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Abstract—Many modern multivariate time series datasets con-
tain a large amount of noise, and the first step of the data
analysis is to separate the noise channels from the signals of
interest. A crucial part of this dimension reduction is determining
the number of signals. In this paper we approach this problem
by considering a noisy latent variable time series model which
comprises many popular blind source separation models. We
propose a general framework for the estimation of the signal
dimension that is based on testing for sub-sphericity and give
examples of different tests suitable for time series settings. In
the inference we rely on bootstrap null distributions. Several
simulation studies are used to demonstrate the performances of
the tests in different time series settings.

Index Terms—Dimension reduction, nonstationary source sep-
aration, second order source separation, sub-sphericity, block
bootstrap.

I. INTRODUCTION

Nowadays numerous fields of applied science (e.g. engineer-
ing, economics and medicine) collect multivariate time series
data. As data collection techniques and measuring devices have
become more and more complex, a large amount of variables
are often measured, resulting into very high-dimensional data.
This poses problems for the data analysis as many multivariate
methods become computationally impractical when the data
dimension is large.

When high-dimensional data are collected, it is increasingly
common that datasets include a large amount of noise and
redundancy. The first step of the analysis is thus to separate the
signals of interest from the noise. In case of independent and
identically distributed (iid) data, the most common method for
dimension reduction is principal component analysis (PCA)
where the key question is to decide how many components
should be retained for further analyses. Many existing methods
for determining the number of important components rely on
visual inspection of the magnitudes of the eigenvalues of the
covariance matrix (see [1] and references therein), on bootstrap
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variability of eigenvectors [2] or on the combination of the
two [3]. Inferential tools based on eigenvalues as well as
information theoretic criteria in models assuming Gaussian
signal and noise were considered for example in [4]–[6]. Re-
cently, interest on inferential eigenvalue-based tools resurfaced
under the assumption of non-Gaussian signals. In [7], [8]
tests for the equality of the smallest eigenvalues of various
matrices were proposed. Later, [9] used similar approach
when testing for the number of non-Gaussian components
in an independent component analysis setting. None of these
approaches considered models with external (additive) noise
components.

In [10], asymptotic and bootstrap tests for signal dimension
in the case of general iid noisy latent variable model were
proposed by extending the probabilistic PCA of [11]. It was
shown that due to the model structure and properties of the
covariance matrix, a test for the signal dimension can again
be formulated as testing for the equality of the smallest eigen-
values. An estimate for the signal dimension was obtained by
performing successive hypothesis tests. We review the model
as well as the signal dimension estimation procedure of [10] in
detail in Section II. The aim of this study is to generalize the
resampling-based method of [10] to allow also serial depen-
dence in such a way that many popular blind source separation
(BSS) models such as second order separation (SOS), nonsta-
tionary source separation (NSS) model or stochastic volatility
(SV) separation models are included. For an overview of these
models see for example [12], [13] and note that usually the
assumption of Gaussian signals is avoided in these contexts.
Notice that similar approaches have earlier been suggested
in the context of internal noise model (where the noise is
included as latent variables) and SOS in [14], [15]. To achieve
our goal, we propose a general framework for the testing and
estimation of the signal dimension. That is, we allow also
other metrics besides variance, such as autocovariance, to be
used when separating the signals of interest from noise. The
noisy latent time series model, justification for the proposed
method and an algorithm for performing the bootstrap test for
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the signal dimension are described in Section III. In Section
IV we compare the performances of the suggested tests and
their capabilities in estimating the correct signal dimension in
several different time series settings. The paper is concluded
with some discussion in Section VI.

Thus, to conclude with a summary of the contributions of
this paper:

• We consider a signal dimension testing and estimation
method in a BSS framework with serial dependence
without making strong distributional assumptions on the
signals.

• Our method can be based on an arbitrary matrix SK

where the choice of the kernel K has an impact on the
performance.

• The performance of our methods is evaluated in an
extensive simulation study and in an example. Our meth-
ods are also compared with competing methods such
as Akaike’s information criterion (AIC) and minimum
description length (MDL) of [5], [6] for which so far
only little empirical evidence seems available and which
were developed under much stronger assumptions.

II. IID METHOD

To motivate our contribution, we begin by reviewing the
analogous procedure for iid data sources, as presented in [10].
That is, assume that the rows of X = (x1, . . . , xn)

′ form a
sequence of p-dimensional random vectors generated as,

xi = µ+ Azi + εi, (1)

where µ ∈ Rp specifies the location vector, A ∈ Rp×d is an
unknown, deterministic matrix such that rank(A) = d ≤ p−2,
z1, . . . , zn is a sequence of zero-mean iid latent d-dimensional
random vectors and ε1, . . . , εn is a random sample from
Np(0p, σ2I), for some unknown σ2 > 0. Furthermore, assume
that the errors εi are independent of the latent random vectors
zi, that the fourth moment of z1 is finite and that z1 is not
concentrated on a hyperplane in Rd.

In order to estimate the signal dimension d, the authors of
[10] suggested basing the inference on the final r := p − d
eigenvalues ρd+1, . . . , ρp of the sample covariance matrix S =
1
nX′HX, where H = I − 1

n11′ and 1 = (1, . . . , 1)′ ∈ Rn.
To see why this is a sound strategy, consider the population

version of the model (1) with the sample covariance matrix
replaced by the covariance matrix,

Σ = E(xx′)− E(x)E(x′) = AE(zz′)A′ + σ2I, (2)

where the decomposition uses the additivity property of the
covariance matrix. Hence, under our assumptions, the ordered
eigenvalues of Σ are

λ1 + σ2 ≥ · · · ≥ λd + σ2 > σ2 = · · · = σ2, (3)

where λ1 ≥ · · · ≥ λd are the ordered d non-zero eigenvalues
of the rank-d matrix AE(zz′)A′. Hence, for the model (1)
with the signal dimension d and “pure noise dimension” r,
we expect the final r eigenvalues of S to be close to each

other (and well-separated from the remaining eigenvalues), for
sufficiently large n. In particular, the sample variance of the
final r eigenvalues should be small.

Indeed, denoting by m1k,m2k and s2k = m2k−m2
1k, respec-

tively, the first and second sample moment and the (biased)
sample variance of the final p − k eigenvalues ρk+1, . . . , ρp
of S, [10] showed that the suitably scaled sample variance,
Tk :=

n(p−k)s2k
2m2

1k
, has a chi-squared limiting distribution for

k = d,

Td ⇝ χ2
1
2 (r+2)(r−1). (4)

Further, for any k < d, the quantity Tk/n converges to a
positive constant in probability (this is clear since then at
least one of the eigenvalues making up s2k differs from the
others in the limit, yielding an asymptotically positive sample
variance). Whereas, for any k > d, the quantity Tk is bounded
in probability (this is heuristically clear from (4) as, if d of
the eigenvalues are asymptotically equal then so are d− 1 of
them, etc.).

The above observations lead to an estimator for d as
follows. Let H0,k be the null hypothesis that the true signal
dimension is d = k. Then, we test the sequence of hypothe-
ses H0,0, . . . ,H0,p−2 using, respectively, the test statistics
T0, . . . , Tp−2 and take the true dimension to be the smallest k
for which H0,k is not rejected. In practice, the testing is done
by selecting an appropriate significance level and using the
chi-squared limiting distribution in (4) as the null distribution.
However, an asymptotic power of one can be obtained with
a suitable sequence of critical values, see [8]. Note that as
the test statistic is based on the variance of the eigenvalues, at
least two noise components are assumed which does not differ
so much from the other approaches which usually assume at
least one noise component. We would like to emphasize that
in model (1) the distribution of the signals is not specified
and only moment assumptions are made. The model is well
investigated in case of an assumption of Gaussianity and then a
test for H0,k is discussed for example in [4]. Further, [5], [6]
suggested iid normal likelihood-based information theoretic
criteria (ITC) of the form

ITC(k) = −a log

(∏p
i=k+1 ρ

1/(p−k)
i

1
p−k

∑p
i=k+1 ρi

)(p−k)n

+ b k(2p− k),

(5)

which yields the Akaike information criterion AIC(k) with
a = b = 2 and the minimum descriptive length criterion
MDL(k) with a = 1 and b = 0.5 log n. In both cases the
estimate for the signal dimension minimizes the criterion over
k = 0, . . . , p − 1. [5] argue that AIC will asymptotically
overestimate the dimension while MDL yields a consistent
estimate. However, we are not aware of any simulation studies
verifying this claim. Note that [6] relax the normality assump-
tion of noise and signal by showing that the ITC from above
hold also when x in (1) has an elliptical distribution. In this
case it is, however, not at all clear what could be the signal



and noise distributions and how independence between them
could hold outside the Gaussian model.

III. GENERAL METHOD

We next generalize the method described in Section II
beyond iid data generating processes. Namely, assume that
the rows of X = (x1, . . . , xn)

′ are again a sequence of p-
dimensional random vectors generated as,

xi = µ+ Azi + εi, (6)

where µ ∈ Rp, A ∈ Rp×d is an unknown, deterministic matrix
such that rank(A) = d ≤ p − 2, z1, . . . , zn is an ordered
sequence of zero-mean, not necessarily independent and iden-
tically distributed latent d-dimensional random vectors and
ε1, . . . , εn is a random sample from Np(0p, σ2I) for some
unknown σ2 > 0. Furthermore, assume again that the errors
εi are independent of the latent random vectors zi.

The procedure in Section II is essentially a test for sub-
sphericity applied in the noisy low-rank model (1). There are
three critical aspects that make it work. (i) The covariance
matrix decomposes as in (2), leading into the eigenvalue
structure (3) where the r pure noise components are separated
from the signal. (ii) The signal zi is truly d-dimensional,
making the noise not just separated but well-separated from
the signal in (3), thus allowing us to distinguish the two on
the basis of variance. (iii) The noise is assumed spherical
Gaussian, giving rise to the chi-squared distribution in (4).

Having moved outside of iid data in (6), it is natural to relax
also the property (ii) above and allow the separation of the
signal and the noise to be based on some other metric besides
variance. For example, if the signal z1, . . . , zn is an equally
spaced multivariate time series with suitable autocovariances,
it is natural to differentiate between the signal and the noise on
the basis of autocovariance, which the latter does not exhibit
at all, being white noise. To facilitate this, it is necessary
to change the covariance matrix to an autocovariance matrix,
and we are then faced with the question whether the property
(i), a combination of additivity and affine equivariance, still
holds for autocovariance matrices. Conveniently, it does, a fact
that follows from their functional similarity to the covariance
matrix. Finally, the tractability of any limiting distributions is
unnecessary in the current framework where the estimation
is based on bootstrapping techniques and, hence, the prop-
erty (iii) is strictly not needed. However, we still make the
assumption of Gaussian noise both for simplicity and for its
ubiquitousness in the signal processing literature and later, in
Section VI, discuss the implications of relaxing it.

Based on the above, we propose the following framework
for estimating the unknown signal dimension d in the model
(6). Let K = Kn = (kij) ∈ Rn×n be a fixed sequence of
symmetric matrices and define the sample covariance matrix
of X with respect to the kernel K as

SK =
1

n
X′KX =

1

n

n∑
i=1

n∑
j=1

kijxix′
j . (7)

As a weighted sum of the second-order terms xix′
j , the

matrix SK retains the functional form of the covariance matrix
(meaning that if a population counterpart for SK exists, we can
expect the property (i) to hold), while simultaneously allowing
capturing a wide range of different structures. For example,
K = H yields the covariance matrix as in the original method
of Section II and the choice K = HK1H, where

K1 =



0 0.5 0 · · · · · · · · · 0

0.5 0 0.5
. . . . . . . . .

...

0 0.5
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0.5 0

...
. . . . . . . . . 0.5 0 0.5

0 · · · · · · · · · 0 0.5 0


(8)

yields the centered symmetrized autocovariance matrix on
lag 1. Autocovariance matrices with other lags are obtained
by moving the two bands in (8) further from the diagonal.

Inference on the signal dimension d can now be based on
the r eigenvalues of SK corresponding to the pure noise com-
ponents. Note that, for general K, these are not necessarily the
final r eigenvalues. In the case of symmetrized autocovariance
matrices, for example, the signals might exhibit both positive
and negative autocovariances, implying that the eigenvalues
of interest (the zeroes corresponding to the white noise) are
in neither end of the spectrum. Hence, we select the noise
eigenvalues as those r eigenvalues which have the smallest
variance out of all subsets of r adjacent eigenvalues. Note
that in some special cases we might know what the noise
eigenvalues are (for example, they are zeroes when using
SHK1H), and this information could also be exploited when
selecting the eigenvalues, see Section IV.

The above proposal makes several implicit assumptions.
First, in order for it to be able to separate the signal from
the noise, all signal components must be distinguishable from
white noise with respect to the “information” measured by SK
(for example, all signals must exhibit non-zero autocovariances
in case of K = HK1H, or, the signals must not be concentrated
on a hyperplane in case of K = H). Second, for the selection of
the eigenvalues through the minimal variance subset to work,
the noise must form the largest eigenspace of SK (for example,
in case of K = HK1H, having five signals with equal non-
zero autocovariance on lag 1 along with only four pure noise
components would not be allowed as then the former would
be thought of as the noise). Thirdly, the kernel matrix K must
be able to capture enough information on the dimensions in
the first place to allow the whole procedure. See Section VI
for more discussion on this point.

Assuming that the above hold, we compute, for a given
candidate dimension k, the test statistic

Tk := s2k, (9)

where s2k denotes the (biased) sample variance of the p − k
eigenvalues of SK with the smallest sample variance out of all



subsets of p − k adjacent eigenvalues. As in Section II, we
expect Tk to be large when k < d and small when k ≥ d,
again allowing the pin-pointing of the true signal dimension
d. To quantify “small” and “large”, we use the bootstrapping
Algorithm 1 to obtain the null distribution of Tk under H0,k.

Algorithm 1 Algorithm for testing H0,k : d = k.
Set the proposed dimension k and r = p− k;
Set the number of bootstrap samples M and the block size l;
Choose a kernel K;
Starting with the sample X = (x1, . . . , xn)′, compute SK
together with its eigendecomposition SK = UDU′;
Order the eigenvalues in D such that the variance of the last
p−k eigenvalues in D is minimal and derive the corresponding
partitioning of U = (U1 U2);
Compute the test statistic

Tk = 1
r

∑p
i=k+1

(
ρi − 1

r

∑p
j=k+1 ρj

)2
as the sample variance

of the final p− k eigenvalues in D;
Calculate Y1 = XU1, Y2 = XU2 and S2, the sample
covariance matrix of Y2; and the mean of Y2, Ȳ2;
Estimate the noise variance as σ̂2 = 1

r tr(S2);
for j ∈ {1, . . . ,M} do

Block bootstrap Y1 with block length l to obtain Y∗
1.

Simulate n observations from Nr(Ȳ2, σ̂
2I) to obtain Y∗

2.
Compute X∗ = (Y∗

1 Y∗
2)U

′;
Compute T ∗

j,k as Tk but based on X∗;

Return bootstrap p-value: pk = [#(T ∗
j,k ≥ Tk) + 1]/(M + 1)

The algorithm divides, under the assumed dimension k, the
time series into a part containing a mixture of signal and noise
and a part containing only noise. As the signal is assumed to
be ordered and not necessarily iid, overlapping block bootstrap
with fixed block length l, as described, for example, in [16], is
used. For the pure noise part standard parametric bootstrap is
used where the noise variance is estimated from the hypotheti-
cal noise part as its average sample variance. The two bootstrap
samples are then combined and backtransformed in order to
recompute the test statistic. Having obtained M bootstrap test
statistic values, the p-value can be computed by comparing
how extreme the test statistic of the observed sample is relative
to the M bootstrap statistics which were generated under the
null hypothesis. To conclude this section we would like to
point out that [5], [6] argue that in a framework of Gaussian
signals and noise the information theoretic criteria introduced
in Section II can be used also when the signals are stationary
and ergodic.

IV. SIMULATIONS

To evaluate the performance of our suggested method, we
performed a simulation study using R [17] and the package
rugarch [18]. To be as general as possible, we first considered
in model (6) four different BSS settings for the latent stochas-
tic processes zi, i = 1, . . . , n, always assuming that d = 3 and
that z1, z2 and z3 are independent:

SOS: Three different autoregressive AR(1) processes
where z1 has Exp(1) distributed innovations, z2 has
t5 distributed innovations and z3 has χ2

3 distributed
innovations.

BS: Three block stationary processes where blocks are
independent and have moving average (MA) or AR
processes of different order with different variances
where the innovation distributions are as in the
previous setting.

NSS: Three different MA processes with Exp(1) innova-
tions whose variances change smoothly over time.

SV: Three different autoregressive conditional het-
eroskedastic ARCH(1) processes with Gaussian in-
novations.

In each setting, all innovations were standardized so that
E(zi) = 0 and V ar(zi) = 1, i = 1, 2, 3, and the components
were further scaled to have unit variance. The setting SOS
has now three basic second order stationary processes. The
setting BS differs from SOS in that each component consists
of independent blocks which are itself stationary, giving a so-
called block stationary model. The setting NSS is a nonsta-
tionary model where the mean stays constant but the variances
of the processes change smoothly over time. The last setting
is a stochastic volatility model especially popular in financial
context. Popular BSS methods under the four settings are, for
example, AMUSE and SOBI [19], [20] for SOS, NSS-SD and
NSS-JD [21] for NSS, NSS-JD-TD [22] for BS, and gFOBI,
gJADE, vSOBI and gSOBI [23]–[25] for SV.

Finally, the p× 3 mixing matrix A was for each simulated
data populated with random N(0, 1) elements.

A. Evaluation of test performance

To evaluate the test performance, we set p = 6 and tested
the null hypotheses H0,2 H0,3 (true) and H0,4 with the α-level
0.05 for samples of sizes n = 500, 1000, 2000. As methods
to be compared we considered the asymptotic test of [10]
with the iid assumption, along with the new bootstrap tests in
Algorithm 1 based on the covariance matrix (K = H) and the
symmetrized autocovariance matrix with lag 1 (K = HK1H),
each with block sizes l = 10, 20, 40. The number of bootstrap
samples was M = 200 for all bootstrap-based methods and
a range of noise levels σ was used. In addition, we also
computed the autocovariance tests by exploiting the knowledge
that the noise corresponds to zero eigenvalues (ACOV0).

Figure 1 gives the proportion of rejections based on 2000
repetitions for the asymptotic test (COV), the three bootstrap
tests based on the covariance matrix (COV (l=10), COV (l=20)
and COV (l=40)) and the three bootstrap tests based on the
symmetrized autocovariance matrix (ACOV (l=10), ACOV
(l=20) and ACOV (l=40)) for n = 1000. The results show
that when using COV there are no differences between the
performances of the asymptotic test and the bootstrap test
(irrespective of the block size). Similarly, the number of boot-
strap samples has no impact on the ACOV test. Surprisingly,
the performance of the asymptotic test (which assumes iid
data) is not hampered by the dependency structures present
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Fig. 1. Proportions of rejections in the four settings when n = 1000. The black horizontal line indicates the α-level = 0.05.

in the data. In the SOS, BS and NSS settings, all tests keep
the null level and the hypothesis H0,4 is rejected less often
than H0,3 as the corresponding test statistic uses a “tighter”
subset of eigenvalues, see Section II. The power of the tests
is also quite good and naturally decreases with increasing
noise variance. As expected, in the setting SV, the covariance
matrix based tests work nicely, whereas the autocovariance
matrix based tests fail completely as there are no second
order correlations present in the data. The power of the tests
based on the autocovariance matrix is however better in the
SOS and NSS setting as compared to the COV based tests.
The results for n = 500 and n = 2000 are omitted as the
only visible difference to n = 1000 is the power of the test
which increases with sample size. Similarly, the results for the
bootstrap test which exploits the knowledge of the value of the
noise eigenvalue are not shown as the difference to the version
shown in Figure 1 is minimal. Finally, we also repeated the
experiment on the α-level 0.10. The conclusions were exactly
analogous to the main study and, hence, these results are not
shown here.

B. Evaluation of estimation performance

Of more practical relevance is how well we can actually
estimate the signal dimension using successive testing. There
are many strategies available and we consider divide-and-
conquer to find a pair of consecutive hypotheses H0,k from
the range k = 0, . . . , p − 2, where a rejection changes to a
non-rejection on the level α = 0.05. As competing methods
we estimate the signal dimension using AIC and MDL as
described in Section II. We consider in total 5 signal settings
where the BS, NSS and SV settings are as in the previous
section, but for the SOS setting we double the number of
signals by adding three more signals with the same dependence
structure but having Gaussian innovations. In the SOS setting
we furthermore consider two different mixing matrix settings.
In setting SOS A the mixing matrix is again filled with random
elements from N(0,1) while in SOS O the mixing matrix has
orthonormal columns meaning that all non-zero eigenvalues of
the covariance matrix of Az are equal. In all 5 settings the data
dimension is increased to p = 10 and we use only the bootstrap
tests with block size l = 20 along with the iid asymptotic test.
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Figure 2 shows then the proportions of correctly estimated
dimension d = 3 based on 2000 repetitions with M = 200.

The results show that the testing based methods have a
good signal-to-noise tolerance, if the mixing matrix is not
orthogonal and therefore also provides information, in all
settings under which they are expected to work. Whether the
covariance or autocovariance based tests are better depends
again on the setting. Finally, Figure 2 also shows the results
for the autocovariance matrix based bootstrap test which uses
the knowledge of the true noise eigenvalue to select the
eigenvalues (ACOV0). When comparing the results to those
of ACOV, where the eigenvalues are chosen through minimal
variance, we see that the knowledge brings no benefit in
the estimation. When comparing the test-based methods to
the information theoretic criteria it seems that the test-based
methods are more reliable. MDL is the best method for small
noise but then starts rapidly to fail with increasing noise.
AIC performs poorly in case of small noise but outperforms
many of its competitors when the noise is large. Based on this
simulation, however, it seems that the method which estimates
the signal dimension based on repeated testing performs best,
but which kernel to choose for SK seems data dependent.

V. EXAMPLE

For the final comparison of the methods we use three sound
signals (n = 50000) which are freely available in the R
package JADE and are for example used in [26]. For the
mixing matrix A we fill a 20×3 matrix with random elements
from U(0, 1) and add then to the mixed signals Gaussian
noise with different standard deviations. The non-zero signal
eigenvalues for S(Az) are then 14.051, 2.391 and 0.639 and
for SHK1H(AZ) 11.199, 1.920 and 0.508, respectively. The
estimated signal dimensions for the different noise levels are
shown in Figure 3 where the curves have been jittered so that
the different methods are distinguishable.
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Fig. 3. Detected number signals in the sound example for different noise
levels. Estimates are slightly jittered to avoid overlying lines.

For this example it seems again that MDL is the worst
method and maybe ACOV the best method which is in line
with the simulation results as speech signals are often analyzed
using a NSS framework. For a noise standard deviation larger
than 30 it seems that all methods lose one signal.

VI. DISCUSSION AND CONCLUSION

We proposed a flexible framework for estimating the signal
dimension in a noisy BSS model, with the inference relying
on bootstrapped null distributions. Simulations revealed that



the method provides accurate dimension estimates in a wide
range of models and for different choices of the kernel K.

The next step is to extend the asymptotic test of [10] to non-
iid data by deriving the limiting distribution of the test statistic
(9) under suitable conditions on the signal zi and the kernel K.
Assuming that the limiting distribution is tractable (which we
expect under the Gaussian noise), an instant benefit of such
a result would be freedom from the computationally intensive
bootstrapping in computing the null distributions. Moreover,
from the performance of the asymptotic test based on the iid
assumption in the simulations, it seems reasonable to expect
the asymptotic null distribution of (9) to be accurate already
for moderate sample sizes.

A related objective involves establishing suitable conditions
for the kernel matrix K under which dimension estimation
based on SK is feasible. Namely, it is simple to come up
with non-trivial examples of matrices K which cannot be used
to estimate the signal dimension. For example, the matrix
K = 1

n11′ yields SK = x̄x̄′ which, while measuring a
meaningful quantity, has rank one and carries no information
on the separation of the signal from the noise. Conversely,
having a full rank for K is not necessary either as can be
seen by choosing K equal to I with the first diagonal element
set to zero. This yields the (non-centered) covariance matrix
of the data with the first observation removed and, as such,
carries asymptotically the same information as the covariance
matrix. From the simulations it is clear that different kernels
K might be more suitable for some models than for the others.
Therefore, in future research, the plan is to develop data-driven
guidelines for choosing a correct kernel for data at hand. We
also plan to investigate if the information from several kernels
can be combined.

In [10], the Gaussian noise ε1, . . . , εn was replaced with
a random sample from an arbitrary spherical distribution [27]
(with suitable moments), with minimal changes to the limiting
result (4). However, the assumption of sphericity was made
precisely for analytical tractability and, since we base our
inference on bootstrapped null distributions, in the current
context it is possible to venture still outside of spherical
noise distributions. The only requirement is that the noise
vectors have covariance matrix proportional to identity, but
otherwise the bootstrapping-based method works for any noise
distribution when in Algorithm 1 the parametric bootstrap for
Y∗

2 is replaced with an appropriate nonparametric alternative.
Finally, while the family of matrices SK is rather general,

natural candidate matrices for dimension estimation not be-
longing to this set obviously exist. One example of such a
matrix is the covariance matrix of fourth moments whose
population version reads Σ4 = E{(x − µ)(x − µ)′Σ−1(x −
µ)(x − µ)′}, where µ and Σ are, respectively, the mean and
the covariance matrix of x. While Σ4 does not fit in our
framework, some alternative techniques could possibly be used
to show that it (along with various other matrices) can also be
used for dimension estimation. For an example of using Σ4 for
dimension estimation in the context of a specific BSS model,
non-Gaussian subspace analysis, see [9].

REFERENCES

[1] I. Jolliffe, Principal component analysis, Springer, 2002.
[2] Z. Ye and R.E. Weiss, “Using the bootstrap to select one of a new class

of dimension reduction methods,” Journal of the American Statistical
Association, vol. 98, pp. 968–979, 2003.

[3] W. Luo and B. Li, “Combining eigenvalues and variation of eigenvectors
for order determination,” Biometrika, vol. 103, pp. 875–887, 12 2016.

[4] D. N. Lawley, “Tests of significance for the latent roots of covariance
and correlation matrices,” Biometrika, vol. 43, pp. 128–136, 1956.

[5] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 33, pp. 387–392, 1985.

[6] L.C. Zhao, P.R. Krishnaiah, and Z.D. Bai, “On detection of the number
of signals in presence of white noise,” Journal of Multivariate Analysis,
vol. 20, pp. 1–25, 1986.

[7] J.R. Schott, “A high-dimensional test for the equality of the smallest
eigenvalues of a covariance matrix,” Journal of Multivariate Analysis,
vol. 97, pp. 827–843, 2006.

[8] K. Nordhausen, H. Oja, and D.E. Tyler, “Asymptotic and bootstrap tests
for subspace dimension,” Journal of Multivariate Analysis, vol. 188, pp.
104830, 2022.

[9] K. Nordhausen, H. Oja, D.E. Tyler, and J. Virta, “Asymptotic and
bootstrap tests for the dimension of the non-Gaussian subspace,” IEEE
Signal Processing Letters, vol. 24, pp. 887–891, 2017.

[10] J. Virta and K. Nordhausen, “Estimating the number of signals using
principal component analysis,” Stat, vol. 8, pp. e231, 2019.

[11] M.E. Tipping and C.M. Bishop, “Probabilistic principal component
analysis,” Journal of the Royal Statistical Society B, vol. 61, pp. 611–
622, 1999.

[12] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing:
Learning Algorithms and Applications, Wiley & Sons, USA, 2002.

[13] Y. Pan, M. Matilainen, S. Taskinen, and K. Nordhausen, “A review
of second-order blind identification methods,” Wires Computational
Statistics, p. e1550, 2021.

[14] M. Matilainen, K. Nordhausen, and J. Virta, “On the number of signals
in multivariate time series,” in Latent Variable Analysis and Signal
Separation, Y. Deville, S. Gannot, R. Mason, M.D. Plumbley, and
D. Ward, Eds. 2018, pp. 248–258, Springer.

[15] J. Virta and K. Nordhausen, “Determining the signal dimension in
second order source separation,” Statistica Sinica, vol. 31, pp. 135–
156, 2021.

[16] A.C. Davison and D.V. Hinkley, Bootstrap Methods and their Applica-
tion, Cambridge University Press, 1997.

[17] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, 2022.

[18] Ghalanos A., rugarch: Univariate GARCH models, 2020, R package
version 1.4-2.

[19] L. Tong, V.C. Soon, Y.F. Huang, and R. Liu, “AMUSE: A new blind
identification algorithm,” in IEEE International Symposium on Circuits
and Systems, 1990, pp. 1784–1787.

[20] A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique based on second order statistics,” IEEE
Transactions on Signal Processing, vol. 45, pp. 434–444, 1997.

[21] S. Choi and A. Cichocki, “Blind separation of nonstationary sources in
noisy mixtures,” Electronics Letters, vol. 36, pp. 848–849, 2000.

[22] S. Choi and A. Cichocki, “Blind separation of nonstationary and
temporally correlated sources from noisy mixtures,” in Neural Networks
for Signal Processing X., 2000, pp. 405–414.

[23] M. Matilainen, K. Nordhausen, and H. Oja, “New independent compo-
nent analysis tools for time series,” Statistics & Probability Letters, vol.
105, pp. 80–87, 2015.

[24] M. Matilainen, J. Miettinen, K. Nordhausen, H. Oja, and S. Taskinen,
“On independent component analysis and stochastic volatility models,”
Austrian Journal of Statistics, vol. 46, pp. 57–66, 2017.

[25] Jari Miettinen, Markus Matilainen, Klaus Nordhausen, and Sara Taski-
nen, “Extracting conditionally heteroskedastic components using inde-
pendent component analysis,” Journal of Time Series Analysis, vol. 41,
pp. 293–311, 2020.

[26] Jari Miettinen, Klaus Nordhausen, and Sara Taskinen, “Blind source
separation based on joint diagonalization in R: The packages JADE and
BSSasymp,” Journal of Statistical Software, vol. 76, pp. 1–31, 2017.

[27] K.-T. Fang, S. Kotz, and K.W. Ng, Symmetric multivariate and related
distributions, Chapman & Hall, 1990.


