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1. Introduction

Ab initio protein tertiary structure prediction (PSP) and the elu-
cidation of the mechanism of the folding process are among
the important outstanding problems of biophysical chemis-
try.[1, 2] The many complementary proposals for PSP span a
wide range of representations of the protein conformation,
which range from coarse grained models to atomic resolution.
The choice of representation often correlates with the method-
ology employed in structure prediction, which in turn deter-
mines the computational cost of the approach.

We have recently demonstrated a feasible strategy for all-
atom protein structure prediction[3–5] in a minimal thermody-
namic approach. We developed an all-atom free-energy force
field for proteins (PFF01), which is primarily based on physical
interactions with important empirical, though sequence-inde-
pendent, corrections.[5] We have already demonstrated the re-
producible and predictive folding of three proteins: the 20
amino acid trp-cage protein (1L2Y),[3, 6] the structurally con-
served headpiece of the 40 amino acid HIV accessory protein
(1F4I),[4,7] and the 60 amino acid bacterial ribosomal protein
L20.[8] In addition, we could show that PFF01 stabilizes the
native conformations of other proteins, for example, the 52
amino acid protein A[9,10] and the engrailed homeodomain
(1ENH) from Drosophila melanogaster[11] as the global optimum
of the free energy model.

All-atom methods, even with implicit solvent, are clearly
among the computationally most demanding strategies for
protein structure prediction/folding. Significant computational
resources are required for this approach, and therefore it is im-
portant to compare the efficiency of different optimization
strategies. One important advantage of optimization-based
techniques results from their ability to quickly locate the
native conformation without recourse to the physical folding
dynamics or pathway. This implies that the simulation may
pass through unphysical conformations or jump large distan-
ces in the conformational space. Little is presently known

about the efficiency of different optimization methods for all-
atom protein folding. Herein, we investigate three different op-
timization techniques and compare them with respect to their
efficiency. Using all three techniques we have reproducibly
folded the 20 amino acid trp-cage protein,[12] one of the fastest
folding proteins known. All methods converge to near-native
conformations, thus increasing confidence in the reliability of
the underlying force field PFF01. However, we find that the
techniques differ in their ability to really resolve the low-
energy region of the free energy surface, where a modified
version of the basin-hopping approach performs best. Since
“in silico” (computer-simulated) protein folding has rightfully
been compared with the search for a needle in the proverbial
haystack, small differences in energy resolution can significant-
ly influence the reliability of the prediction.

2. Methods

2.1. Force Field

We have recently developed an all-atom (with the exception of
apolar CHn groups) free-energy protein force field (PFF01) that
models the low-energy conformations of proteins with minimal
computational demand.[4,5,13] The force field, which strictly

[a] Dr. A. Schug, Dr. T. Herges, Dr. W. Wenzel
Forschungszentrum Karlsruhe, Institut f�r Nanotechnologie
P.O. Box 3640, 76021 Karlsruhe (Germany)
Fax: (+49)7247 82 6434
E mail : wenzel@int.fzk.de

[b] A. Verma
Forschungszentrum Karlsruhe, Institut f�r wissenschaftliches Rechnen
P.O. Box 3640, 76021 Karlsruhe (Germany)

[c] Dr. K. H. Lee
Supercomputational Materials Lab
Korean Institute of Science and Technology, Seoul (Korea)

The performances of three different stochastic optimization
methods for all-atom protein structure prediction are investigated
and compared. We use the recently developed all-atom free-
energy force field (PFF01), which was demonstrated to correctly
predict the native conformation of several proteins as the global

optimum of the free energy surface. The trp-cage protein (PDB-
code 1L2Y) is folded with the stochastic tunneling method, a
modified parallel tempering method, and the basin-hopping
technique. All the methods correctly identify the native conforma-
tion, and their relative efficiency is discussed.



speaking parameterizes the internal free energy of the protein
excluding backbone entropy, is parameterized with the follow-
ing nonbonded interactions [Eq. (1)]:
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where rij denotes the distance between atoms i and j and g(i)
the type of amino acid i. The Lennard–Jones parameters (Vij, Rij
for potential depths and equilibrium distance) depend on the
type of the atom pair and were adjusted to satisfy constraints
derived from a set of 138 proteins of the PDB database.[13–15]

The nontrivial electrostatic interactions in proteins are repre-
sented by group-specific dielectric constants (eg(i)g(j) depending
on the amino acids to which the atoms i and j belong). The
partial charges qi and the dielectric constants were derived in
a potential-of-mean-force approach.[16] Interactions with the
solvent were first fitted in a minimal solvent-accessible surface
model[17] parameterized by free energies per unit area si to re-
produce the enthalpies of solvation of the Gly-X-Gly family of
peptides.[18] Ai corresponds to the area of atom i that is in con-
tact with a fictitious solvent. Hydrogen bonds are described via
dipole–dipole interactions included in the electrostatic terms
and an additional short-range term for backbone–backbone
hydrogen bonding (CO to NH), which depends on the OH dis-
tance, the angle between N, H, and O atoms along the bond,
and the angle between the CO and NH axis.[5]

In the folding process under physiological conditions the de-
grees of freedom of a peptide are confined to rotations about
single bonds. In our simulation we therefore consider only
moves around the side-chain and backbone dihedral angles,
which are attempted with 30 and 70% probability, respectively.
The moves for the side-chain angles are drawn from an equi-
distributed interval with a maximal change of 58. Half of the
backbone moves are generated in the same fashion, and the
remainder are generated from a move library that was de-
signed to reflect the natural amino-acid-dependent bias
toward the formation of a helices or b sheets. The probability
distribution of the move library was fitted to experimental
probabilities observed in the PDB database.[19] While driving
the simulation toward the formation of a secondary structure,
it contains no bias toward helical or sheet structures beyond
that encountered in nature. Notably, the large-scale moves
generated are likely to be accepted only at very high tempera-
tures or at the very start of the simulation. At low temperature
their acceptance probability falls to zero.

The energy evaluations in our model are significantly faster
than those in most molecular dynamics (MD) simulations. In
particular for side-chain moves, only very few atoms change
position in many attempted moves. Our simulation package
takes advantage of this fact by evaluating only those interac-
tions that have changed. In addition, the full energy evaluation
is omitted for moves that result in clashing conformations.
Since over 60% of the computational effort is spent in the cal-

culation of the solvent term, this also significantly speeds up
the energy evaluation.

2.2. Optimization Methods

The low-energy part of the free energy landscape of proteins
is extremely rugged due to the comparatively close packing of
the atoms in the native structure. Rugged potential energy sur-
faces (PESs) are characterized by the existence of many low-
lying minima, which are separated by high-energy barriers. For
this reason, the global optimum of such a surface is difficult to
obtain computationally. The presently available evidence indi-
cates that optimization-based protein structure prediction falls
into this class of problems, because simple optimization meth-
ods, such as steepest descent or simulated annealing, are
almost always trapped in metastable conformations. Suitable
optimization methods must therefore be able to speed up the
simulation by avoiding high-energy transition states, by adapt-
ing large-scale moves wherever possible or by accepting un-
physical intermediates. Here we investigate three different op-
timization methods: the stochastic tunneling method,[20] the
basin-hopping technique,[21,22] and the parallel tempering
method.[23,24] The stochastic tunneling method and the basin-
hopping approach are inherently sequential algorithms, which
evolve a single configuration according to a given stochastic
process. In contrast, parallel tempering is an inherently parallel
optimization strategy that is well-suited to the presently avail-
able multiprocessor architectures with low-bandwidth connec-
tions. Since all-atom protein structure prediction remains a
computationally challenging problem, it is important to search
for optimization methods that are capable of exploiting such
architectures; that is, a high degree of parallelism with very
little and optimally asynchronous communication is desirable.

2.2.1. Basin-Hopping Method

One of the simplest ideas to effectively eliminate high-energy
transition states of the potential or free energy surface is em-
ployed in the basin-hopping technique[21] (BHT), also known as
Monte Carlo with minimization. This method simplifies the
original PES by replacing the energy of each conformation
with the energy of a nearby local minimum (see Figure 1). This
replacement eliminates high-energy barriers in the stochastic
search that are responsible for the freezing problem in simulat-
ed annealing. In many cases the additional minimization effort
to find an associated local minimum is more than compensat-
ed by the increase in efficiency of the stochastic search on the
simplified PES. The basin-hopping technique and derivatives[14]

have been used previously to study the PES of model pro-
teins[25] and polyalanines using all-atom models.[26,27] In con-
trast to this work, we use a simulated annealing process for
the minimization step, because analytical gradients for the
SASA implicit solvent model of our force field are computa-
tionally very difficult to obtain.

For the protein simulations we replace a single minimization
step with a simulated annealing (SA) run.[28] Within each SA
simulation, new configurations are accepted according to the



Metropolis criterion. The temperature is decreased geometri-
cally from its starting value to the final value, which must be
chosen as small compared to typical energy differences be-
tween competing metastable conformations, to ensure conver-
gence to a local minimum (typically 2–5 K). Depending on the
choice of starting temperature, the SA search can deviate
more or less significantly from its starting conformation. The
individual relaxation step is thus parameterized completely by
the starting temperature (Ts), the final temperature, and the
number of steps. We investigated various choices for the nu-
merical parameters of the method, but have always used a
geometric cooling schedule.

Each SA run is typically much more expensive than local
minimization using gradient-based techniques, but it can nev-
ertheless be competitive for very rugged PESs, or when the
computation of the gradient of the potential is prohibitive. In
a very rugged PES, such as that illustrated in Figure 1, strict
local minimization changes the conformations only little, while
SA-based minimization results in a significant further reduction
of the complexity of the PES. In our model the computation of
the gradient is much more expensive than the computation of
the energy, because the SASA term involves the numerical in-
tegration of the atomic surfaces. To evaluate the gradient accu-
rately, the number of integration points must be increased sig-
nificantly.

At the end of one annealing step the new conformation was
accepted if its energy difference to the current configuration
was no higher than a given threshold energy eT, an approach
proven optimal for certain optimization problems.[29] Through-
out this study we use a threshold acceptance criterion of
1 kcalmol�1.

2.2.2. Stochastic Tunneling Method

The stochastic tunneling technique (STUN)[20] was proposed as
a generic global optimization method for complex rugged

PESs. For a number of problems, including the prediction of re-
ceptor–ligand complexes for drug development,[30,31] this tech-
nique proved superior to competing stochastic optimization
methods. The idea behind the method is to flatten the PES in
all regions that lie significantly above the best estimate for the
minimal energy (E0). In STUN the dynamical process explores
not the original, but a transformed PES [Eq. (2)] ,

ESTUN ¼ ln x þ x2 þ 1
p� �

ð2Þ

which dynamically adapts and simplifies during the simulation
(see Figure 2). Here, x=g(E E0), where E is the energy, and E0
the best energy found so far. The problem-dependent transfor-

mation parameter[20] g controls the steepness of the transfor-
mation [we used g=0.5 (kcal/mol)�1] . The transformation in
Equation (2) ameliorates the difficulties associated with the
original transformation,[20] because ESTUN/ ln(E/kT) continues to
grow slowly for large energies. The fictitious temperature of
STUN must be adjusted to accelerate convergence.[3] STUN
works best if its dynamical process alternates between low-
temperature “local-search” and high-temperature “tunneling”
phases. At finite temperature the dynamics of the system then
becomes diffusive at energies E@E0 (see Figure 2), independ-
ent of the relative energy differences of the high-energy con-
formations involved. On the untransformed PES, STUN thus
permits the simulation to “tunnel” through energy barriers of
arbitrary height. In comparison to the basin-hopping approach,
there is no need for extensive local minimization, but the non-
linear transformation tends to make the high-energy dynamics
diffusive.

Figure 2. Schematic one dimensional potential energy surface ( ) (same
as in Figure 1) and the effective potential energy surface after the STUN
transformation, assuming that the local minimum indicated by the arrow
has already been found. The effective potential energy surface is truncated
at zero. The remaining relevant minima for the search are still very pro
nounced, but the high energy features of the PES are significantly smooth
ed. The diffusion time to cross the barrier from x
0.95 to the global mini
mum is significantly reduced by the near elimination of the many interven
ing local minima in the effective potential energy surface.

Figure 1. Schematic one dimensional potential energy surface ( ) and its
mapped surfaces in basin hopping with local minimization (g) and basin
hopping with minimization by simulated annealing ( ). The dotted curve
is obtained by mapping each point of the original potential to its closest
local minimum. The dashed curve is obtained by permitting the search to
overcome intervening barriers of an average height that corresponds to kTav,
where Tav is a suitably averaged temperature of the simulated annealing run.



2.2.3. Parallel Tempering

The parallel (or simulated) tempering (PT) technique[23,24] was
introduced to overcome difficulties in the evaluation of ther-
modynamic observables for models with very rugged PESs and
was applied previously in several protein-folding studies.[32–34]

Low-temperature simulations on rugged PESs are trapped for
long times in similar metastable conformations because the
energy barriers to structurally potentially competing different
conformations are very high. The idea of PT is to perform sev-
eral concurrent simulations of different replicas of the same
system at different temperatures, and to exchange replicas (or
temperatures) between the simulations i and j with probability
[Eq. (3)]:

p ¼ minf1, exp ½ ðbj biÞ ðEi EjÞ�g ð3Þ

where bi=1/kBTi and Ei are the inverse temperatures and ener-
gies of the conformations, respectively. The temperature scale
for the highest and lowest temperatures is determined by the
requirement to efficiently explore the conformational space
and to accurately resolve local minima, respectively. Thus, for
proteins the temperatures must fall in a bracket of approxi-
mately 2–1000 K. As described elsewhere,[6] we have used an
adaptive temperature control for the simulations: starting with
an initial, ordered set of geometrically distributed tempera-
tures we monitored the exchange rate between adjacent tem-
peratures. If the exchange rate between temperature i and i+
1 was below 0.5%, then all temperatures above ti were low-
ered by 10% of ti+1 ti. If the exchange rate was above 2%,
then all temperatures above ti were increased by the same dif-
ference. These exchange rates are very small compared with
standard MD implementations for protein folding,[35] which re-
sults from the large range of temperatures that must be span-
ned by the optimization approach in comparison to MD.

To further improve the computational efficiency of PT we
also use a replication step, in which the best conformation re-
places the conformation at the highest temperature every
250000 simulation steps. This mechanism results in a rapid,
large-scale exploration of the folding funnel around the best
conformation found near the presently best conformation. The
PT method was implemented in our program using the MPI
communication library, which is available on most present-day
parallel computational architectures with distributed memory.
Since the communication effort is low (only the temperatures
and energies need to be exchanged) and communication
occurs only every few thousand steps, when replica exchange
is attempted, this implementation scales very well with the
number of processors.

3. Results

First we investigated the folding of the 20 amino acid trp-cage
protein[12,36] (PDB code 1L2Y) with the basin-hopping tech-
nique. We noted that very high starting temperatures are re-
quired to permit a sufficient exploration of the free energy sur-
face. The lowest temperature had to be chosen in the range of

2–6 K to ensure that local minima were well-resolved. We
cannot rule out the possibility that basin-hopping simulations
with low starting temperatures would converge eventually;
however, it appears that such an approach would not be com-
putationally competitive. For all simulations reported here we
used a starting temperature of Ts=800 K and a final tempera-
ture of Tf=3 K. All simulations were started from a sticklike un-
folded conformation with no secondary structure and a root-
mean-square backbone (RMSB) deviation of 12.94 N. The con-
vergence of the basin-hopping method is improved dramati-
cally when the length of the relaxation run is moderately in-
creased with the number of the basin-hopping cycle. We per-
formed 20 independent simulations comprising basin-hopping
steps of constant length (N=10000, 1000 cycles) and 20 inde-
pendent simulations where the length of the individual step
increased with the square root of the cycle number m (N=
10000O m

p
, 150 cycles). Figure 3 demonstrates that the over-

all structure of the free energy surface is explored well in both
sets of simulations, but that the simulations with increasing
cycle length reached much lower energies.

A total of 12 of these simulations approached the native
conformation as its estimate of the optimum. The energies
and (RMSB) deviations of these conformations are shown in
Table 1. The best conformation had an energy of 28.63 kcal
mol�1 and a RMSB deviation of 3.19 N to the native conforma-
tion. Its overlay with the native structure is illustrated in
Figure 4. The second-best configuration has a RMSB value of
only 1.81 N and loses energy by only about 0.6 kcalmol�1.
Figure 3 illustrates that there are at least four to five distinct
families of metastable conformations. The plot indicates the
existence of a set of structures with 1.5–3 N RMSB deviation,
which may correspond to the folding funnel, and a competing
metastable conformation with about 5 N RMSB. This compet-
ing conformation appears seventh in the decoy table, with an

Figure 3. RMSB versus energy plot of all accepted conformations in the
energy window between zero and 30 kcalmol 1 for the basin hopping
simulations with constant length (*) and increasing length (red square).
The total number of function evaluations was the same, so there are fewer
observations in the latter simulation, which nevertheless reaches lower ener
gies.



energy difference of less than 2 kcalmol�1 to the native confor-
mation. In secondary structure it differs from the native confor-
mation only in the position of the turn between the first and
second helix. This misfolded conformation is shown in Figure 4
(right).

We also performed 25 independent simulations of the same
protein with a modified version of the stochastic tunneling
method.[3,20] The length of each simulation was 1.2O107 steps,
comparable to that of the basin-hopping simulation with in-
creasing cycle length reported above. Six of 25 simulations
reached an energy within 1 kcalmol�1 of the best energy of
25.73 kcalmol�1, all of which correctly predicted the native

experimental structure of the protein. There was a strong cor-
relation between energy and RMSB deviation to the native

structure for all simulations. The conformation with the lowest
energy had a RMSB deviation of 2.83 N. Both tunneling phases
and local-search phases, corresponding to small and large
values of the transformed energy, respectively, are required to
converge the simulations.

This protein was also folded with the parallel tempering
method.[6] We found that the standard approach, which pre-
serves the thermodynamic equilibrium of the simulated popu-
lations, did not reach very low energies even for the low-tem-
perature replicas. We believe that the reason for this conver-
gence failure was the insufficient exchange probability be-
tween replicas at different temperatures. We therefore intro-
duced the adaptive temperature control described in the
Methods section. Convergence of the method was found using
eight to 30 replicas. However, a minimal number of at least
eight replicas appears to be required to fold the protein. For
lower replica numbers it appears that even the adaptive tem-
perature scheme fails to generate rapid replica exchange,
while spanning both the high and low temperatures required
for the speedy exploration of the free energy surface and the
refinement of local minima, respectively. The total numerical
effort of the parallel tempering method is the product of the
replica number and the steps per replica. Therefore, this
method can only be competitive if the high-temperature repli-
cas, which never generate good low-energy decoys, signifi-
cantly speed the search of the PES.

Figure 5 shows the energies and corresponding tempera-
tures for a representative simulation using ten replicas. The
temperature adjustment scheme results in a temperature dis-

tribution that permits frequent exchange of replicas and signif-
icantly speeds convergence. Here we performed ten independ-
ent parallel-tempering simulations with 106 function evalua-
tions for each of the ten replicas used. Figure 5 demonstrates
the convergence of the method; frequent exchange of the rep-
licas leads to the generation of new optimal conformations, as
is evident from the crossing of the lines between steps 4–6O

Table 1. Energies, RMSB deviations, and secondary structure content of
the decoys for the trp cage protein generated in 20 independent basin
hopping simulations with increasing length per cycle. Note that the best
and the second best decoys differ only in the position of the turn sepa
rating the two helices, which completely destroys the tertiary structure.

Energy RMSB Three state secondary structure

28.631 3.19 CHHHHHHTTHHHHHTCCSCC
28.051 1.81 CHHHHHHHHTHHHHTCCSCC
27.159 2.63 CHHHHHHHHTHHHHTCTTTC
27.073 2.52 CHHHHHHHHTHHHHTCTTTC
26.727 2.48 CHHHHHHHHTHHHHTCTTTC
26.437 2.55 CHHHHHHHHTHHHHTCTTTC
26.413 4.90 CHHHHHTCTTHHHHHCTTTC
26.205 2.55 CHHHHHHHHTHHHHTCTTTC
25.969 2.55 CHHHHHHHHTHHHHTCTTTC
25.738 1.84 CHHHHHHHHTHHHHTCCSCC
25.240 2.33 CHHHHHHHHHHHHHCCSSCC
25.091 4.52 CHHHHHHHHTCSSTTSTTTC
24.865 2.07 CHHHHHHHHTHHHHTCCSCC
24.824 4.98 CHHHHHHHHHSSSTTSCSCC
24.514 4.61 CHHHHHHHHTSCCTTCTTTC
23.477 2.89 CHHHHHHHHSHHHHHCTTTC
23.290 4.74 CHHHHHHHHTCSSSSSTTTC
22.874 4.41 CHHHHHHHHTCSCTTCSSCC
22.649 5.08 CHHHHHHHHTCSSCCCTTTC
20.548 5.28 CCBSSSCBSSHHHHTCTTTC

Figure 4. Overlay of the native and folded structures of trp cage protein
(left) and the corresponding Cb Cb matrix (center). A pixel in row i and
column j of the color coded distance map indicates the difference in the Cb

Cb distances of the native and the folded structure. Black (gray) squares indi
cate that the Cb Cb distances of the native and the other structure differ by
less than 1.5 (2.25) N, respectively. White squares indicate larger deviations.
The right panel shows the misfolded conformation associated with the sev
enth decoy in Table 1. The experimental conformation has the less pro
nounced second helix (blue terminus).

Figure 5. Energy versus step number diagram of a representative ten replica
modified parallel tempering simulation of the trp cage protein. The data
demonstrate the convergence of the energy and the rapid exchange of in
formation between the different replicas as discussed in the text.



105, which result in the generation of a new best structure
after about 6.4O105 steps. Figure 5 nicely illustrates that signif-
icantly new minima are never generated from the lowest-tem-
perature replica, but require the exchange mechanism. The
near-vertical peaks of the highest-temperature simulation
result from the replication step discussed in the Methods sec-
tion. This mechanism generated a new best structure after the
replication step with 3.5O105 steps, cascading down through
the replicas and reaching the lowest temperature replica at
step 3.7O105. The best final structure associated with the
lowest temperature had an energy of 25.3 kcalmol�1 and a
RMSB deviation of 3.3 N.

4. Conclusions

In agreement with previous studies,[25,26] our results indicate
that the simple basin-hopping method is very efficient in the
determination of the global optimum of the free energy sur-
face of realistic all-atom protein models. It is encouraging that
the same structure was also found by using the parallel tem-
pering and stochastic tunneling methods. This finding indi-
cates that the result of the folding approach is not an artifact
of the optimization strategy. In direct comparison, however, we
found that the basin-hopping technique gave the lowest ener-
gies. Since it is virtually parameter free and very simple to im-
plement, it emerges as a natural workhorse for our approach.

The energies of the best conformation and its RMSB devia-
tions for all simulations are shown in Figure 6. Figure 6 clearly

demonstrates that the basin-hopping approach is most effi-
cient, but only when the version with increasing cycle length is
being used. Figure 6 illustrates nicely that searching for the
global optimum of an all-atom protein energy landscape can
be compared to the search for a needle in a haystack. The ac-
curacy and reliability of the predictions depend strongly on
the availability of efficient optimization methods to explore
the landscape.

The rough hierarchy of the parallel tempering, stochastic
tunneling, and basin-hopping techniques that emerges from
this study can be rationalized by a comparison of the underly-
ing methods. We noted in the Introduction that optimization-
based strategies for protein folding/structure prediction have
an advantage in comparison with simulations of the folding
pathway because unphysical conformations can be visited in
the search. In the parallel tempering method, such unphysical
conformations (at the physiological temperature) are generat-
ed in the high-temperature replicas, which is a comparatively
mild relaxation of the energetic constraints selecting the
native conformation. The stochastic tunneling method, by
comparison, applies a very nonlinear transformation to the un-
derlying free energy surface, and as a result the simulation
may pass through even more unphysical regions of the confor-
mation space. The relative success of this approach (in compar-
ison to parallel tempering) arises because the gradient of the
transformed PES appears to be still sufficiently strong to guide
the simulation back into the physical realm.

The basin-hopping approach, just as with parallel tempering,
generates unphysical conformations at very high temperatures.
Basin-hopping simulations that heat only moderately do not
explore the conformation space well. Therefore, it appears at
first sight surprising that basin-hopping methods outperform
the stochastic tunneling technique (at least for some parame-
terizations). The basin-hopping approach brings a new feature
to the family of optimization methods investigated in this
study: the simulation time is no longer continuous. The thresh-
old acceptance criterion of the basin-hopping approach intro-
duces a new element that is never possible in a physical simu-
lation: the possibility of discarding a part of the trajectory and
restarting at some earlier point in time. In contrast to the
other techniques, basin-hopping simulations remember the
(typically) best configuration attained so far and thus have the
ability to discard search processes that have gone astray
(about 60% of the cycles are rejected). To demonstrate that
this feature significantly contributes to the success of this
method we performed a set of simulations comprising a single
simulated annealing run in the same temperature bracket with
the same total number of function evaluations, none of which
achieved energies even below 20 kcalmol�1.

5. Summary

The native structure dominates the low-energy conformations
arising in all of these simulations, and thus our results demon-
strate that the trp-cage protein is folded to about 3 N RMSB
resolution in the PFF01 force field. This resolution is compara-
ble to other implicit solvent simulations for the same pro-
tein,[36] but could be significantly improved in all-atom simula-
tions. Nevertheless, the free energy approach emerges as a
viable trade-off between predictivity and computational feasi-
bility. While sacrificing the folding dynamics, a reliable predic-
tion of its terminus, the native conformation—which is central
to most biological questions—can be achieved.

The computational advantage of the optimization approach
stems from the possibility of visiting unphysical intermediate

Figure 6. Energy versus RMSB plot for the final energies of the 20 basin hop
ping simulations with and without increasing cycle length (^ and ~, respec
tively). For comparison we also indicate the best energy result for the STUN
method (*) and for the 30 processor PT simulation (&).



conformations with high energy during the search. Different
mechanisms realize this principle in the different optimization
methods: in the stochastic tunneling method, the nonlinear
transformation of the PES permits the dynamical process to
traverse arbitrarily high-energy barriers at low temperatures; in
basin hopping, the PES is simplified through the mapping to a
smoother surface; and in parallel tempering, simulation phases
at very high temperatures accomplish the same objective.

The data indicate that the comparably straightforward
basin-hopping routine is a good workhorse for evolving indi-
vidual conformations. Similar results were obtained in a recent
study[37] on short aa, bb, and mixed ab peptides using a modi-
fied free energy model based on the ECEPP3[38] potential. The
threshold acceptance step can be performed outside the simu-
lation program that runs the basin-hopping cycle and distrib-
uted among any number of nodes using standard communica-
tion protocols. This makes the basin-hopping technique suita-
ble for GRID-type architectures, which presently deliver high
computational power at superior price/performance ratios.

The future area of application of all-atom protein structure
prediction with optimization methods in a free energy model
depends on the availability of efficient optimization methods
to perform the underlying simulations. With this investigation
we have contributed to a much-needed systematic study of
the suitability of different optimization methods for this very
important problem. The results need to be confirmed and
compared with work on other proteins and optimization strat-
egies. The findings provide suitable benchmarks for a realistic
and widely studied system that can be investigated with com-
paratively modest computational effort. In comparison to the
numerical effort of our techniques prior to this study, the aver-
age in silico folding time was cut by about one order of magni-
tude through the systematic investigation of different optimi-
zation strategies, which indicates that significant progress can
still be made on this computationally intensive problem.
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