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Abstract: The recent progress of Atom Probe Tomography (APT) has opened up atomic-scale ele-
mental analysis including hydrogen species. For APT measurements, the use of deuterium is highly
recommended, due to its low mobility compared to the fast and quantum mechanically tunneling
isotope hydrogen. In addition, deuterium can be distinguished from hydrogen originating from the
APT analysis chamber. To date, however, APT studies on materials with high D concentrations are
scarce. In this study, the D concentration profile in a Fe/V multi-layered film sample was investigated,
and spanned a wide concentration range. The mean hydrogen isotope concentration was alternatively
quantified by electromotive force (EMF) measurements on a similar Fe/V film, thus verifying the
APT results. The reduction found in the D concentration at the Fe/V interface results from local
alloying at the Fe/V interfaces which accompanies a change in the available volume in the V lattice.
Even at the same Fe concentration, the shape of the observed D depth profile was asymmetric at high
D2 pressures. This indicates a stress impact caused by the deposition sequence.

Keywords: atom probe; hydrogen; deuterium; interface

1. Introduction

Atom Probe Tomography (APT) has been well recognized as a strong materials analysis
tool to investigate three-dimensional elemental distribution at a spatial resolution at the
sub-nm scale [1–8]. The beauty of APT lies in the ability of detecting all elements with equal
sensitivity at once, as it is based on the time-of-flight principle. Fine-scale 3D mapping of
hydrogen in real space [9,10] is highly motivated by, e.g., studies of hydrogen embrittlement
in metallic materials [11–13] and the impact of hydrogen in semiconductors [14–16]. APT
is also used for developing hydrogen storage materials and their potential applications in
catalytic reactions such as CO2 methanation [17]. Detection of hydrogen and its mapping,
however, has been a challenging task for a few decades since the invention of APT. The
difficulties stem from (1) the high mobility of hydrogen, (2) hydrogen loss from the specimen
by air exposure, and (3) the necessity to distinguish loaded ions from residual hydrogen
ions present in the APT analysis chamber.

Recent studies and developments of APT analysis have made significant progress
to tackle the above-mentioned issues, e.g., by using deuterium (D) instead of hydrogen
(H), and by establishing a loading/transfer method, which is free from air exposure of
the specimen. Successful adaption of these protocols enabled quantification of D in, e.g.,
V [18], which easily absorbs hydrogen isotopes (the Gibbs free energy change, ∆G, of the
hydrogen solid solution reaction at room temperature is negative). However, in a material
such as iron or steel that hardly dissolves hydrogen isotopes (∆G at room temperature is
largely positive), the driving force for hydrogen desorption is large even when placed in an
ultra-high vacuum. D easily escapes during sample transfer under vacuum in this case.

In order to suppress the diffusion and desorption of D, it is therefore necessary to
keep the sample at a cryogenic temperature after D charging until the analysis is carried
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out. In this regard, the first attempt was reported by Takahashi et al. [19] for investigating
D trapping around precipitates. Chen et al. [20,21] have applied a cold-chain approach
on electrochemically deuterated steel samples. Stephenson et al. [22] have used a similar
method and, thus, opened up the APT technique for a quantitative analysis of D distribution
in steel samples. Quite recently, Felfer et al. [23] have proposed using an APT chamber
made of Ti in order to suppress H-related signals and to ultimately detect H in the specimen.

We have previously reported our first quantitative APT analysis results of different D
contents solved in samples. This was achieved using Fe/V multi-layered (ML) films [24,25]
and V films [18]. According to the knowledge of the solubility difference factor, k, the
solubility of D in V is 1010 higher than that in Fe at room temperature [26]. Therefore,
almost all of the D atoms are expected to be present in the V layer. This was indeed
experimentally observed by the APT analysis in agreement with the expected mean D
concentration in V layers measured by the electromotive force (EMF). Thereby, it was
demonstrated that the mean D concentration by APT could be successfully quantified as
long as the D concentration is low, i.e., within the solid solution regime. However, similar
results of APT studies with a high D concentration in Fe/V ML have not been reported yet.

In addition, the local D distribution might not be homogeneous in Fe/V films at high
D concentrations. In bulk V, available sites for H change from the tetrahedral site (T site) to
the octahedral site (O site) by increasing H concentration and also by changing initial lattice
strain [27]. H in thin films is typically subject to this strain impact, as they are often adhered
to rigid substrates. Pálsson et al. [28] experimentally observed a strain-related change in
the site occupancy, from the Txy site to the Oz site in the out-of-plane direction, for Fe/V
(001) superlattices. This strain-sensitive effect was further supported by DFT calculations
of Johansson et al. [29]. Such site occupancies can not be addressed by APT measurements,
but local concentrations can be targeted. In this contribution, we present APT analysis
results of D distributions in Fe/V ML samples loaded at different D2 pressures that relate
to high D contents, with paying attention not only to the mean D concentration in the V
layers, but also to the D concentration profile at Fe/V interfaces.

2. Results and Discussion
2.1. Characterization of Fe/V ML Interfaces
2.1.1. Layer Interdiffusion at a High Deposition Temperature

The local chemistry at the Fe/V interface is one of our interests in this study, par-
ticularly regarding its relationship to the D concentration profile. For epitaxial growth
of hetero-structures, deposition at high temperature is often conducted to obtain smooth
interfaces [30]. In this study, sputter deposition of Fe/V multi-layer was carried out also at
a high temperature, 603 K, as a trial. An APT reconstruction result of a thickness-variated
Fe/V multi-layered stack deposited at 603 K is shown in Figure 1, together with the depth
concentration profile taken from a 5 nm φ cylinder volume.

Clearly resolved parallel Fe (011) planes prove a result of successful APT reconstruction
and a growth with (110) texture through the Fe/V ML. The Fe content (cFe) found in
the V layers was higher than 10 at%. This value is higher than that expected from our
experimental condition, which is in the range of 2~8 at%. Therefore, other processes, such
as interdiffusion due to high temperature deposition or intermixing by sputtering are
responsible to increase the Fe content. It should also be noted that the alloying of V with
Fe becomes significant towards the surface and also high Fe content is detected in the Pd
surface layer.

Alternatively, when the Fe/V multi-layered film is deposited at room temperature,
both the Fe concentration in V and vice versa are rather low, as shown in the APT analysis
result of Figure 2. The Fe concentration in V layer is, in this case, 5(2) at% and the V
concentration in Fe is nearly zero. The Fe concentration is high (10 at%) at the top surface
of Pd, which is found also for the film deposited at 603 K. The slope of the Fe/V interfaces
is sharper than in the case of 603 K.
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in Figure 3. The solubility of Fe in V and V in Fe at 603 K is 17 at% and 26 at%, respectively. 

At 297 K, they reduce to 12 at% and to 25 at%, respectively. Further excess causes the 

precipitation of σ phase. The detected Fe and V concentrations were after all below the 

solubility limits and, therefore, only the α solid solution phase is considered. Conse-

quently, the observed high Fe content in the V layers could be caused by thermal interdif-

fusion at 603 K, while it is suppressed at 297 K. 

However, there are following points left to be clarified and discussed in the next sec-

tion. 

(i) Origin of asymmetric Fe/V interface profile at an elevated deposition temperature, 

and 

(ii) Increasing alloying degree towards the surface. 

Figure 1. 3D reconstruction volume (18 nm × 18 nm × 53 nm) and 1D concentration profile of Fe/V
multi-layered film on W deposited at 603 K (grey: Pd, green: V, orange: Fe), with a magnified V/Fe/V
interface (right hand side). The number of Fe/V interface (12 in total) is indicated as the order number.
Depth concentration profiles were taken from a 5 nm φ cylinder volume (colored in grey).
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Figure 2. 3D reconstruction volume (13 nm × 13 nm × 26 nm) and 1D concentration profile of Fe/V
multi-layered film deposited on W deposited at 297 K (grey: Pd, green: V, orange: Fe, blue: W). Depth
concentration profile was taken from a 5 nm φ cylinder volume. The slope for deposition sequence of
V on Fe is slightly steeper than that of Fe on V.
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The Fe and V concentrations in the layers can be discussed with respect to the Fe-V
phase diagram. The low temperature part of the Fe-V binary phase diagram [31] is shown
in Figure 3. The solubility of Fe in V and V in Fe at 603 K is 17 at% and 26 at%, respectively.
At 297 K, they reduce to 12 at% and to 25 at%, respectively. Further excess causes the
precipitation of σ phase. The detected Fe and V concentrations were after all below the
solubility limits and, therefore, only the α solid solution phase is considered. Consequently,
the observed high Fe content in the V layers could be caused by thermal interdiffusion at
603 K, while it is suppressed at 297 K.
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Figure 3. Low temperature part of Fe-V binary phase diagram [31]. 603 K and 297 K are indicated by
horizontal orange lines. Fe solubility limit (orange) and V solubility limit (green) at each temperature
are marked by individual filled circles.

However, there are following points left to be clarified and discussed in the next section.

i. Origin of asymmetric Fe/V interface profile at an elevated deposition temperature,
and

ii. Increasing alloying degree towards the surface.

2.1.2. Interface Intermixing by Sputtering Process

In Figures 4 and 5, the magnified V/Fe/V region is shown for the films deposited at
603 K and at 297 K, respectively. According to these profiles, depending on the sequence,
the intermixing depth can be estimated as wide as 2 nm when deposited at 603 K (Figure 4).
This value is almost twice as the mixing regime at 297 K, which is only 1.0~1.1 nm (Figure 5).

In Figure 4, some changes in the concentration slope can be seen between the 2nd and
the 6th Fe/V interface. However, there is no systematic change in the slope in the course
of deposition even at the high temperature of 603 K. Therefore, interdiffusion processes
solely cannot be convincingly attributed for the explanation. We should note that the
field evaporation sequence in atom probing can also be affected by local chemistry via
modification of the field evaporation strength EF. The change in EF sometimes induces a
significant deviation from the original position of atoms. In this case, special care must
be taken by examining the interface of two different layers [32–34]. Indeed, the EF of Fe2+

(30 V/nm) is slightly lower than that of V2+ (33 V/nm) [3], which leads to preferential
evaporation of Fe while retarding the evaporation of V at a given field. This possibly
causes reduced Fe concentration in an evaporation sequence of Fe layer→ V layer at its
transition. This might explain the slight asymmetry of the concentration slope for both
at 603 K and 297 K; the intermixing at the V/Fe sequence is less pronounced than that at
the Fe/V sequence. However, the slope of cFe at Fe/V interface is considerably steeper in
297 K compared to 603 K (compare Figures 4 and 5). This clearly indicates the impact of the
deposition temperature, apart from the sole impact of the EF difference. In addition, as the
films were prepared by sputter deposition, the origin of this asymmetry may be associated
with sputter induced implantation and recoil phenomena as discussed below.
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identical. But the average slope for deposition sequence of V on Fe (111(5)) is steeper than that of Fe
on V (−77(2)).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 5. Fe concentration profiles at Fe/V and V/Fe interfaces in Figure 2. Dotted rectangular region 

indicates where the interface sharpness was estimated as a slope. The concentration slopes esti-

mated within the dotted squares are almost the same. 

Figure 6 shows simulated ion implantation depth profiles and target atom recoil pro-

files for Fe ions impinging an V/Fe double layer and for V ions impinging an Fe/V double 

layer, respectively. According to these results, the following main insights can be ex-

tracted. 

(1) The maximum implantation depth of Fe is slightly deeper than that of V. 

(2) The intensive recoil events of Fe indicate (first 0.1 nm in Figure 6a) floating Fe at the 

deposition front. 

(3) The recoil of V is much less pronounced than that of Fe (recoiled V ion count is one 

order of magnitude smaller). 

 

Figure 5. Fe concentration profiles at Fe/V and V/Fe interfaces in Figure 2. Dotted rectangular region
indicates where the interface sharpness was estimated as a slope. The concentration slopes estimated
within the dotted squares are almost the same.



Molecules 2022, 27, 7848 6 of 18

In order to investigate the collision details of the sputtering process, simulations were
carried out with SRIM 2008 developed by Ziegler [35]. At first, simulations of the Ar ion
(880 eV) bombardment into V and Fe were carried out to set the kinetic energy of the
sputtered V and Fe ions as EV = 33.01 eV and EFe = 24.81 eV, respectively. For each collision
calculation, a reasonable displacement energy (Wigner energy) value for metals of 24 eV for
target materials was assumed [36]. These parameters were then applied in the simulation.

Figure 6 shows simulated ion implantation depth profiles and target atom recoil
profiles for Fe ions impinging an V/Fe double layer and for V ions impinging an Fe/V
double layer, respectively. According to these results, the following main insights can
be extracted.
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(1) explains the slightly wider reaching interface of Fe/V compared to that of V/Fe,
regardless of the temperature. (2) and (3) suggest continuous motion of Fe or V atoms
towards the deposition front which may increase the intermixing layer thickness stronger
than the values simulated here. This process might change also the layer composition if the
temperature is high and solubility is ensured to a certain extent.

Moreover, especially in the sequence of V on Fe, Fe atoms propagate always towards
the deposition front due to the recoil and substantial alloying with V if the deposition
temperature is high enough. The same process is possible also for the deposition of Fe
onto V, but very suppressed due to small kinetic energy of Fe ion to recoil V. A continuous
propagation of the floating Fe atoms finally stops at the Pd surface, which, then, terminates
with a considerable amount of Fe in Pd (see Figures 1 and 2).

Consequently, the layer composition of the sample deposited at 603 K is also affected
by the sputtering process. In Figure 7, the in-layer compositions are plotted for the film
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deposited at 603 K, together with the solid solubility limit (SS limit) at the same temperature.
Slightly gradual slopes of in-layer Fe concentration (cFe) and V concentration (cV) along
the deposition direction suggest the trace of recoiled atoms and high degree of alloying at
603 K.
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2.1.3. Combined Effect of Sputtering and Thermal Interdiffusion

From the results obtained, a schema of Fe/V multi-layer deposition can be drawn as
follows. The primary knocked-on Fe or V atoms are deposited not only onto the surface,
but also in a sample depth. A series of this process, i.e., sputter deposition, creates new
intermixed surface. Consequently, the actual intermixing width becomes slightly wider
than the values calculated on a single process as shown in Figure 6.

As a conclusion, the interdiffusion process was incorporated with floating phenomenon
of atoms at a high deposition temperature and resulted in higher extent of alloying than
at room temperature. Hetero-epitaxy of multi-layered films with high crystal quality is
established often at certain high deposition temperatures at a given deposition rate and
atmosphere. For Fe/V superlattice growth by magnetron sputtering, which has 10 times
higher deposition rate than here, hetero-epitaxy is reported, e.g., at 453 K [37]. However,
this was not the case for Fe/V prepared in this study. Therefore, the preparation of Fe/V
multi-layered film samples for D2 loading shown in the following section was not carried
out at elevated temperatures.

2.2. D in FeV ML—The Impact of D2 Loading Pressure
2.2.1. D2 0.05 Pa

D2 loading was carried out at various D2 pressures at 294 K utilizing a home-made D2
loading system suitable for APT analysis (see Materials and Methods).

Following the solubility difference factor k, D atoms were detected mainly in V layers,
but not in Pd or W (cH in Pd/cH in V = 10−4, cH in W/cH in V = 10−24 [26]). The detected
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deuterium concentration (cD) was alternatively verified by an EMF curve of similarly
grown Fe/V ML films. It should be noted that the EMF is taken for H, and slight differences
for the two isotopes H and D, are neglected, here. At low D2 pressure of 0.05 Pa, we expect
the sample to be in the α-phase (deuterium solid solution phase) with cD = 0.035 D/Me,
according to the EMF curve (cf. [24] or Figure 13). The result of the 3D reconstruction, the
iso-concentration map and the depth profile of this sample are shown in Figure 8. The
dots shown in Figure 8a,b are individual ions. The color map shown in (b) overlaid on
the ion map indicate the cD as molar ratio of D/Metal (D/Me) within a defined cube of
2 nm side lengths. The average cD of 0.013(4) D/Me was found in the 2nd V layer. This
value is only 1/3 of the value expected from the EMF-curve. This can be explained by D
trapping at defects which is included in the EMF curve [38,39]. The related EMF curve
(later shown in Figure 13) deviates non-linearly from the Sieverts’ relationship (a slope
of RT/F), at low concentrations. This leads to higher mean contents of deuterium in the
sample. However, if no dislocation exists in the targeted volume of the APT measurement
and thus no considerable trapping is expected, the cD at 0.05 Pa should almost follow the
Sieverts’ law. Then, the expected concentration would be approximately cD = 0.02 D/Me,
at 0.05 Pa. This value roughly meets the APT value.
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Figure 8. Reconstructed volume of Fe/V multi-layer (14 nm × 14 nm × 27 nm), loaded with D2

0.05 Pa, analyzed at 30 K. (a) The whole volume of reconstruction (grey: Pd, green: V, orange: Fe,
blue: W, light blue: D). (b) Iso-concentration map of D concentration (cD = 0.03 D/Me) from the same
reconstruction in (a). (c) Depth concentration profile from 5 nm φ cylinder volume.

2.2.2. D2 0.5–1000 Pa

When the loading pressure increases from 0.5 to 1000 Pa, cD in the V layer increases, as
shown in the Figures 9–12. In Figure 9, the film structure itself was not well deposited and
the 2nd V layer is forming sloped interface with respect to the 1st Fe layer. Nevertheless, it
clearly reveals laterally homogeneous D distribution in the V layers, while showing sloped
D profile towards the W substrate. The mean cD in the 2nd V layer is 0.12(5) D/Me.

At the D2 pressure of 2 Pa (Figure 10), the sample is supposed to be in the β-phase
(hydride phase: V2H) region for bulk V and the observed cD = 0.13(5) D/Me reaches the
expected average concentration cD = 0.15 D/Me of the EMF measurement, within the error
bar. Here, one should note that distinctively high cD is found in the 3rd V layer just close
to W, which is almost twice as large as cD in the other two V layers. Such enrichment of
D was observed also in case of V/Fe single layered film [12]. Moreover, the cD profile in
the 2nd V layer is asymmetric, and the concentration maximum of cD does not agree with
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the concentration minimum of cFe. As a general trend, the peak position of cD is slightly
shifted towards the W substrate.
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Figure 9. Reconstructed volume of Fe/V multi-layer (15 nm × 15 nm × 42 nm), loaded with D2 0.5
Pa, analyzed at 30 K. (a) The whole volume of reconstruction (grey: Pd, green: V, orange: Fe, blue:
W, light blue: D). (b) Iso-concentration map of D concentration (cD = 0.08 D/Me) from the same
reconstruction in (a). (c) Depth concentration profile from 5 nm φ cylinder volume.
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Figure 10. Reconstructed volume of Fe/V multi-layer (12 nm× 12 nm× 20 nm), loaded with D2 2 Pa,
analyzed at 30 K. (a) The whole volume of reconstruction (grey: Pd, green: V, orange: Fe, blue: W, light
blue: D). (b) Iso-concentration map of D concentration (cD = 0.15 D/Me) from the same reconstruction
in (a). (c) Depth concentration profile from 5 nm φ cylinder volume. Notably high cD in the 3rd V
layer is observed. (d) Magnified plot of the 2nd V layer. The cD shows an asymmetric profile.
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Figure 11. Reconstructed volume of Fe/V multi-layer (12 nm × 12 nm × 23 nm), loaded with
D2 10 Pa, analyzed at 30 K. (a) The whole volume of reconstruction (grey: Pd, green: V, orange: Fe,
blue: W, light blue: D). (b) Iso-concentration map of D concentration (cD = 0.22 D/Me) from the same
reconstruction in (a). (c) Depth concentration profile from 5 nm φ cylinder volume. The cD in the
3rd V is higher than in the other 2 V layers.
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Figure 12. Reconstructed volume of Fe/V multi-layer (12 nm × 12 nm × 16 nm), loaded with D2

1000 Pa, analyzed at 30 K. (a) The whole volume of reconstruction (grey: Pd, green: V, orange: Fe,
blue: W, light blue: D). (b) Iso-concentration map of D concentration (cD = 0.55 D/Me) from the same
reconstruction in (a). (c) Depth concentration profile from 5 nm φ cylinder volume.

This trend is commonly observed in the results of loading both at 10 Pa (Figure 11)
and 1000 Pa (Figure 12). Alloying of V with Fe occurring at the Fe/V interface reduces
D-solubility. In addition, the stacking order of Fe/V seems to have a remarkable impact on
the D distribution concerning the high cD region. At 1000 Pa, the special cD distribution is
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even more pronounced than in the results of the 10 Pa sample, indicating that these curious
observations of (i) depth shift of cD and (ii) high cD in the 3rd V layer might be universally
related with the deuteride (hydride) formation behavior, since this is observed at high
D2 pressures.

2.2.3. Comparison with the EMF Curve (Pressure-Composition Isotherm)

We now summarize the results of those deuterium concentrations cD at different D2
pressures obtained by APT, comparing the corresponding EMF curves. Both results are
summarized in Table 1 and plotted in Figure 13. All APT data points were recorded at the
analysis temperature of 30 K and the mean D concentration cD in the 2nd V layer from
individual results are listed.

Table 1. Comparison of mean D concentration cD [D/Me] obtained by the EMF curve and APT.

D2 Pressure [Pa]
Mean D Concentration, cD [D/Me]

Expected by EMF 1 Detected by APT 2

0.05 0.035 0.013(4)
0.2 0.053 0.05(2) 3

0.5 0.08 0.12(5)
2 0.15 0.13(5)
10 0.22 0.22(9)

1000 0.55 0.28(6)
1 cH determined by the EMF curve of Fe/V ML ≈ cD (Isotope effect is negligible in the cD range here.). 2 Mean cD
in the 2nd V layer (Fe/V/Fe). 3 Adapted from our previous report ([24]).
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Figure 13. EMF curve of Pd 20 nm/[(Fe 5 nm/V 5 nm) × 8] deposited on Al2O3 (0001) substrate at
room temperature and individual cD determined by APT on the [Fe 2–5 nm/V 2–5 nm/Fe 2–5 nm]
stack loaded at different D2 pressure. The black dotted line RT/F shows the ideal solubility known as
Sieverts’ law.

Altogether, the agreement is quite well within the error bar. In the results at 0.05 Pa
D2, however, the detected D2 concentration was cD = 0.013 D/Me, which is only 1/3 of
the expected value. The expected concentration cD is 0.035 D/Me if significant H-trapping
effect is taken into account. If no dislocation exists for instance in this small analyzed-
volume and thus no considerable D-trapping effect at dislocations is expected, the cD at
0.05 Pa should almost follow the linear line indicated as RT/F in Figure 13. This would
give cD = 0.02 D/Me. Plotting the observed concentration of cD = 0.013(4) D/Me in Figure 4
agrees with this consideration if the slight difference is ignored.
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Another large gap between the data points was found in case of 1000 Pa. The deviation
of the APT data from the corresponding EMF curve is rather large. cD was detected to be
only 0.28 D/Me by APT which is nearly half of the concentration expected from the EMF
curve. The isotope effect alone cannot explain such a huge difference between cD and cH as
the phase boundaries of the both are nearly the same in the considered concentration range
here [40,41]. A depletion effect [42] cannot explain such a huge gap, especially as this effect
is considered to be less pronounced at high hydrogen concentrations [43].

Since a loss of D atoms can be disregarded at this analysis temperature, other factors
such as the difference of the V layer thickness from that of the sample taken for the EMF
or different lattice strain state and the resulting stress contribution may be ascribed to the
narrowed miscibility gap. Due to increased brittleness at low analysis temperatures, the
thickness of V layers had to be reduced from 5 nm to, e.g., 2 nm for successful APT analysis.
Such a reduction in the thickness often reduces the terminal hydrogen concentration [44].
Thus, the comparison was made between films with layer thicknesses of approximately
2 and 5 nm. The observed gap for the high D concentration regime suggests that even a
small difference in the layer thickness might remarkably influence the resultant terminal
solubility, especially for high D concentrations. At low concentrations, other aspects might
be involved; if defects as D-trapping centers are not included in the analysis volume by
chance, the resultant D concentration might be less than that of the defect-containing
counterparts, where trapping effects are significant.

Conclusively, the APT analysis of deuterium in Fe/V can be carried out with enough
reliability in a wide concentration range of cD = 0.01 − 0.2 D/Me at 30 K.

2.2.4. Asymmetric D Profiles at Fe/V and V/Fe Interfaces

The asymmetric D profiles have been already presented in Figures 10–12. By taking the
cD at the 2nd Fe/V interface and plotting it against the Fe concentration from the sequence
of V/Fe and Fe/V for comparison, the difference of the D profiles at the two interfaces
becomes clearly visible.

Plots of cD against cFe taken from cD at the Fe/V and V/Fe interfaces are shown in
Figure 14a,b, respectively. The corresponding interface is schematically illustrated as well.
The cFe range around 15 at% and 65 at% is magnified in the inset. In both of (a) and (b), it is
commonly observed that the cD decreases as cFe increases. This could be due to an impact
of alloying with Fe. Figure 14c presents the lattice parameter of the FeV alloy as function
of the Fe-concentration cFe. It decreases with increasing cFe. Such a change in the lattice
parameter is considered to change the available volume for the H atom. Lebon et al. [45]
demonstrated by Density Functional Theory (DFT) calculation that alloying of V with
Fe, Mn and Cr decreases the volume for H. The result is consistent with the experiments,
and also with our experimentally observed general reduction in the D-solubility with
increasing the Fe content. As highlighted by black arrows in the insets of Figure 14a,b,
there seems to be a discontinuity in the change in cD against cFe at around cFe = 30~35 at%.
Interestingly, this Fe concentration corresponds to the region where σ-phase is formed in
Fe-V phase diagram [31]. Above this concentration range, the slope changes in Figure 14c.
This discontinuity detected in the APT profiles visible in the related volumes supports the
strong impact of the available volume on the local hydrogen isotope content.

Despite of the same cFe, the cD dependence on cFe in Figure 14a,b are not identical
especially at high D2 pressures. The local mean D concentration is higher at the V/Fe
interface than at the Fe/V interface. The alloying effect discussed above cannot explain this
unidentical profiles in (a) and (b). Additionally, this cannot be related to an increased num-
ber of defects such as misfit dislocations, since this is expected to be effective at the Fe/V
interface, but not at the V/Fe interface (lattice constant: aFe = 0.286 nm < aV = 0.303 nm).
Considering the sign of expected misfit edge dislocation, this should result in opposite cD
profile to the observation. We suggest that different lattice strain is responsible for this
difference. However, electronic and stress effects should also be considered. For example,
the SRIM simulation results (Figure 6) suggest that the implantation impact of Fe into V and
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V into Fe is not identical. This might cause a difference in the initial stress state between
the Fe/V and V/Fe interfaces. Hydrogen isotopes prefer the less compressive region. It
is inferred that the in-plane stress at V/Fe interfaces could be more compressive than at
Fe/V interfaces due to the difference in the lattice parameters between Fe and V. This also
suggests an expanded V lattice in the out-of-plane direction near the V/Fe interface. Such
anisotropic lattice expansion in vicinity of the V/Fe interface, even when alloyed, might
change the site occupation of D here, giving rise to different D concentrations even at the
same cFe at the alloyed Fe/V interfaces.

Molecules 2022, 27, x FOR PEER REVIEW 14 of 20 
 

 

Conclusively, the APT analysis of deuterium in Fe/V can be carried out with enough 

reliability in a wide concentration range of cD = 0.01 − 0.2 D/Me at 30 K. 

2.2.4. Asymmetric D Profiles at Fe/V and V/Fe Interfaces 

The asymmetric D profiles have been already presented in Figures 10–12. By taking 

the cD at the 2nd Fe/V interface and plotting it against the Fe concentration from the se-

quence of V/Fe and Fe/V for comparison, the difference of the D profiles at the two inter-

faces becomes clearly visible. 

Plots of cD against cFe taken from cD at the Fe/V and V/Fe interfaces are shown in Fig-

ure 14a,b, respectively. The corresponding interface is schematically illustrated as well. 

The cFe range around 15 at% and 65 at% is magnified in the inset. In both of (a) and (b), it 

is commonly observed that the cD decreases as cFe increases. This could be due to an impact 

of alloying with Fe. Figure 14c presents the lattice parameter of the FeV alloy as function 

of the Fe-concentration cFe. It decreases with increasing cFe. Such a change in the lattice 

parameter is considered to change the available volume for the H atom. Lebon et al. [45] 

demonstrated by Density Functional Theory (DFT) calculation that alloying of V with Fe, 

Mn and Cr decreases the volume for H. The result is consistent with the experiments, and 

also with our experimentally observed general reduction in the D-solubility with increas-

ing the Fe content. As highlighted by black arrows in the insets of Figure 14a,b, there 

seems to be a discontinuity in the change in cD against cFe at around cFe = 30~35 at%. Inter-

estingly, this Fe concentration corresponds to the region where σ-phase is formed in Fe-V 

phase diagram [31]. Above this concentration range, the slope changes in Figure 14c. This 

discontinuity detected in the APT profiles visible in the related volumes supports the 

strong impact of the available volume on the local hydrogen isotope content. 

 

Molecules 2022, 27, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 14. Dependence of cD on cFe at various D2 loading pressures, plotted for (a) V/Fe interface and 

(b) Fe/V interface at the 2nd V layer of Figures 8–12. Schematic drawings of cD change with cFe at the 

intermixed regions are depicted next to the profiles. cFe = 30 at% is marked by black arrows in the 

insets. (c) Change of lattice constant of FeV alloy against Fe concentration, reported by Shiga and 

Nakamura [46]. Individual data points were taken from Sutton and Hume-Rothery [47], Lam et al. 

[48], Hanneman and Mariano [49], Martens and Duwez [50], and Shiga and Nakamura [46]. Note 

the Vegard’s law slope changes at around cFe = 30~35 at%. 

Despite of the same cFe, the cD dependence on cFe in Figure 14a,b are not identical 

especially at high D2 pressures. The local mean D concentration is higher at the V/Fe in-

terface than at the Fe/V interface. The alloying effect discussed above cannot explain this 

unidentical profiles in (a) and (b). Additionally, this cannot be related to an increased 

number of defects such as misfit dislocations, since this is expected to be effective at the 

Fe/V interface, but not at the V/Fe interface (lattice constant: aFe = 0.286 nm < aV = 0.303 

nm). Considering the sign of expected misfit edge dislocation, this should result in oppo-

site cD profile to the observation. We suggest that different lattice strain is responsible for 

this difference. However, electronic and stress effects should also be considered. For ex-

ample, the SRIM simulation results (Figure 6) suggest that the implantation impact of Fe 

into V and V into Fe is not identical. This might cause a difference in the initial stress state 

between the Fe/V and V/Fe interfaces. Hydrogen isotopes prefer the less compressive re-

gion. It is inferred that the in-plane stress at V/Fe interfaces could be more compressive 

than at Fe/V interfaces due to the difference in the lattice parameters between Fe and V. 

This also suggests an expanded V lattice in the out-of-plane direction near the V/Fe inter-

face. Such anisotropic lattice expansion in vicinity of the V/Fe interface, even when al-

loyed, might change the site occupation of D here, giving rise to different D concentrations 

even at the same cFe at the alloyed Fe/V interfaces. 

3. Materials and Methods 

3.1. Sample Preparation 

Fe/V multi-layered films were deposited on needle-shaped substrates suitable for the 

APT analysis. In this study, we employed W wires with 0.1 mm diameter as substrates 
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order of magnitude as between Fe and V with 5.3%. Still, this large lattice misfit might 
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First, the W tip substrates were sharpened by electropolishing in a 2N NaOH water 
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Figure 14. Dependence of cD on cFe at various D2 loading pressures, plotted for (a) V/Fe interface
and (b) Fe/V interface at the 2nd V layer of Figures 8–12. Schematic drawings of cD change with
cFe at the intermixed regions are depicted next to the profiles. cFe = 30 at% is marked by black
arrows in the insets. (c) Change of lattice constant of FeV alloy against Fe concentration, reported by
Shiga and Nakamura [46]. Individual data points were taken from Sutton and Hume-Rothery [47],
Lam et al. [48], Hanneman and Mariano [49], Martens and Duwez [50], and Shiga and Nakamura [46].
Note the Vegard’s law slope changes at around cFe = 30~35 at%.
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3. Materials and Methods
3.1. Sample Preparation

Fe/V multi-layered films were deposited on needle-shaped substrates suitable for the
APT analysis. In this study, we employed W wires with 0.1 mm diameter as substrates
since the lattice mismatch between W and V is approximately 4.6%, which is in the same
order of magnitude as between Fe and V with 5.3%. Still, this large lattice misfit might
induce misfit dislocations implemented at the film/substrate interface.

First, the W tip substrates were sharpened by electropolishing in a 2N NaOH water
solution at 3.5 V a.c., by using Pt as counter electrode. Then, the sharpened W tips were
finally developed by Field Ion Microscopy (FIM) imaging using He as an imaging gas,
typically at 30 K and with approximately 11 kV to obtain smooth and atomically clean
surfaces in an UHV chamber. The developed tips have (110) orientation along the tip axis,
reflecting the textured bcc structure of the W wire. Fe/V multi-layers with an individual
layer thickness of 2~5 nm were deposited on the top of W tips by ion beam sputter
deposition in a separate UHV chamber having a base pressure of 1–2 × 10−8 Pa. After
surface cleaning of W tip by Ar ion for several to 10 s, sputtering was carried out under
Ar atmosphere at the pressure of 1 × 10−2 Pa, with deposition rates of 0.63 nm/min for V,
and 0.75 nm/min for Fe, respectively. The substrate temperature during deposition was
kept at 297 K or 603 K. Finally, the films prepared were terminated by an approximately
20 nm thick Pd layer, which facilitates D2 dissociation at the surface and protects the film
from oxidation.

3.2. Deuterium Loading at Different Pressures

Deuterium loading was carried out by using a specially constructed gas loading set
up, as shown in Figure 15. This system is equipped with a magnetic sample transfer rod,
coupled with a gate valve so that the D2-loaded sample can be transferred from the loading
chamber to APT chamber without breaking D2 atmosphere.
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Figure 15. Schematic illustration of the home-made deuterium gas loading set up. 1: D2 gas
bottle (99.98%), 2: variable leak valve, 3: capacitance manometer 105 Pa max., 4: capacitance
manometer 100 Pa max., 5: turbo molecular pump, 6: oil rotary pump, 7: gate valve, 8: sample
mounted on transfer rod, 9: magnetic transfer rod with sample, and 10: vacuum gauge.

The actual D2 loading procedure typically starts as follows. First, the whole system
was evacuated until the pressure reaches better than 1 × 10−5 Pa. Thereafter, bake-out of
the transfer rod was carried out at 383 K for 12 h with utilizing ribbon heater elements.
Subsequently, the pressure typically showed 10−6 Pa at room temperature. Thereafter,
deuterium gas (purity: 99.98%) was leaked into the system. The pressure of the D2 gas can
be measured by capacitance manometer (company: Baratron, MKS) and is kept at a desired
pressure just by adjusting the leak valve’s opening. As soon as the D2 gas was introduced
at a desired pressure, the gate valve for the transfer rod was closed and the sample was
loaded with deuterium for 24~48 h.
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After loading was completed, the transfer rod was detached from the loading set up
together with the gate valve and then connected to a pre-evacuation chamber on the APT.
Before introducing the sample into the main chamber, the pre-evacuation chamber was
evacuated down to a pressure lower than 6 × 10−6 Pa. Then, the gate valve was opened to
evacuate also the remaining D2 gas from the transfer rod. After breaking D2 atmosphere
the introduction of sample into the main chamber was completed within 10 min. Upon
mounting the sample on cooling stage, the sample was rapidly cooled down to 130 K and,
thereafter, to the desired temperature for analysis.

3.3. APT Analysis

APT analysis was carried out with a system of tomographic atom probe detector
type [4] at 30 K with a voltage pulse fraction of 20% and a voltage pulse frequency of 2 kHz.
In particular for analyzing D, low analysis temperatures are mandatory to suppress the
D-diffusion [24]. The standing voltage of the sample changed typically from 3.5 to 15 kV to
complete an analysis.

After data acquisition, reconstruction of the collected ions to three-dimensional vol-
umes was carried out. Upon reconstruction, the requirement of consideration on the sample
geometry is especially strict for multi-layered sample. Jeske and Schmitz [51] have de-
veloped a reconstruction algorithm to solve this geometry problem by introducing the
factors on the specimen’s initial radius and shaft angle. In this study, their algorithm was
employed, and successful reconstruction was achieved.

3.4. Verification of cD via EMF Measurement

The average deuterium concentration cD detected in the Fe/V multi-layers (on the W
tip) and analyzed by APT was compared with the average hydrogen concentration cH in
Fe/V (110) multi-layered film grown on an Al2O3 (0001) substrate. Here, cH was measured
by electrochemical H loading [38]. The related electromotive force (EMF) was detected,
giving an EMF curve against cH. This curve relates to a pressure-composition isotherm
(p-c-T curve) via the Nernst equation. Slight differences induced by the different loading
techniques are thereby neglected. This experimental technique is advantageous since a
well-defined concentration of hydrogen can be loaded stepwise [38] and the p-c-T property
around room temperature can be correctly measured even in nano-sized samples. On top
of this, gas phase loading is generally difficult for materials such as V, unless an activation
process is properly carried out. The positions of the α and α + β phase boundaries are
essentially the same in the bulk V–H and V–D systems at 300 K, at cH, α = 0.03 H(D)/V
and cH, α + β = 0.47 H(D)/V. Similar phase boundary values were found both for bulk [40]
and for a thin film with a thickness of 500 nm [41]. This enables direct comparison of cH
and cD as conducted in this study. Electrochemical loading was carried out by using a
mixed solution of phosphoric acid 85% and glycerin 85% (1:2 in volume) as an electrolyte,
a Ag/AgCl(sat.) and a Pt wire as the reference and the counter electrode, respectively. The
cH was calculated by using Faraday’s law.

4. Summary

In this paper, we investigated concentration profiles of Fe/V interfaces in Fe/V multi-
layered films and the D distributions therein by Atom Probe Tomography (APT) analysis.
A combined effect was suggested including local alloying at the Fe/V interfaces at high de-
position temperatures and an impact of particle recoil during the deposition. The resulting
Fe/V interfaces appear asymmetric along the film growth direction; a steeper interface was
observed at the Fe/V side compared to the V/Fe side even at a low deposition temperature.
This was interpreted by a pronounced implantation of Fe atoms in a deposition sequence
of Fe on the V layer.

The mean D concentration in Fe/V ML was determined in a wide D concentration
range and compared with a representative electromotive force (EMF) curve. The agreement
was satisfactory as long as the impacts of D-trapping at defects and thickness differences
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are taken into account. With regard to the local alloying at Fe/V interfaces, the dependence
of the D concentration on the Fe concentration demonstrated a correlation, reflecting the
change in lattice constant, i.e., the change in available volume for D. However, the D
distribution was found to follow the asymmetric Fe/V interface compositions especially
at high D2 pressures. This was considered to originate from different stress states at Fe/V
interfaces depending on the stacking sequence because of different implantation impacts.
To conclude, in Fe/V multi-layers, the local D content is influenced both by local chemistry
and strain, which sensitively reflects the preparation history and the geometry of the
samples, as demonstrated by this APT study.
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