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Abstract

A reliable quantitative analysis in electron tomography, which depends on the segmentation of the three-dimensional reconstruction, is chal-
lenging because of constraints during tilt-series acquisition (missing wedge) and reconstruction artifacts introduced by reconstruction algo-
rithms such as the Simultaneous Iterative Reconstruction Technique (SIRT) and Discrete Algebraic Reconstruction Technique (DART). We
have carefully evaluated the fidelity of segmented reconstructions analyzing a disordered mesoporous carbon used as support in catalysis.
Using experimental scanning transmission electronmicroscopy (STEM) tomography data as well as realistic phantoms, we have quantitatively
analyzed the effect on the morphological description as well as on diffusion properties (based on a random-walk particle-tracking simulation)
to understand the role of porosity in catalysis. The morphological description of the pore structure can be obtained reliably both using SIRT
and DART reconstructions even in the presence of a limited missing wedge. However, the measured pore volume is sensitive to the threshold
settings, which are difficult to define globally for SIRT reconstructions. This leads to noticeable variations of the diffusion coefficients in the
case of SIRT reconstructions, whereas DART reconstructions resulted in more reliable data. In addition, the anisotropy of the determined
diffusion properties was evaluated, which was significant in the presence of a limited missing wedge for SIRT and strongly reduced for DART.
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Introduction

Mesoporous materials have attracted a lot of attention and are of
great importance in many advanced applications due to their
remarkable properties, such as high specific surface area, versatile
pore structure, chemical inertness, and good mechanical stability
(Ryoo et al., 2001; Taguchi & Schüth, 2005; Liang et al., 2008). In
heterogeneous catalysis, various porous materials have been used
as support for the active nanometer-sized particles (Taguchi &
Schüth, 2005; Yang et al., 2011). All aspects of the performance
of supported catalysts (activity, selectivity, and stability) are
strongly influenced by the architecture of the porous support:
(i) the mesopores (2–50 nm) and micropores (<2 nm) improve
the stability of the catalyst (Zuiderveld, 1994; Taguchi &
Schüth, 2005); (ii) the morphology of the macro- and mesopores
(geometry and topology) controls mass transport during catalyst
preparation, thus determining the distribution of the active cen-
ters (Ruthven & Post, 2001; Armatas et al., 2003; Gommes
et al., 2009); (iii) the meso- and micropore morphology confines

the diffusion of reactants and products thereby affecting selectivity
and activity (Christensen et al., 2003; Olsbye et al., 2012; Wang
et al., 2018).

Bulk techniques such as physisorption or small angle X-ray
diffraction provide an average measure of the pore structure and
pore volume. However, those techniques require assumptions
on the pore shape and connectivity and are not sufficient for an
accurate three-dimensional (3D) characterization of the structure
of disordered porous materials. To fully understand the complex
3D structure of meso- and microporous materials and to evaluate
how the local and average pore structure influences the catalyst
properties, alternative techniques are needed. Electron tomogra-
phy in combination with advanced analysis has been demon-
strated to provide quantifiable 3D structural information at the
nanoscale (Kübel et al., 2005; Bals et al., 2007; Friedrich et al.,
2009; Midgley & Dunin-Borkowski, 2009). For example,
SBA-15, an ordered mesoporous silica, has been investigated
using electron tomography, which revealed the pore corrugation
and its spatial correlation along the main channels (Gommes
et al., 2009). Furthermore, the sensitive interrelationship between
morphology and transport properties of SBA-15 has been high-
lighted recently (Reich et al., 2018). The pore-scale simulations
of hindered diffusion within a 3D reconstruction of this material
demonstrated that even a small amount of structural
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imperfections in the primary mesopore system has drastic conse-
quences for the transport properties. Quantitative information
about the pore network in Zeolite Y, including two types of
blocked mesopores (closed and constricted mesopores), the tortu-
osity of the mesopores, and the size distribution has been
obtained by electron tomography (Zečević et al., 2012).
However, any quantitative analysis of electron tomograms criti-
cally depends on the fidelity of the segmentation, the assignment
of each voxel to a specific feature or composition depending on
the gray level and/or local neighborhood. In general, segmenta-
tion of tomographic data can be achieved by three approaches:
manual segmentation, various types of image processing as well
as advanced reconstruction algorithms that directly result in (par-
tially) segmented reconstructions. Careful manual segmentation is
typically considered as the reference for unknown objects.
However, manual segmentation is very time-consuming,
labor-intensive, and difficult to perform fully reproducible.
During image processing the 3D volume is processed in order
to reduce noise and to get well-separated image intensities to
enable extraction of the features using global (Russ, 1992; Jähne,
2005; Vala & Baxi, 2013) or adaptive local (Niblack, 1985) thresh-
olding. However, in practice, global thresholding typically over/
underestimates some of the features in the 3D volume due to
noise and, more critically, systematic reconstruction artifacts of
the commonly used weighted back projection (WBP) or simulta-
neous iterative reconstruction technique (SIRT) (Norton, 1985;
Kübel et al., 2010). More recently, advanced reconstruction algo-
rithms have been proposed that make use of prior knowledge to
improve the overall reconstruction quality and fidelity. The dis-
crete algebraic reconstruction technique (DART) (Batenburg
et al., 2009) includes a segmentation in the reconstruction process
itself based on the prior knowledge that the overall sample can be
represented by a few different materials, corresponding to a few
grey levels in the 3D reconstruction. The DART algorithm starts
from a simple thresholded reconstruction, where voxels close to a
boundary are iteratively refined to achieve the best agreement
between the re-projections from the current segmentation and
the experimental projections (Batenburg et al., 2009). Thereby,
the reconstruction directly produces a segmented 3D volume of
the original object. As another alternative, total variation minimi-
zation (TVM) compressive sensing (CS) (Goris et al., 2012)
assumes a sparse gradient of grey levels as normalization to
improve the 3D reconstruction. The fidelity of the different
approaches has been estimated by a number of groups for various
materials and shapes (Batenburg & Sijbers, 2009; Biermans et al.,
2010; Kübel et al., 2010; Saghi et al., 2011; Roelandts et al., 2012;
Goris et al., 2013).

However, the effect of the limited fidelity of the segmented 3D
reconstruction on the measured/calculated properties of the
investigated material has not been addressed. Moreover, investiga-
tions providing quantitative information on the geometry and
topology of disordered pore structures, or even relating this infor-
mation to relevant transport properties (Müllner et al., 2016), are
still very limited. In this work, we combine electron tomography
with advanced image analysis to elucidate the 3D structure of a
disordered mesoporous carbon, which is commonly used as sup-
port in heterogeneous catalysis. The fidelity of the segmented 3D
object obtained from a SIRT reconstruction followed by image
processing and with the DART algorithm is investigated using
both experimental data and realistic phantoms for the material.
The effect of the reconstruction approach on the pore morphol-
ogy is discussed in terms of pore size, pore length, tortuosity,

and connectivity. Most importantly, the effect of reconstruction
variations on physical properties calculated from the support
structure is evaluated, looking at obstructed diffusion as one of
the critical properties of the mesoporous materials.

Materials and Methods

Mesoporous Carbon

Details of the mesoporous carbon synthesis have been published
previously (Villa et al., 2015). The material has a specific surface
area of 589 m2/g with an average pore diameter of 6.9 nm accord-
ing to BET analysis.

Electron Tomography Data Acquisition

The dry mesoporous carbon powder was directly dispersed on
100 × 400 mesh carbon-coated copper grids (Quantifoil Micro
Tools GmbH) with a support film thickness of 10–20 nm. The
support film was labeled with Au colloidal particles (6.5 nm
diameter). Electron tomography was performed using a
Fischione 2020 tomography holder on a Titan 80–300 microscope
(FEI Company) operated at 300 kV in STEM mode with a conver-
gence angle of 10 mrad and a nominal beam diameter of 0.27 nm.
ADF-STEM images (1,024 × 1,024 pixels, pixel size 0.32 nm) were
acquired at a camera length of 195 mm with a high-angle annular
dark-field (HAADF) detector within inner angle of 31 mrad using
the Xplore3D software (FEI Company) over a tilt range of ±76°
with a tilt increment of 2°. Alignment of the tilt series was per-
formed in IMOD (Kremer et al., 1996) tracking 14 Au particles
as fiducial markers, manually refining their position and enabling
refinement of magnification and image rotation and grouping
tilt-angles every three tilts without applying a distortion correc-
tion, to reach a mean residual alignment error of 0.44 pixels.

Reconstruction and Segmentation

The 3D reconstruction of the aligned tilt series was performed in
Inspect3D Version 3.0 (FEI Company) using the simultaneous
iterative reconstruction technique (SIRT) with 25 iterations. In
the reconstructed volume, the y-axis is parallel to the tilt axis dur-
ing data acquisition, the x-axis is perpendicular to the tilt axis,
and the z-direction is parallel to the electron beam direction at
0° sample tilt. Several image processing steps were carried out
on the reconstructed tomogram to segment the 3D volume. The
goal of the image processing was to reduce noise and get well-
separated image intensities to facilitate segmentation while pre-
serving the sharp boundaries between components. The image
processing was performed using plugins in the Fiji software pack-
age (Schindelin et al., 2012): (i) noise reduction of the image stack
using the PureDenoise plugin (Luisier et al., 2010) and the aniso-
tropic diffusion filter (Tschumperlé & Deriche, 2005); (ii)
enhancement of local contrast using the CLAHE plugin
(Zuiderveld, 1994); (iii) binarization by global thresholding. The
generated binary 3D reconstruction volume (labeled as
segmented-SIRT) was further separated into three parts: vacuum,
pore, and carbon using the pore filling approach implemented in
Amira 6.1.1 (FEI Company) to separate internal pores and vac-
uum around the mesoporous carbon particle; any contribution
from the supporting carbon films has been ignored. The full
image processing steps are illustrated in Figure 1. For comparison
with the DART reconstruction, the aligned tilt series was
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reconstructed using the DART implementation of the TomoJ plu-
gin (MessaoudiI et al., 2007) in Fiji (labeled as DART). The
resulting tomogram has an edge length of the voxels of 0.32 nm.

Validation of Experimental Reconstruction and Segmentation

The segmented models based on the segmented-SIRT and the
DART reconstruction were used to create tilt-series of 2D projec-
tions covering the angular range of ±90° in 2° steps. MATLAB was
used to generate projections based on a simple linear integration
of the intensities in the projection direction using nearest neigh-
bor interpolation. The mean absolute error (MAE) (Sage & Unser,
2003) was used to estimate the difference between the experimen-
tal tilt-series and the re-projected segmented images, in which the
gold markers within the experimental tilt-series images were
removed by interpolating the image intensities in the correspond-
ing areas using IMOD. For the MAE calculation, the complete
tilt-series of projected images was scaled to cover the full 8-bit
intensity range of 0–255 with the intensity of the vacuum regions
set to 0.

Phantom Study

The DART reconstruction of the particle was used as a phantom to
evaluate the fidelity of the reconstruction and segmentation
approaches in more detail. For this, 3D reconstructions were per-
formed using the re-projected tilt-series in the angular range of
±76° and ±90° with a tilt step of 2° created in MATLAB by rotating
the original object using the function “imrotate”. Experimental
error sources such as detection noise, scan errors or limited align-
ment quality were excluded in this phantom study as well as the
supporting carbon film. The reconstruction and segmentation
were done following the same procedure as before for the experi-
mental data. The resulting reconstructions are labeled as
Phantom.segmented-SIRT and Phantom.DART. For these phan-
tom reconstructions, we can quantitatively compare the mesopore

morphology and the diffusion simulations with the initial phantom
in addition to evaluating any differences on a voxel level.

Morphological Characterization of the Pore Structure

Skeleton Analysis
In order to quantify the geometry and topology of the pore struc-
ture, the pore volume was analyzed using the skeletonization
function in Amira 6.1 based on the segmented data. The skeleto-
nization procedure reduces the pore space to a branch-node net-
work (skeleton), as described in the literature (Fouard et al.,
2006), while both the geometrical and topological information
are preserved. The skeletonization procedure is illustrated in
Supplementary Figure 1. In the process, the mean pore diameter
of all individual pores was calculated as the average from the
diameter along each skeleton. The pore length was obtained
from summation of a number of voxels along the skeleton. The
pore coordination number was determined by counting the num-
ber of individual branches connected to a common point. The
skeletonized data were further analyzed by a home-written code
in MATLAB to calculate the tortuosity of the pores. The average
tortuosity of the pore structure was estimated by analyzing each
individual branch of the derived skeleton. The tortuosity (τ) of
an individual branch is defined as the pore length (dl) divided
by the Euclidean distance (deucl.) between pore entrance and
exit points:

t = dl/deucl. (1)

Chord Length Distribution (CLD) Analysis
The pore space within the segmented volume was analyzed using
CLD analysis (Bruns & Tallarek, 2011; Stoeckel et al., 2014; Kroll
et al., 2018). For each reconstruction 107 chords were generated.
These chords originate from randomly chosen points in the
void space. From each point, 26 equispaced vectors were defined

Fig. 1. Illustration of the image processing steps after SIRT reconstruction for the mesoporous carbon.
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and the length of these vectors determined after they hit the solid
phase. Chords that projected out of the image were discarded. The
resulting chord length is the sum of the absolute lengths of any
two opposing pairs of vectors. The histogram of the CLD was
fitted with a k-gamma function (Aste & Di Matteo, 2008)

f (lc) = kk

G(k)
lk−1
c

mk
exp −k

lc
m

( )
(2)

where lc is the chord length, Γ is the gamma function, μ is the first
statistical moment of the distribution, and k is a second-moment
parameter defined by the mean and the standard deviation σ as k
= (μ2/σ2). The values for μ and k obtained from the k-gamma fit
to the CLD are quantitative measures for the average pore size and
for the homogeneity of the pore volume distribution (Gille et al.,
2002; Aste & Di Matteo, 2008; Hormann & Tallarek, 2013;
Müllner et al., 2016).

Diffusion Simulations
Diffusion in the void space of cubic subdomains for each recon-
struction was simulated by a random-walk particle-tracking tech-
nique (Delay et al., 2005). For that purpose, a large number
(typically N = 107) of passive, point-like tracers were randomly
distributed in the reconstructed void space. At each time step Δt
of the simulation, the random displacement Δr of every tracer
due to the random diffusive motion was calculated as

Dr = g
����������
6DbulkDt

√
(3)

where Dbulk is the tracer diffusion coefficient in the open space
and γ is a vector with random orientation in space and a length
governed by a Gaussian distribution with zero mean and unity
standard deviation. The value of Δt was adjusted such that the
mean diffusive displacement did not exceed Δh/10 (where Δh =
0.32 nm is the voxel size of the reconstruction). To restrict diffu-
sion to the void space, a multiple-rejection boundary condition
was implemented at the solid—void interface: if at the current

iteration a tracer crossed the solid—void interface, this displace-
ment was rejected and recalculated until the tracer position was
in the void space. At the external faces of the reconstructed
domain, mirror boundary conditions were imposed, i.e. when a
tracer hit an external face, it was mirror-reflected from that
face. During the simulation, the displacements of every tracer
along x-, y-, and z-direction were monitored, which allowed us
to determine time-dependent diffusion coefficients along each
direction j according to (Brenner, 1980)

Dj(t) = 1
2N

d
dt

∑N
i=1

[Drij(t)]
2 (4)

where j denotes the x, y, or z direction, and Δrij(t) is the accumu-
lated displacement of the ith tracer along direction j after time t. A
decrease of Dj(t)/Dbulk with time (i.e., the number of iterations)
from the initial value of 1 results from passive interactions of
the tracers with the solid phase. At short times, only a small frac-
tion of the tracers experiences geometric confinement during
their random walk. At long times, the transient diffusion coeffi-
cients approach asymptotically the targeted effective (time-
independent) values Deff.

Results and Discussion

Quantitative Comparison of the Morphological Information
Obtained From Experimental SIRT and DART Reconstructions

The ADF-STEM tilt-series (Supplementary Fig. 2) gives a first
idea of the disordered pore structure of the investigated mesopo-
rous carbon material. The overall particle on the support film and
its internal mesopore structure are better revealed in the recon-
structed slices (Fig. 2a), where their irregular shape and non-
uniform size can be seen. In order to provide any quantitative
3D structural information, some kind of segmentation has to be
performed after reconstruction. The resulting quantitative analysis
strongly depends on the fidelity of the obtained segmentation.

Fig. 2. Typical (a–c) xy and (d–f) xz slices of the SIRT reconstruction (left), the segmented-SIRT (middle) and the DART reconstruction (right) (the areas highlighted
by red cycles exhibit pore size variations and the blue regions indicate differences in connectivity of the pores in 2D).
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Representative 2D slices of the SIRT reconstruction, the
segmented-SIRT, and the DART reconstruction are shown in
Figure 2. Most of the features visually detected in the SIRT recon-
struction (Fig. 2a) are also present in the slices of the
segmented-SIRT and the DART reconstruction (Figs. 2b/c).
However, when looking closely at the highlighted regions (red
and blue circles in Fig. 2), we found that the size and connectivity
of some of the pores in the 2D slices is different in the two seg-
mented results and does not necessarily fit to our visual interpre-
tation of the SIRT reconstruction. As one measure for the fidelity
of the segmented reconstructions we used the calculated
re-projection tilt-series from the segmented-SIRT and DART
reconstruction and compared it to the experimental tilt-series
(Fig. 3). The mean absolute error (MAE) was calculated to esti-
mate the difference between the experimental projections and
the re-projections. The MAE values for the nine re-projection
directions shown in Figure 3d are slightly larger for the
segmented-SIRT reconstruction than for the DART reconstruc-
tion, but the differences are so small that it would be difficult
to judge which reconstruction is better.

The pore morphology of the segmented reconstructions was
quantified by CLD and skeleton analysis. The Supplementary
Figure 3 schematically shows the CLD analysis of the pore space
and the resulting CLD for the segmented-SIRT and the DART
reconstruction. The distribution of chords (Supplementary
Fig. 3b) and the k-Gamma fitting of the CLD histograms
(Table 1) indicate that the geometry and the homogeneity of
the pore space are similar for the segmented-SIRT and the
DART reconstruction. From the skeleton analysis, the important
features related to the geometry and topology of the pore network

such as pore size, pore length, tortuosity, and interconnectivity are
summarized in Figure 4. The pore diameter distribution (Fig. 4a)
shows that a higher percentage of pores with diameters below
4 nm are observed in the segmented SIRT reconstruction, thereby
resulting in a smaller mean pore diameter (Table 1) compared to
the DART reconstruction. Nevertheless, the pore length distribu-
tion (Fig. 4b) and the mean pore length are very similar in the two
reconstructions, in agreement with the similar mean chord length
determined from the CLD analysis. Furthermore, the branch tor-
tuosity (Fig. 4c) and the coordination number of the branch-node
network (Fig. 4d), two important parameters regarding topology,
are also similar. This fits to the CLD results and indicates that the
overall morphology of the two reconstructions is similar, inde-
pendent of the reconstruction method (Table 1). However, the
total pore volume of the two reconstructions differs noticeably
(∼25%). This pore volume difference should result in a signifi-
cant difference in the MAE calculation if performed using a for-
ward simulation of the STEM images with a fully quantified
detection sensitivity (LeBeau et al., 2008). However, for the
MAE calculations presented in Figure 3, the experimental
tilt-series and the calculated projection intensities were both
scaled to cover 8-bits, thereby compensating for most of the
pore volume differences. This difference of the total pore vol-
ume is mainly caused by the difficulty to define a good global
threshold for the SIRT reconstruction. Despite the local contrast
enhancement, the average reconstructed intensity for the pore/
solid varies noticeably in different parts of the particle, render-
ing a global segmentation difficult. More details on the effect of
the segmentation threshold will be discussed with the phantom
studies.

Fig. 3. Projected images at 0° for (a) experimental STEM tilt-series, (b) segmented-SIRT and (c) DART reconstructions. (d) MAE calculation for re-projected images
from the segmented-SIRT (purple) and DART (blue) reconstructions at angles of −70°, −50°, −30°, −10°, 0°, 10°, 30°, 50°, and 70°.
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Diffusion Simulations Based on Experimental Segmented-SIRT
and DART Reconstructions

Transport properties of mesoporous materials are one of the crit-
ical aspects to understand activity and selectivity in catalysis
(Ruthven & Post, 2001; Armatas et al., 2003; Gommes et al.,
2009), as well as their efficiency as supports in chemical separa-
tion (Dullien, 1979; Brenner, 1980; D’Alessandro et al., 2010).
To analyze diffusion properties for this particle, taking into
account the experimental pore shape, we used a cubic domain
with a size of up to 220 × 220 × 220 voxels to derive effective dif-
fusion coefficients through direct pore-scale simulations (Fig. 5).
With increasing domain size, the diffusion coefficients become
almost stable, indicating that the domain is starting to approach
a statistically representative volume considering the structural var-
iations in the material. When comparing the segmented-SIRT and
the DART reconstruction of exactly the same volume (Fig. 5c), we
found that the normalized diffusion coefficient Deff/Dbulk within
the largest cubic domain from the DART reconstruction differs

noticeably (∼50%) from the segmented-SIRT reconstruction.
Considering that the topology of both reconstructions is similar,
this significant difference should be due to the larger pore volume
(higher porosity) of the DART reconstruction. As the limited con-
vergence of the SIRT reconstruction is known to introduce local
and global intensity variations (Norton, 1985; Kübel et al.,
2010) and as we experimentally noticed how difficult it is to
define a global threshold even after image processing to enhance
the local contrast, we assume that the DART reconstruction and
thus the DART-based diffusion simulations are more accurate.
However, this is difficult to verify from the experimentally avail-
able data. Moreover, we do not have a good experimental measure
to judge the fidelity of the DART-based diffusion simulations.

Fidelity of the 3D Reconstruction and Effect on Morphology and
Diffusivity

To further evaluate the fidelity of the 3D reconstruction of meso-
porous materials and to estimate the effect on the calculated

Fig. 4. (a) Pore size distribution, (b) pore length distribution, (c) pore tortuosity and (d) coordination number based on the segmented-SIRT and the DART
reconstruction.

Table 1. Morphological descriptors for the pore structure of the segmented-SIRT and DART reconstructions.

Data

CLD Analysis Skeleton Analysis

μ (nm) k Pore Volume (105 nm3) Pore Diameter (nm) Pore Length (nm) Tortuosity

Segmented-SIRT 11.1 3.13 4.39 5.2 ± 2.6 13.1 ± 11.0 1.17 ± 0.31

DART 11.0 3.10 5.67 5.6 ± 2.1 13.3 ± 10.3 1.15 ± 0.24
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properties of this material, we employed the DART reconstruction
as a phantom to directly quantify differences between the SIRT
and DART-based reconstructions obtained using the same proce-
dures as for the experimental data, but ignoring the 15–18%
intensity contribution of the supporting carbon film to the total
image intensity. The phantom-based SIRT and DART reconstruc-
tions were carried out for tilt-angles ranges of ±76° and ±90° to
further evaluate effects due to the missing wedge. As already dis-
cussed for the experimental data, defining the segmentation
threshold is critical for evaluating the reconstructions, both for
SIRT and for DART. We tested some common unbiased
approaches to define a global threshold for segmentation such
as the isodata-algorithm (Ridler & Calvard, 1978), the moment-
preserving threshold (Tsai, 1985 and Otsu, 1979) and a represen-
tative slice of the corresponding segmented volume is shown in
Supplementary Figure 4. However, there are significant differ-
ences (highlighted by red arrows) in all cases compared to the
visual features in the slice of the initial SIRT reconstruction.
Therefore, we were visually defining the best onset threshold for
the segmentation of the SIRT reconstruction. For the DART
reconstruction, we estimated the onset threshold from several
regions based on the mean pore and carbon intensities, as is com-
monly done in the literature (Batenburg et al., 2009; Biermans
et al., 2010). Afterwards, we varied the threshold by 10% and
20% to evaluate the sensitivity to the threshold settings. The
resulting effect on the reconstructed pore volume is shown in
Figure 6b. The pore volume determined from the segmented
SIRT reconstruction is more sensitive to variations of the thresh-
old compared to the DART reconstruction. This means that,
experimentally, it is more difficult to reproducibly segment a
SIRT reconstruction compared to a DART reconstruction in
these mesoporous materials.

For a more detailed analysis, we have evaluated representative
2D slices (Fig. 7) of the Phantom.segmented-SIRT and the
Phantom.DART reconstructions (based on the onset threshold)
and the corresponding surface rendering of the pores (Fig. 8).
All four reconstructions show a high similarity with the original
Phantom, exhibiting a very similar morphology. However, the
size and 2D connectivity of some of the pores (highlighted
areas in Figs. 7b–7e) are affected by the artifacts introduced dur-
ing the reconstruction and segmentation process. To understand
the differences between the segmented volumes better, the differ-
ences are highlighted, with red coloring indicating “missing” pix-
els/voxels and green representing “additional” pixels/voxels in the
reconstructions compared to the reference phantom. With a good

threshold, the missing and additional voxels in the pores are more
or less balanced. The pore variations are mainly present in a few
voxel-wide boundary regions of the pores. As is visually obvious,
the Phantom.DART ±90° reconstruction exhibits the least varia-
tions with a lower number of “missing” and “additional” voxels
compared to other reconstructions.

To quantify the variations between these reconstructions and
the reference phantom, the number of voxels differing (“missing”
and “additional”) for each reconstruction are counted and com-
pared to the total number of pore voxels both on a slice-by-slice
basis (Fig. 9a) as well as for the overall volume. In addition, the
structural similarity (SSIM) index (Wang and Bovik, 2004) is
used to measure the similarity between reconstructed slices and
the corresponding slices of the phantom (Fig. 9b). The
Phantom.DART ±90° and Phantom.DART ±76° reconstructions
show a lower pore variation in all investigated slices compared
to the Phantom.segmented-SIRT reconstructions and the SSIM
calculation also indicates that the Phantom.DART ±90° data has
the highest structural similarity with the initial structure. This is
confirmed by the overall differences in 3D in Table 2. The com-
parison further clearly shows the effect of the missing wedge. The
fidelity of both the SIRT and the DART reconstructions obtained
with a missing wedge of 28° is lower compared to the ones with-
out missing wedge. However, in the case of the DART reconstruc-
tion, this difference is smaller and might partially be due to the
reduced number of projections. The same trend can also be
seen looking at the MAE calculations for this phantom study
(Supplementary Fig. 5). All MAE values are well below 1%,
which is significantly lower compared to the experimental
counterpart, presumably mostly due to the missing noise in the
phantom studies. Furthermore, slight structural changes, contam-
ination, and the beam convergence might add to the higher MAE
values for the experimental reconstructions.

With the evaluation above, it is clear that the segmented 3D
reconstructions are not perfect, but visually they nevertheless
appear to be close to the original phantom structure. In order
to analyze the effect of the differences on the morphology and dif-
fusion properties, we analyzed the reconstructed phantom struc-
tures in comparison to the experimental data. The quantitative
information on the pore morphology derived from CLD and skel-
eton analysis are summarized in Table 3. Overall, the morpholog-
ical parameters are quite similar for all four reconstructions
compared to the reference phantom. In particular, the topology
of the constructed volume fits well based on the mean coordina-
tion number and the tortuosity. This fits the visual analysis of the

Fig. 5. (a) Overall 3D morphology of the mesoporous carbon particle, (b) cubic substructure used for the diffusion simulations and (c) calculated effective diffusion
coefficients normalized by the bulk diffusivity depending on the cube edge length for the segmented-SIRT and the DART reconstruction.
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Fig. 6. (a) Intensity histogram of a 3D reconstruction showing two main peaks corresponding to pore (void) and carbon (solid); (b) effect of threshold on the recon-
structed pore volume within Phantom.segmented-SIRT and the Phantom.DART reconstructions (the dashed line indicates the pore volume of the reference
phantom).

Fig. 7. Slices of the (a) DART phantom reference, (b) Phantom.segmented-SIRT ±76°, (c) Phantom.segmented-SIRT ±90°, (d) Phantom.DART ±76° and (e)
Phantom.DART ±90° reconstructions with (f–i) the differences in the pore structures: the pixels of the red and green parts represent “missing” and “additional”
voxels of the reconstructed pore compared to the phantom. (Areas highlighted by red circles exhibit pore size variations and the blue regions indicate differences
in the connectivity of the pores.).
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pores (as in Fig. 8) and means that connectivity differences seen
in individual slices of the 3D volume (Fig. 7) do not lead to a sig-
nificant number of changes in the 3D pore connectivity. However,
looking at the geometry-related parameters, such as pore length
and width or the mean chord length μ as well as the total
power volume, slightly stronger differences are noticeable. These
parameters are most sensitive to slight threshold variations. In
addition, the k values (as a measure of the homogeneity) are
higher for both the segmented-SIRT and the DART reconstruc-
tions compared to the phantom reference, especially for the lim-
ited tilt range of ±76°. This indicates that the reconstruction
process causes a smoothing of pore variations, especially if the
reconstruction is affected by the missing wedge.

The diffusion behavior within the 3D pore volume of the phan-
tom reconstructions has been simulated as before in the case of the
experimental data (Fig. 10a) to compare the differences between the

reconstruction algorithms and to evaluate the effect of the missing
wedge.We found that the effective diffusion within the largest cubic
domain of the Phantom.segmented-SIRT ±76° reconstruction is
about 14% lower compared to the reference, while the value of
Phantom.segmented-SIRT ±90° reconstruction is about 21%
higher. This difference is partially due to the variations in the
pore volume between the reconstructions, which is ∼5% lower
than in the reference for the Phantom.segmented-SIRT ±76° (in
the volume used for the diffusion simulation), whereas the pore vol-
ume of the Phantom.segmented-SIRT ±90° is ∼14% higher com-
pared to the reference phantom. For the Phantom.DART
reconstructions, the variation of the diffusion coefficients com-
pared to the reference is significantly smaller. It is about 7%
(Phantom.DART ±76°) and about 3% (Phantom.DART ±90°)
higher than in the reference phantom. However, it should be
noted that the corresponding pore volume of the
Phantom.DART ±76° is almost the same as in the reference (1%
higher), while the pore volume in the Phantom.DART ±90° recon-
struction is 4%higher. This clearly shows that the pore volume is not
the only factor affecting the variations in diffusion coefficients
between the 3D reconstructions, but the slight morphological dif-
ferences and potentially also necking between pores play a role.
Another critical point is the effect of the missing wedge on themea-
sured diffusion properties and, in particular, on the anisotropy of
the determined diffusion properties that it causes. This was evalu-
ated by separately analyzing the x-component (perpendicular to
the tilt-axis and the electron beam direction), y-component

Fig. 8. 3D view of a selected pore: (a) reference, (b) Phantom.segmented-SIRT ±76°, (c) Phantom.segmented-SIRT ±90°, (d) Phantom.DART ±76° and (e)
Phantom.DART ±90°. Differences are highlighted in red (missing voxels) and green (additional voxels).

Fig. 9. (a) Percentage of pore variation (the dashed lines indicate the average values of the pore variation in the 3D volume) and (b) SSIM calculated for slices
distributed throughout the reconstructed volume for the four phantom reconstructions.

Table 2. Pore variation and SSIM calculation for the phantom segmented 3D
reconstructions.

Segmentation Pore Variation (%) SSIM

Phantom.segmented-SIRT ±76° 21 0.946

Phantom.segmented-SIRT ±90° 19 0.947

Phantom.DART ±76° 15 0.954

Phantom.DART ±90° 7 0.973
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(parallel to the tilt-axis) and z-component (parallel to the electron
beam direction) of the diffusion coefficients (Figs. 10b, 10c and
10d). As the investigated volume is not necessarily fully isotropic,
we did not compare the absolute diffusion coefficient components
in the different directions but only the differences of each compo-
nent relative to the reference phantom. In the case of the
Phantom.segmented-SIRT ±76°, the diffusion in 3D is 14% lower
compared to the reference, but the z-component of the diffusion
is enhanced and almost the same as the diffusion in this direction

in the reference. This is the expected result of the missing wedge,
leading to a lower intensity for pore walls oriented perpendicular
to the electron beam, thus enhancing the pore length/connectivity
in z-direction. In addition, we noticed that the missing wedge has
a significantly different effect on the x- and y-component of the dif-
fusion coefficients. The x-component of the diffusion is 10% lower
than the reference value and thus slightly enhanced compared to the
difference in 3D. However, the y-component of the diffusion is
strongly reduced; it is 56% lower than the reference.

Table 3. Quantitative morphological information on the pore structure.

Data

CLD Analysis Skeleton Analysis

μ (nm) k

Pore
volume
(105 nm3)

Pore volume
within largest
cubic domain
(105 nm3)

Pore
diameter
(nm)

Pore
length
(nm) Tortuosity

Coordination
number

3
(%)

>3
(%)

DART 11.0 3.10 5.67 0.79 5.6 ± 2.1 13.3 ± 10.3 1.15 ± 0.24 94.8 5.2

Phantom.segmented-SIRT ±76° 11.5 3.23 5.44 0.75 5.6 ± 2.5 14.6 ± 11.8 1.16 ± 0.48 95.6 4.4

Phantom.segmented-SIRT ±90° 12.3 3.16 5.78 0.90 6.2 ± 2.5 14.8 ± 11.2 1.15 ± 0.23 96.0 4.0

Phantom.DART ±76° 11.7 3.23 5.54 0.80 5.9 ± 2.4 13.8 ± 11.2 1.12 ± 0.17 94.9 5.1

Phantom.DART ±90° 11.4 3.15 5.60 0.82 5.8 ± 2.3 13.7 ± 11.2 1.14 ± 0.21 94.8 5.2

Fig. 10. Effective diffusion coefficients normalized by the bulk diffusivity as a function of the simulation box size. (a) 3D, (b) x-component, (c) y-component and (d)
z-component.
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To better understand this anisotropy, we investigated the effect of
the SIRT reconstruction from a series of projections of a 3D shell
model covering a tilt-angle range of ±76° (Supplementary Fig. 6).
As commonly considered, the missing wedge results in a significant
reduction of the reconstructed intensities of the shell in z-direction,
because this part of the shell has strong Fourier coefficients within
the missing wedge (Supplementary Fig. 6a/b). However, the recon-
struction also reveals a slight anisotropy for the central slice in x-
and y-direction (Supplementary Fig. 6c). This leads to the highest
reconstructed intensities for pore walls perpendicular to the
y-direction, which is a bit higher than the intensities perpendicular
to the x-direction and again higher than the intensities perpendicu-
lar to the z-direction (Supplementary Fig. 6d). In turn, the compo-
nents of the effective diffusion coefficient should be inversely
affected, which is exactly the trend we notice in our diffusion simu-
lations based on the Phantom.segmented-SIRT ±76° reconstruction
compared to the reference. For the Phantom.DART ±76° recon-
struction, the anisotropy of the diffusion components is significantly
reduced compared to the Phantom.segmented-SIRT ±76° recon-
struction. This means that the DART reconstruction significantly
reduces the missing wedge artifacts. However, a deeper analysis
shows that we still see the same trend as for the SIRT reconstruction.
The z-component is enhanced (13%) compared to the reference, the
x-component and the y-component are almost the same. This resid-
ual anisotropy suggests that the DART reconstruction did not fully
converge to suppress the missing wedge artifacts.

In the reconstruction based on the full tilt-angle range of ±90°,
the Phantom.segmented-SIRT ±90° exhibits slightly higher nor-
malized diffusion coefficients in the x- and z-direction compared
to the y-direction. The SIRT reconstruction of a tilt-series of pro-
jections of a 3D shell model covering the full tilt-range of ±90°
revealed that the intensity in x- and z-direction is lower compared
to the y-direction (Supplementary Fig. 6e), which would lead to
higher diffusion both in x- and z-direction, which is exactly
what we observe in our diffusion simulations for the
Phantom.segmented-SIRT ±90° reconstruction. This anisotropy
of the SIRT reconstructions, even with the full ±90° tilt-angle
range, is due to the discrete angular sampling during tilting
(2° tilt step here), which can be considered as a set of mini miss-
ing wedges in the x–z plane, whereas the y-direction along the
tilt-axis will not be affected. Also, in this case, the anisotropy of
the diffusion components is again significantly reduced by the
Phantom.DART ±90°, resulting in a just slightly higher compo-
nent in the z-direction compared to the other two directions.

Conclusions

The morphological description and the diffusion properties of a
disordered mesoporous carbon material have been quantified
based on an electron tomographic reconstruction. The quantita-
tive analysis strongly depends on the fidelity of the reconstruction
and the segmentation, which are affected by pore size variations,
the missing wedge during tomographic acquisition and the recon-
struction approach. The morphological description of the pore
structure in terms of simple geometric and topological parameters
can be performed reliably based on both the SIRT and DART
reconstruction even in the presence of a limited missing wedge.
However, the measured pore size and length vary somewhat
depending on the threshold used for segmentation, and in partic-
ular, for the SIRT reconstruction, it is difficult to reproducibly
define a uniform global threshold. This has a noticeable effect
on the measured pore volume, which differed by ∼25% in our

experimental SIRT and DART reconstructions. Since diffusion
through a pore network depends essentially on porosity, i.e., on
the void volume fraction, the simulated diffusion coefficients
also differed significantly (by ∼50%) between the experimental
SIRT and the DART reconstruction.

In a phantom study based on the reconstructed mesoporous
carbon, we analyzed the fidelity of the reconstruction and seg-
mentation approach for disordered mesoporous materials in
more detail. This revealed that the sensitivity of the pore volume
to the threshold settings is higher for the SIRT reconstruction
compared to the DART reconstruction, making it more difficult
to define a good threshold and, thus, to reproducibly measure
the pore volume based on a SIRT reconstruction. However, we
found that the pore variations introduced in the reconstruction
and segmentation process are mainly present in a few voxel-wide
boundary regions of the pores, slightly altering the local size of the
pore structure, but not significantly affecting the morphology.
Due mainly to the differences in the pore volume, the simulated
diffusion coefficients also varied for the different reconstructions.
Nevertheless, in the case of the DART reconstruction, a reproduc-
ible simulation of the diffusion coefficient was possible.

Missing wedge artifacts result in a noticeable anisotropy of the
measured x-, y- and z-components of the diffusion coefficient
based on the SIRT reconstruction, with the highest coefficients
in the z-direction and the lowest coefficient in the y-direction.
This anisotropy is strongly reduced in the DART reconstruction,
resulting in differences of only a few percents even in the presence
of a limited missing wedge.

In summary, our studies indicate that a reproducible and reli-
able analysis of the pore structure of mesoporous materials is pos-
sible by electron tomography based on a DART reconstruction. It
enables a reliable analysis of the effective diffusion properties,
thereby providing input to the understanding of morphology—
transport relationships, e.g. in heterogeneous catalysis.
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