[1 . . n] with measure δ, there exists a data structure of size O(δ log n
δ) that can be built in

O(n log n) expected time and can count the number of times any pattern P [1 . .m] occurs in S in time O(m log2+ǫ n), for

any constant ǫ > 0 fixed at construction time.

Proof. We use the technique that Christiansen et al. [27, Section 7] developed for their particular run-length grammar. The

only point where their structure requires some specific property of their grammar is their Lemma 7.2, which we have reproved

for our grammar as Lemma VI.3.

The total space is proportional to the size of the grammar, which in our case is O(δ log n
δ). Their expected construction

time is O(n log n), which dominates the time to build our run-length grammar. From the time analysis in [27], it follows that

the query time is O(m log2+ǫ n) because we split P in m − 1 places, not just in O(logm) places as their special grammar

allows.

B. Block trees

Given integer parameters τ and s, the root of the block tree divides S into s equal-sized (that is, with the same number

of characters) blocks (assume for simplicity that n = s · τ t for some integer t).1 Blocks are then classified into marked and

unmarked. If two adjacent blocks B′, B′′ form the leftmost occurrence of the underlying substring B′ ·B′′, then both B′ and

B′′ are marked. Blocks B that remain unmarked are replaced by a pointer to the pair of adjacent blocks B′, B′′ that contains

the leftmost occurrence of B, and the offset ǫ ≥ 0 where B starts inside B′. Marked blocks are divided into τ equal-sized

sub-blocks, which form the children of the current block tree’s level, and processed recursively in the same way. Let σ be the

alphabet size. The level where the blocks’ lengths fall below logσ n contains the leaves of the block tree, whose blocks store their

plain string content using O(log n) bits. The height of the block tree is then h = O(logτ
n/s

logσ n) = O(logτ
n log σ
s logn) ⊆ O(log n

s).

The block tree construction guarantees that the blocks B′ and B′′ to which any unmarked block points exist and are marked.

Therefore, any access to a position S[i] can be carried out in O(h) time, by descending from the root to a leaf and spending

O(1) time in each level: To obtain B[i] from a marked block B, we simply compute to which sub-block B[i] belongs among

the children of B. To obtain B[i] from an unmarked block B pointing to B′, B′′ with offset ǫ, we switch either to B′[ǫ + i]
or to B′′[ǫ + i− |B′|], which are marked blocks.

By storing further data associated with marked and unmarked blocks, the block tree offers the following functionality [35]:

access:any substring S[i . . i+ ℓ− 1] is extracted in time O(h⌈ℓ/ logσ n⌉);
rank: the number of times symbol a occurs in S[1 . . i], denoted ranka(S, i), is computed in time O(h) by multiplying the

space by O(σ);
select: the position of the jth occurrence of symbol a in S, denoted selecta(S, j), is computed in time O(pred(s, n) +

h pred(τ, n)) by multiplying the space by O(σ), where pred(x, n) is the time of a predecessor query on a set of x
elements from the universe [1 . . n].

It is shown that there are only O(zτ) blocks in each level of the block tree (except the first, which has s block); therefore

the block tree size is O(s+ zτ logτ
n log σ
s logn).

1) Bounding the space in terms of δ: We now prove that there are only O(δτ) blocks in each level of the block tree except

the root level, and therefore, choosing s = δ yields a structure of size O(δτ logτ
n log σ
δ logn) with height O(logτ

n log σ
δ logn). For

τ = O(1), the space is O(δ log n
δ) and the height is O(log n

δ).
Let us call level k of the block tree the one where blocks are of length τk (recall that we assume n = s · τ t). In level k,

then, S is covered regularly with blocks B = S[τk(i − 1) + 1 . . τki] of length τk (though not all of them are present in the

block tree). Note that k reaches its maximum in the root (where we have the largest blocks) and the minimum in the leaves

of the block tree.

Lemma VI.5. The number of marked blocks of length τk in the block tree is O(δ).

Proof. Any marked block B must belong to a sequence of three blocks, B− · B · B+, such that B is inside the leftmost

occurrence of B− · B or B ·B+, or both (B− and B+ do not exist for the first and last block, respectively).

For the sake of computing our bound, let # be a symbol not appearing in S and let us add 2 · τk characters equal to #
at the beginning of S and 2τk characters equal to # at the end of S. We index the added prefix in negative positions (up to

1Otherwise, we simply pad S with spurious symbols at the end; whole spurious blocks are not represented. The extra space incurred is only O(τh) for a
tree of height h.

12

index 0), so that S[−2 · τk + 1 . . 0] = #2·τk

. Now consider all the τk text positions p belonging to a marked block B. The

long substring E = S[p− 2 · τk . . p+ 2 · τk − 1] centered at p, of length 4τk, contains B− ·B ·B+, and thus E contains the

leftmost occurrence L of B− ·B or B · B+. All those long substrings E must then be distinct: if two long substrings E and

E′ are equal, and E′ appears after E in S, then E′ does not contain the leftmost occurrence of any substring L.

Since we added a prefix of length 2 · τk and a suffix of length 2τk consisting of character # to S, the number of distinct

substrings of length 4τk is at most d4τk(S) + 4τk . Therefore, there can be at most d4τk(S) + 4τk long substrings E as well,

because they must all be distinct. Since each position p inside a block B induces a distinct long substring E, and each marked

block B contributes τk distinct positions p, there are at most (d4τk(S) + 4τk)/τk marked blocks B of length τk. The total

number of marked blocks of length τk is thus at most (d4τk(S) + 4τk)/τk = 4 · d4τk(S)/(4τk) + 4τk/τk ≤ 4δ + 4.

Since the block tree has at most O(δ) marked blocks per level, it has O(δτ) blocks across all the levels except the root

level. This yields the following result.

Theorem VI.6. Let S[1 . . n], over alphabet [1 . . σ], have measure δ. Then the block tree of S, with parameters τ and s, is of

size O(s+ δτ logτ
n log σ
s log n) words and height h = O(logτ

n log σ
s logn).

2) Operations on block trees: By properly parameterizing the block tree, we obtain a structure that uses the same asymptotic

space and, in some cases, extracts substrings faster than the result of Corollary VI.1.

Corollary VI.7. Let S[1 . . n], over alphabet [1 . . σ], have measure δ. Then a block tree of S can use O(δ log n
δ) space and

extract a substring of length ℓ from S in time O(⌈ℓ/ logσ n⌉ log
n
δ).

Proof. We obtain the desired space O(δ log n log σ
δ logn) ⊆ O(δ log n

δ) by using Theorem VI.6 with s = δ and τ = O(1). The

height is O(log n
δ), and thus the substring extraction costs O(⌈ℓ/ logσ n⌉ log

n
δ).

Navarro and Prezza [32] show how the Karp–Rabin signature of any S[i . . j] can be computed in time O(log n
γ) on their

Γ-tree variant of the block tree, which is of size O(γ log n
γ). We now extend their result so as to compute the fingerprint

φ(S[i . . j]) = φ(S[i]) ◦ φ(S[i + 1]) ◦ · · · ◦ φ(S[j]) for any group operator ◦ within O(δ log n
δ) space and using O(log n

δ)
group operations, by enhancing the original block trees. This includes computing the Karp–Rabin signature of S[i . . j] in time

O(log n
δ), because all the required group operations can be supported in constant time on those signatures [32].

Definition VI.8. Let Σ be an alphabet and (G, ◦,−1 , 0) a group. A function φ : Σ∗ → G is a fingerprint on Σ∗ if φ(ε) = 0
and φ(S · a) = φ(S) ◦ φ(a) for every S ∈ Σ∗ and a ∈ Σ.

Theorem VI.9. Let S[1 . . n] be a string on alphabet Σ, (G, ◦,−1 , 0) a group where log |G| = O(log n), and φ : Σ∗ → G a

fingerprint on Σ∗. Then there is a data structure of size O(δ log n
δ) that can compute any φ(S[i . . j]) in time O(log n

δ).

Proof. We use a block tree for S where the leaves handle only one symbol, and we augment it as follows. Together with every

stored block B = S[τk(i− 1)+1 . . τki] at every level k, we store its fingerprint φ(B) (using constant space). Furthermore, at

the top level, say level k = κ, we store the fingerprint φ(S[1 . . τκ(i − 1)]) at the block-tree node corresponding to the block

B = S[τκ(i − 1) + 1 . . τκi]. In addition, let B1, . . . , Bτ be the children at level k − 1 of a marked block B of level k. We

store, at each such child Bj , the fingerprint φ(B1 · · ·Bj−1).
We will compute any fingerprint φ(S[i . . j]) as φ(S[1 . . i − 1])−1 ◦ φ(S[1 . . j]); therefore we focus on computing only

fingerprints of the form φ(S[1 . . i]) for arbitrary i. At the top level κ, the prefix S[1 . . i] spans a sequence B1 · · ·Bt of blocks

followed by a (possibly empty) prefix C of block Bt+1. Since φ(B1 · · ·Bt) is explicitly stored at block Bt+1, the problem

reduces to computing φ(C) and then returning φ(B1 · · ·Bt) ◦ φ(C). The following is needed only if C 6= ε.

To compute the fingerprint of a prefix B[1 . . l] of an explicit block B at level k ≤ κ (so 1 ≤ l ≤ τk), we distinguish two

cases.

1) B is a marked block, with children B1, . . . , Bτ at level k− 1, so that B[l] belongs to the child Bj (i.e., j = ⌈l/τk−1⌉).

We then return φ(B1 · · ·Bj−1)◦φ(Bj [1 . . l mod τk−1]), where the first term is stored at Bj and the second is computed

from the next level (only necessary if l mod τk−1 6= 0).

2) B is an unmarked block, pointing to a previous occurrence inside B′ · B′′ at the same level k, with both B′ and B′′

marked. If the occurrence of B spans only one marked block, B′, then we replace B by B′ in our query and we are

back in case (1). Otherwise, let B[1 . . τk] = B′[i . . τk] · B′′[1 . . i − 1]. For each pointer of this kind in the block tree,

we store the fingerprint φ(B′[i . . τk]) at B. We consider two sub-cases.

a) If l ≥ τk − i+1, then B[1 . . l] = B′[i . . τk] ·B′′[1 . . l− (τk − i+1)]. We then return φ(B′[i . . τk]) ◦φ(B′′[1 . . l−
(τk − i+ 1)]), where the first term is stored at B and the second is a new prefix problem on level k, but now of

case (1).

b) If l < τk − i + 1, then B[1 . . l] = B′[i . . i + l − 1]. Although this is neither a prefix nor a suffix of a block,

note that B[1 . . l] · B′[i + l . . τk] = B′[i . . i + l − 1] · B′[i + l . . τk] = B′[i . . τk]. We then return φ(B′[i . . τk]) ◦
φ(B′[i + l . . τk])−1. The first fingerprint is stored at B, whereas the second is the fingerprint of the suffix of the

13

marked block B′. We compute it as φ(B′[i + l . . τk]) = φ(B′[1 . . i+ l − 1])−1 ◦ φ(B′), where φ(B′) is stored at

B′ and the first term is again the fingerprint of a prefix at the same level, but now of case (1).

To sum up, computing a prefix of an explicit block at level k reduces to the problem of computing a prefix of an explicit

block at level k − 1 plus a constant amount of group operations to combine values. In the worst case, we navigate down to

the leaves, where fingerprints of single characters can be computed for free. Since the height of this block tree is log n
δ , the

whole fingerprint is computed at cost O(log n
δ), counting group operations and other costs.

We note that it is unknown if a result like Theorem VI.9 can be obtained on a semigroup. For example, it is not known

how to compute the minimum of a substring in polylogarithmic time on block trees [43], [35].

Though our times for accessing and fingerprinting seem to be larger than those obtained on other block tree variants, which

are of height O(log n
z) [35] or O(log n

γ) [32], we next show that log n
δ is asymptotically equal to log n

g , which also encompasses

all the intermediate measures, δ ≤ γ ≤ b ≤ c ≤ z ≤ grl ≤ g.

Lemma VI.10. Let x = O(δ logc n
δ) for some constant c > 0. Then log n

δ = O(log n
x). As a consequence, log n

δ = Θ(log n
g).

Proof. From the hypohesis it follows that n
δ = O(nx logc n

δ). Since logc n
δ = O(

√

n
δ), it holds that

√

n
δ = O(nx), and thus

log n
δ = O(log n

x). The final consequence follows from δ ≤ g = O(z log n
z) = O(δ log n

δ log n
z) = O(δ log2 n

δ) [14], [15],

[34].

Hence, the times we obtain using O(δ log n
δ) space, not only for access but also for rank and select, and for computing

fingerprints, are asymptotically the same as those obtained in O(γ log n
γ) space [32], [36] or in O(z log n

z) space [35].

Finally, it is also possible to obtain the same result as point (3) of Corollary VI.1 using block trees; see the conference

version of this article [1].

VII. CONCLUSIONS

We have made a step towards establishing the right measure of repetitiveness for a string S[1 . . n]. Compared with the most

principled prior measure, the size γ of the smallest attractor, the proposed measure δ has several important advantages:

1) It can be computed in linear time, while finding γ is NP-hard. It is also insensitive to simple string transformations

(reversals, alphabet permutations) and, unlike γ, monotone with respect to appending symbols.

2) It lower bounds the previous measure, δ ≤ γ, with up to a logarithmic-factor separation. For every n and 2 ≤ δ ≤ n,

there are string families where γ = Ω(δ log n
δ).

3) We can always encode S in O(δ log n
δ) space, and this is worst-case optimal in terms of δ: for any length n and any

value 2 ≤ δ ≤ n, there are string families needing Ω(δ log n
δ) space. Thus, o(δ logn) space is unreachable in general.

Instead, no string family is known to require ω(γ) space, nor it is known if o(γ logn) space can always be reached.

4) We can build a run-length context-free grammar of size O(δ log n
δ), which then upper bounds the size grl of the smallest

such grammar, and transitively the measures γ, b, c, v, and z. At the same time, there are string families where the

smallest context-free grammar is of size g = Ω(δ log2 n
δ / log log

n
δ). No such separation is known for γ.

5) There are encodings using O(δ log n
δ) space and supporting direct access and indexed searches, with the same complexities

obtained within attractor-bounded space, O(γ log n
γ) [32]. An exception is a very recent faster index [27].

An ideal compressibility measure capturing repetitiveness should be reachable, monotone, invariant to simple string transfor-

mations, efficient to compute, and optimal within a hopefully refined partition of the strings. The measure δ log n
δ is reachable,

monotone, invariant, fast to compute, and optimal within the class of all the strings with the same n and δ values.

In comparison, measure b (the size of the smallest bidirectional macro scheme) is reachable and invariant, but it is non-

monotonic and NP-hard to compute. On the other hand, it is optimal within a more refined partition, since it is always

O(δ log n
δ). The size γ ≤ b of the smallest attractor is unknown to be reachable, and it is non-monotone and NP-hard to

compute, yet invariant. If it turns out that one can always encode a string within O(γ) space, then γ would be a reachable

measure even more refined than b.
The measure δ log n

δ is then a good candidate in the fascinating quest for an ideal measure of repetitiveness. Its main

weakness is that it is optimal within a partition of the strings that, though reasonably refined, is improved by other measures

(which have other weaknesses).

On the more algorithmic side, it would be useful to compute δ within little space. Its O(n)-time computation [27] requires

also O(n) space, which can be unaffordable for very large text collections. Bernardini et al. [44], for example, show how to

compute it in time O(n3/s2) and O(s) space. It would also be worth obtaining faster indexes of size O(δ log n
δ). Our index

requires O(m log n+ occ logǫ n) search and O(m log2+ǫ n) count time, while in O(γ log n
γ) space it is possible to search in

O(m+ (occ+ 1) logǫ n) and count in O(m+ log2+ǫ n) time [27].

14

ACKNOWLEDGEMENTS

Part of this work was carried out during the Dagstuhl Seminar 19241, “25 Years of the Burrows-Wheeler Transform”. We

also thank Travis Gagie for pointing us the early reference related to δ [34].

TK was supported by ISF grants no. 1278/16, 824/17, and 1926/19, a BSF grant no. 2018364, and an ERC grant MPM (no.

683064) under the EU’s Horizon 2020 Research and Innovation Programme. GN was supported in part by ANID – Millennium

Science Initiative Program – Code ICN17 002, and Fondecyt Grant 1-200038, Chile.

REFERENCES

[1] T. Kociumaka, G. Navarro, and N. Prezza, “Towards a definitive measure of repetitiveness,” in Proc. 14th Latin American Symposium on Theoretical

Informatics (LATIN), 2020. doi: 10.1007/978-3-030-61792-9 17 pp. 207–219.
[2] G. Navarro, Compact Data Structures – A practical approach. Cambridge University Press, 2016. ISBN 978-1-10-715238-0
[3] ——, “Indexing highly repetitive string collections, part I: Repetitiveness measures,” ACM Computing Surveys, 2020, to appear, see https://

arxiv.org/abs/2004.02781.
[4] S. Kreft and G. Navarro, “On compressing and indexing repetitive sequences,” Theoretical Computer Science, vol. 483, pp. 115–133, 2013. doi: 10.1016/

j.tcs.2012.02.006
[5] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE Transactions on Information Theory, vol. 22, no. 1, pp. 75–81, 1976. doi: 10.1109/

TIT.1976.1055501
[6] J. C. Kieffer and E. Yang, “Grammar-based codes: A new class of universal lossless source codes,” IEEE Transactions on Information Theory, vol. 46,

no. 3, pp. 737–754, 2000. doi: 10.1109/18.841160
[7] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and retrieval of highly repetitive sequence collections,” Journal of Computational Biology,

vol. 17, no. 3, pp. 281–308, 2010. doi: 10.1089/cmb.2009.0169
[8] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical Journal, vol. 27, pp. 398–403, 1948. doi: 10.1002/j.1538-

7305.1948.tb01338.x
[9] A. N. Kolmogorov, “Three approaches to the quantitative definition of information,” International Journal of Computer Mathematics, vol. 2, no. 1-4,

pp. 157–168, 1968. doi: 10.1080/00207166808803030
[10] M. Rodeh, V. R. Pratt, and S. Even, “Linear algorithm for data compression via string matching,” Journal of the ACM, vol. 28, no. 1, pp. 16–24, 1981.

doi: 10.1145/322234.322237
[11] J. A. Storer and T. G. Szymanski, “Data compression via textual substitution,” Journal of the ACM, vol. 29, no. 4, pp. 928–951, 1982. doi: 10.1145/

322344.322346
[12] G. Navarro, C. Ochoa, and N. Prezza, “On the approximation ratio of ordered parsings,” IEEE Transactions on Information Theory, vol. 67, no. 2, 2021.

doi: 10.1109/TIT.2020.3042746.
[13] J. K. Gallant, “String compression algorithms,” Ph.D. dissertation, Princeton University, 1982.
[14] W. Rytter, “Application of Lempel-Ziv factorization to the approximation of grammar-based compression,” Theoretical Computer Science, vol. 302, no.

1-3, pp. 211–222, 2003. doi: 10.1016/S0304-3975(02)00777-6
[15] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat, “The smallest grammar problem,” IEEE Transactions on

Information Theory, vol. 51, no. 7, pp. 2554–2576, 2005. doi: 10.1109/TIT.2005.850116
[16] A. Jeż, “A really simple approximation of smallest grammar,” Theoretical Computer Science, vol. 616, pp. 141–150, 2016. doi: 10.1016/j.tcs.2015.12.032
[17] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda, “Fully dynamic data structure for LCE queries in compressed space,” in Proc. 41st International

Symposium on Mathematical Foundations of Computer Science (MFCS), 2016. doi: 10.4230/LIPIcs.MFCS.2016.72 pp. 72:1–72:15.
[18] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, “Collage system: A unifying framework for compressed pattern matching,”

Theoretical Computer Science, vol. 298, no. 1, pp. 253–272, 2003. doi: 10.1016/S0304-3975(02)00426-7
[19] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,” Digital Equipment Corporation, Tech. Rep. 124, 1994. [Online].

Available: https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
[20] D. Kempa and T. Kociumaka, “Resolution of the Burrows-Wheeler transform conjecture,” 2019, to appear in FOCS 2020. [Online]. Available:

https://arxiv.org/abs/1910.10631
[21] A. Blumer, J. Blumer, D. Haussler, R. M. McConnell, and A. Ehrenfeucht, “Complete inverted files for efficient text retrieval and analysis,” Journal of

the ACM, vol. 34, no. 3, pp. 578–595, 1987. doi: 10.1145/28869.28873
[22] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot, “Composite repetition-aware data structures,” in Proc. 26th Annual Symposium on

Combinatorial Pattern Matching (CPM). Springer, 2015. doi: 10.1007/978-3-319-19929-0 3 pp. 26–39.
[23] D. Belazzougui and F. Cunial, “Representing the suffix tree with the CDAWG,” in Proc. 28th Annual Symposium on Combinatorial Pattern Matching

(CPM), 2017. doi: 10.4230/LIPIcs.CPM.2017.7 pp. 7:1–7:13.
[24] ——, “Fast label extraction in the CDAWG,” in Proc. 24th International Symposium on String Processing and Information Retrieval (SPIRE), 2017.

doi: 10.1007/978-3-319-67428-5 14 pp. 161–175.
[25] T. Gagie, G. Navarro, and N. Prezza, “Fully-functional suffix trees and optimal text searching in BWT-runs bounded space,” Journal of the ACM, vol. 67,

no. 1, pp. 1–54, 2020. doi: 10.1145/3375890
[26] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann, “Random access to grammar-compressed strings and trees,” SIAM Journal

on Computing, vol. 44, no. 3, pp. 513–539, 2015. doi: 10.1137/130936889
[27] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro, and N. Prezza, “Optimal-time dictionary-compressed indexes,” ACM Transactions on

Algorithms, vol. 17, no. 1, pp. 8:1–8:39, 2020.
[28] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM Computing Surveys, vol. 39, no. 1, 2007. doi: 10.1145/1216370.1216372
[29] G. Navarro, “Indexing highly repetitive string collections, part II: Compressed indexes,” ACM Computing Surveys, 2020, to appear, see https://

arxiv.org/abs/2004.02781.
[30] T. Nishimoto and Y. Tabei, “Faster queries on BWT-runs compressed indexes,” CoRR, vol. 2006.05104, 2020. [Online]. Available:

https://arxiv.org/abs/2006.05104
[31] D. Kempa and N. Prezza, “At the roots of dictionary compression: String attractors,” in Proc. 50th Annual ACM Symposium on the Theory of Computing

(STOC), 2018. doi: 10.1145/3188745.3188814 pp. 827–840.
[32] G. Navarro and N. Prezza, “Universal compressed text indexing,” Theoretical Computer Science, vol. 762, pp. 41–50, 2019. doi: 10.1016/j.tcs.2018.09.007
[33] S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino, “A combinatorial view on string attractors,” Theoretical Computer Science, vol. 850,

pp. 236–248, 2021. doi: 10.1016/j.tcs.2020.11.006
[34] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. D. Smith, “Sublinear algorithms for approximating string compressibility,” Algorithmica, vol. 65, no. 3,

pp. 685–709, 2013. doi: 10.1007/s00453-012-9618-6
[35] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen, G. Navarro, A. Ordóñez, S. J. Puglisi, and Y. Tabei, “Block trees,” Journal of

Computer and System Sciences, vol. 117, pp. 1–22, 2021. doi: 10.1016/ j.jcss.2020.11.002

https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://arxiv.org/abs/1910.10631
https://arxiv.org/abs/2006.05104

15

[36] N. Prezza, “Optimal rank and select queries on dictionary-compressed text,” in Proc. 30th Annual Symposium on Combinatorial Pattern Matching (CPM),
2019. doi: 10.4230/LIPIcs.CPM.2019.4 pp. 4:1–4:12.

[37] T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń, “Internal pattern matching queries in a text and applications,” 2021.
[38] O. Birenzwige, S. Golan, and E. Porat, “Locally consistent parsing for text indexing in small space,” in ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2020. doi: 10.1137/1.9781611975994.37 pp. 607–626.
[39] S. C. Sahinalp and U. Vishkin, “On a parallel-algorithms method for string matching problems,” in Algorithms and Complexity, CIAC 1994, ser. LNCS,

M. A. Bonuccelli, P. Crescenzi, and R. Petreschi, Eds., vol. 778. Springer, 1994. doi: 10.1007/3-540-57811-0 3 pp. 22–32.
[40] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,” IBM Journal of Research and Development, vol. 31, no. 2, pp.

249–260, 1987. doi: 10.1147/rd.312.0249
[41] M. Crochemore and W. Rytter, Jewels of Stringology. World Scientific, 2002.
[42] N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic functions,” Proceedings of the American Mathematical Society, vol. 16, no. 1, pp. 109–114,

1965. doi: 10.1090/S0002-9939-1965-0174934-9
[43] M. Cáceres and G. Navarro, “Faster repetition-aware compressed suffix trees based on block trees,” in Proc. 26th International Symposium on String

Processing and Information Retrieval (SPIRE), 2019. doi: 10.1007/978-3-030-32686-9 31 pp. 434–451.
[44] G. Bernardini, G. Fici, P. Gawrychowski, and S. Pissis, “Substring complexity in sublinear space,” CoRR, vol. abs/2007.08357, 2020. [Online].

Available: https://arxiv.org/abs/2007.08357

APPENDIX

In this Appendix, we reproduce proofs from an unpublished manuscript [37].

Fact V.7 ([37]). For every k ∈ Z≥0, if exp(x) = exp(x′) holds for two fragments of Sk, then x = x′.

Proof. We proceed by induction on k. Let x, x′ be fragments of Sk satisfying exp(x) = exp(x′). If k = 0, then x = x′

holds due to exp(x) = x and exp(x′) = x′. Otherwise, let x̄ and x̄′ be the fragments of Sk−1 obtained from x and x′,

respectively, by expanding collapsed blocks. Note that exp(x̄) = exp(x) = exp(x′) = exp(x̄′), so the inductive assumption

guarantees x̄ = x̄′. Inspecting Definitions V.4 and V.5, observe that if Sk−1[i] = Sk−1[i
′] and Sk−1[i+1] = Sk−1[i

′ +1], then

block boundaries after positions i, i′ ∈ [1 . . |Sk−1|) are placed consistently: either after both of them or after neither of them.

Consequently, block boundaries within x̄ and x̄′ are placed consistently. Moreover, both x̄ and x̄′ consist of full blocks (since

they are collapsed to x and x′, respectively). Thus, x̄ and x̄′ are consistently partitioned into full blocks. Matching blocks get

collapsed to matching symbols both in Definitions V.4 and V.5, so we derive x = x′.

Corollary V.8 ([37]). For every odd k ∈ Z≥0, there is no j ∈ [1 . . |Sk|) such that Sk[j] = Sk[j + 1] ∈ Ak+1.

Proof. For a proof by contradiction, suppose that Sk[j] = Sk[j +1] ∈ Ak+1 holds for some j ∈ [1 . . |Sk|). Let x = Sk−1(i−
ℓ . . i] and x′ = Sk−1(i . . i+ℓ′] be blocks of Sk−1 collapsed to Sk[j] and Sk[j+1], respectively. Due to exp(x) = exp(Sk[j]) =
exp(Sk[j +1]) = exp(x′), Fact V.7 guarantees x = x′ and, in particular, ℓ = ℓ′. If ℓ = 1, then Sk−1[i] = Sk[j] = Sk[j +1] =
Sk−1[i + 1] ∈ Ak+1. Otherwise, x = x′ = Aℓ for some symbol A ∈ Ak, which means that Sk−1[i] = Sk−1[i + 1] = A. In

either case, Sk−1[i] = Sk−1[i] ∈ Ak = Ak+1, which means that rleAk
(Sk−1) does not place a block boundary after position

i in Sk−1. This contradicts the choice of i as the boundary between blocks x and x′.

Lemma V.9 ([37]). Let α ∈ Z≥1 and let i, i′ ∈ [α . . n − α] be such that S(i − α . . i + α] = S(i′ − α . . i′ + α]. For every

k ∈ Z≥0, if α ≥ 16ℓk, then i ∈ Bk ⇐⇒ i′ ∈ Bk.

Proof. We proceed by induction on k, with a weaker assumption α ≥ 15ℓk for odd k. In the base case of k = 0, the claim is

trivial due to Bk = [1 . . n). Next, we shall prove that the claim holds for integers k > 0 and α > ℓk assuming that it holds

for k − 1 and α − ⌊ℓk⌋. This is sufficient for the inductive step: If α ≥ 16ℓk for even k, then α − ⌊ℓk⌋ ≥ 15ℓk = 15ℓk−1.

Similarly, if α ≥ 15ℓk for odd k, then α− ⌊ℓk⌋ ≥ 14ℓk = 16ℓk−1.

For a proof by contradiction, suppose that S(i − α . . i + α] = S(i′ − α . . i′ + α] yet i ∈ Bk and i′ /∈ Bk for some

i, i′ ∈ [α . . n − α]. By the inductive assumption (applied to positions i, i′), i ∈ Bk ⊆ Bk−1 implies i′ ∈ Bk−1. Let us

set j, j′ so that i = | exp(Sk−1[1 . . j])| and i′ = | exp(Sk−1[1 . . j
′])|. Since a block boundary was not placed between

Sk−1[j
′] and Sk−1[j

′ + 1], we have Sk−1[j
′], Sk−1[j

′ + 1] ∈ Ak (see Definitions V.4 and V.5). Consequently, the phrases

S(i′ − ℓ . . i′] = exp(Sk−1[j
′]) and S(i′ . . i′ + r] = exp(Sk−1[j

′ + 1]) around position i′ are of length at most ⌊ℓk⌋. By

the inductive assumption (applied to positions i + δ, i′ + δ for δ ∈ [−ℓ . . r] ⊆ [−⌊ℓk⌋ . . ⌊ℓk⌋]), there are matching phrases

S(i− ℓ . . i] and S(i . . i+ r] around position i. Due to Fact V.7, this yields Sk−1[j] = Sk−1[j
′] and Sk−1[j+1] = Sk−1[j

′+1].
Consequently, a block boundary was not placed between Sk−1[j] and Sk−1[j + 1], which contradicts i ∈ Bk.

Lemma V.10 ([37]). For every k ∈ Z≥0, we have E[|Sk|] < 1 + 4n
ℓk+1

.

Proof. We proceed by induction on k. For k = 0, we have |S0| = n < 1+4n = 1+ 4n
ℓ1

. If k is odd, we note that |Sk| ≤ |Sk−1|

and therefore E[|Sk|] ≤ E[|Sk−1|] < 1 + 4n
ℓk

= 1 + 4n
ℓk+1

. Thus, it remains to consider even integers k > 0.

Claim A.1. For every even k > 0, conditioned on any fixed Sk−1, we have E
[

|Sk|
∣

∣ Sk−1

]

< 1
4 + n

2ℓk
+ 3

4 |Sk−1|.

Proof. Let us define J = {j ∈ [1 . . |Sk−1|] : j = |Sk−1| or Sk−1[j] /∈ Ak or Sk−1[j + 1] /∈ Ak}. Since A /∈ Ak yields

| exp(A)| > ℓk, we have |J | < 1 + 2n
ℓk

. Moreover, observe that if j ∈ [1 . . |Sk−1|] \ J , then Sk−1[j] and Sk−1[j + 1] are, by

https://arxiv.org/abs/2007.08357

16

Corollary V.8, distinct symbols in Ak. Consequently, Pr[Sk−1[j] ∈ Lk and Sk−1[j +1] ∈ Rk] =
1
4 . Thus, the probability that

pcLk,Rk
(Sk−1) places a block boundary after position j ∈ [1 . . |Sk−1|] \ J is 3

4 . Therefore,

E
[

|Sk|
∣

∣ Sk−1

]

= |J |+ 3
4 (|Sk−1| − |J |) = 1

4 |J |+
3
4 |Sk−1| <

1
4 + n

2ℓk
+ 3

4 |Sk−1|.

Since the partition Ak = Lk ∪Rk is independent of Sk−1, Claim V.13 and the inductive assumption yield

E[|Sk|] <
1
4 + n

2ℓk
+ 3

4E[|Sk−1|] <
1
4 + n

2ℓk
+ 3

4 + 3n
ℓk

= 1 + 7n
2ℓk

= 1 + 4n
ℓk+1

.

	I Introduction
	I-A Our contributions

	II Basic concepts and the measure
	III Lower bounds on attractors
	IV Lower bounds on text entropy
	V Bounds on grammar sizes
	V-A A lower bound on grammar size
	V-B An upper bound on run-length grammar size
	V-B1 Run-length grammar construction via restricted recompression
	V-B2 Analysis of the grammar size

	V-C Efficient construction of a small run-length grammar

	VI Accessing and indexing in -bounded space
	VI-A Counting
	VI-B Block trees
	VI-B1 Bounding the space in terms of
	VI-B2 Operations on block trees

	VII Conclusions
	References
	Appendix

