




calculations (one per fragment type) are required, which can
further reduce the computational cost.
An additional step must be performed in the calculation of

transfer integrals and on site energies in order to correctly
account for the nonorthogonality of the new basis within the
fragment approach. This is due to the fact that, while the KS
orbitals are correctly orthogonal for the isolated fragments, they
are generally nonorthogonal between fragments. Therefore, the
KS orbitals of the complete system are orthogonalized before
the transfer integrals and on site energies are calculated. This
can be done just for the levels of interest, e.g., only the HOMO
levels of the different fragments, but we instead choose to
perform the orthogonalization between all orbitals in the
occupied manifold of the fragments plus the unoccupied levels
of interest. The differences between the two approaches for this
system are small, but we have found that the latter approach is
generally more stable and allows for a consistent treatment of
the electron and hole quantities, including any degenerate
states. We have also verified that there is no detrimental effect
on the spread of the KS orbitals due to the orthogonalization,
instead they remain strongly localized on their original
molecules.
It should also be stressed that the optimization procedure

used to generate the support functions for the isolated
fragments is based on energy minimization, and as such, only
the occupied KS orbitals are guaranteed to be accurately
represented. For calculations where we are interested in
electron transport, care must be taken to ensure that the
LUMO is also well represented in the support function basis.
This can be achieved by explicitly including a few unoccupied
states in the optimization procedure, for which the direct
minimization method for density kernel optimization must be
employed (see ref 20 for further details).
2.2. On-Site Energies with Constrained DFT. The

fragment approach discussed above provides a good initial
approximation for the on site energies. However, there are
some limitations essentially linked to the use of a one electron
picture, further implying that the complete system systemati
cally remains neutral. One way of improving upon this
approximation involves the use of constrained DFT, wherein
a Lagrange multiplier term is added to the KS energy
functional, thereby enforcing an additional constraint on the
electronic density. In our case, this will take the form of a
localization constraint for the net charge introduced in the
system. The principles and various applications of CDFT have
been covered in many recent works,9,10,21,25−29 so, here, we will
summarize only the key points. The constraint term involves
two key components: a weight function (wc(r)) and a Lagrange
multiplier (Vc). The former is used to specify the region of
space over which the charge is constrained and is thus defined
by the user and held fixed during the calculation, while the
correct value of the latter must be found during the calculation
using a given optimization scheme. Using these two quantities,
the functional to be minimized can be written as

∫ρ ρ ρ= + −( )W V E V w Nr r r[ , ] [ ] ( ) ( ) dc KS c c c (1)

where EKS[ρ] is the original KS energy functional, ρ is the
electronic charge density, and Nc is the required charge within
the specified region. The correct value of Vc is found using
Newton’s method, by calculating the second derivative using a
finite difference approach. In practice, this is rewritten as a
matrix equation, so that the weight matrix can be directly

defined from the support functions using a Löwdin like
definition to associate a given fragment with a region of
space. This choice of the Löwdin weight function over other
options is motivated both by the ease with which it is defined in
our approach and the low computational overhead. Further
more, we have found it to give accurate results for systems such
as this one, where the fragments are well defined and separated,
in agreement with other studies where the differences with
other weight functions such as the Becke weight function are
very small at larger distances.10,30

The on site energies for holes (electrons) of a molecule in a
given environment are extracted using CDFT as follows. First, a
reference neutral calculation is performed to obtain the total
energy for the molecule in its environment. Second, a
calculation is performed with an overall charge of ±1, using
CDFT to force the excess charge to remain on the molecule of
interest. The on site energies are then defined as
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tot

1
tot
0

(2)
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tot
0
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In order to include environmental effects when estimating the
transport parameters, we systematically form a cluster made of
the nearest neighbors around each molecule (correctly taking
into account the surface boundary conditions) to calculate the
on site energies, both in the fragment approach and using
CDFT. It is worth stressing that the cluster built around the
central charged molecule in CDFT grasps only a fraction of the
electronic polarization, which is a long range effect. However,
this approach is validated by the fact that the relative energy
between two molecular sites is the only quantity appearing in
transfer rates within a hopping regime in disordered structures.8

2.3. Transfer Integrals. Transfer integrals are typically
calculated between pairs (dimers) of neutral molecules (Jij

d);
however, in order to account for the environmental effects,
here, we also calculate the transfer integrals in the clusters built
with the nearest neighbor (Jij

C). Since the actual calculation of
the transfer integrals is much less time consuming, compared to
the other components of DFT calculations, it is much less
expensive to estimate the on site energies and transfer integrals
in the clusters simultaneously, compared to performing
additional calculations for pairs of molecules, which, despite
being relatively fast, would significantly add to the computa
tional costs, given the large number of calculations required.
However, such an approach could add some asymmetry to the
transfer integrals, i.e., Jij

C ≠ Jji
C, as the nearest neighbor cluster of

i will not be the same as that of j. In order to be more rigorous,
one should calculate the transfer integrals in clusters of the
nearest neighbors of both i and j. Although the results for such
biclusters (Jij

bC) would be symmetric, the computational
overheads would again increase. Therefore, we have continued
to use the nearest neighbor clusters, averaging the results for Jij
and Jji:

̅ =
+

J
J J

2ij
ij jiC
C C

Transfer integrals were calculated for a limited number of
biclusters in order to validate this approach; it was found that
the differences between such averaged values and the bicluster
results were close to negligible. The Supporting Information
(especially Figure SI 3), shows further details about our
computational approach to access the transfer integrals.



2.4. Method. Therefore, the overall procedure to extract
both transfer integrals and on site energies for the host−guest
system involves five steps, which are decribed as follows and
illustrated in the righthand side of Figure 2:

(1) For each molecule in the system, a cluster of its nearest
neighbors is formed, taking into account the surface
boundary conditions.

(2) The support functions are fully optimized for each of the
template molecule types; care is taken to ensure the
LUMO is well represented in each case.

(3) The support functions from the template molecules are
reformatted for different orientations and positions
within each cluster of nearest neighbors. In practice,
this step is performed automatically by BigDFT at the
start of the cluster calculations.

(4) The density is self consistently calculated in the nearest
neighbor clusters in the basis of the reformatted support
functions, following which the transfer integrals and on
site energies are calculated using the orthogonalized
fragment orbitals.

(5) Constrained DFT calculations are performed for positive
and negative charges constrained on the central molecule
of the cluster. The corresponding total energies from

these and the calculations in step 4 are then used to
calculate the on site energies.

2.5. Computational Details. There are different methods
to produce thin films in organic electronic devices. While
solution based processing is relatively inexpensive and large
surfaces can be created with roll to roll processes, the devices
suffer from many defects and fast degradation. Deposition via
vacuum physical vapor deposition (PVD) is more difficult but
produces devices with higher stability and longer lifetimes.
Ultrastable properties of thin films prepared by PVD have also
been observed for several organic glasses.31,32 Numerical
simulations33 show that the exceptional stability can be
explained by an enhanced mobility of the deposited molecules
on the surface of the film in comparison to the low mobility of
molecules in the bulk when they are surrounded by other
particles. Therefore, the molecules on the surface of the film are
able to explore a larger part of the configuration space and find
an energetically favorable position.
The morphologies used here were created by a single

molecule deposition protocol3 that mimicked a PVD process.
In order to model the characteristics of the real deposition
process, which leads to ultrastable organic glasses, the
computational protocol includes the following features, as
illustrated in Figure 3. A Metropolis Monte Carlo (MC)

Figure 2. (Left) Morphologies generated for the pure host matrix (top) and the host−guest system (bottom); we display the chemical structures and
their respective centers of mass (blue indicates the host molecule, and orange red indicates the guest molecule). (Right) Schematic illustration of the
procedure for calculating the transfer integrals and on site energies, taking into account the environmental effects.



approach,34 combined with the simulated annealing method,35

is used to find a configuration in a local minimum in energy for
a deposited molecule on the film surface. The basin hopping
method36−38 is applied by repeated simulated annealing to find
the global minimum of the energy by hopping between the
local minima computed by MC.
The large mobility of the molecules on the film surface helps

to find an energetically optimized configuration and allows for
an additional approximation: after the deposition, the molecules
are kept frozen. This approximation can be exploited for
computationally efficient evaluation of the intermolecular
interactions. During the deposition of a single molecule onto
an already existing film, the molecules in the substrate are kept

fixed, inducing a static force field. The interaction energy
between the new molecule and the substrate can then be
precalculated on points of a three dimensional (3D) grid.
During each Monte Carlo step of the deposition process, the
interaction energy between the new molecule above the surface
and the substrate is calculated by linear interpolation between
the grid points, as illustrated in Figure 3.
The following settings were used in the morphology

simulations: each new molecule was added at a distance of 5
nm above the surface of the film and then deposited using 10
simulated annealing cycles consisting of 20 000 MC steps each,
cooling from 1000 K to 300 K. Periodic boundary conditions in
(x,y) directions were applied. Because of the rigidity of the
molecules considered in this work, internal movement (angle
bending, torsion, and bond stretching) was neglected, which
may lead to an underestimation of the energy difference, in
comparison to conformations where angle bending and bond
stretching is permitted. The intermolecular interaction was
modeled by a force field approach using Coulomb electrostatics
and a standard Lennard Jones potential for van der Waals
attraction and Pauli repulsion. Unit cells with a size of of 40 Å
× 40 Å and containing 100 molecules were obtained for the
pure host (100% CBP) and for the host−guest structure (92%
CBP and 8% Ir(ppy)3), as displayed on the left side of Figure 2.
For each molecule, all of the nearest neighbors with a center to
center distance of <15 Å were included in the clusters to
account for the environment.
The BigDFT calculations were performed using the local

density approximation (LDA) exchange correlation function
al39 and HGH pseudo potentials.40 Free boundary conditions
were applied, as the correct surface boundary conditions were
already accounted for when forming the clusters of nearest
neighbors. The grid spacing and other wavelet basis set
parameters were selected such that the resulting accuracy for
the template calculations was of the order of 1 meV/atom. We
used 1 support function per hydrogen atom, 4 per carbon or

Figure 3. Efficient morphology generation by single molecule
deposition. (Left) Metropolis Monte Carlo in combination with
repeated simulated annealing is applied to reach minima in energy
(denoted by “①”) for hopping between different local minima in the
configuration space (denoted by “②”). (Right) During the deposition
of a single molecule, the molecules in the substrate are kept fixed,
which allows for the precalculation of the interaction energies between
the substrate and the new molecule on points of a grid. Linear
interpolation is applied for a very fast evaluation of the energy over the
course of the deposition.

Figure 4. Comparison between the on site energy distributions for holes (left) and electrons (right) when considering the fragment approach (top)
versus the CDFT cluster calculations (bottom). The solid vertical lines represent the values for the isolated molecules obtained from HOMO or
LUMO energy levels (top left and right, respectively) and from the total energies of the neutral and charged systems (bottom left and right,
respectively). The broken vertical lines correspond to the average values.





All calculations were performed in the restricted formalism,
i.e., orbitals of different spin were not treated independently,
rather each orbital was fixed at either double or single
occupation to preserve only the correct average spin with no
overall polarization. This was necessary to reduce the
computational cost, since, in order to maintain the same
accuracy for spin polarized as for restricted calculations, an
independent set of support functions is needed for each spin
state, thereby doubling the cost of the calculations. In order to
determine the impact of this neglect, we performed some tests
on the isolated units: the inclusion of spin polarization has the
effect of decreasing the calculated IP for the guest molecule by
∼0.4 eV, while the effect is much less important for the host
molecule (reduction by ∼0.1 eV). The values in the fully
optimized basis are 6.56 eV and 6.30 eV for the host and guest,
respectively. (See Table 1 for all of the results.)
In the host−guest structure, the CDFT calculations predict

the average on site energy for holes to be higher by ∼0.1 eV for
the iridium complex, compared to the host CBP, in contrast
with experimental data pointing to an energetically unfavorable
hole transfer from the guest to the host. Ishihara et al.17

suggested that holes are directly injected into the guest from
the indium tin oxide (ITO), and that transfer from the guest to
host molecules is thermally activated (barrier of 0.6 eV).
Unexpectedly, and probably because of an error compensation,
this trend is recovered by the simpler fragment method, with a
barrier of 0.5−0.6 eV. As discussed above, the discrepancy in
the CDFT results could be mainly attributed to the neglect of
spin polarization, although it should also be noted that the
experimental offset is estimated from the values obtained for

the pure host and guest molecules and that the actual value in
the blend might be different.17,45 Interestingly, the CDFT
results obtained for holes display a much larger overlap
between the distribution of site energies calculated for the host
versus guest molecules, compared to the fragment approach;
this opens possible hole transfer pathways from the host to the
guest, as evidenced experimentally. The shift of the average on
site energy of the host going from the pure phases to the blend
further amplifies this degree of overlap, thus demonstrating the
significant impact of the environment. This is also graphically
represented in a couple of maps in the Supporting Information
(see Figure SI 4).
The two theoretical approaches yield a very significant

overlap between the on site energies for electrons in the guest
and host molecules, in full consistency with the experiment. In
the latter case, the activation energy (Ea) typically is roughly
estimated by adding the optical gap to the ionization potential,
leading to values of ∼2.2−2.9 eV for CBP42,45 and 2.8 eV for
Ir(ppy)3

15); these match the values obtained by the fragment
approach fairly well.
We have computed the transfer integrals between all possible

pairs of active molecules (host−host, host−guest, and guest−
guest) in the pure phase and in the blend. Since no
degeneracies were observed for the two frontier molecular
orbitals (HOMO and LUMO), only these two levels were
considered on each molecule. The corresponding distributions
are displayed in Figure 5, as a function of the separation
between the centers of mass. Since the magnitude of the
transfer integrals reflects the degree of electronic overlap
between the two orbitals, they exhibit a clear distance

Figure 5. Transfer integral (Jij
C, see text) as a function of the separation between the centers of mass for holes (left) and electrons (right), in the pure

host (top) and host−guest structure (bottom).



dependence, with the largest values typically found at the
shortest intermolecular interactions. Interestingly, the hole

transfer integrals do not vanish at distances larger than 10 Å, in
contrast to electrons (see Figure 5). This different behavior

Figure 6. Shapes of the HOMO (left) and LUMO (right) orbitals for the host (top) and guest (bottom) molecules.

Figure 7. Correlation among CDFT site energies, associated with individual clusters. (Top) Space correlation of on site energy differencies for holes
(left) and electrons (right), in both morphologies. The quantity plotted is defined as ⟨EiEj⟩ = ∑ij(Ei − E)(Ej − E), where the sum involves all pairs
for which the distance rij = |ri − rj| falls within an interval [r − δr, r + δr]; E is the average value. ⟨EiEj⟩ ≈ 0 corresponds to the absence of correlation.
(Bottom) Evolution of the standard deviation of energy differences among sites σΔE versus intermolecular distances for holes (left) and electrons
(right), in both morphologies. For all plots, triangles (▲) refer to the pure host structure, while circles (●) refer to the host−guest structure.
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