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ABSTRACT An accurate amount of fertilizer according to the real-time context is the basis of precision
agriculture in terms of sustainability and profitability. Many fertilizers recommendation systems are pro-
posed without considering the real-time context in terms of soil fertility level, crop type, and soil type. The
major obstacle in developing the real-time context-aware fertilizer recommendation system is related to
the complexity associated with the real-time mapping of soil fertility. Furthermore, the existing methods
of determining the real-time soil fertility levels for the recommendation of fertilizer are costly, time-
consuming, and laborious. Therefore, to tackle this issue, we propose a machine learning-based fertilizer
recommendation methodology according to the real-time soil fertility context captured through the Internet
of Things (IoT) assisted soil fertility mapping to improve the accuracy of the fertilizer recommendation
system. For real-time soil fertility mapping, an IoT architecture is also proposed to support context-aware
fertilizer recommendations. The proposed solution is practically implemented in real crop fields to assess
the accuracies of IoT-assisted fertility mapping. The accuracy of IoT-assisted fertility mapping is assessed
by comparing the proposed solution with the standard soil chemical analysis method in terms of observing
Nitrogen (N), Phosphorous (P), and Potassium (K). The results reveal that the observations by both methods
are in line with a mean difference of 0.34, 0.36, and -0.13 for N, P, and K observations, respectively. The
context-aware fertilizer recommendation is implemented with the Logistic Regression (LR), Support Vector
Machine (SVM), Gaussian Naïve Bayes (GNB), and K-Nearest Neighbor (KNN) machine learning models
to assess the performance of these machine learning models. The evaluation of the proposed solution reveals
that the GNBmodel is more accurate as compared to the machine learning models evaluated, with accuracies
of 96% and 94% from training and testing datasets, respectively.

INDEX TERMS Internet of Things (IoT), machine learning, soil fertility mapping, fertilizer recommen-
dation, support vector machine (SVM), Gaussian Naïve Bayes (GNB), logistic regression (LR), k-nearest
neighbor (KNN).

I. INTRODUCTION
The increase in human population coupled with the decrease
in natural resources has raised concerns for food security [1].
Efforts were made to improve productivity in agriculture to
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feed the ever-increasing human population [2]. Extensive use
of fertilizers to improve productivity is the core of these
efforts that results in inefficient use of resources. The inju-
dicious use of fertilizers to improve productivity has further
diversified the issues related to soil deterioration and sus-
tainable development [3]. Every effort was made to improve
the productivity in agriculture in the last decades. Precision
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FIGURE 1. Factors affecting fertilizer recommendation.

and smart agriculture are evolving to improve productivity
while maintaining yield [4]. Efficient use of resources while
improving productivity is the core of sustainable develop-
ments in agriculture through smart and precision agricul-
ture [5]. There is an immense need for efficient fertilizer
application according to context to using smart agriculture
practices to support sustainable developments in agriculture.

Precision and smart agriculture have emerged as a new
paradigm with the emergence of new technologies for bet-
ter productivity in agriculture with the optimal usage of
resources [6], [7]. The management of soil fertility is the
core of sustainable agriculture to produce food for the
ever-increasing human population [8]. Site-specific fertilizer
applications have environmental, economic, and yield advan-
tages [9]. Internet of Things (IoT) and machine learning
potential technologies for effective soil fertility management.

Soil fertility is the level of nutrients present in the soil that
are essential for plant growth. The growth of plants is directly
linked with the soil fertility level. Extensive crop production
has resulted in the depletion of soil nutrients level resulting
in low soil fertility. The extensive agriculture activities and
the injudicious use of fertilizer to replenish soil fertility have
raised the issues of soil deterioration in terms of soil salinity,
soil aridity, and soil acidity. The soil fertility problems are
directly linked to the injudicious usage of fertilizers without
any recommendations to improve yield and productivity in
agriculture. The selection of appropriate fertilizer is based on
multiple criteria. Factors affecting the selection of appropriate
fertilizer are shown in Figure 1.

The efficient application of fertilizers can save resources
as well as prevents soil deterioration. The inadequate
nutrient management raises many concerns regarding low

productivity, and soil deterioration [10]. The efficient use
of accurate fertilizer according to the context is the basic
requirement for better crop yield, productivity, and sustain-
able soil quality. However, it is quite challenging to fulfill
these requirements. The major issue regarding the application
of precise fertilizer is the complexity associated with the
traditional method of determining soil fertility.

To overcome the difficulties associated with the traditional
method of soil fertility mapping, an IoT-assisted soil fertil-
ity mapping architecture is also proposed and implemented.
The traditional method of soil fertility observations is the
major obstacle in the implementation of precision fertilizer
recommendations according to the context. Soil fertility is
determined using soil chemical analysis to ascertain the
existing level of soil nutrients. The standard method of soil
chemical analysis for fertility level determination is costly,
time-consuming, and complex. There is a need for a solution
for the assessment of existing fertility levels that are easy
to use by farmers for smart agriculture applications. With
the emergence of new sensing technologies, it is possible
to overcome the problems associated with the existing soil
fertility mapping and assessment methods [11].

The emergence of new sensing capabilities and revolu-
tionary IoT and machine learning technologies are ideal
technologies for effective soil fertility management to over-
come the problems associated with traditional fertility
mapping and monitoring [12]. IoT and machine learning
are revolutionary technologies that have shown revolutionary
changes in every sphere including agriculture in the form of
smart agriculture [13], [14]. The directly sensed crop field
fertility enables efficient and effective management of soil
fertility.
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For accurate soil fertility management and appropriate
fertilizer recommendation, we proposed an IoT-assisted soil
fertility mapping architecture to assist the machine learning-
based context-aware fertilizer recommendations according to
the real-time soil fertility level, crop type, and soil type. The
major contributions of the study are listed below

A. CONTRIBUTION OF THE STUDY
The unique contributions of the study are as follows:

1. We propose an IoT-assisted fertility mapping archi-
tecture to overcome the problems associated with the
traditional soil fertility assessment method.

2. The study assesses the accuracy of proposed
IoT-assisted fertility mapping against the standard soil
chemical analysis method.

3. The study proposes a precise fertilizer recommendation
system based on the real-time sensed soil fertility level,
soil type, and crop type usingmachine learningmodels.

4. The study compares the performance of the Logistic
Regression (LR), SVM, KNN, and GNB models used
for the fertilizer recommendation system.

B. ORGANIZATION OF THE STUDY
The study is organized into the following sections: Section II
explores the recent developments regarding soil character-
istics mapping and fertilizer recommendations to identify
the research gap for the study. Section III elaborates on the
material, proposed IoT architecture, machine learning model,
dataset, and the implementation details of the proposed solu-
tion. Section IV unveils the experimental results. We con-
clude and summarize the study in Section V.

II. LITERATURE REVIEW
Machine learning and IoT are extensively applied in agricul-
ture for smart farms and precision agriculture applications.
The emergence of new sensing, communication, and process-
ing capabilities has created the potential for smart agriculture
with exciting new services and applications. IoT-based crop
field monitoring is quite common for different purposes with
different sensing capabilities, such as IoT-assisted farm mon-
itoring and control.

Q. V. Khanh et al. [15] explored the role of 5G in
the development of IoT along with the vision, appli-
cations, and challenges for 5G in IoT applications.
Khanh Quy et al. [5] reviewed different IoT enabler tech-
nologies for IoT smart agriculture. The study discussed
the vision of IoT technologies for smart agriculture appli-
cations. Johannes Tiusanen M. [16] proposed soil Scouts
named underground soil sensor node architecture to receive
sensed data from one kilometer and maintenance-free sensor
node. Boursianis A. et al. [17]. Boursianis A. et al. [18]
explored the communication, sensing technologies, and com-
munication mechanisms for the Internet of Underground
things (IOUT) for precision agriculture. The study explores
the possibilities of soil characteristics sensing using the IoT.

Akhter F. et al. [19] discovered the role and potential of
IoT, machine learning, and data analytics technologies in
agriculture. Apple disease prediction model is also proposed
using data analytics, machine learning, and IoT.

In [25], the authors use IoT and machine learning for smart
irrigation water and reference Evapotranspiration (ET) deter-
mination according to the prevailing environmental condi-
tions [20]. ZhimingHu et al. [21] propose an IoT andmachine
learning-based reference evapotranspiration (ETo) system
for precision irrigation water applications. Indra et al. [22]
suggest an agriculture recommendation system for Indian
farmers. Ponnusamy and Natarajan [23] illustrate the use of
modern technologies for smart farming. Michele E. et al. [24]
evaluate smart technologies to determine their impact on agri-
culture in terms of efficient use of resources, sustainability,
and cost reduction. The study also explores the impacts of
IoT, Artificial Intelligence (AI), and data analytics in pre-
cision agriculture. Sinha B. and Dhanalakshmi [4] explore
the major IoT components, challenges, and the future of IoT
applications in agriculture. Rehman A. et al. [25] review
various IoT technologies for smart monitoring and control in
agriculture. Parween S. et al. [26] evaluate smart agriculture
using IoT for improvements in productivity in agriculture.

Liu Z. et al. [27] propose an IoT and machine learning
model for the prediction of plant diseases based on the cor-
relation between plant disease and environmental conditions.
Suresh G. et. [28] propose a machine learning model for the
estimation of crop yield. Choudhary M. et al. [29] propose
a machine learning-based plant disease prediction and crop
recommendation system. Madhuri and M Indiramma [30]
propose an Artificial Neural Network (ANN) based crop
recommendation system according to the climatic conditions,
soil type, and crop characteristics. The proposed crop rec-
ommendation is a promising aspect of crop planning with an
accuracy of 96% in predicting the crop type.

Apart from smart irrigation and disease prediction, IoT
and machine learning are extensively used for the mapping
of soil characteristics. Deshmukh M. et al. [31] propose a
farming assistant model for soil fertility improvement using
crop prediction with the application of the XGBoost model.
Gosai D. et al. [32] propose a Random Forests (RF) based
crop type recommendation system based on IoT-assisted soil
characteristics mapping. The IoT aspect of the soil charac-
teristics mapping is performed by observing the soil’s major
nutrients NPK, soil pH, soil temperature, and soil moisture.
The proposed model uses the XGBoost model for crop type
recommendation with 99% accuracy. In terms of recom-
mendations, MobileNet is recommended for plant disease
identification with the help of plant images. They apply RF
for the fertilizer recommendation according to prevailing soil
fertility.

Pruthviraj et al. [33] propose a machine learning-based soil
classification and recommendation based on the soil fertility
level and crop type. The study also compares the perfor-
mance of SVM, decision tree, and KNN for the fertilizer
recommendation systems in terms of accuracy. The results
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reveal that SVM is the most accurate machine learning model
for fertilizer recommendation according to soil classification.
Rab Nawaz et al. propose an IoT-based salinity mapping at
irrigated scheme levels [34].

Swaminathan B et al. [35] propose an IoT and machine
learning-driven fertilizer recommendation system using deep
neural networks based on expert opinion. Quaye et al. [36]
propose integrated fertility management techniques for farm-
ers in Ghana. Mesfin S. et al. [37] propose a site-specific
fertilizer recommendation system for improving barley crops
based on soil nutrient supplies. Amgain L. [38] propose a
fertilizer recommendation system for rice crops to improve
profitability, productivity, and fertilizer usage efficiency.
JuhiReshma S R et al. [39] propose the estimation of fertilizer
quantity according to crop requirement and soil fertility.

Firmansyah [40] propose an AI-based expert sys-
tem for fertilizer recommendations in palm oil crops.
Gorai T. [10]discusses the RS-based approaches for soil
fertility assessment in terms of effectively utilizing fertilizers
using different indices. Jayashree D. et al. [41] propose a
fertilizer and pesticide recommendation system based on the
tree data structure. The proposed solution is based on the
YOLO algorithm in conjunction with Convolution Neural
Network (CNN) model. Erick Firmansyah et al. [40] recom-
mend an AI-based expert system for the accurate utilization
of fertilizer. Udoumoh U. and Ikrang [42] review new tech-
nologies, such as GIS, GPS, and Remote Sensing (RS) for
soil nutrient management to develop an efficient fertilizer
recommendation system.

The soil nutrients are assessed by colorimetry and machine
learning model with Gaussian Process Regression (GPR).
Shweta Singh et al. [43] propose multi-criteria decision-
making techniques for an appropriate fertilizer recommen-
dation system. The proposed solution uses the AHP method
and TOPSIS metacriterion techniques for comparing and
evaluating the choices. The selected fertilizer choices for
the fertilizer recommendation are Urea, Di-Ammonium
Phosphate (DAP), and Potassium Chloride. D. Hassan and
M. Manohar [44] propose IoT-based site-specific soil nutri-
ents management systems, such as Nitrogen (N), Phosphorus
(P), Potassium (K), and pH of the soil.

Koli S. et al. [45] propose an intelligent soil wetness
system using IoT to accurately analyze soil moisture and
nutrient analysis. Ahmed U. et al. [46] review the fusion
sensing technologies and their integration on different plat-
forms for crop parameter monitoring like nitrogen, chloro-
phyll level, and leaf area index. Andrianto H. et al. [47]
propose and evaluate the service system platform using IoT
to assess the plant’s nutritional deficiencies and fertilizer
recommendation according to the status of soil nutrients level.
Nutini F. et al. [48] propose an imagery approach for the soil
Nitrogen (N) level assessment using crop modeling, sentinel
imagery, and the soil nitrogen level index.

J. Singh and V. Singh [49] propose the efficient usage of
Nitrogen (N) with the help of crop reflectance to assess the
Nitrogen (N) level and site-specific fertilizer management

in cereal crops. Kassa M. et al. [50] propose a Quantitative
Evaluation of the Fertility of Tropical Soil (QUEFTS) model
to assess the relationship between the site-specific fertilizer
applications and yield attained in barley crops. The results
from the implementation of the study show that the pro-
posed QUEFTS model can be successfully used to assess the
nutrient requirements of crops along with the site-specific
fertilizer recommendations.

Wen G. et al. [51] conduct a study to predict crop yield by
using amachine-learning approachwith the help of a Random
Forest Regressor (RFR) model. The study also recommends
site-specific fertilizer recommendations using the PFRmodel
based on weather conditions, plant growth, soil characteris-
tics, and spectral index data. MacCarthy D. et al. [52] review
different Decision Support Tools (DST) for the efficient use
of fertilizer. Cuong N. et al. [53] propose deep learning-based
fertilizer and pesticide recommendation systems for precision
agriculture.

Many IoT-based solutions for soil characteristics are
proposed, while machine learning is applied for decision-
making. The real-time context-aware fertilizer recommenda-
tion system is not targeted by the existing literature. There is
also a need for fertilizer recommendations according to real-
time context.

III. MATERIALS AND METHODS
This section discusses the proposed architecture for the
IoT-based portable fertility mapping, machine learning
model, and dataset for the prediction of fertilizer based on
fertility, soil type, and crop type.

A. INTERNET OF THINGS (IOT) ARCHITECTURE OF SOIL
FERTILITY MAPPING
The IoT architecture enables portable fertility mapping with
centralized data storage and decision-making for different
stakeholders. The proposed architecture is based on sensing
soil fertility mapping in terms of NPK soil macronutrients by
using modern sensors. The sensor node is portable; therefore,
we can use a single node at multiple sites for fertility map-
ping. The architecture is. The proposed IoT-based fertility
mapping architecture is simple and lightweight to easilymove
across the field is shown in. Figure 2.

The data received at the gateway module is transferred to
the server through the cloud. The gateway module can also
store data temporarily if cloud connectivity is not available
in the field. Upon the availability of Internet connectivity, the
temporary data stored at the gateway node is transferred to the
server through the cloud. This architecture facilitates fertility
mapping in remote areas where Internet connectivity is not
available.

The sensed data from the sensor is transferred through
Radio Frequency-433 (RF-433) MHz module to the gateway
node from where the data is transferred to the server through
the Internet. RF-433 is a lightweight, cost-effective communi-
cation module used to achieve the objectives of the proposed
solution. RF-433module usesAmplitude Shift Keying (ASK)
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FIGURE 2. Internet of Things (IoT) architecture for soil fertility mapping.

for transfer data, where the amplitude of the carrier wave is
changed in response to the new data. The NPK sensor node
and the sampling of soil fertility with the NPK sensor node
are shown in Figure 3, and Figure 4, respectively.

FIGURE 3. NPK sensor node.

Soil fertility is expressed by the presence of nutrients
in the soil. The fertility is observed by the presence of
three macronutrients (Nitrogen (N), Phosphorus (P), and
Potassium (K)) with the implementation of the proposed
IoT-assisted fertility mapping architecture. The sensor node
is used to observe the NPK nutrient values from the soil.
Soil fertility can be observed as per requirements without
specialized skills in a cost-effective manner. For experiment
purposes, the soil fertility is observed at twenty sampling
points in an area of one acre. To evaluate the accuracy of the
proposed IoT fertilitymapping the observations are compared
against the standard method of a soil fertility assessment.
For comparison purposes, the Bald-Altman difference plot is
used. The bald-Altman difference plot is used to compare the

FIGURE 4. NPK sensor node sampling.

difference between the observation of the same event by two
different methods.

B. MACHINE LEARNING MODEL FOR FERTILIZER
RECOMMENDATION
The objective of the proposed solution is to recommend an
appropriate amount of fertilizer according to the level of soil
fertility in terms of macro-elements (NPK), crop type, and
soil type. The existing soil fertility is mapped to determine
the level of NPK in the soil. The real-time soil NPK level
in terms of fertility, soil type, and crop type is used in
the machine-learning model to recommend an appropriate
amount of fertilizer.

For Implementation, we use Logistic Regression (LR),
Gaussian Naïve Bayes (GNB), Support Vector Machine
(SVM), and k-Nearest Neighbor (KNN) basedmachine learn-
ing models to predict the fertilizer according to the context.
LR is used for classification and predictive analysis in the
case of a linear relationship. LR is a supervised machine
learning algorithm based on the probability of occurrence
of an event from a set of input conditions also known as
input features or independent variables. GNB is a classifi-
cation model based on conditional probability. GNG is suit-
able when the input feature set is independent. SVM is a
supervised machine learning algorithm used for binary and
multiple classifications. SVM is suitable for problems with
the multidimensional dataset. KNN is a supervised machine
learning that groups similar data nearby. The new data is put
into a new category that is like the data. All these models have
their advantages and characteristics.

The dataset for the implementation of the proposed solu-
tion is made based on a dataset taken from [54] and from
the department of agronomy Islamia University Bahawalpur
(IUB) Pakistan. Each crop and soil have unique nutrient
requirements. Furthermore, the fertilizer needs to be used
according to the existing soil NPK nutrient level. Therefore,
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the dataset is used to recommend the appropriate fertilizer
according to the soil, type, crop type, and existing soil NPK
nutrient level. As the available dataset is small; therefore, the
deep learning approaches are not suitable for the small dataset
size. The dataset is partitioned into 80:20 ratios in terms of
training and testing. The Sciket learn python library is used
for the implementation of the machine learning model. The
dataset is firstly preprocessed for missing and inappropriate
values in the dataset.

For each set of input tuples (X), the appropriate fertilizer
(y) is recommended according to the input features. The
objective of the machine learning model is to recommend
appropriate fertilizer (y) from the set of input conditions ‘X’,
as expressed by Eq. 1, where ‘X’ is the set of input features.

F (X)→ y (1)

‘X’ is the set of input features expressed by Eq. 2, where ‘St’
is the soil type, ‘Ct’ is the crop type and ‘Fl’ is the soil fertility
level.

X = {St,Ct,Fl (2)

‘Y’ is the set of commercially available fertilizers name
used as the output of the model for each tuple of input com-
binations. Each commercially available fertilizer has different
compositions of NPK nutrients usually expressed in their
names. The set of fertilizers names (y) used for the imple-
mentation of the proposed solution is expressed by Eq. 3,
where ‘Py’ is used for the ‘DAP’ fertilizer, ‘Qy’ is used for the
‘14-35-14’ fertilizer, ‘Ry’ is used for the ‘26-28’ fertilizer,
‘Ty’ is used for ‘10-26-26’ fertilizer name, ‘Uy’ is used for
the ‘Urea’ fertilizer, ‘Vy’ is used for the ‘20-20’ fertilizer and
‘Wy’ is used for the ‘17-17-17’ fertilizer. The distribution of
the selected fertilizers in the dataset is shown in Figure 5.

y = {Py,Qy,Ry,Ty,Uy,Vy,Wy (3)

FIGURE 5. Distribution of fertilizer names in the dataset.

To find the relationship between the input feature and the
output (fertilizer name) of the machine learning model, the
fertilizer names are classified in Table 1.

TABLE 1. Classification of soil Nitrogen (N) level.

Each soil has its unique characteristics and composition.
Moreover, different types of soils have different capabilities
to hold and supply nutrients to plants. The type of soil is
an important factor for the fertilizer recommendation. There-
fore, the fertilizer recommendation is also adjusted according
to the soil type. For the implementation of the proposed
solution, the set of soil types (S) is given in Eq. 4 where Sy
is used for sandy soil, Ly is used for loamy soil, Bl is used
for black soil, Rd is for red soil, and Cy for clayey soil. The
distribution of the soil type (S) in the dataset is shown in
Figure 6.

St = {Sy,Ly,By,Rd,Cy} (4)

FIGURE 6. Distribution of soil type in the dataset.

Each crop has its requirements of nutrients for successful
growth and better production. Some crops require low levels
of nutrients, while others require more. Therefore, along
with the soil type, the crop type is also an important factor
for crop fertilizer requirements and recommendations. The
distribution of the selected crop in the dataset is shown in
Figure 7.

The set of crop types (Ct) used for the implementation of
the proposed fertilizer recommendation is expressed in Eq. 5,
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FIGURE 7. Distribution of crop type in the dataset.

TABLE 2. Classification of soil Nitrogen (N) level.

TABLE 3. Classification of soil Phosphorous (P) level.

TABLE 4. Classification of soil Potassium (K) level.

where ‘Mz’ is used for maize, ‘Sc’ is used for sugarcane, ‘Cn’
is used for cotton, ‘Tb’ is used for tobacco, ‘Pd’ is used for
paddy, ‘Br’ is used for Barley, ‘Wt’ is used for wheat, ‘Ml’ is
for millets, ‘Os’ for oil seeds, ‘Pl’ is for pulses and ‘Gn’ for
the ground nuts crop.

Ct = {Mz, Sc,Cn,Tb,Pd,Br,Wt,Ml,Os,Pl,Gn} (5)

The soil fertility level (Fl) is defined by the level of nitrogen
(N), phosphorous (P), and Potassium (K) in soil expressed by
Eq. 6.

Fl = {N ,P,K } (6)

FIGURE 8. Distribution of soil Nitrogen (N) level in the dataset.

FIGURE 9. Distribution of soil Phosphorous (P) level in the dataset.

FIGURE 10. Distribution of soil Potassium (K) level in the dataset.

For implementation, the level of threemacronutrients (N, P,
and K) in soils are classified into ‘low’, ‘medium’, and ‘high’
according to their concentration in the soil. The classification
of N, P, and K nutrient levels in the soil is given in Table 2,
Table 3, and Table 4, respectively.
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FIGURE 11. Relationship between soil macronutrients and fertilizer.

The distribution of the three macronutrients in the
dataset is classified according to the described classifica-
tion. The soil nutrients are observed in milligrams of nutri-
ents per kilogram of soil (mg/kg). The distributions of
Nitrogen (N), Phosphorus (P), and Potassium (K) in the
dataset are shown in Figure 8, Figure 9, and Figure 10,
respectively.

The usage of fertilizer is heavily dependent on the crop
type, soil type, and the existing soil fertility in terms of soil
nutrients (NPK). The existing soil nutrient level is co-related
with crop type, soil type, and fertilizer requirements. The
relationships between the existing soil nutrient level with
the fertilizer requirements are shown in Figure 11. The rela-
tionships between the crop type, soil type, and the existing
nutrient level with the existing nutrient level are even more

complex. The relationship between all the input features with
the fertilizer name is shown in Figure 12.

IV. RESULTS
The proposed solution is evaluated in terms of the accuracies
of soil fertility mapping along with a machine learning model
to recommend an appropriate amount of fertilizer according
to the soil fertility level, crop type, and soil type.

A. ACCURACY OF SOIL FERTILITY MAPPING
Initially, the accuracy of the soil fertility mapping by the
proposed solution is evaluated. The accuracy of the pro-
posed solution is observed by the accuracy of the soil fer-
tility observations in terms of macro-elements (NPK). The
NPK observation by the proposed solution is compared
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FIGURE 12. Relationship between input features and fertilizer requirements.

with the soil chemical analysis to determine the accuracy
of soil fertility mapping. In terms of comparison, the soil
fertility is observed in an experiment area of one acre by
the proposed solution along with the standard method to
observe the difference at equally distanced twenty sample
points.

The NPK observations by the proposed solution and chem-
ical analysis methods in the experiment area are analyzed
for each of the three macro elements (NPK) of soil fertility.
For comparison purposes, the Bald Man Altman difference
plot is used to compare the difference in observations by two
different methods or instruments for the same measurement
or observation.

The Nitrogen (N) observations by the proposed solu-
tion and the standard method of soil chemical analysis are
shown in parts A and part B of Figure 13, respectively. The

Nitrogen (N) observations by the proposed solution and the
standard chemical-based approach are in line with each other
at each of the twenty-sampling points. The mean difference
in observations by the two methods, determined by the Bald
Altman difference plot, comes out to be 0.34 as shown in
Figure 14. Thus, the mean difference between the two meth-
ods for each sample point observation is 0.34. This means
that the proposed solution in terms of the average measure’s
nitrogen level is 0.34 more at each of the sample points
as compared to the standard soil chemical analysis method.
The mean difference of 0.34 in Nitrogen(N) observations by
both methods reveal that the proposed solution is accurate in
soil nitrogen (N) observation. The Kernel Density Estimate
(KDE) of Nitrogen (N) observation by two both methods
are shown in Figure 15, which also reveals the similarity of
Nitrogen (N) observation by both methods.
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FIGURE 13. Distribution of Nitrogen (N) level in experiment area A.
by proposed method B). by standard soil chemical analysis.

FIGURE 14. Bland-Altman Plot for the mean difference in Nitrogen (N).

FIGURE 15. KDE plot of Nitrogen observations (N) by two methods.

The Phosphorous (P) observations by the proposed solu-
tion and the standard method of soil chemical analysis are
shown in parts A and part B of Figure 16, respectively.

FIGURE 16. Distribution of Phosphorous (P) level in experiment area A.
by proposed method B). by standard soil chemical analysis.

FIGURE 17. Bland-Altman Plot for mean difference in Phosphorous
(P) observations.

The Phosphorous (P) observations mapping by the pro-
posed solution and the standard chemical-based approach
reveal that both observations are in line with each other at
each sampling point. The mean difference in observations by
bothmethods, determined by the BaldAltman difference plot,
is 0.36, as shown in Figure 17. The mean difference between
both methods for each sample point observation is 0.36. This
means the proposed solution in terms of the average mea-
sure’s Phosphorous (P) concentration is 0.36 more at each of
the sample points as compared to the standard soil chemical
analysis method. The mean difference of 0.34 in Phospho-
rous (P) observations by both methods reveals that the pro-
posed solution is accurate in soil nitrogen observation. The
Kernel Density Estimate (KDE) of Phosphorous (P) obser-
vation by two both methods are shown in Figure 18, which
reveals the similarity of Phosphorous (P) observation by both
methods.

The Potassium (K) observations by the proposed solu-
tion and the standard method of soil chemical analysis are
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FIGURE 18. Kernel density estimate (KDE) plot of Phosphorous
(P) observations by two methods.

FIGURE 19. Potassium (K) observation A) By Proposed solution B) By
chemical analysis.

shown in parts A and part B of Figure 19, respectively.
The Potassium (K) observations mapping by the proposed
solution and the standard chemical-based approach reveal
that both observations are in line with each other at each
sampling point. The mean difference in observations by both
methods, determined by the Bald Altman difference plot,
is 0.36, as shown in Figure 20. The mean difference between
the two methods for each sample point observation is −0.13.
This means the proposed solution in terms of average mea-
sured Potassium (K) concentration is −0.13 at each of the
sample points as compared to the standard soil chemical
analysis method. The mean difference of 0.13 in Potassium
(K) observations by both methods reveals that the proposed
solution is accurate in soil Potassium (K) observation. The
Kernel Density Estimate (KDE) of Potassium (K) observation
by both methods is shown in Figure 21, which reveals the
similarity of Phosphorous (P) observation by both methods.

FIGURE 20. Bland-Altman Plot for mean difference in Potassium (K)
observations.

FIGURE 21. Kernel density estimate (KDE) plot of Potassium (K)
observations by two methods.

B. PERFORMANCE OF THE MACHINE LEARNING MODEL
The machine learning model is used to recommend the fer-
tilizer according to the soil fertility level, crop type, and soil
type. The machine learning models are evaluated based on
accuracy, precision, and recall. Moreover, the accuracies of
the three machine learning models are also evaluated.

1) ACCURACY OF THE MACHINE LEARNING MODEL
The accuracy of the model is the number of correct predic-
tions out of the total prediction made by the machine learning
model, as expressed in Eq. 7. The accuracy of each evaluated
model from training and test datasets is given in Table 5.
It is observed that GNB perform better in the case of the
accuracy of appropriate fertilizer recommendation according
to the context with 97% and 96% accuracy from training and
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TABLE 5. Accuracy comparison of models.

TABLE 6. Numerical encoded labels of soil Nitrogen (N) level.

FIGURE 22. Confusion Matrix of logistic regression.

test dataset respectively.

Accuracy(%) =
Correctre recomendation
Total recomendation

× 100 (7)

2) CONFUSION MATRICES
Precision is the ratio of True positive (Tp) to the sum of the
‘Tp’ and false positive (Fp), expressed by Eq. 8. Recall is the
ratio of the ‘Tp’ to the sum of ‘Tp’ and False Negative (Fn)
expressed by the Eq. 9. F1 score is expressed by Eq. 10.

Precision =
Tp

Tp+ Fp
(8)

Recall =
Tp

Tp+ Fn
(9)

TABLE 7. Classification report of Logistic Regression (LR) Model.

FIGURE 23. Confusion Matrix of Gaussian Naïve Bayes (GNB).

TABLE 8. Classification report OF GNB.

F1 = 2×
Precision ∗ Recall
Precision+ Recall

(10)

The fertilizer names are encoded into numerical labels to
facilitate the reporting of confusion matrices and classifica-
tion reports, as shown in Table 6.

The confusion matrix of the LR model for the fertilizer
prediction is shown in Figure 22, and the classification report
is given in Table 7.

The confusion matrix of the GNB model for the fertilizer
prediction is shown in Figure 23, and the classification report
is given in Table 8.

The confusion matrix of the SVM model for the fertilizer
prediction is shown in Figure 24, and the classification report
is given in Table 9.
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FIGURE 24. Confusion Matrix of Support Vector Machine (SVM) model.

TABLE 9. Classification report of SVM Model.

FIGURE 25. Confusion Matrix of K-Nearest Neighbor (KNN).

The confusion matrix of the KNN model for the fertilizer
prediction is shown in Figure 25, and the classification report
is given in Table 10.

The results of confusion matrices and classification reports
reveal that the GNB model is better in terms of precision,
recall, and F1 score for fertilizer predictions.

TABLE 10. Classification report of the K-Nearest Model (KNN) model.

V. CONCLUSION
A machine-learning-based fertilizer recommendation system
is proposed. The appropriate fertilizer is proposed according
to the soil type, crop type, and real-time soil fertility context
captured through IoT-assisted soil fertility mapping. The soil
fertility observations by the proposed soil fertility mapping
were in line with standard soil chemical analysis with the
mean difference of 0.34, 0.36, and -0.13 for Nitrogen (N),
Phosphorous (P), and Potassium (K) observations, respec-
tively. The evaluation of the proposed model for fertilizer
recommendation reveals that GNB was the most accurate
machine learning model with accuracies of 96% and 94%
for training and test datasets. Due to the availability of lim-
ited datasets, the deep neural network was not applicable.
Therefore, the addition of a new dataset with a deep learning
application can be a good contribution in the future.
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