
Open Universiteit
www.ou.nl

MASTER'S THESIS

Detecting code smells with SPNs

el Bouazzaoui, M

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 23. Jan. 2023

https://research.ou.nl/en/studentTheses/77d67b5d-ed05-4003-8c77-c67ba83270d3

DETECTING CODE SMELLS WITH SPNS

by

Mustafa el Bouazzaoui

in partial fulfillment of the requirements for the degree of

Master of Science

in Software Engineering

at the Open University, faculty of Science
Master Software Engineering

to be defended publicly on Friday November 18, 2022 at 10:00 AM.

Course code: IM9906
Supervisors: dr. Arjen Hommersom, Open University

dr. ir. Harrie Passier, Open University

CONTENTS

Abstract iii

1 Introduction 1

2 Preliminaries 3
2.1 Code Smells . 3

2.1.1 Definitions . 3
2.1.2 Long Method. 4
2.1.3 Feature Envy . 4
2.1.4 Large Class . 6

2.2 Machine Learning . 6
2.2.1 Basic Concepts . 6
2.2.2 Deep Learning . 7
2.2.3 Probabilistic Graphical Models . 8

2.3 Sum-Product Networks. 10
2.3.1 Basic Definitions Of Sum-Product Networks. 10
2.3.2 Learning Process . 12
2.3.3 Sum-Product Networks As Neural Networks 13

2.4 Word Embeddings. 13

3 Related Work 15

4 Research Design 18
4.1 Problem statement . 18
4.2 Research Questions . 19
4.3 Code Smell Detection Approach . 21

5 Code Smell Detection Using SPNs 24
5.1 Data Selection . 24
5.2 Code Smell Generation . 25
5.3 Feature Selection . 26
5.4 Creating SPN Models . 28
5.5 Analyzing Data sets . 29

6 Experimental Results 32
6.1 Experimental Setup . 32
6.2 Results . 34

6.2.1 Detecting Code Smell Long Method . 34
6.2.2 Employing Word Embedding . 35

6.3 Discussion . 37

7 Applicability of SPNs in Code Smell Detection 40
7.1 Relevant Features . 40

i

7.2 Case: Code Smell Detection with SPNs . 44
7.3 Practical Applicability in an IDE . 49

8 Discussion 51

9 Conclusions 53

10 Future Work 56

Bibliography i

Appendix A: Code Metrics Definitions v

Appendix B: Data distributions vii

Appendix C: Results Long Method Experiments xi

Appendix D: Results Feature Envy Experiments xxi

Appendix E: Results Large Class Experiments xxv

Appendix F: Results Marginal Inference Experiments xxix

ii

ABSTRACT

Software systems are getting more complex, leading to the risk of introducing technical
debt [27], i.e., sub-optimal implementation decisions that provide short-term benefits but
cause a decrease of software quality. The presence of technical debt usually also indicates
the presence of code smells within that same system [15]. Code smells, introduced in [15],
indicate that important software design and implementation principles were violated in
the source code of a software application during its life cycle. These code smells lead to an
increase in the complexity of the software, hence also leading to difficulties regarding the
comprehensibility and maintenance of the software application.

Checking the source code to identify code smells manual is a time-consuming and com-
plex process. This is mainly due to a lack of knowledge and the fact that the detection of
potential code smells is prone to subjective interpretation by developers. Hence research
has been performed in detecting code smells automatic to support developers. This led to
a variety of tools, i.e., static analysis tools, implementing heuristic-based approaches that
are simple and easy. However, this again leads to a lot of uncertainty during the process
of identifying code smells. This was mainly because the list of potential code smells, pro-
duced by the static analysis tools, was also prone to subjective interpretation by developers.
Therefore, manual inspection is still necessary when using these types of tools, thus mak-
ing the entire process of detection still time-consuming. This in turn limits the adoption of
code smell detection in practice.

To overcome the limitations of these types of tools researchers proposed various code smell
detection mechanisms using machine learning techniques. For this study, a deep learning
approach using sum-product networks (SPNs) is proposed to detect code smells. This is
done by learning from both code metrics and word embeddings extracted from the source
code. Several experiments have been carried out to detect the following three code smells
Long Method, Feature Envy, and Large Class. The results were compared to a deep learn-
ing approach, using neural networks, to detect code smells as covered in [26]. This deep
learning approach outperformed the state-of-the-art static analysis tools currently avail-
able. The results of the SPN models showed that detecting code smell Long Method per-
formed at least as well as the deep learning approach defined in [26]. With regards to code
smells Feature Envy and Large class the SPN models under-performed the deep learning
approach. Therefore, more research is needed regarding the potential of SPNs to detect
code smells. This further research should also include a more extensive dataset than was
used for this study.

Furthermore, as of this writing no code smell detection tools are available that use SPNs.
With several experiments, part of a case study, it is shown that SPNs do have potential re-
garding practical applicability. Therefore, to evaluate the practical applicability in a devel-
opment session, a tool should be developed that employs SPNs to detect code smells.

iii

1
INTRODUCTION

Software systems are getting more complex by the day. Furthermore, companies are re-
quired to continuously update their software applications to offer new features. These
continuous changes frequently occur under time pressure and lead developers to set aside
good design/programming practices and principles to deliver a workable, but still imma-
ture software application. A side effect of this process is the risk of introducing technical
debt [27], i.e., sub-optimal implementation decisions that provide short-term benefits but
cause a decrease in software quality.

The presence of technical debt is usually also an indication of the presence of code smells
within a software system [15]. Code smells are defined as bad patterns in source code that
violate important principles of software design and implementation, e.g., the introduction
of complex and/or long classes, excessive coupling between objects, etc. These bad pat-
terns usually decrease the software quality of an application due to an increase in com-
plexity, and thus maintenance efforts. In [15], the authors defined a list of 22 code smells,
but stop short of outlining how to detect a code smell. In addition, developers may not be
aware of the various code smells and the reasoning behind them due to a lack of experi-
ence and knowledge. Therefore, checking the source code manually to identify code smells
can be a tiresome, tedious, and time-consuming process. Furthermore, this process is also
prone to subjective interpretation.

Therefore, several techniques have been proposed to detect code smells automatically, in-
tending to support developers in their software development process [34][1]. This led to a
variety of static analysis tools, used by developers, based on various software quality met-
rics and thresholds. Though these heuristic-based approaches are simple and easy to im-
plement, there is still a lot of uncertainty in identifying code smells with these types of
tools. A major cause for this is the following, namely that the list of potential code smells
generated by these tools is also prone to subjective interpretation by developers. There is
no uniform use of metrics and thresholds to determine whether a piece of code, i.e., code
entity, is a code smell or not [13]. This in turn can lead to a long list "smelly" code entities
that developers might not perceive as code smells, thus false positives. Therefore, manual
checking would still be necessary, making the entire process of code smell detection still
time-consuming, thus limiting the adoption of code smell detectors in practice [35].

1

To overcome the limitations of these tools based on static analysis, researchers have pro-
posed new detection strategies by employing various machine learning (ML) techniques
[14][9]. By employing ML techniques to detect code smells, the aim is to decrease the false
positives that are common when using static analyzers. Though the use of ML techniques
to detect code smells looks promising, thresholds are still needed to be configured. This can
lead to the same limitations as most static analyzers, and hence more research is needed
[26][22]. Therefore, these types of code smell detectors (i.e., discriminative models [11])
tend to misclassify code smells due to uncertainty when a code entity is a code smell or
not, and its dependence on feature selection, i.e., which code metrics to use.

To decrease the uncertainty in the process of code smell detection, probabilistic graphi-
cal models (PGMs) seem like a promising alternative. PGMs are a type of deep learning
(DL) technique aiming to model the relationships that exist between a set of random vari-
ables (RVs), represented by a list of values of a classification feature, in a graphical way
[38]. The key insight in these probabilistic modeling techniques is that they could capture
relationships between different (classification) features that are not obvious when using
the discriminative models [9]. Hence, making it powerful to draw inferences on some un-
observed variables, given the evidence on observed variables [18]. However, most proba-
bilistic models take a very long time to perform various inference tasks, as these inference
tasks are considered intractable. Therefore, we chose a deep learning approach using sum-
product networks (SPNs) [33] to detect code smells for this study. SPNs are a considerable
improvement when compared to many PGMs, as the time of inference with these type of
models are much more efficient and thus faster [39]. With SPNs, the underlying models will
eventually learn how to identify whether a code entity is a code smell or not based on the
training data. The results of this SPN-based approach to detect code smells are compared
to the deep learning approach, based on neural networks, defined in [26].

The remainder of this thesis is structured as follows. Chapter 2 outlines the necessary pre-
liminaries needed for this study. In Chapter 3, the related work relevant to this study is
covered. In Chapter 4, the research design is outlined, by defining the problem statement
and research questions. In Chapter 5, a proposal is outlined for a more detailed SPN-based
approach to detect code smells. In Chapter 6, the setup and results of the different ex-
periments are covered. In Chapter 7, a case study regarding the applicability of SPNs is
discussed. Finally, this chapter is followed by discussion, conclusion, and future work.

2

2
PRELIMINARIES

This chapter provides the background on several concepts relevant to this study. Therefore,
in Section 2.1 a general overview of several code smells is given. In Section 2.2, several
machine learning techniques are covered. This leads to a general overview of sum-product
networks in Section 2.3. Finally, in Section 2.4 the widely used word embedding technique
word2vec will be covered.

2.1 CODE SMELLS
In this section, a background on code smells is provided. Additionally, three of the most
common code smells are also covered. These three code smells are also the focus of this
study.

2.1.1 DEFINITIONS
Countless hours and significant resources are lost on maintenance because of poor design
and bad choices about the implementation of software. Studies have shown that this results
in source code that is difficult to comprehend and hard to maintain [45]. Furthermore, this
also increases the risk of introducing technical debt [27], i.e., sub-optimal implementa-
tion decisions that provide short-term benefits. This causes the quality of the source code
to be impacted negatively, leading to a range of issues, and this in turn leads to a lot of
time spent on maintenance [15]. Therefore, the presence of technical debt is usually also
an indication of the presence of code smells. Code smells are defined as bad patterns in
source code that violate important principles of software design and implementation, e.g.,
the introduction of complex and/or long classes, excessive coupling between objects, etc.
These bad patterns usually decrease software quality. In [15], the authors defined a list of
22 code smells that indicate when the source code of a software system needs refactoring
to improve the software quality [15]. Furthermore, with each code smell several refactor
strategies were introduced to resolve the specific code smells. Although the 22 code smells
imply poor design/implementation choices, their frequencies in source code repositories
differ greatly. The three code smells that affect the software quality the most are the follow-
ing: Long Method, Feature Envy, and Large Class [32]. These code smells are also the main
focus of this study and will be discussed in more detail in the next sections. Different code
metrics also have been defined to serve as indicators to help identify the different code

3

smells [23]. These code metrics will be covered in more detail in Chapter 5. However, the
focus will be on the code metrics that help identify the three aforementioned code smells.

2.1.2 LONG METHOD
The Long Method code smell refers to methods that have become too long and do too many
things, leading to increased complexity. Therefore, long methods are generally hard for
developers to comprehend and maintain. The Long Method code smell is usually refac-
tored by employing one of the following refactor strategies: Extract Method, Replace Temp
with Query, Introduce Parameter Object, and Preserve Whole Object [15]. The essence of
these refactor strategies is to decompose the method into smaller methods, or data ob-
jects, which can then be invoked/called from the original method. For example, a given
heuristic is that whenever a block of code in a method could use commenting, it should be
extracted to a method instead [15]. Fowler and Beck in [15] did not specify metric(s) nor
which threshold values to consider when certain methods are too long. Therefore, it is not
always clear when a certain method is too long.

2.1.3 FEATURE ENVY
The Feature Envy code smell refers to a method that seems to be more "interested" in a
class other than its parent class. This usually means that the specific method accesses lots
of features, i.e., fields and methods, of another class than its parent class [15]. Thus the
method "envies" another class more than its parent class, as it is strongly coupled with that
other class. This impacts the cohesion of the parent class negatively, making it riskier to
change something without causing potential bugs in other parts of the software.

The Feature Envy code smell is refactored by employing one of the following refactor strate-
gies: Move Method, and Extract Method [15]. The essence of the refactor strategies is to
simply move the method to the class that the method is "interested" in. A basic example
of a method that suffers from the code smell Feature Envy is shown in Listing 2.11. The
method getMobilePhoneNumber() is "smelly" and its logic should be moved to the Phone
class. The result of this refactor strategy is shown in Listing 2.2.

Listing 2.1: A basic example of a method that suffers from the code smell Feature Envy.

1 public class Phone {
2 private final String unformattedNumber;
3 public Phone(String unformattedNumber) {
4 this.unformattedNumber = unformattedNumber;
5 }
6 public String getAreaCode() {
7 return unformattedNumber.substring(0,3);
8 }
9 public String getPrefix() {

10 return unformattedNumber.substring(3,6);
11 }
12 public String getNumber() {
13 return unformattedNumber.substring(6,10);
14 }

1https://sourcecodeera.com/blogs/Samath/Phone-Class-using-Java.aspx

4

https://sourcecodeera.com/blogs/Samath/Phone-Class-using-Java.aspx

15 }
16

17 public class Customer{
18 private Phone mobilePhone;
19 public String getMobilePhoneNumber() {
20 return "(" +
21 mobilePhone.getAreaCode() + ") " +
22 mobilePhone.getPrefix() + "-" +
23 mobilePhone.getNumber();
24 }
25 }

Listing 2.2: A basic example of a method refactored with the Move Method refactor strategy.

1 public class Phone {
2 private final String unformattedNumber;
3 public Phone(String unformattedNumber) {
4 this.unformattedNumber = unformattedNumber;
5 }
6 private String getAreaCode() {
7 return unformattedNumber.substring(0,3);
8 }
9 private String getPrefix() {

10 return unformattedNumber.substring(3,6);
11 }
12 private String getNumber() {
13 return unformattedNumber.substring(6,10);
14 }
15 public String toFormattedString() {
16 return "(" + getAreaCode() + ") " + getPrefix() + "-" + getNumber();
17 }
18 }
19

20 public class Customer
21 private Phone mobilePhone;
22 public String getMobilePhoneNumber() {
23 return mobilePhone.toFormattedString();
24 }

Therefore, the heuristic used to detect this code smell is to determine whether the method
under investigation envies another class more than its parent class. Following this, a mea-
sure should be given for envy between the method under investigation and different poten-
tial target classes, including its parent class. This is not always straightforward, as detecting
this code smell also depends on context, knowledge, and experience. It is also possible that
a method envies several classes, to varying degrees, thus increasing the complexity. There
also might be valid reasons to not view this pattern as a code smell Feature Envy, as there
are sophisticated patterns that break this rule (e.g., Visiting Pattern).

5

2.1.4 LARGE CLASS
The Large Class code smell is a class (e.g., in Java or C#) that has become too large over time.
That is because these large classes have evolved over time leading to too many responsibil-
ities, thus having too many fields and methods. Such large classes are usually a breeding
ground for duplicated code, complexity, and chaos, thus decreasing the ability to compre-
hend the code by a developer [15]. Finally, large classes often break the single responsibility
principle. This design principle states that any given class should only have one reason for
change, and thus a class should only have one responsibility [27]. The reasoning is that re-
sponsibilities should be decoupled so changes to one responsibility within a class cannot
unexpectedly "break" other classes. This reasoning is closely related to the degree to which
the fields/methods inside a class belong together, i.e., cohesion, and should not depend
too much on other classes.

The Large Class code smell is usually refactored by employing one of the following refactor
strategies: Extract Class, Extract Subclass, and Duplicate Observed Data [15]. The essence
of these refactor strategies entails the following. Create a new class, or subclass, and move
the relevant fields and methods from the old class into the new class. In addition to making
the old class more maintainable, it also makes it more comprehensible. Fowler and Beck in
[15] did not specify specific metric(s) nor threshold values to consider when classes are too
large. Hence, uncertainty can arise in some cases whether a class is too large or not.

2.2 MACHINE LEARNING
The main goal of this section is to cover the different machine learning techniques relevant
to this study. In Section 2.2.1, the basic concepts of machine learning are covered. In Sec-
tion 2.2.2, the concepts of deep learning are covered. Finally, Section 2.2.3 covers another
sub-field of machine learning, namely probabilistic graphical models that will serve as a
prelude to sum-product networks, covered in the next section.

2.2.1 BASIC CONCEPTS
When machine learning (ML) is mentioned, usually a lot of excitement and confusion arises.
People picture an intelligent robot, or a computer system, akin to Skynet2. However, it is
important to realize that ML is a sub-field of Artificial Intelligence (AI). With ML, models or
systems are created by learning from data without being explicitly programmed [11]. This
learning process also includes improving the model. The algorithms used to create these
ML models use statistical techniques to recognize patterns in data and then make predic-
tions. ML has been around for many years and powers many of the services used today,
such as Netflix, Google, Facebook, etc.

The underlying models of ML systems are based on the following idea. Let X denote data
we know about, i.e., instance values or samples, and let Y denote the results we are in-
terested in, i.e., the labeled instance classes. The key question in ML is how to model the
relationship between X and Y . The type of model to be used is based on the problem at
hand. However, many types of models can be employed with regard to different ML tech-

2In the movie the Terminator, Skynet is an advanced Artificial Intelligence system threatening humankind.
Skynet is therefore often used as an analogy when Artificial Intelligence systems are sufficiently advanced in
such a way that they can threaten the status quo in a negative way.

6

niques, so we will classify them into broad categories first. This is done using the following
criteria:

• Whether or not the models are training, i.e., learning, with supervision (supervised
vs unsupervised vs reinforcement).

• The way input data is mapped on labeled data (discriminative vs generative).

Note that the types of ML techniques grouped by the criteria above are not mutually exclu-
sive. With supervised learning, the data is labeled to tell the ML model exactly what pat-
terns it should look for. For example, Netflix suggests a show that a user would like based
on his or her profile. The model used by Netflix is trained using supervised learning, as
the model learns from preferences/choices of other users that have a similar profile. With
unsupervised learning, the data have no labels. The ML model identifies data clusters that
have a similar pattern. For instance grouping images based on certain specifics, such as
images of cars or animals. Finally, with reinforcement learning the ML model learns by
means of trial-and-error and converges to a specified objective. This means that it tries out
lots of different routes and is rewarded (or penalized) depending on whether its behavior
helps (or hinders) it from reaching the specified objective. AlphaGo, created by Google, is
"powered" by a reinforcement learning model. This AI system beat some of the best human
players in the game of Go, known for being highly complex to play [42].

Discriminative classifiers train by learning the decision boundaries between the different
classes [40]. The result is a discriminative model that creates a direct mapping from X
to Y , where X is the input data, and Y is the class label [31][49]. Thus the trained model
aims to predict the labels from the input data. Examples of such classifiers are the following
[40]: Logistic regression, support vector machines, decision trees, and deep neural network
models, discussed in Section 2.2.2. Alternatively, generative classifiers train a model by
modeling the probability distributions of each class in Y [40]. By using Bayes’ rule the
most likely class label is selected [31][49]. Thus the trained model aims to explain how the
input data was generated. Examples of such models are the following [40]: Hidden Markov
Models, Naïve Bayes, and Bayesian Belief Networks, discussed in Section 2.2.3.

Finally, for an ML model to learn, the following components also need to be taken into
consideration:

Datasets ML models are created by training on a collection of labeled instance data/sam-
ples, i.e., datasets.

Features Features, or classification features, are relevant characteristics within the dataset
that the ML model employs for training purposes.

Algorithm Different algorithms can be used to solve the problem at hand [17][11]. It is very
important to select the right algorithm, or an ensemble of algorithms, as different
algorithms can lead to different accuracy scores and speed. These algorithms are
then incorporated into the ML models.

2.2.2 DEEP LEARNING
A sub-field of ML is deep learning (DL). However, before elaborating on DL, it is important
to start with neural networks. Neural networks (NNs) is a technique that tries to "emulate"

7

the working of the human brain. The brain can be seen as an interconnected network of
neurons, hence the name neural network (NN). In a NN, a neuron (also called a node) is a
unit that computes an activation in the form of a real value. Each node receives input, also
a real value, from other nodes or external sources and computes an output. Each input has
a weight (w), indicating its relative importance to other input values. The node computes
an output by applying a function f to the weighted sum of its input values, as shown in
Figure 2.1.

Figure 2.1: An illustration of a single neuron.

Depending on the problem and how the nodes are connected, a large number of layers of
neurons may be needed between the input layer and output layer. This is called a deep
neural network, as shown in Figure 2.2, because it has at least two hidden layers of neurons
that work together to process a collection of data. Therefore, this type of learning is also
called deep learning, a term coined back in 2006 [41].

2.2.3 PROBABILISTIC GRAPHICAL MODELS
In the previous section, neural networks and deep learning were discussed. Nowadays
these types of models often have to deal with lots of complex interconnected data when
training a model for prediction. Therefore, large and complex neural network architectures
may have to be created manually, which is also time-consuming. An alternative technique,
that captures such complex data relationships more robustly are probabilistic graphical
models (PGMs). PGMs aim to model relationships that exist between the data in a dataset
in a graphical way, for example, relationships between different code metrics of a code en-
tity on various "levels".

A PGM that can be used for this purpose is a Bayesian Belief Network (BBN). A BBN is a
directed acyclic graph (DAG) describing which random variables (RVs) in a joint probabil-
ity distribution interact with each other directly via a conditional dependency [38]. Let us
define a graph as a tuple G = (V ,E) of sets, with V being a set of nodes (or vertices) and
the elements of E, with E ⊆ V ×V , being the edges in G . The graph G is said to be a DAG,
meaning that G is directed and does not contain any directed cycles. Formally, if an edge
(X1, X2) exists in the graph connecting RVs X1 and X2, it means that P (X2|X1) is a factor in
the joint probability distribution, with X1 serving as the "parent" of X2. Because of this, we

8

Figure 2.2: An example of a deep neural network.

must know P (X2|X1) for all values of X1 and X2 to conduct an inference task. Each node Xi ,
for i = 0, . . . , N , have associated probability values that quantify the effects of different par-
ent nodes, i.e., P (Xi |par ent s(Xi)), using a finite number of parameters of the probability
distribution [40]. These values gathered for each node are presented in Conditional Prob-
ability Tables (CPTs). The probability values themselves are called beliefs, hence the name
Bayesian Belief Network. A well-known example given in Figure 2.3 [40], shows a connected
network defining a daily lawn routine. This network is also called a multiply connected
network, as multiple paths between two nodes exist [43]. Based on the probability that it
is going to be cloudy or not, i.e., the CPT in node Cloudy, the sprinkler is turned on or off.
This is given by the CPT in node Sprinkler and is based on the probabilities in node Cloudy.
The probability of rain also depends on whether it is cloudy or not, which in turn is given
by the CPT in node Rain. Based on both the probabilities in nodes Sprinkler and Rain, the
grass will be wet given by the probabilities of CPT of node WetGrass. Thus two paths affect
the event WetGrass. Focusing for example on the edge from node Rain to node WetGrass,
means that P (WetGrass|Rain) will be a factor, whose probability values are specified next to
the WetGrass node in a CPT. However, such tables can become quite big as they store one
probability value for every combination of states, or influences.

Since CPTs can store multiple levels of influence, a BBN can become quite big, thus causing
inference tasks to be intractable. This makes computing the exact probability intractable
in #P in this case [33]. Thus the process of reasoning with these type of models become
challenging. Therefore, in [39] sum-product networks were proposed and will be covered
in the next section.

9

Figure 2.3: A simple example of a Bayesian Belief Network describing a daily lawn routine [40].

2.3 SUM-PRODUCT NETWORKS
This section starts with a general overview of sum-product networks (SPNs). Following the
basics of SPNs, the learning process of SPNs is covered and how it is related to NNs.

2.3.1 BASIC DEFINITIONS OF SUM-PRODUCT NETWORKS
SPNs are also a class of probabilistic graphical models that allow exact and efficient com-
putation of a large number of inference tasks, e.g. marginalization [39][33]. Let us de-
fine an SPN as a connected and rooted DAG S, over random variables (RVs) X. Let V (S)
be the set of all nodes in graph S, and let ch(n) denote the set of child nodes of node
n ∈ V (S). An inner node n within graph S is either a sum or product node and its scope
is defined as sc(n) = ⋃

c∈ch(n) sc(c) in recursion [46]. To be more precise, every node in an
SPN graph is associated with a univariate distribution function3, as shown in Figure 2.44.
This means that the RVs associated with the different leaf nodes are reachable from the
internal nodes. A sum node Sn computes a weighted sum over its child nodes as follows:
Sn = ∑

j∈ch(n) wn j S j , with wn j ≥ 0, and also wn j denoting the weight value between node
n and node j . Subsequently, a product node Sn computes a product over its child nodes as
follows: Sn =∏

j∈ch(j) S j . Finally, a leaf node n is usually associated with an arbitrary prob-
ability distribution [46]. The value of a leaf node n is calculated by evaluating its respective
probability distribution, i.e., P (n|θ). With θ denoting the parameters of the probability dis-
tribution of a leaf node n. This also makes the difference between PGMs and SPNs clear.
Namely, every node in a PGM represents an RV and the different edges between the nodes
represent probabilistic dependencies presented as a row in a CPT, while in an SPN every
node represents a probability distribution [46].

3The term probability distribution is used most of the time in this thesis.
4https://blog.pollithy.com/spn/sum-product-network

10

Figure 2.4: A univariate distribution of an SPN starting with one node.

To ensure that an SPN S is a sound probability distribution that guarantees efficient infer-
ence, it is required that an SPN is complete, and consistent or decomposable [33]. Com-
pleteness and decomposability are essential to render many inference scenarios tractable
in an SPN. An SPN is complete if all its sum nodes are complete, and a sum node is com-
plete if all its child nodes have the same scope [33]. An SPN is consistent if its product nodes
have disjoint scopes, i.e., the probability distributions of the child nodes that compute the
product values are independent of each other [33]. Furthermore, all SPNs are assumed lo-
cally normalized, thus the sum of all weights is equal to 1, i.e.,

∑
j∈ch(n) wn j = 1, with n j

denoting an edge from node n to node j [37]. In Figure 2.5, we show a simple illustration
of an SPN graph visualizing the concepts discussed above.

Figure 2.5: An illustration of a simple SPN graph containing sum, product and leaf nodes.

Also, an SPN S outputs a value that is the normalized output of its root node depending

11

on the structure of the DAG, the set of weights (W), and the set of parameters (Θ) of the
distributions of the leaf nodes. Computing the probability of observations X = x, consists
of a bottom-up evaluation from leaf nodes to the root node of graph S. First, each leaf node
evaluates the probability function P (X = x), then each inner node evaluates the probability
function Sn(x) before cascading the output to its parent node, until the root node S0. For
the computation to be tractable, the following requirement has to be met. The size of the
SPN graph has to be polynomial in the size of the total number of RVs [37]. Therefore, per-
forming a marginalization inference only has to be performed at the leaf nodes, followed
by a bottom-up evaluation of the graph.

2.3.2 LEARNING PROCESS
The learning process of SPNs can be organized into parameter and structural learning.
Firstly, parameter learning entails the process of finding the optimal parameters, i.e., weights
and distribution parameters, for a fixed SPN network structure from training data [33]. To
learn the parameters of an SPN model for generative learning, the likelihood of the respec-
tive parameters is maximized, given the training data. Alternatively, regarding discrimina-
tive learning, the conditional likelihood of the parameters for each output value of class
variables in Y are maximized. A wide range of parameter learning techniques exist, includ-
ing various maximum likelihood approaches using either gradient-based optimisation or
expectation-maximisation [33][37]. Furthermore, several Bayesian techniques have also
been developed over the years [33]. For example, for an SPN model regarding generative
learning, the maximum likelihood estimation (MLE) can be employed to find the optimal
parameters in the sets: w ∈ W and θ ∈Θ. The MLE method is applied on the training data
D = X1,X2, . . . ,XN of N features with N different distributions. With W as the set of weights
between the nodes (only the edges from sum nodes) of the SPN graph, and Θ denoting
the set of parameter values of the distributions associated with the leaf nodes. This opti-
mal configuration of both weights and parameters maximizes the logarithmic likelihood of
LD(w,θ) [33]:

LD(w,θ) = logP (D|w,θ) =
N∑

i=1
logS(xi |w,θ) (2.1)

Secondly, with structural learning the situation is different. The issue with parameter learn-
ing is that the network structure is fixed, thus domain dependent [16]. This would mean
that when applying an SPN model to a new problem, a new network structure has to be
created manually. However, several algorithms have been devised that learn both the pa-
rameters and network structure from the training data [16]. After the training process of
finding an optimal model, that same model can be applied to different problems in dif-
ferent domains [33][37]. However, the approaches of most algorithms are best described
as heuristic, as mostly intuitive schemes are presented for structure learning [16]. A com-
monly used algorithm is LearnSPN [33], it creates an SPN recursively in a top-down fash-
ion by splitting ("chopping") the features, and then clustering ("slicing") the instances of
a dataset for training. The training data in this case is presented as a matrix. The chop-
ping in this process creates a product node, and this can be visualized by partitioning the
dataset along the columns or features. When the chopping outputs one column, i.e., one
feature or variable, a leaf node is created. The leaf nodes have a univariate distribution that
is found by employing the MLE procedure. The slicing creates a sum node and can be visu-

12

alized by partitioning the dataset into similar clusters of instances over multiple rows and
columns. This process is also done recursively using the expectation-maximization proce-
dure to find the probability models for the different sum nodes [33]. This algorithm will
also be the basis for the training of the SPN models used in this study when conducting the
different experiments.

2.3.3 SUM-PRODUCT NETWORKS AS NEURAL NETWORKS
The configuration of how nodes are connected within an SPN graph is similar to a multi-
layered NN. Therefore, SPNs can be seen as a type of feedforward NNs because of the flow
of signals (values) from the input nodes (leaves) to the output node (root), see Figure 2.5.
The product nodes can be seen as activation nodes, similar to a neuron in a neural net-
work. However, in [33] the term "neural network" is mainly reserved for models that are
structured in layers and connected by the following operators: sigmoid, ReLU, softmax,
etc. The main difference between these types of deep learning techniques is that SPNs have
a probabilistic interpretation while multi-layered NNs do not. Therefore, every node in a
multi-layered NN needs to have a threshold value assigned regarding inference, and with
SPNs it is not necessary. Furthermore, multi-layered NNs have to be configured manually
and it is necessary to examine different architectures of different sizes with different param-
eter settings (hyper-parameters) until an optimal model is found. This process of finding
an optimal model can be time-consuming, and can also lead to a sub-optimal model [11].
On the other hand, with SPNs the underlying model for classification is learned from the
training data directly, thus generative. This makes a classifier employing SPNs more robust
as fewer parameter settings and configurations are needed to be set. Hence, using SPNs for
code smell detection is a worthwhile endeavor as will be made clear in the next chapters.

2.4 WORD EMBEDDINGS
To recover the semantic relationships embedded in method names, field names, and class
names within source code is quite challenging. Lexical similarity is insufficient in measur-
ing the semantical relationship between different methods within a class for example. That
is because lexically dissimilar code entities can still be closely related semantically. To fully
exploit the semantics between different code entities in source code, NNs are employed
to extract useful characteristics from the texts that make up a code entity in source code
[28]. One of the first techniques for this purpose was related to natural language processing
(NLP) research and called word2vec [28]. The model computes the likelihood that certain
word relationships occur. To predict the semantic meaning of a word, word2vec makes a
suggestion based on the words used in previous appearances. These predictions can then
be used to find associations between different words.

13

Figure 2.6: The Skip-gram model architecture employed by word2vec.

In Figure 2.6, it is shown that the input is a word Wt that passes through the encoding layer
in the center. The objective is to recover the nearest neighbor of Wt across all instances
of a word and its usages in the instances of the training data. This simple architecture,
trained on billions of word instances, is sufficient to create deeply informative word vec-
tors. This strategy of using encoder-decoder NNs to embed words is also a way to generate
vector embeddings or word embeddings, for code entities in source code [28]. Identifiers
described in a natural language are fed as input into the NNs. Then the words in the iden-
tifiers are converted into numerical vectors. This approach, shown in Figure 2.6, has been
proven efficient for producing word embeddings to capture syntactic and semantic word
relationships [28].

14

3
RELATED WORK

In [10], a comprehensive literature review of 84 code smell detection tools was performed.
Only four tools, available for download, were selected for a comparative study. The focus
was on the following code smells: Large Class and Long Method [15]. The study relied on
the following metrics for comparison: precision, recall, and F1 [11]. Whereas precision
measures the accuracy of positive predictions, recall measures the ratio of positive code
smell detections that are correctly detected, and F1 is the harmonic mean of precision and
recall. These metrics will be covered in more detail in the next chapter. Furthermore, every
code smell detection tool was configured with a threshold value to identify a code smell.
They found that the detection tools can have different results regarding the detection of
code smells. The researchers concluded that the differences were due to the fact that the
tools use different detection methods. The list of code smells detected by the different tools,
based on static analysis, does not mean that every item listed should have been identified
as a code smell. Meaning, a developer had to manually review the list of potential code
smells, and this process itself is prone to subjective interpretation. The different tools had
to be configured with different metrics and thresholds, which in turn led to more uncer-
tainty regarding the detection of code smells.

To solve the issue of uncertainty regarding code smell detection, researchers have proposed
the use of various ML techniques. In [9], the experiments of [13] were replicated by using
ML techniques to detect code smells. A large study was conducted where 32 different ML
models were applied to detect the following four code smells: Data Class, Large Class, Fea-
ture Envy, and Long Method [15]. The researchers reported that most of the classifiers in the
code smell detection tools exceeded 95% in terms of accuracy. However, when the datasets
were extended by multiple code smells and non-code smells, the accuracy dropped signifi-
cantly. Their conclusion was that this was mainly due to more uncertainty in the reporting
of the various code smells. Therefore, the results were non-conclusive and more research is
needed towards structuring datasets appropriately when training the models to detect the
different code smells.

As discussed above, there is always some confusion when a potential code smell is de-
tected. That is because the assessment of whether a code entity is a code smell or not
is still a process that needs manual checking afterward as there is too much uncertainty.

15

Therefore, in [20] and [21], an approach is proposed to extend the DECOR (DEtection &
CORrection) approach in order to decrease uncertainty in the detection of code smells. In
DECOR, so-called rule cards were used to specify code smells by using a domain-specific
language (DSL). Due to the limited expressiveness of the rule cards, BDTEX (Bayesian De-
tection Expert) was suggested. BDTEX is based on the GQM (Goal Question Metric) tech-
nique to extract relevant information from a code smell definition. This made it possible
for Bayesian Belief Networks (BBNs) to be built systematically without relying on the rule
cards. Code smells are then reported with a probability corresponding to the degree of
certainty regarding the detection of the respective code smell. Furthermore, the Bayesian
theory that underlies BBNs can also be used to improve the detection mechanism in such
a way that it can "learn" from past experiences regarding the detection of code smells. This
is an important step to reduce uncertainty, hence more research is needed.

An alternative to capturing uncertainty in the process of code smell detection is to per-
ceive software code as a form of communication similar to human language. In [1], the
aforementioned idea is proposed and called the Naturalness hypothesis. This means that
source code "text" has the same statistical properties as natural languages. Based on this,
researchers have built probabilistic models to learn intermediate encodings (e.g., word em-
beddings) of the source code. These models predict the probability distribution of code
entities, called representational code models in this study, meaning that these models can
"learn" from the source code. These properties have the potential that is can be used with
static analysis tools.

An approach akin to code smell detection, using deep learning, is proposed in [25]. In this
research, a deep learning technique is proposed to automate the detection of security vul-
nerabilities in source code. This system is called Vulnerability Deep Pecker (VulDeePecker),
and at its basis is a deep learning model to detect security vulnerabilities. To detect the vul-
nerabilities, code gadgets were introduced. Code gadgets represent a number of lines of
code that are semantically related to each other. These lines are then transformed into
numerical vectors that are fed into the underlying model of VulDeePecker. VulDeePecker
was applied to three different software projects: Xen1, Seamonkey2, and Libav3. The ex-
periments showed promising results, as VulDeePecker is more effective in detecting code
vulnerabilities compared to static analysis tools such as VUDDY4, and VulPecker5.

Another deep learning approach focused on code smell detection is proposed in [26]. The
code smells that were the focus of this research are the following: Long Method, Feature
Envy, Large Class, and Misplaced Class [15]. To identify the different code smells, different
complex neural network architectures were created manually. After this step, the different
NN models were trained to detect the different code smells. However, to detect the different
code smells different features were needed for each code smell. To identify the code smell
Long Method only code metrics were used to train the models. To identify the code smells
Feature Envy and Large Class, code metrics and textual features were used. The textual
features (e.g., class names, field names, method names, etc.) were extracted from source

1https://github.com/xen-project
2https://www.seamonkey-project.org
3https://libav.org
4https://github.com/squizz617/vuddy
5https://github.com/vulpecker/Vulpecker

16

https://github.com/xen-project
https://www.seamonkey-project.org
https://libav.org
https://github.com/squizz617/vuddy
https://github.com/vulpecker/Vulpecker

code, then converted to numerical vectors by employing word2vec [28]. These numerical
features, or code metrics and textual features, are fed into the different models that classify
a code entity as "smelly" or "not smelly". Whether a code entity is a code smell or not
depends on the thresholds set for prediction. The results were compared with the results
of the study in [44]. It was shown that the deep learning approach in detecting code smells
outperformed the state-of-the-art detection techniques. As the results are only based on
the four aforementioned code smells the deep learning approach has lots of potential.

Another important issue to consider regarding code smell detection is employing these ML-
based approaches during the software development process. There are a number of tools
that support automatic code smell detection during the development process. DECOR was
already discussed above. The following tools are static analysis tools. The first tool is PMD6

and detects the following two code smells in Java: Large Class and Long Method. To detect
the code smell Large class, detection strategies are employed as defined in [23]. On the
other hand, to detect the code smell Long Method only one metric is used: LOC (Lines Of
Code). Secondly, JDeodorant7 is a tool that detects the following code smells: Long Method,
Feature Envy, Large Class [44]. The detection strategies are based on different code metrics
to identify the different code smells [44]. Finally, JSpIRIT8 detects and prioritizes ten code
smells, including the three smells that are the focus of this study: Long Method, Feature
Envy, and Large Class [47]. The detection strategies of these code smells are based on the
strategies as defined in [23].

The proposed approach (outlined in the following chapters) in this study employs an alter-
native deep learning technique to detect code smells, i.e., sum-product networks (SPNs).
As of this writing, there is no research and tooling available regarding the use of SPNs to
detect code smells during the software development process. This is confirmed by search-
ing through different digital libraries and resources given in Table 3.1. The search involved
4 digital libraries, aiming to identify relevant studies regarding SPNs and code smell detec-
tion. Additionally, Mendeley9 was also used in searching and organizing the papers related
to SPNs and tooling. Furthermore, the snowballing technique was applied by checking the
references of each selected study, to avoid missing any relevant research [48].

Table 3.1: Digital libraries with criteria regarding date used for search.

Database URL Date Criteria
ACM Digital Library http://dl.acm.org/ 2000-01-01 to 2021-01-01
IEEE Xplore http://ieeexplore.ieee.org/Xplore/ 2000-01-01 to 2021-01-01
Science Direct http://www.sciencedirect.com/ 2000-01-01 to 2021-01-01
Google Scholar https://scholar.google.com/ 2000-01-01 to 2021-01-01
Springer http://link.springer.com/ 2000-01-01 to 2021-01-01

6https://pmd.github.io/
7https://github.com/tsantalis/JDeodorant
8https://github.com/hcvazquez/JSpIRIT
9http://www.mendeley.com/

17

4
RESEARCH DESIGN

In this chapter, the overall approach of the research design for this study will be covered.
Section 4.1 covers the problems that are associated with code smell detection. In Section
4.2, the research questions relevant to this study are discussed. Following the research
questions, an outline of the general approach to answering the research questions is dis-
cussed in Section 4.3.

4.1 PROBLEM STATEMENT
As described in previous chapters, detecting code smells manually or aided by state-of-
the-art static analysis tools is a complex and time-consuming process. In either case, the
process of detecting code smells is prone to subjective interpretation. That is especially
the case when examining source code manually by a developer, as part of a review process
for example. When using tools to detect code smells automatically, a set of code metrics
combined with their respective thresholds are set to determine when a code entity under
investigation is a code smell or not. Tuning these thresholds is usually done for specific
projects and is often complex and also time-consuming. Furthermore, these tools also have
different techniques to detect code smells automatically. These static analyzers used in
many integrated development environments (IDEs) produce a long list of potential code
smells. A developer usually needs to evaluate this long list of potential code smells, as most
of them are not code smells. Therefore, a lot of uncertainty exists regarding code smell
detection when static analyzers are used. Due to the subjective interpretation by different
developers and their level of knowledge, there is also a possibility that more code smells are
introduced.

To overcome these issues regarding uncertainty, research into the use of various ML tech-
niques to detect code smells has been conducted [9]. The goal of using ML techniques was
to make code metrics and their respective thresholds, which needed to be set manually, re-
dundant. Though using classification algorithms, or classifiers, employed by ML systems is
a promising way of detecting code smells, there still is a lot of room for improvement [14].
That is because there is still a lot of uncertainty when potential code smells are reported.
However, in [26] research has shown that code smell detection using a deep learning ap-
proach performs at least as well as most state-of-the-art detection techniques employing

18

static analysis. The issue with a classifier employing deep learning, such as multi-layered
NN architectures, is that it can take a long time to create. That is because it is necessary
to examine different architectures of varying size and parameter (hyper-parameter) values,
such as the different thresholds that need to be set in the different NN nodes. This process
of finding a satisfying model can also be time-consuming, thus leading to a sub-optimal
model [11].

However, the major issue (problem) with most (ML) techniques is that these types of mod-
els have no inherent way to deal with "vagueness", i.e., whether a code entity might be la-
beled as a code smell up to a certain degree. That is because the ML techniques mentioned
above create discriminative models. Hence, these models lack the possibility to deal with
uncertainty in the form of "vagueness". This leads us to focus on probabilistic models that
are able to deal with this kind of uncertainty, and thus "vagueness". By using SPNs we want
to deal with this kind of uncertainty by creating the appropriate models from "the data",
i.e., the training data. This is done by creating probabilistic classifiers, estimating the prob-
ability distributions over the different feature values, such as code metrics, which can then
be used to classify code entities into classes of code smell or non-code smell [39]. Thus
making the models used for code smell detection more robust.

To assess the feasibility of SPN models detecting code smells, three experiments will be
replicated from the study in [26]. In [26], a deep learning approach is used by employing
multi-layered NNs to detect code smells. To evaluate the performance of the approach
using SPNs, the results of the experiments are compared to that of the DL approach in [26].
The code smells selected for the different experiments are repeated in Table 4.1, as they
were discussed in more detail in Chapter 2. Furthermore, it is also important to assess the
practical applicability of SPNs by means of a case study regarding code entities that are not
part of training or test data. Also, as of this moment of writing, there is no tooling available
to detect code smells by employing SPNs. Therefore, the focus of this thesis will be twofold,
the feasibility of employing SPNs models detecting code smells, and the assessment of the
practical applicability of SPNs.

Table 4.1: The code smells within the scope of our study

Code Smell Definition
Long Method A method that is too long or bloated in size, thus doing too much.
Feature Envy A method more interested in features of other classes

then the ones of the class the method it is currently located.
Large Class A class that is too large or bloated in size, thus having too much responsibility.

4.2 RESEARCH QUESTIONS
The main objective of this study is to investigate the feasibility of employing SPNs to detect
code smells with high confidence and asses its practical applicability. To accomplish this,
an approach was devised that will be discussed in the next section.

Therefore, the following main research question is defined:

RQ To what extent do SPNs improve the detection of code smells compared to state-of-
the-art detection techniques, and can this be applied in practice?

19

This main question will be investigated by answering the following sub-questions:

RQ-1 To what extent do SPNs improve the detection of code smells when compared to
state-of-the-art detection techniques?

RQ-2 To what extent does the performance of code smell detection improve when a word
embedding technique, word2vec, is used?

RQ-3 Do some individual features carry more weight when detecting code smells?

RQ-4 To what extent are SPNs applied in a development environment?

The main objective of RQ-1 is to investigate the performance (e.g., precision and recall) of
the proposed approach using SPNs to detect code smells: Long Method, Feature Envy, and
Large Class. To answer this research question, three different SPN models were created to
detect the different code smells. The different models were used to replicate the experi-
ments in [26] using the same (publicly available) datasets. The main reason to replicate the
experiments is to compare the results of both approaches. Furthermore, the DL approach
is a major improvement when compared to state-of-the-art techniques such as JDeoderant
[12] and DECOR [29].

The main objective of RQ-2 is to improve the prediction of code smells with higher confi-
dence by introducing word embeddings. Therefore, the word embedding technique word2vec
was incorporated within the different SPN models. By including word2vec to detect code
smells, the aim is to increase accuracy by exploiting the semantic relationships of a code
entity under investigation when detecting a code smell. The reason to include word2vec
embeddings as classification features to train the different SPN models for the different
code smells, is to investigate if an improvement of performance occurs when compared
with the results of RQ1, and the results of the DL approach in [26].

The main objective of RQ-3 is to investigate to what extent individual code metrics influ-
ence the detection of code smells. That is because SPNs are able to allow exact and efficient
computation of a probability value to detect a code smell based on relevant code metrics.
With this marginal inference task, the code metric(s) that influence code smell detection
the most can be validated by means of a case analysis. Hence, this research question also
serves the goal to assess the practical applicability of SPNs. That is because the data in-
stances used in this case study are not part of the training or test data. For this research
question, the focus was only on code metrics and not on word embeddings. That was due
to resource constraints with regard to memory and computational power.

The main objective of RQ-4 is to investigate to what extent tooling exists regarding code
smell detection using SPNs. This research question also answers if the tool should be inte-
grated into an IDE to assist developers or whether it should run as a stand-alone applica-
tion.

The results of the aforementioned research questions will be covered in the next two chap-
ters. Thus, the results of research questions RQ-1 and RQ-2 will be covered in Chapter 6. In
Chapter 7 the results of research questions RQ-3 and RQ-4 will be covered.

20

4.3 CODE SMELL DETECTION APPROACH
To answer the research questions of the previous section, an approach was devised to de-
tect code smells using SPNs. To detect the code smells defined in Table 4.1, the following
steps need to be performed: extracting and analyzing the dataset, data preparation, train-
ing of SPN models, validation of the SPN models, and finally evaluating the trained SPN
models. The steps are shown in Figure 4.1 and are covered in more detail below.

Figure 4.1: Overview of the general SPN approach.

DATA EXTRACTION AND ANALYSIS

The datasets were extracted from the same data repository1 used in [26]. To be able to
use the datasets to create the SPN models, code metrics and word embeddings have to be
extracted from the source code. Based on the code smells, the same classification features
as in [26] were selected, i.e., code metrics and word2vec vectors. Furthermore, analysis of
the different code smells generated is also part of this step.

DATA PREPARATION

The aim of this step is to create training, validation, and test datasets. This is done for
the different SPN models that detect their respective code smells: Long Method, Feature
Envy, and Large Class. The data will be gathered and processed in such a way that it will be
presented in the format csv2, as it is supported by libraries in Python, Java, C#, etc. Further-
more, every instance in the training, validation, and test set is extended with the source file
location, the code entity under investigation, begin and end line number of the code entity
itself. This is done for the purpose of further analysis if necessary.

MODEL TRAINING

The aim of this step is to create and then train the different SPN models to detect the code
smells: Long Method, Feature Envy, and Large Class. In this step, the following two param-
eters are estimated: the weights that connect the two nodes within an SPN graph, and the
parameters of the probability distributions at the leaf nodes. Fine-tuning the SPN models is
also part of this overall step. Because the different models will be validated after a training
session. This process is repeated until an optimal SPN model is created.

1https://github.com/liuhuigmail/DeepSmellDetection
2https://docs.fileformat.com/spreadsheet/csv/

21

https://github.com/liuhuigmail/DeepSmellDetection
https://docs.fileformat.com/spreadsheet/csv/

EVALUATION

A necessary step after creating the different SPN models to detect the different code smells
is to find out how effective the different models are. Different performance metrics are
available to evaluate the models. As the objective of the different SPN models is to classify
whether a code entity is a code smell or not, the focus is on performance metrics used that
evaluates the accuracy of models with regard to binary classification problems.

A metric widely used to evaluate ML models and compare them to each other is the Area
Under Curve or AUC [11]. This metric computes the area underneath the entire receiver
operating characteristic (ROC) curve, hence it is also called ROC AUC. The ROC curve is
a graph showing the performance of a classification model at all classification thresholds.
But for probabilistic classifiers, it gives a probability or score, reflecting the degree to which
class an instance (or sample) belongs. Although the ROC Curve is a helpful diagnostic tool,
it can be challenging to compare two or more classifiers based on their curves. Therefore,
the ROC AUC provides the ability for a classifier to distinguish between classes and is used
as a summary of the ROC curve. The higher the ROC AUC score, the better the performance
of the model is at distinguishing between positive and negative classes. For imbalanced
classification with a severe skew and few samples of the "minority" class, the ROC AUC can
be misleading [5]. That is because a small number of correct or incorrect classifications
can result in a large change in the ROC AUC score. The reason is that the datasets used
for training/testing are skewed, as non-code smells are more prevalent than code smells,
hence code smells are called the minority class. Therefore, when using ROC AUC a high
rate can still be achieved by simply guessing.

Thus, using the performance metric ROC AUC alone is not enough to fully evaluate the ef-
fectiveness of the SPN models [5]. Therefore, the following metrics are also included[11]:

Pr eci si on = # o f cor r ect code smel l s

o f code smel l s
= T P

T P + F P
(4.1)

Recal l = # o f cor r ect code smel l s

o f tr ue code samples
= T P

T P + F N
(4.2)

F 1 = 2× Pr eci si on ×Recal l

Pr eci si on +Recal l
(4.3)

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Nega-
tives. A true positive is an output where the SPN model in this case correctly predicts that
the code entity is a code smell. Similarly, a true negative is an output where the SPN model
correctly predicts that the code entity is not a code smell. A false positive is an output
where the SPN model incorrectly predicts that the code entity is a code smell, and simi-
larly a false negative is where the SPN model incorrectly predicts that the code entity is not
a code smell. With the performance metric precision, an attempt is made to answer the
question of what proportion of predicted code smells are actual code smells. Because it is
possible to get a 100% precision with a small test set, it is therefore important to also use
recall as part of the evaluation of the SPN models. Therefore, with the performance met-
ric recall, an attempt is made to answer the question of what proportion of predicted code

22

smells were predicted correctly. Unfortunately, precision and recall are often in tension.
That is, improving precision typically reduces recall and vice versa. Another performance
metric that has been developed that relies on both precision and recall, is the F1 score. The
F1 score is calculated from the precision and recall as it is the harmonic mean between
the two ratios. This performance metric will also be used as a measure to evaluate the ac-
curacy of the different SPN models. Furthermore, these performance metrics listed above
were also used to evaluate the DL approach in [26].

23

5
CODE SMELL DETECTION USING SPNS

In this chapter, the different aspects of our approach to detecting code smells using SPNs
are covered. In Section 5.1, the datasets that will be used to train the different SPNs to detect
the code smells: Long Method, Feature Envy, and Large Class, are discussed. In Section 5.2,
the steps to generate the code smells in the datasets, and the format in which it will be used
to train, validate, and test the models are discussed. In Section 5.3, the features that will be
used to classify whether a code entity is code smell or not are discussed. In Section 5.4, the
process to create the different SPN models is discussed. Finally, in Section 5.5 the different
datasets used for the different experiments are analyzed.

5.1 DATA SELECTION
To answer the first two research questions, the experiments covered in [26] were replicated.
Therefore, datasets were generated from the same corpus of open-source projects, and are
listed in Table 5.1. These selected open-source projects are all written in Java. The table
shows the following information: project name, version number, NOC (Number of Classes),
NOM (Number of Methods), and LOC (Lines of Code) respectively. The datasets were gen-
erated by a refactoring process, discussed in the next section, which introduces code smells
to reduce the quality of the software. The datasets are publicly available and provided by
the authors of [26]. We opted for this strategy of procuring the datasets for the following two
reasons. Firstly, by using the same datasets it will be much easier to compare the results.
Secondly, it is a cumbersome undertaking to initiate the task of generating a large dataset
to train, validate, and test the different SPN models for code smell detection. Furthermore,
with regard to the entire dataset, the assumption is that the selected open-source projects
contain high-quality code.

24

Table 5.1: The open-source projects used for our study.

Project Version NOC NOM LOC
Areca 7.4.7 473 5055 88126
Freeplane 1.3.12 787 6938 124937
jEdit 4.5.0 513 5964 185571
JUnit 4.10 123 866 11734
PMD 5.2.0 250 2.097 23783
Weka 3.9.0 1348 20182 444493
AbdExtractor (Android) 20140630 1695 12608 304458
Grinder 3.6 502 3037 101293
Art of Illustration (AoI30) 3.0 492 6188 152207
JExcelAPI 2.6.12 424 3118 90555

5.2 CODE SMELL GENERATION
The datasets for training, validation, and testing were generated by using the same process
as specified in [26]. To generate a data sample (or instance) having a code smell or not, the
following steps were followed:
Step 1, a validation process is performed on whether a code entity is a code smell or not.
This means the following. In the case of the Long Method code smell, a check is made
whether a number of lines of code could be replaced within a method under investigation
with another method executing those same replaced lines of code. In the case of a Feature
Envy, a test is performed on whether a method under investigation could be moved to an-
other potential target class. In the case of a Large Class code smell, an extraction from a
potentially large class is attempted. With the Eclipse1 refactor functionality a test is made
if the different code smells could be created, and with the requirement that the different
applications still work after these refactor procedures.
Step 2, a random selection is made to create a sample with a code smell (positive sample)
or a sample without a code smell (negative sample). The positive or negative samples are
generated randomly with a 50% chance.
Step 3, a negative sample is generated by keeping the code entity under investigation un-
modified, thus not performing any refactoring to introduce one of the code smells given in
Table 4.1. The features, which will be used to train a specific SPN model to detect a code
smell, are extracted to identify this code entity as a non-code smell and appended with an
out put of value 0. This sample is then added to the dataset in the following format:

negative sample = (input, output)

input = (metrics, embedding)

output = 0

Step 4, to generate a positive sample, a refactoring from step 2 is randomly selected and
applied. Then the features are extracted to classify the code entity as a code smell and
appended with out put having value 1. This sample is then added to the dataset in the

1https://www.eclipse.org/

25

https://www.eclipse.org/

following format:

positive sample = (input, output)

input = (metrics, embedding)

output = 1

As given in steps 3 and 4, the input to an SPN model consists of code metrics and word em-
beddings using word2vec, which will be discussed in more detail in the next section. The
word embeddings (vectors) for every method or class in the code smells Feature Envy and
Large Class respectively, are transposed and added to the list of code metrics. Combined
with the output it will serve as a training sample (or training instance). However, the sam-
ples regarding the code smell Long Method only need code metrics to train its SPN model.
In [26], a similar choice is made. Furthermore, the samples will also be extended with the
code entity under investigation and other metadata, regarding source file location, begin
and end of line of the respective code entity. However, the metadata will not be used during
the learning process.

5.3 FEATURE SELECTION
The classification features consist of both structural information (code metrics) and textual
information (semantic relationships) regarding the code entities under investigation. The
main reason for using the same features as in [26], is to compare the accuracy between the
DL approach and the proposed approach using SPN models. The structural information
refers to code metrics extracted from the source code. The code metrics to detect the differ-
ent code smells will be covered below in more detail. The textual information refers to the
semantic information described by identifiers(i.e., field names, method names, and class
names) within a class or method under investigation. The names of identifiers are con-
verted into numerical vectors by word2vec as introduced in the previous chapter. A given
identifier is partitioned into a sequence of words according to capital letters and under-
scores, and each word is converted into a fixed-length numerical vector with a dimension
of 200, as the corpus used for this study is relatively small2. This value for the dimension is
also used in [26]. Furthermore, each identifier should contain no more than 5 words, as this
covers more than 98% of all identifiers of the open-source projects in Table 5.1. An identi-
fier with fewer than 5 words will be padded with zeros. The word embeddings consisting of
fixed-length numerical vectors are processed as features by the SPN models:

i d(e) = (w1, w2, . . . , w5) = (V (w1),V (w2), . . . ,V (w5))

where i d(e) is the identifier of a code entity e, and (w1, w2, . . . , w5) is a sequence of five
words. Finally, V (wi) converts wi into a vector (dimension of 200) with word2vec. Thus,
the number of features will increase by a 1000 per i d(e) when using word embeddings.

CODE SMELL: LONG METHOD

The features that are extracted to detect the code smell Long Method consists of only struc-
tural information, namely the code metrics from the method under investigation. The

2https://moj-analytical-services.github.io/NLP-guidance/

26

https://moj-analytical-services.github.io/NLP-guidance/

same code metrics were used in [26], as it is shown that these code metrics have been
promising in detecting the code smell Long Method. Therefore, the following code met-
rics will be used at method-level: Size or Lines Of Code (LOC), Lack of Cohesion Methods
(LCOM1, LCOM2, and LCOM4), Cohesion (COH), Class Cohesion (CC) [6]. Besides these
code metrics, the DL approach (proposed in [26]) also used the following code metrics:
Number Of Accessed Variables (NOAV), McCabe’s Cyclomatic Number (MCN), and Cou-
pling Dispersion (CD). NOAV and MCN measure the complexity of the method whereas
CD measures how much the method is "coupled" with external classes. In Appendix A,
these code metrics are covered in more detail.

As a result, for a given method, m, to detect the code smell Long Method the following
classification features are defined:

feature(m) = (metrics(m))

metrics(m) = (Size, LCOM1, LCOM2, LCOM4, COH, CC, NOAV, MCN, CD)

CODE SMELL: FEATURE ENVY

To detect code smell Feature Envy, the model should determine if a method should be
moved from its enclosing class to a target class. This SPN model exploits both structural
and textual information. Thus the features that are extracted to detect the code smell Fea-
ture Envy consists of two parts: extracting code metrics from the class and method under
investigation and extracting textual information using word2vec. Regarding structural in-
formation, the distance metrics proposed in [26] are used. These metrics have been proven
promising in detecting the code smell Feature Envy [26], and are defined in more detail in
Appendix A. For textual information, the method under investigation, the enclosing class,
and the potential target class are processed with word2vec.

This resulted in the following specification of the features:

feature(m) = (embedding(m), metrics(m))

embedding(m,ec,tc) = (id(m), id(ec), id(tc))

metrics(m) = (dist(m,ec), dist(m,tc))

where i d(m) is the name of the method m under investigation, i d(ec) is the name of the
enclosing class of method m, and i d(tc) is the name of the potential target class. The value
computed by di st (m,ec) is the distance between method m and its enclosing class ec, and
the di st (m, tc) computes the distance between method m and the potential target class tc.
Every identifier has a max length of 5 words.

CODE SMELL: LARGE CLASS

The features that are extracted to detect the code smell Large Class are also twofold: tex-
tual information using word2vec and code metrics from the class under investigation. The
textual information refers to the identifiers (i.e., field names and method names) declared
within the class under investigation. The names of fields and methods are converted into
word embeddings using word2vec. With regards to structural information, the 10 code met-
rics from [26] are reused: Access To Foreign Data (ATFD), Direct Class Coupling (DCC),
Depth of Inheritance Tree (DIT), Lack of Cohesion in Methods (LCOM), Weighted Method

27

Count (WMC), Size or Lines Of Code (LOC), Number Of Public Attributes (NOPA), Num-
ber Of Accessor Methods (NOAM), Number Of Attributes (NOA), and Number Of Methods
(NOM). These code metrics are defined in more detail in Appendix A.

This resulted in the following specification of the features:

feature(c) = (embedding(c), metrics(c))

embedding(c) = fields(c), methods(c)

metrics(c) = (ATFD, DCC, DIT, LCOM, WMC, Size, NOPA, NOAM, NOA, NOM)

where embeddi ng (c) is the semantic information of the source code of the class, c, that is
under investigation. This entails the field names and method names of class c, defined by
f i eld s(c), and method s(c). All identifiers have a max length of 5 words. In metr i cs(c) the
code metrics of class c are specified.

5.4 CREATING SPN MODELS
Code smell detection can be defined as a classification problem. For this study, SPNs were
used to model different classifiers to detect the different code smells: Long Method, Fea-
ture Envy, and Large Class. To create the different code smell detection models using SPNs,
the library SPFlow 3 was used [30]. SPFlow is a library written in Python to develop com-
prehensive, simple, and extensible libraries for SPNs. It implements methods for inference
(marginal, conditional probabilities, etc.), parameter learning with gradient descent, and
several structural learning algorithms. An implementation of the learning algorithm Learn-
SPN was used to train the different SPN models [33]. Furthermore, the SPFlow library can
also be extended and customized to implement new algorithms. SPNs created with this
library are also able to employ TensorFlow4 as part of their back-end process. This library
can be used for a wide range of applications regarding ML. However, for this study, Tensor-
Flow was mainly used to speed up computational-intensive operations.

There are two options when creating an SPN model. Firstly, an SPN graph can be created
manually using SPFlow, and then it can be compiled into an SPN model. This option is a
tedious process and can take a long time to reach an optimal SPN model. Secondly, SPFlow
can also be used to create an SPN model based on the training data. The only thing the
two options got in common is the number of leaf nodes needed to detect the different code
smells, as they are the same for both options. In the first option, a (probability) model has to
be configured for every leaf node manually. However, the second option lets SPFlow model
the distribution for every leaf node based on the training data, making it more flexible than
the first option. Furthermore, this option is more realistic as the model created adopts
different distributions of the different features from the training data. Therefore, the second
option was preferred when creating the different SPN models.

Finally, when creating the different SPN models, different hyper-parameters have to be set.
To validate if an SPN model for a specific code smell is optimal, a validation set has to be
created. Thus to perform this validation process, the datasets from Table 5.1 were split up in
a training set, a validation set, and a test set. In the next chapter, this process is discussed in

3https://githumb.com/SPFlow/SPFlow
4https://www.tensorflow.org/

28

https://githumb.com/SPFlow/SPFlow
https://www.tensorflow.org/

more detail. This type of validation of the SPN models by extracting a validation set, hold-
out validation method, from the dataset is much less time-consuming than other (more
cumbersome) available validation methods [11].

5.5 ANALYZING DATA SETS
Before carrying out the different experiments, the distributions of the different code met-
ric values regarding the code smells: Long Method, Feature Envy, and Large Class were
analyzed. In Appendix B, a complete overview is shown of the distributions of the code
metric values grouped by the different aforementioned code smells. Most code metrics in
the training data are skewed to their lower minimum for both the code smells Long Method
and Large Class. This is shown in Figure 5.1 regarding code smell Long Method. Regarding
the code metric CC there is a skewness to both the minimum and maximum values, as can
be seen in Figure 5.1 also. This code metric measures the number of client calls, in differ-
ent classes, of the method under investigation. The reason that the distribution of this code
metric is also skewed to the maximum value, i.e. 1, is because when computing this metric
a threshold was set [26].

29

Figure 5.1: Long Method: Histograms showing the distributions of the various method level code metrics.

30

On the other hand regarding the distance metrics relevant to code smell Feature Envy, a
skewness is also present at the maximum value, namely 1. This is also shown in Figure 5.2:

Figure 5.2: Feature Envy: Histograms showing the distributions of the two distance metrics.

31

6
EXPERIMENTAL RESULTS

In this chapter, the aim is to answer the research questions, mentioned in Chapter 4, re-
garding the following. To what extent do SPNs outperform state-of-the-art techniques
(RQ-1)? Does including word embedding in SPNs improve the performance of code smell
detection (RQ-2)? The results of these different experiments will be compared to the DL
approach presented in [26].

Before evaluating the results, the setup of the different experiments is outlined in Section
6.1. In Section 6.2, the results of the different experiments are covered. Finally, in Section
6.3 the different results of the different experiments are discussed.

6.1 EXPERIMENTAL SETUP
Several experiments were performed to determine the scale of effectiveness regarding the
detection of the following three code smells: Long Method, Feature Envy, and Large Class.
To use the datasets as input for the three different SPN models, the datasets had to be
cleaned and pre-processed. That resulted in training, validation, and test data for the dif-
ferent SPN models. As mentioned in the previous chapter, to create the different SPN mod-
els the library SPFlow was used and the library Gensim1 was used to incorporate the word
embeddings of the code entities. Gensim is a Python implementation of the word2vec al-
gorithm. Subsequently, the following hyper-parameters were set to configure the different
SPN models:

• The first hyper-parameter is the type of the SPN model to employ. With SPFlow it is
possible to create two types of SPN models: parametric and mixed (non-parametric)
SPN models. Figure 2.5, from Chapter 2, illustrates a simple probabilistic graph of an
SPN model. In this graph, the leaves represent the distributions of the different clas-
sification features (i.e., code metrics and word embeddings) to train the SPN models.
Every feature is a vector of numbers with a dimension equal to the number of in-
stances. Within SPFlow a feature (leaf node) is considered a random variable having
a probability distribution. In SPFlow, when creating an SPN model it is possible to
configure the distributions to model the different features with the following types:

1https://radimrehurek.com/gensim/models/word2vec.html

32

https://radimrehurek.com/gensim/models/word2vec.html

Gaussian, Bernoulli, Gamma, etc. Hence these types of SPN models created by the
SPFlow library are called parametric SPNs. On the other hand, in the case of mixed
SPN models the probability distributions of the features, i.e., the leaf nodes in Figure
2.5, are inferred from the training data by the SPFlow library.

• The second hyper-parameter is the threshold. The prediction made by the SPN model
whether a code entity is classified as a code smell (or not) depends on the fact that
the output, i.e., probability, is greater than the threshold value.

• The third hyper-parameter is the min instances slice within SPFlow. SPFlow clusters
instances (slicing) of a dataset to create sum nodes after its rows are recursively split
into independent subsets. The number of instances in a cluster must not go below
the threshold set by this hyper-parameter. It is important to set an appropriate value
for this parameter to prevent over-fitting.

• The fourth hyper-parameter is min features slice within SPFlow. With this parame-
ter, features are split up (chopping) until a threshold, set by this hyper-parameter, is
reached to create a product node. It is also important to set an appropriate value for
this parameter to prevent over-fitting.

• To utilize the semantic information of the source code, described by identifiers (i.e.,
field names, method names, and class names) within a class or method under inves-
tigation, the word2vec implementation of the library Gensim is used. This leads to
the fifth hyper-parameter, the word sequence (or the maximum number of words) of
an identifier. A given identifier is partitioned into a sequence of words according to
capital letters and underscores. Each identifier should contain no more than a max
number of words.

• The sixth hyper-parameter is also set by the Gensim library. That is the dimension of
the numerical vector of a word embedding in the hyper-parameter word sequence.
Each word in the word sequence is converted to a numerical vector having a fixed-
length set by the given dimension.

As part of the hyper-parameter optimization process, there were two options. The first
option was to fiddle with the hyper-parameters manually, until a combination of hyper-
parameters values was found in which the specific SPN model performed best. This would
have been a very time-consuming process to explore the many combinations. Therefore,
we opted for the second option, namely grid search [3][17]. With grid search, different SPN
models are trained with different combinations of hyper-parameters values. As described
in the previous chapter, a validation set is extracted from the training set, i.e., the hold-out
validation set. On the validation set, a respective SPN model for its specific code smell was
evaluated. Though the number of combinations of hyper-parameter values can become
quite large, in this case the number of combinations of hyper-parameter values were few.
Furthermore, the grid search is also embarrassingly parallel, therefore Scikit-Learn’s Grid-
SearchCV2 was employed to automate the search for the optimal hyper-parameter values.
However, not all hyper-parameters have been set by means of grid search. Only the hyper-
parameters min instances slice and min features slice were set by means of grid search.
The hyper-parameters list in Table 6.1 has been adopted from the study in [26].

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

33

Table 6.1: Hyper-parameters set for the different classifiers.

Hyper-Parameter Value
Threshold 0.5
Word sequence 5
Dimension 200

6.2 RESULTS
This section covers the results regarding the different experiments to detect the code smells:
Long Method, Feature Envy, and Large Class.

6.2.1 DETECTING CODE SMELL LONG METHOD
The results of the experiments covered in this section aim to answer part of the research
question RQ-1: finding out if SPNs outperform state-of-the-art techniques to detect code
smells, as covered in [26]. The classification features to detect the code smell Long Method
consists of code metrics only. The distributions of the data sets as shown in Appendix B
presume that Gamma distribution to model the different features would suffice for most
features. Therefore, 4 different parametric SPN models were created, and one mixed SPN
model. The reason to include a mixed SPN model in this experiment was also that the
data distributions of the datasets showed some skewness. For the different parametric SPN
models, different probability distributions for both classification features (i.e., input) and
output were used. These different SPN models are also labeled in Table 6.2.

Table 6.2: The different SPN models to detect code smell Long Method.

Label Distribution Input Distribution Output
SPN1 Gaussian Gaussian
SPN2 Gaussian Bernoulli
SPN3 Gamma Gaussian
SPN4 Gamma Bernoulli
SPN5 Mixed Mixed

The results produced by the different SPN models listed in Table 6.2 are reported in more
detail in Appendix C. In Table 6.3, the average results of the performance of the different
SPN models and that of the DL approach, specified in [26], are shown. Based on the results
of Table 6.3, it is clear that SPN5, i.e., the SPN model configured with non-parametric dis-
tributions (mixed in SPFlow), outperforms the other models for every performance metric.
Therefore, the following observations are made:

• First, the mixed SPN model (SPN5) significantly outperforms the DL approach re-
garding the F1 metric and to a lesser extent regarding the ROC AUC metric. With
SPN5 the F1 metric improved by 34.38%(=89.91%-55.53%), and the ROC AUC im-
proved by 4.41%(=83.65%-79.24%) respectively.

• Second, SPN5 can identify most of the Long Method smells. Its average recall is up
to 86.43%. When compared to the DL approach, the improvement is significant,
7.44%(=86.43%-78.99%).

34

• Third, SPN5 also results in a higher precision (78.96%) than that of DL approach
(42.81%).

Table 6.3: Results modeled with different SPN models configured with different distributions for input and
output to detect code smell Long Method.

Model Precision Recall F1 ROC AUC
SPN1 66.03% 71.20% 67.63% 73.77%
SPN2 52.04% 66.42% 61.39% 48.21%
SPN3 68.04% 74.77% 70.69% 73.67%
SPN4 62.88% 84.01% 71.08% 64.21%
SPN5 78.96% 86.43% 81.91% 79.65%
DL Approach 42.81% 78.99% 55.53% 79.24%

6.2.2 EMPLOYING WORD EMBEDDING
Partly due to the results of the mixed SPN model in the previous section, we opted for this
type of SPN model to evaluate the performance of the SPN models to detect code smells
Feature Envy and Large Class. The results of both experiments are reported in more detail
in Appendix D and Appendix E. With these experiments, the aim is to answer the following
research questions. RQ-1 as discussed in the previous section, and RQ-2. With RQ-2 the
aim is to assess whether using word embeddings improves the performance of code smell
detection.

In Appendix D, the results are reported of the SPN model to detect the code smell Feature
Envy with and without the use of word embeddings. The average results are shown in Table
6.4. The first row in Table 6.4 shows the average results of the SPN model in which the
word embeddings were used. However, these results are skewed when studying the results
in Appendix D. The scores for all projects regarding the recall metric are quite extreme,
namely 100%. Furthermore, every project gives a ROC AUC score of 50% unlike the ROC
AUC scores of the DL approach. Thus the specific SPN model classified the code smell
Feature Envy in the different projects at random.

Appendix D also reported the results of the SPN model trained with only code metrics as
classification features. The average results are shown in the second row of Table 6.4. The
performance scores for precision and recall hover around the average values seen in Table
6.4. Therefore, the following observations from Table 6.4 are made:

• First, the SPN model (trained with code metrics only) significantly outperforms the
DL approach regarding the F1 metric. With SPNs the F1 metric improved by 12.08%(=63.99%-
51.91%).

• Second, the DL approach performs significantly better with regards to the ROC AUC
metric, 35.81%(=84.9%-49.09%). We do have to note that the low average of the accu-
racy score was because some projects gave a ROC AUC score of 0.00%. However, the
performance is somewhat similar to that of JDeoderant [26].

• Third, the SPN model (trained with code metrics only) identifies most Feature Envy
smells. Its recall is up to 91.68%. Compared to the DL approach, the recall is im-
proved, though not by a large margin as the rates for both approaches were already

35

high, 3.57%(=91.68%-88.11%).

• Fourth, the SPN model (trained with code metrics only) also has a higher precision
(49.23%) compared to the DL approach (36.79%).

Table 6.4: Average results regarding the detection of code smell Feature Envy.

Model Precision Recall F1 ROC AUC
SPN (metrics + word embeddings) 13.43% 100% 17.78% 50.00%
SPN (metrics only) 49.23% 91.68% 63.99% 49.09%
DL Approach 36.79% 88.11% 51.91% 84.90%

In Appendix E, the results for the SPN model to detect code smell Large Class are reported.
The average results of the SPN model, incorporating word embeddings, are shown in the
first row of Table 6.5. The results for most of the projects in the dataset also seem skewed
based on the results in Appendix E. The SPN model gives a ROC AUC score of 0.00% for
these 5 projects, thus being unable to detect code smell Large Class. The only projects that
do seem to show valid results are the following: Freeplane, Android, Grinder, and JexcelAPI.
For these projects, the SPN model outperforms the DL approach with regard to the F1 met-
ric by a margin of more than 30%. The ROC AUC scores for these projects are also larger
than 50%.

Appendix E also reports the detailed results of the SPN model with only code metrics as
classification features. The average scores are shown in the second row of Table 6.5, and
the following observations stand out:

• First, the SPN model significantly outperforms the DL approach regarding the F1
metric. The performance improved by 47.64%(=69.37%-22.33%).

• Second, the DL approach shows a much higher performance with regard to the ROC
AUC metric. The DL approach outperforms the SPN model significantly, by 34.74%(=75.77%-
41.03%). We also note that the low ROC AUC metric for the SPN model is caused
because the model showed an extremely low performance for several projects.

• Third, the SPN model identifies the code smell Large Class with a high rate, just like
the DL approach. However, when the approaches are compared to each other the
recall of the SPN model still shows an improvement of 3.12%(=84.07%-80.95%).

• Fourth, the high recall (84.07%) of the SPN model did not result in a much lower
precision when compared to the DL approach. The SPN model shows a significant
improvement of precision by 46.60%(=59.55%-12.95%).

Table 6.5: Average results regarding the detection of code smell Large Class.

Model Precision Recall F1 AUC
SPN (metrics + word embedding) 87.39% 41.68% 79.02% 39.29%
SPN (metrics only) 59.55% 84.07% 69.37% 41.03%
DL Approach 12.95% 80.95% 22.33% 75.77%

36

6.3 DISCUSSION
The non-parametric SPN models outperformed the DL approach, defined in [26], regarding
the detection of the code smell Long Method only. The SPN models to detect code smells
Feature Envy and Large Class, trained with only code metrics, performed worse than the
DL approach based on the ROC AUC scores. The SPN models in these cases reported a
ROC AUC score of 50% and less, thus not better than a random classifier. However, based
on precision and recall the SPN models did perform better, which was not expected. The
SPN models that incorporated word embeddings performed even worse on average when
taking all performance metrics into account. In this study word embeddings were only
used to detect the code smells Feature Envy and Large Class. The SPN models to detect
both Feature Envy and Large Class also did not show better results than a random classifier,
as the ROC AUC scores for both models hover around 50% on average (or lower). In the case
of detecting code smell Large Class the ROC AUC score was 0.00% for more than half of the
projects. The following three factors seem to contribute to this under-performance are the
following. Firstly, an imbalance between positive and negative samples, i.e. code smells vs
no code smells. Secondly, the wrong features might have been selected when testing the
SPN models to detect code smells Feature Envy and Large Class. Finally, the size of the
dataset might also not have been sufficient regarding the training of SPN models.

In [34] and [35] it is shown that data balancing and an extensive dataset could be a key fac-
tor in improving the reliability of SPN models. Figure 6.1 does not show any issues regard-
ing imbalance between positive versus negative samples regarding the code smell Feature
Envy. The ratio of features versus training instances is also far below 1. However, when
word embeddings were used the number of features increased to 3002 per instance. That
is because for every instance the word embeddings account for 3000 of the 3002 features,
thus increasing the imbalance regarding the type of features. Additionally, the combina-
tion of distance metrics and output did seem random, as the difference between the two
distance metrics was very small, see Figure 5.2.

In Figure 6.2, we see that there is a major imbalance between positive versus negative sam-
ples regarding the dataset to detect code smell Large Class. When using word embeddings,
the ratio of features versus training instances is well above 1. That is because the number of
training instances is not that big for the different projects and the number of features is at
least 2010. As most classes have at least one method and one field. Both these factors have
major consequences regarding the SPN model incorporating word embeddings during the
training phase, as the word embeddings account for more than 2000 of the 2010 features.
This might lead to unreliable results.

Extending the SPN models with word2vec to incorporate word embeddings as features with
code metrics might therefore have to be reconsidered, as these features did not lead to an
improvement in performance.

37

Figure 6.1: A distribution of instances, or samples, per project regarding code smell Feature Envy.

38

Figure 6.2: A distribution of instances, or samples, per project regarding code smell Large Class.

39

7
APPLICABILITY OF SPNS IN CODE SMELL

DETECTION

In this chapter, the focus will mainly be on the assessment of the practical applicability
of SPNs regarding code smell detection. This is done by answering research questions:
RQ-3 and RQ-4 as defined in Chapter 4. With research question RQ-3, the aim is to find
out which features, i.e., code metrics, are of significance when detecting the different code
smells using SPNs. Following this, two cases (not part of the datasets used to train the
SPNs) are analyzed to assess the validity of the results of research question RQ-3. Finally
the last research question, RQ-4, essentially investigates the practical applicability of SPNs
with regard to tooling. Therefore, in Section 7.1 the results of RQ-3 are discussed. This is
followed by an analysis of two cases using the results of Section 7.1 in Section 7.2. Finally,
in Section 7.3 the results of RQ-4 are discussed.

7.1 RELEVANT FEATURES
In this section, the results of RQ-3 are discussed, namely to what extent are the individ-
ual features relevant in detecting the different code smells. Thus, is it possible to exclude
some low-quality features in detecting code smells, and is it applicable in practice? As out-
lined in previous chapters, an SPN can be thought of as a set of sums/products nodes and
leaf nodes, i.e., classes and features, in a DAG. The probability distributions of the inter-
nal nodes and leaf nodes are estimated over class and feature values [39]. After performing
the marginal inference task on the feature of interest, it is conditioned on the likelihood
of a code smell. With this procedure the relevancy of the feature of interest is computed
regarding the event of a code smell or not.

Different experiments were performed to assess the relevancy of the different code metrics
to detect the different code smells: Long Method, Feature Envy, and Large Class by using
the dataset defined in Table 5.1. In Appendix F, the results are reported for every code metric
of the three different code smells, and below the results are discussed for every code smell
separately.

40

LONG METHOD

In Figure 7.1, the results are shown of the code metrics that affect detecting code smell
Long Method the most. These code metrics mentioned below are covered in more detail
in Appendix A. It is clear that the probability of a code smell is significantly higher than the
probability of a non-code smell when the values for the cohesion metrics CC, LCOM4, and
COH are low. Whereas, regarding code metrics that measure the complexity of the method
under investigation, the following are of importance: CD, Size, and NOAV. As expected, a
high value for the metric CD gives a higher probability of a code smell than the probability
of a non-code smell. However, with regard to outliers it seems that the SPN model does
have some issues. This was not expected, as we expected an increase in the probability of a
code smell as complexity increases for example.

Figure 7.1: The selected features that are most relevant in detecting code smell Long Method.

41

Figure 7.2: Feature Envy: The selected features that have the most influence to detect the code smell.

FEATURE ENVY

In Figure 7.2, both distance metrics used to detect the code smell Feature Envy is shown
in such a way, that it is clear that both views are the inverse of each other. This is logical
as the probability of a code smell increases when the distance to the target class increases.
The probability of a non-code code smell increases when the distance to the enclosed class
decreases. In this case, it is possible to use only one of the distance metrics. However, it is
clear from both views that uncertainty increases as both distance values go to 1. Both these
code metrics are covered in more detail in Appendix A.

42

LARGE CLASS

In Figure 7.3, the code metrics that affect the detection of code smell Large Class the most
are shown. The cohesion metric LCOM shows an increase in the probability of a code smell
when the value increases to 1, as an increasing value (from 0 to 1) means a decrease in
cohesion in this case. The code metrics measuring complexity that are the most relevant
are the following: NOA, NOM, ATFD, Size, DCC, and WMC. It shows, intuitively, that the
probability of a code smell increases as complexity increases, and the probability of a non-
code smell decreases when complexity decreases. Also in this case there seem to be some
issues when dealing with outliers. The code metrics mentioned above are covered in more
detail in Appendix A.

43

Figure 7.3: Large Class: The selected features that have the most influence to detect the code smell.

7.2 CASE: CODE SMELL DETECTION WITH SPNS
In this section, the potential practical applicability will be assessed as a follow regarding
research question RQ-3, with the results of the previous section taken into consideration.
To perform this case study, the Java application Neuroph1 version 2.9 was selected. This
open-source software application was also used in [26] as part of their case study. Neuroph
is a lightweight neural network framework providing a library and GUI tool to facilitate in
creating training, and saving of different neural networks.

Furthermore, the focus will be on code smell Long Method when performing the analysis
regarding research question RQ-3. With the analysis of two code listings, shown in List-
ing 7.1 and Listing 7.2, we want to assess the validity to the notion that certain features
carry more weight in detecting code smells. However, before starting with the analysis the
following steps were performed. The first step is a manual inspection of the source code
regarding the code smell Long Method. The second step is to validate the code smell if
present. The third step is to train the SPN model with the same training data used in the
previous chapter. Finally, the SPN model is applied to detect the Long Method code smell.

In Table 7.1, the results are shown with code metrics that carry the most weight regarding
code smell detection. Based on the code metrics, shown in Figure 7.1, the code in listing
Listing 7.1 is indeed a code smell according to the SPN model, and also according to the
DL approach in [26]. It is also very obvious that a number of methods can be extracted
from the code in Listing 7.1. SPFlow creates an SPN model based on the training data with
sum, product, and leaf nodes akin to the SPN graph of Figure 7.4. This figure shows the
"marginalized" SPN graph that SPFlow created by "removing" the non-relevant code met-
rics. Furthermore, the internal nodes are not shown, and thus not all connections of the
leaf nodes with the internal nodes are shown. Additionally, every leaf node consists of its
probability distribution that models the code metric of relevance.

With the SPN model, an inference task is performed by marginalizing the code metrics that
are not relevant. Every leaf node computes a probability given a value of a code metric as-
sociated with Listing 7.1. All leaf nodes cascade the probabilities via internal sum/product
nodes to the root node, with the leaf nodes of not relevant code metrics having a probability
of 100%. The root node computes in this case a marginal likelihood value, that is eventu-

1http://neuroph.sourceforge.net

44

http://neuroph.sourceforge.net

Figure 7.4: The SPN graph generated by SPFlow for the case study shows one sum node at the root and three
product nodes.

ally converted to a probability of a code smell Long Method. Thus, the model created by
SPFlow outputs a probability higher than 76% that Listing 7.1 is a code smell Long Method,
given a threshold of 50%.

Code Smell Metric Output
Size COH CC CD NOAV LCOM4 DL Approach NNs SPN Code Smells Detector

Code Smell 1 69 0.175 0.1701 0 5 2 1 1
Code Smell 2 15 0.21 0.2222 0.5 4 4 0 1

Table 7.1: Metrics for the two code samples to detect code smell Long Method.

45

Listing 7.1: Code smell 1

1 /*
2 * initialize the form.
3 * WARNING: Do NOT modify this code. The content of this method is
4 * always regenerated by the Form Editor.
5 */
6 private void initComponents()//GEN-BEGIN:initComponents
7 {
8 m_popupMenu = new javax.swing.JPopupMenu();
9 m_menuAddItem = new javax.swing.JMenuItem();

10 m_menuRemoveItem = new javax.swing.JMenuItem();
11 jScrollPane1 = new javax.swing.JScrollPane();
12 m_table = new javax.swing.JTable();
13

14 m_menuAddItem.setText(""Add item"");
15 m_menuAddItem.addActionListener(new java.awt.event.ActionListener()
16 {
17 public void actionPerformed(java.awt.event.ActionEvent evt)
18 {
19 m_menuAddItemActionPerformed(evt);
20 }
21 });
22

23 m_popupMenu.add(m_menuAddItem);
24

25 m_menuRemoveItem.setText(""RemoveItems"");
26 m_menuRemoveItem.addActionListener(new java.awt.event.ActionListener()
27 {
28 public void actionPerformed(java.awt.event.ActionEvent evt)
29 {
30 m_menuRemoveItemActionPerformed(evt);
31 }
32 });
33

34 m_popupMenu.add(m_menuRemoveItem);
35

36 setLayout(new java.awt.BorderLayout());
37

38 jScrollPane1.setBorder(null);
39 m_table.setModel(new javax.swing.table.DefaultTableModel(
40 new Object [][]
41 {
42 {null, null, null, null},
43 {null, null, null, null},
44 {null, null, null, null},
45 {null, null, null, null}
46 },
47 new String []
48 {

46

49 ""Title 1"", ""Title 2"", ""Title 3"", ""Title 4""
50 }
51));
52 m_table.setTableHeader(null);
53 m_table.addMouseListener(new java.awt.event.MouseAdapter()
54 {
55 public void mouseClicked(java.awt.event.MouseEvent evt)
56 {
57 tableMousePressed(evt);
58 }
59 public void mousePressed(java.awt.event.MouseEvent evt)
60 {
61 tableMousePressed(evt);
62 }
63 public void mouseReleased(java.awt.event.MouseEvent evt)
64 {
65 tableMousePressed(evt);
66 }
67 });
68

69 jScrollPane1.setViewportView(m_table);
70

71 add(jScrollPane1, java.awt.BorderLayout.CENTER);
72

73 }

Listing 7.2 is not labeled as a code smell by the DL approach, whilst the SPN model did
label it as a code smell, as shown in Table 7.1. The procedure to compute the probability of
code smell Long Method is similar to that of Listing 7.1. As expected the cohesion features
CC, COH, CD, and LCOM4 mainly affected the prediction of whether Listing 7.2 is a code
smell or not. These metrics for Listing 7.2 show a significantly higher probability of a code
smell, as shown in Figure 7.1. The trained SPN model outputs Listing 7.2 as a code smell
Long Method with a probability of more than 57%, thus classifying it as a code smell given
a threshold of 50%. Though the probability of a code smell is much lower than the case
regarding Listing 7.1, as expected. When analyzing the code it is easy to spot which lines of
code can be extracted to a separate method, though the size (or lines of code) of the method
is only 15. Lines 12-18 in Listing 7.2 can be extracted to a separate method, which can then
be called from the original method. This is because the static method invocations in those
lines have a low cohesion regarding the overall method. Hence, it can easily be extracted to
a separate method. The refactored method is shown in Listing 7.3.

47

Listing 7.2: Code smell 2

1 /**
2 * Prints Neuroph data set
3 *
4 * @param neurophDataset Dataset Neuroph data set
5 */
6 public static void printDataset(DataSet neurophDataset) {
7 System.out.println(""Neuroph dataset"");
8 Iterator iterator = neurophDataset.iterator();
9

10 while (iterator.hasNext()) {
11 DataSetRow row = (DataSetRow) iterator.next();
12 System.out.println(""inputs"");
13 System.out.println(Arrays.toString(row.getInput()));
14 if (row.getDesiredOutput().length > 0) {
15 System.out.println(""outputs"");
16 System.out.println(Arrays.toString(row.getDesiredOutput()));
17 System.out.println(row.getLabel());
18 }
19 }
20 }

Listing 7.3: Code smell 2 refactored

1 /**
2 * Prints Neuroph data set
3 *
4 * @param neurophDataset Dataset Neuroph data set
5 */
6 public static void printDataset(DataSet neurophDataset) {
7 System.out.println(""Neuroph dataset"");
8 Iterator iterator = neurophDataset.iterator();
9

10 while (iterator.hasNext()) {
11 DataSetRow row = (DataSetRow) iterator.next();
12 printDataSetRow(row);
13 }
14

15 public static void printDataSetRow(DataSetRow row) {
16 System.out.println(""inputs"");
17 System.out.println(Arrays.toString(row.getInput()));
18 if (row.getDesiredOutput().length > 0) {
19 System.out.println(""outputs"");
20 System.out.println(Arrays.toString(row.getDesiredOutput()));
21 System.out.println(row.getLabel());
22 }
23 }

48

7.3 PRACTICAL APPLICABILITY IN AN IDE
In Chapter 3, it was already concluded that practically no tooling exists employing SPNs
to detect code smells in an existing integrated development environment (IDE). However,
with research question RQ-4 the aim was to find out if it is possible to incorporate SPNs,
to detect code smells, within an existing IDE. To get relatively quick results, a code smell
detection tool using SPNs as a plug-in within Eclipse2 is the preferred option. Eclipse enjoys
our preference as it is one of the most popular IDEs for Java, as the focus of this study is
detecting code smells in Java source files. This is an alternative to IntelliJ IDEA3, which
is an expensive commercial IDE that can also be used to develop Java software. Eclipse
is also easily extendable via its well-known plug-in architecture4, hence another reason to
prefer an Eclipse plug-in. This eliminates the need to develop a whole new user interface
from scratch, which is something that has to be done when incorporating the code smell
detection mechanism in a stand-alone tool. Furthermore, a stand-alone tool separated
from the IDE would be inconvenient, as developers have to switch back and forth between
the source code in the IDE and the stand-alone tool regarding code smell detection.

Before outlining the approach to detect code smells within Eclipse, we evaluated three
Eclipse plug-ins that are available for download. We selected these three tools because they
analyze Java source files and are open-source projects. The results were covered in Chapter
3. However, the source code (on a high level) of the different tools was also evaluated. Based
on the evaluations of these tools the following approach with regards to the plug-in to de-
tect code smells using SPNs is defined. There are two main components to integrate code
smell detection in an IDE. The first component is the IDE Eclipse, and the second compo-
nent is the code smell detection mechanism using SPNs that runs in the back-end. Eclipse
serves as the front-end that provides the user interface, interacts with the user, and han-
dles all user actions. The code smell detection plug-in is responsible for detecting the code
smells within a Java program and outputting a list of potential code smells. Thus another
important requirement is that the plug-in should provide a list of potential code smells,
with the following information for each code smell:

• type of code smell: Long Method, Feature Envy, or Large Class for example

• Java file name,

• location (line number) of code smell in the Java source file,

• likelihood of a code smell.

In Figure 7.5, a high-level overview is shown of the aforementioned tool to detect code
smells. It shows that after Java source files are pre-processed it produces a dataset suit-
able for code smell detection. The code smell detection plug-in processes the dataset and
detects potential code smells, and outputs a list of code smells and where to locate the
"smelly" code entities. This list of code smells can be a combination of the three different
types of code smells Long Method, Feature Envy, and Large Class. After this step, it is up to
the developer to take the necessary actions regarding refactoring, if necessary.

2https://www.eclipse.org/
3https://www.jetbrains.com/idea/
4https://www.vogella.com/tutorials/EclipsePlugin/article.html

49

https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://www.vogella.com/tutorials/EclipsePlugin/article.html

Figure 7.5: An overall view integrating code smell detection in an IDE.

The biggest issue when developing an Eclipse plug-in to detect code smell using SPNs is
that there are no libraries available in Java5 regarding SPNs. The SPN models to detect
code smells that were used for the different experiments in this study were developed in
Python using the library SPFlow, also written in Python. However, this is a software de-
velopment question and the SPFlow library could for example be ported to Java or Python
modules could be called within a Java program. Therefore, an extended up-front design is
not needed as the workflows regarding input and output are simple. Furthermore, it is also
important that the first version of the plug-in does nothing more than what was specified
by the requirements. This to avoid the "what if" trap by doing too much6. Therefore, based
on the evaluation of the aforementioned static code analyzers, mentioned in Chapter 3, it
is possible to create a plug-in that can be used during development to evaluate the process
of code smell detection. In [36], it is shown that not all code smells are "equal" and that
some code smells have a higher priority than others.

5https://github.com/
6https://codeopinion.com/stop-over-engineering-software/

50

https://github.com/
https://codeopinion.com/stop-over-engineering-software/

8
DISCUSSION

For this study, we have compared the SPN approach to the DL approach in [26]. The results
in Chapter 6 show that SPNs do improve code smell detection in Java code when compared
to state-of-the-art techniques, to some extent. That is especially the case with regards to
the code smell Long Method. The SPN model outperformed the DL approach for every
performance metric: precision, recall, and ROC AUC.

Although the experiments showed promising results, especially in the case of code smell
Long Method, there are some critical notes. With the follow-up experiments regarding code
smells Large Class and Feature Envy also code metrics were used as classification features
as part of answering research question RQ-1. The SPN models showed an average ROC AUC
score of around 41% and 49% respectively. This suggests that the SPN models performed
no better than a random classifier with the datasets used that were procured for this study.
However, the datasets that were used regarding code smell Feature Envy and Large Class
were not balanced. The imbalance regarding the datasets to detect the code smell Feature
Envy had more to do with the distribution of the distance metrics. The distributions re-
garding the distance of a method to its parent class and a potential target class were both
skewed to the maximum value of 1. The datasets used to detect code smell Large Class was
relatively small, and as SPNs typically learn from data, inferences produced with the mod-
els could be unreliable [8][34][35]. Furthermore, though the datasets used are available
publicly, still a lot of pre-processing was needed to make the datasets suitable for training,
validation, and testing.

Another issue concerning the features to detect the code smell Feature Envy is the follow-
ing. These distance metrics might not have been appropriate for the respective experi-
ments. This leads us to the discussion regarding the other code metrics selected for this
study. The focus was mainly on the code metrics used in [26]. However, many code metrics
have been developed over the years. It is not an easy task to decide which code metrics are
suitable for the task of code smell detection. Although, as discussed in Chapter 7, by em-
ploying SPNs it is much easier to evaluate which code metrics are "more suitable" for code
smell detection and which are not. Though code metrics are mainly developed to measure
and improve software quality [23]. Hence, the question arises if code metrics in general are
appropriate for code smell detection.

51

Additional experiments employing word embeddings, in this case using word2vec, did not
lead to an improvement in the performance of the SPNs regarding code smell detection
of Feature Envy and Large Class. The models showed results that seemed skewed regard-
ing the metrics precision, recall, and ROC AUC. Furthermore, it also took multiple days to
train the SPN models to detect a code smell Feature Envy. The combination of more than
10K training instances and more than 3000 features lead to a data explosion. Word2vec
was originally developed with NLP in mind [4]. Hence, leading to the question of whether
a more code-minded technique would have led to a better performance regarding code
smell detection of Feature Envy and Large Class. However, this does not mean we should
write off techniques akin to word2vec. In this study, every numerical vector of a word em-
bedding was transposed in such a way that every vector element served as a classification
feature. Therefore, another massive imbalance was created as the number of features ex-
tracted from word embeddings was at least 2000, and the number of features extracted
from code metrics was not more than 10. This might have also led to several distortions
regarding the different performance scores. Thus, it is also possible that word2vec was not
applied correctly.

Two cases were analyzed to assess the practical applicability of SPNs. Though the results
of these experiments showed promising results, the number of cases was limited. The next
step would have been incorporating SPNs in a tool, or an Eclipse plug-in in this case. This
was not possible for this study due to time constraints.

52

9
CONCLUSIONS

This study basically assesses the potential of using SPN models to detect code smells. Three
common code smells were selected, i.e., Long Method, Feature Envy, and Large Class, and
an SPN model was created for each code smell using SPFlow. To assess the effectiveness
of SPNs regarding the detection of code smells several experiments have been carried out
to compare the performance to that of the DL approach in [26]. In [26], the DL approach
outperformed the state-of-the-art static analysis tools, hence the same dataset was used.
In this chapter, the answers to the research questions are discussed based on the results of
the experiments and assessments. First, the sub-questions will be answered, followed by
an answer to the main research question.

RQ-1: To what extent do SPNs improve the detection of code smells when compared with
state-of-the-art approaches?
Results showed that SPNs have potential regarding the detection of code smells, based on
the dataset used in this study. The different non-parametric SPN models showed the best
performance when compared to parametric SPN models. There were also no trial-and-
error approaches with different network configurations and sizes needed, as was the case
with the DL approach in [26]. Thus, the SPN models were relatively easy to create. The
SPN approach to detect the code smell Long Method outperformed the DL approach of
[26], thus also the state-of-the-art static analysis tools. However, the SPN models to detect
code smells Feature Envy and Large Class did not perform better than a random classifier
based on the ROC AUC scores. Though, the SPN models did not perform any worse than
JDeoderant regarding the ROC AUC scores [26]. The SPN models did perform better than
the DL approach based on the metrics precision and recall. This all means that no defini-
tive claims can be made about whether SPNs are an alternative to current state-of-the-art
analysis tools. Therefore, more research is needed regarding the employment of SPNs in
code smell detection. The procurement of datasets needed for training, validation, and
testing is also very important in this regard.

RQ-2: To what extent does the performance of code smell detection improve when a word
embedding technique, word2vec, is used?
The second part of the experimental phase consisted of incorporating word2vec to detect
code smells Feature Envy and Large Class. With word2vec the aim was to capture the syn-

53

tactic and semantic word relationship of a code entity under investigation. However, em-
ploying word embeddings resulted in a data explosion as the number of features increased
by more than 3000 regarding the detection of code smell Feature Envy. In the case of detect-
ing code smell Large Class it was even worse as the number of features was larger than the
number of instances. Hence, with the current datasets the SPN models showed no overall
improvements when word2vec was used. However, this does not mean that no embedding
technology would have the potential to increase the performance of code smell detection
when incorporated into an SPN model. Therefore, more research is needed with regard to
the employment of word embeddings and also with regards to alternative embedding tech-
niques. Additionally, the procurement of more extensive datasets is also very important in
this regard.

RQ-3: Do some individual features carry more weight when detecting code smells?
Different SPN models were created to perform marginal inference tasks based on the se-
lected code metrics. The first experiment showed that some code metric values correlate
strongly with whether a code entity is a code smell or not. This means that some code met-
rics showed a significantly higher marginal probability, higher than the threshold when a
code entity was labeled a code smell. Based on these results, the code metrics that had the
highest impact in detecting the code smell Long Method were selected for the analysis of
two cases, that were not part of the training data. These cases showed that by high-level
analysis of the process itself that SPNs can perform marginal inference without the loss of
efficacy. Therefore increasing the potential to apply SPNs in a development environment
aiding developers in detecting code smells. However, there might be some challenges with
regard to robustness, because the SPN models do seem to have issues when dealing with
outliers. Hence, more research is needed with a more extensive dataset.

RQ-4: To what extent are SPNs applied in a development environment?
In Chapter 3, we already concluded that there are no code smell detection tools incorpo-
rating SPNs available to assist developers in their software development process. However,
creating a stand-alone or a plug-in for an existing IDE such as Eclipse is a software devel-
opment issue. Based on analysis of the different existing Eclipse plug-ins to detect code
smells, the same template can be used to create the plug-in to incorporate SPN models.
The tools all follow the extensive and well-documented template1 to create Eclipse plug-
ins. The next step could be porting the python code from the SPFlow library to Java.

Based on the answers to the research questions above, we answer the main research ques-
tion as follows:
RQ: To what extent do SPNs improve the detection of code smells compared with state-
of-the-art detection methods, and can this be applied in practice?
The overall results of this study show that SPNs do have potential regarding code smell de-
tection, however, more research is needed. The SPN models were "created" from the train-
ing data, hence no trial-and-error approaches were needed to create the different mod-
els. However, the experiments lead to mixed results when compared to the DL approach in
[26]. Using the word embeddings, word2vec, also did not lead to observable improvements.
Hence, more research is also needed with a more extensive and balanced dataset for the
different code smells. Though, with the SPN approach it was possible to discern which fea-

1https://www.eclipse.org/pde/

54

https://www.eclipse.org/pde/

tures, in this case code metrics, carry the most weight when detecting a code smell. Thus
having the potential in applying SPNs in a development environment.

55

10
FUTURE WORK

This study leads us to several directions for future work, which will be outlined below.

The first, and one of the most important topics, is the procurement of an extensive and
balanced dataset for training, validation, and testing. This is imperative for getting valid re-
sults about the accuracy, and robustness, of the SPN models in question. The datasets used
for this study were the same datasets used in [26]. However, the datasets to train and test
the models to detect code smells Feature Envy and Large Class were heavily imbalanced. In
the case of code smell Large Class the datasets were too small. Therefore, not enough data
is available to garner support to make statements about the efficacy of the SPN models.
Hence, as part of future work we recommend setting up a repository for ML experiments
with regard to code smell detection. This could be a dedicated repository on Github, or a
dedicated repository hosted by the Open University1. An important aspect in this regard is
that a format should be specified in such a way that a minimal amount of pre-processing is
needed. This should be a continuous process of addition and evaluation so that the repos-
itory can grow over time. A mechanism should also be developed to create code smells in
the datasets, in which the code smells are balanced over subsets resembling "real data" as
much as possible. Besides procuring data, gathering classification features (e.g., code met-
rics) as much as possible is also part of this process. How this should be organized, and
more importantly, maintained is an interesting follow-up challenge.

Another topic for future work is more research regarding the use of word embeddings or
alternative embedding techniques. Word2vec was originally developed with NLP in mind,
however, a more code-minded technique was developed, namely code2vec [2]. This ap-
proach parses a code entity first into an Abstract Syntax Tree (AST). Then it extracts syn-
tactic paths between all the leaf nodes traversing through their lowest common ancestor
[2]. Each path is represented as a sequence of intermediate AST nodes between two leaf
nodes. With code2vec, the code entity is then also converted into a numerical presentation.
Recent research has shown that using code2vec regarding code smell detection has a lot of
potential [19][22]. Using code2vec to extend SPN models in detecting code smells is there-
fore also an interesting follow-up endeavor. However, in [26] word2vec showed promising
results detecting code smells. Hence, it might also be worthwhile to follow up on word2vec

1https://research.ou.nl/en/datasets/

56

using a different setup or strategy.

The third topic for future work is to build an eclipse plug-in to detect code smells during the
software development process in Java. As there is no such tooling available, it is important
to build such a tool to evaluate the performance and usage in practice. Another issue is
whether to use different SPNs for every code smell, or one SPN model to detect different
code smells2. Therefore, evaluating code smell detection using SPNs in a development
environment is a necessary follow-up project.

A final topic for future work is extending code smell detection by predicting the correct
refactor strategy. This is because code smells detection and refactoring are connected. In
[15], a list of 22 code smells was defined, and for each code smell several refactor strategies
were also defined. While code smells represent design flaws in the software, refactoring
is the process that restructures and transforms the software in such a way that it adheres
to certain quality standards to solve those flaws. In other words, code smells tell what the
problems are, and refactoring can then be used to correct such problems. Integrating these
two processes would provide the complete process of locating the design flaws and im-
proving software design. In [22], an ML approach to predict refactoring strategies to solve
the code smell Feature Envy showed promising results. Hence it is important to investigate
methods to predict refactor strategies based on code smells detected.

2https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/

57

BIBLIOGRAPHY

[1] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey
of machine learning for big code and naturalness. ACM Computing Surveys, 51(4),
2018. 1, 16

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2Vec: Learning Dis-
tributed Representations of Code. Proceedings of the ACM on Programming Lan-
guages, 3:1–29, 2019. 56

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
J. Mach. Learn. Res., 13:281–305, 2012. 33

[4] Piotr Bojanowski, Onur Celebi, Tomas Mikolov, Edouard Grave, and Armand Joulin.
Updating pre-trained word vectors and text classifiers using monolingual alignment.
arXiv, 2019. 52

[5] Paula Branco, Luis Torgo, and Rita Ribeiro. A survey of predictive modelling under
imbalanced distributions, 2015. 22

[6] Sofia Charalampidou, Apostolos Ampatzoglou, and Paris Avgeriou. Size and cohesion
metrics as indicators of the long method bad smell: An empirical study. ACM Interna-
tional Conference Proceeding Series, 2015-October, 2015. 27, v

[7] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994. v

[8] Denis Deratani Mauá, Diarmaid Conaty, Fabio Gagliardi Cozman, Katja Poppen-
haeger, and Cassio Polpo de Campos. Robustifying sum-product networks. Interna-
tional Journal of Approximate Reasoning, 101:163–180, 2018. 51

[9] Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik, and An-
drea De Lucia. Detecting code smells using machine learning techniques: Are we there
yet? 25th IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2018 - Proceedings, 2018-March:612–621, 2018. 2, 15, 18

[10] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. A review-based comparative study of bad smell detection tools. pages
1–12, 06 2016. 15

[11] Peter Flach. Machine Learning: The Art and Science of Algorithms That Make Sense of
Data. Cambridge University Press, USA, 2012. 2, 6, 7, 13, 15, 19, 22, 29

[12] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
Jdeodorant: identification and application of extract class refactorings. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 1037–1039, 2011. 20

i

[13] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection of
bad smells in code: An experimental assessment. Journal of Object Technology, 11(2),
2012. 1, 15

[14] Francesca Arcelli Fontana, Jens Dietrich, Bartosz Walter, Aiko Yamashita, and Marco
Zanoni. Anti-pattern and code smell false positives: Preliminary conceptualisation
and classification. 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering, SANER 2016, 2016-Januari(c):609–613, 2016. 2, 18

[15] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
object technology series. Addison-Wesley, 1999. iii, 1, 3, 4, 6, 15, 16, 57

[16] Robert Gens and Domingos Pedro. Learning the structure of sum-product networks.
In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pages 873–880, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. 12

[17] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2019. 7, 33

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016. 2

[19] Mouna Hadj-Kacem and Nadia Bouassida. Deep representation learning for code
smells detection using variational auto-encoder. 2019 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2019. 56

[20] Foutse Khomh, Stéephane Vaucher, Yann Gaël Guéehéeneuc, and Houari Sahraoui. A
bayesian approach for the detection of code and design smells. Proceedings - Interna-
tional Conference on Quality Software, pages 305–314, 2009. 16

[21] Foutse Khomh, Stephane Vaucher, Yann Gaël Guéhéneuc, and Houari Sahraoui. BD-
TEX: A GQM-based Bayesian approach for the detection of antipatterns. Journal of
Systems and Software, 84(4):559–572, 2011. 16

[22] Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. Recom-
mendation of move method refactoring using path-based representation of code. In
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pages 315–322, 2020. 2, 56, 57

[23] M. Lanza, S. Ducasse, and R. Marinescu. Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer Berlin Heidelberg, 2007. 4, 17, 51, v, vi

[24] W. Li and S. Henry. Maintenance metrics for the object oriented paradigm. In [1993]
Proceedings First International Software Metrics Symposium, pages 52–60, 1993. v

[25] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and
Yuyi Zhong. VulDeePecker: A Deep Learning-Based System for Vulnerability Detec-
tion. (February), 2018. 16

ii

[26] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang. Deep learning based code smell detec-
tion. IEEE Transactions on Software Engineering, pages 1–1, 2019. iii, 2, 16, 18, 19, 20,
21, 23, 24, 25, 26, 27, 29, 32, 33, 34, 35, 37, 44, 51, 53, 54, 56, xi

[27] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR, USA, 1 edition, 2008. iii, 1, 3, 6

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. 1st International Conference on Learning Representa-
tions, ICLR 2013 - Workshop Track Proceedings, pages 1–12, 2013. 13, 14, 17

[29] N. Moha, Y. Gueheneuc, L. Duchien, and A. Le Meur. Decor: A method for the specifi-
cation and detection of code and design smells. IEEE Transactions on Software Engi-
neering, 36(1):20–36, 2010. 20

[30] Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani,
Nicola Di Mauro, Pascal Poupart, and Kristian Kersting. Spflow: An easy and extensible
library for deep probabilistic learning using sum-product networks, 2019. 28

[31] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Thomas G. Dietterich, Suzanna
Becker, and Zoubin Ghahramani, editors, NIPS, pages 841–848. MIT Press, 2001. 7

[32] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation. Empirical Software Engineering,
23(3):1188–1221, 2018. 3

[33] Iago París, Raquel Sánchez-Cauce, and Francisco Javier Díez. Sum-product networks:
A survey. 2020. 2, 9, 10, 11, 12, 13, 28

[34] Fabiano Pecorelli, Fabio Palomba, Dario Di Nucci, and Andrea De Lucia. Comparing
heuristic and machine learning approaches for metric-based code smell detection.
IEEE International Conference on Program Comprehension, 2019-May:93–104, 2019.
1, 37, 51

[35] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea De Lucia. Developer-
driven code smell prioritization. In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR ’20, page 220–231, New York, NY, USA, 2020.
Association for Computing Machinery. 1, 37, 51

[36] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea De Lucia. Developer-
driven code smell prioritization. In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR ’20, page 220–231, New York, NY, USA, 2020.
Association for Computing Machinery. 50

[37] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On
Theoretical Properties of Sum-Product Networks. In Guy Lebanon and S. V. N. Vish-
wanathan, editors, Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics, volume 38 of Proceedings of Machine Learning Research,
pages 744–752, San Diego, California, USA, 09–12 May 2015. PMLR. 11, 12

iii

[38] David L. Poole and Alan K. Mackworth. Artificial Intelligence: Foundations of Compu-
tational Agents. Cambridge University Press, USA, 2nd edition, 2017. 2, 8

[39] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture.
Proceedings of the IEEE International Conference on Computer Vision, pages 689–690,
2011. 2, 9, 10, 19, 40

[40] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson,
4 edition, 2022. 7, 9, 10

[41] Jürgen Schmidhuber. Deep Learning in neural networks: An overview. Neural Net-
works, 61:85–117, 2015. 8

[42] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel,
and Demis Hassabis. Mastering the game of Go without human knowledge. Nature,
550(7676):354–359, 2017. 7

[43] H.Jacques Suermondt and Gregory F. Cooper. Probabilistic inference in multiply con-
nected belief networks using loop cutsets. International Journal of Approximate Rea-
soning, 4(4):283–306, 1990. 9

[44] N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring oppor-
tunities. IEEE Transactions on Software Engineering, 35(3):347–367, 2009. 17, v

[45] M. Tufano, D. Poshyvanyk, F. Palomba, A. DeLucia, G. Bavota, R. Oliveto, and M. Penta.
When and Why Your Code Starts to Smell Bad (and Whether the Smells Go Away). IEEE
Transactions on Software Engineering, 43(11), 2017. 3

[46] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understand-
ing sum-product networks. Machine Learning, 108(4):551–573, aug 2018. 10

[47] Santiago Vidal, Hernan Vazquez, J. Andres Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. Jspirit: a flexible tool for the analysis of code smells. In
2015 34th International Conference of the Chilean Computer Science Society (SCCC),
pages 1–6, 2015. 17

[48] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’14, New York, NY, USA,
2014. Association for Computing Machinery. 17

[49] Jing Hao Xue and D. Michael Titterington. Comment on "on discriminative vs. gener-
ative classifiers: A comparison of logistic regression and naive bayes". Neural Process-
ing Letters, 28(3):169–187, 2008. 7

iv

APPENDIX A: CODE METRICS DEFINITIONS

Below a brief overview is given of the software code metrics, or code metrics, relevant for
this study.

Distance This metric is two-fold. The first distance metric computes the relative distance
of a method to its enclosed class. The second distance metric computes the relative
distance of a method to a target class [44].

Size or Lines of Code (LOC) This metric defines the number of lines of code of of a code
entity, including blank lines [23].

LCOM - Lack of Cohesion Of Methods This metric defines a measure to define the differ-
ence between the number of method pairs not having fields in common and the
number of method pairs having fields in common [24]. In [6], the formulas for LCOM
and LCOM1, . . . , LCOM4 are defined.

COH - Cohesion This metric measures the relationship of the different lines of code in a
method. Thus a metric for cohesion is computed as defined in [6].

CC - Class Cohesion This metric measures the relationship of methods and fields within a
class. In this case a cohesion metric at class-level is computed as defined in [6].

NOAV - Number of Accessed Variables This metric computes the total number of instance
fields, of a class, that are accessed [23].

MCN - McCabe’s Cyclomatic Complexity This metric computes "the number of linearly-
independent paths through a method" [23]. This means that by adding a condition
in an if statement for example, the complexity increases as the number of paths also
increases.

CD - Coupling Dispersion This metric measures the number of classes/instances accessed
from the method under investigation [23].

ATFD - Access To Foreign Data This metric computes the number of fields from unrelated
class that are accessed from the class under invetigation [23].

DCC - Direct Class Coupling This metric computes the number of classes that are related
to a class under investigation [7].

DIT - Depth Inheritance Tree This metric computes the maximum steps from the class
under investigation to its parent class at the root [7].

TCC - Tight Class Cohesion This metric computes the relative number of method pairs of
a class that access the same class-level fields of the class under investigation [23].

WMC - Weighted Method Count This metric computes the sum of the statistical complex-
ity of all methods of a class under investigation [23].

v

NOPA - Number of Public Attributes This metric computes the number of public fields of
a class under investigation [23].

NOAM - Number of Accessor Methods This metric computes the number of accessor meth-
ods, i.e., get and set methods, of a class under investigation [23].

NOA - Number of Attributes This metric computes the number of all fields of a class under
investigation [23].

NOM - Number of Methods This metric computes the number of all methods of a class
under investigation [23].

vi

APPENDIX B: DATA DISTRIBUTIONS

Below the distributions of the training data over various bin sizes are shown. This is visu-
alized by histograms for the code metrics of the three different code smells: Long Method,
Feature Envy, and Large Class. Firstly, the histograms for the code metrics regarding the
code smell Long Method are shown:

vii

Figure 10.1: Long Method: Histograms showing the distributions of the various method level code metrics.

Secondly, the histograms for the code metrics regarding the code smell Feature Envy are
shown below:

Figure 10.2: Feature Envy: Histograms showing the distributions of the two distance metrics.

Finally, the histograms for the code metrics regarding the code smell Large Class are shown
below:

viii

ix

Figure 10.3: Large Class: Histograms showing the distributions of the various class level code metrics.

x

APPENDIX C: RESULTS LONG METHOD

EXPERIMENTS

In this Appendix, the results are shown of the experiments detecting the code smell Long
Method using parametric and non-parametric SPN models. In Table 10.1, the results of the
experiments to detect the code smell Long Method are shown. The SPN model is config-
ured with a Gaussian distribution for both input and output. Figure 10.4 shows the pre-
cision vs recall curves. It is clear from Table 10.1 that the SPN model outperforms the DL
approach specified in [26] based on the F1 metric. However, regarding the metric ROC AUC,
the DL approach outperforms the SPN model for all projects.

Table 10.1: Results of the SPN model configured with a Gaussian distribution for both input and output.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 69.35% 76.40% 72.71% 75.24% 42.72% 73.83% 54.13% 78.53%
Freeplane 67.64% 75.72% 71.45% 73.07% 46.42% 75.61% 57.52% 78.79%
jEdit 64.18% 84.84% 73.08% 73.24% 52.17% 83.45% 64.20% 77.15
jUnit 69.81% 45.83% 55.35% 63.42% 58.53% 52.91% 55.58% 72.63%
PMD 71.71% 66.17% 68.83% 71.99% 37.09% 70.59% 48.63% 77.37%
Weka 72.09% 82.24% 77.69% 77.69% 80.37% 79.25% 79.99% 81.75%
Android 73.37% 63.19% 67.90% 78.88% 32.34% 80.63% 46.16% 78.81%
Grinder 63.39% 69.61% 66.35% 67.45% 37.20% 71.64% 48.15% 74.07%
Art of Illusion 71.50% 77.39% 74.33% 79.34% 37.68% 87.67% 52.22% 80.27%
jExcelAPI 37.09% 70.59% 48.63% 77.37% 32.04% 83.89% 49.93% 88.53%
Average 66.03% 71.20% 67.63% 73.77% 42.81% 78.99% 55.53% 79.24%

xi

Figure 10.4: Performance scores of precision vs recall of the SPN model configured with a Gaussian distribu-
tion for both input and output.

xii

In Table 10.2, the results are shown of the experiments to detect the code smell Long Method
configured with a Gaussian distribution for input and a Bernoulli distribution for output.
Figure 10.5 shows the precision vs recall curves. Except for project jUnit, the SPN model
outperforms the DL approach regarding the F1 metric. However, for the metric ROC AUC,
the DL approach outperforms the SPN model for all projects with a factor of 9%-800%.

Table 10.2: Results of the SPN model configured with a Gaussian distribution for input and a Bernoulli distri-
bution for output.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 52.88% 75.63% 62.24% 40.29% 42.72% 73.83% 54.13% 78.53%
Freeplane 52.95% 75.39% 62.20% 42.89% 46.42% 75.61% 57.52% 78.79%
jEdit 64.18% 84.84% 73.08% 73.24% 52.17% 83.45% 64.20% 77.15
jUnit 32.69% 44.79% 37.80% 8.31% 58.53% 52.91% 55.58% 72.63%
PMD 44.05% 68.01% 53.47% 30.81% 37.09% 70.59% 48.63% 77.37%
Weka 52.58% 84.27% 64.76% 51.37% 80.37% 79.25% 79.99% 81.75%
Android 55.92% 83.17% 68.98% 53.99% 32.34% 80.63% 46.16% 78.81%
Grinder 52.82% 68.88% 59.78% 57.23% 37.20% 71.64% 48.15% 74.07%
Art of Illusion 59.65% 79.18% 68.04% 63.58% 37.68% 87.67% 52.22% 80.27%
jExcelAPI 52.64% 80.22% 63.57% 60.44% 32.04% 83.89% 49.93% 88.53%
Average 52.04% 66.42% 61.39% 48.21% 42.81% 78.99% 55.53% 79.24%

xiii

Figure 10.5: Performance scores of precision vs recall of the SPN model configured with a Gaussian distribu-
tion for input and Bernoulli distribution for output.

xiv

In Table 10.6, the results are shown of the experiments to detect the code smell Long Method
configured with a Gamma distribution for input and Gaussian distribution for output. Fig-
ure 10.6 shows the precision vs recall curves. What stands out is that the SPN models out-
perform the DL approach at a much larger margin than vice-versa concerning the ROC AUC
metric. Regarding the ROC AUC metric, the DL approach outperforms the SPN models only
for the project jUnit with a factor of more than 10%.

Table 10.3: Results of the SPN model configured with a Gamma distribution for input and a Gaussian distri-
bution for output.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 70.37% 78.05% 74.01% 76.37% 42.72% 73.83% 54.13% 78.53%
Freeplane 67.06% 77.15% 71.75% 73.56% 46.42% 75.61% 57.52% 78.79%
jEdit 63.47% 82.67% 71.81% 71.74% 52.17% 83.45% 64.20% 77.15
jUnit 68.25% 43.29% 54.09% 62.42% 58.53% 52.91% 55.58% 72.63%
PMD 72.51% 66.91% 69.59% 73.79% 37.09% 70.59% 48.63% 77.37%
Weka 71.52% 85.57% 76.27% 77.92% 80.75% 79.25% 79.99% 81.75%
Android 65.02% 85.17% 73.74% 76.74% 32.34% 80.63% 46.16% 78.81%
Grinder 62.75% 68.14% 65.33% 66.42% 37.20% 71.64% 48.15% 74.07%
Art of Illusion 68.10% 77.03% 73.22% 76.33% 37.68% 87.67% 52.22% 80.27%
jExcelAPI 71.34% 83.88% 77.10% 81.45% 32.04% 83.89% 49.93% 88.53%
Average 68.04% 74.77% 70.69% 73.67% 42.81% 78.99% 55.53% 79.24%

xv

Figure 10.6: Performance results of precision vs recall of the SPN model configured with a Gamma distribu-
tion for input and Gaussian distribution for output.

xvi

In Table 10.4, the results are shown of the experiments to detect the code smell Long Method
configured with a Gamma distribution for input and Bernoulli distribution for output. Fig-
ure 10.7 shows the precision vs recall curves. From Table 10.4 it is clear that the SPN model
outperforms the DL approach by a large margin, up to 90%, regarding the F1 metric. Re-
garding the ROC AUC metric, the DL approach outperforms the SPN model at a much
smaller margin, except for project PMD. For the project PMD the DL approach outperforms
the SPN model with a factor of more 40%.

Table 10.4: Results of the SPN model configured with a Gamma distribution for input and a Bernoulli distri-
bution for output.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 46.93% 78.68% 60.55% 41.43% 42.72% 73.83% 54.13% 78.53%
Freeplane 67.06% 82.32% 73.91% 70.94% 46.42% 75.61% 57.52% 78.79%
jEdit 65.58% 82.97% 73.61% 69.72% 52.17% 83.45% 64.20% 77.15
jUnit 62.26% 83.33% 71.27% 66.41% 58.53% 52.91% 55.58% 72.63%
PMD 51.82% 91.54% 65.35% 51.47% 37.09% 70.59% 48.63% 77.37%
Weka 76.32% 71.30% 73.72% 74.59% 80.75% 79.25% 79.99% 81.75%
Android 68.70% 76.94% 72.59% 70.94% 32.34% 80.63% 46.16% 78.81%
Grinder 52.00% 94.85% 65.48% 50.00% 37.20% 71.64% 48.15% 74.07%
Art of Illusion 61.62% 95.66% 74.96% 68.04% 37.68% 87.67% 52.22% 80.27%
jExcelAPI 76.53% 82.42% 79.37% 78.57% 32.04% 83.89% 49.93% 88.53%
Average 62.88% 84.01% 71.08% 64.21% 42.81% 78.99% 55.53% 79.24%

xvii

Figure 10.7: Performance scores of precision vs recall of the SPN model configured with a Gamma distribution
for input and Bernoulli distribution for output.

xviii

In Table 10.5 the results are shown of the experiments to detect the code Long Method
configured with a distribution for input and output learned from the data. This is a non-
parametric model or mixed model in SPFlow. Figure 10.8 shows the precision vs recall
curves. From Table 10.5 it is clear that the SPN model outperforms the DL approach by
a large margin regarding the F1 metric, except for the projects jUnit and Weka. In the case
of project jUnit the SPN model under-performs the DL approach by more than 35%. Re-
garding the ROC AUC metric, the SPN model also outperforms the DL approach for almost
all projects, except for the projects jUnit and Weka.

Table 10.5: Results of a non-parametric SPN model.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 97.08% 97.34% 97.21% 97.02% 42.72% 73.83% 54.13% 78.53%
Freeplane 93.97% 90.52% 92.21% 97.40% 46.42% 75.61% 57.52% 78.79%
jEdit 90.49% 91.71% 91.09% 97.29% 52.17% 83.45% 64.20% 77.15
jUnit 36.44% 46.88% 41.00% 9.70% 58.53% 52.91% 55.58% 72.63%
PMD 92.19% 91.18% 91.68% 88.80% 37.09% 70.59% 48.63% 77.37%
Weka 51.51% 83.33% 63.68% 48.16% 80.75% 79.25% 79.99% 81.75%
Android 90.09% 95.76% 92.87% 95.61% 32.34% 80.63% 46.16% 78.81%
Grinder 94.51% 92.89% 93.69% 97.41% 37.20% 71.64% 48.15% 74.07%
Art of Illusion 91.37% 93.21% 92.28% 97.43% 37.68% 87.67% 52.22% 80.27%
jExcelAPI 51.99% 81.31% 63.43% 67.66% 32.04% 83.89% 49.93% 88.53%
Average 78.96% 86.43% 81.91% 79.65% 42.81% 78.99% 55.53% 79.24%

xix

Figure 10.8: Performance scores of precision vs recall of a non-parametric SPN model for every project.

xx

APPENDIX D: RESULTS FEATURE ENVY

EXPERIMENTS

In this Appendix, the results are shown of the experiments detecting the code smell Feature
Envy using non-parametric SPN models. The first experiment incorporates word embed-
dings and distance metrics as classification features to detect the code smell. Therefore, in
Table 10.6 the results are shown for the SPN model that is also trained with word embed-
dings produced by word2vec. Figure 10.9 shows the precision vs recall curves. From Table
10.6 it is clear that the SPN model under-performs the DL approach both regarding the F1
metric and the ROC AUC metric. The SPN model gives a recall of 100% and an ROC AUC of
50% or less.

Table 10.6: Results of the SPN model with word embeddings and distance metrics as classification features.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 9.33% 100% 17.08% 50% 50.00% 87.96% 63.76% 91.93%
Freeplane 11.86% 100% 21.20% 50% 36.24% 94.14% 52.33% 83.10%
jEdit 10% 100% 18.19% 50% 38.18% 91.30% 53.85% 84.29
jUnit 17.50% 100% 29.79% 50% 50.00% 82.22% 62.18% 85.72%
PMD 15.52% 100% 26.87% 50% 37.37% 86.05% 52.11% 84.90%
Weka 8.34% 100% 15.40% 50% 38.24% 87.00% 53.13% 78.75%
Android 10.64% 100% 19.23% 50% 29.70% 76.67% 42.82% 74.81%
Grinder 8.78% 100% 16.15% 50% 31.20% 78.64% 46.15% 85.21%
Art of Illusion 38.99% 100% 7.51% 50% 36.68% 96.97% 53.22% 93.63%
jExcelAPI 3.29% 100% 6.37% 50% 34.04% 88.89% 49.23% 89.98%
Average 13.43% 100% 17.78% 50% 36.79% 88.11% 51.91% 84.90%

xxi

Figure 10.9: Performance scores of precision vs recall of the SPN model to detect code smells Feature Envy.

xxii

Secondly, in Table 10.7 the results are shown of the experiments to detect the code smell
Feature Envy with only distance metrics as classification features. Figure 10.10 shows the
precision vs recall curves. From Table 10.7 it is clear that the SPN model outperforms the
DL approach regarding the F1 metric. However, the DL approach outperforms the SPN
model with regards to the ROC AUC metric for all projects. A point to note is that the ROC
AUC for the SPN model hovers around 50%.

Table 10.7: Results after training the SPN model with only code metrics as classification features.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 49.26% 92.59% 64.31% 48.79% 50.00% 87.96% 63.76% 91.93%
Freeplane 49.45% 96.75% 65.45% 50.02% 36.24% 94.14% 52.33% 83.10%
jEdit 49.11% 92.69% 64.20% 44.38% 38.18% 91.30% 53.85% 84.29
jUnit 49.07% 94.64% 64.63% 44.89% 50.00% 82.22% 62.18% 85.72%
PMD 50.00% 93.02% 65.04% 53.24% 37.37% 86.05% 52.11% 84.90%
Weka 49.46% 92.00% 64.34% 53.53% 38.24% 87.00% 53.13% 78.75%
Android 50.13% 94.76% 65.56% 50.48% 29.70% 76.67% 42.82% 74.81%
Grinder 50.60% 93.18% 65.08% 53.63% 31.20% 78.64% 46.15% 85.21%
Art of Illusion 49.58% 89.39% 63.78% 50.52% 36.68% 96.97% 53.22% 93.63%
jExcelAPI 45.65% 77.77% 57.52% 41.23% 34.04% 88.89% 49.23% 89.98%
Average 49.23% 91.68% 63.99% 49.09% 36.79% 88.11% 51.91% 84.90%

xxiii

Figure 10.10: Performance scores of precision vs recall of the SPN model to detect code smells Feature Envy
with only distance metrics as classification features.

xxiv

APPENDIX E: RESULTS LARGE CLASS

EXPERIMENTS

In this Appendix, the results are shown of the experiments detecting the code smell Large
Class using non-parametric SPN models. The first experiment incorporates word embed-
dings and code metrics as classification features to detect the code smell. Firstly, the de-
tailed results are shown in Table 10.8. Figure 10.11 shows the precision vs recall curves.
From Table 10.8, it is clear that the SPN model only produced results that do not seem
skewed for the projects Freeplane, Android, and Grinder. For these projects, the SPN model
outperforms the DL approach by large margins. However, without judging the quality of the
results of the DL approach, it does seem that the DL approach has a better performance on
average.

Table 10.8: Results after training the SPN model with word embeddings and code metrics as classification
features.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 80.00% 100% 88.89% 75.00% 11.43% 80.00% 20.00% 68.22%
Freeplane 68.42% 81.25% 74.29% 64.85% 11.97% 70.00% 20.44% 72.76%
jEdit 100% 0.00% 100% 0.00% 15.00% 75.00% 25.00% 77.39
jUnit 100% 0.00% 100% 0.00% 11.76% 40.00% 18.18% 71.75%
PMD 100% 0.00% 100% 0.00% 16.67% 100% 28.57% 83.49%
Weka 100% 0.00% 100% 0.00% 10.06% 94.44% 18.18% 68.55%
Android 80.65% 92.89% 86.21% 73.11% 16.46% 79.41% 27.27% 79.75%
Grinder 83.33% 62.50% 71.43% 73.44% 12.73% 70.00% 21.54% 79.15%
Art of Illusion 100% 0.00% 0.00% 0.00% 12.33% 81.82% 21.43% 78.49%
jExcelAPI 61.54% 80.00% 69.37% 53.00% 22.00% 84.62% 34.92% 80.89%
Average 87.39% 41.68% 79.02% 39.29% 12.95% 80.95% 22.33% 75.77%

xxv

Figure 10.11: Performance scores of precision vs recall of the SPN model to detect code smells Large Class.

xxvi

Secondly, in Table 10.9 the results are shown of the experiments to detect the code smell
Large Class with only code metrics as classification features. Also, Figure 10.12 shows the
precision vs recall curves. From Table 10.9 it is clear that the SPN model outperforms the
DL approach based on the F1 score by a large margin. Regarding the ROC AUC metric, the
DL approach outperforms the SPN model for all projects by a large margin. The ROC AUC
for most projects is below 50%. Furthermore, the ROC AUC for jUnit is 0.00%.

Table 10.9: Results after training the SPN model with only code metrics as classification features.

Applications SPN models DL Approach NNs
Precision Recall F1 AUC Precision Recall F1 AUC

Areca 80.00% 100% 88.89% 79.00% 11.43% 80.00% 20.00% 68.22%
Freeplane 47.85% 68.75% 56.45% 18.02% 11.97% 70.00% 20.44% 72.76%
jEdit 55.55% 83.39% 66.67% 77.78% 15.00% 75.00% 25.00% 77.39
jUnit 50.00% 100% 66.67% 0.00% 11.76% 40.00% 18.18% 71.75%
PMD 66.67% 100% 80.00% 63.24% 16.67% 100% 28.57% 83.49%
Weka 61.54% 85.71% 71.64% 53.44% 10.06% 94.44% 18.18% 68.55%
Android 65.71% 85.19% 74.19% 56.48% 16.46% 79.41% 27.27% 79.75%
Grinder 36.67% 50.18% 42.08% 9.38% 12.73% 70.00% 21.54% 79.15%
Art of Illusion 70.00% 87.50% 77.78% 54.52% 12.33% 81.82% 21.43% 78.49%
jExcelAPI 50.00% 80.00% 61.54% 24.00% 22.00% 84.62% 34.92% 80.89%
Average 59.55% 84.07% 69.37% 41.03% 12.95% 80.95% 22.33% 75.77%

xxvii

Figure 10.12: Performance scores of precision vs recall of the SPN model to detect code smell Large Class with
only code metrics as classification features.

xxviii

APPENDIX F: RESULTS MARGINAL

INFERENCE EXPERIMENTS

Below the significance is shown, marginal inference probabilities, of every code metric re-
garding the three code smells: Long Method, Feature Envy, and Large Class.

xxix

Figure 10.13: Marginal inference output per feature to show the influence on detection of code smell Long
Method.

Figure 10.14: Marginal inference output per feature to show the influence on detection of code smell Feature
Envy.

xxx

xxxi

Figure 10.15: Marginal inference output per feature to show the influence on detection of code smell Large
Class.

xxxii

	Abstract
	Introduction
	Preliminaries
	Code Smells
	Definitions
	Long Method
	Feature Envy
	Large Class

	Machine Learning
	Basic Concepts
	Deep Learning
	Probabilistic Graphical Models

	Sum-Product Networks
	Basic Definitions Of Sum-Product Networks
	Learning Process
	Sum-Product Networks As Neural Networks

	Word Embeddings

	Related Work
	Research Design
	Problem statement
	Research Questions
	Code Smell Detection Approach

	Code Smell Detection Using SPNs
	Data Selection
	Code Smell Generation
	Feature Selection
	Creating SPN Models
	Analyzing Data sets

	Experimental Results
	Experimental Setup
	Results
	Detecting Code Smell Long Method
	Employing Word Embedding

	Discussion

	Applicability of SPNs in Code Smell Detection
	Relevant Features
	Case: Code Smell Detection with SPNs
	Practical Applicability in an IDE

	Discussion
	Conclusions
	Future Work
	Bibliography
	Appendix A: Code Metrics Definitions
	Appendix B: Data distributions
	Appendix C: Results Long Method Experiments
	Appendix D: Results Feature Envy Experiments
	Appendix E: Results Large Class Experiments
	Appendix F: Results Marginal Inference Experiments

