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Abstract
For certain restricted computational tasks, quantum mechanics provides a provable advantage over
any possible classical implementation. Several of these results have been proven using the
framework of measurement-based quantum computation (MBQC), where nonlocality and more
generally contextuality have been identified as necessary resources for certain quantum
computations. Here, we consider the computational power of MBQC in more detail by refining its
resource requirements, both on the allowed operations and the number of accessible qubits. More
precisely, we identify which Boolean functions can be computed in non-adaptive MBQC, with
local operations contained within a finite level in the Clifford hierarchy. Moreover, for
non-adaptive MBQC restricted to certain subtheories such as stabiliser MBQC, we compute the
minimal number of qubits required to compute a given Boolean function. Our results point
towards hierarchies of resources that more sharply characterise the power of MBQC beyond the
binary of contextuality vs non-contextuality.

1. Introduction

Quantum computation promises many advantages over classical computations, including the ability to
efficiently solve certain problems, such as factoring, where no efficient classical algorithms are currently
known. What drives this quantum advantage?

Contextuality offers a potential answer to this question, as it has been found to be an important resource
for quantum computation in a variety of settings [1–13]. Roughly speaking, contextuality is the impossibility
of assigning pre-determined outcomes to all potential measurements of a quantum system in a way that is
independent of other, simultaneously performed measurements [14]. In the case of locally performed
measurements on a composite system as considered in this work, contextuality reduces to nonlocality.
Contextuality is a common notion of non-classicality. Notably, contextuality plays a central role in a recent
seminal result showing a provable quantum advantage for a class of shallow quantum circuits over their
classical counterparts [15] (later extended to the noisy setting in [16]). While the class of problems solvable
with such circuits is not motivated by practical applications, it provides a proof of principle that quantum
advantages over classical computation are possible, and highlights quantum contextuality as a key resource.

Despite this evidence for the role of contextuality as a resource for quantum advantage, a finer
characterisation of this resource is largely missing. We address this problem by asking a related question: how
non-classical is quantum computation? This is similar to the study of the extent to which quantum
mechanics violates certain Bell inequalities, yet with an explicit emphasis on computation and
computationally relevant resource constraints.

In this paper, we study the computability of Boolean functions in the framework of measurement-based
quantum computation (MBQC) [17–19], observing that many of the relevant results in the literature
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including references [15, 20] are readily and naturally formulated within the measurement-based framework.
For simplicity, we focus on non-adaptive MBQC with linear side-processing, where contextuality provides
the sharpest known separation between classical and quantum computation [13, 21]. We outline this setup in
section 1.1 below.

Within this setting, we further consider the interplay between the following two resource aspects: the
amount of magic (non-Clifford operations, see section 1.2) necessary and the number of qubits required for
the computation of a given Boolean function. Already in this limited framework, the classification of Boolean
functions under these resources points towards a rich structure beyond the classical paradigm, which under
the physical restrictions considered is restricted to the computation of linear functions only [21]. We
summarise our main results and provide an overview to the structure of the paper in section 1.3.

1.1. The setting
In this section, we define our restricted framework of MBQC. An MBQC consists of a correlated quantum
resource state, and a control computer with restricted computational power. The quantum resource state
consists of N local subsystems—or parties—each of which consists of a qubit and measurement device that
exchanges classical information with the control computer once. The control computer is responsible for
selecting the measurement settings for each local subsystem, and for processing the measurement outcomes
into useful computational outputs. Importantly, the power of the control computer is limited: we consider
control computers that can only compute linear functions, and as such are not even classically universal5.
This notion of MBQC is known as l2-MBQC (where the l2 stands for mod-2 linear side-processing) and is
based on the model of Anders and Browne [20]. The following definition is based on references [13, 21].
(See [8] for a more general notion of MBQC.)

Definition 1. A l2-MBQC with classical input i ∈ Z
n
2 and classical output o ∈ Z2 consists of N qubit subsys-

tems, jointly prepared in the state |ψ⟩, each of which receives an input ck(i) ∈ Z2 from the control computer,
performs a measurement Mk(ck(i)), and returns a measurement outcome mk ∈ Z2, for k= 1, . . . ,N 6. The
inputs and computational output satisfy the following conditions:

(a) The computational output o ∈ Z2 is a linear function of all measurement outcomes
m= (m1, . . . ,mN)

⊺ ∈ Z
N
2
7,

o=
N
∑

k=1

mk mod 2.

(b) Local measurementsMk(ck) have eigenvalues (−1)mk . The measurement settings c= (c1, . . . , cN)⊺ ∈ Z
N
2

are linear functions of the classical input i= (i1, . . . , in)⊺ ∈ Z
n
2 and the measurement outcomesm via

c= Tm+ Pi mod 2, (1)

for some T ∈Mat(N×N,Z2) and P ∈Mat(N× n,Z2).
(c) For a suitable ordering of the parties 1, . . . ,N the matrix T in equation (1) is lower triangular with

vanishing diagonal. If T= 0 the l2-MBQC is called non-adaptive.

We remark that definition 1 describes a single run of the computation, corresponding to a given input
i ∈ Z

n
2 . Evaluation on more than one input requires access to multiple, identical copies of the same MBQC.

In this sense, we say that a l2-MBQC is deterministic whenever the output in multiple runs of the MBQC is a
deterministic function of the inputs, o(i) for i ∈ Z

n
2 . More generally, in the non-deterministic (probabilistic)

case every input specifies a probability distribution over the outputs. We will mostly restrict ourselves to
deterministic l2-MBQC (with the exception of theorem 4). Moreover, we will focus on the non-adaptive case.
The latter is a natural restriction for the study of contextuality (nonlocality) as a resource in MBQC [22],
since adaptivity generally allows to reproduce any nonlocal correlations (see also Remark 1 in [21]).

5 The restriction to linear side-processing greatly simplifies the analysis of contextuality as a resource in MBQC. While nonlinear side-
processing is not required for universal MBQC, one may consider relaxing this restriction in future studies in order to quantify any
advantage of (MB)QC over universal classical computation in practical settings.
6 Throughout, we will use boldface for vectors.
7 In general, one can apply any linear post-processing to the measurement outcomes. However, since MBQC can, in particular, model
constant and linear functions, it is sufficient to restrict the post-processing to the (mod 2)-linear sum of local measurement outcomes.
Moreover, since a multi-output Boolean function can be decomposed into multiple single-output Boolean functions, restricting our
analysis to a single output bit is not restriction.
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Nevertheless, more flexible restrictions on adaptivity can still lead to interesting classes of algorithms such as
shallow circuits in [15]. We briefly discuss the adaptive case in appendix H. Finally, we note that definition 1
is readily generalised to qudit systems, but requires care in the definitions of the higher-dimensional
measurements allowed within the framework. Many of our results generalise to qudit systems of prime
dimension, yet additional technicalities arise; to simplify presentation we only consider the qubit case in the
main body of the text.

1.2. The stabiliser subtheory
We denote the group of Pauli operators on N qubits as PN. Throughout, we label the local computational
basis states as |q⟩ for q ∈ {0,1}. An important class of operators is given by the Clifford hierarchy.

Definition 2. The Clifford hierarchy on N qubits is defined recursively by setting C1
N = PN, and letting the

k’th level Ck
N be given by

Ck
N = {U ∈ U((C2)⊗N) | UPU† ∈ Ck−1

N ∀P ∈ PN}. (2)

Notably, the second level C2
N is the normaliser of the Pauli group and is known as the Clifford group. Any

state that can be obtained by applying a gate from the Clifford group to a computational basis state is known
as a stabiliser state. Note that in the setting of the Clifford hierarchy, it is natural to model the classical control
in definition 1 in the form of unitary conjugation on some fixed measurement setting.

Definition 3. We say a MBQC belongs to level-D if the local measurement settings are of the form of

Mk(ck) = Uk(ck)Mk(0)U
−1
k (ck), (3)

whereMk(0) ∈ P1 is some fixed measurement, Uk(ck) ∈ CD
1 , and where the resource state is a stabiliser state.

When the l2-MBQC belongs to level-2, the MBQC belongs to the stabiliser subtheory, and is classically
efficiently simulable by the Gottesman–Knill theorem [23, 24]. Level-3 MBQCs are universal for quantum
computation (in the adaptive case), with the scheme based on cluster states [18] being a well-known
example. The restriction on resource states being stabiliser states is without loss of generality—one can
additionally allow resource states that are obtained by applying a Dth level gate to a stabiliser state, in close
analogy with the paradigm of stabiliser quantum computing supplemented by magic state injection.

In the context of MBQC, it is convenient to express the output of the computation in terms of a
polynomial. Namely, every Boolean function f : Zn

2 −→ Z2 is given by a polynomial from the ring
Z2[x1, . . . , xn] in n variables x1, . . . , xn ∈ Z2. This representation is known as the algebraic normal form.

1.3. Summary of results
In this paper, we study the computability of Boolean functions in non-adaptive l2-MBQC under various
resource constraints. Below, we summarise our main results, and outline the structure of the rest of the paper.

1.3.1. Contextuality
We begin by recalling that any Boolean function f : Zn

2 → Z2 can be computed within non-adaptive,
deterministic l2-MBQC [22] (see theorem 2 in section 2). In the classical setting, only linear functions are
computable. Thus, nonlinearity indicates the presence of quantumness in the form of contextuality [13, 21].
The proof of this result relies on operators outside the Clifford group, i.e. outside the second level in the
Clifford hierarchy; moreover, it generally requires an exponential (in the degree of f, expressed as a
polynomial) number of qubits. This suggests a finer classification in terms of the Clifford hierarchy, which
we present in section 3, and the number of qubits (‘qubit count’) required to implement a given Boolean
function in the non-adaptive case, presented in section 48. A natural starting point for these considerations is
the stabiliser sub-theory, where resource states are stabiliser states and operators are restricted to the second
level in the Clifford hierarchy.

1.3.2. Stabiliser theory
In the case of l2-MBQCs belonging to level-2 (i.e. stabiliser MBQCs), we show the computable functions (in
non-adaptive MBQC) to be heavily restricted: in the deterministic case, only quadratic functions can be
computed (see theorem 3), while in the probabilistic case, the success probability (see definition 4) to
compute a given Boolean function is bounded by its non-quadraticity (see definition 5), i.e. the Hamming
distance to the nearest quadratic function (see theorem 4). These results are presented in section 3.1.

8 In the adaptive case, one must also consider the time required to implement a given function (see appendix H).
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Moreover, we find that in the deterministic case, a quadratic function can be implemented using
rk( f)+ 1 qubits only, where rk( f) denotes the rank of the matrix corresponding to the quadratic terms of f
(see theorem 6).

1.3.3. Clifford hierarchy
Despite being non-classical (contextual), the above mentioned results (theorem 3 and theorem 4) show that
computation within non-adaptive stabiliser l2-MBQC is limited9. A natural way to extend the stabiliser case
is via the Clifford hierarchy. In section 3.2, we consider what non-Clifford resources are required to
implement a given Boolean function within l2-MBQC. The main result of this section, theorem 5 shows that
operations from the Dth level in the Clifford hierarchy are required whenever a non-adaptive, deterministic
l2-MBQC computes a polynomial of degree D.

1.3.4. Qubit count
While we can compute the minimal number of qubits in the stabiliser case, i.e. for quadratic functions (see
theorem 6 in section 4.1), generalising this result beyond the stabiliser case is challenging. In section 4.2, we
consider an approach based on Greenberger-Horne-Zeilinger (GHZ) states, which (by the proof of
theorem 2) provide a universal resource for function computation in non-adaptive, deterministic
l2-MBQC10. We characterise the number of qubits required to compute an arbitrary Boolean function in
terms of the minimal number of Fourier components (see theorem 7). Similar optimisation problems arise
in circuit synthesis [26–30].

In addition, we employ the discrete Fourier transform to obtain upper bounds on the qubit count for
certain highly symmetric functions, which turn out to be optimal in some cases, e.g. for δ-functions
corollary 2. As an immediate consequence, we conclude that the number of qubits required to implement a
Boolean function f in non-adaptive, deterministic l2-MBQC is far from monotonic in the degree of f (see
corollary 3), thus further hinting at a rich substructure of contextuality beyond the results in references
[7, 13].

Finally, we discuss possible avenues towards related and future research in section 5.

2. Every Boolean function has a representation as contextual MBQC

In this section we prove theorem 2, that non-adaptive l2-MBQC is complete. That is, for any function
f : Zn

2 → Z2 there exists an l2-MBQC with output function o(i) = f(i) for all inputs i ∈ Z
n
2 . This is in sharp

contrast to the classical regime, which is restricted to linearity—nonlinear computation is an indicator of
quantum contextuality [13, 21]. The proof strategy is to first construct l2-MBQCs that compute the n-bit
δ-function which evaluates to 1 on the all-zero input string, and evaluates to zero otherwise (alternatively, the
n-bit AND-function). Linearly composing the output of many such parallel l2-MBQCs can then be used to
compute any function. In fact, our proof is easily generalised to qudits of prime dimension (see appendix C).

We begin by defining the resource state and the measurement operators relevant for this construction.
We take the resource state to be given by the N-qubit GHZ state

|ψ⟩= 1√
2
(|0⟩⊗N + |1⟩⊗N). (4)

This is a mild restriction, since the GHZ state in equation (4) will prove to be a universal resource for
non-adaptive, deterministic l2-MBQC in theorem 2 below (see also [22, 31]). More generally, in section 3 we
will define a hierarchy for l2-MBQC by restricting the allowed operations to certain levels in the Clifford
hierarchy and the resource state to a stabiliser state (see definition 3). Note also that the GHZ state is a
stabiliser state. Finally, in section 4 we will analyse the qubit count for l2-MBQC with a GHZ resource state.

Next, recall from definition 1 that each party performs one of two measurementsMk(ck) determined by a
single input ck ∈ Z2. Moreover, we require thatMk has (non-degenerate) eigenvalues (−1)q, q ∈ Z2, i.e.
M2

k = 1. We define the following canonical measurement operators

X(eiπϑ)|q⟩= eiπ(1−2q)ϑ|q⊕ 1⟩. (5)

In matrix (gate) representation, these operators take the form

X(eiπϑ) =

(

0 e−iπϑ

eiπϑ 0

)

. (6)

9 Note that for d odd prime, the stabiliser formalism is in fact non-contextual [25]. At least in this case, we can take it as the lowest level
of such a hierarchy.
10 Note however, that GHZ states are not universal for MBQC in general.
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The inputs ck to the measurement devices thus specifyMk(ck) = Xk(eiπϑ(ck)) and are themselves
determined in a linear way from the computational input i ∈ Z

n
2 and other measurement outcomesmk ∈ Z2

according to the general setup in definition 1. (Note that in the non-adaptive case, ck = ck(i) is a linear
functions of the inputs only.)

The output function of the l2-MBQC, o(i) =⊕N
k=1mk, arises as the parity of the individual measurement

outcomes on local qubits. The resource state |ψ⟩ is a+1-parity eigenstate of the operator⊗N
k=1Xk(0).

On the other hand, we can easily construct operators for which |ψ⟩ is a (−1)-parity eigenstate. For
instance, consider the prototypical Anders–Browne 3-qubit example, whereMk(0) = Xk(0) = Xk and
Mk(1) = Xk(ei

π
2 ) = Yk. Note that this choice of local measurements solves the following set of four linear

equations
∑3

k=1 ck(i1, i2) ·ϑk = o(i1, i2), where i1, i2 ∈ Z2, ϑk =
1
2 , and c1(i1, i2) = i1, c2(i1, i2) = i2,

c3(i1, i2) = i1 ⊕ i2, and o(i1, i2) = i1i2 ⊕ i1 ⊕ i2.
In fact, this example is representative of the general case. More precisely, for deterministic l2-MBQC the

computation can be expressed in terms of the phase parameters in the local measurement operators of
equation (5).

Theorem 1. The output function o : Zn
2 → Z2 of a non-adaptive, deterministic l2-MBQC with a GHZ resource

state, is given by the linear sum of angles ϑk ∈ R, corresponding to local measurement operators in equation (5),

o(i) =
N
∑

k=1

ck(i)ϑk (mod 2) ∀i ∈ Z
n
2. (7)

Proof (sketch). Using that the GHZ state |ψ⟩ is a parity eigenstate of the global measurement operators
M(i) =⊗N

k=1Mk(ck(i)), one shows that the most general form for local measurements Mk is given by
equation (6). Equation (7) then follows by mere re-writing |ψ⟩ in terms of the eigenbases of the Mk. For
details, see appendix A.

We note that theorem 1 is closely related to results obtained in a slightly different context in [32] (see
section 5.3).

Finding an implementation to compute o as a l2-MBQC thus reduces to finding a set of (linear) functions
ck and real parameters ϑk ∈ R, which satisfies the required parity conditions in equation (7). We first
construct an l2-MBQC that computes the n-bit δ-function δ : Zn

2 → Z2 defined by

δ(i) :=

{

1 if i= 0

0 otherwise
. (8)

We remark that the n-bit δ function is an important and ubiquitous function—up to linear pre- and
post-processing it is equivalent to the n-bit AND function. We have the following lemma.

Lemma 1. The n-bit δ-function can be implemented on N= 2n − 1 qubits within non-adaptive, deterministic
l2-MBQC.

Proof (sketch). We prove this in appendix B, by giving an explicit measurement scheme acting on a GHZ
state.

We remark that a similar result has previously been obtained in [22]. Here, we gave a constructive proof
in terms of the operators in equation (6). Moreover, our technique generalises to qudits of prime dimension
(for details, see appendix C).

In particular, we note that lemma 1 recovers the main example of Anders and Browne [20] (up to linear
side-processing) for n= 2 with ϑk =

1
2 , such thatM(0) = X andM(1) = Y.

The n-bit δ-function along with linear side-processing is sufficient to allow for the evaluation of arbitrary
functions. In particular, one can decompose any function into a linear combination of delta functions, each
of which admits an l2-MBQC. The outputs of these l2-MBQCs can be linearly combined to give the desired
output, as in the following theorem.

Theorem 2 ([22]). For any Boolean function f : Zn
2 → Z2 there exists a non-adaptive l2-MBQC that

deterministically evaluates it.

Proof (sketch). This follows directly from lemma 1 and the fact that every function can be written as a sum
of δ-functions f(i) =

∑

j∈Z
n
2
fjδ(i− j), fj ∈ Z2 for all inputs i ∈ Z

n
2 .

The number of qubits in the implementation of the δ-function is N= 2n − 1, which is optimal (see [22]).
We explore the question of optimality for arbitrary Boolean functions in more detail in section 4, as well as
other resource aspects related with l2-MBQC.

5
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3. Boolean functions as MBQC - (dependence on) Clifford hierarchy

In this section, we study the implementation of Boolean functions in l2-MBQC, restricted to the stabiliser
subtheory where only Pauli operators can be measured. In the deterministic, non-adaptive case such
l2-MBQCs admit a simple description, namely the entire computation can be expressed as a set of eigenvalue
equations that relate the inputs and outputs of the computation as follows:

N
⊗

k=1

Uk(ck(i))Mk(0)U
−1
k (ck(i))|ψ⟩= (−1)o(i)|ψ⟩ ∀i ∈ Z

n
2. (9)

In section 3.1, we prove that any quadratic Boolean function can be computed within the stabiliser
formalism. Conversely, any non-quadratic function requires gates from higher levels in the Clifford
hierarchy. In fact, the degree of a Boolean function in l2-MBQC relates to the phase terms in local
measurement operators of the form in equation (6), which in turn put a bound on the necessary level in the
Clifford hierarchy. We make this precise in section 3.2.

3.1. Quadratic Boolean functions and stabiliser formalism
The qubit stabiliser formalism is contextual. For instance, the prototypical Anders–Browne NAND-gate
computes a quadratic Boolean function. It is natural to ask whether stabiliser l2-MBQC can realise any
polynomial f : Zn

2 → Z2. However, this is not the case. In fact, non-adaptive, deterministic stabiliser MBQC is
limited to quadratic Boolean functions.

Theorem 3. Every non-adaptive, deterministic, level-2 (i.e. stabiliser) l2-MBQC computes a quadratic function.
Conversely, every quadratic function is computed by a non-adaptive, deterministic, level-2 l2-MBQC.

Proof (sketch). The first implication follows by noting that (−1)o(i)M(i) is in the stabiliser of the resource
state of the MBQC for all i ∈ Z

n
2 . Quadraticity of f is then a consequence of the (Abelian) group structure of

the stabiliser. For details, see appendix D. The converse direction follows from equation (B1) in appendix B
that every quadratic function can be computed in level-2 MBQC. In particular, as the delta function on two
bits can be computed within stabiliser l2-MBQC, any quadratic monomial can be computed. Finally, any
quadratic function can be computed by taking linear combinations of quadratic and linear terms via linear
post-processing.

For the probabilistic case, we need two additional concepts: the success probability for a MBQC and the
non-quadraticity of a Boolean function.

Definition 4 (success probability). Let f : Zn
2 → Z2 be a Boolean function, and let A be a MBQC, which

implements f with probability p(i) on inputs i ∈ Z
n
2 . We define the average success probability by Psucc =

∑

i∈Z
n
2
p(i)/2n.

Assume a deterministic MBQC computing function g is used to approximate the function f, then the
success probability is Psucc = 1− dH( f,g)/2n where dH( f,g) := |{i ∈ Z

n
2 | f(i) ̸= g(i)}| denotes the Hamming

distance between f and g. Clearly, Psucc = 1 if and only if f = g. In order to compute the success probability
for general functions, we measure how far it is from being quadratic (see e.g. [33]).

Definition 5 (non-quadraticity). Let f : Zn
2 → Z2 be a Boolean function. Then the non-quadraticity of f is

given by

NQ( f) :=min{dH( f,q) : q : Zn
2 → Z2 quadratic}. (10)

It then follows as a corollary of theorem 3 that

Corollary 1. Let f : Zn
2 → Z2 be an arbitrary Boolean function. The maximum success probability to

approximate f by a Boolean function using non-adaptive, deterministic, level-2 (i.e. stabiliser) l2-MBQC is

Psucc = 1− NQ( f)

2n
. (11)

Proof (sketch). The proof of this simply follows by noting that theorem 3 entails the MBQC must compute
some quadratic function qwith success probability 1− dH( f,q). The maximum success probability is achieved
by choosing q to minimise the Hamming distance dH, which is the non-quadraticity of f.

Usually, a non-adaptive, level-2 l2-MBQC does not yield deterministic outputs. Still, corollary 1 remains
true also in the probabilistic case. In other words, when restricted to stabiliser measurements (and stabiliser
states), the best approximation to a given Boolean function is always achieved with a deterministic l2-MBQC.

6
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Theorem 4. Let f : Zn
2 → Z2 be an arbitrary Boolean function. The maximum success probability of computing f

in (probabilistic) non-adaptive, level-2 (i.e. stabiliser) l2-MBQC is

Psucc = 1− NQ( f)

2n
. (12)

Proof (sketch). Aswith theorem 3, the proof exploits the group structure of the stabiliser in order to construct
a deterministic MBQC performing at least as well as a probabilistic one. For details, see appendix E.

In particular, this says that if f is not quadratic then the success probability will be less than one, and we
cannot demonstrate ‘strong’ nonlocality (contextuality) for this function. As a concrete case study, consider
example 2 in [34] that is an 8-bit input Boolean function withNQ( f) = 68. This entails an optimal success
probability of Psucc = 47/64≈ 0.734375.

Note also that the bound in theorem 4 is strict since for the stabiliser formalism deterministic strategies
are always optimal. However, it is not clear whether this is always the case. In particular, a similar problem
arises from the well-known CHSH inequality. While quantum correlations violate the classical bound, they
cannot win the related CHSH nonlocal game with certainty. This is different to the problem studied here,
where the restriction is not on the number of qubits involved but on the level in the Clifford hierarchy of the
gates used in equation (3). Nevertheless, this example shows that the MBQC which best approximates a given
Boolean function need not be a deterministic one.

3.2. Beyond quadratic functions
Theorem 3 shows that in the non-adaptive case, non-Clifford operations are required to evaluate general
(non-quadratic) Boolean functions f. In this section, we establish the necessity of operations belonging to
higher levels in the Clifford hierarchy depending on the degree of f.

We utilise a characterisation of the Clifford hierarchy due to Zeng et al [35]. We define a set of operations
known as semi-Clifford operations [35, 36].

Definition 6 (semi-Clifford hierarchy). We say a gate U ∈ Ck
N is a kth level semi-Clifford gate (on N qubits)

if U= C1DC2 where C1,C2 ∈ C2
N are Clifford gates, and D ∈ Ck

N is diagonal. We label the set of kth level semi-
Clifford gates (on N-qubits) as SCk

N.

In other words, gates in the semi-Clifford hierarchy are those that are diagonal up to Clifford operations.
Note in the above that D ∈ Ck

N necessarily, as for any U ∈ Ck
N one can verify that C1UC2 ∈ Ck

N

∀C1,C2 ∈ C2
N [35].

Theorem 5. Every non-adaptive, deterministic, level-D l2-MBQC computes functions of degree at most D.
Conversely, every function of degree D is computed by a non-adaptive, deterministic, level-D l2-MBQC.

Proof (sketch). For the first implication, we use the fact that single qubit Clifford hierarchy operators are semi-
Clifford operators (see [35]), in order to express themeasurement operators in theMBQCas a conjugated Pauli
operator by a diagonal Clifford hierarchy-operator. The result then follows from the characterisation of the
diagonal Clifford hierarchy in [37]. For details, see appendix F. For the converse direction, we use equation (B1)
in appendix B to construct the delta function on D-bits, which saturates the bound. Any function can then be
computed as a linear combination of D-bit or fewer delta functions.

Theorem 5 generalises theorem 3. If a non-adaptive l2-MBQC belonging to some level in the Clifford
hierarchy computes a polynomial of degree D, then it at least belongs to level-D in the Clifford hierarchy.

We remark that the analogous problem for qudits is open. In our argument we used the fact that the
semi-Clifford hierarchy is equal to the Clifford hierarchy for single qubits, SCk

1 = Ck
1 , which has not been

shown to hold for general qudits (see [38] for a more comprehensive discussion). For prime qudits it is
conjectured that all Clifford hierarchy gates are semi-Clifford, and has been proven true for the third-level
gates [38]. We also remark that certain gates do not belong to any finite level in the Clifford hierarchy. For
qubits, an example is the square root of the Hadamard,

√
H. For qudits an example is the phase gate

D3 = diag(1,1,−1).

4. Boolean functions as MBQC - (dependence on) qubit count

In this section, we search for the minimal number of qubits, also known as qubit count, needed to
implement a Boolean function f : Zn

2 → Z2 in non-adaptive, deterministic l2-MBQC.

Definition 7. Let f : Zn
2 → Z2. We call a non-adaptive l2-MBQC which deterministically implements f

optimal, if no other non-adaptive l2-MBQC exists which deterministically implements f on fewer qubits. The

7
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minimal number of qubits over all possible resource states is denoted by R(f ), while RGHZ( f) denotes the
minimal number of qubits when restricted to the n-qubit GHZ state in equation (4).

Note first that we have the freedom to manipulate f by any invertible linear transformation on the inputs
via pre-processing P. The resource cost R should therefore be an invariant under affine transformations. We
thus define an equivalence relation on all functions with signature f : Zn

2 → Z2 under affine transformations
as follows,

f↔ f ′ :⇐⇒∃P ∈Mat(n× n,Z2), rk(P) = n : f ′(i) = f(Pi) ∀i ∈ Z
n
2. (13)

Furthermore, in section 2 we have seen how the n-bit δ-function can be implemented as a non-adaptive
l2-MBQC on N= 2n − 1 qubits11. Hence, given an arbitrary Boolean function f : Zn

2 → Z2, one way to
implement it is by naively adding all terms in the sum f(i) =

∑

j∈Z
n
2
fjδ(i− j) with fj ∈ Z2 for all i ∈ Z

n
2 .

However, the minimal number of qubits is only subadditive in this as well as its polynomial representation.
To see this, we again consider the stabiliser case first.

4.1. Qubit count in stabiliser l2-MBQC
Recall that only quadratic functions can be computed deterministically using stabiliser l2-MBQCs. We now
find the minimal number of qubits to do so. Consider a quadratic Boolean function

f(x) =
n
∑

i=1

lixi +
∑

i<j

qi,jxixj (mod 2), li,qi,j ∈ Z2 (14)

and define a symmetric matrix Q(f ) such that Qi,i = 0 and Qi,j = Qj,i = qi,j. We denote by rk( f) the Z2-rank
of Q.

Theorem 6. Let f : Zn
2 → Z2 be a quadratic Boolean function. Let f be expressed as

f(x) =
n
∑

i=1

lixi +
∑

i<j

qi,jxixj (mod 2), li,qi,j ∈ Z2 (15)

Then f can be deterministically computed as a non-adaptive, level-2 (i.e. stabiliser) l2-MBQC on
R( f) = rk( f)+ 1 qubits, where rk( f) is the Z2-rank of the symmetric matrix Q(f).

Proof (sketch). The result is a straightforward application of the main theorem in [39]. For details, see
appendix G.

Theorem 6 replicates the Anders–Browne result as a special case, where o(i1, i2) = i1i2 ⊕ i1 ⊕ i2 is quadratic
with

Q=

(

0 1
1 0

)

. (16)

This is a rank 2 matrix and so the theorem says it can be computed using 3 qubits.
Note that theorem 6 suggests another resource measure: by theorem 3, within the stabiliser formalism

only quadratic functions can be computed; in fact, they can be computed efficiently in the number of qubits.
Unfortunately, as a consequence of theorem 3 we cannot use arguments based on stabilisers (as in the proof
of theorem 6) to understand the number of qubits as a resource also in the general case. Instead, in the next
section we will apply the Fourier transform between the polynomial and Z2-linear representation of Boolean
functions (see section 4.2.1) below to obtain a lower bound on the number of qubits for non-adaptive,
deterministic l2-MBQCs with a GHZ resource state12. This turns out to be a hard problem in general, yet we
show how to reproduce the bound in theorem 6, as well as other known bounds for R obtained in previous
sections.

4.2. Qubit count in l2-MBQC using GHZ states
By comparison with optimal bounds for Bell inequalities, finding the optimal l2-MBQC implementing a
given Boolean function is likely a difficult problem. Here, we approach this problem by fixing the resource
state to be a GHZ state, which we found to be universal for non-adaptive, deterministic l2-MBQC in
theorem 2. To this end, we will need some basic facts about the discrete Fourier transform.

11 Note that this is the same scaling behaviour as for the n-bit AND(i) =
∏n

j=1 ij, which is optimal by [22].
12 Recall that by theorem2GHZ-states are universal for (the computation of Boolean functions) in non-adaptive, deterministic l2-MBQC.
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4.2.1. Polynomial vs Z2-linear representation of Boolean functions
We introduce some tools to allow us to map between different representations of Boolean functions in
l2-MBQC. In particular, we introduce the Z2-linear representation of a Boolean function, in addition to its
polynomial representation. We show how to map between these representations using the discrete Fourier
transform. Our analysis closely resembles the one in [40], to which we refer the reader for more details. (See
also [41] for more details on Boolean function analysis.)

The polynomial representation of computational outputs is one useful way of characterising l2-MBQCs,
as the polynomial degree places important constraints on the resources required. In order to characterise the
optimal implementation of a given l2-MBQC, we consider another representation known as the Z2-linear
function representation. Any Boolean function f : Zn

2 → Z2 can be written in the following two ways, up to
an additive constant,

f(x) =
∑

a∈Z
n
2

Ca
(

⊕n
j=1ajxj

)

=
∑

b∈Z
n
2

Db





n
∏

j=1

x
bj
j



 , (17)

where Ca ∈ R, Db ∈ Z2 for all a,b ∈ Z
n
2 , and⊕ denotes addition modulo 213. We focus on the first

representation in terms of Z2-linear functions. In particular, we define the Z2-linear basis functions
φa(x) :=⊕n

j=1ajxj, and monomial basis functions πb(x) := 2W(b)−1
∏n

l=1 x
bl
l for 0 ̸= a,b ∈ Z

n
2 , φ0 = π0 := 1,

and whereW(b) := |{l ∈ {1, . . . ,n} | bl ̸= 0}| denotes the Hamming weight of b ∈ Z
n
2 . Both sets of functions

{φa | a ∈ Z
n
2} and {πb | b ∈ Z

n
2} are each linearly independent and generate the space of Boolean functions

on bit strings x ∈ Z
n
2 , as will be shown below. As such, we can determine the corresponding transformation

map between the coefficients Ca, Db. By equation (4) in [22], φa for a= (1, . . . ,1) ∈ Z
n
2 is given by

φa =⊕n
j=1xl =

∑

0̸=b∈Z
n
2

(−2)W(b)−1
n
∏

l=1

xbll . (18)

Using this, it is easy to see that we can write a given Z2-linear basis function φa as

φa =
∑

0̸=b∈aZn
2

(−2)W(b)−1
n
∏

l=1

xbll , (19)

where we have defined the set aZn
2 = {(a1b1, . . . ,anbn) ∈ Z

n
2 | ∀bi ∈ Z2}. More generally, we define the

symmetric product,

⟨πb,φa⟩ :=
{

1 if a= b= 0,

(−1)
∑n

j=1 ajbj−1 otherwise.
(20)

This defines a linear map F : R2n → R
2n with matrix coefficients Fπbϕa := ⟨πb,φa⟩14. From equation (20) it

follows that Fϕaπb =±1 and given that F has full rank (as a basis change) it has an inverse. In fact, for fixed
dimension n and with appropriate normalisation factorN = 2−

n
2 , F becomes a Hadamard transform and is

thus in particular orthogonal, hence, (NFπbϕa)
−1 =NFϕaπb =NFπbϕa . This generalises equation (18) and

provides an explicit translation between the two representations of Boolean functions underlying
equation (7).

More precisely, let f=
∑

a∈Z
n
2
Caφa, where (Ca)a∈Z

n
2
are the coefficients of f in the basis {φa | a ∈ Z

n
2}, then

F transforms these into coefficients (Db)b∈Z
n
2
in its polynomial representation f=

∑

b∈Z
n
2
Db(

1
2W(b)−1πb),

f= F





∑

a∈Z
n
2

Caφa



=
∑

a∈Z
n
2

Ca





∑

0̸=b∈aZn
2

(−2)W(b)−1
n
∏

l=1

xbll



=
∑

b∈Z
n
2

∑

a∈Z
n
2

Ca⟨πb,φa⟩πb =
∑

b

Dbπb. (21)

In particular, note that the local phases ϑk from equation (7) simply correspond to the coefficients Ca under
the mapping F−1 applied to the output function of the l2-MBQC (in its polynomial representation).

13 Note that the Ca are not arbitrary real numbers, but are in fact dyadic rationals.
14 Note that while F is a map between functions over bit strings i ∈ Zn

2 with real coefficients, it reduces to a map between Boolean
functions for appropriate Ca (andDb). The real coefficients corresponding to a Boolean function f are also known as theWalsh spectrum
of f.
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4.2.2. Optimising the qubit count
More precisely, let f=

∑

a∈Z
n
2
Caφa be a Boolean function, which is implemented (in terms of the output

function) of a non-adaptive, deterministic l2-MBQC with a GHZ state. By theorem 1, the coefficients Ca are
encoded in terms of local phases, which in turn define local measurement operators via equation (6). It
follows that the minimal number of qubits required to implement f deterministically as a non-adaptive
l2-MBQC with a GHZ state corresponds with the minimal number of terms in the Z2-linear representation
of f.

Let f=
∑

b∈Z
n
2
Dbπb be the polynomial representation of f. Then we obtain a corresponding

representation in terms of Z2-linear functions by applying the inverse discrete Fourier transform F−1 in
equation (21). As we will see in the next sections, for monomials and other highly symmetric functions this
representation is already minimal in the number of non-zero coefficients in its Z2-linear representation, and
thus in the number of qubits in the implementation as l2-MBQC. However, for more general Boolean
functions this is no longer the case. The reason is that we may change the representation of f in terms of
Z2-linear functions, as long as f describes the same Boolean function. To give an example, the minimal
number of Z2-linear terms of the Boolean function f : Z4

2 → Z2, f(i) = i1i2 + i3i4 arises by subtracting
the term z= 4i1i2i3i4 − 2i1i2(i3 + i4) from the ‘naive’ representation f(i) = 1

2 (i1 + i2 − i1 ⊕ i2)+
1
2 (i3 + i4 − i3 ⊕ i4) given by adding the optimal representations of the Boolean functions i1i2 and i3i4.

More generally, for f : Zn
2 → Z2, f(x) =

∑

b∈Z
n
2
Db
(

∏n
j=1 x

bj
j

)

define the linear span of zero polynomials

Z( f) = span







2m
∑

b∈Z
n
2

Db





n
∏

j=1

x
bj
j





∣

∣ n⩾m⩾ 1,Db ∈ Z2∀b ∈ Z
n
2







. (22)

In addition to the linear equivalence relation in equation (13), we have the following characterisation.

Theorem 7. The minimal number of qubits RGHZ( f) required to deterministically implement a given Boolean
function f : Zn

2 → Z2 in non-adaptive l2-MBQC with a GHZ state, is the minimal number of non-zero
coefficients Ca in F−1( f) in equation (21) under the relation f∼ f ′ ⇐⇒ f ′ = f+ z, z ∈ Z( f) of equation (22).

Proof (sketch). From the above discussion, we know that the minimal number of qubits to implement f as
a non-adaptive, deterministic l2-MBQC with a GHZ state corresponds to the minimal number of terms in
the Z2-linear representation of f. Recall that F : R2n → R

2n in equation (21) is an orthogonal linear map,
in particular, it has full rank. It follows that

∑

aCaF(φa) = F(
∑

aCaφa) = 0 for Ca ∈ R implies Ca = 0 for
all a ∈ Z

n
2 . Now let f=

∑

aCaφa =
∑

aC
′
aφa such that F(

∑

aCaφa) = F(
∑

aC
′
aφa) (mod 2). It follows that

F(
∑

aCaφa) = F(
∑

aC
′
aφa)+ z for some z ∈ R

2n with z= 0 (mod 2). Since {πb}b∈Z
n
2
is a basis of R2n , we

conclude that F(
∑

aCaφa) = F(
∑

aC
′
aφa)+ z with z ∈ Z( f). Consequently, the optimal implementation of f

is given by minimising the number of terms in the Z2-linear representation of F−1( f+ z) over all z ∈ Z( f)15.

The ambiguity in the Z2-linear representation of Boolean functions makes computing the qubit count in
non-adaptive, deterministic l2-MBQC a complex task in general. Since the number of terms in equation (22)
grows doubly exponentially with n, a brute force search is generally infeasible. Moreover, the existence of a
general solution as in the case of quadratic functions within stabiliser l2-MBQC via theorem 3 seems unlikely
by comparison with similar problems in circuit synthesis. For instance, the minimal number of T-gates can
be related to minimal number of mod-2 linear functions with odd coefficients. Solving the latter relates to
minimum distance decoding in punctured Reed–Muller codes which is hard in general [26, 27].

Nevertheless, we can use theorem 7, together with the discrete Fourier transform in equation (21), to
obtain an upper bound on the qubit count. In the remainder of this section, we exemplify this analysis in two
cases: the n-bit δ-function and elementary symmetric functions.

Example 1 (n-bit δ-function). Given a general output function in its polynomial representation o(i) we may
useF−1 to obtain its representation in terms of Z2-linear basis functions and thus study its scaling behaviour.
For monomials this decomposition is optimal with respect to minimising necessary Z2-linear terms.

Corollary 2. In order to implement the monomial f : Zn
2 → Z2, f(x) =

∏n
j=1 xj in non-adaptive, deterministic

l2-MBQC with a GHZ resource state one requires no fewer than N= 2n − 1 qubits, i.e. RGHZ( f) = N.

15 We remark that for d> 2 the minimisation over zero polynomials in equation (22) only provides an upper bound to RGHZ. The reason
is that the representation of the output function via Z2-linear terms in equation (7) breaks down for ld-MBQCs.
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Proof (sketch). Note that f has degree deg( f) = n=W(b) for b= (1)n := (1, . . . ,1) ∈ Z
n
2 , hence, by

equation (21) it has coefficient 1
2W(b)−1 =

1
2n−1 . Explicitly, the coefficients in the Z2-linear representation under

the transformation F−1 read:

F−1





n
∏

j=1

xj





b=(1)n

= F−1





n
∏

j=1

x
bj
j



= F−1

(

1

2W(b)−1
πb

)

=
∑

a∈Z
n
2

1

2W(b)−1
⟨φa,πb⟩φa =

1

2n−1

∑

a∈Z
n
2

(−1)W(a)−1 ⊕n
j=1 ajxj.

Since these terms are all odd multiples of 1
2W(b)−1 , they can only be reduced by a zero term of degree at least n,

however, there are no such terms in Z(f ), hence, the representation in terms of Z2-linear functions under the
transformation F−1 is already optimal. Finally, note that the overlap with φa, a= 0 can be implemented by
post-processing, leaving N= 2n − 1 non-zero terms.

Corollary 2 reproduces proposition 1 in [22]. Note also that the n-bit δ-function arises from monomials
by linear pre-composition in equation (13), hence, RGHZ(δ) = 2n − 1.

Example 2. (Elementary symmetric functions). While for monomials the transformation in equation (21) is
already optimal in the number of non-zero coefficients (and thus in the number of qubits in the implement-
ation as non-adaptive, deterministic l2-MBQC with a GHZ resource state), this is no longer the case for more
general polynomials. Nevertheless, for certain symmetric functions the minimisation problem in theorem 7
under the equivalence relation in equation (22) simplifies.

As an example we consider elementary symmetric functions,

Σn
k(x) =

∑

i1<...<ik
ij∈{1,...,n}

xi1 . . .xik , k⩽ n.

Plugging Σn
k into the inverse transformation in equation (21) results in a total number of terms equal to

∑k
l=1

(n
l

)

. It turns out that we can minimise this number by (at least)
(n
k

)

− 1 as follows. We add the zero
polynomial z ∈ Z(Σn

k) given by

z= (−2)n−kx1 . . .xn +(−2)n−k−1
∑

i1<...<in−1

ij∈{1,...,n}

xi1 . . .xin−1 + . . .+(−2)
∑

i1<...<ik+1

ij∈{1,...,n}

xi1 . . .xik+1

=

n−k−1
∑

l=0

(−2)n−k−l Σn
l (x).

By construction,F−1(Σn
k) andF−1(z) have the same (smallest) coefficient 1

2k−1 , and we can thus compare the
coefficients in their representation based onZ2-linear functions φa, a ∈ Z

n
2 . Clearly,F−1(Σn

k + z) contains the

term x1 ⊕ . . .⊕ xn and thus C
Σn

k+z
W(a)=n =

(−1)n−k

2k−1 . For the terms of length k⩽m< n, the coefficients C
Σn

k+z
W(a)=m

contain contributions from all higher degree terms in the polynomial representation of Σn
k + z:

C
Σn

k+z
W(a)=m =

1

2k−1
(−1)(n−k)+(m−1)

(

1−
(

n−m

n−m− 1

)

+

(

n−m

n−m− 2

)

− . . .+(−1)n−m

)

=
1

2k−1
(−1)(n−k)+(m−1)

(

n−m
∑

l=0

(−1)l
(

n−m

n−m− l

)

)

= 0.

Hence, with respect to monomials of degree k⩽m inΣn
k + z, we have reduced the overall number of non-zero

coefficients by
(n
k

)

− 1. Note also that the coefficients of the remaining monomials of degree 1⩽m< k are
non-zero since there, the above sum is truncated and reads

C
Σn

k+z
W(a)=m =

1

2k−1
(−1)(n−k)+(m−1)

(

1−
(

n−m

n−m− 1

)

+

(

n−m

n−m− 2

)

− . . .+(−1)n−k

(

n−m

k−m

))

=
1

2k−1
(−1)(n−k)+(m−1)

(

n−k
∑

l=0

(−1)l
(

n−m

n−m− l

)

)

̸= 0,
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thus leaving a total of
∑k−1

l=1

(n
l

)

+ 1 terms in the Z2-linear representation, hence, RGHZ(Σ
n
k)⩽

∑k−1
l=1

(n
l

)

+ 1.
Note also that: (a) RGHZ(Σ

n
2) =

(n
1

)

+ 1= n+ 1 confirms theorem 6, since Σn
2 is quadratic with rk(Σn

2) = n

(see also proposition 2 in [22]), and (b) RGHZ(Σ
n
n) =

∑n−1
l=1

(n
l

)

+ 1= 2n − 1 reproduces the minimal number
of qubits within l2-MBQC for monomials in corollary 2 (see also proposition 1 in [22]). Comparing the latter,
we draw the following conclusion from the above classification.

Corollary 3. There are Boolean functions f,g : Zn
2 → Z2 such that deg( f)> deg(g), yet RGHZ( f)< RGHZ(g).

Proof (sketch). This follows immediately by comparing the linear scaling (in the number of qubits) of quad-
ratic Boolean functions according to theorem 6 with the exponential scaling of the symmetric function Σn

n

and the n-qubit δ-function in corollary 2. For instance, RGHZ(Σ
7
2)> RGHZ(Σ

3
3) despite deg(Σ

3
3) = 3> 2=

deg(Σ7
2).

In summary, we find that—unlike the contextuality threshold in [13] and the close correspondence with
the Clifford hierarchy in theorem 5—the degree is not sufficient to compare Boolean functions with respect
to their optimal representation in non-adaptive, deterministic l2-MBQC with a GHZ resource state. The
computational classification of the latter thus possesses a rich substructure beyond the non-contextual case.

5. Discussion

We have assessed the ability to compute Boolean functions in non-adaptive, deterministic l2-MBQC under
various resource restrictions. We have considered the computational power of stabiliser l2-MBQC, as well as
l2-MBQC involving operations from higher levels in the Clifford hierarchy. We find that stabiliser l2-MBQCs
can only compute quadratic functions with high probability (with the Anders and Browne example [20]
being a prototypical example), while higher degree polynomials require operations from increasing levels in
the Clifford hierarchy. In this way, we obtain a hierarchy of resources for non-adaptive, deterministic
l2-MBQC beyond contextuality in [21].

In addition to the necessity of certain quantum operations in l2-MBQC for evaluating Boolean functions,
we posed the resource-theoretic problem of determining the minimal number of qubits needed to
implement a given Boolean function within non-adaptive, deterministic l2-MBQC. Clearly, this is an
important and often limiting resource for near-term quantum devices. We characterise this problem by
focusing on GHZ resource states and find that it too reveals a complex substructure to contextuality. At the
heart of this is the (quantum Fourier) transformation mapping between two different representations of a
Boolean function, as polynomial and as a Z2-linear sum. Interestingly, our characterisation closely resembles
known hard problems in circuit synthesis and minimal distance coding in punctured Reed–Muller codes
[26], suggesting that finding the minimal number of qubits is hard in general. Nevertheless, in certain cases
the sharp bound can be found, such as for quadratic functions within stabiliser l2-MBQC.

Finally, we comment on some close connections and extensions of our results.

5.1. Adaptivity
The motivation for our setting was based on the recent results for shallow circuits, which constitute the first
proof of a quantum–classical gap [15]. For this class of circuits, a constant depth circuit of one and two qubit
gates is performed—that depends on the classical input bit string—followed by a measurement in the
computational basis. Conversely, we consider a fixed unitary circuit (i.e. the resource state preparation),
followed by a measurement that depends on the input bit string. This simplifies the analysis and allows us to
derive strong bounds on resources in this scheme, but the same reasoning can also be applied in the adaptive
case. As outlined in more detail in appendix H, within the latter the exponential scaling in qubit count, along
with the necessity of non-Clifford gates for certain functions in the non-adaptive case quickly collapse.
Nevertheless, one can sometimes trade off between space and time resources such as in [15]. We hope that
the non-adaptive case can be leveraged to understand resource costs for more general adaptive computations.

5.2. Magic, contextuality, and cohomology
Both magic and contextuality can be classified by cohomology. In the former case, certain gates in the Dth
level in the Clifford hierarchy CD

N on N qubits can be classified by elements of the group cohomology
HD(ZN

2 ,U(1)), following for example [42], while in the latter case, group cohomology also appears as a
classifier for certain proofs of contextuality [7, 8, 43, 44]. As both magic and contextuality appear as
resources for quantum computation, it is tempting to construct a unified framework for resource theories
based on cohomology.
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Recently, the role of magic in certain many-body systems known as symmetry-protected topological
(SPT) phases16 has been studied [46–48], whereby all states within a phase of matter possess magic. Such
SPT phases have also been identified as resources for MBQC [49–54]. It would be interesting to study the role
of many-body magic for computational universality, particularly with the example of [51], which is universal
with only Pauli measurements. Further, it would be interesting to consider the role of contextuality in the
fault-tolerant setting—particularly fault-tolerant MBQC [16, 55–59]—where non-Clifford operations
require vastly more resources than Clifford operations (and indeed is the motivation for considering magic
as a resource in the present setting).
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Appendix A. Proof of theorem 1

The proof consists of two parts: first, we prove equation (7), assuming that local measurement operators are
of the form in equation (6), i.e.Mk = X(eiπϑk); second, we prove that measurements are necessarily of this
form.

For the first part, note the relation between eigenstates ofMk = X(eiπϑk) and the computational basis:

|mk⟩ϑk =
1√
2
(|0⟩+(−1)mkeiπϑk |1⟩).

Conversely, the computational basis expressed in terms of eigenstates of X(eiπϑk) reads

|qk⟩=
1√
2
e−iπqkϑk

1
∑

m=0

(−1)qkmk |mk⟩ϑk . (A1)

We encode the choice of local measurement operators byMk(ck(i)) = X(eiπck(i)ϑk) for linear functions
ck : Zn

2 → Z2 and parameters ϑk ∈ [0,1)17. In particular, note thatM(0) = X. Rewriting the N-qubit GHZ
resource state in equation (4) in terms eigenstates of the local measurement bases thus yields

|ψ⟩= 1√
2

1
∑

q=0

|q⟩⊗N =
1√
2

1
∑

q=0

⊗N
k=1

(

1√
2
e−iπqck(i)ϑk

1
∑

mk=0

(−1)qmk |mk⟩ϑ
)

=

(

1√
2

)N+1 1
∑

q=0





∑

m∈Z
N
2

(−1)q(
∑N

k=1mk−o ′(i)) ⊗N
k=1 |mk⟩ϑ





=

(

1√
2

)N−1











∑

m∈Z
N
2 ,

⊕N
k=1mk=o ′(i)

⊗N
k=1|mk⟩ϑ











, (A2)

where we defined (−1)o
′(i) = e−iπqck(i)ϑk and we used that |ψ⟩ is an eigenstate of the global measurement

operatorsM(i) =⊗N
k=1Mk(ck(i)). Finally, since the output function of the non-adaptive, deterministic

l2-MBQC reads o(i) =⊕N
k=1mk, we find o ′ = o, hence18,

16 We remark that such phases are also classified by group cohomology [45].
17 In other words, ck = φak with 0 ̸= ak ∈ Zn

2 for every k ∈ {1, . . . ,N} (see section 4.2.1).
18 A similar relation has been derived in equation (10) in [32] for three-qubit GHZ states.
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o(i) =
N
∑

k=1

ck(i)ϑk (mod 2).

We are left to show the second part: that every local measurement operator is of the form in equation
(6)19. To see this, note that the global measurement operatorsM(i) =⊗N

k=1Mk(ck(i)) are such that |ψ⟩ is a
parity eigenstate ofM(i) for all inputs i ∈ Z

n
2 . For every i ∈ Z

n
2 , rewrite |ψ⟩ in the local eigenbases

corresponding to theMk(ck(i)). This yields a superposition of product states |m⟩φ,ϑ =⊗N
k=1|mk⟩φ,ϑ, where

we again denote every product state by the Boolean vectorm ∈ Z
N
2 such that

|0⟩φ,ϑ = sin(ϕ)|0⟩+ eπiϑ cos(ϕ)|1⟩ |1⟩φ,ϑ = cos(ϕ)|0⟩− eπiϑ sin(ϕ)|1⟩.

In particular, note that |m⟩ϑ = |m⟩π
4 ,ϑ

. Clearly, the product state |m⟩φ,ϑ has paritym :=⊕N
k=1mk. Moreover,

the coefficient to the product state |m⟩φ,ϑ reads

φ,ϑ⟨m|ψ⟩= 1√
2

(

N
∏

k=1

Φmk(ϕk)+ (−1)meπi
∑N

k=1ϑk

N
∏

k=1

Φmk⊕1(ϕk)

)

, (A3)

where we defined Φ0(ϕk) = sin(ϕk) and Φ1(ϕk) = cos(ϕk), and the two summands correspond to the inner
product between the two summands in |ψ⟩= 1√

2
(|0⟩⊗N + |1⟩⊗N) with |m⟩φ,ϑ

20.

We have a parity eigenstate if φ,ϑ⟨m|ψ⟩= 0 for allm withm ̸= o for some o ∈ Z2. We thus obtain 2N

2
constraints from equation (A3), both on absolute values and phases of the form

N
∏

k=1

Φmk(ϕk)+ (−1)meπi
∑N

k=1ϑk

N
∏

k=1

Φmk⊕1(ϕk) = 0 ∀m ∈ Z
N
2 s.t.m ̸= o. (A4)

Clearly, the constraints on absolute values are satisfied for ϕ= π
4 . Moreover, for N⩾ 3 all solutions are of

this form. First, for N⩾ 3 odd, consider pairs of constraints in equation (A3) of the same parity
m=⊕N

k=1mk. Specifically, given anym ∈ Z
N
2 and another vector arising fromm by flipping all bits except the

one at site k. Then we have the following pair of constraints,

Φmk(ϕk)
∏

k′ ̸=k

Φmk′ (ϕk′)+ (−1)meπi
∑N

k=1ϑkΦmk⊕1(ϕk)
∏

k′ ̸=k

Φmk′⊕1(ϕk′) = 0

Φmk(ϕk)
∏

k′ ̸=k

Φmk′⊕1(ϕk′)+ (−1)meπi
∑N

k=1ϑkΦmk⊕1(ϕk)
∏

k′ ̸=k

Φmk′ (ϕk′) = 0

These imply
∏

k ′ ̸=kΦ
mk ′ (φk ′ )

∏
k ′ ̸=kΦ

mk ′⊕1(φk ′ )
= (−1)m+1eπi

∑N
k=1ϑk Φ

mk⊕1(φk)
Φmk (φk)

=
∏

k ′ ̸=kΦ
mk ′⊕1(φk ′ )∏

k ′ ̸=kΦ
mk ′ (φk ′ )

and thus

| sin(ϕk)|= |cos(ϕk)|, hence, ϕk =
π
4 . For N even, similar constraints yield |Φmk(ϕk)Φ

mk ′ (ϕk ′)|=
|Φmk⊕1(ϕk)Φ

mk ′⊕1(ϕk ′)|. For N ̸= 2 we thus again find ϕk =
π
4 , since for another pair of constraints in

equation (A3) also |Φmk(ϕk)Φ
mk ′⊕1(ϕk ′)|= |Φmk+⊕1(ϕk)Φ

mk ′ (ϕk ′)|, hence, |Φmk ′ (φk ′ )|
|Φmk ′⊕1(φk ′ )|

= |Φmk⊕1(φk)|
|Φmk (φk)| =

|Φmk ′⊕1(φk ′ )|
|Φmk ′ (φk ′ )|

. Finally, for all N > 2 we find (−1)m+1eπi
∑N

k=1ϑk = 1, hence, eπi
∑N

k=1ϑk = (−1)m+1 = (−1)o,

which recovers the first part of the proof.

Appendix B. Proof of Lemma 1

Consider the resource state given by the N-qubit GHZ state |ψ⟩ in equation (4) with N= 2n − 1, and
consider the measurement procedure 0→M(0) = X and 1→M(1) = X(eiπϑ) with measurements in
equation (6), which we re-state here for convenience,

X(eiπϑ) =

(

0 e−iπϑ

eiπϑ 0

)

X(eiπϑ)|q⟩= eiπ(1−2q)ϑ|q⊕ 1⟩.

As before, the measurement operatorsMk(ck(i)) = X(eiπck(i)ϑk) are specified by linear functions ck : Zn
2 → Z2.

In particular, we set

ck(i) := φa(i) =⊕n
j=1ajij, 0 ̸= a ∈ Z

n
2.

19 This is essentially the same argument as the one given in the proof of theorem 4 in [32]. We add it here for completeness.
20 Note that local measurements in the computational basis only change the resource state and can thus be neglected.
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In other words, the 2n − 1 qubits in |ψ⟩ are indexed by vectors 0 ̸= a ∈ Z
n
2 . We prove that this indeed allows

us to compute the n-bit δ-function in equation (8) for a suitable ϑk = ϑ.
Note that by symmetry the output function o can be re-written as

o(i) = 1
2n−1

∑

a∈Z
n
2
φa(i) =

1
2n−1

∑

a∈Z
n
2
φi(a). Since φi : Zn

2 → Z2 for 0 ̸= i ∈ Z
n
2 is a non-zero linear function,

by the rank-nullity theorem, the rank of its kernel is n− 1. In turn, it follows that the number of terms
contributing to the sum

∑

a∈Z
n
2
φi(a) reads 2n−1 for every 0 ̸= i ∈ Z

n
2 , while it evaluates to zero for i= 0

21.
Consequently, by fixing the parameter

ϑ= 2−(n−1) (mod 2) ⇐⇒ (eπiϑ)2
n−1

=−1, (B1)

we find o(i) = δ(i)⊕ 1. The n-bit δ-function is then computed by straightforward post-processing.

Appendix C. Universality of non-adaptive, deterministic ld-MBQCwith d prime

In this section we show that any function f : Zn
d → Zd for d prime, can be implemented using a non-adaptive,

deterministic ld-MBQC. We will follow a similar strategy to the proof of theorem 2 in appendix A. We start
by choosing measurement operators for prime dimension d similar to those in in equation (6), namely

M(0)|q⟩ := X|q⟩= |q⊕ 1⟩, M(c)|q⟩ := θ(c)χcqd−1 |q⊕ 1⟩ χ,θ(c) ∈ U(1), 1⩽ c⩽ d− 1.

If we set θ(c)d = χ−(d−1)c we haveM(c)d = 1 for all c ∈ Zd. With ω = e
2πi
d , we find the following eigenstates,

|m⟩θ(c) =
1√
d
(|0⟩+ω−mθ(c)|1⟩+(ω−mθ(c))2χc|2⟩+ . . .+(ω−mθ(c))d−1(χc)d−2|d− 1⟩)

=
1√
d

d−1
∑

q=0

(ω−mθ(c))q(χc)(q−1)qd−1 |q⟩,

with corresponding expressions in terms of computational basis states,

|q⟩= 1√
d

1

θ(c)qχc(q−1)qd−1

d−1
∑

m=0

ωqm|m⟩θ(c), ∀c ∈ Zd. (C1)

We fix the resource state to be the N-qudit GHZ state for N= dn − 1,

|ψ⟩= 1√
d

d−1
∑

q=0

|q⟩⊗N.

Assume that the output function o : Zn
d → Zd is encoded in the phase relations as follows

∏

1⩽k⩽dn−1

θ(ck(i))
qχck(i)(q−1)qd−1

= ωqo(i). (C2)

Rewriting |ψ⟩ in terms of the respective measurement bases via equation (C1) then yields

|ψ⟩= 1√
d

d−1
∑

q=0

⊗N
k=1

(

1√
d

1

θ(ck(i))qχck(i)(q−1)qd−1

d−1
∑

mk=0

ωqmk |mk⟩θ(ck)
)

=

(

1√
d

)N+1 d−1
∑

q=0



ω−qo(i)
∑

m∈Z
N
d

⊗N
k=1ω

qmk |mk⟩θ(ck)





=

(

1√
d

)N+1 d−1
∑

q=0





∑

m∈Z
N
d

ωq(
∑N

k=1mk−o(i)) ⊗N
k=1 |mk⟩θ(ck)





=

(

1√
d

)N−1
∑

m∈Z
N
d ,∑N

k=1mk=o(i) (mod d)

⊗N
k=1|mk⟩θ(ck).

21 We thank an anonymous referee for improving an earlier version of the argument.
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It follows that |ψ⟩ is a parity∑N
k=1mk = o(i) (mod d) eigenstate for all operatorsM(i) with i ∈ Z

n
d.

We thus want to show that we can satisfy the phase relations in equation (C2) for any o : Zn
d → Zd by

choosing suitable linear functions for the measurement settings ck. Similar to the case of Boolean functions
in section 4.2.1, we take as a basis for the space of functions f : Zn

d → Zd all (non-zero) linear functions of the
form φa(i) =⊕n

j=1ajij for 0 ̸= a ∈ Z
n
d.

First, consider a single non-zero entry, Zn
d ∋ i= (i1,0, . . . ,0) and let a such that a1 ̸= 0. There is

(d− 1)-fold degeneracy resulting from changing a to a ′ such that a ′
1 = ra1 for some 0 ̸= r ∈ Zd and a ′

j = aj
for all j> 2. This degeneracy yields a the local phase factor22

φ(q) :=
d−1
∏

c=0

θ(c)qχc(q−1)qd−1

= θqχ
∑d−1

c=0 c(q−1)qd−1

= θqχ
d(d−1)

2 (q−1)qd−1

, (C3)

where we set θ :=
∏d−1

c=0 θ(c). Furthermore, the number of functions φa with a1 ̸= 0 counts
∑n−1

k=0

(n−1
k

)

(d− 1)k = dn−1, hence, the overall phase factor in equation (C2) reads φ(q)d
n−1

.
For the general case, we again write the output function as o(i) = 1

dn−1

∑

a∈Z
n
d
φa(i) =

1
dn−1

∑

a∈Z
n
d
φi(a),

and invoke the rank-nullity theorem to deduce the rank of the kernel of every function φi to be n− 1. The
number of terms contributing to the sum

∑

a∈Z
n
d
φi(a) thus reads 0 for i= 0 and (d− 1)dn−1 for every

0 ̸= i ∈ Z
n
d, where the first factor (d− 1) will result in the phase φ(q) from equation (C3), such that the

overall phase is φ(q)d
n−1

.
Finally, we relate this global phase factor to the local phases θ(c) and χ. Since,

θd =

(

d−1
∏

c=1

θ(c)

)d

=
d−1
∏

c=1

χ−(d−1)c = χ−(d−1)
∑d−1

k=1 c = χ− d(d−1)2

2 , (C4)

we need to choose θ(c) for 1⩽ c⩽ d− 1 such that θ = χ− (d−1)2

2 , e.g. θ(c) := χ− c(d−1)
d . Next, we insert

equation (C4) into equation (C3) and compute the global phase factors,

φ(q)d
n−1

=

(

χ− (d−1)2

2 q ·χ(q−1) d(d−1)
2 qd−1

)dn−1

=







1 if q= 0

χ− dn−1d(d−1)
2

(

χ−dn−1 (d−1)
2

)q
if 1⩽ q⩽ d− 1

.

We may thus set χ− dn−1(d−1)
2 = ω from which it follows that

(

χ− dn−1(d−1)
2

)d

= 1, hence, φ(q)d
n−1

= ωq. We

obtain the following output function,

o(i) =

{

0 if i= 0

1 if i ̸= 0
, (C5)

from which we compute δ(i) = (d− 1)o(i)+ 1 by simple post-processing.
Finally, as in theorem 2 the result follows since every function can be written as a sum of δ-functions,

f(i) =
∑

j∈Z
n
d
fjδ(i− j), fj ∈ Zd for all inputs i ∈ Z

n
d.

Appendix D. Proof of Theorem 3

Recall from definition 1 that a non-adaptive, deterministic, level-2 (i.e. stabiliser) l2-MBQC is specified by
the following data: P ∈Mat(N× n,Z2) is the classical, linear pre-processing; |ψ⟩ is an N-qubit stabiliser
resource state; andMk(ck(i)) is a single qubit Pauli operator for every ck(i) = Pi, input i ∈ Z

n
2 and

k ∈ {1, . . . ,N}. Given a stabiliser l2-MBQC as above, note that the exact same measurement statistics are
obtained if we instead rotate |ψ⟩ by some local Clifford operations and conjugate the measurement settings
by the inverse Clifford operations. Therefore, we can assume without loss of generality thatMk(0) = Xk and
Mk(1) = Zk. We denoteM(c= Pi) to be the tensor product of unitaries measured in this canonical choice.

Consider the quadratic function f(x) =
∑n

i=1 lixi +
∑

i<j qi,jxixj with associated matrix Q. We require

M(0)|ψ⟩= (+1)|ψ⟩ (D1)

22 Note that we are abusing notation slightly by using modulo-d arithmetic over phases with different periods. However, as the functions
are computed classically the input is always an element in Zd.
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M(Px)|ψ⟩= (−1)f(x)|ψ⟩ ∀0 ̸= x ∈ Z
n
2. (D2)

If we denote by S the stabiliser of |ψ⟩, this can be restated asM(0) ∈ S and (−1)f(x)M(Px) ∈ S for all
0 ̸= x ∈ Z

n
2 . Under group closure of the stabiliser we have (−1)f(x)M(Px)M(0) ∈ S . Note thatM(0) = X⊗N

andM(Px) will be a tensor product of X and Z operators. Therefore, the productM(Px)M(0) is a tensor
product of the identity and Y operators, possibly with some extra phase. We define

Q(u) :=
N
⊗

k=1

(iY)uk = iW(u)
N
⊗

k=1

Yuk , (D3)

where we recall thatW(u) := |{k ∈ {1, . . . ,N} | uk ̸= 0}| denotes the Hamming weight of u ∈ Z
N
2 , and we

observe thatM(Px)M(0) = Q(Px). Therefore, (−1)f(x)Q(Px) ∈ S for all 0 ̸= x ∈ Z
n
2 . In particular, for

x= (1,0, . . .)T and x= (0,1, . . .)T we have (−1)l1Q(p1) ∈ S , (−1)l2Q(p2) ∈ S , where we write pj to denote
the jth column of P.

Assuming the stabiliser is abelian, Q(Px) ought to be Hermitian and soW(Px) = 0 (mod 2) for all
x ∈ Z

n
2 . Next we note that we have the relation

Q(u)Q(v) = (−1)u·vQ(u⊕ v). (D4)

Since (−1)l1Q(p1) ∈ S and (−1)l2Q(p2) ∈ S , we have (−1)l1+l2Q(p1)Q(p2) ∈ S by group closure. Using the
above relation, this entails that (−1)l1+l2+p1.p2Q(p1 ⊕ p2) ∈ S , where p1.p2 is the dot product of these vectors.
However, we also know that (−1)f(1,1,...)Q(P(1,1,0, . . . ,0)T) ∈ S . These two results are only compatible if

(−1)l1+l2+p1.p2 = (−1)l1+l2+q1,2 (D5)

and so p1.p2 = q1,2 (mod 2). A similar argument shows that for all i, j ∈ {1, . . . ,n} we must have

pi.pj = qi,j (mod 2) (D6)

W(pi) = 0 (mod 2).

We have so far checked inputs x ∈ Z
n
2 with Hamming weightW(x)⩽ 2. More generally, let x ∈ Z

n
2 be

arbitrary such that Px=
⊕n

i=1pixi. For every i ∈ {1, . . . ,n} with xi = 1, we find (−1)liQ(pi) ∈ S as before,
hence, by group closure

n
∏

i=1

(−1)lixiQ(pixi) = (−1)
∑n

i=1 lixi

n
∏

i=1

Q(pixi) ∈ S. (D7)

Repeated application of equation (D4) then yields

n
∏

i=1

Q(pixi) = (−1)
∑

i<j pi.pjxixjQ

(

n
⊕

i=1

pixi

)

= (−1)
∑

i<j qi,jxixjQ(Px), (D8)

where in the second line we have used pi.pj = qi,j from equation (D6). Combining equations (D7) and (D8)
gives

(−1)
∑n

i=1 lixi+
∑

i<j qi,jxixjQ(Px) = (−1)f(x)Q(Px) ∈ S. (D9)

This proves that any quadratic function can be computed within non-adaptive, deterministic, level-2
l2-MBQC. Conversely, for any Boolean function f : Zn

2 → Z2 the above argument shows that only its
quadratic part can be computed deterministically. Hence, f can be computed by a non-adaptive,
deterministic, level-2 l2-MBQC if and only if f is quadratic.
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Appendix E. Proof of Theorem 4

In this section, we prove theorem 4, which bounds the success probability of non-adaptive, level-2 (i.e.
stabiliser) l2-MBQC. Let f : Zn

2 → Z2 be a Boolean function. Then the closest Boolean function (in Hamming
distance) which can be deterministically computed in non-adaptive, level-2 l2-MBQC is a quadratic
function. Hence, the success probability is determined by the non-quadraticity of f if we restrict to
deterministic l2-MBQC (recall corollary 1). However, it is not immediately clear that a deterministic
l2-MBQC necessarily performs best, i.e. it maximises the success probability. Here we show that for
non-adaptive, level-2 l2-MBQC this is indeed the case.

Let A be a non-adaptive, level-2 l2-MBQC that given x ∈ Z
n
2 , outputs f(x) with probability pA(x) so that

Psucc(A) =
1

2n

∑

x∈Z
n
2

pA(x). (E1)

If A is probabilistic, we let DA := {x ∈ Z
n
2 | pA(x) ∈ {0,1}} denote the subset of values such that the outcome

is deterministic. We denote the complement by RA := Z
n
2\DA, which is the random subset on which

0< pA(x)< 1. If RA is empty, A has deterministic outcomes and we can deploy corollary 1. We will show that
when RA is not empty, we can find a deterministic (non-adaptive, level-2) l2-MBQC A⋆ with
Psucc(A⋆)⩾ Psucc(A).

Lemma 2. For all x ∈ RA, pA(x) = 1/2.

Proof (sketch). For every x ∈ Z
n
2 , let S(x) be the observable measured. Assuming the stabiliser state has sta-

biliser S , there are two possible cases, either

(a) S(x) ∈ S or−S(x) ∈ S and so pA(x) ∈ {0,1} and x ∈ DA;
(b) or S(x) anti-commutes with some element in S in which case pA(x) = 1/2 and x ∈ RA.

This proves the lemma.

From lemma 2 it follows that

∑

x∈Z
n
2

pA(x) =
1

2
|RA|+

∑

x∈DA

pA(x) =
1

2
(2n − 2m)+

∑

x∈DA

pA(x), (E2)

where we have used that |RA|= 2n − |DA|=: 2n − 2m.

Lemma 3. For all x,y,z ∈ DA, x⊕ y⊕ z ∈ DA.

Proof (sketch). Consider the measurement S(x). W.l.o.g we can assume it has the form

S(x) =⊗kXk(iZk)
[Px]k , (E3)

where P is the matrix describing the (Z2-linear) pre-processing (see definition 1). From this we find that

S(x)S(y)S(z)∝⊗jXj(iZj)
[P(x⊕y⊕z)]j = S(x⊕ y⊕ z), (E4)

where the proportionality constant can be worked out but is not important. Assuming x,y,z ∈ DA entails
that S(x),S(y) and S(z) all commute with S . Therefore, S(x)S(y)S(z) must also commute with S , and by
equation (E4) we know S(x⊕ y⊕ z)must also commute with S . Therefore, x⊕ y⊕ z ∈ DA.

We remark that this is the structure of an affine space. Recall that an affine space is a set {y⊕w : y ∈ L}
where L is a linear space and w is some constant shift. Let w ∈ DA arbitrary, and define
LwA = {x⊕w : x ∈ DA}. The space LwA is linear: from x ∈ LwA ⇒ (x⊕w) ∈ DA and y ∈ LwA ⇒ (y⊕w) ∈ DA it
follows that x⊕ y ∈ LwA since, by lemma 3, (x⊕w)⊕ (y⊕w)⊕w= (x⊕ y)⊕w ∈ DA. Hence, DA is an affine
space.

Since DA is an affine space, we can define an invertible, affine transformation Φ : Zn
2 → Z

n
2 such that the

image Φ(DA) corresponds to the vectors of the form (u1, . . . ,um,0, . . . ,0) ∈ Z
n
2 . It is convenient to change the

problem under this transformation, in particular, we define the new target function by g(Φ(x)) = f(x). We
also define the truncated function g̃ : Zm

2 → Z2 such that g̃(u) = g(u1, . . . ,um,0, . . . ,0).
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Since A is deterministic over DA, by theorem 3 it defines a quadratic Boolean function q̃A : Zm
2 → Z2 on

inputs in Φ(DA). Clearly, the success probability (with respect to the different target functions f and g) is
invariant under the transformation Φ (being a mere relabelling of inputs), hence, equation (E2) becomes

∑

x∈Z
n
2

pA(x) =
∑

x∈Z
n
2

pA(Φ(x)) =
1

2
(2n − 2m)+ (2m − dH(q̃A, g̃)) =

1

2
(2n + 2m)− dH(q̃A, g̃), (E5)

where we recall that dH(q̃A, g̃) := |{x ∈ Z
m
2 | q̃A(x) ̸= g̃(x)}| denotes the Hamming distance between q̃A and g̃.

Next, we extend q̃A to a quadratic function on all inputs x ∈ Z
n
2 .

Lemma 4. Let g̃ be a Boolean function g̃ : Zm
2 → Z2 with an extension g : Zm

2 ×Z
n−m
2 → Z2. For any quadratic

function q̃A : Zm
2 → Z2, we can find a quadratic function qA : Zm

2 ×Z
n−m
2 → Z2 such that

dH(qA,g)⩽
1

2
(2n − 2m)+ dH(q̃A, g̃). (E6)

Proof (sketch). The proof is recursive. We define the series of nested extension functions g( j) : Zm+j
2 → Z2

such that g(0) = g̃ and g(n−m) = g, where g( j)(u) = g( j+1)(u,0) for all u ∈ Z
m+j
2 . We will recursively define

a series of quadratic functions q( j)A : Z
m+j
2 → Z2 starting with q(0)A = q̃A, such that q( j)A (u) = q( j+1)

A (u,0) and

∆j + q( j)A (u) = q( j+1)
A (u,1) for all u ∈ Z

m+j
2 for some constant∆j ∈ Z2 to be determined. Clearly, the q( j)A are

all quadratic if and only if q(0)A is quadratic. Furthermore,

dH
(

q( j+1)
A ,g( j+1)

)

=
∑

u∈Z
m+j
2

[

q( j+1)
A (u,0)⊕ g( j+1)(u,0)

]

+
∑

u∈Z
m+j
2

[

q( j+1)
A (u,1)⊕ g( j+1)(u,1)

]

= dH
(

q( j)A ,g( j)
)

+
∑

u∈Z
m+j
2

[

∆j ⊕ q( j)A (u)⊕ g( j+1)(u,1)
]

. (E7)

Assume the sum in the last line evaluates to N when ∆j = 0, then it evaluates to 2m+j −N when ∆j = 1.
Therefore, we can choose∆j such that the sum evaluates to 2m+j/2 or less. This yields

dH
(

q( j+1)
A ,g( j+1)

)

⩽ dH
(

q( j)A ,g( j)
)

+ 2m+j/2. (E8)

Using our initial condition for j= 0, and applying this bound recursively we get

dH(qA,g) = dH
(

q(n−m)
A ,g(n−m)

)

⩽ dH
(

q(0)A ,g(0)
)

+
1

2

n−m−1
∑

j=0

2m+j = dH(q̃A, g̃)+
1

2
(2n − 2m), (E9)

which proves the lemma.

Since qA from lemma 4 is quadratic, by theorem 3 we can find a non-adaptive, deterministic, level-2
l2-MBQC A⋆ (using stabiliser states) implementing qA. Applying lemma 4 and comparing with
equation (E5) we obtain

∑

x∈Z
n
2

pA⋆(x) = 2n − dH(qA,g)⩾ 2n − dH(q̃A, g̃)−
1

2
(2n − 2m) =

1

2
(2n + 2m)− dH(q̃A, g̃) =

∑

x∈Z
n
2

pA(x), (E10)

such that the deterministic l2-MBQC A⋆ performs at least as well as probabilistic l2-MBQC A. Theorem 4
thus follows from corollary 1.

Appendix F. Proof of Theorem 5

Let the l2-MBQC belong to level-D in the Clifford hierarchy (per definition 3). Then each measurement
Mk(ck) takes the form

Mk(ck) = Uk(ck)Mk(0)U
†
k(ck), (F1)

where Uk(ck) ∈ CD
1 and ck : Zn

2 → Z2 a linear function for all k ∈ {1, . . . ,N} (see definition 1). For
deterministic computation we have for each input i ∈ Z

n
2

N
⊗

k=1

[

Uk(ck)Mk(0)U
†
k(ck)

]

|ψ⟩= (−1)o(i)|ψ⟩ (F2)
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where |ψ⟩ is the resource state and o(i) is the computational output. From [35], we have SCD
1 = CD

1 , meaning
∃Ck,C ′

k ∈ C2
1 and diagonal gates Dk ∈ CD

1 such that Uk = CkDkC ′
k. Equation (9) can be rewritten as

N
⊗

k=1

[

Dk(ck)M̃k(0)D
†
k(ck)

]

|ψ̃⟩= (−1)o(i)|ψ̃⟩, (F3)

where |ψ̃⟩= C†
k |ψ⟩ and M̃(0) =

⊗N
k=1(C

′
kMk(0)C

′†
k ). Note that |ψ̃⟩ is a stabiliser state and M̃(0) is a Pauli

operator, which we write

M̃(0) = e
iπβ

2 (Xx1
1 Z

z1
1 )⊗ . . .⊗ (XxN

N ZzN
N ), (F4)

for β ∈ Z4 and x= (x1, . . . ,xN) ∈ Z
N
2 , z= (z1, . . . ,zN) ∈ Z

N
2 . Expanding |ψ̃⟩ in the computational basis, we

have

|ψ̃⟩=
∑

q∈Z
N
2

α(q)|q⟩ such that |α(q)| ∈ {0,α} ∀q ∈ Z
N
2 , for some α ∈ R, (F5)

which follows the fact that all nonzero amplitudes of a stabiliser state in the computational basis have the
same magnitude. The global measurements in the updated basis

M̃(c) =
N
⊗

k=1

Dk(ck)M̃k(0)D
†
k(ck) (F6)

permute computational basis states up to a phase,

M̃(c)|q⟩= θ(c,q)|q⊕ x⟩, (F7)

where θ(c,q) ∈ U(1) for all c,q ∈ Z
N
2 . To satisfy equation (F3) we must have

θ(c,q) = (−1)o(i) ∀q ∈ Z
N
2 with α(q) ̸= 0, ∀c ∈ Z

N
2 . (F8)

Thus, the dependence on qmay be dropped and we may write θ(c) := θ(c,q), and we remark that c is
implicitly dependent on the input i.

To determine the allowable phases θ(c) = (−1)o(i), we utilise a classification of diagonal gates in the
Clifford hierarchy from [37]. From [37], up to a global phase every single qubit diagonal operator Dk ∈ CD

1

can be written as Dk[fk] where Dk[fk]|qk⟩= fk(qk)|qk⟩ for all qk ∈ Z2 and where fk : Z2 → U(1) is given by

fk(qk) = exp

(

2πi
D
∑

m=0

ϑmkqk
2m

)

, for some ϑm,k ∈ Z2m ∀qk ∈ Z2. (F9)

(Specifically, this follows from theorem 2 of [37] by setting p= 2,a= 1. In that case, combining their
equations (20) and (17) we find that themth level of the single qubit Clifford hierarchy up to phases is
generated by operators of the form

∑

q∈Z2
exp
(

2πi
2m q
)

|q⟩⟨q|.)
Then each M̃k(ck) = Dk(ck)M̃k(0)D

†
k(ck), with M̃k(0) = e

iπβk
2 Xxk

k Z
zk
k has an action on computational basis

states as

M̃k(ck)|qk⟩= exp

[

2πi

(

βk
4
+

zkqk
2

+
D
∑

m=0

ϑm,k[ck]xk
2m

)]

|qk ⊕ xk⟩, for some ϑm,k[ck] ∈ Z2m , ∀qk ∈ Z2.

(F10)

Therein, the factors ϑm,k[ck] are determined by the choice of gate Dk(ck) = diag(1,exp
(

2πi
∑D

m=0
ϑm,k[ck]

2m

)

).

In particular, we may rewrite them as ϑm,k[ck] = ϑm,k[0](1− ck)+ϑm,k[1]ck, for ϑm,k[0], ϑm,k[1] ∈ Z2m .
Then the global phase, and thus computational output can be obtained by accumulating all local phases,

M̃(c)|q⟩= exp

[

2πi

(

β

4
+

N
∑

k=1

zkqk
2

+
D
∑

m=0

N
∑

k=1

ϑm,k[0](1− ck)+ϑm,k[1]ckxk
2m

)]

|q⊕ x⟩, ∀q,x ∈ Z
N
2 .

(F11)
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Equating the phase in the above expression to (−1)o(i) as dictated by equation (F7) we have

o(i) =
β

2
+

N
∑

k=1

zkqk +
D
∑

m=0

N
∑

k=1

ϑm,k[0](1− ck)+ϑm,k[1]ckxk
2m−1

(mod 2). (F12)

Now we recall that the measurement settings may be written as Z2-linear basis functions ck = φa for some
ak ∈ Z

n
2 (where φa is defined in section 4.2.1). Then using equation (19) we rewrite this function in the

monomial basis

ck =
∑

0 ̸=b∈akZn
2

(−2)W(b)−1
n
∏

l=1

ibll . (F13)

Inserting into equation (F12), we conclude that the third term in equation (F12) contributes only if
m⩾W(b). Moreover, since D⩾m, and since the degree of the monomial term in equation (F13) is given by
W(b), any non-vanishing term in the output function in equation (F12) has degree at most D. This
completes the proof.

Appendix G. Proof of Theorem 6

Following the terminology of the proof of theorem 3 in appendix D, we denote by P ∈Mat(N× n,Z2) the
classical, Z2-linear pre-processing of a non-adaptive, deterministic, level-2 (i.e. stabiliser) l2-MBQC.

It follows that the qubit count equals the number of rows in P, hence, we seek a suitable P with
minimal number of rows. We also recall the conditions pi.pj = qi,j (mod 2) andW(pi) = 0 (mod 2) (see
appendix D) for any non-adaptive, deterministic, level-2 l2-MBQC computing the quadratic function f. The
latter constraints are equivalent to Q( f) = PTP (mod 2), where Q(f ) is the matrix associated with f in
equation (14). It was shown by Lempel [39] that a solution P always exists and that the smallest number of
rows of P equals N= rk(Q( f))+ 1. This completes the proof.

Appendix H. Adaptivity

In this section, we comment further on how our results change in the presence of adaptive measurements.
Adaptivity is a powerful resource for many quantum computational schemes. For universal MBQC it is
essential—in general, measurement bases must be chosen based on previous measurement outcomes in
order to control the randomness induced by non-deterministic measurement outcomes. For many families
of quantum circuits adaptivity is also essential and they may become classically simulable in its absence,
see [60] for example.

By conditioning future measurements on prior measurement outcomes, qubit count and non-Clifford
resource requirements can be drastically reduced (see figure 1). To see this, we consider a general adaptive
MBQC as being composed of several non-adaptive MBQCs called components (where each component does
need not to have deterministic output) (see figure 2). The overall computation can be represented by a
directed acyclic graph G called the incidence graph. Each node on the graph G corresponds to a non-adaptive
component, and the directed edges correspond to the information flow required for adaptivity: the target
node corresponds to the component that requires the output of the component corresponding to the source
node.

The nodes of the graph G are also labelled by integers, referring to the order in which they are performed.
Multiple nodes may share the same label—meaning they are performed in parallel—but the labels must
strictly increase when moving along the edges. We call this list of integers the schedule S . For an MBQC with
incidence graph G and schedule S , we define the depth of the computation as the largest integer in S . We
define the width of the computation as the total number of qubits in all components with a common
schedule index k ∈ S , maximised over all k ∈ S .

The depth is how many timesteps the computation takes to perform, while the width is how many qubits
are required to execute it with the prescribed schedule. Note the volume does not represent the number of
qubits required to implement the MBQC. In fact, an arbitrary width wMBQC can be implemented using w
qubits as not all measurements need to be executed in parallel. In general, space-time tradeoffs are possible,
meaning that it may be possible to vary between the width and the depth of the MBQC. We note that shallow
quantum circuits in [15] are restricted to constant depth, while non-adaptive MBQCs admit a depth-1
representation.

As a concrete example, we again consider the n-bit delta function δ : Zn
2 → Z2. As shown in corollary 2,

2n − 1 qubits are required for its implementation in non-adaptive MBQC (i.e. width 2n − 1 and depth 1), as

21



New J. Phys. 25 (2023) 013002 M Frembs et al

Figure 1. The schematic setup of an l2-MBQC defined in definition 1, from [13]. For each qubit (indexed by k) of the resource
state |ψ⟩, the control computer determines the measurement settings ck as a linear function of the inputs i ∈ Zn

2 and any previous
measurement outcomesm1, . . . ,mk−1. The output o ∈ Z2 is evaluated by the control computer as the parity of all local
measurement outcomes.

Figure 2. Sequence of non-adaptive MBQCs composed together.

Figure 3. Linearly composed (left) and binary tree composed (middle) Anders and Browne MBQCs to compute the delta
function. Each box represents an l2-MBQC such that the output is the product of the two inputs (up to linear pre-processing),
which can be achieved with a stabiliser l2-MBQC using a 3-qubit GHZ state. (right) The three different Anders and Browne
MBQCs required differ only by linear pre-processing.

well as non-Clifford gates belonging to the nth level in the Clifford hierarchy. Using the adaptive scheme
represented in figure 3 (left), the delta function can be implemented with width 3 (meaning only 3 qubits are
required), however the depth needed is n. The volume of 3 n is exponentially smaller (in n) than the
non-adaptive case. Similarly, one could choose an adaptive scheme based on a binary tree, such as that
depicted in figure 3 (middle). In this case, one can use O(3n) qubits and a depth of O(log(n)) to compute the
delta function. This gives a volume of O(3n log(n)).

We can verify the computational output as follows. Recall that given x ∈ Z
n
2 , we have

δ(x) = (x1 ⊕ 1) . . .(xn ⊕ 1). Then up to the appropriate linear pre-processing (specifically, the mod-2
addition of 1 to one or both inputs), we can compute this function by multiplying all the inputs together.
Each Anders and Browne l2-MBQC can multiply pairs of inputs together using a 3-qubit GHZ state [20].
Associativity of multiplication lets us chain the l2-MBQCs together in different ways to achieve the same
output.
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