
Open Universiteit 
www.ou.nl 

MASTER'S THESIS

Detecting software vulnerabilities in source code and the influence of variable naming

Demonstrated for C# code and CODE2VEC

Mathijssen, D

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 23. Jan. 2023

https://research.ou.nl/en/studentTheses/7e0fe106-0307-4dd2-a8b0-5359367b26d8


Detecting software vulnera-
bilities in source code and the
influence of variable naming
Demonstrated for C# code and code2vec

Davey Mathijssen

D
at

e:
02

/1
2/

20
22





DETECTING SOFTWARE VULNERABILITIES
IN SOURCE CODE AND THE INFLUENCE OF

VARIABLE NAMING
DEMONSTRATED FOR C# CODE AND CODE2VEC

by

Davey Mathijssen

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Science
Master Software Engineering

to be defended publicly on 2022-12-02 at 11:00 AM.

Course code: IM9906
Thesis committee: dr. ir. H.P.E. Vranken (supervisor), Open University

dr. A.J. Hommersom (supervisor), Open University



CONTENTS

Acknowledgements 1

Summary 2

1 Introduction 3
1.1 Software security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Software vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Software vulnerability detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Natural language processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 N-grams and bag-of-words . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Word embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Sequence to sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Classifiers and model performance . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Code2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Software vulnerability projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Common Vulnerabilities and Exposures . . . . . . . . . . . . . . . . . . . 14
2.4.2 Common Weakness Enumeration . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 National Vulnerability Database . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 OWASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Broken Access Control vulnerabilities . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Injection vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Related studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Research design 23
3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Data set preparation 27
4.1 Data acquisition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Extracting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Data labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Roslyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



4.3 Test case sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 SAMATE: SARD Test Suite 105 . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 SAMATE: Juliet Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 SAMATE: Hasan test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.4 NVD and CVEfixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Variable obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Type obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Random obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 Semi type obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.1 Splitting the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Code2vec preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6.1 Preprocessor modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Model training and results 52
5.1 Training environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Metric calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Classifier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Evaluation with natural samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Evaluating data set size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Evaluating CWE89 data set cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Interpreting attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Discussion 62
6.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Model input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.3 Vulnerability test case sources . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion and recommendations 67
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Data set sample overview 70

B CVEfixes C# CVE record results 72

C Interpreting attention samples 75

Bibliography i

Web Links vi

ii



ACKNOWLEDGEMENTS

In pursuit of my master’s degree, I have received a lot of support from my friends and family
whom I wish to thank all. During my study, I got a lot of energy and support from my fellow
student Wesley de Kraker. I have learned a lot from our stimulating discussions and I am
grateful for the fun we had together. Furthermore, I would like to thank Harald and Arjen
for their support and critical look. Finally, I would like Tamara for her support and patience
during my entire study period.

1



SUMMARY

Machine learning techniques could be used to prevent malicious parties from abusing se-
curity vulnerabilities in source code. Additionally, as shown by other research, developers
have trouble detecting vulnerabilities themselves. However, these techniques are still im-
practical and inaccurate. Therefore, to adopt these techniques in the field, they must first
be improved. Various studies have questioned the importance of variable names in source
code when used in machine learning models trained for various tasks. However, the effect
of variable names has not yet been researched for models trained on the task of vulnera-
bility detection. Therefore, we have examined the influence of variable names on the per-
formance of machine learning models when trained on the task of vulnerability detection.
Specifically, we have investigated what influence variable obfuscation has on the code2vec
model when trained on the task of detecting software vulnerabilities. The code2vec model
is a model which is able to represent source code as vectors, which can subsequently be
used by the model, or any other model, to perform tasks, such as detecting vulnerabilities.

To answer our research question "What influence does variable obfuscation have on
the code2vec model when trained on the task of detecting software vulnerabilities?" we
first extracted vulnerability samples from publicly available vulnerability test case sources.

Next, to determine the effect of a difference in variable names we applied three differ-
ent variable name obfuscation methods to these samples. By variable name obfuscation,
we mean substituting the variable names with another string value. The first method (type
obfuscation) substitutes the variable name with type information of the variable. The sec-
ond method (random obfuscation) substitutes the variable names with a random string.
The third method (semi obfuscation) substitutes only 50% of the variable names with type
information.

Afterwards, we trained classifiers using the code2vec model, which translates source
code into vectors using an attention mechanism. These classifiers were trained on non-
obfuscated- and obfuscated vulnerability samples. We have calculated various metrics to
compare the classifiers and thus the effect of variable obfuscation. These metrics showed
us that variable obfuscation does not affect the performance of classifiers trained on the
task of vulnerability detection. We subsequently analysed the attention mechanism of
code2vec and found out that the code parts which received the most attention to make
a prediction, were not different between non-obfuscated classifiers and obfuscated classi-
fiers. Additionally, no difference was shown between the various obfuscation methods.

2



1
INTRODUCTION

1.1. SOFTWARE SECURITY
Software security is a concept in which software should be designed and written in such a
way that software will continue to function properly, even when attacked by malicious par-
ties [1]. The importance of designing and writing secure software is becoming more and
more evident with the increase in losses caused by malicious parties. According to the FBI,
over 3.5 billion US dollars have been lost in 2019 and 4.2 billion in 2020 due to cybercrim-
inals [2]. Cybercriminals utilise attack vectors to gain unauthorised access to computer
systems. One of these attack vectors is exploiting software vulnerabilities in source code.

1.2. SOFTWARE VULNERABILITIES
Software vulnerabilities are weaknesses or defects in a design or implementation of a sys-
tem that enables malicious parties to exploit such a system for their own purposes. For
example, a software vulnerability in an Energy Management System (EMS) could allow at-
tackers to take control of energy flows and subsequently harm energy-dependent organi-
sations, such as emergency services and critical industrial enterprises. Some examples of
well-known critical vulnerabilities are HeartBlead [52] and the more recent Log4j security
vulnerabilities [53]. Multiple organisations keep track of vulnerabilities that are discov-
ered in software, such as the National Institute of Standards and Technology (NIST) and
MITRE, which maintain the National Vulnerability Database (NVD) [54] and the Common
Weakness Enumeration (CWE) database [55], respectively. The MITRE also maintains the
Common Vulnerabilities and Exposures (CVE) system. These projects are described in Sec-
tion 2.4.

1.3. SOFTWARE VULNERABILITY DETECTION
With ever-increasing code production, the need for automated and reliable methods to find
security vulnerabilities increases. In a study conducted by Edmundson et al., 30 individ-
ual developers were instructed to find the seven vulnerabilities in a given web application
without using any automated tools [3]. The results showed that none of these develop-
ers could find more than five vulnerabilities, and even 20 per cent of the developers could
not find any real vulnerabilities. A study performed by Meneely et al. has even concluded
that, statistically, files are more prone to contain vulnerabilities when a higher amount of

3



code reviews have been performed on these files and more reviewers have reviewed these
files [4]. This seems counterintuitive because multiple reviews could eventually find previ-
ously undetected vulnerabilities and multiple reviewers have different experiences, which
could lead to one reviewer detecting vulnerabilities that other reviewers could not detect.
Hence, automated solutions are being developed to help developers find security vulnera-
bilities in various stages of software development.

For this reason, sophisticated systems are needed that can guide and help developers
and code auditors detect and fix software vulnerabilities in source code (with the lowest
amount of false negatives and false positives). Security vulnerabilities can also be found
in programs without accessing their source code, like the Heartbleed bug [56–58], but it
is arguably better to detect and prevent vulnerabilities before they are being published in
applications. This prevents the existence of vulnerable versions of applications in the first
place and therefore decreases possible attack vectors for malicious parties. Nevertheless,
it should be noted that developing sound and complete systems is not possible because of
Rice’s Theorem [5]. Consequently, it cannot be guaranteed that a vulnerability detection
system does not output false negatives and false positives.

A multitude of approaches has been proposed to detect security vulnerabilities. Ghaf-
farian and Shahriari [6] have categorised these approaches as follows:

1. static analysis

2. dynamic analysis

3. hybrid analysis

These approaches have been used for many years, yet these approaches still have con-
straints, such as a high amount of false positives [7]. Additionally, Díaz and Bermejo tested
nine static analysis tools to detect vulnerabilities found in SAMATE tests, but none could
detect all vulnerabilities [8]. In the last two decades, the number of machine learning ap-
proaches to detect software vulnerabilities has increased, as shown in recent surveys [6; 9;
10]. Many techniques are available to translate data into a numerical form, which is then
typically used by machine- and deep learning approaches as input data. In Natural Lan-
guage Processing, tokenization techniques are widely used to translate text or speech into
vectors, like the word2vec [11; 12] and seq2seq [13] techniques. Natural language process-
ing and tokenization are described in more detail in Section 2.1. Such techniques used in
natural language processing can also be used to translate source code into vectors.

In 2018, Alon et al. [14] demonstrated a method to represent source code using the paths
of the abstract syntax tree belonging to the source code, in which they applied Conditional
Random Fiels and word2vec to the abstract syntax tree paths. In follow-up research [15; 16],
Alon et al. have increased their method’s effectiveness when trained on the task of predict-
ing method names. This is accomplished by using a neural network with an incorporated
attention mechanism in addition to the abstract syntax tree paths. This attention mech-
anism is able to put more weight on extracted paths that are most relevant to expressing
the semantic meaning of a piece of code. Code2vec is a neural network that is able to rep-
resent source code snippets as a fixed-length vector [15] (as opposed to words as vectors
with word2vec). Code2seq [16] is a neural network that represents source code snippets as
natural language sequences (as opposed to sequences as sequences with seq2seq). Both

4



models can export the vector/sequence representation of code. Therefore, the resulting
vector/sequence representation can be used in all kinds of classifiers.

One of the main advantages of the code2vec and code2seq models is automated feature
generation. Therefore, code2vec and code2seq can be used in an automated manner with-
out manual and laborious feature engineering. For example, code2vec could be used in an
automated continuous integration build pipeline [17] to detect security vulnerabilities or
other coding defects. Nevertheless, adding custom features to the code2vec or code2seq
model will be out of scope for this research. Code2seq uses a long short-term memory ar-
chitecture that could provide better results but also requires more processing power, mem-
ory and time to train a model (compared to the simpler architecture used by code2vec).
Coimbra et al. [18] show that it is possible to train a code2vec model with a corpus of al-
most 22000 functions in 5 minutes on an affordable GPU for consumers [18]. Because we
do not have a high-end system available for this research, code2vec will be the model we
use to represent source code instead of code2seq. However, code2seq uses an interface that
looks very similar to the interface of code2vec. Therefore, our research could be adapted to
work with code2seq without much effort.

Compton et al. have noticed that code2vec is hugely influenced by variable naming [19].
For example, a typo has an immense effect on the prediction, as discussed in Section 2.6.
They have proposed various variable obfuscation methods in which variable names are
substituted by another string value. However, only two of these obfuscation methods have
been tested. Additionally, not all downstream tasks benefit from variable obfuscation [19].
Nevertheless, the task of detecting vulnerabilities has not been examined yet, and there-
fore, we are interested to see the impact of code2vec’s ability to detect various software
vulnerabilities when applying different variable name obfuscation methods to our data
set. Depending on the number of unique user-defined variable names used in the data
set, variable obfuscation could also reduce the vocabulary used to train the model, which
could result in reduced memory usage and training time.

1.4. RESEARCH GOAL
This research will investigate the influence of variable name obfuscation on a code2vec
model trained to detect vulnerabilities. Therefore, this research will contribute to under-
standing the influence of variable names within representations of vulnerable source code
when used to train models on the task of vulnerability detection. Although there are many
successful approaches to detect security vulnerabilities, Morrison et al. concluded that ma-
chine learning models trained on the task of vulnerability prediction are still underper-
forming, which results in such systems not being adopted in the field [20]. Therefore, we
have to find solutions to improve the performance of these models for the task of detecting
vulnerabilities in source code. Research done by Compton et al. suggests that using obfus-
cated variable names will more accurately depict the semantic meanings of the code [19]
and, therefore, could improve the results of code2vec detecting vulnerabilities. However,
the research of Compton et al. has used various aggregation methods to create embeddings
representing an entire class, instead of a single method. Additionally, Compton et al. have
not trained a model on the task of vulnerability detection. Therefore the impact of variable
name obfuscation on detecting vulnerabilities is not investigated. Furthermore, Compton
et al. have suggested an obfuscation method, which they have not used themselves. There-
fore, we will use this suggested obfuscation method in addition to the two methods that

5



have already used by Compton et al. to see whether or not the third method results in bet-
ter detection performance. We will focus on vulnerabilities in web applications because
web applications are accessible by anyone and therefore an easy target. More specifically,
we focus on web applications written in C#, which is a popular programming language. Ad-
ditionally, we will train the code2vec model on multiple vulnerabilities and different data
set sizes for each vulnerability. We will elaborate on these topics in Chapters 2 and 3.

1.5. REPORT STRUCTURE
The following chapters of this report will describe our research in more detail. Chapter 2
provides more background details, including code2vec, performance metrics and related
studies. Next, Chapter 3 describes the research question and methodology of this research.
In Chapter 4 the used data sources are described, together with a description of the pro-
cess to create the data set for our experiments. In Chapter 5 we show the results of our
trained classifiers and their performance when trained on the task of vulnerability detec-
tion. Finally, we will discuss these results in Chapter 6 and conclude this report with the
conclusion and recommendations for further research in Chapter 7.

6



2
BACKGROUND

2.1. NATURAL LANGUAGE PROCESSING
To understand how source code can be translated and interpreted by machine- and deep
learning models, we first look at Natural language Processing (NLP). NLP is a field of re-
search in which human language (in text or speech form) is processed using computer al-
gorithms. The goal is to understand the content of text or speech, so that information can
be extracted from the content considering its context. Some applications of NLP tasks are
text-to-speech, grammatical error correction and translating text from one language to an-
other. Text can be seen as a sequence of characters or a sequence of words. Machine- and
deep learning models can interpret these sequences directly. However, computers perform
better using mathematical representations of these sequences. Therefore, most models use
vectors, which represent these sequences. when these sequences are first converted into
vectors before being interpreted by machine- and deep learning models. Some commonly
used conversion methods from sequences into vectors are [21]:

• Segmenting text into words and transforming each word into a vector.

• Segmenting text into characters and transforming each character into a vector.

• Extract n-grams of words or characters, and transform each n-gram into a vector.

Units such as words, characters, and n-grams of words or characters are called tokens.
The process of converting these units into tokens is called tokenization (Figure 2.1). In the
following sections, we will describe some relevant terms for our research related to tok-
enization.

Figure 2.1: Tokenization of text and from tokens to vectors.

7



2.1.1. N-GRAMS AND BAG-OF-WORDS
N-grams are groups of N contiguous tokens. The 1-gram, 2-gram and 3-gram of the sen-
tence "Detecting vulnerabilities is important" are shown in Figure 2.2, which uses words as
tokens. N-grams have various applications, for example, predicting the following token in
a sentence.

Another model to represent tokens is a bag-of-words. Bag-of-words are a set of words
and therefore do not contain the structure of the sentence because the tokens are un-
ordered. Bag-of-words can be used in tasks such as predicting the title of a document by
using the most frequent words in the bag-of-words. Bag-of-words are commonly used for
feature generation, such as the frequency of words or whether or not a word is present in
a sentence. We will show one example where bag-of-words can be used to create vector
inputs for a machine- or deep learning model. When we consider the following two sen-
tences, "Detecting vulnerabilities is important" and "Vulnerabilities are bad", we can cre-
ate the following vocabulary: "detecting", "vulnerabilities", "is", "important", "are", "bad".
Subsequently, we can create a binary vector for each sentence showing which words are
present, as shown in Figure 2.3. We use the arbitrary order of words in our vocabulary to
represent each vector. Notice that the binary vectors grow when new words are added to the
vocabulary, which requires more memory and processing power when used in machine-
and deep-learning models. Therefore, it is beneficial to try and decrease the size of the
vocabulary. There are numerous ways to accomplish this, for example, by removing punc-
tuation and stop words (e.g. a, an, or). Additionally, vocabularies can be built by using
n-grams.

Figure 2.2: 1-gram, 2-gram and 3-gram of the sentence "Detecting vulnerabilities is important".

Figure 2.3: Bag-of-words model used to create binary vectors.

2.1.2. WORD EMBEDDINGS
A commonly used approach in natural language processing to understand natural lan-
guage data, such as text and spoken words, is to use machine- and deep learning tech-
niques combined with word embeddings. Unlike bag-of-words, word embeddings capture
semantic properties of words and present these properties as vectors in a word embed-
ding vector space. The relations between tokens are captured in this vector space, such as
meaning, context, and morphology. When mapped in a vector space, the distance between
words and the location indicates the semantic similarity between these words, as depicted
in Figure 2.4. Similar words would be represented as similar word embeddings.

The idea of mapping semantically related words to real-valued vectors, which are also
closely related, was first introduced by Bengio et al. [22] in 2003. However, the technique

8



Figure 2.4: Different relations between tokens represented in embedding vector spaces. The distance be-
tween words and the location indicates the semantic similarity between words. For example, king is more
closely related to queen than queen to man. However, king and man are also related because they both are
masculine words. The same applies to woman and queen, both being female. Adapted from original image
by [59].

had a breakthrough in 2013 when Mikolov et al. introduced the word2vec [11; 12] word-
embedding scheme. In 2014 another popular word-embedding scheme was introduced by
Stanford researchers: Global Vectors for Word Representation (GloVe) [23].

Besides natural language processing, word embeddings are also used to solve various
other problems in the computer science domain, such as program property prediction [14]
and vulnerability detection [24; 25].

2.1.3. SEQUENCE TO SEQUENCE
Besides word embeddings, sequence to sequence techniques are widely used in combi-
nation with machine- and deep learning in natural language processing. Sequence to se-
quence translates token sequences into other token sequences, which can be used for vari-
ous tasks such as language translation, text summarization, image captioning, and conver-
sational models. One such technique is seq2seq [13]. Seq2seq uses an encoder component
to encode the source language to a hidden vector representing the token and its context.
Subsequently, a decoder component can translate this hidden vector to a target language.
The essence of seq2seq is shown in Figure 2.5.

Figure 2.5: Seq2seq learning with an encoder and decoder. Adapted from original image by [26].

9



2.2. CLASSIFIERS AND MODEL PERFORMANCE
Machine learning models are algorithms which can ’learn’ from data to perform certain
tasks, such as predicting a method name for a code snippet (as seen in the code2vec study [15],
which is described in Section 2.3). Models which are capable of categorising data into
classes are called classifiers. This is done by labelling the data, which the model learns
from. The process of learning associations between input data and the corresponding la-
bels is called supervised learning. When a machine learning algorithm is able to classify
samples without using (manually) labelled samples, this is called unsupervised learning.
Two types of classifiers can be defined:

1. Binary classifiers are models which are able to classify samples into two classes.

2. Multi-class classifiers are models which are able to classify samples into any number
of classes.

This study will focus on supervised learning and specifically on binary classifiers, which
will predict whether a code snippet is vulnerable or non-vulnerable.

The performance of the code2vec model (or any other classifier) can be evaluated by
using various metrics. Typically, a model can give a correct or incorrect prediction, for ex-
ample, whether or not a code snippet contains a vulnerability or not. When a classifier
predicts a code snippet is not vulnerable, we consider this prediction as negative. In con-
trast, we consider a ’vulnerable’ prediction as a ’positive’ prediction. A positive or negative
prediction can subsequently be checked to be true (the code snippet is predicted correctly)
or false (the code snippet is predicted incorrectly). Therefore, in case of vulnerability de-
tection, the following possibilities can occur:

• True Positive (TP): both the predicted and actual class are vulnerable.

• False Positive (FP): the predicted class is vulnerable, but the actual class is non-
vulnerable.

• True Negative (TN): both the predicted and actual class are non-vulnerable.

• False Negative (FN): the predicted class is non-vulnerable, but the actual class is vul-
nerable.

Table 2.1: An example confusion matrix for a total of 1000 cases.

Vulnerable (actual) Non-vulnerable (actual)
Vulnerable (predicted) 500 TPs 15 FPs
Non-vulnerable (predicted) 25 FNs 460 TNs

We can show the number of TP, FP, TN, and FN cases in a confusion matrix. An example
confusion matrix is shown in Table 2.1. The number of TPs, FPs, TNs, and FNs can be
subsequently used to calculate a number of metrics, which can be used to give indications
about the performance of a classifier. We will now describe some of these metrics.

10



The accuracy metric describes the ratio of correctly classified samples divided by the
total number of samples. However, the accuracy metric alone can be a misleading metric
to describe the performance of a classifier. This is the case for an imbalanced data set. A
data set is considered imbalanced when one of two (or more) classes has a small presence
in that data set, as opposed to the other class(ses) in that data set. For example, when a
data set contains 99% non-vulnerable code and 1% vulnerable code, a classifier could easily
achieve an accuracy of 99% by simply classifying each input as a non-vulnerable piece of
code. Accuracy is calculated by using the following formula:

Accur ac y = (T P +T N )/(T P +F P +T N +F N )

In addition to accuracy, Cohen’s Kappa (κ) can be used to describe the agreement be-
tween reality and a classifier’s predictions. Although κ is related to the accuracy metric, it
considers a chance factor making it more robust than accuracy [27]. However, in recent
studies, the use of κ to evaluate the performance of classifiers is questioned [28]. Despite
this, κ is still used in studies [19]. κ can be calculated by using the following formula [28]:

κ= 2∗ (T P ∗T N −F P ∗F N )

(T P +F P )∗ (F P +T N )+ (T P +F N )∗ (F N +T N )

Where the minimum value is -1 and the maximum value is 1, indicating a perfectly
wrong prediction and a perfect prediction respectively. A value of around 0 means the pre-
diction was similar to random guessing.

In addition to accuracy and κ, the precision and recall metrics are used to describe the
performance of classifiers. Precision describes the ratio of actual positives (in our case vul-
nerable code snippets) to all samples which were predicted to be positive. Recall describes
the ratio of correctly identified positives out of the total positive samples, in our case recall
describes the proportion of how many of the actual vulnerabilities have been found.

Pr eci si on = T P/(T P +F P )

Recal l = T P/(T P +F N )

The F1 score is used to combine the recall and precision metrics. A higher precision
often has a negative impact on the recall and vice versa. To better understand the F1 score,
we try to answer the following question in context to our vulnerability prediction task: what
false prediction is worse, an FP or an FN? An FN means a vulnerability has not been de-
tected and therefore a developer will not be alerted by the classifier to fix this vulnerability.
A high recall reduces the chance of this happening. In contrast, an FP will alert a developer
to fix a vulnerability when there is none, thus wasting precious time in the process. The
F1 score can therefore be used to find a middle way for both the recall and precision of a
model.

F1 = 2∗ ((pr eci si on ∗ r ecal l )/(pr eci si on + r ecal l ))

11



2.3. CODE2VEC
Code2vec was proposed in 2019 by Alon et al. and uses a neural network to represent code
snippets as fixed-length code vectors, which can predict the semantic properties of the
code snippet [15]. Thus, the vectors provided by code2vec capture the meaning (seman-
tics) of the code snippet. These vectors can be used for various tasks, such as predicting
descriptive method names for code snippets and detecting security vulnerabilities in code
snippets.

Code2vec is able to translate code snippets of various programming languages to con-
tinuous distributed vectors (also referred to as ’code embeddings’). To achieve this, an Ab-
stract Syntax Tree (AST) of a code snippet is given as input to the code2vec model, together
with a corresponding label, which describes the semantic property of the code snippet.
This way, the model can be trained to predict properties for code snippets. Code snippets
which are semantically closely related are converted into vectors that are also close to each
other.

The code2vec model converts the AST of a code snippet (more specifically a single
method/function) into an unordered bag (multiset) of the AST’s extracted paths, referred
to as path-contexts by Alon et al. Subsequently, the model must learn to link correspond-
ing bags and labels, with the additional requirement to map bags with the same label to
close vectors. To accomplish this, a neural attention based feedforward network architec-
ture is used (as depicted in Figure 2.6). This architecture learns how much focus (attention)
needs to be given to each element in the bag of paths. This attention mechanism calculates
a weighted average of the path-context vectors, leading to a single code vector. This code
vector can be used for various tasks, such as predicting security vulnerabilities using the
softmax function layer, which is already implemented in the code2vec network. However,
the vector can also be extracted and used as input for a custom model.

For better interpretability, it is possible to visualize allocated weights. The code embed-
dings can be exported from a trained code2vec model, subdivided into token embeddings
(the features) and the vectors containing the labels. These are represented in a word2vec
format. Therefore, these files can be inspected using tooling, such as the open-source Gen-
sim library [60].

According to Alon et al., a syntactical representation (in the case of code2vec, this is
the AST) is more valuable for representing source code in machine learning models than
n-grams and manually designed features, which is motivated by earlier work [14]. In con-
trast, Allamanis et al. [29] have used semantic relations to represent code snippets, which
could reveal additional information that is not explicitly available in syntactic-only repre-
sentations. Nonetheless, the use of semantic knowledge has a few disadvantages as well:

1. Only experts are able to choose and design semantic analyses.

2. It is hard to generalize different programming languages because semantic analyses
have to be implemented for every programming language accordingly.

3. Designed semantic analyses are possibly hard to generalize for different tasks.

When compared to the syntactic approach used by code2vec:

1. No programming language expertise or manual feature design is needed;

12



Figure 2.6: The code2vec model architecture. Adapted from original image by [15].

2. To generalize different programming languages, the language parser needs to be ex-
changed for the specific language, with the requirement that the same traversal algo-
rithm is used to provide an AST;

3. As shown by Alon et al. [14], syntactic paths perform well when used for different
tasks.

Alon et al. have demonstrated this property by predicting a meaningful method name
for the vector created by code2vec of a given method body code snippet.

Alon et al. have distributed their source code of code2vec on GitHub [61], together with
AST extractors for C# and Java code snippets. However, third parties have already pub-
lished extractors for other programming languages, such as Python, C and C++ [62] and
TypeScript [63]. Additionally, it is possible to create extractors for other programming lan-
guages compatible with code2vec.

13



2.4. SOFTWARE VULNERABILITY PROJECTS

2.4.1. COMMON VULNERABILITIES AND EXPOSURES

The Common Vulnerabilities and Exposures (CVE) project is a list that contains publicly
disclosed computer security vulnerabilities [64]. These software vulnerabilities are assigned
a unique CVE ID provided by a CVE Numbering Authority (CNA). Current CNAs are par-
ties such as software vendors, open-source projects and coordination centres, such as Mi-
crosoft Corporation, Apache Software Foundation and CERT/CC. When someone discovers
a new vulnerability, the person can report this vulnerability to a CNA whose scope concerns
the product in which the vulnerability was found and request a CVE ID for this vulnerability.
A CVE ID is then reserved, after which the CNA can investigate the reported vulnerability.

The CVE ID contains the CVE prefix, the year in which the CVE ID was reserved or pub-
lished and a sequence number portion, which can include four or more digits, resulting in
the following format: CVE prefix + year + sequence number.

When the CNA has validated the vulnerability and has provided at least a brief descrip-
tion, name and version(s) of the affected product, a relevant reference, and a vulnerability
type, root cause or impact, the CVE record will be published. However, if the reported vul-
nerability is invalid, the CVE record will be rejected.

2.4.2. COMMON WEAKNESS ENUMERATION

Various taxonomies of vulnerabilities have been developed to classify vulnerabilities that
have similar characteristics into categories. One of these taxonomies is the Common Weak-
ness Enumeration (CWE), a database containing a list of software and hardware weakness
types maintained by MITRE [55].

Each CWE entry is represented by information such as a CWE ID (a unique identifica-
tion number containing a CWE prefix and a sequence number), a description, information
about when and how the vulnerability may be introduced, and the likelihood of exploita-
tion of the weakness.

The list helps developers learn about common vulnerabilities and aims to help develop-
ers prevent introducing these vulnerabilities in their systems. It also helps reduce risks by
enabling an effective way of communicating about vulnerabilities. Likewise, security prac-
titioners and researchers use the CWE to help them in their work, for example, by providing
a standard to evaluate tools that try to find and identify weaknesses. The list contains over
900 vulnerability classes, including stack-based buffer overflows (CWE-121), Cross-Site Re-
quest Forgery (CSRF) (CWE-352), and Out-of-bounds Write (CWE-787).

2.4.3. NATIONAL VULNERABILITY DATABASE

The National Vulnerability Database (NVD) is a database that contains vulnerabilities found
in public software, filled with entries from the CVE list [65]. The National Institute of Stan-
dards and Technology (NIST) enriches the entries with technical details, such as the cor-
responding CWE and a vulnerability scoring system (CVSS) [30] that indicates the vulner-
ability’s severity. This information is valuable to various types of security professionals to
learn about vulnerabilities and help them take action to prevent malicious actors exploit
these vulnerabilities. The NVD can also help create insights, such as the distribution of
vulnerabilities by severity over time [66], as seen in Figure 2.7.

14



Figure 2.7: The distribution of vulnerabilities by severity over time, as reported at the NVD up to and including
2021.

2.4.4. OWASP
The Open Web Application Security Project (OWASP) is an organization that is commit-
ted to improving the security of software, specifically for web applications. They do this
through various projects, which are all freely available. Examples of these projects are
OWASP ZAP [67] (a penetration testing tool), WebGoat [68] (a web application with delib-
erately implemented vulnerabilities for education purposes), and the OWASP Top 10 [69].
The OWASP Top 10 is a document describing the top 10 most critical security risks to web
applications of that moment. The document aims to bring awareness of these security risks
to developers and executives. The first edition of the OWASP Top 10 was released in 2003,
and updated versions were released in 2004, 2007, 2010, 2013, 2017, and 2021. Since 2010,
the focus for compiling the ranking has been based on the occurrence of a vulnerability,
risks, exploitability and technical impact. The ranking contains ten categories, which com-
prise various CWEs per category.

15



2.5. VULNERABILITIES
The vulnerabilities we will use in our experiments were selected from the top 10 most crit-
ical risks defined by the OWASP Top 10 [69]. Additionally, we depend on the available vul-
nerability data set samples described in section 4.5. The three most critical risk categories
of the OWASP Top 10 (broken access control, cryptographic failures and injection) are all
present in the available data sets we will use. However, not all CWEs of each OWASP cate-
gory are available in these data sets, and therefore only the available CWEs are used in our
experiments. Nonetheless, vulnerabilities within the cryptographic failures category can
already be detected with high precision using static code analysis tools, as demonstrated
by the CryptoGuard research [31]. Therefore, the added value of detecting these vulnera-
bilities with machine- and deep learning is not as interesting as the other two categories
and will therefore not be used in our experiments. Additionally, previously deemed robust
cryptographic algorithms could later become obsolete after being broken by cryptographic
experts (which is also described in CWE-327: Use of a Broken or Risky Cryptographic Algo-
rithm [70]). Consequently, we would need to modify our data set and retrain our models
when an algorithm becomes obsolete. The following sections briefly explain the vulner-
ability categories (broken access control and injection) and corresponding CWEs used in
our experiments. A complete overview of the (number of) samples per OWASP category
and CWE used in this research can be found in Appendix A, specifically in Table A.1 and
Table A.2.

2.5.1. BROKEN ACCESS CONTROL VULNERABILITIES
Access control enforces policies on users such that they cannot perform actions for which
they do not have permission. However, malicious users can bypass access control policies
and perform unauthorised actions by using Broken Access Control vulnerabilities. These
actions can result in unauthorised information disclosure, modification, or deletion. Some
commonly exploited CWEs in this category are CWE-22 (Path traversal), CWE-200 (Expo-
sure of Sensitive Information to an Unauthorised Actor), CWE-201 (Insertion of Sensitive
Information Into Sent Data), and CWE-352 (Cross-Site Request Forgery). The MITRE con-
tains various broken access control vulnerability CWEs in the 2021 edition of their CWE
Top 25 Most Dangerous Software Weaknesses list [71], such as CWE-22 ranked 8, CWE-352
ranked 9 and CWE-200 ranked 20. CWE-22 is briefly explained in the following section.

PATH TRAVERSAL

Path traversal vulnerabilities allow unauthorized users to access files which should be inac-
cessible to these users. This could provide malicious users with confidential information,
but also could allow malicious users to create, modify or delete files. When referencing files
with a prefix containing one or multiple "../" cases, it is possible to access files outside the
current directory.

The example in Listing 2.1 shows a method which checks whether or not a file exists in
the current directory. However, because line 7 is not true, the "../" cases are not removed
and a user could get unauthorized access to data outside the current directory. In this case,
it shows the user whether a requested file exists.

16



Listing 2.1: Path traversal sample from the SARD 105 Test Suite.

1 public static bool Bad( string [] args)
2 {
3 string tainted_2 = null;
4 string tainted_3 = null;
5 tainted_2 = args [1];
6 tainted_3 = tainted_2 ;
7 if ((1 == 0))
8 {
9 string pattern = " ^[\\.\\.\\/]+ ";

10 Regex r = new Regex( pattern );
11 tainted_3 = r. Replace (tainted_2 , "");
12 }
13

14 // flaw
15 return File. Exists ( tainted_3 );
16 }

2.5.2. INJECTION VULNERABILITIES
Injection vulnerabilities are ranked third in the 2021 edition of the OWASP Top Ten [69]
and were even ranked first in previous editions (from 2010 until 2017) [72–74]. The MITRE
contains numerous injection vulnerability CWEs in the 2021 edition of their CWE Top 25
Most Dangerous Software Weaknesses list [71], such as CWE-78 (OS Command Injection)
ranked 5, CWE-89 (SQL Injection) ranked 6, and CWE-77 (Command Injection) ranked 25.
Injection vulnerabilities are possible when programs accept untrusted data, such that an
interpreter processes this data as part of a command or query. When this data is not sani-
tised, it is possible to insert data that trick the interpreter into accessing data without valid
authorisation and executing unwitting commands. We will briefly explain a common in-
jection vulnerability in the following section.

SQL INJECTION

SQL (Structured Query Language) injection vulnerabilities are known under CWE id 89. An
example of a SQL injection can be seen in Listing 2.2. The example shows the vulnerability
in line 12. The "data" variable is untrusted and unsanitised. Because of this, an attacker
could inject a malicious SQL command via the "data" variable, allowing the attacker to
execute these SQL commands on the database. This could result in unwanted effects such
as information disposal, data modification or data removal. However, SQL injections like
these can be prevented by using parameterised queries and not using string concatenation
in SQL commands. Following these examples could have prevented the vulnerability in our
example of Listing 2.2). Additionally, it is best to use the least required amount of privileges
for database access by the client.

17



Listing 2.2: SQL injection sample from the Juliet C# Test Suite.

1 public override void Action ( string data , HttpRequest req ,
HttpResponse resp)

2 {
3 int? result = null;
4 try
5 {
6 using ( SqlConnection dbConnection = IO. GetDBConnection ())
7 {
8 dbConnection .Open ();
9 using ( SqlCommand badSqlCommand = new SqlCommand (null ,

dbConnection ))
10 {
11 /* POTENTIAL FLAW: data concatenated into SQL

statement used in ExecuteNonQuery (), which could
result in SQL Injection */

12 badSqlCommand . CommandText = " insert into users (
status ) values (’updated ’) where name=’" +data+"’
";

13 result = badSqlCommand . ExecuteNonQuery ();
14 if ( result != null)
15 {
16 IO. WriteLine ("Name , " + data +", updated

successfully ");
17 }
18 else
19 {
20 IO. WriteLine (" Unable to update records for user:

" + data);
21 }
22 }
23 }
24 }
25 catch ( SqlException exceptSql )
26 {
27 IO. Logger .Log(NLog. LogLevel .Warn , "Error getting database

connection ", exceptSql );
28 }
29 }

18



2.6. RELATED STUDIES
Code2vec can help with numerous programming language processing tasks, such as find-
ing duplicate code and classifying code snippets. Additionally, recent studies have already
explored using code2vec to detect security vulnerabilities. Coimbra et al. have compared
the ability of code2vec to detect security vulnerabilities with various transformer-based
models used in natural language processing and computer vision [18]. In their approach,
code2vec reached an accuracy of 61.43%, detecting vulnerabilities from the Devign data
set [32] without distinguishing the type of vulnerability by using the default code2vec hy-
perparameters. Results show that code2vec bested more simple models but was exceeded
by more expressive models that used more parameters. However, code2vec produced re-
sults using relatively low system resources and training time. These advantages could be
decisive when system resources and time are sparse.

Baptista et al. have opted to use code2seq instead of code2vec for vulnerability detec-
tion and classification [33]. By tuning the hyperparameters of code2seq, they claim to have
acquired a model with an accuracy of 85%, precision of 90%, recall of 97% and an F1 score of
93%, acquired in just one epoch (which is one training cycle of a machine learning model).
The hyperparameters have been optimised using the tool Sweeps [75], which can find opti-
mised hyperparameters for a model in an automated fashion, using various search strate-
gies, including random-, Bayesian-, and grid search. It is claimed that humans validated
the used data set and it is therefore free of false positives. However, the used data set is
not stated in their paper, thus their claims cannot be validated. Additionally, it is unknown
which vulnerability types have been detected, except for a short introduction to the injec-
tion vulnerability category in their paper, which makes up 33 different CWEs in the latest
version of the OWASP Top 10 [76]. Subsequently, the research of Baptista et al. is based
upon a master thesis, which is not publicly accessible, and as a result, no additional infor-
mation or validation is available. In contrast to the code2vec approach used by Coimbra
et al., the approach of Baptista et al. requires more resources than a regular personal com-
puter could provide.

Kang et al. [34] have researched the generalisability of the code2vec token embeddings
for other downstream tasks. Code2vec performs well in predicting method names, as shown
in Alon et al. [15]. However, Kang et al. claim that the code2vec token embeddings do not
generalise well. Kang et al. have defined three downstream tasks used in their experiments
to substantiate their thesis: generating code comments, identifying code authorship, and
detecting code clones. Each experiment used a different model previously successfully
used by other researchers to perform one of the defined downstream tasks. These mod-
els were augmented in their experiments with the vectors generated by code2vec. Subse-
quently, the experiments were performed again using other vectors and features, such as
GloVe vectors, for comparison and validation. However, as Kang et al. already mentioned,
the used models might not be suitable for token augmentation, and also their implemen-
tations could give distorted results. Additionally, other downstream tasks, such as vulnera-
bility detection, are not evaluated in their research.

A complementary study by Compton et al. [19] states that code2vec focuses for a large
part on variable naming and therefore focus on the semantics is lost, especially when trained
on the task of predicting method names. This statement is also confirmed by the findings
of Kang et al. [34], as removing token embeddings representing variable names resulted fre-
quently in better representations for their investigated downstream tasks. Additionally, the

19



influence of variables is also questioned by Elema et al. [35]. They have used features ex-
tracted from various graph representations of source code to detect vulnerabilities in PHP
code. They have removed variables from their feature set which they claim to have ’little
expressiveness’, but no clear details have been provided.

Compton et al. have trained the code2vec model by using data sets that use popular
GitHub projects as their source. They generally use predictive variable naming[15] and are
favourable for the task used in their research of predicting method names. Compton et al.
have shown the focus on variables by examining some examples depicted in Figure 2.8. A
typo or a completely different variable name results in an incorrect prediction. Compton
et al. have also noticed that code2vec can only create embeddings for individual methods
instead of being able to produce a vector representing a class. They have performed vari-
ous method selection and aggregation methods on the method embeddings produced by
code2vec to produce single vector representations for classes by using simple mathemat-
ical operations on sets of vectors. Subsequently, they have only trained a classifier using
these class vectors and not the separate method vectors which code2vec creates by default.
Additionally, they have used a custom classifier [19] to investigate the results of their ap-
proach, ignoring the code2vec classifier. This approach of creating class embeddings could
be beneficial for downstream tasks such as predicting class names. However, we do not be-
lieve this would increase the ability of code2vec to detect security vulnerabilities because
the security vulnerabilities we would like to predict are much more fine-grained. During
their method selection and performing aggregation operations, valuable information could
be lost when using the resulting embedding to train a model on the task of detecting vul-
nerabilities.

By obfuscating variable names, Compton et al. could better preserve code semantics.
However, the performance of predicting method names was reduced due to this approach.
Nevertheless, by obfuscating the variable names, code2vec might be more generically us-
able for other downstream tasks that rely more on semantics instead of variable nam-
ing. Additionally, this has some extra benefits: firstly, obfuscating variable names prevents
code2vec from being vulnerable to adversarial attacks via variable names [19]. Secondly,
obfuscating variable names prevents code2vec from focusing too much on variable names,
and therefore typos in variable names do not impact the outcome. Likewise, it would be in-
teresting to validate the impact of user-defined function- and method names on the ability
of a model to detect vulnerabilities. However, the available security vulnerability data sets
we use for our research (which we will describe in Section 4.5) scarcely use user-defined
method names. Additionally, these user-defined methods are primarily used to run mul-
tiple vulnerability tests at once and therefore are unrelated to the security vulnerabilities
themselves.

Compton et al. have proposed three obfuscation methods:

• Type-obfuscation: variable names are substituted with a string indicating the type
and scope of the variable. Both the type and scope could be helpful for prediction.

• Random-obfuscation: variable names are substituted with a random string. There-
fore, the model is not able to learn any trends from variable names and focuses more
on the structure of the code.

20



• Semi-obfuscation: 50% of the variables are obfuscated, and the other 50% still use
their original naming. This approach may provide the model with informative vari-
able names but potentially does not lose the semantic meaning of the code snippet
as much as a non-obfuscated snippet.

Of the three obfuscation methods, only the semi-obfuscation method has not been
used in their experiments, and therefore no results are available for this approach. Exam-
ples of the type-obfuscation and random-obfuscation methods are shown in Listing 2.3.
The obfuscation methods were tested on a variety of downstream tasks: 1. Method name
prediction. 2. Differentiate between two types of Java files (those used for image processing
versus serving web pages). 3. Algorithm classification. 4. Identifying the most likely author
of the code snippet. 5. Bug detection. 6. Duplicate detection. 7. Malware classification.

The results of the obfuscation methods were different for each downstream task. The
bug detection task is arguably the closest to our vulnerability detection task, and there-
fore its results are interesting to us. Nevertheless, these results are based on using class
embeddings and not using the code2vec classifier. We believe using embeddings repre-
senting single methods would provide better results for detecting vulnerabilities because
the single-class embeddings were created by omitting (possibly important) details, as de-
scribed previously in this section. Overall, code2vec’s performance in detecting bugs was
relatively low. However, the random method provided a statistically significant improve-
ment compared to using no obfuscation [19].

Listing 2.3: Variable obfuscation methods shown for a C# method.

1 // Original method
2 public string IncreaseAndConcatenateCountToInput ( string input) {
3 int count = this. objCount ;
4 this. objCount ++;
5 return input + count;
6 }
7

8 // Type - obfuscated method
9 public string IncreaseAndConcatenateCountToInput ( string

param_string_1 ) {
10 int local_int_1 = this. field_int_1 ;
11 this. field_int_1 ++;
12 return param_string_1 + local_int_1 ;
13 }
14

15 // Random - obfuscated method
16 public string IncreaseAndConcatenateCountToInput ( string FDGHSXJF ) {
17 int UJGRJWMU = this. MVKHEQTR ;
18 this. MVKHEQTR ++;
19 return FDGHSXJF + UJGRJWMU ;
20 }

21



Figure 2.8: The method name predictions (shown in the right part of the figure) performed by the code2vec
model for various code snippets (shown in the left part of the figure). (minor) changes in variable names
result in substantially different predictions for a classifier trained on the task of method name prediction.
The code is displayed in the left column, the predictions for this code in the right column. For example, the
upper two rows show that when the ’e’ is omitted in ’done’, the model cannot produce a correct prediction.
Additionally, the lower two rows show that renaming the variable ’n’ to ’total’ in a factorial function results in
an incorrect prediction. This shows that the model is relying heavily on variable names to make predictions.
Adapted from original image by [19].

22



3
RESEARCH DESIGN

3.1. RESEARCH QUESTIONS
The goal of this research is to answer the following research question:

What influence does variable obfuscation have on the code2vec model when trained
on the task of detecting software vulnerabilities?

We will evaluate the influence of variable obfuscation on the code2vec [15] model when
trained to detect software vulnerabilities. Morrison et al. concluded that vulnerability pre-
diction models still produce bad results, which results in such systems not being adopted in
the field [20]. Accordingly, we have to find solutions to improve the performance of these
models for the task of detecting vulnerabilities in source code. Compton et al. state that
when variable names are obfuscated, the model might focus more on the semantic prop-
erties of a code snippet [19]. Consequently, the models’ performance to detect vulnerabil-
ities could be increased because the semantics are better represented in the code vector
which represents the code snippet. Therefore, we will investigate the influence of different
variable name obfuscation methods on a code2vec model trained to detect vulnerabilities:
type-obfuscation, random-obfuscation and semi-obfuscation. These three variable obfus-
cation methods are described in 2.6. We have several sub-questions that we will answer
first to get an answer to our main research question:

RQ1: HOW DOES CODE2VEC PERFORM ON A NON-OBFUSCATED DATA SET WHEN TRAINED ON

DETECTING SECURITY VULNERABILITIES?
Coimbra et al. have already shown that code2vec is a simple model that can be trained

to detect security vulnerabilities in a relatively short time [18]. However, we need a baseline
for our experiments to investigate our hypotheses on the influence of variable obfuscation
on the vulnerability detection performance of code2vec.

RQ2: WHAT IS THE EFFECT OF USING OBFUSCATED VARIABLE NAMES ON THE CODE2VEC

MODEL WHEN TRAINED TO DETECT BROKEN ACCESS CONTROL OR INJECTION VULNERABIL-
ITIES?

Compton et al. suggest that using obfuscated variable names will more accurately de-
pict the semantic meanings of code [19]. Therefore, we will investigate whether or not vari-

23



able name obfuscation improves code2vec’s vulnerability detection performance and com-
pare it with our baseline results. Additionally, we will analyse the effect on the performance
between the three proposed obfuscation methods.

RQ3: HOW DOES VARIABLE OBFUSCATION AFFECT A CLASSIFIER WHEN TRAINED TO DETECT

MULTIPLE CWE VULNERABILITIES INSTEAD OF ONE CWE VULNERABILITY?
The results of a classifier which is trained on samples containing only one CWE cate-

gory, do not directly imply these results will be the same for a classifier which is trained on
samples containing multiple CWE categories. Therefore, we will examine whether or not
variable obfuscation provides different results between classifiers which have been trained
on only one CWE category and classifiers which have been trained on multiple CWE cate-
gories.

3.2. RESEARCH METHOD
The hypothesis that variable names influence code2vec’s performance in classifying vul-
nerabilities has resulted in the research questions described in the previous section. We
have conducted multiple empirical experiments to validate this hypothesis and answer our
main research question. Below, we first describe the data sets and tooling we have used for
our experiments, along with the vulnerabilities on which our models have been trained to
detect. Subsequently, we will describe the method for each sub-question.

We have created a base data set consisting of C# vulnerability test cases, which we de-
scribe in Chapter 4. In Section 2.5 we have already elaborated on the two OWASP Top 10
vulnerability categories we have focused on in our experiments (Broken Access Control and
Injection vulnerabilities). These two categories are two of the top three OWASP Top 10 vul-
nerability categories [69]. Therefore, we have selected cases from C# vulnerability test case
sources, filtered the related vulnerabilities, and stored them in our data set. Labelling the
samples is done by giving the methods specific names. Therefore, we have named methods
containing a vulnerability on which we have trained the model with ’bad’. Methods that do
not contain a vulnerability are named ’good’. Next, we have created custom tooling to auto-
mate the creation of our data sets. This tooling is to apply the various variable obfuscation
methods to the data set samples and filter unwanted methods within the data sets which
are not related to vulnerabilities. The tooling provided different variants of our data set,
whereby a different kind of obfuscation method is applied to each variant.

Next, the samples were converted into path-contexts which are used as input for the
code2vec model, by using the preprocessor tooling published by the code2vec study team [61].
After the preprocessing part had finished, the code2vec classifiers were trained on the task
of detecting vulnerabilities. The performance of the classifiers has been evaluated using
metrics which are previously described in Section 2.2. This allowed us to review the perfor-
mance of each classifier and make comparisons. Additionally, we have utilised code2vec’s
ability to evaluate the attention given to the extracted path-contexts. This allowed us to
(partially) interpret the logic behind the specific classifiers and allowed us to examine the
differences between non-obfuscated and obfuscated classifiers in more detail.

24



RQ1: HOW DOES CODE2VEC PERFORM ON A NON-OBFUSCATED DATA SET WHEN TRAINED ON

DETECTING SECURITY VULNERABILITIES?
We have combined and extracted cases from various C# vulnerability test case sources

to create our data sets. We created a non-obfuscated data set for each CWE category for
which we are able to extract sufficient samples. After the non-obfuscated data set had
been created for each of the CWE categories that we have examined, the corresponding
code2vec classifiers have been trained on the task of detecting vulnerabilities using the
non-obfuscated data set. Subsequently, metrics indicating the performance of the classi-
fiers have been calculated (accuracy, precision, recall, and F1), such that we were able to
compare the performance of the classifiers trained on the obfuscated data sets (as we will
describe in RQ2 and RQ3). All classifiers that we have trained are binary classifiers, which
are able to predict whether or not a code snippet contains a vulnerability.

RQ2: WHAT IS THE EFFECT OF USING OBFUSCATED VARIABLE NAMES ON THE CODE2VEC

MODEL WHEN TRAINED TO DETECT BROKEN ACCESS CONTROL AND INJECTION VULNERABIL-
ITIES?

Besides the classifiers trained on non-obfuscated vulnerability samples, we have trained
classifiers using obfuscated vulnerability samples, based on the same non-obfuscated data
set. Therefore, we have created three additional variants (copies) of the non-obfuscated
data set, which are used to answer RQ2. The variable names in each data set variant are
obfuscated using one of our proposed variable name obfuscation methods, as described in
Section 2.6. We have trained additional classifiers, whereby each classifier is trained using
one of the available obfuscated data set variants. Finally, we have reviewed the results for
each trained classifier, including the classifiers which were trained on the non-obfuscated
data sets. Finally, performance metrics were calculated to enable us to compare the classi-
fiers.

RQ3: HOW DOES VARIABLE OBFUSCATION AFFECT A CLASSIFIER WHEN TRAINED TO DETECT

MULTIPLE CWE VULNERABILITIES INSTEAD OF ONE CWE VULNERABILITY?
To be able to answer RQ1 and RQ2 we have trained classifiers whereby each classifier

is trained using samples describing one type of CWE vulnerability. However, this does not
directly imply that a classifier trained to detect vulnerabilities of multiple CWE categories
provides the same results. Therefore, we have trained additional classifiers using data sets
in which multiple CWEs are combined. Again, we used a non-obfuscated, type-obfuscated,
random-obfuscated and semi-obfuscated variant. Finally, performance metrics were cal-
culated to enable us to compare the classifiers.

An overview of the steps which we have performed to answer our research questions
are displayed in Figure 3.1.

25



Figure 3.1: Overview describing the steps performed in our research to be able to answer our research ques-
tion(s).

26



4
DATA SET PREPARATION

4.1. DATA ACQUISITION PROCESS
In order to answer our research questions, we have collected test cases and combined them
in a data set. Specifically, we are interested in vulnerable- and non-vulnerable test cases
which are classified as CWEs that are part of the Broken Access category and Injection cat-
egory defined by the OWASP Top 10 [69]. The non-vulnerable test cases are related to vul-
nerable test cases, but the vulnerable parts are fixed [36]. In this chapter, the used test case
sources for our data set are explained and the preprocessing steps are illustrated.

To create the data set for this research, we have used a "data acquisition" process in
which we have selected and collected test cases (both vulnerable and non-vulnerable) from
relevant sources. Within this process, the following steps have been performed:

1. Extracting cases: To help select the usable cases during the data acquisition step, we
created our own tooling to take only the relevant cases from the sample sources.

2. Data cleaning: After the extraction, we performed operations on the retrieved data
to create a homogeneous data set. An example operation is removing methods unre-
lated to a vulnerability, such as Main()-methods which start the program.

3. Data labelling: The process where we add identifiers to a case, explaining whether
the case contains a vulnerability or not.

These steps are also illustrated in Figure 4.1. The acquisition process converts the test
cases into samples, which we can use as input for our code2vec model. A test case can
contain multiple vulnerable or non-vulnerable methods and therefore it is possible one test
case can result in multiple samples. The tooling has been made available on GitHub [77].

As explained in Section 2.4 there are various parties and projects which can be used to
track known vulnerabilities and make software developers more aware to prevent introduc-
ing new vulnerabilities. We have used four test case sources to create our data set, three of
which are from the NIST SAMATE project (SARD Test Suite 105, Juliet C# Test Suite, and the
Hasan Test cases) and one source is manually created from data retrieved from the NVD
using the CVEfixes tool.

Most of these test case sources’ samples are synthetic, which means that these test
cases have been created manually or generated by programs. Only the cases from the NVD

27



project are found within production software. The SAMATE project, a project of the NIST,
provides a collection of vulnerability test cases that can be used to perform evaluations on
security tools that have been bundled in test suites [36]. However, some test cases are not
bundled in a test suite, such as the Hamda Hasan test cases. All test cases can be filtered
on CWE and programming language. The SAMATE project of the NIST currently provides
two C# test suites containing various vulnerabilities [78]. The test suites and the associ-
ated data acquisition steps for these test case sources are further described in Section 4.3.1
and Section 4.3.2. Additionally, the same is done for the Hasan test cases in Section 4.3.3
and NVD/CVEFixes cases in Section 4.3.4. However, in the following three subsections we
describe each processing step in general.

Figure 4.1: Data acquisition process.

28



4.1.1. EXTRACTING CASES
Each test case source contained test cases describing various CWE vulnerabilities. There-
fore, during the "extracting cases" step we had to remove all unwanted test cases describing
CWE vulnerabilities that were not within our scope. Additionally, the test cases could con-
tain vulnerabilities which span multiple parts of a program, such as a vulnerability within
a combination of methods or classes. Because the code2vec model only accepts individual
methods, we had to remove these test cases. This was done by hand for the Hasan test cases
and NVD/CVEfixes cases. We wrote custom C# software to automate this step for the SARD
Test Suite 105 and Juliet C# Test Suite. The result of omitting some of these test cases for
our data set is described per case source in the corresponding subsections in Section 4.3.

4.1.2. DATA CLEANING
Each test case source uses its own formatting and structure and therefore we had to clean
the test cases before the cases could be added to our data set. This way, we are eventu-
ally able to create a homogeneous data set. This step is mainly necessary because of the
Juliet C# Test Suite. This suite contains test cases which included additional classes with
support methods [37]. However, we had to remove these support methods as the code2vec
model only accepts single methods. The removal of these support methods is described in
more detail in Section 4.3.2. Furthermore, the Juliet C# Test Suite cases contain Main- and
’runTest’ methods, which can be used when testing security analysis tools. However, in our
case these methods are unwanted and have been removed.

4.1.3. DATA LABELLING
The Test Suite 105 and Juliet Test Suite contained thousands of test cases and therefore we
wrote a program to label the samples by changing the method names to ’Bad’ or ’Good’,
depending on whether or not the sample contained a specified CWE vulnerability, respec-
tively. The Hasan and NVD/CVEfixes were smaller in size and therefore these test cases
were labelled by hand using the same naming pattern.

29



4.2. TOOLING
Two of our four used sample sources were relatively small and therefore have been cleaned
and labelled by hand for this project. However, the SARD Test Suite 105 and Juliet Test
Suite contain thousands of test cases which would take too much time to clean and label
by hand. A convenient solution would be to modify the generator scripts which have pro-
duced the test cases. However, no generator script files have been published for both test
suites. Therefore, we needed a parser which enabled us to analyse and subsequently alter
the source code of our samples for cleaning, labelling, and obfuscation purposes. We have
chosen our parser by considering the two most active and up-to-date (based on GitHub
commits and activity) parsers for C#: Roslyn and Antlr.

Roslyn [79] is Microsoft’s open-source .Net Compiler Platform. C# is a programming
language which targets the .Net framework. Therefore, Roslyn enables developers to build
code analysis tools and perform syntactic- and semantic analysis of C# code (and addition-
ally Visual Basic (VB) code, as VB also targets the .Net framework). Besides these analyses,
Roslyn can also be used to perform other tasks, such as code refactoring, which are outside
the scope of this project.

Another commonly used tool to parse source code is Antlr [80]. Antlr can be used to
parse source code into an Abstract Syntax Tree (AST), is able to subsequently modify the
AST, but lacks a pretty-printer, which is able to convert ASTs back to source code. There-
fore, a custom C# pretty-printer should be created when using Antlr. Accordingly, we have
used Roslyn in favor of Antlr, because Roslyn does come with a pretty-printer for C# code.
Additionally, Roslyn is the official open-source implementation of the C# compiler and with
each new version of C#, Roslyn is upgraded consistently and is therefore always up-to-date.

4.2.1. ROSLYN
To better understand why we needed a parser like Roslyn and to understand how we were
able to obfuscate our samples, we describe how Roslyn works in this subsection.

Figure 4.2: Roslyn compiler pipeline and (mirrored) compiler API. Adapted from original image by [79].

Every stage of the Roslyn compiler pipeline is an individual element, as shown in Fig-
ure 4.2). The first (parse) stage tokenizes and parses source code into syntax following the
C# (or Visual Basic) grammar. The second (declaration) stage forms named symbols by
analysing source and imported metadata. The third (bind) stage matches identifiers, found
in the source code, to symbols. The final (emit) stage releases an assembly containing all

30



information aggregated by the compiler.
Roslyn exposes parts of the compiler via APIs, mirroring the compiler pipeline (as shown

in the top row of Figure 4.2). The Syntax Tree API allows us to create syntax trees from source
code, modify syntax trees and transform them back to source code. The Syntax Tree API is
therefore an API exposing parts of the Parser. Additionally, for the obfuscation of variables
we have used the Symbol- and Binding APIs. These APIs are able to obtain information
about symbols. All namespaces, types, methods, properties, fields, parameters and local
variables are represented as a symbol. In particular, this information is needed during our
type obfuscation process (see Section 4.4), as (for example) the type of implicit typed lo-
cal variables are determined by the compiler and cannot be determined by lexical analysis
alone. For example, this can be seen in Listing 4.1. Line three of Listing 4.1 contains an ex-
plicitly typed integer local variable, whereas the next line contains an implicit typed local
variable, which is also an integer type variable. Additionally, it is not clear what the type of
the methodResult variable is without looking up the return type of the GetFifty()-method.

Listing 4.1: It is easier to detect the type of an explicitly typed local variable compared to an implicitly
typed local variable.

1 public static int GetFifty ()
2 {
3 int x = 5;
4 var y = 10; // implicitly typed local variable
5 return x * y;
6 }
7

8 public static void Main ()
9 {

10 var methodResult = GetFifty (); // implicitly typed local
variable

11 }

Roslyn uses syntax trees as the primary structure to represent code. These syntax trees
are full fidelity trees, meaning syntax trees can be converted into code and vice-versa, with-
out losing any elements, including lexical tokens, whitespaces, and comments. The syntax
trees are also immutable and thread-safe, and therefore to modify trees Roslyn provides
methods to modify and create new syntax trees. Each syntax tree is composed of three
elements [79]:

1. Syntax nodes: represent syntactic constructs such as statements, declarations, ex-
pressions, and clauses. All syntax nodes are non-terminal nodes and therefore always
have other nodes and tokens as children.

2. Syntax tokens: represent keywords, identifiers, literals, and punctuation. These to-
kens are terminal nodes and therefore are never parents of other nodes or tokens.

3. Syntax trivia: represent parts of the source code that are mostly unimportant for un-
derstanding the code, such as whitespace, comments, and preprocessor directives.
These trivia are terminal nodes and therefore are never parents of other nodes or to-
kens.

31



The Main()-method of Listing 4.1 is shown in Figure 4.3 as a tree parsed by Roslyn. The
nodes are represented as blue elements, the tokens as green elements, and the trivia as
white and grey elements.

Figure 4.3: Roslyn tree of the Main()-method of Listing 4.1.

We have created a .Net C# project which reads all files of the Juliet Test Suite and SARD
Test Suite 105, filters and skips samples which describe a vulnerability distributed over
more than one method, and performs cleaning and labelling operations. We use the Roslyn
APIs to perform the cleaning and labelling operations. This is described in more detail for
the Juliet Test Suite and SARD Test Suite 105 respectively in Section 4.3.2 and Section 4.3.1.

32



4.3. TEST CASE SOURCES
In this section, we further elaborate on the test case sources and highlight the specific data
acquisition steps required for the particular test case source. We first discuss the two SA-
MATE test suites. Next, we discuss the SAMATE Hasan test cases and the NVD/CVEFixes
cases.

4.3.1. SAMATE: SARD TEST SUITE 105
To better represent a wider variety of programming languages, the NIST has developed a
test case generator that can produce test suites for multiple programming languages with-
out the need of rewriting a program’s basis [38]. SARD Test Suite 105 is a follow-up project
of the SARD Test Suite 103 [81], released at the end of 2015 and provides test cases for C# in-
stead of PHP. It consists of 32003 test cases that cover nine different CWEs. However, four of
these CWEs are not included in the Broken Access Control and Injection OWASP categories
and therefore we have omitted these cases. This reduces the number of test cases we have
used to 31992. The NIST provides the data set [82] and an XML file that describes every test
case, including the file location and whether or not the specific test case contains a flaw,
and if so, on which line it can be found. The source code of the C# test case generator that
has been used to create Test Suite 105 can be found on GitHub [83].

DATA ACQUISITION STEPS

During the data acquisition, we cleaned and labelled each sample using our custom tool-
ing. For the SARD Test Suite 105, we read the supplied XML manifest file to find and get
every test case categorized under a CWE we are interested in. Next, we removed all test
cases that span multiple methods, resulting in test cases containing only one method. Ad-
ditionally, we labelled all test cases containing a vulnerability with ’Bad’ and all other test
cases as ’Good’. We did not have to change anything else in the samples, even though the
potentially vulnerable variables were all named ’tainted’, with each variable made unique
by using a number suffix (e.g. tainted_1). However, both the safe and vulnerable test cases
used this naming pattern and therefore it is not possible to determine a vulnerable or safe
sample by examining the variable naming. The total number of suitable samples from the
SARD Test Suite 105 that we have extracted and the corresponding number of safe and vul-
nerable samples can be found in Table 4.1.

33



Table 4.1: SARD Test Suite 105 used samples per CWE

CWE
Number of
test cases

Number of
extracted
samples

Extracted
safe

samples

Extracted
vulnerable

samples

OWASP
Category

CWE 22 - Path Traversal 2232 2088 792 1296 Broken
Access
Control

CWE 78 - OS Command
Injection

1860 1740 570 1170 Injection

CWE 89 - SQL Injection 20460 19140 7440 11700 Injection
CWE 90 - LDAP Injection 1860 1740 570 1170 Injection
CWE 91 - XML Injection 5580 5220 2880 2340 Injection

4.3.2. SAMATE: JULIET TEST SUITE
The Juliet Test Suite [39] is a test suite originally developed by the National Security Agency’s
Center for Assured Software (CAS) and contains over 90 000 test cases covering Java and
C/C++ vulnerabilities, and since August 2020, the NIST has released their first version of
the Juliet C# Test Suite, which contains 28 942 test cases. Wagner and Sametinger have
demonstrated how to use the Juliet Test Suite by utilising various free security scanners [40].
The C# Juliet Test Suite [84] contains 105 different CWE category vulnerabilities, divided
into separate folders. The folders are subdivided into subfolders whenever more than 1000
test case files are available for one CWE.

DATA ACQUISITION STEPS

Just as the SARD Test Suite 105, we have used our custom tooling to clean and label each
sample. To remove test cases that span multiple methods, we had to utilise the naming
of the files. Each file contains methods which are formatted according to a specified tem-
plate, described by the NSA as "Flow Variants" [37]. We have used these flow variants to
determine whether or not the test case relied on multiple methods and removed the test
cases that contained unwanted flow variants. Additionally, we removed all Main()- and
runTest() methods because their only purpose was to run the test cases, which, in our case,
is not needed.

For the SARD Test Suite 105 we were able to provide the total number of available test
cases and the number of samples we could use in our data set (see Table 4.1). However,
we were not able to provide the total number of available test cases for the Juliet C# Test
Suite. This is because we are unable to make a distinction between methods which make
up a (vulnerable or non-vulnerable) sample and methods which are helper methods and
therefore not samples on its own. In addition, there is no documentation published for the
C# version of the Juliet Test Suite which could provide this information.

The next step was to replace all references to methods from the custom ’IO’ class de-
fined in the Juliet Test Suite. This class contains methods to print data to the console, log
data to a logger-library (NLog), and obtain a database connection. The method references
for logging and printing data have been replaced by the Console.WriteLine()-method which
is a default method defined in the .Net framework. Additionally, we have replaced the
methods to obtain a database connection with an SqlConnection object creation, which

34



is a default class defined in the .Net framework.
The last cleaning step involved a naming convention for some variables, as some vari-

ables could indicate whether a method was vulnerable or not. For example, variable names
were either named goodSqlCommand or badSqlCommand. This phenomenon can be seen
in the Juliet Test Suite sample of Listing 2.2. We have renamed these flaw indicators by
omitting the ’good’ or ’bad’ part from the variable name.

After the cleaning process, we have labelled each method by validating whether the
method name contained ’bad’ or ’good’ and renamed the method accordingly, omitting
all other parts from the method name. The resulting number of samples are shown in Ta-
ble 4.2.

Table 4.2: Juliet C# Test Suite 1.3 used samples per CWE

CWE
Number of

extracted samples
safe

samples
vulnerable

samples
OWASP

Category

CWE 23 - Relative Path
Traversal

170 100 70 Broken Access
Control

CWE 78 - OS Command
Injection

170 100 70 Injection

CWE 80 - Basic XSS 306 180 126 Injection
CWE 83 - Improper Neu-
tralization of Script in At-
tributes in a Web Page

153 90 63 Injection

CWE 89 - SQL Injection 729 540 189 Injection
CWE 90 - LDAP Injection 170 100 70 Injection
CWE 94 - Code Injection 270 200 70 Injection
CWE 113 - HTTP Re-
quest/Response Splitting

729 540 189 Injection

CWE 284 - Improper Ac-
cess Control

30 18 12 Broken Access
Control

CWE 470 - Unsafe Reflec-
tion

153 90 63 Injection

CWE 566 - Authorization
Bypass Through User-
Controlled SQL Primary
Key

17 10 7 Broken Access
Control

CWE 601 - URL Redi-
rection to Untrusted Site
(’Open Redirect’)

153 90 63 Broken Access
Control

CWE 643 - XPath Injec-
tion

270 200 70 Injection

35



4.3.3. SAMATE: HASAN TEST CASES
Not all test cases are combined in a test suite within the SAMATE project, such as the Hasan
test cases. Individual test cases not united in a test suite are donated by various parties and
describe a variety of security vulnerabilities in various programming languages [36]. For
this research, a small amount of test cases (15 unique cases) donated by Hamda Hasan
are interesting, because they are written in C# and contain some vulnerabilities which we
are interested in (CWE 78, CWE 79, and CWE 89). We have inspected these samples, but
encountered various problems:

Three out of six CWE 89 test cases (61774, 61775, and 61776) did not contain any CWE
89 vulnerability. For example, Listing 4.2 describes the code snippet of test case 61774 that
was claimed by Hasan to contain an SQL injection vulnerability on line 4 [85]. However,
this snippet is not vulnerable for SQL injection attacks because it uses SQL parameters.
We have informed the NIST SAMATE team and proposed to change the status of these test
cases to ’deprecated’. As of 23 August 2022, the NIST team has done so, and published new
versions of test cases 61774 [86], 61775, and 61776 with state ’good’ instead of ’bad’.

Furthermore, some of the Hasan test cases could not be used in this project because
these test cases were ’.aspx’ files. These ’.aspx’ files describe ASP.NET web pages which
combine the frontend web languages HTML and CSS, together with server code written in
C# or Visual Basic. Therefore, the vulnerabilities in these test cases depend on the combi-
nation of frontend- and backend (C#) code which are outside the scope of this project (we
only use separate methods describing a vulnerability).

Because of these problems, we had to omit all three CWE 79 vulnerability samples and
three out of six CWE 89 vulnerability samples. All three CWE 78 test cases are used in our
data set. An overview of the used samples per CWE is shown in Table 4.3.

Table 4.3: Used Hasan samples per CWE

CWE
Number of

used samples
safe

samples
vulnerable

samples

CWE 78 - OS Command Injection 3 0 3
CWE 89 - SQL Injection 3 3 0

36



Listing 4.2: Test case 61774 (version 1.0.0) falsely claimed to have an SQL injection vulnerability

1 public int updateTable ( SqlConnection conn , string username , string
newEmail )

2 {
3 SqlCommand command = conn. CreateCommand ();
4 string updateQuery = " UPDATE Account SET [email ]= @newEmail

WHERE user= @username ";
5 command . CommandText = updateQuery ;
6

7 SqlParameter dbPramUser = new SqlParameter ();
8 dbPramUser . ParameterName = " @username ";
9 dbPramUser . SqlDbType = SqlDbType . VarChar ;

10 dbPramUser .Value = username ;
11 command . Parameters .Add( dbPramUser );
12

13 SqlParameter dbPramEmail = new SqlParameter ();
14 dbPramEmail . ParameterName = " @newEmail ";
15 dbPramEmail . SqlDbType = SqlDbType . VarChar ;
16 dbPramEmail .Value = newEmail ;
17 command . Parameters .Add( dbPramEmail );
18 int rowsAffected = 0;
19 try
20 {
21 rowsAffected = command . ExecuteNonQuery ();
22 }
23 finally
24 {
25 }
26 return rowsAffected ;
27 }

37



4.3.4. NVD AND CVEFIXES
The NVD contains natural vulnerabilities and is therefore interesting to use together with
the artificial SAMATA code samples. The NVD, however, does not register the programming
language of the code in which the vulnerability was found. Therefore, researchers have to
pick vulnerabilities for a specific programming language by hand and the code examples
containing the vulnerability [41]. Additionally, this would require knowledge about which
language is used in the software projects available in the NVD. The CVEfixes research [42]
has provided a tool to automate this manual labour. CVE records of open-source projects
are updated with a link to the relevant code change (commit) on a source code reposi-
tory (such as Gitlab, GitHub, and Bitbucket) whenever a vulnerability is fixed. The tool
uses these links and downloads this information for vulnerabilities fixed in open-source
projects, together with the information provided by the NVD. Next, the vulnerable and
fixed code is subject to the computation of code-level metrics, e.g. complexity, and fur-
ther details are added, such as the programming language of the source code. All this data
is subsequently transformed into a queryable SQLite3 database. The Entity-Relationship
Diagram of the resulting database is shown in Figure 4.4.

Figure 4.4: Entity-Relationship Diagram of the CVEfixes database. However, the Primary Keys (PKs) and For-
eign Keys (FKs) have not been applied to their database, as described below. Adapted from original image
by [42].

38



DATA ACQUISITION STEPS

The CVEfixes researchers have provided a copy of their database (which was generated by
Bhandari et al. during their research) which is claimed by Bhandari et al. to contain all CVE
records up to 9 June 2021, with a total of 5365 CVEs (in comparison to the over 150000 CVE
records stored within the NVD at that time [66]). This is because in the final processing
step the CVE records for which no additional data could be found are omitted by the tool.
However, due to a memory error bug, the final cleanup process did not trigger each time we
ran the tool. Therefore, our database copy contained more than 180000 CVE records, which
corresponds to the number of records in the NVD at our latest run of 24 July 2022 [54].

We ran into various problems using the CVEfixes tool and their database copy. These
are as follows:

1. .Git suffix problem: Because the final cleanup process was not triggered, the repos-
itory URLs were inserted with the ’.git’ suffix in the ’commits’ table, but without the
’.git’ suffix in the ’repository’ and ’fixes’ tables (see Figure 4.4). Therefore, joining all
tables is more cumbersome. We have fixed our problem by manually concatenating
the ’.git’ suffix in some of our SQL queries.

This ’.git’ suffix problem is present because Bhandari et al. have not applied primary-
and foreign key constraints to the database, despite being present in their Entity Re-
lationship Diagram of the database (Figure 4.4). Consequently, the tool could insert
the URLs of the repositories differently between the commits, repository, and fixes ta-
bles. Also, using primary- and foreign keys would improve the querying performance
and would prevent problems like the ’.git’ suffix error. Bhandari et al. could have pre-
vented this problem also by not saving the address with the ’.git’ suffix and adding the
’.git’ suffix only temporally when needed.

2. Memory errors: Because of the limited amount of physical RAM (8 GB) in our sys-
tem, we ran into memory errors (among other things causing the ’.git’ suffix prob-
lem). These errors occurred because the CVEfixes tool loads entire database tables
within the memory. However, as the NVD database is continuously growing, so will
the database tables. The CVEfixes tool loads all table data into memory and simulta-
neously saves all calculation information in memory when processing the table data
and does not take into account the possibility of a flooded memory. These mem-
ory errors could have been prevented by performing more calculations within the
database on disk or processing batches, instead of loading the entire database into
memory.

3. Incorrect programming language identification: we have compared our database
copy with the Bhandari et al. copy and found that some CVEs are incorrectly assigned
the incorrect programming language (within the file_change table). Our database
copy contained C# vulnerabilities that were incorrectly identified as another pro-
gramming language in the Bhandari database copy and vice versa. The reason for this
is that Bhandari et al. have used Guesslang to determine the programming language
of the files containing the vulnerabilities and corresponding fixes. However, because
the maintainers of Guesslang claim an accuracy of 90% [87], it is possible the tool in-
correctly assigns a programming language to a CVE entry. To mitigate this problem,
we additionally queried every repository which indicated it contains C# code from

39



the repository table and also queried all related CVE records. The programming lan-
guage stored in the repository table was retrieved from the related repository hosting
platforms of each repository and was not defined by the CVEfixes tool using Guess-
lang. Therefore, we were able to collect more C# vulnerability samples without rely-
ing too much on Guesslang.

Utilising CVEfixes databases We have used the database copy provided by Bhandari et
al. and additionally generated our own database copy by using the CVEfixes tool. We ini-
tially used the query shown in Listing 4.3 on both database copies. We used both databases
to check for differences because while generating our database, we encountered memory
issues (as previously mentioned) and wanted to make sure this did not have an influence
on the results. This query should get all CVE fixes for C# source code. However, we did en-
counter problems, but not related to the memory issues. The main problem was related to
the "incorrect programming language identification", as explained previously in this sec-
tion. Because the identification of the programming language was unreliable and provided
different results (as further explained in Appendix B), we have used the query of Listing 4.4.
This query retrieves all CVE records which are related to C# repositories. This resulted in 70
unique CVE records. When combined with the results of Listing 4.3, we were able to find a
total of 73 CVE records.

All 73 CVE records contained fixes which were stored on GitHub. CVEfixes extracts the
repository programming language by extracting the metadata provided by GitHub. GitHub
uses the open-source library Linguist [88] to discover all programming languages of the
files within the repository. However, some repositories contain files written in multiple pro-
gramming languages. Therefore, Linguist is able to determine the percentage of program-
ming languages represented in the repository. Because CVEfixes only stores the program-
ming language which is most present in the repository, we found two CVE records within
the C# repositories, but actually were fixes for JavaScript code. Additionally, our queries
contained one vulnerability (CVE-2010-4254) which is part of a .Net C# project. However,
this CVE described a vulnerability found in a file containing C-code and therefore could not
be used in our research. Therefore, our extracting method produced 70 C# CVE records,
which contained 39 CVE records describing a Broken Access Control or Injection category
CWE which we could potentially use to create samples for our data set.

The number of vulnerabilities per CWE category is displayed in Figure 4.5. Almost all
CVEs are categorized as a single CWE, however, CVE-2022-24774 is categorized as CWE-20,
CWE-22, and CWE-35.

Listing 4.3: Query to get all C# CVE fixes together with the associated CWE category

1 SELECT cve.cve_id , cwe.cwe_id , fc. programming_language
2 FROM file_change fc
3 INNER JOIN method_change mc ON fc. file_change_id = mc. file_change_id
4 INNER JOIN commits c ON c.hash = fc.hash
5 INNER JOIN fixes f ON f.hash = c.hash
6 INNER JOIN cve ON cve. cve_id = f. cve_id
7 INNER JOIN cwe_classification cwe_c ON cve. cve_id = cwe_c. cve_id
8 INNER JOIN cwe ON cwe. cwe_id = cwe_c. cwe_id
9 WHERE fc. programming_language = ’C#’

10 ORDER BY cve. cve_id ;

40



Listing 4.4: Query to get all repositories containing C# code and related CVE ids

1 SELECT DISTINCT cve.cve_id , cwec.cwe_id , cve. published_date , f.hash ,
r. repo_url

2 FROM repository r
3 INNER JOIN fixes f ON f. repo_url = r. repo_url
4 INNER JOIN cve ON cve. cve_id = f. cve_id
5 INNER JOIN cwe_classification cwec ON cwec. cve_id = cve. cve_id
6 WHERE r. repo_language = ’C#’
7 ORDER BY cve. cve_id ;

Transforming C# CVE records into samples To transform the CVE records into samples,
we have examined each CVE record and corresponding commit(s) by hand. Each C# CVE
record potentially contains both vulnerable and non-vulnerable cases we can use for our
data set. However, because these cases are snapshots of production software, this also
means some cases are hard to use as samples for our data set and are therefore omitted.
This has multiple reasons:

• Vulnerabilities span multiple methods/classes. The code2vec model only accepts in-
dividual methods as input.

• The code containing the vulnerability/fix contains a very high cyclomatic complexity.
Wallace et al. [43] suggest using a cyclomatic complexity of 10 at max and in some
cases a maximum of 15. However, we encountered vulnerable code that is more than
ten times the recommended complexity.

• A Git commit fixing a vulnerability also contained a lot of other non-related changes
in the code.

Many times the CVEfixes database C# entries contained code which contained a com-
bination of the reasons shown above. Also, the last two reasons can make it hard to under-
stand the code logic and therefore makes extracting samples time-consuming and error-
prone. Nonetheless, we were able to produce samples by modifying some methods to con-
tain all logic within one method instead of multiple. Some CVE records contained multiple
methods containing a vulnerability which provided multiple samples for our data set.

In the end, we were able to produce a total of 90 samples. The number of samples
per CWE is shown in Table 4.4. A distinction has also been made between good and bad
samples (respectively non-vulnerable and vulnerable samples). What stands out, is that
we were only able to use 40 per cent of the CWE-79 CVEs. However, this can partially
be explained by the fact that the unused cases included parts of front-end code such as
JavaScript and cshtml files (C# HTML), which we cannot describe in single C# methods.
What is also striking, is that we were not able to produce CWE-352, CWE-601, and CWE-
706 samples, despite having found CVE fixes for these CWEs. This is because these fixes
contain one or multiple reasons as described in the list with exclusion criteria above.

41



Table 4.4: Number of CVE records and extracted samples per CWE.

CWE
OWASP

Category
CVEs

Used
CVEs

Vulnerable
samples

Safe
samples

Total
samples

CWE 20 Injection 6 4 13 13 26
CWE 22 Broken Access Control 13 12 25 23 48
CWE 74 Injection 1 1 1 1 2
CWE 79 Injection 15 6 7 7 14

CWE 352 Broken Access Control 2 0 0 0 0
CWE 601 Broken Access Control 1 0 0 0 0
CWE 706 Broken Access Control 2 0 0 0 0

Figure 4.5: C# vulnerability CWE categories found in the CVEfixes dataset.

42



4.4. VARIABLE OBFUSCATION
To answer the research question of this study, we had to apply various variable obfuscation
methods to the sample data set. In this section, we describe each obfuscation method we
have used in more detail. However, we will first describe what kind of variables we will
obfuscate in the extracted code samples.

We subdivide the following variable scopes which C# code can contain:

1. Fields: A field is a variable type which is declared directly within a class or struct. The
field may be of any type (e.g. string, int, bool).

2. Property: A property encapsulates private fields (which are fields that are only ac-
cessible by code which is defined in the same class or struct), which ensures that
these fields can only be accessed and updated by using the corresponding property.
A property is used like a public field (therefore is accessible by code from the same
assembly), but is really a special method, called an accessor.

3. Param: A parameter is a variable which allows programmers to pass data to a method.
Parameters are defined after the method name, inside parentheses. The data passed
to a method is called an argument, which corresponds to the parameter.

4. Local: A local variable is a variable type which is declared within the body of a method.
Its scope is within the body in which it was declared. More specifically, the scope of
a local variable is within the statement block in which it is declared. For example, a
local variable declared within a statement block of a for-each loop is not accessible
outside this for-each loop.

See Listing 4.5 for an example of each type of variable. In the following subsections we
elaborate more on the specific obfuscation methods we have implemented.

43



Listing 4.5: C# variable types.

1 public class VariableExamples
2 {
3 // A private field
4 private string _privateString = string .Empty;
5

6 // A property , encapsulating the _privateString field
7 public string StringProperty
8 {
9 get { return _privateString ; }

10 set { _privateString = value; }
11 }
12

13 // A method with two parameters
14 void Method ( string testParameter , int intParameter = 5)
15 {
16 // modify property and therefore the encapsulated private

field
17 StringProperty = "New Value" + testParameter ;
18

19 // Declaration of a ( explicitly typed) local string array
variable

20 string [] testStringArray = { "test1", "test2" };
21

22 // Declaration of a ( implicitly typed) local integer
variable

23 var counter = 0;
24

25 foreach (var testString in testStringArray )
26 {
27 // Declaration of a ( explicitly typed) local integer

variable , with a scope limited to the for -each loop
statement block.

28 int arbitraryNumber = 6;
29 counter += arbitraryNumber ;
30 }
31

32 // The arbitraryNumber variable is inaccessible at this
point

33 }
34

35 public void CallMethod ()
36 {
37 // Passing arguments to a method .
38 this. Method ("test", 6);
39 }
40 }

44



4.4.1. TYPE OBFUSCATION
The type obfuscation method renames each variable such that the name contains the type
and scope of the variable. Therefore, the model should be able to rely more on the variable
structure for making predictions (in theory). The structure for each variable scope con-
sists out of three parts: the variable scope, the variable type, and an incremental number
to make each variable name unique. The type obfuscated copy of the source code from
Listing 4.5 is shown in Listing 4.6. Our obfuscation method is able to determine the type of
implicitly typed local variables (which are described previously in Section 4.2) and adds this
information to the variable name, further improving the potential of the type obfuscation
method. An example of this can be seen on lines 17 and 19 of Listing 4.6. Additionally, our
type obfuscation method also handles nullable reference types (such as "int?") and goto
statements, such that the corresponding variable names are type obfuscated accordingly.

Listing 4.6: Type obfuscated copy of Listing 4.5. The comments are omitted for clarity.

1 public class VariableExamples
2 {
3 private string field_string_0 = string .Empty;
4

5 public string property_string_0
6 {
7 get { return field_string_0 ; }
8 set { field_string_0 = value; }
9 }

10

11 void Method ( string param_string_0 , int param_int_1 = 5)
12 {
13 property_string_0 = "New Value" + param_string_0 ;
14

15 string [] local_stringArray_0 = { "test1", "test2" };
16

17 var local_int_1 = 0;
18

19 foreach (var local_string_2 in local_stringArray_0 )
20 {
21 int local_int_3 = 6;
22 local_int_1 += local_int_3 ;
23 }
24 }
25

26 public void CallMethod ()
27 {
28 this. Method ("test", 6);
29 }
30 }

45



4.4.2. RANDOM OBFUSCATION
We have used a random obfuscation method to theoretically make the model rely more
on the code structure instead of relying on trends learned from variable names. This is
done by replacing each variable with a string of 10 random characters using the following
alphabet: "ABCDEFGHIJKLMNOPQRSTUVWXYZ". An example of a random obfuscated
code snippet can be found in Listing 4.7.

Listing 4.7: Random obfuscated copy of Listing 4.5. The comments are omitted for clarity.

1 public class VariableExamples
2 {
3 private string ZDTWCDBWIJ = string .Empty;
4

5 public string MIVZBWYKIK
6 {
7 get { return ZDTWCDBWIJ ; }
8 set { ZDTWCDBWIJ = value; }
9 }

10

11 void Method ( string CCGLCTMXOE , int XIHUPUDPMM = 5)
12 {
13 MIVZBWYKIK = "New Value" + CCGLCTMXOE ;
14

15 string [] QJBZCJFZQD = { "test1", "test2" };
16

17 var EVBWAZNQKA = 0;
18

19 foreach (var TRWUIQSNME in QJBZCJFZQD )
20 {
21 int FPQEAPBLOR = 6;
22 EVBWAZNQKA += FPQEAPBLOR ;
23 }
24 }
25

26 public void CallMethod ()
27 {
28 this. Method ("test", 6);
29 }
30 }

46



4.4.3. SEMI TYPE OBFUSCATION
For our semi obfuscation method we have obfuscated 50% of the variables using the type
obfuscation method. The other 50% have been left non-obfuscated. Therefore, the model
may be able to use variable names when they are informative, but will also be able to rely
on the variable structure for making predictions. An example of a semi obfuscated code
snippet can be found in Listing 4.8.

Listing 4.8: Semi (type) obfuscated copy of Listing 4.5. The comments are omitted for clarity.

1 public class VariableExamples
2 {
3 private string field_string_0 = string .Empty;
4

5 public string StringProperty
6 {
7 get { return field_string_0 ; }
8 set { field_string_0 = value; }
9 }

10

11 void Method ( string param_string_0 , int intParameter = 5)
12 {
13 StringProperty = "New Value" + param_string_0 ;
14

15 string [] testStringArray = { "test1", "test2" };
16

17 var local_int_1 = 0;
18

19 foreach (var testString in testStringArray )
20 {
21 int arbitraryNumber = 6;
22 local_int_1 += arbitraryNumber ;
23 }
24 }
25

26 public void CallMethod ()
27 {
28 this. Method ("test", 6);
29 }
30 }

47



4.5. DATA SETS
In this section, we describe the structure of our data sets, which were used to train our clas-
sifiers. We have created our data sets by utilising the data acquisition process (Section 4.1)
on the four selected test case sources. We have used various CWE categories to train mod-
els, depending on the number of samples for each CWE (as summarised in Appendix A).
However, most CWE sample categories were omitted. First, CWE sample categories which
were relatively small (e.g. CWE 80, CWE 83, CWE 94, CWE 284, CWE 470, CWE 566, CWE
601, and CWE 643) were not used during model training. This is done because the low
number of samples has a high change of classifiers underfitting, meaning they do not have
enough data to learn a trend within the data to classify the data correctly.

Next, we have omitted CWE sample categories which were imbalanced. This is the case
for the CWE78 and CWE90 samples. Even when the samples from both the Juliet Test Suite
and Test Suite 105 are combined, the safe samples only represent 35% of the data set. We
could have reduced the number of vulnerable samples to increase the percentage of safe
samples, but by doing so, the data set would become too small, increasing the chance of
underfitting. In addition, the CWE78 and CWE90 sample categories contained less than
2000 samples and therefore could be classified as relatively small sets as well.

Finally, the CWE22, CWE89, and CWE91 samples remain and therefore have been used
to train our classifiers. An overview of these samples are shown in Table 4.5, which also
shows our final base data sets.

Table 4.5: The data sets used for our experiments. These were created using the SARD Test Suite 105 cases,
Juliet Test Suite cases, Hasan Test cases, and NVD cases combined.

CWE Sources
Total

samples
Safe

samples
Vulnerable

samples
OWASP

Category

CWE 22 - Path
Traversal

Test Suite 105 2088 792 1296 Broken Access
Control

CWE 22 - Path
Traversal

NVD/CVEfixes 48 25 23 Broken Access
Control

CWE 89 - SQL In-
jection

Test Suite 105 +
Juliet Test Suite +
Hasan

19872 7983 11889 Injection

CWE 91 - XML
Injection

Test Suite 105 5220 2880 2340 Injection

CWE 89 + 91 -
SQL + XML Injec-
tion

Test Suite 105 +
Juliet Test Suite +
Hasan

25092 10863 14229 Injection

Each CWE category is represented in its own dedicated data set. However, we have cre-
ated two separate CWE22 data sets, separated in only synthetic samples and natural sam-
ples. The first is used to train, validate, and test our CWE22 classifiers. The second is to test
the performance of these trained classifiers on natural samples, compared to the synthetic
samples of the first CWE22 data set. The results are shown in Section 5.4. Furthermore, we
have combined the CWE89 and CWE91 data sets to create an additional data set which we
have used to train classifiers with which we should be able to answer RQ3. We have chosen

48



to combine CWE89 and CWE91 samples into one data set because they are both best repre-
sented in terms of quantity and are also the best balanced CWE categories of our extracted
CWE category samples. Additionally, CWE89 and CWE91 are both injection-based vulner-
abilities. Although the CWE22 category contains just over 2000 samples, we have used this
set to be able to (partly) answer RQ2, as this is the best represented CWE category within
the Broken Access Control OWASP category. Additionally, from the low amount of natural
samples we have extracted from the NVD, CWE22 was best represented (48 samples). The
performance of the trained CWE22 classifiers when validated on these natural samples is
described in Section 5.4.

For each of our four data sets we have generated three additional obfuscated versions in
order to examine the impact of variable names (type-, random-, and semi obfuscated), as
depicted in Figure 4.6. These obfuscated versions have been obfuscated by using a custom
.Net C# application utilising Roslyn.

Figure 4.6: Training the code2vec model utilising our data set.

4.5.1. SPLITTING THE DATA SET
The data sets have been subdivided in a train-, validation-, and test subset. The train set is
used to train the model, whereas the validation set will be used to fine-tune the model and
can be used to measure the performance of the model in an early stage. Finally, the test set
is an unseen set for the model and therefore can be used to measure the final performance
of a fully trained model (as explained by Russel and Norvig [44]). There is no unanimity
about which data set split percentage is best, but related studies [15; 16; 18; 19] use a split
percentage of 80-10-10, whereby the 80% split refers to the train set. Therefore, we have
randomly picked samples and created a data set split with the 80-10-10 split percentage.

49



4.6. CODE2VEC PREPROCESSING
Now that we have our data sets with samples, we have used the code2vec C# preprocessor
tool to transform these samples into context paths that are used as input by the code2vec
model. To better understand what happens during the preprocessing, we describe some
definitions from the code2vec paper [15]:

• AST path: An AST path is a path between two terminal nodes within an AST, passing
through at least one intermediate nonterminal node.

• Path-context: Given an AST path p, its path-context is captured in the triplet 〈xs , p, xt 〉,
where xs is the start node and xt the end node of path p.

According to these definitions we can capture the statement: ’y = 15’ in the following
path-context:

〈y, (N ameE xpr ↑ Assi g nE xpr ↓ Integ er Li ter alE xpr ),15〉

Within this path-context, the ↑ and ↓ are movement directions in the AST (up or down the
AST). A representation of the path-context of ’y = 15’ is visualised in Figure 4.7.

The code2vec C# preprocessor parses the code snippet into an AST (using Roslyn) and
subsequently separates all present methods. Afterwards, the path-contexts of each method
are generated. Next, the path-contexts can be used as input for the code2vec model to
learn which paths are most important using the attention mechanism [15] and store this
information in a single code embedding. This code embedding is ultimately used by the
(code2vec) classifier to make a prediction, in our case vulnerable or non-vulnerable.

Alon et al. [15] have experimented with alternative path-context and attention designs
and concluded that omitting the start node and end node of a path resulted in lesser model
performance when trained on predicting method names. All variable names only appear
as start node or end node in a path-context and therefore removing variable names would
decrease the performance of the model.

Figure 4.7: Path-context of ’y=15’ visualised in a (partial) AST. The arrows indicate the movement directions
in the AST for this path-context.

50



4.6.1. PREPROCESSOR MODIFICATIONS
We have made some alterations to the code2vec C# preprocessor which we believe are ben-
eficial for our purpose:

• Retain numbers in variable names: The code2vec preprocessor removes numbers
in variable names by default. We have contacted one of the code2vec model main-
tainers, who has informed us that this is most likely done to decrease the embedding
vocabulary and by doing this also decreases the training time [89]. However, this in-
formation is crucial in our research and therefore we changed the preprocessor to
keep all variable name information in the path-contexts.

• Omitting code comments: Our synthetic test case samples contain comments in-
dicating whether or not a vulnerability is present. Furthermore, fixed vulnerabili-
ties in production test cases (extracted from the NVD) are sometimes marked via a
comment. An example of a commented vulnerability is shown in Listing 4.9, a com-
mented fix for a vulnerability is shown in Listing 4.10. Additionally, our test cases
may contain informative comments such as test case description, author, and copy-
rights. The code2vec preprocessor extracts code comments and adds these to the
bag of path-contexts. However, these comments provide information that we would
rather not provide to the model, because this would enable the model to easily pre-
dict whether or not the test case contains a vulnerability (fix) based on a comment,
without using the semantics of the code. Also, this information is normally not avail-
able in production code. Therefore, we have omitted all comments during the path-
context generation process.

Listing 4.9: Code snippet of the vulnerability within a SARD Test Suite 105 test case

1 // flaw
2 string query = " SELECT * FROM ’" + tainted_3 + "’";

Listing 4.10: Code snippet of the vulnerability fix for CVE-2016-16806

1 // prevent directory traversal , we should only allow access to the
root directory of the HTTP Server .

2 if (! targetPath . IsSubPathOf ( _rootDirectory ))
3 {
4 context . Response . StatusCode = (int) HttpStatusCode . Forbidden ;
5 return ;
6 }

51



5
MODEL TRAINING AND RESULTS

5.1. TRAINING ENVIRONMENT
Training machine learning models requires a relatively large amount of computing power.
Because of the many vector calculations used in machine learning, powerful Graphical Pro-
cessing Units (GPUs) are commonly used for these tasks. We have used a system with 8
GB memory, an Intel i7-4700HQ Central Processing Unit (CPU) and NVIDIA GeForce GTX
770M GPU. However, this GPU uses a CUDA 3.0 architecture not supported by code2vec
(as it uses TensorFlow and Keras for calculations) [90]. Therefore, calculations can only run
on our CPU. Because we only have an outdated CPU available (released in 2013), we have
looked at alternatives to fall back on in case training a model would take too much time.
Therefore, we have considered using Google Colab [91], a service provided by Google for
students, data scientists and AI researchers. However, the computing power resources pro-
vided by Google Colab are not guaranteed and can vary over time [92]. Additionally, Google
Colab has a time limit of 12 hours for continuous use of a virtual machine and will also dis-
connect when left idle for too long. Ultimately, training the code2vec model only took 15 to
20 minutes on our system, so we did not have to use an alternative training system. Differ-
ent system configurations may result in (slightly) different machine learning results. This
applies to differences in hardware, software and software versions. This can be caused by
differences in rounding floating point numbers, bug fixes in software, and changing func-
tionality in software. Therefore, we have described the software (versions) we have used to
train our model in Table 5.1. First, we have used our forked code2vec copy, which is avail-
able via our GitHub repository [93]. Next, the latest versions (as of 21 September 2022) of
all the required packages for Tensorflow are automatically downloaded and installed while
installing Tensorflow. Finally, we have used the default code2vec model hyperparameters,
such as the max number of contexts to use per sample and the maximum size of the token
vocabulary.

5.2. METRIC CALCULATIONS
As explained in Section 2.2, we calculate various metrics to describe the performance of
classifiers. Code2vec already has built-in metric calculations, however, these are modified
to better describe the performance of classifiers trained on the task of method name pre-
diction [15]. Method names, which are used as labels, are decomposed into smaller sub-

52



Table 5.1: Used software to train the code2vec model

Software/library Versions

Windows 10 21H2
Python 3.7
Tensorflow (Python library) 2.0.0
Numpy (Python library) 1.21.6

tokens by splitting multiple words when they begin with a capital letter. Thus, a method
such as getProperty is decomposed into the two sub-tokens ’get’ and ’property’. Therefore,
the code2vec metric calculations can take into account that when the classifier predicts the
method name to be ’getValue’, some sub-tokens are equal (in this case ’get’) and therefore
the prediction is considered to be a correct prediction. This behaviour does not match our
task of vulnerability detection. Therefore, we had to modify the built-in code2vec metric
calculations in favour of our vulnerability detection task. We have used only two labels in
our data set and did not want to consider multiple sub-tokens. Additionally, a prediction
of ’good’ is considered a negative prediction and a prediction of ’bad’ is considered a pos-
itive prediction. The number of positive and negative predictions is used to calculate the
metrics, as explained in Section 2.2.

5.3. CLASSIFIER RESULTS

We have used the data sets as described in Section 4.5 to train classifiers for CWE22, CWE89,
CWE91, and a combination of CWE89 and CWE91 vulnerabilities. More specifically, we
have trained four different classifiers for each data set (CWE22, CWE89, CWE 91, and CWE89
+ CWE91), where each variant is obfuscated using a specific obfuscation method (non-,
type-, random-, and semi-obfuscated), which we have previously described in Section 4.4.
The classifiers have been trained using the respective training set and evaluated using the
respective evaluation set. Next, we select the best-performing classifiers based on their F1

score. Finally, we evaluate the performance using their respective unseen test set. Fur-
thermore, we have trained our classifiers for 20 epochs. Most classifiers we trained and
validated with the corresponding validation sets showed the best F1 score around the tenth
epoch and therefore we do not believe training the classifiers for a longer period would im-
prove the results. Training 20 epochs on the largest data set (CWE89 + CWE91) took around
20 minutes, smaller data sets took less time. The results are shown in Table 5.2 and Figures
5.1, 5.2, 5.3, and 5.4.

In related studies, the performance of classifiers is normally compared by comparing
the metric value results [15; 16; 35; 41; 45–47]. The classifier with the highest value for a
given metric, for example, the accuracy or F1 score, is deemed to be the best-performing
classifier. When we compare the F1 scores (rounded to two decimal places) of our classi-
fiers we conclude that variable obfuscation does not improve performance. However, to be
able to statistically substantiate our conclusion, we should determine whether or not the
(minimal) differences in the F1 scores are significant or not. To determine this for the F1

scores, we need to apply a compute-intensive randomisation test and cannot use tests like
matched-pair t, sign and Wilcoxon tests [48]. However, we lack the computing power and

53



Table 5.2: Trained classifier metric results

Classifier Accuracy Precision Recall F1

CWE22 non-obfuscated 0.90 0.86 1.0 0.93
CWE22 type-obfuscated 0.90 0.86 1.0 0.93
CWE22 random-obfuscated 0.90 0.86 1.0 0.93
CWE22 semi-obfuscated 0.90 0.86 1.0 0.93

CWE89 non-obfuscated 0.93 0.90 1.0 0.95
CWE89 type-obfuscated 0.94 0.99 0.90 0.95
CWE89 random-obfuscated 0.93 0.89 1.0 0.94
CWE89 semi-obfuscated 0.94 1.0 0.90 0.95

CWE91 non-obfuscated 0.96 0.92 1.0 0.96
CWE91 type-obfuscated 0.96 0.95 0.97 0.96
CWE91 random-obfuscated 0.96 0.97 0.94 0.96
CWE91 semi-obfuscated 0.95 1.0 0.89 0.94

CWE89 + CWE91 non-obfuscated 0.93 0.90 1.0 0.94
CWE89 + CWE91 type-obfuscated 0.93 0.89 1.0 0.94
CWE89 + CWE91 random-obfuscated 0.92 0.90 0.98 0.94
CWE89 + CWE91 semi-obfuscated 0.93 0.90 0.99 0.94

required time to perform this test. Therefore, we have compared our results in the same
manner as done by related studies [15; 16; 35; 41; 45–47] and hence we have compared the
metric values based on two decimal places.

Nonetheless, the following observations are made (excluding the CWE22 classifiers):

• Non-obfuscated classifiers and type-obfuscated classifiers appear to perform slightly
better than random- and semi-obfuscated classifiers (based on the F1 score).

• Type-obfuscated classifiers have the highest accuracy (marginally)

• Semi-obfuscated classifiers appear to have the lowest recall (marginally).

When we count the number of times an obfuscation method outperforms the other
classifiers for each metric, we conclude that type obfuscation achieves the best perfor-
mance, and semi-obfuscation the lowest performance, as shown in Table 5.3. However,
overall, obfuscation does not seem to matter, as the metric value results are very close to
each other.

The CWE22 classifiers do not show any differences between non-obfuscated samples
and the various obfuscated samples. However, to further analyse the impact of variable ob-
fuscation on the CWE22 classifiers, we have conducted additional experiments regarding
the nature of the samples and the size of the data set in Sections 5.4 and 5.5 respectively.

Compton et al. have examined the influence of variable obfuscation on various tasks [19].
They have used Cohen’s Kappa (as described in Section 2.2) to compare the non-obfuscated
and obfuscated classifiers. The task of detecting security vulnerabilities has not been anal-
ysed by Compton et al., however, we have also calculated Cohen’s Kappa (κ) in order to

54



Table 5.3: The number of times an obfuscation method (marginally) outperformed the other obfuscation
methods for a set of classifiers of the same CWE

Obfuscation method
# highest
accuracy

# precision # recall # F1 Total #

non-obfuscated 1 0 2 1 4
type-obfuscated 2 0 1 2 5
random-obfuscated 1 1 1 0 3
semi-obfuscated 0 2 0 0 2

compare our results with the results of Compton et al. The κ of our classifiers is shown
in Table 5.4. The results show that the κ does not show significant differences between
the obfuscation methods and non obfuscation. The most notable difference, however still
insignificant, is the CWE91 type-obfuscated classifier which shows a κ difference of 0.05
compared to the non-obfuscated classifier.

Table 5.4: Cohen’s Kappa results for our classifiers.

Classifier Kappa

CWE22 non-obfuscated 0.81
CWE22 type-obfuscated 0.81
CWE22 random-obfuscated 0.81
CWE22 semi-obfuscated 0.81

CWE89 non-obfuscated 0.87
CWE89 type-obfuscated 0.87
CWE89 random-obfuscated 0.86
CWE89 semi-obfuscated 0.87

CWE91 non-obfuscated 0.86
CWE91 type-obfuscated 0.91
CWE91 random-obfuscated 0.87
CWE91 semi-obfuscated 0.89

CWE89 + CWE91 non-obfuscated 0.86
CWE89 + CWE91 type-obfuscated 0.86
CWE89 + CWE91 random-obfuscated 0.85
CWE89 + CWE91 semi-obfuscated 0.86

55



Figure 5.1: CWE22

Figure 5.2: CWE89

Figure 5.3: CWE91

56



Figure 5.4: Combined CWE89 and CWE91 classifiers

5.4. EVALUATION WITH NATURAL SAMPLES
As described in Section 4.3.4, we have extracted C# vulnerability cases from the NVD. We
believe it would be interesting to test our classifiers on natural samples, instead of synthetic
samples, and compare the results. However, we could not find any CWE89 and CWE91
cases in the NVD. Therefore, we have only tested the CWE22 classifiers on natural samples.
These natural samples were not used during the training (and evaluation) of our classifiers
and are therefore unseen to the classifiers (Section 4.5). The results are displayed in Ta-
ble 5.5 and Figure 5.5. When comparing these results with our synthetic test sets (Table 5.2),
we find that the recall is still 1.0. However, accuracy and precision are almost halved (by
49% and 47% respectively) and the F1 score is diminished by 32%. Interestingly, our obser-
vation of variable obfuscation having no impact on CWE22 vulnerabilities still applies to
the natural cases, as the metric results are the same for each CWE22 classifier.

Table 5.5: CWE22 classifier results. The classifiers were trained on NVD extracted natural samples.

Classifier Accuracy Precision Recall F1

CWE22 non-obfuscated 0.46 0.46 1.0 0.63
CWE22 type-obfuscated 0.46 0.46 1.0 0.63
CWE22 random-obfuscated 0.46 0.46 1.0 0.63
CWE22 semi-obfuscated 0.46 0.46 1.0 0.63

57



Figure 5.5: CWE22 classifier results. The classifiers were trained on NVD extracted natural samples.

5.5. EVALUATING DATA SET SIZE

Variable obfuscation does not seem to have any effect on the results of the CWE22 classi-
fiers (as seen in Section 5.3 and 5.4). We hypothesise this has to do with the CWE22 samples.
These samples appear to be less complex than the other CWE samples and also contain
fewer variables overall. To validate this hypothesis, we have reduced our CWE89 data set
sizes to the size of our CWE22 data sets by randomly removing cases. Subsequently, we
trained new classifiers using these reduced CWE89 data sets. The results are shown in Ta-
ble 5.6 and Figure 5.6. These results show that obfuscation does have an impact on our
CWE89 samples, even if the same data set size is used as our CWE22 data set. Therefore,
we believe the complexity (cyclomatic complexity and number of paths) of the sample and
number of variables do have an impact on the influence of variable obfuscation. In addi-
tion, the results show that variable obfuscation decreases the performance significantly on
the smaller CWE89 data set, compared to our non-reduced CWE89 data set. Especially the
performance of the type obfuscated classifier is reduced. However, the random-obfuscated
classifier does not seem to have a significant impact on the performance and even has a
slightly improved precision. The cause of this could be determined by conducting further
research. For example, by applying multiple varying methods to randomly obfuscate the
variable names. Nonetheless, we do not have any signs that random obfuscation would
improve the overall classifier performance, as random obfuscation also does not improve
the performance of our classifiers described in Section 5.3.

Table 5.6: CWE89 classifier results. The classifiers were trained on CWE89 data sets which were reduced to
the same size as our CWE22 data sets.

Classifier Accuracy Precision Recall F1

CWE89 non-obfuscated 0.88 0.90 0.85 0.87
CWE89 type-obfuscated 0.70 0.86 0.44 0.58
CWE89 random-obfuscated 0.87 0.93 0.78 0.85
CWE89 semi-obfuscated 0.76 0.76 0.70 0.73

58



Figure 5.6: CWE89 classifier results. The classifiers were trained on CWE89 data sets which were reduced to
the same size as our CWE22 data sets.

5.6. EVALUATING CWE89 DATA SET CLEANUP
To train the CWE89 classifiers, we have used the Test Suite 105, Juliet Test Suite, and Hasan
Test cases. However, we have cleaned the samples from the Juliet Test Suite from variable
names like goodSqlCommand and badSqlCommand, as described in Section 4.3.2. This is
done to prevent the non-obfuscated classifier to learn from obvious indications whether
the sample was vulnerable or not. However, to allow future studies to better compare their
results with our results, we have also trained CWE89 classifiers using a non-cleaned data
set. Compared to the "cleaned" data set, this new non-cleaned data set still contains vari-
able names like badSqlCommand and goodSqlCommand, together with all references to
methods from the custom "IO" class defined in the Juliet Test Suite. The results of our eval-
uated CWE89 classifiers are shown in Table 5.7. We see no essential difference when we
compare these results with the metric value results of the previously trained CWE89 classi-
fiers (Table 5.2).

Table 5.7: CWE89 non cleaned classifier results. The classifiers were trained on the non cleaned CWE89 data
sets.

Classifier Accuracy Precision Recall F1

CWE89 non-obfuscated 0.93 0.91 0.99 0.95
CWE89 type-obfuscated 0.93 1.0 0.89 0.94
CWE89 random-obfuscated 0.93 0.89 1.0 0.94
CWE89 semi-obfuscated 0.93 1.0 0.88 0.94

5.7. INTERPRETING ATTENTION
Normally, a neural network can be seen as a ’black box’ which makes it hard to under-
stand the decisions the network makes. However, the code2vec models’ attention mech-
anism allows us to examine the weights given to the path-contexts and therefore makes
the model partially explainable. We have performed the prediction for a vulnerable and
non-vulnerable code sample (Appendix C) for each trained classifier. Thus, we were able
to examine the top path-contexts with the most attention for the non-obfuscated, type-

59



obfuscated, random-obfuscated, and semi-obfuscated classifiers.
First, we have examined the behaviour of the attention mechanism for our CWE89 clas-

sifiers. In Figure 5.7 we have visualised the top 4 paths for a non-vulnerable sample, which
were given the most attention. The top path-context is shown below and displayed in red
in Figure 5.7. Path-contexts are previously described in Section 4.6. The first part is the to-
kenised variable name, followed by the path, and concluded with the tokenised SqlDbType
enum type member VarChar. The ’^’ sign indicates moving up the AST, and the ’_’ sign
indicates going down the AST.

sql|db|type,IdentifierName1ˆSimpleMemberAccessExpression0

ˆSimpleAssignmentExpression_SimpleMemberAccessExpression1_IdentifierName1,var|char

Additionally, Figure 5.8 shows a sample related to the non-vulnerable sample, which
we have made vulnerable by removing the parameterised query and inserting the unsafe
username- and newEmail variables directly into the query string.

The non-vulnerable example shows us that most attention is given to the SqlParameter
variables, which could indicate the model detects that we use parameterized SQL variables
and therefore predicts the sample is safe. In contrast to this, the vulnerable example shows
us that most attention is given to the username variable. This could indicate that the model
is able to detect that the username variable is not used safely and therefore the sample is
vulnerable.

We noticed that each CWE89 classifier follows the same pattern: the path-contexts of
the good sample, which are related to the parameterised SQL variables, get the most atten-
tion. Subsequently, the path-contexts of the bad sample, which are related to the param-
eter values get the most attention. However, despite the path-context attention being the
same, the random- and semi-obfuscated classifiers were not able to correctly predict the
vulnerable sample as vulnerable.

We performed the same predictions for the CWE22, CWE91, and combined CWE89 +
CWE91 classifiers, which gave the following insights:

• All CWE22 classifiers provided the same top 4 path-contexts for our used test sam-
ples (Appendix A). No distinction was made between the bad or good samples and
additionally, all samples were predicted as vulnerable.

• All CWE91 classifiers provided equivalent top 4 path-contexts for our used test sam-
ples (Appendix A). The top 4 path-contexts of the non-vulnerable samples were the
path-contexts that were related to the LINQ "Where"-method, which is used to fil-
ter any malicious characters from the input. Additionally, all classifiers were able to
correctly predict whether the used samples were vulnerable or non-vulnerable.

• For the CWE89 + CWE91 classifiers we utilised both the CWE89 and CWE91 sam-
ples (Appendix A). The attention given to the path-contexts was similar to the sepa-
rate CWE89 and CWE91 classifiers; Most attention was given to the parts of the code
which filtered input variables.

60



Figure 5.7: Non-vulnerable Hasan test case example showing the top 4 paths that were given the most atten-
tion by the type obfuscated CWE89 model. The thickness of each colored line is related to the attention given
to the path (red: 0.060740, yellow: 0.060740, green: 0.036044, blue: 0.033193).

Figure 5.8: Hasan test case example which is modified to contain a vulnerability. The top 4 paths are shown
that were given the most attention by the type obfuscated CWE89 model. The thickness of each colored line
is related to the attention given to the path (red: 0.097439, yellow: 0.063245, green: 0.063245, blue: 0.046448).

61



6
DISCUSSION

6.1. DISCUSSION OF THE RESULTS
In this section, we discuss the results of our study and simultaneously answer our research
questions.

RQ1: HOW DOES CODE2VEC PERFORM ON A NON-OBFUSCATED DATA SET WHEN TRAINED ON

DETECTING SECURITY VULNERABILITIES?
The results of our non-obfuscated classifiers show that the performance ranges from an
F1 score of 0.93 to 0.96, depending on the CWE category of the data set used to train the
classifiers. These scores are relatively high, however, no real comparison can be made, as
we could not find any studies which have used the same sample sources to train classifiers.
Considering the code2vec study [15] we achieve higher metric results, however, the task of
predicting method names is arguably a more complex task and therefore we cannot com-
pare this with our results. Additionally, Coimbra et al. have used code2vec for detecting
C security vulnerabilities and achieved an accuracy of 61.43, precision of 57.50, recall of
61.77, and F1 score of 59.56. However, Coimbra et al. have used a C vulnerability data set,
which contained various CWE vulnerability categories, as opposed to our data sets which
contained samples from one or two different CWE categories. Finally, Baptista et al. [33]
have used the code2seq [16] model to detect vulnerabilities and achieved an F1 score of
0.93, precision of 0.90, recall of 0.97, and accuracy of 0.85. However, no specific informa-
tion is given about the used data set and associated samples.

RQ2: WHAT IS THE EFFECT OF USING OBFUSCATED VARIABLE NAMES ON THE CODE2VEC

MODEL WHEN TRAINED TO DETECT BROKEN ACCESS CONTROL OR INJECTION VULNERABIL-
ITIES?
Our results show that variable obfuscation does not seem to have a substantial effect on
classifiers trained on the task of vulnerability detection.

The metric values of the classifiers trained on the CWE22 data set show that variable
obfuscation has no impact on the performance at all. When we evaluated the CWE clas-
sifiers on the natural sample data set (extracted from the NVD), instead of using a syn-
thetic sample data set, the classifier performance also showed no differences between non-

62



obfuscation and obfuscation. Furthermore, we found that the accuracy and precision were
almost halved (by 49% and 47% respectively) and the F1 score was diminished by 32%, com-
pared to the synthetic CWE22 test sets. However, this decline in performance can be partly
explained by the small number of cases extracted from the NVD compared to the number
of synthetic samples.

We hypothesised that the complexity (cyclomatic complexity and number of paths)
of the samples and the number of variables have an impact on the effect of variable ob-
fuscation. We shrunk a copy of the CWE89 data set to the same size as the CWE22 data
set and trained new classifiers. We observed that this reduced CWE89 data set resulted
in (marginal) performance differences between the classifiers, although the performance
of these classifiers was reduced compared to the CWE89 classifiers trained on the non-
reduced CWE89 data set. Nonetheless, we conclude that the complexity of the samples
does have an impact on the effect of variable obfuscation, as the CWE22 samples were less
complex than the CWE89 samples and contained fewer variables compared to the CWE89
samples.

Regarding the CWE89 classifiers and CWE91 classifiers, we found that random- and
semi-obfuscated classifiers showed lower performance values, although these differences
were marginal. The non-obfuscated and type-obfuscated classifiers scored almost iden-
tical, although F1 scores of the type-obfuscated classifiers were 0.0009 and 0.0005 higher
compared to the non-obfuscated classifiers. We have argued in Section 5.3 that the sig-
nificance of these differences should be statistically substantiated, however, we lack the
required computing power to perform the computer-intensive randomisation test needed
to prove a significant difference for F1 [48].

Next, we examined code2vec’s attention mechanism for our classifiers. Although ex-
amining the attention mechanism gives us an insight into the inner logic of the classifiers,
the examination is only performed for a small number of samples and therefore is not rep-
resentative of all samples. However, the top path-contexts used in the predictions show
that there is no significant difference between non-obfuscation and the used obfuscation
methods. These outcomes can be an indication of the results of our other experiments,
which show us that variable obfuscation does not seem to affect the performance of our
classifiers.

RQ3: HOW DOES VARIABLE OBFUSCATION AFFECT A CLASSIFIER WHEN TRAINED TO DETECT

MULTIPLE CWE VULNERABILITIES INSTEAD OF ONE CWE VULNERABILITY?
To answer RQ3, we have trained classifiers using a combined CWE89 and CWE91 data

set. The metrics show that the non-obfuscated classifier achieved the highest performance
compared to the obfuscated classifiers. Although these differences were marginal. The
CWE89 + CWE91 classifiers provided almost identical results to the separately trained CWE89
classifiers and CWE91 classifiers. As we have seen in the examination of the attention
mechanism, the attention given to the top path-contexts was similar to the separate CWE89
classifiers and CWE91 classifiers. Therefore, we conclude that variable obfuscation does
not have a different impact on classifiers trained on multiple CWE vulnerabilities instead
of one CWE vulnerability. However, due to our limited source of vulnerability samples,
we were not able to evaluate the impact of variable obfuscation on classifiers using a vul-
nerability set containing more vulnerability samples. Therefore, it could be interesting for
further research to evaluate the influence of variable obfuscation on classifiers trained on a

63



data set containing samples of more varying CWE categories when one can acquire a more
diverse data set.

ADDITIONAL EXPERIMENT RESULTS

To substantiate the answers to our research questions, we have performed some final
experiments. First, we have made a comparison to the work of Compton et al. [19]. Comp-
ton et al. have trained classifiers on various tasks [19] and examined the influence of vari-
able obfuscation for each task. We believe the task of detecting security vulnerabilities can
best be compared to the bug detection task examined by Compton et al., as one can argue
that a bug is represented in a comparable manner as a security vulnerability. In fact, a bug
may introduce a security vulnerability.

Compton et al. have only used Cohen’s Kappa (κ) to evaluate and compare the per-
formance of their classifiers. Although Compton et al. claim the performance of classi-
fiers is significantly increased by applying variable obfuscation [19], the improvements are
marginal. Compton et al. state that overall the random-obfuscation method provides the
most significant improvements, in comparison to type-obfuscation. However, as our re-
sults show in Table 5.4 (see Section 5.3), obfuscation does not show different results com-
pared to non-obfuscation. Only the CWE91 classifiers seem to slightly benefit from using
type-obfuscation according to the κ metric. The difference in results between Compton et
al. and our experiments may be due to the problems listed above. Additionally, we have
trained our classifiers using data sets of only one CWE (with a maximum of two for our
CWE89 + CWE91 classifier), whereas the bug data set used by Compton et al. contains
numerous different bug classifications. Finally, the following may also influence the differ-
ences:

• Compton et al. have based their results on class vectors, which are the result of ag-
gregation methods performed on the method vectors. We have used method vectors
because we believe method vectors may better capture the vulnerabilities. Comp-
ton et al. have not provided any findings which indicate whether or not class vectors
better represent code snippets in comparison to method vectors.

• The bug data set used by Compton et al. is an imbalanced data set as most cases do
not contain a bug, only a minority of the cases do contain a bug [49]. This may lead
to high accuracy, as the classifier will classify most samples as ’bug-free’, however, in
general, the classifier may perform poorly.

• The sources used to create the bug data set used by Compton et al. are not validated
by their creators [49] and therefore samples may be labelled incorrectly.

Finally, as explained in Section 5.6, we have cleaned the samples from the Juliet Test
Suite from variable names like goodSqlCommand and badSqlCommand. However, to al-
low future studies to better compare their results with our results, we have trained CWE89
classifiers with a non-cleaned data set. Because the Juliet Test Suite provided only 729 of
the 19872 samples for our CWE89 classifiers, we did not expect any differences in the re-
sults. Nevertheless, the results confirm that the non-cleaned data set provided classifiers
with similar performance as the classifiers trained on the cleaned data set.

Additionally, one might wonder what the effect of variable obfuscation could have on
vulnerability detection when the classifiers are trained on vulnerability samples extracted
from large sources containing natural production source code. In this study, we could only

64



obtain and use synthetic vulnerability samples which were created by generators using a
relatively small amount of templates. Therefore, the samples did not show remarkable dif-
ferences in code complexity (cyclomatic complexity and number of paths), but also vari-
able naming. Thus, our non-obfuscated samples are arguably already obfuscated, due to
its synthetic nature. However, natural production source code could have variable names
which indicate whether or not the programmer has thought carefully about the code im-
plementation. For example, a programmer who is aware of buffer-overflow vulnerabilities
could have named his buffer variables something like "boundedDataBuffer", indicating the
buffer variable is not able to overflow. Additionally, vague variable names like "x", "foo",
"bar", "someData" could indicate a less experienced programmer who does not (yet) com-
prehend how to program non-vulnerable code [50]. When we apply an obfuscation method
to these variable names, this information is lost and therefore cannot be used by models
trained on the task of vulnerability detection. However, we could categorise this poten-
tially large data set with natural production vulnerability cases into two categories. The first
category contains samples which contain badly named variable names and the last cate-
gory contains samples with variable names which are carefully chosen. We hypothesise the
first category could benefit from a variable obfuscation method such as type obfuscation
because this would produce more describing variable names than vague or meaningless
names. In contrast, variable obfuscation methods performed on the samples of the last
category could have a negative impact on classifiers trained on the task of vulnerability de-
tection, when trained using these obfuscated vulnerability samples. Nevertheless, how this
manifests itself in practice should be validated by future research.

6.2. LIMITATIONS
In this section, we describe some limitations of our research.

6.2.1. MODEL INPUT

Because the code2vec model only accepts individual methods as input, vulnerabilities that
span multiple parts in a program cannot easily be found using our approach. Some ex-
amples are vulnerabilities which span more than one method or vulnerabilities which are
spread over multiple classes. Other studies have tried to mitigate this problem by using a
technique called ’program slicing’, such as the recent VulDeePecker [46], SySeVR [51] and
GLICE [47] studies. However, this technique is out of scope for our project.

6.2.2. PROGRAMMING LANGUAGE

All samples used in this study are written in C#. Therefore, the results of this study could
be different when the study is repeated using samples that are written in another program-
ming language. However, the concept of variables is the same in every programming lan-
guage. Consequently, we do not believe the used programming language has an impact on
the results. However, this can only be proven by experiments.

6.2.3. VULNERABILITY TEST CASE SOURCES

The C# vulnerability samples we could use in our experiments were limited to the publicly
available vulnerability test cases. Our results show that the data size does impact the re-
sults of variable obfuscation and therefore it would be beneficial to have larger data sets

65



available. Additionally, most CWEs are not present in the available vulnerability test case
sources or even not available at all. Therefore, we could only use a small number of CWEs
in our experiments. Other CWEs could potentially give different results which we could not
investigate because of the limited vulnerability cases.

66



7
CONCLUSION AND RECOMMENDATIONS

7.1. CONCLUSION
Overall, our results show that variable obfuscation does not seem to have a substantial ef-
fect on classifiers trained on the task of vulnerability detection. This is because the result-
ing F1 scores of the classifiers do not show significant differences. However, to be able to
statistically substantiate this result, further research should perform a compute-intensive
randomisation test [48], for which we lack computing power.

Nonetheless, we showed that variable obfuscation has none to minimal impact on the
classifier performance, which we further substantiated by some additional experiments.
First, we evaluated the performance of our CWE22 classifiers using the natural CWE22 C#
vulnerability cases extracted from the NVD. The results of this experiment showed us that,
based on our data set of natural samples, the performance of a non-obfuscated classifier
was the same as the obfuscated classifiers.

Next, we evaluated whether or not the results of our previous experiment were caused
by the complexity of our CWE22 samples, by training on a CWE89 data set for which the
number of samples was reduced to the same size as our CWE22 data set. The results of this
experiment depict that the reduced CWE89 data set does result in (marginal) performance
differences between classifiers, although the performance of these classifiers was reduced
compared to the CWE89 classifiers trained on the non-reduced data set. We conclude this
is because our CWE22 samples are less complex and contain fewer variables, compared to
the more complex CWE89 samples which contain more variable names.

Finally, we have examined the effect of variable obfuscation on code2vec’s attention
mechanism. Even though we have used a small number of samples to get an insight into the
attention mechanism, we concluded that both the non-obfuscated and obfuscated classi-
fiers had put the same attention on the same category of path-contexts to make a predic-
tion. This further substantiates our conclusion that variable obfuscation does not have an
impact on the classifier performance. If there is any difference, we noticed that variable ob-
fuscation has the least impact on classifiers which are trained using samples which contain
a small number of variables.

To end our conclusion, we give answer to our main question: What influence does
variable obfuscation have on the code2vec model when trained on the task of detecting
software vulnerabilities?

67



Although the study performed by Compton et al. shows that variable obfuscation could
increase the performance of classifiers marginally, yet statistically significant, our results
show that variable obfuscation does not have a significant influence on the detection of
vulnerabilities.

7.2. RECOMMENDATIONS FOR FUTURE WORK
As described in Chapter 6, to statistically substantiate our results of variable obfuscation
not improving the ability of classifiers to detect vulnerabilities, we should apply a compute-
intensive randomisation test [48]. However, we were not able to perform this task during
this study due to the lack of computing power and time. Therefore, further research could
be performed to statistically substantiate our results.

In Section 2.6, we opted for not using class embeddings as described by Compton et
al. [19], because this could result in information loss. However, during our research, we had
to omit hundreds of test cases because they described vulnerabilities ranging over multiple
classes or files (as stated in Section 4.1.1). Therefore, experimenting with various aggrega-
tion methods to create embeddings for code snippets which span various code parts, in-
stead of only single methods, could be interesting for further research. These experiments
do not only have to be aimed at detecting vulnerabilities in source code specifically but
could also be beneficial for various other tasks, such as detecting (faultily implemented)
design patterns in software or bug prediction.

An additional untested approach would be to modify the semi-obfuscation method to
not use type obfuscation, but random obfuscation. Even a combined type and random ob-
fuscation method is possible, to allow the classifier to rely both more on the variable struc-
tures and code structure respectively. Additionally, the percentage of variable obfuscation
could be tweaked, where we only obfuscated 50% of the variables in our semi-obfuscation
method. Due to the limited time of our research, we have only used one semi-obfuscation
method approach in our experiments. However, because variable obfuscation does not
seem to improve the performance of our classifiers as seen in our experiment results, we
do not believe a modified semi-obfuscation method would provide groundbreaking dif-
ferences in the results. Yet, as an additional approach, it would be interesting to exam-
ine whether or not completely different obfuscation methods would show different results.
For example, by renaming variables names for variables which could potentially contain
tainted data which is not sanitised. This way the model could rely on this additional infor-
mation.

Furthermore, variable obfuscation could be applied to other classifier algorithms than
code2vec in order to be able to further acknowledge our results that variable obfuscation
does not improve the performance of classifiers trained on the task of vulnerability detec-
tion. For example, the VulDeePecker [46] or code2seq [16] models could be used. Addition-
ally, although code2vec (and code2seq) do not require designing manual features [15; 16],
variable obfuscation might have a bigger impact when the features are manually designed.
The reason for this could be that a model has to rely more on these features as opposed to
the more generic path-contexts generated for the code2vec (or code2seq) model. However,
this has yet to be examined.

To continue on the idea of using different algorithms, we want to propose the idea of
adding features related to security vulnerabilities to the code2vec vectors. Code2vec is able
to generalise well [15] and together with additional information related to vulnerabilities,

68



the model might be able to better predict vulnerabilities within source code. This can even
be performed for the code2seq model [16], however, this model uses more resources and
therefore takes more time to train.

Finally, the test case sources we have used have been used in studies in the past, how-
ever, they could still contain errors as we have seen in the Hasan test cases (see Section 4.3.3).
Therefore, to confirm the validity of our results the test case sources could be analyzed to
detect if any errors (such as wrongly labelled cases) are present. However, we believe the
majority of the test cases are correct and therefore some errors would not significantly have
impacted our results.

69



A
DATA SET SAMPLE OVERVIEW

Table A.1: Overview of the OWASP Injection category CWEs that are present in our research and the number
of extracted samples for each CWE (per data set).

CWE
Juliet

Test Suite
Test

Suite 105
Hasan

CVEfixes
/ NVD

Total samples

CWE 20 - Improper Input Valida-
tion

0 0 0 26 26

CWE 74 - Injection 0 0 0 2 2
CWE 78 - OS Command Injection 170 1740 3 0 1913
CWE 79 - Cross-site Scripting 0 0 0 14 14
CWE 80 - Basic XSS 306 0 0 0 306
CWE 83 - Improper Neutraliza-
tion of Script in Attributes in a
Web Page

153 0 0 0 153

CWE 89 - SQL Injection 729 19140 3 0 19872
CWE 90 - LDAP Injection 170 1740 0 0 1910
CWE 91 - XML Injection 0 5220 0 0 5220
CWE 94 - Code Injection 270 0 0 1 271
CWE 113 - HTTP Response Split-
ting

729 0 0 0 729

CWE 470 - Unsafe Reflection 153 0 0 0 153
CWE 643 - XPath Injection 270 0 0 0 270

70



Table A.2: Overview of the OWASP Broken Access Control category CWEs that are present in our research and
the number of extracted samples for each CWE (per data set).

CWE
Juliet

Test Suite
Test

Suite 105
Hasan

CVEfixes
/ NVD

Total samples

CWE 22 - Path Traversal 0 2088 0 48 2136
CWE 23 - Relative Path Traversal 170 0 0 0 170
CWE-284 Improper Access Con-
trol

30 0 0 0 30

CWE-352 Cross-Site Request
Forgery (CSRF)

0 0 0 0 0

CWE-566 Authorization Bypass
Through User-Controlled SQL
Primary Key

17 0 0 0 17

CWE-601 URL Redirection to Un-
trusted Site (’Open Redirect’)

153 0 0 0 153

CWE-706 Use of Incorrectly-
Resolved Name or Reference

0 0 0 0 0

71



B
CVEFIXES C# CVE RECORD RESULTS

As explained in Section 4.3.4, we encountered different results when running the query of
Listing 4.3 on the Bhandari et al. database copy and our own database copy. The results are
shown in Figure B.1. Compared to the Bhandari et al. database copy which contained 34
unique C# CVE records, our copy contained 50 unique C# CVE records. The difference of 15
new CVE records in our copy is due to the Bhandari et al. copy only containing records up to
9 June 2020. However, our database copy missed two C# CVE records and contained three
additional CVE records, compared to the Bhandari et al. copy. Together, they provided 52
unique C# CVE records. An observant reader would note that CVE-2020-8416 describes a
CWE-770 according to our database, but the Bhandari et al. database copy tells us different
(CWE-400). However, the assigned CWE for this CVE has changed on 21 Juli 2021 in the
NVD and therefore explains the difference between the two database copies [94].

Running the query of Listing 4.4 provided 49 out of 52 unique records of Listing 4.3,
but also additional records have been found this way. Therefore, the query of Listing 4.4
provided the best results and has been used to create samples for our data set. The results
of the query in Listing 4.4 are depicted in Figure B.2. This figure shows all results of the
query in Listing 4.4, including the three CVE records which describe JavaScript or C fixes
instead of C# fixes. These records have been struck through in Figure B.2. The interesting
CVE records describing Broken Access Control and Injection category CWEs are in bold in
Figure B.2.

72



Figure B.1: The resulting C# CVE records of query 1 from Listing 4.3. Comparison between our generated
database copy versus the database copy provided by Bhandari et al.

73



Figure B.2: The resulting C# CVE records of query 2 from Listing 4.4 which have been used to create samples
for our data set.

74



C
INTERPRETING ATTENTION SAMPLES

This appendix contains all sample code sources used during the interpretation of code2vec’s
attention mechanism, as described in Section 5.7.

Listing C.1: Good (non-vulnerable) CWE89 sample used to interpret code2vec’s attention mechanism.
Sample is taken from the Hasan test cases.

1 public int Good( SqlConnection conn , string username , string newEmail
)

2 {
3 SqlCommand command = conn. CreateCommand ();
4 string updateQuery = " UPDATE Account SET [email ]= @newEmail WHERE

user= @username ";
5 command . CommandText = updateQuery ;
6

7 SqlParameter dbPramUser = new SqlParameter ();
8 dbPramUser . ParameterName = " @username ";
9 dbPramUser . SqlDbType = SqlDbType . VarChar ;

10 dbPramUser .Value = username ;
11 command . Parameters .Add( dbPramUser );
12

13 SqlParameter dbPramEmail = new SqlParameter ();
14 dbPramEmail . ParameterName = " @newEmail ";
15 dbPramEmail . SqlDbType = SqlDbType . VarChar ;
16 dbPramEmail .Value = newEmail ;
17 command . Parameters .Add( dbPramEmail );
18 int rowsAffected = 0;
19 try
20 {
21 rowsAffected = command . ExecuteNonQuery ();
22 }
23 finally
24 {
25 }
26 return rowsAffected ;
27 }

75



Listing C.2: Bad (vulnerable) CWE89 sample used to interpret code2vec’s attention mechanism. Sam-
ple is a modified version of the good sample taken from the Hasan test cases.

1 public int Bad( SqlConnection conn , string username , string newEmail )
2 {
3 SqlCommand command = conn. CreateCommand ();
4 string updateQuery = " UPDATE Account SET [email ]=" + newEmail +

" WHERE user=" + username ;
5 command . CommandText = updateQuery ;
6

7 int rowsAffected = 0;
8 try
9 {

10 rowsAffected = command . ExecuteNonQuery ();
11 }
12 finally
13 {
14 }
15 return rowsAffected ;
16 }

76



Listing C.3: Good (non-vulnerable) CWE22 sample used to interpret code2vec’s attention mechanism.
Sample is taken from CVE-2021-32841.

1 private void Good( string destDir , TarEntry entry , bool
allowParentTraversal )

2 {
3 OnProgressMessageEvent (entry , null);
4 string name = entry.Name;
5 if (Path. IsPathRooted (name))
6 {
7 // NOTE:
8 // for UNC names ... \\ machine \share\zoom\beet.txt gives \zoom\

beet.txt
9 name = name. Substring (Path. GetPathRoot (name). Length );

10 }
11 name = name. Replace (’/’, Path. DirectorySeparatorChar );
12

13 string destFile = Path. Combine (destDir , name);
14 var destFileDir = Path. GetDirectoryName (Path. GetFullPath ( destFile )

) ?? "";
15

16 if (! allowParentTraversal && ! destFileDir . StartsWith (destDir ,
StringComparison . InvariantCultureIgnoreCase ))

17 {
18 throw new InvalidNameException (" Parent traversal in paths is not

allowed ");
19 }
20 if (entry. IsDirectory )
21 {
22 EnsureDirectoryExists ( destFile );
23 }
24 else
25 {
26 string parentDirectory = Path. GetDirectoryName ( destFile );
27 EnsureDirectoryExists ( parentDirectory );
28 bool process = true;
29 var fileInfo = new FileInfo ( destFile );
30 if ( fileInfo . Exists )
31 {
32 if ( keepOldFiles )
33 {
34 OnProgressMessageEvent (entry , " Destination file already

exists ");
35 process = false;
36 }
37 else if (( fileInfo . Attributes & FileAttributes . ReadOnly ) != 0)
38 {
39 OnProgressMessageEvent (entry , " Destination file already

exists , and is read -only");
40 process = false;
41 }
42 }
43 if ( process )
44 {
45 using (var outputStream = File. Create ( destFile ))
46 {

77



47 if (this. asciiTranslate )
48 {
49 // May need to translate the file.
50 ExtractAndTranslateEntry (destFile , outputStream );
51 }
52 else
53 {
54 // If translation is disabled , just copy the entry across

directly .
55 tarIn. CopyEntryContents ( outputStream );
56 }
57 }
58 }
59 }
60 }

78



Listing C.4: Bad (vulnerable) CWE22 sample used to interpret code2vec’s attention mechanism. Sam-
ple is taken from CVE-2021-32841.

1 private void Bad( string destDir , TarEntry entry , bool
allowParentTraversal )

2 {
3 OnProgressMessageEvent (entry , null);
4 string name = entry.Name;
5 if (Path. IsPathRooted (name))
6 {
7 // NOTE:
8 // for UNC names ... \\ machine \share\zoom\beet.txt gives \zoom\

beet.txt
9 name = name. Substring (Path. GetPathRoot (name). Length );

10 }
11 name = name. Replace (’/’, Path. DirectorySeparatorChar );
12

13 string destFile = Path. Combine (destDir , name);
14

15 if (! allowParentTraversal && !Path. GetFullPath ( destFile ).
StartsWith (destDir , StringComparison . InvariantCultureIgnoreCase
))

16 {
17 throw new InvalidNameException (" Parent traversal in paths is not

allowed ");
18 }
19 if (entry. IsDirectory )
20 {
21 EnsureDirectoryExists ( destFile );
22 }
23 else
24 {
25 string parentDirectory = Path. GetDirectoryName ( destFile );
26 EnsureDirectoryExists ( parentDirectory );
27 bool process = true;
28 var fileInfo = new FileInfo ( destFile );
29 if ( fileInfo . Exists )
30 {
31 if ( keepOldFiles )
32 {
33 OnProgressMessageEvent (entry , " Destination file already

exists ");
34 process = false;
35 }
36 else if (( fileInfo . Attributes & FileAttributes . ReadOnly ) != 0)
37 {
38 OnProgressMessageEvent (entry , " Destination file already

exists , and is read -only");
39 process = false;
40 }
41 }
42 if ( process )
43 {
44 using (var outputStream = File. Create ( destFile ))
45 {
46 if (this. asciiTranslate )

79



47 {
48 // May need to translate the file.
49 ExtractAndTranslateEntry (destFile , outputStream );
50 }
51 else
52 {
53 // If translation is disabled , just copy the entry across

directly .
54 tarIn. CopyEntryContents ( outputStream );
55 }
56 }
57 }
58 }
59 }

80



Listing C.5: Good (non-vulnerable) CWE91 sample used to interpret code2vec’s attention mechanism.
Sample is taken from Test Suite 105.

1 public static void Good( string [] args)
2 {
3 string tainted_2 = null;
4 string tainted_3 = null;
5 tainted_2 = args [1];
6 tainted_3 = tainted_2 ;
7 if ((4 + 2 <= 42))
8 {
9 string pattern = @"/^[0 -9]*$/";

10 Regex r = new Regex( pattern );
11 Match m = r.Match( tainted_2 );
12 if (!m. Success )
13 {
14 tainted_3 = "";
15 }
16 else
17 {
18 tainted_3 = tainted_2 ;
19 }
20 }
21

22 string query = tainted_3 ;
23 string filename = "file.xml";
24 XDocument document = XDocument .Load( filename );
25 XmlTextWriter writer = new XmlTextWriter ( Console .Out);
26 writer . Formatting = Formatting . Indented ;
27 var node = document .Root. Elements ("foo").Where(x => ( string )x.

Element ("bar") == query). SingleOrDefault ();
28 node. WriteTo ( writer );
29 writer .Close ();
30 }

Listing C.6: Bad (vulnerable) CWE91 sample used to interpret code2vec’s attention mechanism. Sam-
ple is taken from Test Suite 105.

1 public static void Bad( string [] args)
2 {
3 string tainted_2 = null;
4 string tainted_3 = null;
5 tainted_2 = args [1];
6 tainted_3 = tainted_2 ;
7 if (( Math.Sqrt (42) <= 42))
8 {
9 string pattern = @"/^[0 -9]*$/";

10 Regex r = new Regex( pattern );
11 Match m = r.Match( tainted_2 );
12 if (!m. Success )
13 {
14 tainted_3 = "";
15 }
16 else
17 {
18 tainted_3 = tainted_2 ;

81



19 }
20 }
21

22 // flaw
23 string query = "// user[@name=’" + tainted_3 + " ’]";
24 string filename = "file.xml";
25 XmlDocument document = new XmlDocument ();
26 document .Load( filename );
27 XmlTextWriter writer = new XmlTextWriter ( Console .Out);
28 writer . Formatting = Formatting . Indented ;
29 XmlNode node = document . SelectSingleNode (query);
30 node. WriteTo ( writer );
31 writer .Close ();
32 }

82



BIBLIOGRAPHY

[1] H. Stevenson and K. Alharbi, “Software Security,” 2012.
[Online]. Available: https://home.cs.colorado.edu/~kena/classes/5828/s12/
presentation-materials/stevensonhunteralharbikhali.pdf 3

[2] Federal Bureau of Investigation, “2020 Internet Crime Report,” 2020. [Online].
Available: https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf 3

[3] A. Edmundson, B. Holtkamp, E. Rivera, M. Finifter, A. Mettler, and D. Wagner, “An
Empirical Study on the Effectiveness of Security Code Review,” in Engineering Secure
Software and Systems, ser. Lecture Notes in Computer Science, J. Jürjens, B. Livshits,
and R. Scandariato, Eds. Berlin, Heidelberg: Springer, 2013, pp. 197–212. 3

[4] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger, K. Whitlock,
C. Ketant, and K. Davis, “An empirical investigation of socio-technical code
review metrics and security vulnerabilities,” in Proceedings of the 6th International
Workshop on Social Software Engineering, ser. SSE 2014. New York, NY, USA:
Association for Computing Machinery, Nov. 2014, pp. 37–44. [Online]. Available:
http://doi.org/10.1145/2661685.2661687 4

[5] H. G. Rice, “Classes of recursively enumerable sets and their decision prob-
lems,” Transactions of the American Mathematical Society, vol. 74, no. 2,
pp. 358–366, 1953. [Online]. Available: https://www.ams.org/tran/1953-074-02/
S0002-9947-1953-0053041-6/ 4

[6] S. M. Ghaffarian and H. R. Shahriari, “Software Vulnerability Analysis and
Discovery Using Machine-Learning and Data-Mining Techniques: A Survey,” ACM
Computing Surveys, vol. 50, no. 4, pp. 56:1–56:36, Aug. 2017. [Online]. Available:
http://doi.org/10.1145/3092566 4

[7] Y. Shin and L. Williams, “Can traditional fault prediction models be used for
vulnerability prediction?” Empirical Software Engineering, vol. 18, no. 1, pp. 25–59,
Feb. 2013. [Online]. Available: https://doi.org/10.1007/s10664-011-9190-8 4

[8] G. Díaz and J. R. Bermejo, “Static analysis of source code security: Assessment of
tools against SAMATE tests,” Information and Software Technology, vol. 55, no. 8, pp.
1462–1476, Aug. 2013. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584913000384 4

[9] P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, “Software Vulnerability Analysis
and Discovery Using Deep Learning Techniques: A Survey,” IEEE Access, vol. 8,
pp. 197 158–197 172, Jan. 2020, publisher: IEEE. [Online]. Available: https:
//doaj.org/article/8c9bada603444693830b5ae8317a4d64 4

i

https://home.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/stevensonhunteralharbikhali.pdf
https://home.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/stevensonhunteralharbikhali.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
http://doi.org/10.1145/2661685.2661687
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
http://doi.org/10.1145/3092566
https://doi.org/10.1007/s10664-011-9190-8
https://www.sciencedirect.com/science/article/pii/S0950584913000384
https://www.sciencedirect.com/science/article/pii/S0950584913000384
https://doaj.org/article/8c9bada603444693830b5ae8317a4d64
https://doaj.org/article/8c9bada603444693830b5ae8317a4d64


[10] H. Hanif, M. H. N. Md Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar, “The rise of
software vulnerability: Taxonomy of software vulnerabilities detection and machine
learning approaches,” Journal of Network and Computer Applications, vol. 179,
p. 103009, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1084804521000369 4

[11] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Represen-
tations of Words and Phrases and their Compositionality,” arXiv:1310.4546 [cs, stat],
Oct. 2013, arXiv: 1310.4546. [Online]. Available: http://arxiv.org/abs/1310.4546 4, 9

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” arXiv:1301.3781 [cs], Sep. 2013, arXiv: 1301.3781.
[Online]. Available: http://arxiv.org/abs/1301.3781 4, 9

[13] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” in Advances in Neural Information Processing Systems, vol. 27. Curran
Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper/
2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html 4, 9

[14] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based representation
for predicting program properties,” ACM SIGPLAN Notices, vol. 53, no. 4, pp. 404–419,
Jun. 2018. [Online]. Available: http://doi.org/10.1145/3296979.3192412 4, 9, 12, 13

[15] ——, “Code2vec: Learning Distributed Representations of Code,” Proceedings of the
ACM on Programming Languages, vol. 3, no. POPL, pp. 40:1–40:29, Jan. 2019. [Online].
Available: http://doi.org/10.1145/3290353 4, 10, 12, 13, 19, 20, 23, 49, 50, 52, 53, 54,
62, 68

[16] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating Sequences
from Structured Representations of Code,” 2019. [Online]. Available: https:
//openreview.net/forum?id=H1gKYo09tX 4, 49, 53, 54, 62, 68, 69

[17] M. Fowler and M. Foemmel, “Continuous integration,” 2006. [Online]. Avail-
able: https://moodle2019-20.ua.es/moodle/pluginfile.php/2228/mod_resource/
content/2/martin-fowler-continuous-integration.pdf 5

[18] D. Coimbra, S. Reis, R. Abreu, C. Păsăreanu, and H. Erdogmus, “On using distributed
representations of source code for the detection of C security vulnerabilities,”
arXiv:2106.01367 [cs], Jun. 2021, arXiv: 2106.01367. [Online]. Available: http:
//arxiv.org/abs/2106.01367 5, 19, 23, 49

[19] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding Java Classes with
code2vec: Improvements from Variable Obfuscation,” in Proceedings of the 17th
International Conference on Mining Software Repositories. New York, NY, USA:
Association for Computing Machinery, Jun. 2020, pp. 243–253. [Online]. Available:
http://doi.org/10.1145/3379597.3387445 5, 11, 19, 20, 21, 22, 23, 49, 54, 64, 68

[20] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with applying
vulnerability prediction models,” in Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, ser. HotSoS ’15. New York, NY, USA:

ii

https://www.sciencedirect.com/science/article/pii/S1084804521000369
https://www.sciencedirect.com/science/article/pii/S1084804521000369
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
http://doi.org/10.1145/3296979.3192412
http://doi.org/10.1145/3290353
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://moodle2019-20.ua.es/moodle/pluginfile.php/2228/mod_resource/content/2/martin-fowler-continuous-integration.pdf
https://moodle2019-20.ua.es/moodle/pluginfile.php/2228/mod_resource/content/2/martin-fowler-continuous-integration.pdf
http://arxiv.org/abs/2106.01367
http://arxiv.org/abs/2106.01367
http://doi.org/10.1145/3379597.3387445


Association for Computing Machinery, Apr. 2015, pp. 1–9. [Online]. Available:
http://doi.org/10.1145/2746194.2746198 5, 23

[21] F. Chollet, Deep learning with Python. Shelter Island, New York: Manning Publica-
tions Co, 2018, oCLC: ocn982650571. 7

[22] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language
model,” The Journal of Machine Learning Research, vol. 3, no. null, pp. 1137–1155,
2003. 8

[23] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for Word Repre-
sentation,” in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp.
1532–1543. [Online]. Available: http://www.aclweb.org/anthology/D14-1162 9

[24] Y. Fang, S. Han, C. Huang, and R. Wu, “TAP: A static analysis model for PHP
vulnerabilities based on token and deep learning technology,” PLOS ONE, vol. 14,
no. 11, p. e0225196, Nov. 2019, publisher: Public Library of Science. [Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225196 9

[25] G. Grieco, G. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier, “Toward Large-Scale
Vulnerability Discovery using Machine Learning,” 2016. 9

[26] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into Deep Learning,”
arXiv:2106.11342 [cs], Jun. 2021, arXiv: 2106.11342 version: 1. [Online]. Available:
http://arxiv.org/abs/2106.11342 9

[27] A. Ben-David, “Comparison of classification accuracy using Cohen’s Weighted Kappa,”
Expert Systems with Applications, vol. 34, no. 2, pp. 825–832, Feb. 2008. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0957417406003435 11

[28] D. Chicco, M. J. Warrens, and G. Jurman, “The Matthews Correlation Coefficient
(MCC) is More Informative Than Cohen’s Kappa and Brier Score in Binary Classifica-
tion Assessment,” IEEE Access, vol. 9, pp. 78 368–78 381, 2021, conference Name: IEEE
Access. 11

[29] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to Represent Programs
with Graphs,” arXiv:1711.00740 [cs], May 2018, arXiv: 1711.00740. [Online]. Available:
http://arxiv.org/abs/1711.00740 12

[30] S. M. Radack, “The Common Vulnerability Scoring System (CVSS),” Oct. 2007,
last Modified: 2020-01-27T16:24-05:00. [Online]. Available: https://www.nist.gov/
publications/common-vulnerability-scoring-system-cvss 14

[31] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz, M. Kantarcioglu, and
D. D. Yao, “CryptoGuard: High Precision Detection of Cryptographic Vulnerabilities
in Massive-sized Java Projects,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 2455–2472. [Online]. Available:
http://doi.org/10.1145/3319535.3345659 16

iii

http://doi.org/10.1145/2746194.2746198
http://www.aclweb.org/anthology/D14-1162
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225196
http://arxiv.org/abs/2106.11342
https://www.sciencedirect.com/science/article/pii/S0957417406003435
http://arxiv.org/abs/1711.00740
https://www.nist.gov/publications/common-vulnerability-scoring-system-cvss
https://www.nist.gov/publications/common-vulnerability-scoring-system-cvss
http://doi.org/10.1145/3319535.3345659


[32] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective Vulnerability
Identification by Learning Comprehensive Program Semantics via Graph Neural
Networks,” Sep. 2019, arXiv:1909.03496 [cs, stat] version: 1. [Online]. Available:
http://arxiv.org/abs/1909.03496 19

[33] T. Baptista, N. Oliveira, and P. R. Henriques, “Using Machine Learning for Vulnerability
Detection and Classification,” in 10th Symposium on Languages, Applications and
Technologies (SLATE 2021), ser. Open Access Series in Informatics (OASIcs), R. Queirós,
M. Pinto, A. Simões, F. Portela, and M. J. Pereira, Eds., vol. 94. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, pp. 14:1–14:14, iSSN:
2190-6807. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2021/14431
19, 62

[34] H. J. Kang, T. F. Bissyandé, and D. Lo, “Assessing the generalizability of code2vec
token embeddings,” in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, Nov. 2019, pp. 1–12. [Online]. Available:
http://doi.org/10.1109/ASE.2019.00011 19

[35] B. Elema, A. Hommersom, and H. Vranken, “Finding Chinks in the Armour Software
Vulnerability Prediction Using Deep Learning on Graph Representations of Source
Code,” Master’s thesis, Open University of the Netherlands, Heerlen, Mar. 2020. 20,
53, 54

[36] P. Black, “SARD: Thousands of Reference Programs for Software As-
surance,” Journal of Cyber Security and Information Systems, vol. 5,
pp. 6–13, Oct. 2017. [Online]. Available: https://www.nist.gov/publications/
sard-thousands-reference-programs-software-assurance 27, 28, 36

[37] Center for Assured Software National Security Agency, “Juliet Test Suite v1.2 for
Java,” Dec. 2012. [Online]. Available: https://samate.nist.gov/SARD/downloads/
documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf 29, 34

[38] B. Stivalet and E. Fong, “Large Scale Generation of Complex and Faulty PHP Test
Cases,” in 2016 IEEE International Conference on Software Testing, Verification and
Validation (ICST). Chicago, IL: IEEE, Apr. 2016, pp. 409–415. [Online]. Available:
https://ieeexplore.ieee.org/document/7515499/ 33

[39] P. E. Black, “Juliet 1.3 Test Suite: Changes From 1.2,” Jun. 2018, last Modified:
2021-05-04T09:23-04:00. [Online]. Available: https://www.nist.gov/publications/
juliet-13-test-suite-changes-12 34

[40] A. Wagner and J. Sametinger, “Using the Juliet Test Suite to Compare Static Security
Scanners,” Aug. 2014. 34

[41] J. Kronjee, A. Hommersom, and H. Vranken, “Discovering Software Vulnerabilities
Using Data-flow Analysis and Machine Learning: 13th International Conference on
Availability, Reliability and Security,” Proceedings of the 13th International Conference
on Availability, Reliability and Security, 2018, place: New York, NY, USA Publisher:
acm. 38, 53, 54

iv

http://arxiv.org/abs/1909.03496
https://drops.dagstuhl.de/opus/volltexte/2021/14431
http://doi.org/10.1109/ASE.2019.00011
https://www.nist.gov/publications/sard-thousands-reference-programs-software-assurance
https://www.nist.gov/publications/sard-thousands-reference-programs-software-assurance
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://ieeexplore.ieee.org/document/7515499/
https://www.nist.gov/publications/juliet-13-test-suite-changes-12
https://www.nist.gov/publications/juliet-13-test-suite-changes-12


[42] G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: automated collection of
vulnerabilities and their fixes from open-source software,” in Proceedings of the
17th International Conference on Predictive Models and Data Analytics in Software
Engineering. New York, NY, USA: Association for Computing Machinery, Aug. 2021,
pp. 30–39. [Online]. Available: http://doi.org/10.1145/3475960.3475985 38

[43] D. R. Wallace, A. H. Watson, and T. J. McCabe, “Structured testing :: a
testing methodology using the cyclomatic complexity metric,” National Institute
of Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST SP 500-235,
1996, edition: 0. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication500-235.pdf 41

[44] P. Norvig and S. Russel, “Artificial Intelligence: A Modern Approach,” in Artificial Intel-
ligence: A Modern Approach, 3rd ed. Pearson, Dec. 2009, p. 709. 49

[45] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: an automated vulnerability
detection system based on code similarity analysis,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications, ser. ACSAC ’16. New York,
NY, USA: Association for Computing Machinery, Dec. 2016, pp. 201–213. [Online].
Available: https://doi.org/10.1145/2991079.2991102 53, 54

[46] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong, “VulDeePecker: A
Deep Learning-Based System for Vulnerability Detection,” Proceedings 2018 Network
and Distributed System Security Symposium, 2018, arXiv: 1801.01681. [Online].
Available: http://arxiv.org/abs/1801.01681 65, 68

[47] W. de Kraker, H. Vranken, and A. Hommersom, “Combining program slicing and graph
neural networks to detect software vulnerabilities,” Master’s thesis, Open University of
the Netherlands, Heerlen, Jul. 2022. 53, 54, 65

[48] A. Yeh, “More accurate tests for the statistical significance of result differences,”
in COLING 2000 Volume 2: The 18th International Conference on Computational
Linguistics, 2000. [Online]. Available: https://aclanthology.org/C00-2137 53, 63, 67,
68

[49] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public unified bug
dataset for java and its assessment regarding metrics and bug prediction,” Software
Quality Journal, vol. 28, no. 4, pp. 1447–1506, Dec. 2020. [Online]. Available:
https://doi.org/10.1007/s11219-020-09515-0 64

[50] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The Effect of Lexicon Bad Smells on
Concept Location in Source Code.” IEEE Computer Society, Sep. 2011, pp. 125–134.
[Online]. Available: http://www.computer.org/csdl/proceedings-article/scam/2011/
06065171/12OmNzBOi1B 65

[51] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A Framework for Using
Deep Learning to Detect Software Vulnerabilities,” IEEE Transactions on Dependable
and Secure Computing, pp. 1–1, 2021, arXiv: 1807.06756. [Online]. Available:
http://arxiv.org/abs/1807.06756 65

v

http://doi.org/10.1145/3475960.3475985
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-235.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-235.pdf
https://doi.org/10.1145/2991079.2991102
http://arxiv.org/abs/1801.01681
https://aclanthology.org/C00-2137
https://doi.org/10.1007/s11219-020-09515-0
http://www.computer.org/csdl/proceedings-article/scam/2011/06065171/12OmNzBOi1B
http://www.computer.org/csdl/proceedings-article/scam/2011/06065171/12OmNzBOi1B
http://arxiv.org/abs/1807.06756


WEB LINKS

[52] “Heartbleed Bug.” [Online]. Available: https://heartbleed.com/

[53] “Log4j – Apache Log4j Security Vulnerabilities.” [Online]. Available: https://logging.
apache.org/log4j/2.x/security.html

[54] NIST, “NVD - Home.” [Online]. Available: https://nvd.nist.gov/

[55] MITRE, “CWE - Common Weakness Enumeration.” [Online]. Available: https:
//cwe.mitre.org/

[56] Lee, Adriana, “How Codenomicon Found The Heartbleed Bug Now Plagu-
ing The Internet,” Apr. 2014. [Online]. Available: https://readwrite.com/
heartbleed-security-codenomicon-discovery/

[57] https://www.facebook.com/ryanwneal, “Heartbleed Bug: CEO David Chartier
Explains How Codenomicon Found The Massive Internet Security Breach,”
Apr. 2014, section: Internet. [Online]. Available: https://www.ibtimes.com/
heartbleed-bug-ceo-david-chartier-explains-how-codenomicon-found-massive-internet-1569742

[58] L. Eadicicco, “How A Group Of Engineers Uncovered The Biggest Bug The
Internet Has Seen In Years.” [Online]. Available: https://www.businessinsider.com/
heartbleed-bug-codenomicon-2014-4

[59] Google, “linear-relationships: word embedding vector space.” [Online].
Available: https://developers.google.com/machine-learning/crash-course/images/
linear-relationships.svg

[60] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large
Corpora,” Valetta, MT, May 2010, pages: 45–50 Series: Proceedings of LREC 2010
workshop New Challenges for NLP Frameworks original-date: 2011-02-10T07:43:04Z.
[Online]. Available: http://is.muni.cz/publication/884893/en

[61] “Code2vec,” Oct. 2022, original-date: 2018-07-24T03:40:20Z. [Online]. Available:
https://github.com/tech-srl/code2vec

[62] “astminer,” Oct. 2022, original-date: 2018-12-14T16:37:33Z. [Online]. Available:
https://github.com/JetBrains-Research/astminer

[63] “id2vec,” Jun. 2022, original-date: 2019-12-29T20:47:39Z. [Online]. Available:
https://github.com/tech-srl/id2vec

[64] NIST, “CVE - CVE.” [Online]. Available: https://cve.mitre.org/

vi

https://heartbleed.com/
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://nvd.nist.gov/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://readwrite.com/heartbleed-security-codenomicon-discovery/
https://readwrite.com/heartbleed-security-codenomicon-discovery/
https://www.ibtimes.com/heartbleed-bug-ceo-david-chartier-explains-how-codenomicon-found-massive-internet-1569742
https://www.ibtimes.com/heartbleed-bug-ceo-david-chartier-explains-how-codenomicon-found-massive-internet-1569742
https://www.businessinsider.com/heartbleed-bug-codenomicon-2014-4
https://www.businessinsider.com/heartbleed-bug-codenomicon-2014-4
https://developers.google.com/machine-learning/crash-course/images/linear-relationships.svg
https://developers.google.com/machine-learning/crash-course/images/linear-relationships.svg
http://is.muni.cz/publication/884893/en
https://github.com/tech-srl/code2vec
https://github.com/JetBrains-Research/astminer
https://github.com/tech-srl/id2vec
https://cve.mitre.org/


[65] ——, “CVE - CVE and NVD Relationship.” [Online]. Available: https://cve.mitre.org/
about/cve_and_nvd_relationship.html

[66] “NVD - CVSS Severity Distribution Over Time.” [Online]. Avail-
able: https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/
cvss-severity-distribution-over-time#CVSSSeverityOverTime

[67] “OWASP ZAP | OWASP Foundation.” [Online]. Available: https://owasp.org/
www-project-zap/

[68] “OWASP WebGoat | OWASP Foundation.” [Online]. Available: https://owasp.org/
www-project-webgoat/

[69] OWASP Foundation, “OWASP Top Ten Web Application Security Risks | OWASP,” Oct.
2021. [Online]. Available: https://owasp.org/www-project-top-ten/

[70] “CWE - CWE-327: Use of a Broken or Risky Cryptographic Algorithm (4.9).” [Online].
Available: https://cwe.mitre.org/data/definitions/327.html

[71] MITRE, “CWE - 2021 CWE Top 25 Most Dangerous Software Weaknesses,”
Jul. 2021. [Online]. Available: https://cwe.mitre.org/top25/archive/2021/2021_cwe_
top25.html

[72] OWASP Foundation, “OWASP Top 10 - 2010,” 2010. [Online]. Available: https:
//owasp.org/www-pdf-archive/OWASP_Top_10_-_2010.pdf

[73] ——, “OWASP Top 10 - 2013,” 2013. [Online]. Available: https://owasp.org/
www-pdf-archive/OWASP_Top_10_-_2013.pdf

[74] ——, “OWASP Top Ten 2017 | 2017 Top 10 | OWASP Foundation,” 2017. [Online].
Available: https://owasp.org/www-project-top-ten/2017/Top_10.html

[75] “Hyperparameter Optimization with Weights & Biases.” [Online]. Available: https:
//wandb.ai/site/sweeps,http://wandb.ai/site/sweeps

[76] “A03 Injection - OWASP Top 10:2021.” [Online]. Available: https://owasp.org/Top10/
A03_2021-Injection/

[77] D. Mathijssen, “Detecting software vulnerabilities in source code and
the influence of variable naming,” Oct. 2022, original-date: 2022-
10-31T09:56:38Z. [Online]. Available: https://github.com/daveymathijssen/
DataSetPreparation-thesis-vulnerability-detection

[78] “Test suites.” [Online]. Available: https://samate.nist.gov/SARD

[79] “The .NET Compiler Platform,” Aug. 2022, original-date: 2015-01-11T02:39:03Z.
[Online]. Available: https://github.com/dotnet/roslyn

[80] “ANTLR.” [Online]. Available: https://www.antlr.org/

vii

https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time##CVSSSeverityOverTime
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time##CVSSSeverityOverTime
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2010.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2010.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/Top_10.html
https://wandb.ai/site/sweeps, http://wandb.ai/site/sweeps
https://wandb.ai/site/sweeps, http://wandb.ai/site/sweeps
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://github.com/daveymathijssen/DataSetPreparation-thesis-vulnerability-detection
https://github.com/daveymathijssen/DataSetPreparation-thesis-vulnerability-detection
https://samate.nist.gov/SARD
https://github.com/dotnet/roslyn
https://www.antlr.org/


[81] thelma.allen@nist.gov, “SARD Acknowledgments and Test Case De-
scriptions,” Mar. 2021, last Modified: 2021-05-17T11:59-04:00.
[Online]. Available: https://www.nist.gov/itl/ssd/software-quality-group/
sard-acknowledgments-and-test-case-descriptions

[82] “C# Vulnerability Test Suite 105.” [Online]. Available: https://samate.nist.gov/SARD

[83] B. Stivalet, “C# Vulnerability test suite,” Jan. 2016, original-
date: 2015-10-21T15:36:57Z. [Online]. Available: https://github.com/stivalet/
C-Sharp-Vuln-test-suite-gen

[84] “Juliet C# 1.3.” [Online]. Available: https://samate.nist.gov/SARD

[85] H. Hasan, “Test Case 61774,” Dec. 2011. [Online]. Available: https://samate.nist.gov/
SARD/test-cases/61774/versions/1.0.0

[86] ——, “Test Case 61774 new version,” Aug. 2022. [Online]. Available: https:
//samate.nist.gov/SARD/test-cases/61774/versions/1.1.0

[87] Y. Somda, “Guesslang documentation — Guesslang 2.2.2 documentation,” Sep.
2021. [Online]. Available: https://guesslang.readthedocs.io/en/latest/contents.html#
how-does-guesslang-guess

[88] P. Bengtsson, L. Coursen, R. Sese, R. Sewell, M. Pollard, G. Park, and S. Guntrip,
“Github: About repository languages,” Dec. 2021. [Online]. Available: https://docs.
github.com/en/repositories/managing-your-repositorys-settings-and-features/
customizing-your-repository/about-repository-languages

[89] D. Mathijssen and U. Alon, “Preprocessor step disposing numbers in (variable)
names · Issue #164 · tech-srl/code2vec,” Oct. 2022. [Online]. Available: https:
//github.com/tech-srl/code2vec/issues/164

[90] “Install TensorFlow with pip.” [Online]. Available: https://www.tensorflow.org/
install/pip

[91] “Google Colaboratory.” [Online]. Available: https://colab.research.google.com/

[92] “Google Colab faq.” [Online]. Available: https://research.google.com/colaboratory/
faq.html#resource-limits

[93] D. Mathijssen, “Code2vec,” Oct. 2022, original-date: 2022-10-09T14:47:18Z. [Online].
Available: https://github.com/daveymathijssen/code2vec

[94] “NVD - CVE-2020-8416.” [Online]. Available: https://nvd.nist.gov/vuln/detail/
CVE-2020-8416#VulnChangeHistorySection

viii

https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-case-descriptions
https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-case-descriptions
https://samate.nist.gov/SARD
https://github.com/stivalet/C-Sharp-Vuln-test-suite-gen
https://github.com/stivalet/C-Sharp-Vuln-test-suite-gen
https://samate.nist.gov/SARD
https://samate.nist.gov/SARD/test-cases/61774/versions/1.0.0
https://samate.nist.gov/SARD/test-cases/61774/versions/1.0.0
https://samate.nist.gov/SARD/test-cases/61774/versions/1.1.0
https://samate.nist.gov/SARD/test-cases/61774/versions/1.1.0
https://guesslang.readthedocs.io/en/latest/contents.html##how-does-guesslang-guess
https://guesslang.readthedocs.io/en/latest/contents.html##how-does-guesslang-guess
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-repository-languages
https://github.com/tech-srl/code2vec/issues/164
https://github.com/tech-srl/code2vec/issues/164
https://www.tensorflow.org/install/pip
https://www.tensorflow.org/install/pip
https://colab.research.google.com/
https://research.google.com/colaboratory/faq.html##resource-limits
https://research.google.com/colaboratory/faq.html##resource-limits
https://github.com/daveymathijssen/code2vec
https://nvd.nist.gov/vuln/detail/CVE-2020-8416##VulnChangeHistorySection
https://nvd.nist.gov/vuln/detail/CVE-2020-8416##VulnChangeHistorySection

	Acknowledgements
	Summary
	Introduction
	Software security
	Software vulnerabilities
	Software vulnerability detection
	Research goal
	Report structure

	Background
	Natural language processing
	N-grams and bag-of-words
	Word embeddings
	Sequence to sequence

	Classifiers and model performance
	Code2vec
	Software vulnerability projects
	Common Vulnerabilities and Exposures
	Common Weakness Enumeration
	National Vulnerability Database
	OWASP

	Vulnerabilities
	Broken Access Control vulnerabilities
	Injection vulnerabilities

	Related studies

	Research design
	Research questions
	Research method

	Data set preparation
	Data acquisition process
	Extracting cases
	Data cleaning
	Data labelling

	Tooling
	Roslyn

	Test case sources
	SAMATE: SARD Test Suite 105
	SAMATE: Juliet Test Suite
	SAMATE: Hasan test cases
	NVD and CVEfixes

	Variable obfuscation
	Type obfuscation
	Random obfuscation
	Semi type obfuscation

	Data sets
	Splitting the data set

	Code2vec preprocessing
	Preprocessor modifications


	Model training and results
	Training environment
	Metric calculations
	Classifier results
	Evaluation with natural samples
	Evaluating data set size
	Evaluating CWE89 data set cleanup
	Interpreting attention

	Discussion
	Discussion of the results
	Limitations
	Model input
	Programming language
	Vulnerability test case sources


	Conclusion and recommendations
	Conclusion
	Recommendations for future work

	Data set sample overview
	CVEfixes C# CVE record results
	Interpreting attention samples
	Bibliography
	Web Links

