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Abstract: Using a cascadic version of the stochastic tunneling method we perform an all-atom database screen over 
186,000 flexible ligands of the NCI 3D database against the thymidine kinase receptor. By analyzing the errors in the 
binding energy we demonstrate how the cascadic technique is superior to conventional sequential docking techniques 
and how reliable results for the determination of the top-scoring ligands could be achieved. The substrate corresponding 
to the crystal structure used in the screen ranks in the upper 0.05% of the database, validating both docking 
methodology and the applicability of the scoring function to this substrate. Several high ranking ligands of the database 
display significant structural similarity with known substrates. A detailed analysis of the accuracy of the screening 
method is carried out, and its dependence on the flexibility of the ligand is quantified.
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Introduction

Virtual screening of a chemical database to targets of known
three-dimensional structure is rapidly developing into a reliable
method for finding new lead candidates in drug development.1,2

Both better scoring functions3 and novel docking strategies4 con-
tribute to this trend, although no completely satisfactory approach
has been established yet.5 This is not surprising, because the
approximations that are needed to achieve reasonable screening
rates impose significant restrictions on the virtual representation of
the physical system.

Three mandatory ingredients of a reliable in silico screening
approach, based on the direct approximation of the affinity in an
all-atom force field, can be identified: (1) the docking algorithm
has to find the global minimum of the potential (or free) energy
surface within the given conformational space in an accurate and
reproducible manner. (2) All relevant conformations of the recep-
tor–ligand complex in nature must be accessible in the virtual
representation of that system. Although ligand flexibility is now
considered in many docking tools, the inclusion of receptor de-
grees of freedom is still in an experimental stage. (3) The scoring
function, which approximates the free energy change from sol-
vated isolated ligand and receptor to the complex must accurately
approximate the experimental affinity.5

Present-day screening methods necessarily contain approxima-
tions for each of the above ingredients to permit the treatment of

large ligand databases within acceptable time scales. In this inves-
tigation results for a cascadic docking technique, which reduces
and permits to estimate fluctuations in the calculated binding
energies in scoring large databases, are presented. With this tech-
nique a fixed receptor/flexible ligand screen using the stochastic
tunneling technique6,7 of the TK receptor against a database of
nearly 200,000 ligands is performed, and the results are analyzed
with respect to their binding energy fluctuations. It is found that 4
of 10 known substrates to the receptor score in the top 1% of the
database, while the ligand corresponding to the receptor structure
appears in the upper 0.05%. The analysis also reveals certain
similarities between the known substrates and other high-scoring
ligands.

This article is organized as follows: In the next section the
docking method is described, followed by the scoring function and
the ligand database. Then an optimization of the docking strategy
is carried out to reduce the statistical fluctuations of the estimated
affinities and the occurrence of false negatives in a database
screen. The correlation function is employed to analyze the fluc-
tuation characteristics of ligands in large-scale screening projects.
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The ranking of 10 known substrates and the properties of some top
scoring database ligands are discussed later.

Method

Docking Tool

The screens in this investigation were performed with FlexScreen,
an all-atom docking approach8,9 based on the stochastic tunneling
method.6 In this approach receptor and ligand are represented in
atomistic detail, the global minimum of the energy surface is
located using the stochastic tunneling method (STUN),6 which
allows the particle in the minimization process to “tunnel” through
forbidden regions of the potential energy surface that is subject to
a nonlinear energy transformation:

ESTUN�x� � ln�x � �x2 � 1�. (1)

Here, x � �(E � E0). E0 is the lowest minimum encountered
by the dynamical process so far, and � is a problem-dependent
parameter that controls the steepness of the transformation. The
form of the energy transformation was adapted to the docking
problem8,9—the transformation in eq. (1) has no finite asymptote,
and hence delivers a nonvanishing gradient even in regions of high
energies.

Scoring Function

The following simple, first principle-based atomistic scoring func-
tion was employed:
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which contains the empirical Pauli repulsion (first term), the Van
de Waals attraction (second term), the electrostatic Coulomb po-
tential (third term), and the angular-dependent hydrogen bond
potential (term four and five). The Lennard–Jones parameters Rij

and Aij were taken from OPLSAA,10 the partial charges qi were
computed with InsightII and esff force field, and the hydrogen
bond parameters R̃ij, Ãij were taken from AutoDock.11

The scoring function in eq. (2) is an approximation of the in
vacuo binding energy of the ligand–receptor complex. Even in its
simplest approximation the affinity of the ligand is the sum of this
binding energy, the desolvation energy of the ligand and the
desolvation energy of the receptor. The omission of the latter is
appropriate for constricted receptor pockets in which all ligands
with high binding energy displace essentially all water molecules.
Because the focus of this study were the fluctuations of the binding
energies rather than the affinities, desolvation energies of the
ligands were neglected as well.

Receptor Conformation

For this investigation the thymidine–kinase (TK) receptor in com-
plex with its substrate ganciclovir (Fig. 1, pdb entry 1ki212) was
used as a model system. This system was used as a benchmark in
several recent docking investigations5,7,13 because crystal struc-
tures for 10 important substrates in complex with the receptor are
available. Throughout this investigation the notation from ref. 5 is
used. The protein was first protonated and partial charges were
attached using InsightII and its esff forcefield. Crystal water mol-
ecules were removed, as was a sulfate–ion. The removal of the
sulfate has been shown to influence the docking affinities of some
substrates,7 but its removal is nevertheless advisable in a large-
scale database screen unless a proper treatment of solvation/des-
olvation effects is available and the flexibility of the position of the
ion can be accounted for.

Ligand Database

The ligands were taken from the open part of the National Cancer
Institute (NCI) database, nciopen3D,14 which, in its latest version,
contains 249,061 compounds and represents the largest freely
available ligand database.15 Not all compounds of nciopen3D are
suited for in silico screening purposes: molecules with trivial file
format problems and those in complex with exotic atoms (like rare
earth metals), for which reliable force field parameters were un-
available, were removed. The remaining 239,887 compounds were
processed with InsightII to attach the partial charges, again using
the esff forcefield. This was successful for 238,739 compounds,
11,368 of which were not singly connected, i.e., composed of two
or more molecules, and hence rejected, leaving 227,371 ligands
suitable for screening. To introduce ligand flexibility, the mole-
cules were investigated by an automated topological algorithm,
which detects rotatable single bonds. These were enumerated as
rotational degrees of freedom of the respective ligand. Exceptions
were single bonds inside rings, bonds to trivial (single atom) end
groups and conjugated bonds with delocalized � orbitals.

Figure 2 displays the distribution of the 227,371 ligands with
respect to size and internal degrees of freedom (white area). For a

Figure 1. Chemical structure of ganciclovir (gcv), which consists of a
rigid “body” (upper left) and a flexible “tentacle” (lower right).



reasonable database screen, another filter was installed to select the
admissible ligands: (1) the number of atoms N was restricted to
20 � N � 80. Ligands with less than 20 atoms were to a large
extent inorganic compounds that docked everywhere, that is, were
too unspecific. Large molecules consisting of more than 80 atoms
are unlikely to be useful as drugs, because their resorption rate is
usually too low. (2) The number of rotational degrees of freedom
was restricted to R � 12. It is obvious that a too flexible lead is
losing its specificity, that is, its character as a key that fits into one
specific lock. (3) Charged ligands were discarded. First, the inclu-
sion of solvation effects would be required for a proper treatment
of these ligands. Second, in many cases a residual charge turned
out to be the result of InsightII’s failure to assign consistent partial
charges to the molecule. After this filter was applied, 186,025
ligands remained to be docked (gray area in Fig. 2).

Results

Reliability Analysis for a Single Ligand

To rank the ligands in a database, an estimate of their affinity must
be found by global optimization of the scoring function. The
accuracy of the screening procedure depends in large measure on
the reliability of the docking algorithm. To illustrate the difficulties
to determine the optimal value of the scoring function, a set of 300
independent docking simulations of 8 � 105 Monte Carlo steps
each were carried out for gcv against its experimental receptor
conformation. The global energy minimum could be estimated to

be close to �160 kJ/mol, the lowest energy found in any of the
simulations, with an RMS deviation of 1.0 Å to the known crystal
structure. Figure 3 displays the distribution of lowest energies
found for the individual runs, which scatter over a wide range,
indicating that a single scoring run is insufficient to reliably
estimate the optimal score. There is, however, a good correlation
between energy and the RMS deviation from the experimental
conformation. The gray areas indicate conformations with less
than 2.0 Å deviation from the X-ray structure. Using this threshold
as a docking criterion, only 40% of the simulations led to a docked
ligand, but even more of them failed to approach the optimal
energy.

One obvious—and widely used—option to reduce the statisti-
cal noise is to repeat the scoring run several times, either with a
corresponding increase in the computational cost, or, if feasible,
with a reduced number of steps in each run. In this approach, the
best balance between the number of runs and the length of the
individual run must be found. It is difficult to calibrate the param-
eters on a single ligand, as docking performance depends signifi-
cantly on the complexity of the conformational space. To illustrate
the improvement obtained with this approach, eight docking runs
of 105 steps were carried out in a batch, and the lowest binding
energy obtained in any of these runs was selected. This simulation
was repeated 300 times, and the resulting energy distribution (Fig.
3, center panel) was now clustered close to the global optimum and
all conformations approached the experimental conformation.

To rationalize this result the docking rate was investigated as a
function of simulation steps. When considering a single docking
run (see Fig. 4), it can be observed that the STUN simulation

Figure 2. Distribution of compound size (upper panel) and number of
internal degrees of freedom (lower panel) of the NCI (open) database.
White area: 227,371 compounds that are singly connected and for
which partial charges could be assigned. Gray area: 186,025 com-
pounds used for the screen (see text for a description of their selec-
tion).

Figure 3. Histograms of the binding energy distributions for three
strategies for docking gcv with the stochastic tunneling method. Upper
panel: single runs with 8 � 105 MC steps each. Central panel: the best
of eight runs of 105 MC steps. Lower panel: cascadic approach.
Distribution of binding energies after 300 simulations. Gray area:
successful docking. Black area: docking failures.



continuously switches between local optimization and tunneling
events. After each tunneling event the simulation explores a local
minimum and then proceeds. In contrast to other methods, for
example, simulated annealing,16 the optimal configuration may be
reached at any time during the simulation. It is therefore sensible
to define the docking rate as the fraction of runs that had visited the
optimal position at a given simulation step n. Figure 5 shows the
docking rate in relation to the number of MC steps. There is an

initial steep increase in the docking rate, but the curve flattens after
approximately 50,000 steps, implying that some runs had visited
optimal or near optimal conformations quite early in the simula-
tion, but 60% of them never came close to the docked conforma-
tion.

This observation motivates a cascadic docking approach: the
total number of simulation steps is divided into several partitions
of similar computational effort. The first partition is spent by
performing a large number of short runs on the ligand. Then a
small fraction of well scoring runs from this set is selected for the
second partition, where they are extended with a larger number of
steps. This process is iterated, with decreasing number of confor-
mations, but increasing number of steps. As a result, the most
promising simulations at the end of each partition are allotted the
largest computational effort, while unsuccessful simulations are
terminated early.

To investigate this strategy, three partitions of 500,000,
150,000, and 150,000 steps, with 100, 5, and 2 simulations were
allotted, respectively. Using this cascade, again 8 � 105 simulation
steps were invested for each of the 300 ligands, but with this
approach the success rate increased to 100% and the scattering of
the final affinity was further reduced (see bottom panel of Fig. 3).
Table 1 summarizes the statistical properties of the final binding
energies. It is this reduction of the affinity fluctuations that is of
particular importance when it comes to avoid false negatives in a
database screen.

Database Screen and Fluctuation Analysis

If a large database has to be screened, a detailed investigation of
energy fluctuations of individual ligands, as described in the pre-
vious section, is no longer feasible, because it would require a
repeated docking of the entire database, or at least of a substantial
subset. The cascadic approach introduced above permits an inher-
ent assessment of the quality and reliability of the screen without
additional cost by using energies of the final configurations of the
last set of runs in the cascade to estimate the variance of the energy
distribution.

In this database screen, the 186,025 ligands of the filtered
database (see before) were screened with the cascadic technique as
described earlier. The evaluation was confined to ligands that had
a negative binding energy and either (a) reached an optimal posi-
tion with a center of mass coordinate within 0.5 nm radius of the
center-of-mass coordinate of the docked gcv substrate or (b) if the
center-of-mass coordinate was outside this sphere, but at least 20
atoms were within. About 25.2% of the database molecules satis-

Figure 4. Energy (upper panel) and transformed energy (lower panel)
for a representative docking simulation of gcv to its native receptor.
Note that small fluctuations in the transformed energy, which serves as
the target function of the dynamics process can lead to large changes
in the original energy. The simulation alternates between local opti-
mization and tunneling phases. The latter are essential to locate dif-
ferent metastable conformations.

Figure 5. Docking rate for gcv as a function of the number of steps in
the simulations. Shown is the fraction of runs (out of 300) that had
visited the experimental conformation to within 2 Å rms deviation
within the specified number of steps.

Table 1. Statistical Properties of the Distribution of Binding Energies (in
kJ/mol) for the Different Docking Strategies as Shown in Figure 3.

Docking strategy Failure (%) Mean RMS

1 � 8 � 105 steps 61.0 �88.4 52.5
1 � 8 � 105 steps 1.7 �142.9 15.6
Cascadic 0.0 �147.1 3.5



fied either (a) or (b), most others were simply too large or too
inflexible to fit the cavity.

Figure 6 shows the distribution of energy differences �E of the
two final runs in the above screening procedure. Its median
(�Em � 0.72 kJ/mol) could serve as an estimate for the ligand’s
average energy uncertainty of the screening procedure. Alterna-
tively, �E could be interpreted as a parameter of the energy–
energy correlation function F(�E). In a fluctuation analysis, it was
fitted as a sum of two negative exponentials, i.e.,

F��E� � w1�1e
��1�E � w2�2e

��2�E, (3)

yielding the inverse decay constants �1
�1 � 0.47 kJ/mol, �2

�1 �
4.42 kJ/mol, and weight factors w1/w2 � 1.70, with errors on the
5% level. The fit suggests that the energy fluctuations were com-
posed of two classes of ligands: while some ligands docked with
high reliability in the 0.5 kJ/mol range, others displayed signifi-
cantly larger fluctuations of the order of 5 kJ/mol. For further
analysis, the ligands were categorized according to their fluctua-
tions: ligands with small fluctuations (SF-ligands) were those in
the range of thermal fluctuations, (�E � 2.5 kJ/mol 	 kBT, 73%
of the docked population), moderate fluctuations (MF ligands, 2.5
kJ/mol � �E � 10 kJ/mol, 16%) or high fluctuations (HF ligands,
�E � 10 kJ/mol, 11%).

In Figure 7, the principal statistical properties of these families
of ligands are summarized. A first striking feature is the fact that
practically no ligands with more than 40 atoms have docked (upper
left). The reason is that the TK receptor forms an almost entirely
enclosed pocket. Ligands larger than a certain size were unable to
fit the cavity (the substrate’s sizes ranged from 25 to 37 atoms). A
small systematic shift towards larger size is visible when compar-

ing SF and MF ligands with HF ligands. This trend was much more
pronounced when the internal rotational degrees of freedom were
considered (upper right). The family of SF ligands was dominated
by ligands with few degrees of freedom. This is understandable,
because an increasing number of degrees of freedom correlates
with the complexity of the conformational space, making it more
difficult for the optimizer to locate the global energy minimum
within a given number of simulation steps. The energy distribution
(lower left) indicates that ligands with high affinities were domi-
nated by MF and HF ligands, i.e., those with less reliable docking
results, which is explained with the correlation between the num-
ber of internal degrees of freedom and the binding energy (lower
right): ligands with more rotational bonds reached lower energies
than those with less degrees of freedom. A binding energy of lower
than �200 kJ/mol was reached only by compounds with seven to
nine rotational bonds (with high content of MF and HF ligands),
whereas rigid ligands remained above �140 kJ/mol, and ligands
with less than six rotational bonds remained above �170 kJ/mol.

A quantitative analysis of the energy fluctuations and their
dependence on internal degrees of freedom is gained with a sep-
arate analysis of ligand families selected according to their degree
of flexibility. In Table 2, the median errors, the estimated inverse

Figure 6. Distribution of the energy difference of the terminal ener-
gies in the cascadic approach on a logarithmic scale. The solid line
shows the fit according to eq. (3). Two different approximately expo-
nential regions appear for �E � 2 (��1 	 0.47) and �E 
 2
(��1 	 4.4).

Figure 7. Histograms of the statistical properties of the docked li-
gands, the horizontal axis indicate the number of atoms of docked
ligands (upper left), the number of internal degrees of freedom (upper
right), the distribution of binding energies (lower left), and the an area
plot correlating the binding energy with the number of internal degrees
of freedom (lower right). In the 1D plots the solid line indicates the
total number of ligands, while dashed, dotted lines, and gray areas
indicate small-fluctuation (SF) moderate-fluctuation (MF) and high-
fluctuation (HF) ligands, respectively. In the box plot, the area of the
rectangle is proportional to the number of ligands in the corresponding
bin.



decay parameters �i
�1 and weight factors w1/w2 for different

classes of ligands, grouped by the number of internal degrees of
freedom, are shown. As is clearly visible, the uncertainty in affinity
is increasing with the dimension of the conformational space.
Although the median energy difference gives an overall estimate
of the variance in the different families, the inverse decay param-
eters and their weights provide an individual “fingerprint” of the
fluctuation characteristics of the screen. This analysis confirms that
the majority of ligands with 0–5 flexible bonds fell into the
category of reliably docking compounds (��1 	 0.3–0.6 kJ/mol,
w1/w2 
 1).

The subset of compounds with 9–12 flexible bonds could be
fitted with a single exponential function, yielding ��1 � 4.4
kJ/mol. This indicates that the fast decaying component had actu-
ally vanished, leaving compounds with large fluctuation charac-
teristics. At this stage of a screening project one may decide that
the fluctuations of this particular class of ligands were intolerable,
because they contributed unproportionally to the uncertainty of the
overall screen. These ligands were then screened once again, with
twice the number of simulation steps. The last column of Table 2
contains the results. The accuracy had now reached the accuracy
level of the subset with 6–8 flexible bonds.

Analysis of the Top Scoring Ligands and Known Substrates

The top scoring compounds were rather simple, linear molecules
with high flexibility (seven to nine rotatable bonds) and highly
polarized end groups. The best among them reached a binding
energy of �217 kJ/mol. These ligands are not likely to be of
interest in pharmaceutical applications. Because of their high flex-
ibility they can be accommodated in virtually any receptor pocket,
thus lacking the specificity and structure to mediate biological
function. Such a lead usually consists of one rigid part, which
forms the “key,” and perhaps some polarized and flexible exten-
sions, which, like tentacles, help to catch hold on the receptor’s
side chains (Figs. 1 and 8).

As an attempt to satisfy these requirements, the database was
filtered once more to select ligands which contained at least one
ring. Despite of the fact that this subset formed the major part of
the database (175,623 compounds or 94.4% of the total), the best
ligand reached a binding energy of only �173 kJ/mol, and was
ranked on position 99 of the original screen, indicating that it was
strongly biased towards chain-like, flexible, ligands.

To analyze the ranking of the 10 TK substrates, each ligand was
docked 64 times, their mean affinities and rms-deviations were
used to determine the range of ranks within both the filtered and
unfiltered database (Table 3). The resulting scores are reminiscent
of earlier screening studies with smaller databases.5 A few of the
substrates were ranked high up within the upper 1% of compounds
(gcv, acv, dhbt, hpt), while others still docked in the upper 20% of
the database (ahiu, dt, idu, pcv), but would not be identified as
potential lead candidates using this virtual database screen. Others
(hmtt, mct) never docked at all. If only compounds with rings were
accounted for, the rank of the well scoring substrates was signif-
icantly improved, because many fortuitous ligands with high af-
finity were removed.

Several of the top scoring ligands (with ring) displayed simi-
larities to some of the known substrates. One example is shown in
Figure 8, compared to substrate hpt. The last row in Table 3
contains the docking results of this compound, with a high rank
and very low fluctuations. This result could be seen as an indica-
tion for the accuracy and high specificity of the cascadic docking
approach based on the stochastic tunneling technique. One has to
consider, however, that the fixed receptor conformation has gen-
erated a bias of the screen towards the natural substrate. As has
been argued elsewhere, the restrictions imposed by receptor rigid-
ity7 and shortcomings of the scoring function5 are among the main
obstacles against an unbiased ranking of a diversity of ligands.

Flex. bonds 0–12 0–2 3–5 6–8 9–12 9–12(a)

Median 0.72 0.25 0.71 2.13 5.46 1.80
�1

�1 0.47 0.32 0.60 1.1 4.4 0.88
�2

�1 4.42 3.6 4.3 5.9 n.a. 7.3
w1/w2 1.7 7.9 2.4 0.9 n.a. 0.9

In the domain of 9–12 flexible bonds a single exponential fit was performed.
aDoubled number of steps.

Figure 8. One of the top ranking database compounds (left) and the
substrate hpt (right).

Table 2. Median Energy Difference (kJ/mol, Exact), Inverse Decay Parameters � i
�1 (kJ/mol) and 

Weight Factors w1/w2 (Errors: 5%) for a Fit of eq. (3) to the Correlation Functions of the Final 
Energies in the Cascadic Approach.
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Characteristic is the fact that gcv was among the best scoring
ligands: as described earlier, the receptor conformation (pdb: 1ki2)
was experimentally determined in complex with gcv, and is there-
fore optimized for this particular substrate. The bias in the receptor
conformation is large enough to prevent a rather bulky substrate
like hmtt from fitting into the pocket at all. On the other hand, the
high score for gcv suggests that the scoring function Equation (2)
was of reasonable accuracy. The analysis of the energy fluctuations
indicates that the low scores of other substrates were not caused by
inaccuracy of the optimizer.

Summary

In this investigation a full database screen over 186,025 ligands of
the NCI (open) database using the stochastic tunneling method
with a cascadic docking approach, which proved more reliable
than competing sequential methods, was carried out. The cascadic
docking approach optimizes the use of the available computational
resources by concentrating on the best partial simulation in each
run and permits a straightforward estimate of the variance of the
binding energy of an individual simulation. It was demonstrated
how the affinity fluctuations were reduced, and hence, the number
of false negatives in docking simulations.

The analysis of correlation functions revealed a systematic
dependence of the docking accuracy on the number of flexible
bonds of the compounds. Based on these results, compounds with
more than eight internal degrees of freedom were docked with
additional computational effort to provide a reasonable quality of
the database screen. It is desirable to identify critical families of
ligands in an earlier stage of the project, i.e., in advance of a screen
of the entire database. It therefore appears advisable to adopt the
following strategy for a large-scale database screen (Fig. 9): first a
representative subset of the database is screened and the fluctua-
tion pattern is analyzed. Based on these preliminary results, an
upper limit for the tolerable error in affinity is determined and

Table 3. Ranks of the 10-tk Substrates and One of the Top Scoring Leads When Screened Against the
Unfiltered and Filtered Database (186,025 and 175,623 Compounds, Respectively).

Substrate

Rank (total) Rank (rings) Energy and RMS

Na NfMean Min Max Mean Min Max (kJ/mol)

gcv 421 352 522 93 69 131 �147.1 3.5 31 7
acv 463 354 586 113 68 156 �145.6 4.6 27 5
dhbt 990 846 1175 339 271 424 �130.3 3.0 29 7
hpt 1389 1211 1613 553 440 684 �123.8 3.0 25 5
pcv 10433 5543 17448 7330 3465 13188 �78.2 16.3 33 7
dt 21206 20305 22157 16445 15683 17298 �54.6 1.8 31 5
idu 24846 20152 20619 19653 15549 23858 �47.6 9.1 28 4
ahiu 33559 31101 36040 27291 25176 29426 �31.4 4.4 31 4
hmtt nd 37 6
mct nd 33 7
Fig. 8 166 157 175 14 13 15 �164.5 1.0 24 5

Each ligand was docked 64 times, the rms deviation served as an estimate for the range of ranks. Na/Nf designate the
number of atoms and ligand degrees of freedom respectively (nd indicates nondocking ligands).

Figure 9. Flow chart for a quality control in large scale docking
projects: the error analysis is carried out on two levels: (1) on the bulk
statistical level, using correlation analysis to reduce the fluctuations of
the background. (2) On the level of individual lead candidates, to
estimate the accuracy of their rank against the background.



families of ligands are identified, which systematically exceed this
limit. These are then rescreened, with a modified set of simulation
parameters or simply with increased number of steps, until the
required accuracy has been achieved. Next, the entire database is
screened using the respective sets of parameters. Finally, the most
promising leads among the top scoring ligands are selected. Due to
fluctuations of their binding energies their ranking is uncertain. For
an error analysis, these selected leads are screened repeatedly and
the width of their affinity distributions are employed to bracket the
range of ranks.

The investigation of the docking results was performed using
both the entire database and a subset, where only molecules with
rings were taken into account. Some of these top scoring com-
pounds displayed a surprising degree of similarity to some of the
10 known substrates of the receptor. The substrate, corresponding
to the protein conformation used in the screen ranked at position
93 in the upper 0.05% of the database, validating both the docking
method and the scoring function used in this investigation. Several
other known substrates also docked in the upper 1% of the data-
base, while others failed to dock.

Based on the results of earlier investigations into the same
receptor it was argued that the failure of some substrates stems
from uncertainties in the scoring function and the absence of
receptor flexibility. A characteristic signature is the fact that the
substrate gcv, to which the receptor conformation was optimized,
scored best among the substrates.

These results point to both strength and weaknesses of the
all-atom docking approach using scoring functions based on phys-
ical interactions: the docking algorithm investigated in this study
permits a reliable screening of databases with significant chemical
variety with presently available computational resources. The top-
scoring ligands bear significant resemblance to known substrates,
but the screen proved highly selective for only four of the known

substrates. Remaining shortcomings are the accuracy of the avail-
able scoring functions and the restrictions on the conformational
space imposed by a rigid receptor geometry. Efficient docking
methods, such as the cascadic stochastic tunneling method inves-
tigated here, will permit the relaxation of theses requirements and
the systematic improvement of the scoring functions in the fore-
seeable future.
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