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Einfluss von Eingangsdaten-Darstellungen für die zeitabhängige Instrumentenerkennung

Abstract: An important preprocessing step for several mu-
sic signal processing algorithms is the estimation of play-
ing instruments in music recordings. To this aim, time-
dependent instrument recognition is realized by a neural 
network with residual blocks in this approach. Since mu-
sic signal processing tasks use diverse time-frequency rep-
resentations as input matrices, the influence of different 
input representations for instrument recognition is ana-
lyzed in this work. Three-dimensional inputs of short-time 
Fourier transform (STFT) magnitudes and an additional 
time-frequency representation based on phase informa-
tion are investigated as well as two-dimensional STFT 
or constant-Q transform (CQT) magnitudes. As additional 
phase representations, the product spectrum (PS), based 
on the modified group delay, and the frequency error (FE) 
matrix, related to the instantaneous frequency, are used. 
Training and evaluation processes are executed based on 
the MusicNet dataset, which enables the estimation of 
seven instruments. With a higher number of frequency 
bins in the input representations, an improved instrument 
recognition of about 2 % in F1-score can be achieved. Com-
pared to the literature, frame-level instrument recognition 
can be improved for different input representations.

Keywords: Instrument recognition, polyphonic music sig-
nals, time-frequency representations, neural networks.

Zusammenfassung: Ein wichtiger Vorverarbeitungsschritt 
für verschiedene Musiksignalverarbeitungsalgorithmen 
ist die Schätzung der spielenden Instrumente in Mu-
sikaufnahmen. Zu diesem Zweck wird die zeitabhän-
gige Instrumentenerkennung in diesem Ansatz durch 
ein neuronales Netz mit Residual-Blöcken realisiert. Da 
Musiksignalverarbeitungsaufgaben unterschiedliche Zeit-
Frequenz-Darstellungen als Eingabematrizen verwenden,
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wird in dieser Arbeit der Einfluss verschiedener Eingangs-
darstellungen für die Instrumentenerkennung analysiert.
Dabei werden sowohl dreidimensionale Eingänge von
Kurzzeit-Fourier-Transformation (STFT) mit einer zusätz-
lichen auf Phaseninformation basierenden Zeit-Frequenz-
Darstellung als auch die Magnituden der zweidimensio-
nalen STFT oder der Constant-Q-Transformation (CQT) un-
tersucht. Als zusätzliche Phasendarstellungenwerden das
Produktspektrum (PS), das auf der modifizierten Grup-
penlaufzeit basiert, und die Frequenzfehlermatrix (FE-
Matrix), welche von der Momentanfrequenz abgeleitet ist,
verwendet. Die Trainings- und Evaluierungsprozesse wer-
den auf Basis desMusicNet-Datensatzes durchgeführt, der
die Schätzung von sieben Instrumenten ermöglicht. Durch
eine höhere Anzahl an Frequenzbins in den Eingangsdar-
stellungen kann eine um etwa 2% im F1-Score verbesser-
te Instrumentenerkennung erreicht werden. Im Vergleich
zur Literatur kann die Instrumentenerkennung auf Frame-
Ebene für verschiedene Eingangsdarstellungen verbessert
werden.

Schlagwörter: Instrumentenerkennung, polyphone Mu-
siksignale, Zeit-Frequenz-Darstellungen, neuronaleNetze.

1 Introduction

Instrument recognition is highly relevant for different mu-
sic information retrieval (MIR) tasks. The playing instru-
ments in polyphonic music signals are important features
that are used for example as a part of the audio tags
in automatic tagging [4]. Additionally, the information
about playing instruments can facilitate the detection of
other instrument-dependent features and tags like genre
or mood. Furthermore, audio source separation and auto-
matic music transcription, as for example in [13], can be
improved by instrument recognition in preprocessing, be-
cause the separation or transcription algorithm shrinks to
a tailored estimation for amuch smaller amount of known
instruments.

Most of instrument recognition algorithms have fo-
cused on clip-wise recognition,whichmeans that the play-
ing instruments were estimated for the whole music ex-



cerpt fed to the algorithm. Han et al. [6] developed a deep
convolutional neural network (CNN) for instrument recog-
nition based on mel-spectrogram inputs and aggregation
of multiple outputs from sliding windows over the audio
data. Pons et al. [12] analyzed the architecture of CNNs in
order to formulate an efficient design strategy to capture
the relevant information about timbre. Both approaches
were trainedandvalidatedby the IRMASdataset [2],which
contains polyphonic music excerpts.

Beside the exclusive consideration of absolute values
of the input audio data, as it is done through the trans-
formation of mel-spectrograms, there are several possi-
bilities to incorporate phase information. Diment et al. [5]
used for example the modified group delay (MODGD) fea-
ture, which includes phase information calculated from
the Fourier transform, and trained Gaussianmixturemod-
els withMFCCs andMODGD features for instrument recog-
nition. Sebastian and Murthy [15] trained a recurrent neu-
ral network for music source separation with a phase rep-
resentation of music signals derived from the MODGD fea-
tures. Furthermore, phase information can be incorpo-
rated implicitly by using raw music signals as input data.
Li et al. [10] built such an end-to-end learning approach
based on CNN. This network, like the CNN for automatic
tagging of Dieleman and Schrauwen [4], needs only very
little domain knowledge, but performs slightly lower com-
pared to approaches with preprocessed input data such as
spectrograms [6].

Especially for improving audio source separation by
preprocessed instrument recognition, the clip-wise recog-
nition is not sufficient. Thus, frame-level instrument recog-
nition was developed by Hung and Yang [8]. They used
the absolute values of the constant-Q transform (CQT) and
separately estimated pitch information of themusic signal
as input for their deep neural network. Another approach
based on the short-time Fourier transform (STFT) of the in-
put music signal was presented in [14], where additional
time-dependent phase informationwas included in the in-
put representation by the product spectrum (PS), a combi-
nation of STFT absolute values and group delay function
results. A combined estimation of the playing instruments
and notes for each frame was presented by Hung et al. [9],
in which the proposed model is forced to estimate the in-
teraction between timbre and pitch.

As there are different time-frequency representations
used in literature approaches, the influence of those input
data representations on the instrument recognition perfor-
mance is investigated in this work. Representations with
and without additional phase information are analyzed,
because timbre details are included in the phase informa-
tion ofmusic signals. Instrument recognition for each time

frame is too fine for the temporal resolution of the human
ear, therefore time-dependent recognition with a resolu-
tion of about 100ms is sufficient. First, the relevant time-
frequency representations are defined in Section 2 and the
proposedmodel structure for instrument recognition is ex-
plained in Section 3. The experiments for the evaluation
of the analyzed model configurations and the different in-
put data representations are described in Section 4. In Sec-
tion 5, the results are summarized.

2 Time-frequency representations
A very common preprocessing step in MIR algorithms is
the calculation of the short-time Fourier transform (STFT)

X[m, k] =
N−1
∑
n=0

x[n] γ∗mk[n] = |X[m, k]| e
jθ[m,k] (1)

of the discrete input music signal x[n] and the time and
frequency shifted window γ∗mk[n] of length N . Many algo-
rithms only use the absolute values |X[m, k]| for their task
and therefore neglect the phase θ[m, k]. Since the values
of θ[m, k] aren’t limited to [0, 2π], phase values have to be
unwrapped for a meaningful interpretation.

The resulting phase ambiguity caused by unwrapping
can be avoided by calculating the discrete realization of
the continuous group delay function [1]

τg(ω) = −
d
dω

θ(ω) = −ℑ( d
dω

log (X(ω))) , (2)

which is defined as [5]

τg[m, k] =
XR[m, k]YR[m, k] + XI[m, k]YI[m, k]

|X[m, k]|2
. (3)

Thereby, Y[m, k] is the STFT of the signal y[n] = n ⋅ x[n]
and the indices R and I stand for the real and the imaginary
part, respectively. A combination of magnitude and phase
information is realized by the product of squared absolute
and group delay function values [17]

P[m, k] = |X[m, k]|2 ⋅ τg[m, k] (4)
= XR[m, k]YR[m, k] + XI[m, k]YI[m, k]. (5)

The resulting phase-dependent time-frequency represen-
tation P[m, k] is called product spectrum (PS) here.

Another possibility for the incorporation of phase in-
formation is based on the estimation of instantaneous
frequency (IF) [11], which uses phase differences in or-
der to refine the STFT frequency bin values. Since a time-
frequency representation with the IF values as frequency



bins is not realizable, the additional phase information is
incorporatedby a time-frequency representationof the fre-
quency errors (FE) for each bin. This error matrix

E[m, k] = θ[m, k] − (θ[m − 1, k] + ω[k] ⋅ Δt)
2π ⋅ Δt

(6)

is calculated based on the angular frequency ω[k] of the
STFT frequency bin k and the STFT time resolution Δt.
Thereby, the numerator values are considered to be in the
interval [−π,π] although there are nonsolvable ambigui-
ties for high frequencies and large Δt.

Beside the STFT, a common time-frequency repre-
sentation for music signals is the constant-Q transform
(CQT) [3]. Its discrete representation is defined as

XCQT[m, k] =
1

N[k]

N[k]−1
∑
n=0

x[n]wmk[n] e
−j2π Qn

N[k] (7)

with a window function wmk[n] and a frequency-depen-
dent window length N[k]. This frequency dependency of
N[k] ensures a constant resolution factor

Q = f [k]
f [k + 1] − f [k]

=
1

2
1
b − 1
, (8)

where f [k] is the frequency value at step k and b defines
the number of frequency bins per octave. Consequently,
the time-frequency representation calculated by CQT has
a logarithmic frequency axis.

3 Proposed model

Active instruments in the input music signal are estimated
by convolutional neural networks with residual blocks in
this work. The model and the residual block structure is
described in detail in Section 3.2. In order to analyze in-
put representations with and without phase information,
the preprocessing step, which is explained in Section 3.1,
calculates all relevant time-frequency representations. For
the training of the network, the utilized dataset and the la-
bel generation are described in Section 3.3.

3.1 Preprocessing

A time-frequency representation of magnitudes is a com-
mon input format for time-dependent instrument detec-
tion. The magnitude representations investigated in this
work are the absolute values of the STFT (Equation (1))
and the CQT (Equation (7)) of the analyzed music signal.

In order to improve identification of instruments in poly-
phonic music at frame level, time-frequency representa-
tions based on phase information are calculated and con-
catenated with the magnitude representation in the chan-
nel dimension to cover the correlation between them in
time and frequency. This additional information has led to
better results for some representations [14]. As phase in-
formation representations, the product spectrum of Equa-
tion (4), or the frequency error matrix calculated by Equa-
tion (6) are utilized in this work.

First, magnitude and phase representations are calcu-
lated for the raw audio input signal. Then the magnitude
and PS representations are normalized to their maximum
amplitude and the values are converted into a logarithmic
scale according to

X[m, k]dB = 20 ⋅ log10 (|X[m, k]| + ϵ) (9)

with ϵ = 10−10. This allows the consideration of high
dynamics and provides a differentiated representation of
the harmonics. In addition, the logarithmic representation
corresponds better to human perception.

Because of memory restrictions during training and
operation of the neural network, all representations are di-
vided into segments. In this work, segments of 92.88ms
have been chosen, which represent 4096 time samples at
the sampling rate of 44.1 kHz. For the STFT calculation,
window lengths of 1024 and 4096 samples are investi-
gated, which represent 23.22ms and 92.88ms. During that
time period, the input music signal is assumed to be sta-
tionary, respectively. The parameter b of the CQT calcu-
lation is chosen as 12 and 48, which means 1 or 4 bins
per note and results in 88 or 400 CQT bins. Thereby, the
minimum frequency for the CQT calculation is chosen as
27.5Hz, which represents the frequency of note A0. Fur-
thermore, different overlaps of 512 and 2048 samples be-
tween successive windows are analyzed in the STFT and
the CQT calculation. Consequently, the considered input
representations are 3-dimensional data of shape ℝib×it×ip
with ib ∈ {88, 400, 513, 2049} frequency bins, it ∈ {60, 240}
time bins and ip ∈ {1, 2} channels.

3.2 Model architecture

All considered instruments are estimated as active or silent
in the respective input segment by a neural network. Its
architecture is presented in Figure 1. After one 2D convolu-
tion in the first layer, the network consists of four structure
blocks, which consist of one 1D convolution, an increas-
ing number of residual blocks, and a max pooling layer





of the other 4 instruments oboe, flute, harpsichord, and
string bass are not removed from training and validation
dataset, but have not been labeled. They are assumed as
unwanted additional signals during training.

In order to achieve a time-dependent instrument
recognition, the resolution of output time frames is chosen
to be 4096 time samples, which is about 92.88ms at a sam-
pling rate of 44.1 kHz. The model estimates the presence
of instruments for 30 time frames, therefore each input
segment represents a signal duration of about 2.79 s. The
corresponding label matrix of an input segment, which
represents the ground truth for the instrument recogni-
tion, is generated as a Boolean matrix of shape (7, 30).
If an instrument has been played at any time during the
particular 4096 time samples of a time frame, it is as-
sumed as active and labelled with ‘1’ in the respective
row for that instrument and the column for this time
frame.

4 Experiments

The model described in Section 3 is trained and evaluated
with the MusicNet dataset, whose labels are built accord-
ing to Section 3.3. Keras with Tensorflow has been used for
themodel’s implementation and its application during the
experiments. Further details about the implementation,
especially for estimation and evaluation, are described in
Section 4.1. In Section 4.2, the results of the experiments
are presented and discussed.

4.1 Implementation details

In order to analyze the impact of different input data rep-
resentations, a total of 13 models are trained for 50 epochs
each in this work. Their structure parameters are adapted
to the different input representations, as described in
Section 3.2. The input time-frequency representations are
based on either STFT or CQT and include the magnitude
values of the respective basis transform. Overall, the four
cases STFT magnitudes, STFT magnitudes with PS rep-
resentation, STFT magnitudes with FE matrix, and CQT
magnitudes are investigated with different shapes, like
explained in Section 3.1. All models are trained using
stochastic gradient descend (SGD) with momentum 0.9 as
the optimization algorithm. Binary cross entropy (BCE) is
used as the cost function, because it is suited for binary in-
strument activation. For the first 5 epochs, an initial learn-
ing rate of l = 0.1 is defined. After that, a scheduler de-

creases the learning rate with

l = 0.1 ⋅ 0.5⌊
nepoch+1

5 ⌋ (10)

according to the epoch number nepoch.
Due to the sigmoid activation function in the output

layer, all estimations for active instruments are continuous
values in the range [0, 1], which represent probabilities for
their presence at the respective time frames. Since we con-
sider an instrument either active or not in a defined time
frame, the output is binarized with the threshold b = 0.5.
This threshold avoids extremebinarization sensitivities for
specific instruments, which is more desired than a small
performance increase by choosing best thresholds [14].

Instrument recognition results are evaluated based on
the MusicNet test dataset and the F1-score. This metric is
the harmonic mean of the metrics precision and recall,
which are ratios of the number of true positive estima-
tions to all positive estimations (precision) or all positive
labels (recall). The F1-scores are calculated independently
for each instrument, but combined for all considered test
recordings. An average F1-score is calculated over all in-
strument results to get a simple performance metric.

4.2 Results

After a successful training of 50 epochs, the performance
of the different models is compared based on the F1-scores
for the MusicNet test dataset. They are calculated as de-
scribed in Section 4.1 for each instrument and an average
value over all considered instruments. The resulting val-
ues for all 13 models are given in Table 2.

As presented in Table 2, the incorporation of addi-
tional phase information representations like PS or FE
doesn’t lead to an improved instrument recognition in this
case, but to a comparable result to the recognition with
only the absolute STFT values. Consequently, those ad-
ditional informations are unnecessary for the instrument
recognitionwith the investigatedmodel structure, because
they lead to a higher amount of input data and calcula-
tions with no performance enhancement.

In general, instrument recognition is performed best
for piano, violin, and cello. One reason is that the Mu-
sicNet test data contain solo recordings of those three in-
struments, but only recordings of trios for the rest of the
considered instruments. Since instrument recognition is
much easier for solo recordings, the three solo instruments
show the best F1-scores here.

Furthermore, an improved instrument recognition can
be determined for a larger time-frequency input represen-
tation, regardless of the representation type. The results



Table 2: F1-scores for all investigated models with different input representations based on the MusicNet test dataset. The best average
result for each method is highlighted.

Method Input Shape Piano Violin Viola Cello Clarinet Bassoon Horn Average

STFT (513, 240, 1) 0.9804 0.9482 0.8111 0.9039 0.8775 0.8278 0.7553 0.8720
(2049, 60, 1) 0.9793 0.9455 0.7992 0.9062 0.9097 0.8389 0.7926 0.8816
(2049, 240, 1) 0.9778 0.9490 0.8192 0.9136 0.8926 0.8349 0.8203 0.8868

STFT + PS (513, 240, 2) 0.9753 0.9513 0.8250 0.9115 0.8740 0.8304 0.7624 0.8757
(2049, 60, 2) 0.9771 0.9464 0.8082 0.9121 0.8934 0.8400 0.7982 0.8822
(2049, 240, 2) 0.9806 0.9479 0.8144 0.9114 0.8938 0.8328 0.8206 0.8859

STFT + FE (513, 240, 2) 0.9823 0.9464 0.8138 0.9062 0.8900 0.8265 0.7759 0.8773
(2049, 60, 2) 0.9779 0.9427 0.8019 0.9130 0.8965 0.8316 0.7897 0.8790
(2049, 240, 2) 0.9797 0.9470 0.8096 0.9112 0.9090 0.8442 0.8014 0.8860

CQT (88, 60, 1) 0.9773 0.9370 0.7938 0.9051 0.8824 0.8252 0.7771 0.8711
(88, 240, 1) 0.9762 0.9353 0.8109 0.9054 0.8837 0.8249 0.7581 0.8706
(400, 60, 1) 0.9801 0.9471 0.8157 0.9159 0.8828 0.8474 0.7812 0.8815
(400, 240, 1) 0.9809 0.9440 0.8099 0.9162 0.8862 0.8426 0.7845 0.8806

for 400 CQT frequency bins are about 1%better than those
with 88 frequency bins. In case of the STFT representa-
tions, the improvement is about 1%–1.5% between 2049
and 513 frequency bins. That can be explained by the finer
frequency resolution, which is automatically achieved by
more frequency bins and leads to finer instrument-specific
spectra that can be learned by the neural network. Beside
the average values, this effect can also be recognized at the
improved results for cello, clarinet, bassoon, and horn.

An additional improvement of about 0.5% in the av-
erage F1-score for STFT-based input representation can be
achieved by a smaller hop size, which leads to a higher
number of time frames in the time-frequency representa-
tion. The enlargement from 60 to 240 time bins is realized
by a hop size decrease from 2048 to 512 samples, which
represents 1

8 of the window length. Especially horn detec-
tion results can be increased about 1%–2.5% by that en-
largement. In contrast, CQT results can’t be improved by
more input time frames. As horn notes are predominantly
in a low frequency range, where the STFT resolution is not
very fine, additional frames could help the neural network
to recognize a playing horn in the low frequency range.

In order to evaluate the frame-level instrument recog-
nition of this work, results for the approach of Hung
and Yang [8], which is the best approach for frame-level
instrument recognition in literature so far, and an ap-
proach of previous work [14] are compared to our best
residual models without additional phase information in
Table 3. F1-score, precision, and recall values are taken
from the comparison in [14] for both literature approaches.
Hung and Yang use the CQT of the analyzed music (shape
(88, 258)) and additionally harmonic series features (HSF)
for pitch estimation as input information, whereas all

other approaches do not need any pitch estimation. The
shape of the input representation of the convolutional net-
work from previous work is (513, 259, 2).

According to the F1-scores in Table 3, our model with
residual block structure outperforms the literature ap-
proaches for both input representations STFT and CQT, al-
though the thresholds of the literature models have been
chosen instrument-dependently. The different thresholds
of HSF-5 in the range [0.01,0.99] are one reason for the
highest precisions of that approach, but also for the lower
recalls compared to the other models. Since higher recalls
ensure a larger coverage of positive labels, our residual
approach realizes an increased detection of active instru-
ments. Besides the best frame-level instrument recogni-
tion results due to F1-score, that is a further advantage for
subsequent signal processing, because the instrument de-
tection should include most of the occurring instruments
in the analyzed music recording. In general, instrument
recognition results are influenced by the choice of an ap-
propriate model structure as well as by input data repre-
sentations.

5 Conclusion

Based on a neural network with residual blocks, the influ-
ence of different time-frequency representations ofmagni-
tude and phase information has been investigated. Larger
representations with a higher number of time and fre-
quency bins led to an increasedperformance for both STFT
and CQT based calculations. Additional phase representa-
tions like the product spectrum or the frequency error ma-



Table 3: Evaluation metrics for instrument recognition models of the literature compared to the best approaches of this work. The best aver-
age metric values are highlighted.

Method Metric Piano Violin Viola Cello Clarinet Bassoon Horn Average

Res. network [8]
CQT + HSF-5

Precision 0.9777 0.9383 0.7678 0.9175 0.8801 0.7931 0.7061 0.8544
Recall 0.9904 0.9679 0.8953 0.9069 0.9237 0.8544 0.8188 0.9082
F1-score 0.9840 0.9529 0.8267 0.9122 0.9014 0.8226 0.7583 0.8797

Conv. network [14]
STFT + PS
best thresholds

Precision 0.9700 0.9298 0.7395 0.8628 0.7961 0.6798 0.6616 0.8057
Recall 0.9949 0.9788 0.9583 0.9643 0.9711 0.9332 0.6977 0.9283
F1-score 0.9823 0.9537 0.8348 0.9108 0.8750 0.7866 0.6792 0.8603

STFT
(2049, 240, 1)

Precision 0.9750 0.9428 0.7284 0.9032 0.8365 0.7372 0.7558 0.8398
Recall 0.9805 0.9553 0.9359 0.9243 0.9568 0.9626 0.8969 0.9446
F1-score 0.9778 0.9490 0.8192 0.9136 0.8926 0.8349 0.8203 0.8868

CQT
(400, 60, 1)

Precision 0.9743 0.9341 0.7389 0.8888 0.8403 0.7824 0.7041 0.8376
Recall 0.9859 0.9605 0.9104 0.9447 0.9298 0.9242 0.8773 0.9333
F1-score 0.9801 0.9471 0.8157 0.9159 0.8828 0.8474 0.7812 0.8815

trix could not further improve the instrument recognition
results of STFT magnitude inputs. The described residual
model outperforms other frame-level approaches in the lit-
erature for several input representations.

In future works, the algorithm has to be tested with
larger datasets and more instruments to improve applica-
bility in music signal processing and specific MIR tasks.
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