


and Swendsen[17,18] for discrete spin systems, which construct

large-scale moves with zero energy change. Unfortunately,

such methods are not generally available for systems with con-

tinuous variables and complex potential functions (in particular

with hard-core potentials). In the absence of such moves, the

number of steps and computational effort required to gener-

ate an uncorrelated conformation, measured by the autocorre-

lation “time,” increases rapidly with the system size. This is the

equivalent of the short time step in MD, which results in a

large number of energy/gradient evaluations to propagate the

system as a whole along a relevant macroscopic reaction coor-

dinate. In both MC and MD, the computational time is domi-

nated by the energy/gradient evaluation, and it should be

noted that for most classical potentials, the evaluation of the

gradient is not significantly more expensive than the evalua-

tion of the energy. As a result, the number of steps required

to decorrelate a macroscopic variable is the measure of the

computational efficiency of the method.

In MC methods, one might, therefore, attempt to reduce the

autocorrelation time by combining many uncorrelated “local”

moves to a “collective” move before evaluating the energy.

Unfortunately, this straightforward approach fails, as the

acceptance probability, which is then the product of the

acceptance probabilities of the individual moves decreases

rapidly if there is an admixture of a few energetically unfavora-

ble moves in a such a “collective” move (again typical for

hard-core potentials). Generalized Monte-Carlo algorithms,

such as replica exchange,[19] simulated annealing (SA),[20] or

multiple try Monte Carlo (MTM)[21,22] increase the efficiency for

specific applications but do not overcome the fundamental

bottleneck described above.

Since their introduction in the 1950s, there have been many

propositions to increase the efficiency of MC simulations,[23]

including force biased move construction for the simulation of

water,[24,25] cluster MC algorithms,[26,27] and approaches using

generalized ensembles and feedback effects.[28] The paradigmatic

idea of many of these methods is exemplified by the famous

Swendsen–Wang algorithm where collective moves with a zero

energy change that affect a large fraction of the total system

have been constructed. This approach requires an efficient calcu-

lation of the exact energy change of the move, which is possible

only for discrete systems with short-range interactions.

To address a more general class of systems, a number of

MC methods have been proposed where the choice of a move

is biased by an energy estimator and all degrees of freedom

are changed simultaneously.[24,25,29,30] The idea to use an

energy estimator to construct efficient moves was originally

proposed by Rao et al. in 1979[25] and later taken up in 1992

by Dereli[31] and Timonova et.al. for the modeling of diffusion

and phase transitions.[29] As then the approach was also inves-

tigated by Ref. 30 and extended to associate a time-scale with

the MC algorithm.[32,33]

In all of these methods, the construction of moves is biased

toward decreasing energy. The strength of this temperature-

dependent bias is chosen to reflect detailed balance, provided

the estimate of the energy change of the proposed move is

exact. As this not the case in general, the methods obey

detailed balance only asymptotically in the limit of vanishing

step size and the accuracy and efficiency of the method

depends on the “critical” step size that can be chosen for a par-

ticular system. When the step size is chosen larger than the crit-

ical step size, these methods violate detailed balance and may

fail to compute proper thermodynamic averages. If the critical

step size below which the violation of detailed balance may be

tolerated is small, the methods become computationally ineffi-

cient. Other advanced MC methods such as the cluster algo-

rithms proposed by Liu and Luijten[34] or Krauth[35] circumvent

this problem but are not applicable to molecular simulations.

Here, we investigate a generic MC protocol,[24,25,36] called

Acceptance Rate Optimized Monte-Carlo (AROMoCa), which is

applicable to continuous systems and avoids these problems.

In AROMoCa, we construct moves composed of many degrees

of freedom with acceptance rates close to unity but preserve

detailed balance exactly. This manuscript is structured as fol-

lows: In the next section, we present a detailed derivation of

the method, followed by the investigation of four representa-

tive systems of increasing complexity that demonstrate its

effectiveness in comparison to generic MC methods and also

compare AROMoCa to MD simulations. Finally, we discuss the

relevance of the critical step size in previously proposed meth-

ods, such as force-bias Monte-Carlo (fbMC).[29,30] The aim of

the MC methods discussed here is to describe the properties

of systems in thermodynamic equilibrium. Other methods,

such as kinetic MC,[37] which are used to describe nonequili-

brium problems are not considered in this publication.

Methods

Detailed balance and biased move construction

As mentioned above, many MC algorithms are based on the con-

struction of Markov chains describing the evolution of a fictitious

system where each new element depends only on its predeces-

sor: In each extension of the chain, a trial change to the system

of interest (move) is proposed which is either accepted or

rejected according to a method- and system-specific acceptance

criterion. A sufficient but not necessary condition to compute

proper thermodynamic expectation values is the detailed balance

condition which postulates that: the move construction and

acceptance has to be chosen in a way that the total rate of

states moving from state q into state q0, C qð Þ ! q0ð Þð Þ; equals

the rate of the inverse move from q0 to q. For a system following

a Boltzmann distribution, which we will describe without loss of

generality in the following, the transition rate from a state q to a

state q0 is the product of the transition probability,

W qð Þ ! q0ð Þð Þ, and the probability to be in state q:

C qð Þ ! q0ð Þð Þ W qð Þ ! q0ð Þð Þ3 1

Z exp bE qð Þð Þ (1)

where E qð Þ is the potential energy of the state q, b 1= kBTð Þ is

the inverse temperature and Z
P

q exp bE qð Þð Þ is the parti-

tion function. The transition probability is the product of the

probability to construct the move, p qð Þ ! q0ð Þð Þ and the prob-

ability to accept the move, q qð Þ ! q0ð Þð Þ:



W qð Þ ! q0ð Þð Þ p qð Þ ! q0ð Þð Þ q qð Þ ! q0ð Þð Þ (2)

A sufficient condition to reach thermodynamic equilibrium, that

is, C qð Þ ! q0ð Þð Þ C q0ð Þ ! qð Þð Þ is the detailed balance criterion:

p qð Þ ! q0ð Þð Þq qð Þ ! q0ð Þð Þ
p q0ð Þ ! qð Þð Þq q0ð Þ ! qð Þð Þ exp bDEð Þ (3)

with the change in energy induced by the proposed move,

DE E q0ð Þ E qð Þ. For uncorrelated random moves drawn from

a given distribution (e.g., x, y, z coordinates or orientation of a

particle, internal degrees of freedom) where the probability to

construct the move is equal to the probability to construct the

inverse move, p qð Þ ! q0ð Þð Þ p q0ð Þ ! qð Þð , the probabilities of

the move construction in eq. (3) cancel out. From this, Metrop-

olis et al.[16] derived the Metropolis acceptance criterion:

q qð Þ ! q0ð Þð Þ
(

exp bDEð Þ; DE > 0

1; DE � 0
(4)

which is widely used for the simulation of physical and chemi-

cal systems.

While the construction of such moves is conceptually and

technically simple, it often leads to inefficient simulation proto-

cols. Consider a system consisting of N particles with a total of 3

N degrees of freedom. If only one or O(1) degrees of freedom

are changed in one move, the algorithm will become inefficient

in the thermodynamic limit and underperforms in comparison

to MD simulations which change all degrees of freedom simulta-

neously. The evolution of the system in the thermodynamically

relevant ensemble often requires collective changes of degrees

of freedom which are exponentially unlikely to be proposed as a

sequence of “local” moves. This problem arises both when the

moves are proposed in sequence (which is often better in prac-

tice) or as collective moves composed of uncorrelated “local”

moves. For many relevant potentials, the acceptance rate will

decrease exponentially with the number of uncorrelated “local”

moves in the collective move. In either scenario, the acceptance

probability is low and the autocorrelation time high.

If the existence of steep energy rises in local moves is limit-

ing the autocorrelation time of the method, one should aim to

construct collective moves that reduce the fraction of such

events in the move construction. We note that the Metropolis

algorithm is only one particular choice to realize the more

general condition of eq. (3). An alternative interpretation of

eq. (3) is to postulate an ideal algorithm where each proposed

change in the configuration will be accepted, that is,

q qð Þ ! q0ð Þð Þ q q0ð Þ ! qð Þð Þ 1. In such an algorithm, detailed

balance must be obeyed by constructing the probabilities p to

select a move from all possible moves. In such an algorithm, a

proposed moved has to be constructed such that

p qð Þ ! q0ð Þð Þ
p q0ð Þ ! qð Þð Þ exp bDEð Þ: (5)

To exactly satisfy this criterion, the energy difference DE of all

considered moves has to be known for all possible moves before

each MC step to compute the probabilities p qð Þ ! q0ð Þð Þ. In the

Swendsen–Wang family of methods, this is possible due to the

local nature of the Hamiltonian, but this type of approach is

unrealistic for most systems with continuous degrees of free-

dom and long-range potentials. For processes with a time-

independent energy function, we can assume DE q0ð Þ ! qð Þð Þ
DE qð Þ ! q0ð Þð Þ; ð which is not true for example for metady-

namics simulations[38–40] where an additional bias is applied to

the system depending on its prior trajectory and the energy

model thus changes with simulation time) and the relationship

in eq. (5) is met by proposing moves with a probability:

p qð Þ ! q0ð Þð Þ 1

A
exp b

DE

2

� �
(6)

where DE E q0ð Þ E qð Þ is the change in energy by moving from

q to q0 and A
P

q0 exp b DE
2

� �
is the normalization factor.

To illustrate this idea, let us consider an idealized system

where the energy change DE is known for every possible move.

The system consists of many particles where every particle has

only two possible states, for example, the adsorption of a gas of

independent particles on a surface. In this case, there are only

two possible states and moves (from the adsorbed state into the

gaseous state and vice versa) for which the energy change is

known exactly a prior the move. Let us assume that the

adsorbed state is energetically favorable by an energy DE0 > 0.

Then according to eq. (6), the probability to adsorb a particle

from the vacuum onto the surface is

pa
1

A
Nv exp

1

2
bDE0

� �
; (7)

while the probability to release a particle is

pv
1

A
Na exp

1

2
bDE0

� �
; (8)

where Na and Nv are the number of particles in the adsorbed

and vacuum state, respectively, and A Nv exp 1
2
bDE0

� �
1Na exp

1
2 bDE0

� �
is the normalization factor.

In the standard Metropolis MC protocol, a particle is

selected at random, and a move to the other state is proposed

and accepted or rejected according to eq. (4). This leads to

the rejection of most moves of particles which are already

adsorbed on the wall, as DE > 0. The biased protocol con-

versely picks a particle according to the Boltzmann probability

of the energy change induce by its change of state and every

move is accepted.

For realistic systems, the computational costs to compute

the exact change in energy for every possible move are unac-

ceptably high. However, a suitable estimator for the energy

difference fDE � DE can be used to construct the move proba-

bilities and accelerate the performance of the method. For sys-

tems with classical interactions (e.g., molecular or atomistic

systems), the obvious approximation is the Taylor expansion of

the energy term. Using the force F and displacement Dx, the

change in energy can be approximated by



fDEi � rEjx Dx F xð ÞDx (9)

and for the backward move, we have Dx0 Dx and

fDE 0 � rEjx0 Dx0 rEjx0 Dx F x0ð ÞDx (10)

This gives probabilities for the construction of move and

back move: Inserting this into eq. (6) and then eq. (3) delivers

the modified acceptance criterion:

q
q0

A

A0
exp

1

2
rEjx1rEjx0ð ÞDx

� �
exp DEð Þ (11)

Here, A and A0 are the sums over all probabilities for the moves

and back moves. If more than one degree of freedom is modified

during one MC step, the acceptance criterion becomes:

q
q0

A

A0

� �m Ym
i51

exp
1

2
rEjxi

1rEjxi0

� �
Dxi

� �" #
exp DEð Þ (12)

where m is the number of simultaneous MC moves.

This acceptance criterion asserts detailed balance exactly, as

the energy change estimated by the Taylor expansion during

the move construction [eqs. (6) and (9)] is corrected by the

real change in energy.

AROMoCa approach. As explained in the previous section, the

simultaneous random change of all degrees of freedom in large

systems inevitably leads to vanishingly low acceptance rates in

standard MC simulations. In the following, we propose an algo-

rithm that first identifies the regions of the system that are far from

the equilibrium and proposes moves to such regions with higher

probability. We focus the derivation on the description of molecular

systems, as most MD/MC simulations are performed for such sys-

tems. Without loss of generality, we consider a system with only

translational degrees of freedom (e.g., a system consisting of inter-

acting spherical particles) for simplicity. It is simple to extend this

algorithm to other degrees of freedom, such as rigid rotations or

changes applied to internal degrees of freedom of molecules.

Each MC steps is divided into four parts: First, for each

degree of freedom (in our case: every particle and every direc-

tion), a probability to perform a displacement of any size

between Dxmax; Dxmax is calculated:

pi;j
1

A

ðDxmax

Dxmax

dx exp
Fi;j x

2 kBT

� �
(13)

1

A

2 kBT

Fi;j
exp

Fi;j Dxmax

2 kBT

� �
exp

Fi;j Dxmax

2 kBT

� �� 	
(14)

with a normalizing factor

A
X

i

X
j

ðDxmax

Dxmax

dx exp
Fi;j x

2 kBT

� �
(15)

Here, i denotes the particle index and j 0; 1; 2 the direction

index for movement in x, y, and z direction. The larger the

force acting on a particle in a certain direction the larger pi;j

for this specific move.

In a second step, m m 2 Nð Þ moves are picked from the

probability array constructed of all pi;j . Neither are moves

picked completely randomly nor are all degrees of freedom

changed simultaneously. On the contrary: degrees of freedom

that are far from equilibrium having a large force and large

value of pi;j are more likely to be changed than those near

local equilibrium. After identifying the m different particle-

direction combinations, the displacement Dxi;j Dxmax ni;j is cal-

culated by drawing ni;j from the probability distribution:

p ni;j

� � 1

B
exp

Fi;j ni;jDxmax

2 kBT

� �
1

B
exp

Fi;j Dxi;j

2 kBT

� �
(16)

which is the equivalent of eq. (6). Again B
Ð Dxmax

Dxmax
dx exp

Fi j x
2 kB T

� �
is the normalization factor for this probability. It also

appears in eqs. (13) and (14) and cancels out when calculating

the total move probability as the product of pi;j and p ni;j

� �
.

Numerically, the calculation of ni;j is performed by drawing a

number g between 0 and 1 from a uniform random distribu-

tion and calculating ni;j using

Dxi;j
2 kBT

Fi;j
ln g exp jci;jj

� �
exp jci;jj
� �� �

1exp jci;jj
� �� �

(17)

with ci;j
Fi;j Dxmax

2 kB T . It can be shown that this results in the cor-

rect probability distribution in eq. (16) for the displacement.[29]

After displacing each i; jð Þ-combination, the forces Fi;j
0 and the

normalization factor A0 of the new configuration are calcu-

lated. The new configuration is then accepted according to eq.

(12). All simulations reported below were performed with a

Python-based implementation of AROMoCa using the

OpenMM package[41] for the calculation of forces and energies

between the atoms.

Results

In the following, we will present the sequence of investiga-

tions of increasingly complex systems that show the advan-

tages and limitations of the AROMoCa approach. As the

computational cost of a single step of the simulation of molec-

ular systems has different contributions that are dependent on

system size and difficult to compare the efficiency of the algo-

rithms will be measured in terms of number simulation steps,

which does not depend on the hardware used. In molecular

simulations, the major contribution to simulation time is the

evaluation of the long-range particle–particle interactions. As

those interactions (forces and energies) have to be calculated

for every step in all methods, the additional cost imposed by

the AROMoCa algorithm is only O(N), corresponding to the

evaluation of the estimated acceptance probabilities for the

possible moves. This is typically much smaller (<10%) of the

cost of the energy/gradient evaluation, so that the number of

steps comparism gives a good estimate of the performance of

the AROMoCa approach.



Independent particles in a double-well potential

In the first set of simulations, we test the efficiency of AROMOCA

with respect to the movement of many particles at the same

time. As discussed above, the efficiency of MC as compared with

MD decreases rapidly with system size even for systems where

the energy landscape is simple if only single particles are moved.

We, therefore, investigated a system of noninteracting particles

(here N 104 initially placed with the positions uniformly distrib-

uted in an interval between xmin 10.0 nm and xmax

10.0 nm) in a double-well potential given by

UDW c0 a x41b x21c x
� �

(18)

with a 0:0005=nm4, b 0:04=nm2, and c 0:05=nm (see

inset Fig. 1a). The potential strength was set to c0 5:0 kBT .

The system was chosen because its dynamics comprises two

phases: in the first phase, each particle will quickly relax to its

nearest local minimum, but the distribution of the particles

amongst the minima (initially approx. 50:50) will be far from

the thermodynamic equilibrium of the system. The system will,

therefore, equilibrate on the second, much slower time-scale,

which is determined by the barrier between the two minima,

and this relaxation is characterized by the rate by which par-

ticles cross the barrier from either the left or the right. In any

method that reaches thermodynamic equilibrium, these rates

will equal after equilibration, but different methods with differ

in their absolute rates. The key goal of the development of

accelerated simulations protocols is, therefore, the increase of

the total rate, measured as function of the number of energy

evaluations, which will control the accuracy of the determina-

tion of thermodynamic expectation values.

We performed AROMoCa and GMC simulations with initially

equidistributed particles comprising 10 3 106 MC steps with a

fixed displacement of 1:0 nm to either the right or left and kBT

1:0 kJ/mol. The height of the barrier in this system is 2.54 kB

T for particles in the left (lower) minimum and 5.70 kBT for

particles in the deeper right minimum, and 13 consequtive

steps are required to move a particle from one minimum to

the other. We performed AROMOCA simulations with collective

moves for m 1; 2; 4; 8; 16, and 32 independent particle dis-

placements per step. The average energy per particle as a

function of the number of steps is illustrated in Figure 1a. The

two phases of the simulation are clearly visible in the slope of

the energy relaxation. GMC and AROMoCa with m 1 show

approximately equal energy relaxation whereas for m � 2

AROMoCa converges much faster in energy (up to a factor of

20 for m 32) than GMC.

We have computed the final occupation of distribution of

particles and compared it to the Boltzmann distribution in the

given potential. As expected both methods converge to the

Boltzmann distribution in the long-time limit (inset of Fig. 1b),

Figure 1. Comparison of generic Metropolis MC (GMC) and AROMoCa sim

ulations with m 1, 2, 4, 8, 16, and 32 multiple displacements per MC step.

a) Energy convergence in an one dimensional double well potential (inset).

While AROMoCa with m 1 and GMC perform equally, equilibration acceler

ates with higher m and the equilibrium state is reached up to 20 times

faster using AROMoCa with m 32 than in the GMC simulation. b) The

number of particles that reach energies within kBT of the global optimum

converges faster in AROMoCa for larger values for m. The inset shows the

final distribution function of the particles after the 107 MC steps in GMC

and AROMoCa (m 32) simulations compared with the exact distribution

function. c) As the particles were initially equidistributed between

xmin 210.0 and xmax 10.0, the convergence is measured by the transi

tion rate of particles across the barrier. The particle current across the

energy barrier at x 0 is shown as a function of the number of simulation

steps. A linear function is fitted to the transition values of the last 23106

MC steps to determine the transition rates (table inset). The results clearly

show a strongly increased relaxation rate in the system for AROMoCa with

m � 2 in comparison to GMC, leading to an overall increased performance.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



but the AROMOMA simulations converge much faster, even

though the particles are independent, that is, there are no col-

lective effects. Figure 1b shows the fraction of particles that

are within kBT of the global optimum. As for the energy per

particle, plotted in Figure 1a, AROMoCa with m � 2 performs

much better than GMC. As explained above, the sampling

speed of the algorithm is determined by the total transition

rate of particles across the barrier. Figure 1c shows the sum of

the left-to-right and the right-to-left particle currents crossing

the barrier at approximately x 0. The currents determined

from linear fits to the last 2 3 106 MC steps are given in the

inset. The transition rate of AROMoCa increases with nearly

unit slope almost linearly with m, which results in a much

more efficient algorithm for m � 2.

Recalling the AROMOCA algorithm, this appears counter-

intuitive at first: Particles that are not in equilibrium are much

more likely to be selected and moved by AROMOCA than par-

ticles near the minimum and the move selection criterium [left

or right, see eqs. (13) and (14)] will favor relaxation to the

nearest local minimum and not crossing of the barrier. ARO-

MOCA nevertheless outperforms GMC because of its high

acceptance rate (inset table Figure 1c). As AROMOCA moves

particles according to detailed balance, the local relaxation

(moving with the gradient of the potential) must take prece-

dence over barrier crossing. However, as many particles are

moved with near unit acceptance rate in every single step, the

relaxation dynamics of the system is faster. This is demon-

strated by comparing AROMOCA with m 32 with an MC pro-

tocol that moves 32 particles are random with the standard

acceptance rate: The AROMOCA current across the barrier

approximately 30 times higher in comparison.

Liquid-crystal transition of Lennard-Jones systems. To demon-

strate the behavior of the algorithm for a system of interacting

particles with hard-core potentials, AROMoCa was applied to a

two-dimensional Lennard-Jones model for Argon (Lennard-Jones

parameters e 0:99601 kJ/mol and r 0:3405 nm) at T 50 K

which is below its melting point. Initially, 526 particles were

distributed randomly on a square surface of 9:539:5 nm2. The

system size was chosen based on initial estimates on the con-

vergence time for GMC. This system was chosen because the

domain growth can be easily visualized; a three-dimensional

(3D) model is studied in the next section. We performed GMC

and AROMoCa simulations with m 1; 2; 3; 4; and 5 to compare

the methods. In all simulations, the maximal displacement was

set to Dxmax 0:75 nm. To evaluate the convergence of ARO-

MoCa and GMC, we monitored the total system energy per

step and the q6-bond-order parameter based on the parameter

proposed by Steinhardt et al.,[42] which is defined as:

ql að Þ 4p
2l11

Xl

m5 l

����� 1

n að Þ
X

NN að Þ
fc rð Þ Ylm h;/ð Þ

�����
2

vuut (19)

where n að Þ 6 is the number of nearest neighbors NN að Þð Þ of

atom a, r; h;/ð Þ are the spherical coordinates of the vectors

from atom a to the nearest neighbors, and Ylm the spherical

harmonics. The cutoff function

fc 11exp
r r0

t

� �� � 1

with t 0:15Å and r0 5:451Å (1Å larger than the equilibrium

distance) was used to ensure that the six nearest neighbors

contribute to the order parameter only when within a certain

limit.

Figure 2 shows the dependence of the average system

energy and bond-order parameter. The energy relaxation in the

liquid-to-crystal transition is well represented by an exponential

function, E stepð Þ / exp step=sð Þ. The results of the fit, also

displayed in Figure 2, show that the decay in energy occurs up

to eight times faster in AROMoCa than in GMC (s 559 vs.

s 4316). The increase in the local order of the system induced

by crystal transition is demonstrated by the increase in the

bond-order parameter in the right hand side of Figure 2. As for

the energy, the order parameter increases much faster using

AROMoCa than GMC. To illustrate the ordering of the system,

Figure 3 shows snapshots at step 0, 100, 1000, 2500, and 5000

of the GMC trajectory and the trajectory of AROMoCa with

Figure 2. Liquid to crystal transition of a two dimensional Lennard Jones liquid. The convergence speed in terms of total system energy (left) and the q6

bond order parameter (see text) averaged over all particles (right) of generic Metropolis MC is compared with AROMoCa using different m. Exponential fits

of the decay in energy show that AROMoCa converges up to six times faster than generic MC. The rate of convergence increases with the number of

simultaneous displacements per MC step m for up to m 4. The trends of the q6 bond order parameter verify that the total order of the system is

increased throughout the simulations faster in the AROMoCa simulation than using GMC. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]



m 4, respectively. The Figure 3 clearly demonstrates that the

AROMoCa simulation reduces the fraction of disordered atoms,

that is, the particles not in crystalline environment, rapidly to a

constant fraction that arises from thermal fluctuations within

the first 2500 MC steps, while GMC has not yet reached the

same degree of order after 5000 MC steps.

To further analyze the mechanism of the ordering process,

we estimated the growth of crystalline domains in the sample.

For every snapshot (snapshots recorded every 100th simulation

step over a simulation of 10k MC steps), the distribution of the

distance f of each atom to the nearest “disordered” particle

(defined by q6 < 0:418Þ; based on the values of q6 occurring in

the simulation, that is, the nearest particle not in a crystalline

environment was measured. Figure 4 illustrates the definition of

f, its distribution, and the evolution of its mean value <f>. As

fluctuations were quite large due to the small size of the sys-

tem, we computed a moving average over up to 20 subsequent

frames of the simulation (a lower number was averaged in the

first 20 frames). This trend again illustrates the advantage of

AROMoCa over GMC: <f> reaches an equilibrium value of

40 Å, which is just below half the system size, much faster for

all values of m in AROMoCa in comparison to GMC. Further-

more, the performance of AROMoCa improves with higher m.

Finally, we studied a 3D LJ liquid consisting of 216 particles

and compared the results of AROMoCa and GMC simulations

with a MD simulation of the same system. AROMoCa simula-

tions were performed using m 1, 2, and 4 displacements per

MC steps with a maximal step size of Dxmax 0:75 nm. We

again used Argon parameters and a temperature of T 50 K.

The MD simulation was performed using the Langevin integra-

tor as implemented in the OpenMM toolkit[41] with a time

step of Dt 1:0 fs. Periodic boundary conditions were applied

in all three dimensions in all simulations. The system energy

was recorded throughout the simulations and is plotted in Fig-

ure 5a as a function of the number of simulation steps. In the

MD and AROMoCa simulations for m 4, we observe two pla-

teaus in the energy, corresponding to the supercooled liquid

and crystal, respectively. This is demonstrated by the radial dis-

tribution functions shown in Figure 5b for the two regions in

the left panel of the Figure 5a. Analysis of the radial distribu-

tion functions indicates that all simulations converge to a

supercooled liquid state (encircled by dashed lines, dashed

RDF plots) before the crystal transition takes place. For those

trajectories where the transition can be observed the RDF

change their shape and show additional distinct peaks

(encircled in solid lines, solid RDF plots). While no phase transi-

tion occurred in the GMC runs and with AROMoCa using

m � 2, it was observed for the MD simulation and for the

AROMoCa simulation with m 4 between the simulation steps

43105 and 63105 at approximately the same number of func-

tion evaluations. This indicates that AROMoCa can model

some collective processes with comparable computational effi-

ciency as MD simulations.

Detailed balance and acceptance rates: Limits of fbMC

In the following section, we aim to compare AROMoCa with a

similar approach to introduce gradient-driven collective moves

in MC methods, in particular with force-bias MC methods.[30]

fbMC and other previously developed methods[24,25,29,30] use

the gradient acting on single particles to determine the step

size by which every single degree of freedom is to be changed

in one simulation step. The displacements are constructed in

such a way that the ratio of the probability to perform a move

to the probability to perform the back move is approximately

Figure 3. The q6 bond order parameter of each atom and step was calcu

lated to analyze the behavior of the 2D Lennard Jones model throughout

the simulation. The color code indicates the degree of order for each parti

cle as indicated in the top right. Snapshots for steps 0, 100, 1000, 2500, and

5000 are displayed. First, in AROMoCa, the system reaches a nearly crystal

line configuration after less than 2500 steps and defects (red particles)

occur afterwards to a constant fraction due to thermal fluctuations, while

GMC does not reach the same degree of crystallinity after 5000 MC steps.



the Boltzmann weight, as DE rEjx Dx F xð ÞDx: Different

versions of this approach have been proposed: In some meth-

ods, all proposed steps are accepted under the assumption

that detailed balance is only weakly violated, while others

retain an acceptance criterion. In the first approach, the accep-

tance rate is unity by definition, but thermodynamic expecta-

tion values may be incorrectly computed, while the efficiency

of the second approach depends on the acceptance rate for

a particular system, just as in any other MC method. In the fol-

lowing, we, therefore, investigated both variants of the fbMC

method in comparison with AROMoCa for simple test system

to determine the impact of an acceptance criterion on thermo-

dynamic expectation values, such as the mean energy of the

ensemble and on the acceptance rates.

We consider a small system of Argon with 216 atoms with

Lennard-Jones interactions. First, the system was equilibrated

at three different temperatures (T 200 K, T 80 K, and T 40

K) to construct ensembles in gaseous, liquid, and solid

phase. After the equilibration, AROMoCa and fbMC simulations

with 106 MC steps each were performed at each temperature

using random displacements in all three dimensions with step

sizes ranging from 0:005 nm to 0:075 nm. As a reference, a 100

ps MD run at each temperature was performed. The averaged

energies in the MD runs are 1715:167:0 kJ/mol, 1192611

kJ/mol, and 165:769:8 kJ/mol for solid, liquid, and gaseous

system respectively. The mean energy and the standard devia-

tion plotted over the step size are displayed in Figure 6.

In the gaseous and liquid systems, the energies of the ensem-

ble simulated with the fbMC method resemble the reference

energy for small steps but show an increasing deviation with

steps larger than 0:025 nm: In the gaseous system, the relative

deviations from the energy averaged over the MD simulations

are between 1.2 and 3.3% for the step sizes between 0.01 and

0.025 nm but 25% and even 155% for step sizes of 0.05 and

0.075, respectively. In the liquid system, the relative deviation is

lower than 2.5% for step sizes of up to 0.025 nm but already

50% for step sizes of 0.05 nm. In the simulation of the condensed

system, fbMC without acceptance criterion completely fails to

represent the physical ensemble and the expectation values of

the energy increase drastically with the step size: although the

relative deviation is less than 4% for step sizes of up to

0.025 nm, the absolute difference of about 7.166 kJ/mol even for

the smallest step of 0.01 nm is more than 21 times kBT at the

simulation temperature of 40 K. This indicates that the approxi-

mation of the change in energy by the product of gradient and

displacement yields adequate results only for very small step

sizes and points out the necessity to use an acceptance criterion

in fbMC to obtain proper thermodynamic averages. AROMoCa

with the acceptance criterion derived in eq. (12) conversely man-

ages perfectly to simulate physical ensembles with the correct

energies for all temperatures and step sizes up to 0:075 nm: the

highest deviation of all step sizes in all systems is lower than 1%

and the absolute deviation in the crystalline system is only 1.55

kJ/mol for the largest tested step size of 0.075 nm.

Figure 4. Analysis of the growth of crystalline areas in the 2D system: For each particle and step, f, the distance to the nearest particle that is not in a crystal

line environment (defined by q6 < 0:418) is measured (left). The central panel shows the distribution of the GMC simulation and the AROMoCa simulation using

m 4 at step 5000 and the right panel the moving average of <f > for AROMoCa with m 1; . . . 5 and GMC. <f > reaches an equilibrium value of 40Å (just

below half the system size) much faster with ARMoCa even when using m 1 than with GMC. Additionally AROMoCa performance improves with increasing m.

Figure 5. Liquid to crystal transition of a 3D Lennard Jones liquid. The radial distribution functions show distinct peaks after the transition process (solid

lines) in comparison to the supercooled liquid phase (dashed lines) indicating a crystalline phase. The transition to a crystal is not observed at all in the

standard Metropolis MC simulation. AROMoCa relaxes the system with approximately the same rate as the MD simulation. The right panel shows radial dis

tribution functions for the encircled regions in Figure 5a by averaging over 200 frames of the trajectories. The radial distribution functions were plotted for

the MD run and the AROMoCa run with m 4. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]



To test the influence of an acceptance criterion applied in

fbMC, a system consisting of 1728 Lennard-Jones particles

(same parameters as above) was studied. For the same tem-

peratures as above (T 200 K, T 80 K, and T 40 K) simula-

tions consisting of 1000 MC steps were performed after initial

equilibration at each temperature. For the fbMC simulation,

the acceptance criterion of eq. (12) was applied with the prod-

uct over all particles and directions. The acceptance rates were

calculated for step sizes between 0:005 and 0:025 nm. ARO-

MoCa simulations were performed for m 64; 128; 256; 512,

and 1024 parallel displacements per MC step. The resulting

acceptance rates are displayed in the right hand side of Figure

6. For the gaseous state, the AROMoCa acceptance rates are

close to 1:0 for up to m 512 parallel displacements for all

step sizes. The fbMC acceptance rate becomes vanishingly

small for step sizes close to 0:025 nm. In the liquid and solid

phase acceptance rates larger than 0:5 can be achieved in

AROMoCa by limiting the movement to the most important

regions of the system. The smaller m, the larger the probability

to only move those parts of the system that are far from the

equilibrium. This increases the probability to improve the total

system energy and leads to high acceptance rates. Because

fbMC cannot differentiate between the regions of the system

close to equilibrium and the regions farther away from equilib-

rium the acceptance rate is reduced drastically.

Conclusions

Molecular simulations are presently limited in system size and

time-scale by the computational effort required to overcome

long autocorrelation times. In this work, we investigated the

AROMoCa algorithm as a generic approach to generate com-

plex collective moves with high acceptance rates in MC simu-

lations. By performing changes to the system based on an

Figure 6. Analysis of detailed balance and acceptance rates of fbMC and AROMoCa in different phases of the simulations. Left: Energy averaged over 105

snapshots of a 106 step simulations of an Argon system in the gaseous (T 200 K, top), liquid (T 80 K, middle), and solid state (T 40 K, bottom) for differ

ent methods (AROMoCa and fbMC) as a function of the step size. No acceptance criterion was applied to the fbMC simulations. MD simulations of the

same systems were performed for comparison. AROMoCa reproduces the MD energy distributions (21715:167:0 kJ=mol, 21192611 kJ=mol, and

2165:769:8 kJ=mol, respectively) very well. Right: Acceptance rates of AROMoCa and fbMC runs with 1000 MC steps of gaseous, liquid, and solid Argon

(1728 particles at T 200 K, 80 K, and 40 K from top to bottom) for different step sizes. AROMoCa simulations were performed using m 64 1024 system

changes per MC step. Especially, for larger step sizes (>0:1 nm), AROMoCa reaches much higher acceptance rates than fbMC. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]



estimator for the change in energy induced by a potential

move, higher acceptance rates can be achieved. It was shown

that AROMoCa converges important physical observables, such

as order parameters, faster than Metropolis MC methods for all

of the systems studied in this work. For the simulations of the

crystallization of a 3D Lennard-Jones liquid, the convergence

of AROMoCa was comparable to MD simulations of the same

system. A similar protocol, which moves a single particle, has

been previously investigated for the equilibration of water.[24]

Here, we find that moving a single particle is often insufficient

to significantly accelerate the simulation convergence, but that

a balance between the number of particles moves and the

step size must be found to obtain an optimal algorithm.

The computation of gradients has efficiently been implemented

in many MD programs and incurs roughly a factor of three in com-

putational effort compared with the energy evaluation alone. The

total computational effort in AROMoCa is, therefore, still domi-

nated by the evaluation of gradients and energy, the cost of move

construction was below 10% in the simulations reported here.

In summary, we found that AROMoCa is a generic MC algorithm

that can accelerate the simulation of many systems. It can be com-

bined with or embedded in other methods such as MTM,[21,22]

SA,[20] parallel tempering,[19] or Model Hopping methods[43] that

presently are based on generic Metropolis MC methods. This

opens a variety of possibilities for improvement of computational

efficiency for many applications. Although similar ideas have

already been explored in fbMC (force biased Monte Carlo) or

uniform-acceptance fbMC,[29,30] previously established methods

lack one key feature: the identification of the degrees of freedom

with values far from the local equilibrium, which is the central ele-

ment of the AROMoCa method, is the essential new ingredient

that generates acceptance rates close to unity for collective

moves, while exactly preserving detailed balance at all times.
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