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Abstract: (1) Background: Tannins have demonstrated antibacterial and antibiofilm activity, but the
mechanisms of action are not completely elucidated. We are interested in understanding how to
modulate the antibiofilm activity of tannins and in delineating the relationship between chemical
determinants and antibiofilm activity. (2) Materials and methods: the effect of five different naturally
acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of
Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was
determined in the Calgary biofilm device. (3) Results: most of the unmodified tannins exhibited specific
antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the
antibiofilm activity level and spectrum of the tannins, with the positive charge introducing CsNMe;CI-0.5
derivatization shifting the anti-biofilm spectrum towards Gram-negative bacteria and CsNMesCI-0.1 and
the acidifying CH;COOH derivatization shifting the spectrum towards Gram-positive bacteria. Also, the
quantity of phenolic-OH groups per molecule has a weak impact on the anti-biofilm activity of the
tannins. (4) Conclusions: we were able to modulate the antibiofilm activity of several tannins by specific
chemical modifications, providing a first approach for fine tuning of their activity and spectrum.

Keywords: tannins; antibiofilm activity; Salmonella

Introduction

Plant-derived tannins have been used from ancient times in leather industry because of their
ability of making leather last for a long time, and the name “tannin” comes from the use of these
chemicals for “tanning” leather (1, 2). Accordingly, it was hypothesized that the resistance of leather to
microbial decomposition could be explained by this use of tannin-rich compounds in leather curation
and several studies have pointed to multiple additional pharmacological properties of tannins, including
anti-inflammatory and anti-cancer effects, which are contributing to a renewed interest in these
products as a source of new bio-based pharmaceuticals (1, 3-5). Tannins have been shown to inhibit

bacterial growth of different Gram-positive and Gram-negative bacteria (4, 6-9), and are shown to be
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able to disperse biofilms (10). On some occasions this antibiofilm activity is specific and independent
from the ability to inhibit bacterial growth (11). Examples of tannins with antibacterial activity are tannic
acid (12), ellagic acid (13) and epigallocatechin gallate (14).

From a molecular point of view, tannins can be divided in two groups: condensed and
hydrolysable tannins. Hydrolysable tannins are esters of gallic acid with a core sugar, often glucose or
quinic acid. Tannic acid is the most prominent representative of the family of hydrolysable tannins
comprising a glucose center (15, 16). Condensed tannins are oligomeric and polymeric
proanthocyanidins, consisting of flavan-3-ol units, linked by carbon—carbon bonds not susceptible to
hydrolytic cleavage (16, 17). The scaffold of the subclass of tannins called complex tannins is very similar
to those found in condensed and hydrolysable tannins, where a flavan-3-ol unit is linked to gallic acid in
a monomeric or polymeric system (2). However, there is no reference in literature that this kind of
differentiation has any effect on the level and kind of antimicrobial activity of the tannins.

To date, there is no clear understanding of the antimicrobial mechanisms of action of the
different tannins. One early hypothesis suggested that the ability of tannins to form complexes with
leather proteins is underlying their mechanism of antimicrobial action (18). It has been suggested that
the observable activity could be explained by the presence of free phenolic hydroxyl groups which can
affect, for example, enzymatic activity via covalent or non-covalent linking (19). In this respect, it has
been seen that phenolic compounds can have antimicrobial effects against Pseudomonas aeruginosa
and Staphylococcus aureus (20, 21). This ultimately means that the typical phenolic character of the
tannins could play an important role for the antimicrobial activity (22, 23). Other mechanisms of action
for the antimicrobial activity of tannins have also been described, in particular for tannic acid, like
disruption of peptidoglycan formation (24), iron chelation (12), membrane disruption (25), efflux pump

inhibition (26) and fatty acid synthesis (27).
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It has also been shown in previous literature that tannins have the ability to reduce biofilm
formation (20, 21, 28, 29). Biofilms are conglomerates of bacteria, usually at an interphase (solid-air,
solid-liquid, liquid-air), that are surrounded by a protective mesh of extracellular polymeric substances
(EPS). This enhances the ability of the bacteria to survive dehydration, disinfectants and antibiotics (30,
31). The mechanisms of protection include reduced penetration of antimicrobial compounds, reduced
bacterial metabolism, induction of efflux pumps and more frequent horizontal gene transfer (31).

Regarding the antibiofilm activity of tannins, it has been described that some of them have a
biofilm-specific mechanism of action, such as inhibition of quorum sensing (QS) in P. aeruginosa by the
tannin-rich fractions of Terminalia catappa (32) and T. chebulata (33), and induction of transglucosylase
activity in S. aureus by tannic acid (34). This type of biofilm-specific behavior is actually desired, because
the lack of direct growth inhibition decreases the selective pressure towards resistance phenotypes (35—
37).

Because of this reduced potential of resistance development, in the current study we evaluated
selected chemical variants of tannins for their ability to inhibit biofilm formation without inhibiting
planktonic growth. Also, we investigated how different chemical modifications change the activity level
and spectrum of the tannins. Understanding the effect of structural features on activity allows to
enhance or finetune activity. The scarcity of structure-activity relationship (SAR) research in the field of
tannins and bioactive phenolic compounds from plant sources as antimicrobial compounds highlights

the value of this work (38, 39).

Materials and Methods

Assayed tannins

Five commercially available tannin extracts, comprising three condensed and two hydrolysable

tannins were used. The three condensed tannins comprised Omnivin 20R (monomeric (epi)catechin, Vv-
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94  20), Omnivin WG (procyanidins (62%)/profisetidins (34%), Vv) and Mimosa ATO ME (prorobinetidins
95 (33%)/profisetidins (67%), Am), and the two hydrolysable tannins Tanal 01 (tannic acid, Ta-01) and
96  Tanal 04 (galloylquinic acid, Ta-04). The chemical structures of these tannins were elucidated in detail as
97 reported elsewhere (40). Fig. 1A gives an overview of the structural features. As can be seen in the
98  figure, the tannins Vv-20 and Vv comprise low molecular size monomeric or oligomeric tannins, and the
99  tannins Am, Ta-01 and Ta-04 are polymeric tannins of larger molecular size. The five selected tannins
100  were chemically modified by derivatizing them via their phenolic functionalities, as reported in detail
101  elsewhere (41), with different levels of specific functional motifs: i) hydroxy-N,N,N-trimethylpropanyl-3-
102  aminium chloride (C3NMesCl-eq), ii) hydroxypropyl-1-carboxylic acid (C3COOH-eq), and iii) oligomeric
103  ethylene glycol polyether (PEGsq-€q), Whereby ‘eq.” in the compounds listed in Fig. 1B indicates the
104  equivalents of the functional motif that were used for the chemical modification (41). This chemical
105  functionalizations gave several properties to the tannins: i) CsNMe;Cl-eq added positive charges to the
106  tannin molecule, ii) C3;COOH-eq, as a weak acid, potentially added negative charges to the molecule, and
107 iii) PEGsgo-eq polymerized the tannin molecules. During the various functionalizations, control tannins
108  were re-isolated from blank reactions. Tannins labelled as ‘Blank-W’ are tannins isolated from blank
109 reactions performed in water and tannins labelled as ‘Blank-D’ are tannins isolated from blank reaction
110  preformed in dimethylformamide.
111 Because of the low solubility of the tannins in agueous media, the dry compounds were first suspended
112 in dimethyl sulfoxide (DMSO) at a stock concentration of 60 g/l and from there diluted to the desired
113  concentration in the following experiments. A 1% v/v concentration of DMSO was never exceeded in
114  order to prevent potential effects of DMSO on bacterial growth or biofilm formation.
115 All the tests were done in aerobic conditions in growth media with a pH of ~ 7.4 and a salinity range of

116  0.025-0.5% w/v.
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117  Antibiofilm assay

118 Biofilms of Salmonella enterica var. Typhimurium ATCC14028, Pseudomonas aeruginosa PA14,
119  Escherichia coli TG1 and Staphylococcus aureus SH1000 were grown in the Calgary biofilm device via a
120 protocol that was previously described (42, 43). The bacteria were grown overnight (ON) in LB broth at
121 37°C. These ON cultures were then diluted 1/100 in diluted (1/20) Tryptic Soy Broth (TSB, Thermo Fisher
122 Scientific) for Gram-negative bacteria and in undiluted TSB for S. aureus. 100 pL of growth medium or a
123 solution of the tannins in growth medium was added to the wells of a 96-well Calgary device. The
124 diluted ON cultures were then added to the wells to obtain a starting inoculum of 10° cfu/ml in a final
125 volume of 200 pl of growth medium per well. Also, both for exploratory screening test and validation of
126 anti-biofilm activity, one row of the plate was filled with inoculum with growth media without tannin
127  and another row was filled with media without bacteria. To account for potential effects of the
128  compounds themselves, the same tannin-concentration was added to separate control 96-well Calgary
129  biofilm plates without the inoculation of the bacteria. Afterwards, all plates were incubated in a wet
130 chamber for the appropriate time and temperature: 48 h at 37 °C for S. aureus, 24 h at 25°C for the
131 Gram-negatives.

132 Biofilm formation and planktonic growth were determined by crystal violet staining of the pegs
133 and ODgy measurements of the base plate of the device, respectively. Specifically, after incubation the
134  covers of the plates (which contain the pegs) were removed and washed once with PBS. The pegs were
135  then stained with 200 ul per well of 0.1% v/v of crystal violet (CV, VWR International) for 30 minutes.
136  After staining, the excess of CV was washed once with 200 ul per well of distilled water and let dry for 30
137 minutes. Finally, the CV was recovered in a new 96-well plate with 200 ul per well of 30% v/v glacial
138  acetic and the optical density at 570 nm (ODs) measured in a plate reader. The optical density at 600
139 nm (ODgqo) of the bacteria in the base plates was measured to determine the growth of the planktonic

140 cells.
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141
142
143 FIG 1. (A) Chemical structure of commercially available condensed and hydrolysable tannins used in this study (40) and (B) their
144 chemically derivatized structures as described elsewhere (41). Exemplary structural aspects are shown; synthetic route leads to

145 generation of both primary and secondary aliphatic alcohols within the total C;linker moiety connecting the functional to the
146 tannin (41). Legend: C;NMe;Cl-eq - hydroxy-N,N,N-trimethylpropanyl-3-aminium chloride; ii) C;COOH-eq - hydroxypropyl-1-
147 carboxylic acid, and iii) PEGsgo-eq - oligomeric ethylene glycol polyether (PEGsgo-€q).

148

149  Exploratory antibiofilm screening

150 In a preliminary experiment, the tannins were tested in two-fold dilution series ranging from
151 600 to 9.38 mg/l in 3 independent replicates. The obtained raw ODs; (for the biofilm formation) and
152  ODgqy (for the planktonic growth) were corrected by the OD of the tannins incubated in absence of
153 bacterial inoculum and then normalized using the average OD of the bacterial inoculum incubated in
154  absence of tannin, thus being converted to percentage of biofilm formation (ODs7) and percentage of
155 bacterial growth (ODgg).

156 The BICso and ICso (the compound concentration required to inhibit the biofilm formation and
157  the bacterial growth by 50%, respectively) were calculated by applying a log[tannin] vs percentage of
158 biofilm formation or percentage of planktonic growth non-linear regression (four-parameters) using the

159 statistical package GraphPad 8.0.

160  Validation anti-biofilm screening: experimental design and statistical analysis

161 Based on the information from the preliminary experiment, a definitive antibiofilm experiment
162 in the Calgary biofilm device was set up with 8 independent repeats. We first defined the factors under
163 study, i.e., the parameters that potentially have an influence on the formation of biofilm. The

164  considered parameters are: (i) Original unmodified tannin: Vv-20, Vv, Ta-01, Ta-04, Am, (ii)
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165 Concentration of tannin (mg/l): 9.38, 79.69, 150, (iii) Chemical modifier: C;COOH (AC), PEG, CsNMe;CI
166 (AM), Blank-D (blank reaction with dimethylformamide), Blank-W (blank reaction with water),
167 Unmodified and (iv) Concentration of applied chemical modifier: Low and High (Low: 0.05 and 0.1 Eq of
168 chemical substitution; High: 0.25 and 0.5 Eq of chemical substitution). In order to minimize effects of
169 plate-to-plate variation, we applied an optimal randomized experimental design with the statistical
170 package JMP 15.0 to reduce experimental noise and confounding factors. Different to the preliminary
171 experiment, only three concentrations were assayed, which were chosen to best capture the antibiofilm
172 activity of the tannins: 9.38, 79.69 and 150 mg/I. The remaining part of the protocol of this experiment is

173 identical to that of the preliminary experiment described above.

174 To determine the effect of the chemical derivatizations on the antibiofilm and antibacterial
175  effect of the unmodified tannins on each of the assayed bacteria, an ANOVA test with Tukey post-hoc
176  test comparing the unmodified tannins with their respective derivatized tannins was done based on the

177  obtained biofilm formation and planktonic growth levels.

178  Relationship between the phenolic hydroxyl content and antibiofilm effect

179 To determine the effect of phenolic hydroxyl (OH) content on the antimicrobial and antibiofilm
180 effect of the different tannins, a simple linear regression between the phenolic OH content of the
181  tannins and the level of biofilm formation (or planktonic growth) was performed. To better calculate this
182  correlation, we used the different tannin assayed concentrations and the obtained mmol of phenolic OH
183 per gram of material to calculate the mmol of phenolic OH present in the system for each tannin at each
184  assayed concentration, and we correlated this value with the respective percentage of biofilm inhibition
185 and planktonic growth inhibition. The phenolic OH content of the tannins was determined via ***NMR as

186  described elsewhere (40).
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187 Results and discussion

188 Exploratory screening to determine the concentration test range

189 In order to delineate a structure-activity and functionality-activity relationship, a diverse range
190 of five commercially obtained tannins, three condensed tannins and two hydrolysable tannins, were
191  derivatized with different levels of three functional motifs. The condensed tannins were previously
192 identified as mixtures of (epi)catechins and fisetinidols (41) and consisted of (i) the essentially
193 monomeric Vv-20, (ii) the low oligomeric Vv and (iii) the higher oligomeric Am. The hydrolysable tannins

Ill

194  consisted of two large tannins: (i) the “typical” tannic acid Ta-01 and (ii) the galloquinic acid derivative
195  Ta-04. All tannins were previously functionalized with a positive charge introducing ammonium salt
196 hydroxy-N,N,N-trimethylpropanyl-3-aminium chloride (C3NMesCl-eq), an acidifying hydroxypropyl-1-
197 carboxylic acid (C3COOH-eq) motive and a polymerizing oligomeric ethylene glycol polyether (PEGsgo-€q)
198  (Fig. 1). The preventive activity of both the natural and derivatized tannins against the biofilm formation
199 and planktonic growth of the Gram-negative species S. Typhimurium, P. aeruginosa, E. coli and the
200  Gram-positive species S. aureus was evaluated by means of the Calgary biofilm device. In a first set of
201  exploratory experiments, two-fold serial dilutions (from 600 till 4.96 mg/l) of the tannins were evaluated
202 in order to obtain a first glance on activity spectrum and active concentration range. Activities against all
203 four bacterial species were observed, with BICsq values ranging from 4.69 to 545.8 mg/| and ICs values
204 ranging from 37.5 to 459.2 mg/| (Table S1 in ‘Supplementary Material’). As such this experiment allowed
205 to determine the test concentrations for future validation experiments: 9.38 mg/l was the lowest
206 assayed concentration in the preliminary screening and the most active tannins exhibited BICs, equal to
207 or below that value; 150 mg/| was the concentration at which almost all tannins with antibiofilm effect

208  were active; and 79.69 mg/| is the average of those two concentrations. Such validation experiments

209  were required because the exploratory experiments only had three independent repeats and this did
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210  not provide sufficient statistical power to distinguish the levels of activity of the different tannins and
211  delineate the relationship between the chemistry and the antibiofilm level of the tannins. Furthermore,
212 there was a statistically significant plate-to-plate variation between the controls of each plate (see
213 Figures S1 and S2 in ‘Supplementary Material’).

214  Extensive randomized validation screening at limited number of concentrations

215 To allow a multivariate analysis considering tannin scaffold, derivatization and concentration as
216  well as bacterial target species, the previous antibiofilm and antimicrobial experiments were repeated in
217 one experiment with eight repeats per condition, but only focusing on the three tannin concentrations
218 that could capture best the antibiofilm effect of the tannins: 9.38, 79.69 and 150 mg/l. In order to
219 minimize previously observed effects of plate-to-plate variation, these experiments were designed in a
220 randomized way, i.e., all the tannins were distributed through all the plates in a random fashion. This
221  allowed to decrease the random error and the possibility of confounding factors, a necessary step for
222  doing a complex statistical analysis that allows to link the different chemical characteristics. In what
223 follows we will first focus on the unmodified tannins, after which we will elaborate on the effect of

224 chemical derivatization.

225  Effect of unmodified tannin scaffold on the antibiofilm activity level and spectrum

226 In Fig. 2 it can be seen that the commercially available natural tannins showed different
227  antibiofilm activities against the four assayed bacterial species. All unmodified tannins can be
228  considered to have “broad spectrum activity”, since all of them exhibited statistically significant
229  antibiofilm activity against Gram-positive and Gram-negative bacteria at least at the concentration of
230 150 mg/|, according to an ANOVA test with Tukey post-hoc analysis. Also, most of the assayed tannins
231 exhibited a concentration-dependent activity, depending on the assayed tannin and the tested bacteria.
232 However, there were clear differences in the degree of antibiofilm activity of each tannin.

233 Starting from the condensed tannins, the monomeric Vv-20 exhibited significant antibiofilm activity
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234  against all the assayed bacteria at all the assayed concentrations in a clear dose-dependent way, a dose
235  of 79.69 mg/L being sufficient for inhibiting biofilm formation more than 50% against the four assayed
236  bacteria. Also, Vv-20 was the most effective tannin against S. Typhimurium, with more than 75% of
237 biofilm inhibition at 79.69 and 150 mg/|, and against E. coli, with more than 80% biofilm inhibition at
238 79.69 mg/l. Regarding the low oligomeric Vv, the antibiofilm activity was preferential against P.
239 aeruginosa and S. aureus, for which it exhibited potent dose-dependent antibiofilm activity. This
240 compound was able to inhibit more than 50% of biofilm formation by S. aureus both at 79.69 and 150
241 mg/l, and is the unmodified tannin with highest effect against P. aeruginosa, displaying antibiofilm
242 activity of more than 90% at 79.69 mg/l and more than 95% at 150 mg/l. On the contrary, Vv was less
243  effective against S. Typhimurium and E. coli and was able to inhibit less than 30% of biofilm formation of
244  both bacterial species, regardless of the assayed concentration. Contrary to the previous two
245 unmodified condensed tannins, the high oligomeric Am has preferential antibiofilm activity against S.
246  Typhimurium and S. aureus, but also has significant antibiofilm activity against P. aeruginosa. Moreover,
247  Am is the unmodified tannin with the highest antibiofilm activity against S. aureus, with more than 85%
248 of antibiofilm activity at 79.69 and 150 mg/I, also inhibiting more than 50% of biofilm formation of S.
249  Typhimurium both at 79.69 and 150 mg/l, and inhibiting P. aeruginosa biofilm formation in more than
250 30% at 79.69 mg/l and more than 50% at 150 mg/l. On the contrary, Am has unnoticeable inhibitory
251 activity against E. coli biofilms at any of the assayed concentrations.

252 With respect to the hydrolysable tannins, tannic acid, Ta-01 exhibited preferential activity
253  against P. aeruginosa and S. Typhimurium. The biofilm inhibitory activity of Ta-01 ranged from 40% at
254  9.38 mg/l to 60% at 150 mg/l against S. Typhimurium, and from 15% at 9.38 mg/I to more than 90% at
255 150 mg/l against P. aeruginosa. On the contrary, the galloquinic acid derivative, Ta-04 exhibited
256  preferential activity against S. aureus. While the antibiofilm activity of Ta-04 against S. Typhimurium and

257  E. coli was dose dependent (reaching a maximum of 50% biofilm inhibition against both bacteria at a
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258  concentration of 150 mg/l), the antibiofilm activity of Ta-04 against S. aureus was not dose dependent,
259  with more than 70% biofilm inhibition at the 3 assayed concentrations.

260 Importantly, the unmodified tannins were in general not found to have antibacterial activity
261 against the planktonic bacteria, except for the low oligomeric condensed Vv against S. Typhimurium and
262 the hydrolysable tannic acid Ta-01 against E. coli at the highest concentration of compound (Fig. 3). In
263 previous reports, it was found that hydrolysable tannins similar to galloylquinic acid, hence similar to Ta-
264 04, exhibit broad spectrum antibiofilm activity (3, 15, 44). Those same reports, however, also suggest
265 that hydrolysable tannins have antibacterial effects against planktonic Gram positive and Gram bacteria,
266 which was not observed in our experiment. On the other hand, tannic acid (45) and 1,2,3,4,6-penta-O-
267  galloyl-B-D-glucopyranose (46), both hydrolysable tannins, have been reported to inhibit biofilm
268  formation of S. aureus without inhibiting planktonic growth, which is consistent with the results
269  observed for tannic acid Ta-01. In our assay, also galloylquinic acid Ta-04 showed such activity. This
270 selective activity against biofilms offers opportunities for potential applications, such as the titanium-
271 tannin composite coating for implants developed by Shukla et al. (2015) (47), that allows sustained

272 release of the tannin.

273

274 FIG 2. Biofilm formation (expressed as percentage in comparison to control) in the presence of 9.38, 79.69 and 150 mg/| of
275 unmodified tannins. The letters indicate groups of tannin-concentration combinations whose effects are significantly different
276 from the control but not significantly different to each other; the bars with no letter are those tannin-concentration
277 combinations which are not significantly different from the control. The statistical differences were determined via ANOVA test

278 with Tukey post-hoc analysis, with a p value of 0.05.

279

280 FIG 3. Planktonic growth (expressed as percentage in comparison to control) in the presence of 9.38, 79.69 and 150 mg/| of
281 unmodified tannins. Asterixis indicate a significant difference from control, * = p < 0.05, ** = p < 0.01. The statistical differences
282 were determined via ANOVA test with Tukey post-hoc analysis, with a p value of 0.05.

283
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284  Effect of chemical substitutions on the antibiofilm and antibacterial activity of the tannins

285 The aim of the modifications was to partially functionalize via ether linkages the phenolic OH-
286  groups of each tannin molecule and to add tannin-alien functionalities at various levels to test the
287  possibility to modulate the native activity of tannins towards biofilms and planktonic bacteria.

288 Fig. 4 shows the effect of derivatization on the antibiofilm and antibacterial activities. The
289 differences in antimicrobial activity between the different modifications were assessed via the Tukey
290 test for multiple comparisons, by comparing if there were differences in the maximum activity (i.e., the
291 antibiofilm activity at the highest assayed concentration). If there were no differences in the maximum
292 activity, the activity at lower concentrations was also evaluated, thus allowing to determine if a
293 derivatization was able to obtain the same effect as the unmodified tannin, but at a lower
294 concentration. As a general conclusion, it could be established that most of the chemical derivatizations,
295 but especially positive charge introducing CsNMesCl-0.1 reduce the antibiofilm activity of the tannins,
296  while some of them can shift the activity spectrum towards preferential activity against Gram-positive or
297 Gram-negative bacteria. Two derivatizations generally shifted the antibiofilm spectrum towards the
298 Gram-negative group of bacteria: polymerizing PEGs-0.05 and positive charge-introducing C;NMesCl-
299  0.5. Contrarily, derivatization with acidifying C3COOH-0.1 and C;COOH-0.5 in general decreased the
300 antibiofilm activity against Gram-negative bacteria, while it retained activity against S. aureus for larger
301 tannins Am, Ta-01 and Ta-04, and increased activity against S. aureus for monomeric and low oligomeric
302 Vv-20 and Vv. The other derivatizations in general decreased the activity against S. aureus. However,
303 this effect of derivatizations on the spectrum and potency was highly dependent on the specific tannin
304  submitted to the derivatization.

305 In more detail, it can be seen that the blank reaction (both in water -Blank-W- and in
306 dimethylformamide -Blank-D-) already modified the antibiofilm effect of the assayed tannins, a

307 phenomenon that could be attributed to removal of impurities that affect the antibiofilm effect of the
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308 tannins. It can be seen that Blank-W conditions increased the maximum antibiofilm effect of Vv against
309  Salmonella Typhimurium, but decreased the maximum antibiofilm effect of Vv-20 and Vv against P.
310 aeruginosa and decreases the antibiofilm effect of Vv-20 against E. coli at 79.69 mg/| without affecting
311 its maximum antibiofilm effect. It can also be seen that Blank-D conditions only affected the antibiofilm
312 activity of Ta-04, by reducing its antibiofilm effect against Gram-negative bacteria.

313

314 FIG 4. Effect of natural and chemically modified tannins on biofilm formation (expressed as percentage compared with positive
315 control) on several bacterial species at 9.38 mg/l, 79.69 mg/l and 150 mg/| of tannin. The colors indicate the percentage of
316 biofilm formation in presence of several concentrations of the assayed tannins compared to the untreated control. The
317 asterisks indicate significant differences with the unmodified tannin, following ANOVA test with Tukey post-hoc analysis. *: p <

318  0.05, **:p < 0.01, ***: p < 0.001, ****: p < 0.0001.

319

320 Regarding actual substitutions, it can be seen that the effect of a derivatization with positive
321 charge introducing ammonium groups, i.e., CsNMesCl, was different depending on the equivalents of
322  chemical substitution.

323 On the one hand, C3NMesCI-0.5, the high equivalent derivatization, decreased the maximum
324  antibiofilm effect of condensed tannins against S. aureus but did not affect the anti-staphylococcal
325 effect of hydrolysable tannins. However, CsNMe;Cl-0.5 derivatization had a tannin-dependent effect
326  against Gram-negative bacteria. It did not affect the antibiofilm effect of monomeric Vv-20 against any
327 Gram-negative bacteria but increased the maximum antibiofilm effect of low oligomeric Vv against
328  Salmonella Typhimurium while decreasing the maximum antibiofilm effect of Vv against P. aeruginosa.
329 It increased the effect of high oligomeric Am against all the Gram-negative bacteria at 79.69 mg/I
330  without significantly changing the maximum effect compared to the unmodified tannin. It increased the
331 maximum effect of tannic acid Ta-01 against E. coli and Salmonella Typhimurium but decreased the

332  effect against P. aeruginosa at 79.69 mg/| and it significantly decreased the maximum antibiofilm effect
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333  of galloquinic acid derivative Ta-04 against Sa/lmonella Typhimurium. On the other hand, C;NMe;CI-0.1,
334  the low equivalent derivatization, reduced the maximum effect of all tannins (with the exception of the
335 galloquinic acid derivative Ta-04, which was not affected) against Gram-negative bacteria without
336  affecting the antibiofilm effect against S. aureus.

337 Contrary to CzNMesCl, there were no big differences between different levels of derivatizations
338 with acidifying motif CH3COOH, i.e., CH3COOH-0.1 and CH3;COOH-0.5, in terms of their impact on the
339 activities compared to the unmodified tannins. For S. aureus, neither derivatization level affected the
340 antibiofilm effect exerted by larger tannins Am, Ta-01, and Ta-04, comparable to the C;NMe;Cl-0.1
341 derivatization, while CH3COOH-0.1 increased the maximum effect of low oligomeric Vv. CH;COOH-0.5
342 had a similar effect on essentially monomeric Vv-20. For the Gram-negative bacteria, both
343  derivatizations equally decreased the maximum antibiofilm effect of condensed tannins Vv-20 and Am,
344  as well as for hydrolysable tannin Ta-04 against S. Typhimurium, but only CH3COOH-0.1 significantly
345  decreased the maximum antibiofilm effect against S. Typhimurium of Vv. While both derivatization
346 levels drastically decreased the maximum antibiofilm effect of condensed tannins against P. aeruginosa,
347 only CH3;COOH-0.1 decreased the maximum antibiofilm effect of tannic acid Ta-01. Neither
348 derivatization level significantly affected the antibiofilm effect of hydrolysable Ta-04. This effect was
349  similar regarding E. coli because neither derivatization level affected the maximum antibiofilm effect of
350 hydrolysable tannins, while CH;COOH-0.1 decreased the maximum antibiofilm effect of all condensed
351  tannins. CH3COOH-0.5 only significantly decreased the maximum antibiofilm effect of Vv-20 against E.
352 coli.

353 Regarding derivatization with polymerizing PEG500, it can be seen that PEG500-0.05 in general
354  did not affect the antibiofilm effect of the assayed tannins. The only exceptions are the increase in the
355 maximum antibiofilm effect of low oligomeric Vv against Salmonella Typhimurium and the decrease in

356  the antibiofilm effect of monomeric Vv-20 against S. aureus at 79.69 mg/l without changing the
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357 maximum antibiofilm effect. It has to be taken in account that, due to technical issues, it was not
358 possible to analyze the effect of polymerizing PEG500-0.05 derivatization on Ta-04. Polymerizing
359  PEG500-0.05 derivatization proofed difficult to analyze in terms of loading for Ta-04 (41).

360 No literature data are yet available that would describe the effects of chemical modifications of
361 tannins on their antibiofilm, or more generally antibacterial activity. With the aim of elucidating a
362 hypothesis about the reason behind the effect of the derivatizations on our assayed tannins in
363 comparison to the parent tannins and the blanks, we decided to look into other non-tannin organic
364  compounds.

365 One of these examples targets the effect of the high equivalent derivatization C3NMe3CI-0.5 in
366  shifting the anti-biofilm spectrum towards Gram-negative bacteria, which may be associated with
367  addition of positive charges in the form of ammonium groups to the tannin molecules. This allows for
368 comparison of our results with data obtained by Dalcin et al. (2017) (48), who discovered that
369 nanoencapsulation of dihydromyricetin within the polycationic polymer Eudragit RS 100® not only
370 increased its antibiofilm activity against P. aeruginosa, but that the polymer itself had antibiofilm
371  activity. This finding goes in accordance with a previous publication of Campanac et al. (2002) (49) which
372 states that cationic quaternary ammonium compounds (QAC) were more effective against P. aeruginosa
373  than S. aureus biofilm. Also, Gao et al. (2019) (50) showed a decreased biofilm formation in E. coli and S.
374  aureus using positively charged nanoaggregates based on zwitterionic pillar-[5]arene, requiring a ten
375 times lower concentration of nanoaggregate to decrease biofilm formation in E. coli compared to S.
376  aureus. These results suggest that equipping the tannins with positively charge-introducing ammonium
377  groups may give preferential action against Gram-negative bacteria. However, tannins should be
378 derivatized with enough positively charge-introducing ammonium groups to obtain this shift towards
379 inhibition of Gram-negative bacteria since the low equivalent derivatization C;NMe;Cl-0.1 appeared to

380 lower the activity against Gram-negative bacteria.
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381 Regarding the effect of acidifying CH3COOH derivatizations, there is a precedent of the effect of
382  several substitutions on the antibiofilm effect of anthraquinones against methicillin-resistant S. aureus
383 (MRSA) (51). This study shows that a carboxyl group at position 2 of the anthraquinone molecule
384 increases both the antibiofilm and the antimicrobial activity, which is partially in agreement with our
385 data that shows that CH3COOH derivatizations increase the antibiofilm activity of low oligomeric Vv-20
386 and essentially monomeric Vv without affecting the bacterial growth. Relatedly, Warraich et al. (2020)
387  (52) found that the acidic b-amino acids D-aspartic acid (D-Asp) and D-glutamic acid (D-Glu) were
388 effective in dispersing and inhibiting biofilm formation in S. aureus, and they attributed this effect to the
389 negative charges introduced by carboxyl groups of the molecules under growth conditions.

390 Finally, regarding polymerizing PEG derivatizations, there are several studies about the potential
391  of PEG cross-linked hydrogels for wound healing because of their antimicrobial, pro-angiogenesis and
392 pro-epithelization capabilities (53), but there is no indication regarding the effect of an introduction of a

393 PEG-motif on the antibiofilm capability of an organic compound.

394  Biofilm specificity of the antibacterial effect of the tannins

395 In the last years, there has been increasing research on non-lethal antimicrobial targets against
396  several bacterial species, from virulence factors to biofilm formation, including inhibition of regulatory
397 mechanisms such as quorum sensing and production of public goods (54-57). The rationale behind this
398 research is the assumption that if bacterial viability is not affected, the selective pressure will be lower
399 and thus the risk for emergence of antimicrobial resistance will be lower too (35, 58, 59). However,

400 there is still discussion about the effectiveness of this “resistant-proof” approach (60).

401 The heatmap of Fig. 5 shows the anti-planktonic activity of the tannins at the assayed
402 concentrations. We defined that the antibiofilm activity of a particular tannin was biofilm specific in case

403 the tannin did not exhibit significant anti-planktonic effect at that concentration (61, 62). Most of the
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404  tannins with antibiofilm activity did not exhibit anti-planktonic effects, indicating that they are biofilm
405  specific. This is particularly true for unmodified tannins, of which only Vv and Ta-01 exhibited anti-
406 planktonic activity against Salmonella Typhimurium and E. coli, respectively. Also, unmodified tannins
407 re-isolated from blank reactions, i.e., Blank-W or Blank-D, with the exception of Blank-D against

408  Salmonella Typhimurium, did not reduce the planktonic growth of the assayed bacteria.

409

410 FIG 5. Effect of natural and chemically modified tannins on planktonic growth (expressed as percentage compared with control)

411 on several bacterial species at 9.38 mg/l, 79.69 mg/| and 150 mg/| of tannin. The crosses (+) for PEGsy-0.05 derivatization on

412 Vv-20 and Vv indicate values below zero, which is an effect of potential overcorrection of the raw values by the negative
413 control. The colors indicate the percentage of planktonic growth in presence of several concentrations of the assayed tannins
414 compared to the untreated control. The asterisks indicate significant differences with the unmodified tannin, following ANOVA

415 test with Tukey post-hoc analysis. *: p <X 0.05, **: p << 0.01, ***: p <X 0.001, ****: p < 0.0001.

416

417 Regarding the effect of derivatizations on the biofilm specificity of the tannins, this was both
418 derivatization and species dependent. Derivatization with positive charge introducing CsNMe;Cl-0.1 not
419  only generally decreased the antibiofilm activity of the assayed tannins, but also increased the anti-
420  planktonic activity specifically against Gram-negative bacteria. Antibiofilm specificity of tannins
421  derivatized with CsNMe;Cl-0.5 was highly dependent on both the assayed bacteria and the derivatized
422 tannin: the antibiofilm effect was non-specific when the derivatization was applied to Vv-20, but it was
423 biofilm-specific for Vv, Am and Ta-01. Also, tannins derivatized with C3NMe3CIl-0.5 most strongly
424 affected the growth of P. aeruginosa except for Am-C3sNM3e;Cl-0.5, which did not affect the growth of
425 P. aeruginosa at any concentration. Only a derivatization of Ta-04, and here especially with CsNMesCl-
426 0.5, led to a dose-dependent anti-planktonic effect, thus exhibiting non-specific antibiofilm activity at

427 higher concentrations. With respect to a functionalization with the acidifying element CH;COOH at
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428  various concentrations, it can be stated that these in this study did not significantly change the anti-
429  planktonic behavior of the derivatized Vv, Am and Ta-01 against the assayed bacteria, but increased the
430 antibacterial effect of Vv-20 and Ta-04 against planktonic bacteria. However, one notable exception are
431 the tannins that were modified with crosslinking PEG500-0.05, whose antibiofilm activity against Gram

432 negative bacteria was highly correlated with the ability to inhibit the planktonic growth (Fig. 5).

433 As a general summary, tannin derivatization did not affect biofilm specificity against S. aureus
434 but affected the biofilm specificity against Gram-negative bacteria in a tannin-specific and derivatization
435 specific manner. More importantly, there was no correlation in the assayed tannins between the degree
436 of inhibition of planktonic growth and the degree of antibiofilm effect, a situation that goes in

437  accordance with some previous reports (34, 63, 64).

438  Relation between antibiofilm effect and phenolic hydroxyl content of the tannins

439 One of the potential consequences of the chemical derivatization of the tannins are changes in
440  the content of free phenolic hydroxyl groups present in the chemical structure of the tannins, since
441 functionalization occurs at these hydroxyl groups. This is potentially important, because in previous
442 literature it has been described that the biological activity of polyphenols could be mediated by their
443 phenolic hydroxyl groups (65—71). Particularly regarding hydrolysable tannins, Taguri et al. (2004) linked
444  the degree of antibacterial activity to the presence of galloyl groups (6). Because of this, we aimed to
445  determine if there was a significant impact of the derivatizations on the phenolic hydroxyl (OH) content

446 of the tannins, and if the phenolic OH content affected the antibiofilm.

447 In a first approach, we studied the impact of derivatizations on the phenolic OH content of the
448 tannins. As can be seen in Table 1, derivatizations with C3NMe3Cl-0.1 decreased the phenolic OH
449 content of the unmodified tannin. This is important, since derivatization with CsNMe3ClI-0.1 significantly

450  decreased the antibiofilm effect of tannins, mostly against Gram negative bacteria. In a similar trend,
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451 derivatizations with CH3COOH tended to decrease the phenolic content of condensed tannins:
452  derivatization with CH3COOH decreased the antibiofilm effect against Gram negative bacteria of

453 condensed tannins, but, interestingly, not of still larger hydrolysable tannins.

454 In a second approach, we hence studied potential correlations between the phenolic OH
455  content and the antibiofilm activity and we observed a weak correlation between the phenolic OH
456 content and the antibiofilm activity against Gram negative bacteria and, to a lesser extent, against S.
457 aureus (see Fig. S3 in ‘Supplementary Material’). These data, combined with the previously mentioned
458 effect of the different derivatizations on the phenolic OH content of the tannins, suggest that the
459 phenolic OH content of the tannins is more important for the antibiofilm effect against Gram negative
460 bacteria than against S. aureus. However, we did not observe a correlation between the antibacterial
461 activity against planktonic bacteria and the phenolic OH content of the assayed tannins (see Fig. S4 in
462 ‘Supplementary Material’), which is in accordance with the study Kim et al. (2020) (72), who did not find
463  a significant correlation between the total phenolic content of several plant extracts from Chinese
464  traditional medicine and the antimicrobial activity against S. aureus. However, this contradicts a
465 previous study from Vattem et al. (2004) (73), who found a linear correlation between the phenolic
466 content of cranberry pomace and the antimicrobial activity against Listeria monocytogenes, Vibrio
467  parahaemolyticus and E. coli. It is important to note that these studies are focused on planktonic
468 bacteria, since there are no previous studies pointing to the effect of the hydroxyl or phenolic content of

469 bioactive compounds on biofilm inhibition and dispersion.

470  Conclusions

471 Our work provides a clear understanding on which chemical modifications can be made to
472  enhance the activity level or change the activity spectrum of natural tannins, and which chemical

473 modifications are inconvenient for increasing their antibiofilm activity. This is one of the few studies that
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474  uses a systematic and statistical analysis to correlate specific chemical characteristics of modified
475 tannins with their antibiofilm activity (38, 74-78).

476 From our work, it can be concluded that tannins not only have good activity against biofilms of
477 different bacterial species, but that this antibiofilm activity is in most cases also biofilm specific. More
478 important, we could identify that modifying the tannins with C3NMe3Cl-0.5 and PEG500-0.05 can
479 increase the antibiofilm activity against Gram-negative bacteria, although this often coincides with a
480 decrease in activity against Gram-positive bacteria. Modifying the tannins with C;NMe;Cl-0.1, CH;COOH-
481 0.1 and CH3COOH-0.5 generally decreases the effect against Gram-negatives, without affecting the
482 activity against S. aureus. We can thus modulate the spectrum and the antibiofilm potency of tannins by
483  the applied chemical modifications.

484 We could identify a weak correlation between the antibiofilm effect and the content of phenolic
485 hydroxyl groups for Gram-negative bacteria and, to a lesser extent, for S. aureus. However, exploring the
486 mode of action against other bacteria is a necessary and interesting avenue to explore further based on
487  the initial insights generated in this work, pointing to a more complex interplay between
488  functionalization, type of tannin in the sense of exposed galloyl units, and tannin size. A continued
489 exploration of the possible mechanisms of actions of these compounds and the possible modifications
490 that can be made to enhance their effect is necessary to better optimize the antibiofilm potential of the

491 tannins.
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TABLE 1. Phenolic OH content (in mmol phenolic OH / g materials) of unmodified and derivatized tannins. The values were

31pP

obtained using " NMR.

Phenolic OH content
Tannin Unmodified Blank-w Blank-D C:NMe;Cl-0.1 C:NMe;Cl-0.5 CH3;COOH-0.1 CH3;COOH-0.5 PEGs500-0.05
Vv-20 10.37 7.85 8.79 4.35 N.d.® 6.19 6.15 7.03
Vv 5.38 6.83 11.70 3.26 5.21 1.51 5.09 7.11
Am 8.35 7.64 10.27 0.45 N.d.® 5.76 3.76 8.03
Ta-01 12.56 .° 10.99 1.55 7.22 10.05 11.61 8.87
Ta-04 10.49 .0 6.89 6.00 N.d.? 9.89 9.00 6.77

*N.d.: Not possible to calculate phenolic OH content due to solubility issues.

®« Blank-W reaction was not performed with Ta-01 and Ta-04 (hydrolysable tannins) because, for those tannins, it was not possible to

perform a blank reaction in water.
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