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Most drug molecules modulate multiple target proteins, leading either to

therapeutic effects or unwanted side effects. Such target promiscuity partly

contributes to high attrition rates and leads to wasted costs and time in the

current drug discovery process, and makes the assessment of compound

selectivity an important factor in drug development and repurposing efforts.

Traditionally, selectivity of a compound is characterized in terms of its target

activity profile (wide or narrow), which can be quantified using various statistical

and information theoretic metrics. Even though the existing selectivity metrics

arewidely used for characterizing the overall selectivity of a compound, they fall

short in quantifying how selective the compound is against a particular target

protein (e.g., disease target of interest). We therefore extended the concept of

compound selectivity towards target-specific selectivity, defined as the

potency of a compound to bind to the particular protein in comparison to

the other potential targets. We decompose the target-specific selectivity into

two components: 1) the compound’s potency against the target of interest

(absolute potency), and 2) the compound’s potency against the other targets

(relative potency). The maximally selective compound-target pairs are then

identified as a solution of a bi-objective optimization problem that

simultaneously optimizes these two potency metrics. In computational

experiments carried out using large-scale kinase inhibitor dataset, which

represents a wide range of polypharmacological activities, we show how the

optimization-based selectivity scoring offers a systematic approach to finding

both potent and selective compounds against given kinase targets. Compared

to the existing selectivity metrics, we show how the target-specific selectivity

provides additional insights into the target selectivity and promiscuity of multi-

targeting kinase inhibitors. Even though the selectivity score is shown to be

relatively robust against both missing bioactivity values and the dataset size, we

further developed a permutation-based procedure to calculate empirical

p-values to assess the statistical significance of the observed selectivity of a

compound-target pair in the given bioactivity dataset. We present several case

studies that show how the target-specific selectivity can distinguish between
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highly selective and broadly-active kinase inhibitors, hence facilitating the

discovery or repurposing of multi-targeting drugs.
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activity, polypharmacological effects

1 Introduction

Compound selectivity is a critical factor when developing

new drugs or repurposing existing drugs for new uses (Bosc et al.,

2017; Schipper et al., 2022). Binding affinity measurements of a

compound across various target proteins enable systematic

mapping of the target activity space and bioactivity spectrum

of the compound. If a compound has a narrow target profile and

activity spectrum, i.e., it binds effectively to a few specific targets,

then the compound is considered as more selective than a

compound with a wide activity spectrum and which binds to

multiple targets with similar affinities. The overall selectivity of a

compound can therefore be characterized in terms of how

narrow or wide its bioactivity spectrum is. Compounds that

potently bind to a single target protein are often easier to develop

and optimize for clinical use. However, most of the currently

used drugs have relatively broad polypharmacological profile,

that is, their phenotypic responses are due to interactions with

multiple protein targets at different degrees of binding affinity.

For instance, kinases are promising therapeutic targets for

various indications, including cancer, autoimmune diseases,

inflammatory diseases, and cardiovascular diseases, but due to

their structural similarity, it is rather challenging to develop

highly selective kinase inhibitors (Davis et al., 2011). However,

such polypharmacological effects of kinase inhibitors make them

also potential candidates for drug repurposing, provided the

compound has sufficient selectivity against the off-target

proteins driving the disease progression.

A number of statistical and information theoretic metrics

have been introduced to quantify compound selectivity. For

example, the standard selectivity score calculates the number

of targets bound by a compound above a given binding affinity

threshold (Karaman et al., 2008). The Gini selectivity metric

quantifies how widely the binding affinity measurements of a

compound are spread across the target space (Graczyk, 2007;

Ursu et al., 2020). More specifically, if there are only a few high

binding affinities in the bioactivity spectrum, while the rest of the

target activities remain weak, then the binding affinities are

unevenly distributed, thus resulting in a high Gini coefficient,

and the compound is considered selective. The selectivity entropy

also estimates how the binding affinities of a compound

distribute across the target space (Uitdehaag and Zaman,

2011). A high entropy indicates that the compound binds to

many targets at comparable affinities, and is hence considered

non-selective, while low entropy indicates a strong binding to

only a few targets, thus making the compound selective

(Uitdehaag et al., 2012). While the dissociation constant Kd is

often used as an estimate of the binding affinity, the Partition

index makes use of association constant Ka instead (Cheng et al.,

2010). Partition index quantifies the compound selectivity by

calculating the fraction of binding strength (as measured by Ka)

to a reference target in comparison to other targets. Recently, the

KInhibition Selectivity Score (KISS) was designed for percentage

inhibition target activity data, with user-defined on- and off-

targets as prior information (Bello and Gujral, 2018). In KISS

calculation, penalties are placed on off-target effects by empirical

penalty functions, so that lower penalty and higher on-target

effects indicate that the compound is selective.

The existing selectivity metrics estimate certain

characteristics of a compound’s bioactivity spectrum from

slightly different perspectives, hence leading to a variable

performance in different drug discovery applications (Bosc

et al., 2017; Miljković and Bajorath, 2018a; Miljković and

Bajorath, 2018b). However, none of the existing metrics are

designed for identifying selective compounds for a given

target protein of interest. This is because the current

selectivity metrics effectively estimate the narrowness of the

bioactivity spectrum across the potential targets and consider

a compound as highly selective if it binds to only a single target,

regardless of the target identity. This makes it difficult to use

these metrics for finding selective compounds against a specific

target. A target-specific selectivity analysis is needed in many

applications, e.g., when developing or repurposing drugs against

a specific disease target, while guaranteeing that the drug should

not have strong off-target activities toward other proteins which

may lead to unwanted side effects (Aittokallio, 2022). To fill this

gap, we introduce a target-specific compound selectivity scoring

approach to facilitate identification of selective compounds

against a given target protein (Figure 1). We demonstrate here

the performance and use of the novel selectivity score in the

context of kinase inhibitors, which are known to have a wide

degree of polypharmacological activities, but the general

approach is applicable also to other drug and target classes.

2 Results

2.1 Kinase target activity dataset for the
selectivity scoring

To develop and test the new selectivity score, we used a

published dataset of fully-measured compound-target
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FIGURE 1
Schematic illustration of the target-specific drug selectivity concept. A subset of the Davis et al. dataset (Davis et al., 2011), where 28 randomly
selected compounds and all 442 kinases were used for the illustration purposes. The gray horizontal panel shows the activity profile of the 28 kinase
inhibitors against MEK1, where the compounds are ordered based on their relative potencies against MEK1. The green and purple vertical panels
show the bioactivity spectrums of the compounds CEP-701 and AZD-6244, respectively, across the 442 kinase targets. Even though CEP-701
has the highest potency against MEK1 across all the compounds, it also has other high-potency targets, indicating that CEP-701 is not highly selective
against MEK1. While AZD-6244 is not the most potent compound against MEK1, it has its highest potency against MEK1, and therefore AZD-6244 is
considered as more selective against MEK1 than CEP-701.

FIGURE 2
Bioactivity data (pKd values) in the Davis dataset (Davis et al., 2011), containing 72 compounds and 442 kinases. (A) The bioactivity distributions,
where the larger one includes all bioactivity data, and the smaller one (inset) includes only those bioactivities with pKd > 5 (the pairs with Kd = 10 uM,
i.e., pKd = 5, indicate no activity in the primary screen). (B)Heatmap of the target activities. Higher pKd (lower Kd) values indicate stronger compound-
kinase activities.
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interactions between 72 kinase inhibitors and 442 kinases (Davis

et al., 2011). Figure 2 shows the distribution of the measured

compound-kinase interactions in terms of pKd. In this bioactivity

data matrix, a large number of compound-kinase pairs show no

activity, with pKd = 5, i.e., Kd = 10 uM, and only a few compound-

target pairs show strong potency, with pKd > 9 i.e., Kd < 1 nM. As

expected with kinase inhibitors that are known to have varied

degrees of target promiscuity, many compounds have relatively

strong activities against multiple kinases, and many kinases have

a number of potent inhibitors. This makes the Davis et al. dataset

an excellent test bench for developing and testing a new

selectivity method, since it encompasses compounds and kinases

with different polypharmacological activities andwide differences in

their activity spectra, including both highly promiscuous com-

pounds targeting multiple kinases at low concentrations, and highly

selective compounds with narrow target activity profiles.

2.2 Decomposition of target-specific
compound selectivity

Given a compound ci ∈ C and a target tj ∈ T, the bioactivity

spectrum of the compound ci can be defined as

Bci � {Kci, tj | tj ∈ T}, and the activity profile of the target tj can

be defined as Ptj � {Kci, tj | ci ∈ C}, where Kci, tj is the interaction

strength between ci and tj (here, dissociation constant Kd, but in

general it can be any binding affinity estimate).

The existing compound selectivity metrics try to characterize

the distributional properties of Bci, essentially measuring whether

a compound interacts with only a few or larger number of targets.

However, such a compound-specific approach is not sufficient

when a specific protein target is under investigation. When

assessing the target-specific compound selectivity, two aspects

of the pairwise interactions need to be considered (1): how the

interaction strength of a compound is distributed across its

targets, i.e., characterizing Bci; and (2) how the interaction

strength of a target is distributed across the compounds,

i.e., characterizing Ptj (see the horizontal and vertical panels

of Figure 1).

Given a set of compounds C and a set of targets T, that are

explored in a target activity profiling study, the task of finding the

most potent compounds and highest affinity targets among the

compound and target spaces can be formulated as an

optimization problem:

c*(ti) � argmax
ci

Ptj, s.t. tjϵT

t*(ci) � argmax
ti

Bcj, s.t. ciϵC

However, as was illustrated in Figure 1, the optimal solutions to

these two objectives do not agree in general, i.e., the most potent

compound c*(tj) (e.g., CEP-701 in Figure 1) for a target tj (e.g.,

MEK1) is not necessarily among the compounds (e.g., AZD-6244)

that each exert their highest affinity toward tj and are considered

selective in this respect. Likewise, the selective potency of a

compound (AZD-6244) for a target (MEK1) does not imply that

the most potent compound (CEP-701) for the same target shows

superior potency over the other targets. Therefore, the target-

specific selectivity needs to be formulated as a multi-objective

optimization problem that considers both Bciand Ptj.

Intuitively, for a target tj, one tries to find the compound ci
that simultaneously maximizes Kci, tjin Ptj and minimizes some

statistic describing Bci\{Kci, tj}, for example, the mean of the set

Bci\{Kci, tj}. In addition to the global mean, we also used a more

local statistic by taking the mean of the h-nearest neighbors of

Kci, tjin Bci, i.e., Bci, hNN(tj), where hNN(tj) denotes the h-nearest
neighbors of Kci, tj in Bci in terms of target activity.

We formulated the above two statistics relative to Kci, tj as

below:

Global relative potency Gci,tj � Kci,tj −mean(Bci\{Kci, tj}) (1)
Local relative potency Lci,tj � Kci,tj −mean(Bci, hNN(tj)) (2)

Additionally, Kci, tj is termed as absolute potency. Based on

these definitions, the target-specific selectivity can be obtained as

a solution of the bi-objective optimization problem, in which one

maximizes simultaneously both the absolute potency and the

relative potency, which can be easily solved using the ε-constraint
method (Haimes, 1971; Miettinen, 1999) (see Materials and

methods for details). Here, we used the neighborhood size of

h = 5 in the local relative potency, unless otherwise specified.

In the Davis dataset, 1,208 selective compound-kinase pairs

were identified among the 31,824 total pairs between 72 compounds

and 442 kinases when using the local relative potency (Figure 3A);

while using the global relative potency, 660 selective pairs were

identified (Figure 3B). Even if the use of the local relative potency in

the optimization problem led to 1.8-fold more selective compound-

target pairs, compared to using the global relative potency, there is

still a relatively large overlap between the identified selective

compound-target pairs (Figure 3C). Since the local and global

relative potencies capture different aspects of Bci, they lead to

different optimal solutions. However, selective compound-target

pairs identified using both statistics can be considered together,

based on the needs of the user.

2.3 The integrated target-specific
compound selectivity score

When applying the bi-objective optimization to identify

selective compound-target pairs, an integrated selectivity score

can be calculated by combining both the local and global relative

potencies to quantify the selectivity of a compound for a given

target. Such integrated selectivity score Sci, tj for the compound-

target pair (ci, tj) is formally defined as:
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Sci,tj � α · Lci,tj + (1 − α) · Gci,tj (3)

where the parameter α adjusts for the contributions of the local

and global relative potency to the selectivity score.

The global relative potency Gci, tj focuses on comparing the

compound’s interaction strength against a specific target, relative

to the average affinity to the other targets, and it therefore reflects the

general interaction strength over Bci\{Kci, tj}. Large Gci, tj indicates

that the Kci, tj is generally high compared to the mean(Bci\{Kci, tj}),
but we note that (ci, tj) is not necessarily the only pair with strong

interaction. For example, its nearest neighbor in terms of target

potency, Kci, ta, may be as high as Kci, tj, meaning that compound

ci has similar interaction strength against tj and ta. Therefore, the local

relative potency Lci, tj was introduced to better distinguish between

Kci, ta and Kci, tj, since it emphasizes the local potency, relative to the

average of neighbor targets, instead of all the other protein targets.

A weighted sum of the two relative potencies can be used to

quantify the integrated selectivity of a compound-target pair to

be optimized in Eq. 3. The weight of each relative potency term

can be freely adjusted by the user.Whenmore weight is placed on

the local relative potency, then the selectivity score will focus

more on distinguishing between the given target and its nearest

neighbors in terms of the interaction strength, hence identifying

compounds most potent against the given target in the context of

the target neighborhood. As a default option, the mean of local

and global relative potencies can be used (i.e., α = 0.5), if none of

the terms is considered more important than the other in the

particular drug discovery or repurposing application (Figure 4A).

Figure 4B shows the correlation between the integrated

selectivity scores and pKd values, colored for three example

compounds discussed below. In general, and as was expected, a

higher interaction strength (absolute potency measured by pKd)

corresponds to higher selectivity. However, by combining the local

and global relative potencies, one can discover compounds that are

selective, yet may have relatively weak interaction strengths. For

example,MLN-120B has a relatively weak absolute potency of pKd =

7.72 with IKK2, but it was identified as selective against IKK2 with a

relatively high selectivity score of 2.11. In the Davis dataset, MLN-

120B is the second most potent inhibitor of kinase IKK2, yet having

the highest local relative potency. This example shows that with the

FIGURE 3
Heatmaps of the identified selective and broadly-active compound-kinase pairs among 72 compounds and 442 kinases when using (A) local
relative potency and (B) global relative potency; (C) the overlap of the identified selective compound-kinase pairs identified using the local and global
relative potency.
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FIGURE 4
(A) Heatmap of the selectivity scores between 72 compounds and 442 kinases when using the weighting factor α = 0.5 in Eq. 3; (B) Correlation
between the selectivity scores and absolute potency pKd across the 31,824 compound-kinase pairs in the Davis dataset. Higher scores indicate
higher selectivity. Examples of compound-kinase pairs with relatively low interaction strengths and high selectivity scores are highlighted in the box,
and details shown in the inset table.

FIGURE 5
Comparisons of (A) local and global relative potencies and (B) distributions of selectivity scores for dasatinib and GSK-461364A across
442 kinase targets. GSK-461364Awas identified through bi-objective optimization as selective against PLK1 using both (C) local relative potency and
(D) global relative potency.
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adjustable weights, it is possible to reach a balance between

compound potency and selectivity, with the aim to find

maximally selective and potent compounds for a particular target

of interest.

2.4 The application of target-specific
selectivity score to kinase inhibition

To illustrate the use of the target-specific selectivity score,

Figure 5 shows the selectivity scores and relative potencies of two

compounds: dasatinib and GSK-461364A. GSK-461364A is known

to be highly selective against only a few kinase targets, PLK1,

SNARK, and LOK, with much higher selectivity scores than for

other kinases (Figure 5B). In contrast, dasatinib is a broad-spectrum

multi-kinase inhibitor, and therefore many of its targets have high

global relative potencies, but none of these targets have a high local

relative potency (Figure 5A). A high global relative potency indicates

that the compound shows overall selectivity to any target in general,

since it considers the mean of Bci\{Kci, tj}. Thus, when considering

dasatinib to be selective against a set of targets, more weight can be

placed on the global relative potency; when searching for selective

compounds against a few specific targets, more weight can be placed

on the local relative potency. In this way, the target-specific

compound selectivity score provides flexibility and becomes

applicable to different drug discovery needs.

As shown above, GSK-461364A was identified as a highly

selective PLK1 inhibitor since it has both high local and global

relative potencies against PLK1 (Figures 5C,D). The bi-objective

optimization also identified GSK-461364A as an optimally

selective compound against SNARK and LOK, due to its high

local relative potency (Supplementary Figure S1). For many kinase

targets, such as PLK1, multiple highly selective compounds can be

rather easily identified from the Davis dataset, but for some other

targets, such as SNARK, LOK, and other targets shown in

Supplementary Figure S1, compromises between the potency and

selectivity need to be made through the bi-objective optimization. A

Pareto front was generated to illustrate all the equally optimal

compounds for a given target. For example, multiple compounds

were identified as optimally selective for the kinase TNIK (see

Supplementary Figure S1). The most selective compounds for the

target can then be identified using the selectivity score (Eq. 3), along

with other available information, including physicochemical

properties of the compounds or their toxicity profile. In this way,

the pareto optimization provides the user with additional quantitative

information for the drug discovery process.

2.5 Evaluation of the stability of the target-
specific selectivity score

To evaluate the stability of the target-specific selectivity score,

we first studied the impact of missing bioactivity values by adding

20, 40, 60 and 80% of missing values to the full bioactivity data

matrix, while keeping all the compounds and targets in the

matrix. When considering all compound-target pairs, the

global relative potency was in general more robust to missing

data than the local relative potency (Figures 6A,B). For each

kinase target, the recall value was calculated using the identified

selective compounds from the full data matrix as true positives,

using both local and global relative potencies (Figures 6C,D). As

expected, the recall tends to decrease when increasing the missing

value rates in the bioactivity data matrix. When only 20% of non-

missing data are available, the recall values were distributed

mostly at zero, suggesting that the identified selective pairs are

not stable anymore. Based on the above results, the methodology

appears reasonably consistent in bioactivity data matrices that

have maximally 20% of bioactivity pairs missing.

Next, we studied the effects of various bioactivity data matrix

sizes on the stability of the identifications. Data matrices of

increasing sizes were subsampled from the full data matrix, with

20, 40, 60 and 80% of compounds and targets included, and the

selective compound-target pairs were identified based on each

subsampled matrix. For a compound-target pair, the number of

times it was identified as selective in the submatrices of different sizes

was considered as a measure of consistency. If a compound-target

pair was identified as selective in all the data matrices, regardless of

the bioactivity matrix size, it indicates that even with a very small

data size, for example 20% of the compounds and targets that

corresponds to 4% of the full data matrix, the method can still

identify the selective pairs, and the result is consistent with that when

using the larger bioactivity data matrices.

Supplementary Figure S2 shows the overall heat map counting

the occurrences of selective pairs consistently identified across

different sizes of submatrices. A count of 5 means a compound-

target pair was identified as selective in all submatrices of different

sizes, and a count of 1 means a compound-target pair was identified

only once as selective. Some compound-target pairs were only

present in the largest data matrix, i.e., the full data matrix, thus

they can only be identified once. Similar to Figure 6, the selectivity

score tends to be more stable when using global relative potency, as

the identified pairs are more consistent compared to that when

using the local relative potency (Supplementary Figure S2A). As

expected, gradually decreasing the data matrix size leads to

identification of certain targets with many selective compounds,

indicating increased instability. In general, when the data size is the

smallest, i.e., 4% of the full data matrix, the method starts to behave

inconsistently, suggesting that larger data matrices are required.

2.6 Statistical evaluation of the relative
potency using empirical p-values

Statistical properties of the relative potency were next studied

by randomly permuting the compound-target bioactivity matrix.

Local and global relative potencies were calculated based on the
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permuted matrices to form the background distribution for null

hypothesis. As expected, the background distributions were

concentrated at around zero, especially for the local relative

potency (Figures 7A,B). Next, the empirical p-values were

calculated for each compound-target pair based on the

background distributions (Figure 7C). The empirical p-values

for the global relative potency were almost uniformly

distributed, as would be expected for a proper statistic, but

for the local relative potency, the p-values tend to be either very

small or close to 1. The ill-distributed p-values of local relative

potency may be due to the local neighborhood size (h = 5) that

was used as default in its calculation. When comparing the

p-value distributions of compound-target pairs identified as

selective with those of non-selective pairs, it was observed that

p-values for selective pairs are more concentrated around zero,

i.e., indicating statistically significant target-specific selectivity

(Figures 7D,E).

We note that the local relative potency is closely related to the

global relative potency, since when the number of neighbors h is

increased to all the targets, the local relative potency becomes

equal to the global relative potency. Thus, we wanted to study the

effect of using increasing numbers of nearest neighbors when

calculating the local relative potency for the bi-objective

optimization. In general, different numbers of nearest

neighbors resulted in rather similar detections, which are

distinct compared to using the global relative potency

(Supplementary Figure S3A). When comparing the identified

selective compounds per target, using the local relative potency

based on different numbers of nearest neighbors, we calculated

recall values using selective compounds identified by the global

relative potency as true positives. The recall distributions showed

that the performance of the local relative potency is again

relatively consistent when the number of nearest neighbors

varies (Supplementary Figure S3B). Taken together, the

consistent behavior of the local relative potency calculation

indicates that the two versions of the relative potency capture

both unique and common properties of the compound-target

interactions.

FIGURE 6
The number of times a compound was identified as selective for a target in bioactivity matrices with missing values when using (A) local relative
potency and (B) global relative potency. Upper row: the heatmaps show the overall results in the matrix between 72 compounds and 442 kinases
when adding 20, 40, 60 and 80% ofmissing values to the full bioactivity datamatrix. In panel a, gray stripes correspond to kinases for which almost all
compounds are identified as selective, indicating instability; Bottom row: the boxplots of the recall of identification of selective drug-kinase
pairs from data matrices with missing values when using (C) local relative potency and (D) global relative potency, using the selective pairs identified
in the full data matrix as ground truth.
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2.7 Comparison of target-specific
selectivity with existing selectivity metrics

Since most of the existing compound selectivity metrics are

designed only from the perspective of compound selectivity, it is

not straightforward to make comparisons between those metrics

and our target-specific selectivity metric. Furthermore, the

metrics are also designed for different bioactivity readouts,

and may have different directions and scales to indicate

selectivity. To make a reasonable comparison, we z-scaled and

standardized all the metrics so that the smaller the metric, the

more selective the compound (see Materials and Methods). For

our target-specific selectivity score, we used a summarized,

target-agnostic selectivity score, calculated as the mean of

selectivity scores of a compound across all available targets.

We also used the number of identified selective targets for

each compound as a measure of the compound’s overall

selectivity, regardless of the target. Supplementary Figure S4

shows that such summarized measures coincide among the

selectivity metrics, since in effect, they all measure whether a

compound has a strong activity against multiple or only a few

targets. For example, the local and global relative potencies

correlated well with the standard score using pKd of 7 as the

activity cut-off (Supplementary Figure S4).

FIGURE 7
Distributions of (A) permuted and original local relative potencies; and (B) permuted and original global relative potencies; (C) the empirical
p-values calculated with permutation procedure for both local and global relative potency; empirical p-values of (D) local relative potency and (E)
global relative potency colored by whether the compound-kinase pair is identified as selective or not.
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Across the 72 kinase inhibitors in the Davis dataset, most

of the target-agnostic summary metrics identified selective

and broadly-active compounds rather consistently, expect for

the Gini coefficient that was not highly correlated with the

other metrics (Figure 8). This could be due to the different

data types required by Gini coefficient, which was designed for

percent inhibition values instead of Kd data. For example,

dasatinib and staurosporine are two well-known broadly-

active kinase inhibitors, and they were considered as non-

selective by most of the metrics. Similarly, more target-specific

compounds, such as GSK-461364A and PLX-4720, were

identified as highly selective compounds by most of the

summary metrics. As an exception, AZD-6244 was

considered non-selective in terms of Gini coefficient and

selectivity entropy, with relatively high scores compared to

other compounds in the dataset, whereas AZD-6244 was

considered relatively selective by our selectivity score and

the standard score. Upon inspecting the Davis dataset,

AZD-6244 has interaction strengths of pKd >5 with 13 out

of 442 kinases, which are mainly MEKs and EGFR mutants

(Supplementary Figure S5).

These results demonstrate a consistent performance of our

target-specific selectivity metric, when using it to measure the

overall target-agnostic compound selectivity.

2.8 Comparison of target-specific
selectivity with partition index

To make a more detailed, target-specific comparison, the

partition index scores were calculated such that each kinase

target was used separately as the reference target (see

Figure 9A which shows the negative logarithm of the

target-specific partition indices). The vertical stripes

indicate that the partition index considers many

compounds to be selective against all the targets, suggesting

that the partition index is not generally capable of finding

selective compound-target pairs. When comparing the

partition index with our target-specific selectivity score, it

was observed that the two metrics are generally well

correlated, as expected, but the new selectivity metric was

more distinctive in terms of identifying selective compound-

target pairs (Figure 9B). Especially, when the partition index is

small, between 0 and 1, the selectivity score can still

distinguish between the highly selective and broadly-active

kinase inhibitors better than the partition index.

Supplementary Table S1 shows several example compound-

target pairs that have low partition indices, yet higher and

more different target-specific selectivity scores (the black

bordered points in the bottom right corner of Figure 9B).

FIGURE 8
Comparison of various target-agnostic compound selectivity metrics. Local and global relative potencies are summarized along the targets of
each compound in the target-specific selectivity metric, and all the metrics are z-scaled and standardized so that the smaller metric values indicate
more selective compounds. The boldfaced compounds are discussed in the text.
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For example, the compound-target pairs (nilotinib, DDR1)

and (PTK-787, KIT) have selectivity scores of 2.30 (0.11%

quantile) and 1.97 (0.38%), respectively, while their partition

indices are 0.43 (0.057%) and 0.42 (0.053%), suggesting that

target-specific selectivity score provides slightly better

separation for the pairs, as further supported by the

significant p-values, using both local and global relative

potency (Supplementary Table S1). Such observations

suggest that the new selectivity score harnesses different

information than the partition index, thus providing

additional perspective to the target-specific discovery or

repurposing of selective compounds.

To further compare the two selectivity approaches, Figures

9C,D shows the distributions of the partition index for the

compound-target pairs identified as selective or non-selective

by the target-specific selectivity score. Regardless of whether

using the local or global relative potency, the partition indices

of the selective pairs tend to have lower values than those of non-

selective pairs, indicating that the two methods are generally

consistent with each other. However there exists also pairs

identified as selective by the target-specific score, yet having a

relatively large partition index values, or vice versa, shown as the

overlaps of two distributions in Figure 9C,D. For example, the

pair (BI-2536, PLK1) has a very low partition index of 0.13,

indicating relatively high selectivity. In the Davis dataset, GSK-

461364A is the most potent inhibitor of PKL1 (pKd = 10.03), with

BI-2536 being the second most potent (pKd = 9.72)

(Supplementary Figure S5). From the compound perspective,

both compounds have their highest potency against PLK1.

However, GSK-461364A has a pKd of 7.64 for its second most

potent target (SNARK), while BI-2536 has a pKd of 9.09 against

PLK2. Since BI-2536 has very similar potencies against its top-2

most potent targets, it is not considered as selective against

PLK1 when GSK-461364A is available in the library. These

examples further demonstrated that our method provides an

added value for finding target-specific selective compounds.

3 Discussion

Finding selective compounds is considered important for

kinase drug discovery since many of the current kinase inhibitors

FIGURE 9
Comparison of target-specific selectivity score and partition index. Upper row: (A) Heatmap of -log10 (partition index) for each kinase, where
smaller values indicate more selectivity; (B) correlation between partition index and selectivity score across the 31,824 compound-kinase pairs in the
Davis dataset; Bottom row: distributions of -log10 (partition index) colored by whether the compound-kinase pair was selective when using (C) local
relative potency and (D) global relative potency.
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are relatively promiscuous. This is the case also with many kinase

inhibitors marketed or under current development (Cohen et al.,

2021), and it remains a challenging task to findmore targeted and

selective inhibitors that can both improve efficacy and reduce the

unwanted off-target toxicity (Attwood et al., 2021). Our results

show that the new target-specific selectivity score provides an

added value for the discovery of multi-targeting, yet selective

compounds in the case when a target of interest is pre-defined.

The selectivity score derived from the relative potencies measures

the target-specific compound selectivity quantitatively and

provides flexibility for the user. The bi-objective optimization

was capable of identifying the maximally selective compound-

target pairs in the presence of a wide degree of

polypharmacological effects. The flexibility comes from the

user-adjustable weights for the local and global relative

potencies in the selectivity score, as well as from using both

the relative and absolute potency in the bi-objective optimization.

Such flexibility allows wide applications, based on different user

needs, for example, finding the most selective compound for a

single target or group of targets. Thus, the new metric is expected

to become beneficial in kinase inhibitor development, and more

broadly in lead compound identification in drug discovery and

for repurposing multi-targeting drugs.

The advantage of the target-specific selectivity score is that it

requires only the bioactivity measurements of the compound-target

pairs, without the need to provide other information of the

compounds, such as their on/off targets or chemical structures.

This makes our approach widely applicable to various types of

bioactivity measurements. In case the available bioactivity data

contains various studies of target activities using multi-dose

assays, such as a mix of Ki, Kd and IC50 readouts, then the

bioactivity readouts can be summarized and integrated using our

previously developed data transformations (Wang et al., 2020). Due

to its data-driven approach, the approach is not only limited to

kinase inhibitors, but once sufficient amounts of similar bioactivity

data become available for other target classes, such as G-protein-

coupled receptors (GPCRs), the same approach is directly applicable

to these data. Apart from calculating the target-specific selectivity

score, the approach also provides optimal solutions of the most

selective compound-target pairs based on the given bioactivity data.

Finally, the target-specific selectivity enables the user to find selective

compounds for the particular targets of interest. Such target-

specificity provides a unique perspective to analyzing compound

selectivity, and expands the application area of the current

compound selectivity metrics in multi-target drug discovery and

repurposing.

The limitation of any data-driven approach is the data

availability and quality. Since the target-specific selectivity

approach requires experimentally measured bioactivity data,

we recommend that at least 80% of the compound-target

pairs should have measured bioactivities to obtain a reliable

performance. Such a requirement limits the approach to only

compounds with sufficient amounts of target bioactivity

measurements available. However, the approach can be

further developed by incorporating other information of either

compounds or targets, for example, compound structural sim-

ilarity (Lo et al., 2019) to infer selectivity of novel compounds,

even without any measured bioactivities. Alternatively, machine

learning methods can be used to predict bioactivities for the

compound-target pairs that have not yet been explored exper-

imentally (Bora et al., 2016; Merget et al., 2017; Öztürk et al., 2018;

Thafar et al., 2019; Vamathevan et al., 2019; Bagherian et al., 2020;

Nguyen et al., 2020; Schneider et al., 2020; Cichońska et al., 2021;

Ye et al., 2021), after which the target-specific compound selec-

tivitymetric can be applied to the fully predicted compound target

interaction matrix to identify selective lead compounds against

any target of interest. In the general method development, we did

not distinguish between the on- and off-targets, or penalized

targets that may lead to adverse effects in clinical applications, but

such factors could be later incorporated into the general selectivity

scoring approach when applied to a particular disease or cellular

context, similar to the KInhibition Selectivity Score (Bello and

Gujral, 2018), but this will require careful distinction between the

therapeutic and toxicity-related targets.

4 Conclusion

We have developed a novel target-specific compound

selectivity metric by decomposing the selectivity into absolute

and relative potencies. Two statistics were used to describe the

relative potency, local and global relative potencies, which

characterized the target-specific compound selectivity from

different aspects and can be combined using a weighted sum

as the integrated selectivity score to facilitate the quantification

of compound selectivity. A bi-objective optimization problem

was used for maximizing both absolute and relative potencies to

identify the maximally target-specific selective compounds in a

given compound-target interaction dataset. The new selectivity

approach is expected to contribute to finding selective

compounds with improved target-specificity, as well as to

enable repurposing of existing multi-targeting drugs for new

disease indications that are driven by the specific disease protein.

5 Materials and methods

The workflow of the target-specific compound selectivity

scoring is illustrated in Supplementary Figure S6.

5.1 Compound-target interaction data for
method development

The compound target activity data used to develop and test

the target-specific compound selectivity were obtained from
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Davis et al. (Davis et al., 2011), hereby called the Davis dataset. In

the Davis dataset, dissociation constant Kd was measured for all

pairs between 72 compounds and 442 kinases. In our analyses,

pKd = -log10(Kd) is used, and the larger is the pKd the stronger the

binding affinity.

5.2 Decomposition of target-specific
compound selectivity

Similar to our previous work on identification of selective

drug combination treatment effects (Pulkkinen et al., 2021), two

aspects of compound binding properties were considered to

quantify target-specific selectivity (1): the compound’s potency

against the target of interest, termed the absolute potency; and (2)

the compound’s potencies against other targets, termed the

relative potency. To find a selective compound for a given

target protein, we consider that the compound needs to be

potent enough against the target, and simultaneously, it must

have a weak or no activity against the other potential targets.

The absolute potency can be basically any multi-dose

bioactivity measurement, such as Ki, Kd, IC50 or EC50, which

measures the binding affinity between the compound and target

of interest. The relative potency can be quantified in different

ways, for example, as the difference between the absolute potency

and the mean of a compound’s potencies against all the other

targets, except for the target of interest. Such relative potency uses

as reference the compound’s overall binding affinity with all

other targets, thus termed as global relative potency. A more

focused measure of relative potency is to consider only those

targets having the closest potencies to the target of interest, for

example, the difference between the absolute potency and the

mean of h nearest neighbors’ potencies with the target of interest.

Such calculation measures the compound’s average interaction

strength within the local neighborhood of the target of interest,

thus termed as local relative potency. If the mean value is higher

than the absolute potency, this indicates that the compound has

similar or stronger binding activity with several targets.

5.3 Bi-objective optimization to identify
target-specific selective compounds

Selectivity score provides a quantitative tool to understand and

quantify target-specific compound selectivity. However, in most

cases, it is difficult to find the optimally selective compound for a

specific protein target. Therefore, we used bi-objective optimization

to find the most selective compound-target pairs given a particular

compound-target interaction dataset. Two separate bi-objective

optimization problems were solved to identify target-specific

selective compounds (1): maximizing both absolute potency

Kci, tjand local relative potency Lci, tj (2); maximizing both

absolute potency Kci, tjand global relative potency Gci, tj.

Let us denote by Kci, tj the binding strength of a compound ci
from a set of compounds C � {ci} against a target protein tj from

a set of protein targets T � {tj}. The activity spectrum of a

compound ci can then be defined as Bci � {Kci, tj | tj ∈ T}.
For the optimization formulation, the two relative potencies

are formally defined as follows:

Local relative potency:

Lci,tj � Kci,tj −
1
n
∑n

h�1KhNN(ci ,tj)

where KhNN(ci, tj) denotes the absolute potency of hth nearest

neighbor of tj given ci.

Global relative potency:

Gci,tj � Kci,tj −
1

|T| − 1
∑|T|

l�1Kci,tl , (l ≠ j)
The bi-optimization problem is to maximize both the absolute

potency and the relative potency, which can be solved using the

ε-constraint method (Haimes, 1971; Miettinen, 1999) as follows:

⋃
ε∈R

{ argmax
c, t

Kc, t

∣∣∣∣∣∣∣∣∣ Lc, t < ε, c ∈ C, t ∈ T}

⋃
ε∈R

{ argmax
c, t

Kc, t

∣∣∣∣∣∣∣∣∣Gc, t < ε, c ∈ C, t ∈ T}

Here, the relative potency can be calculated either by local or

global relative potency, Lc, t orGc, t, respectively. We used h = 5 as

default neighborhood size in the local relative potency.

5.4 Evaluation of target-specific selectivity

We carried out several analyses to evaluate the performance

and stability of the target-specific selectivity score.

5.4.1 The effect of matrix size and missing
bioactivity values

We first studied the effect of compound-kinase interaction

matrix sizes on the identification of selective compound-kinase

pairs. Increasingly sized submatrices were sampled using 20, 40,

60, 80 and 100% of the compounds and kinases in the full matrix,

respectively. In each submatrix, the same selectivity identification

method was applied to generate a binary matrix with 0 indicating

non-selective and 1 selective compound-kinase pairs. The matrices

were aligned by the identity of compounds and kinases and added

up accordingly. For example, all the five submatrices contain the first

20% of the compounds and kinases. Therefore, the sumof the binary

matrices, which ranges between 1 and 5, indicates how well the

method reproduces the same selectivity identification for the

compound-kinase pairs present in the particular part of the matrix.

Next, the effect of missing bioactivity values was studied. For

each kinase, 20, 40, 60, 80% compounds were randomly

subsampled from the set of all compounds, and these were
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assigned as missing, to form matrices with random artificial

missing values. Such matrices were generated with 20, 40, 60,

80% missing values independently (i.e., missing completely at

random). The same selectivity identification method was

applied to all the matrices. The identified selective compound-

kinase pairs from each subsampled matrix were compared to those

identified based on the original full data matrix, without missing

data, to study the effect of increasing the amount of missing data.

5.4.2 Permutation procedure to calculate
empirical p-values

The original compound-kinase bioactivity matrix was randomly

shuffled for 10,000 times, corresponding to a bioactivity matrix

between compounds and kinases where the labels of the compounds/

kinases were randomized, and the identificationmethod was applied

to each of those randomized matrices to form the background

distributions for the local and global relative potencies. Then, for

the observed local and global relative potencies calculated from the

original matrix, empirical p-values were calculated as the percentage

of values in the background distribution smaller or equal than the

observed local and global relative potencies, respectively.

5.4.3 Relationships between h, local and global
relative potency

To study the effect of the number of nearest neighbors h used in

the calculation of the local relative potency, an increasing number of

1, 5, 20, 100 nearest neighbors were used to calculate the local

relative potency. Then, for each kinase, the number of identified

selective compounds was compared among the local relative

potencies when using different numbers of nearest neighbors.

The local relative potency becomes equal to global relative

potency when setting the number of nearest neighbors equal to

all available neighbors, i.e., h = |T| - 1. Therefore, selectivity identified

using global relative potency was considered as the ground truth,

against which the selectivity identified using different local relative

potencies were compared, and the recall values were calculated:

Recall � TP

P
Here, TP is the number of true positives, i.e., the overlap

between the selective compound-target pairs identified both by

the local relative potency, using different numbers of nearest

neighbors, and by the global relative potency, considered as the

ground truth. P is the number of positive cases, i.e., the selective

compound target pairs identified by the global relative potency.

5.5 Comparison of compound selectivity
metrics

5.5.1 General compound selectivity metric
comparison

Since most of the existing compound selectivity metrics are not

target-specific, we used the number of selective targets identified for

each compound as a target-agnostic selectivity metric based on our

target-specific selectivity approach to make a fair comparison with

the other selectivity metrics. Different metrics may also have

different ranges as well as different directions. Thus, for

comparison, all the metrics were normalized to zero mean and

unit standard deviation using the z-scaling:

z � x − μ

σ

where x is the value of the original selectivity score, and μ and σ are

the mean and standard deviation of the original selectivity scores,

respectively. All the metrics were also normalized in direction, such

that the smaller the value of the metrics, the more selective is the

compound.

5.5.2 Target-specific compound selectivity
comparison

As described in the original work (Cheng et al., 2010), partition

index can be considered as a target-specific compound selectivity

metric when choosing specific reference target. Thus, we calculated

partition index for each compound-target pair separately as follows:

Partition index of (ci, tj) �
1

Kci ,tj∑tj
1

Kci ,tj

This calculation was then compared with our target-specific

compound selectivity score calculated from the local and global

relative potency. In negative logarithm form, the smaller the

partition index, the more selective is the compound-target pair.

5.6 Software tools
Python programming language (version 3.7, https://www.

python.org) was used for all the analyses. Python libraries Pandas

(version 1.3.4) (McKinney and W, 2010; Reback et al., 2020) and

Numpy (version 1.21.2) (Harris et al., 2020) were used for data

processing and bi-objective optimization. Python libraries

Matplotlib (version 3.5.1) (Hunter, 2007), Seaborn (version 0.

11.0) (Waskom, 2021) and venn (0.1.3, https://pypi.org/project/

venn/) were used for making the figures.
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