
Decentralizing Watchtowers for Payment Channels
using IPFS

Hannes Bönisch, Matthias Grundmann
KASTEL Security Research Labs

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

that the watchtower, who was employed, continuously watches
the blockchain and reacts to frauds.

In this paper, we lift the strong binding between payment
channel user and watchtower and introduce a novel approach
for watchtowers without the requirement for an explicitly
employed watchtower. The key idea is to make revocation
transactions accessible to the public via IPFS [2]. Because the
revocation transactions are publicly available, everybody can
now run a watchtower to check the blockchain for outdated
commitment transactions and secure the funds of the party
being defrauded for the party being defrauded. The revocation
transactions can include a reward for a successful revocation,
thus, incentivizing participation in this ‘blockchain neighbor-
hood watch’.

This watchtower approach has two main distinctive features
compared to previous approaches: (1) Separation of storage
and watching: The main task of a watchtower is to watch
the blockchain for commitment transactions while the storage
of revocation transactions is performed by a storage host
using IPFS. Therefore, the requirements and cost for running
a watchtower are low and the number of watchtowers and
storage hosts can be scaled independently. (2) No arrangement
is required between watchtower and payment channel user:
A payment channel user does not need to trust that a spe-
cific watchtower, with whom an agreement was made during
channel establishment or during a state update, continuously
runs and honors the agreement. Instead, watchtowers are
incentivized to watch the blockchain because there is a reward
for the watchtower included in each revocation transaction.
No direct communication is required between the payment
channel user and the watchtower. Therefore, a watchtower can
revoke a fraudulent transaction even if the watchtower is not
known to the payment channel user or if the watchtower did
not yet exist when the channel was updated last.

In the following section, we explain in more detail how
payment channels work and why watchtowers are required.
While the decentralized approach for watchtowers can be used
for different payment channel protocols, we put our focus on
the Lightning Network [3] which is based on Bitcoin [1];
other approaches for payment channels have been proposed for
example in [4]–[9]. We give an overview of other watchtower
approaches and introduce IPFS. We present our approach for
a decentralized watchtower based on IPFS in Section III. We
discuss the properties of the approach and compare it to other
approaches in Section IV and conclude in Section V.

Abstract—Payment channels have been proposed as a way to 
improve the scalability of blockchains such as Bitcoin. However, 
payment channel protocols require that participating parties 
watch the blockchain regularly for new transactions. If a party 
observes, in a given period of time, a fraudulent transaction that 
closes the payment channel in an outdated state, the fraudulent 
transaction can be revoked. Previous work has proposed to 
outsource this task to a third party, a so called watchtower. A 
user of a payment channel employs a dedicated watchtower and 
sends the data to the watchtower that the watchtower requires to 
revoke fraudulent transactions. In this paper, we replace the strict 
binding of a user to a watchtower by a decentralized approach for 
watchtowers that requires no direct interaction between a party 
of a payment channel and the watchtower. This decentralized 
approach uses IPFS to publicly store the information required by 
a watchtower. With this approach, anyone can detect and revoke 
a fraud by watching the blockchain and reading a file from 
IPFS that contains information for each outdated commitment 
transaction. A reward for successful revocations can be used as 
incentive.

I. INTRODUCTION

Payment channels represent an approach to improve the 
limited transaction throughput of blockchains such as Bitcoin 
[1] and allow the sending of transactions between the parties 
of a channel without the need to publish each transaction on 
the blockchain. Because the distribution of the funds inside 
a channel is not stored on-chain, the funds are exposed to 
fraud: A dishonest party can publish an outdated channel 
state, which has the channel funds distributed in their favor. 
This behavior can be punished by the defrauded party by 
publishing a revocation transaction that punishes the dishonest 
party by sending all funds of the channel to the defrauded 
party. However, the defrauded party has only a limited period 
of time before the dishonest party can prevent the revocation, 
and, thus, the defrauded party needs to respond quickly.

To secure their funds while being offline for longer periods 
of time, parties of a payment channel can hire third party 
watchtowers to check that the channel is not being closed by 
the other party in an outdated state. In previous approaches 
for watchtowers (see Section II-B), a payment channel user 
makes an agreement with a specific w atchtower a nd s ends a 
revocation transaction to the watchtower for every update of
the payment channel. The payment channel user needs to trust

This work was supported by funding from the topic Engineering Secure 
Systems of the Helmholtz Association (HGF) and by KASTEL Security 
Research Labs.



II. BACKGROUND AND RELATED WORK

A. Payment Channels

Payment channels are used to perform transactions between
two users without writing to the blockchain. Thereby, they do
not only increase the transaction throughput of the underlying
blockchain but also provide improved privacy properties. To
create a payment channel, two parties lock funds via a funding
transaction into a shared account. The funding transaction
represents the initial state of how funds in the channel are
distributed and is published to the blockchain. Transactions
between the two parties of the channel are performed by
updating the state to a new distribution of funds. To close
the channel, the final distribution of the locked funds in the
channel is published to the blockchain. Independent of the
number of transactions performed inside the payment channel,
only two transactions are published to the blockchain: one
transaction to open the channel and one transaction to close
the channel.

The security model of payment channels assumes that one
of the parties in the channel is dishonest and might try to
defraud the other party. A protocol for payment channels
must ensure that an honest party finally receives the correct
balance even if the other party publishes an outdated state
or stops interacting. The Lightning Network’s protocol uses
the following construction to enforce this property: Each state
is encoded in a commitment transaction. Both parties have
the other party’s signature to the commitment transaction
so that they can close the payment channel in the latest
state by publishing the latest commitment transaction on the
blockchain. To disincentivize a dishonest party from pub-
lishing an outdated commitment transaction, a commitment
transaction’s funds cannot directly be spent but there is a time
window during which the transaction can only be spent using
a revocation transaction. A revocation transaction transfers
all funds of the channel to the party who did not publish
the outdated transaction. When a commitment transaction is
superseded by a new commitment transaction during a state
update, each party receives the revocation transaction for the
outdated commitment transaction. This revocation mechanism
requires a party to regularly watch the blockchain for outdated
commitment transactions and react by publishing the respec-
tive revocation transaction.

B. Watchtowers

The requirement of liveness mentioned above, i.e., to reg-
ularly watch the blockchain for outdated commitment trans-
actions, can be fulfilled by outsourcing the task of watching
the blockchain to a third party, a watchtower. A watchtower
watches the blockchain for outdated commitment transactions
and publishes revocation transactions in place of the user who
was defrauded. While a user of a payment channel typically
only stores a set of secrets required to create revocation
transactions, the user cannot simply share these secrets with a
watchtower: the watchtower could use the revocation secrets
to claim all funds in a payment channel for itself. Therefore, in

most watchtower approaches, the user shares already signed
revocation transactions with the watchtower and the watch-
tower publishes these transactions when needed. However, as
we will see in the next paragraph, this sharing of signed
revocation transactions creates some storage burden on the
side of the watchtower.

1) Monitor: The approach of the Monitor watchtower [10]
relies on a trusted third party that receives all the revocation
transactions of a channel and publishes a revocation trans-
action in case an outdated commitment transaction is found
on the blockchain. To prevent the watchtower from observing
all transactions inside the payment channel, the revocation
transactions are encrypted with the second half of the identifier
(id) of their matching commitment transaction. The first half of
the commitment transaction id is shared with the watchtower
alongside the encrypted revocation transaction and is used to
identify commitment transactions on the blockchain. If the
watchtower finds a transaction on the blockchain whose first
half of its id matches a stored value, the watchtower tries to
decrypt the associated encrypted revocation transaction with
the second half of the transaction id. If this succeeds, the
watchtower publishes the revocation transaction.

The watchtower needs to store encrypted revocation transac-
tions for all old states of all watched payment channels. Hence,
the watchtower has high storage requirements. Another chal-
lenge is the handling of spam: As the watchtower only stores
entries that contain half of a transaction id associated with
encrypted data, the watchtower cannot distinguish authentic
entries from random data.

2) Outpost: The Outpost watchtower [11] also relies on
a trusted third party that provides the watchtower service.
To reduce the storage requirements for the watchtower, the
encrypted revocation transactions are stored in auxiliary trans-
actions that are published with the commitment transaction.
Therefore the watchtower only needs to store the decryption
keys for the revocation transactions. To use an Outpost watch-
tower, a party of a payment channel has to share these encryp-
tion keys with the watchtower provider. While the approach of
Outpost reduces the storage requirement for the watchtower,
storing encrypted transactions on the blockchain increases the
cost for users as they have to pay higher transaction fees.

3) TEE Guard: The TEE Guard watchtower [12] uses
Trusted Execution Environments to provide a watchtower
approach that only requires constant memory. The providers
run watchtowers inside secure enclaves with access to the
blockchain. Because the watchtower is run inside the enclave,
the data and code inside is protected, even from the providers.
Therefore a customer can share its revocation keys with the
watchtower and benefit from the storage savings. The enclaves
can also be interconnected to verify that a specific enclave was
running at a specific time.

4) Other Watchtower Approaches: Other approaches for
watchtowers have been proposed that require changes to
the underlying Bitcoin protocol [13], [14] or are based on
Ethereum [15], [16] which offers a richer feature set for
smart contracts compared to Bitcoin. Another line of research



explored how to integrate watchtowers into the payment chan-
nel protocol [17]–[19]. Our approach presented in this paper
is deployable for Bitcoin and can be used by the deployed
Lightning Network with only a small set of changes. How-
ever, the proposed approach can also be transferred to other
blockchains and can be combined with existing approaches for
watchtowers.

C. IPFS

The InterPlanetary File System (IPFS) [2] is a decentralized
file system and a peer-to-peer network. Files in IPFS are
addressed by their content identifier (CID) which is a content
based address. Therefore, a change in the content of a file
means that the changed file will be addressed by a new CID.
This change of CID is an issue in case an IPFS file is to be
shared with other people via its CID, but its content should at
the same time be modifiable. This issue can be addressed via
the InterPlanetary Name System.

1) InterPlanetary Name System: The problem of address-
ing IPFS files that need to be changed with a single static
identifier is addressed by the InterPlanetary Name System
(IPNS) which provides dynamic IPNS addresses. The IPNS
is based on asymmetric cryptography. To create a new IPNS
address, a new key pair is created with the hash of the public
key acting as the address. The private key is used to sign
new address records that contain the information on where the
IPNS address points to. These IPNS addresses can be used to
reference CIDs of IPFS files.

Hence, if a file in IPFS needs to be modifiable, this file can
be shared via an IPNS address. When the file is changed, the
owner of the private key for this IPNS address updates the
address to point to the new CID.

2) Persistence: In order for files to be accessible via
IPFS, they have to be hosted by at least one node of the
network. Hosting an IPFS file is also called pinning. Because
we have to assume that the machine of a channel party is
not permanently online, pinning files on a local machine is
not sufficient. Therefore separate offsite machines like rented
virtual machines would be necessary to make sure the pinned
file stays available. Another option are third party pinning
services, which provide the pinning of IPFS files for free
or in exchange for payment. Examples of third party pinning
services are Pinata1 (paid) or nft.storage2 (free).

III. DECENTRALIZED WATCHTOWERS APPROACH

The essential concept of the decentralized watchtowers ap-
proach works as follows: A user who participates in a payment
channel and wants to involve a watchtower, creates a Channel
Justice File Fjustice and stores the file on IPFS. The Channel
Justice File Fjustice contains a list of partial ids of outdated
commitment transactions, encrypted revocation transactions,
and encrypted reward keys that a watchtower can use to claim
a reward. Each commitment transaction contains the IPNS
address of the Channel Justice File Fjustice. If a watchtower

1https://www.pinata.cloud
2https://nft.storage

who watches the blockchain for commitment transactions,
observes an outdated commitment transaction, the watchtower
resolves the IPNS address, requests the Channel Justice File,
and extracts and publishes the revocation transaction. The
revocation transaction includes an additional reward output
that can be spent using the private key which is shared
alongside the revocation transactions in the Channel Justice
File. This reward can be claimed by the watchtower if a fraud
is prevented. In the following, we describe the Channel Justice
File, the workflows for the payment channel users as well as
for a watchtower, and reward offering in more detail.

A. Channel Justice File

All data required for a watchtower is stored in the Channel
Justice File Fjustice. For all but the latest commitment trans-
actions in the payment channel, Fjustice contains the first half
of the commitment transaction id ctxtxid and an encryption
of the corresponding revocation transaction and a private key
to spend the reward output in the revocation transaction.

The first half of the commitment transaction id ctxtxid

is used as an identifier to find the row in the file for the
corresponding commitment transaction. The second half of the
ctxtxid is used as encryption key to encrypt the revocation
transaction and the private key. This encryption is necessary
because the Channel Justice File Fjustice is publicly available
via IPFS. By encrypting the revocation transaction and the
private key with the second half of the commitment transaction
id ctxtxid, a third party can only decrypt them if the matching
commitment transaction has already been published to the
blockchain. Hence, a third party cannot learn information
about how funds are distributed inside the payment channel.
The idea of using the first half of the ctxtxid as an identifier
and the second half as the encryption key was first introduced
in the Monitor approach [10].

Format: Each row of the Channel Justice File contains
the following space separated fields where ENC(data, key)
represents a symmetric encryption algorithm that encrypts
data with the provided key:

• First half of the commitment transaction id:
ctxtxid[0:15] (size: 16 bytes)

• Revocation transaction rtx that is encrypted with the
second half of the commitment transaction id:
ENC(rtx, ctxtxid[16:31]) (size3: ∼ 450 bytes)

• Private key rk for the reward output that is encrypted
with the second half of the commitment transaction id:
ENC(rk, ctxtxid[16:31]) (size: 32 bytes)

B. Workflow of Payment Channel User

1) Publishing Fjustice: To be able to publish and update
files in IPFS via a static identifier an IPNS address is required.
Therefore the first step when creating a new payment channel
is creating a new IPNS key pair which provides an IPNS
address. When new transactions are performed, the IPNS

3The size of the revocation transaction is estimated based on the estimations
by Khabbazian et al. [11] (300-350 bytes) with the addition of the reward
output and the output that returns the IPNS address of Fjustice.



Counterparty’s old 

commitment 
transaction 𝑐𝑡𝑥

𝑐𝑡𝑥𝑡𝑥𝑖𝑑

Revocation 
transaction 𝑟𝑡𝑥

𝑐𝑡𝑥𝑡𝑥𝑖𝑑[0:15]
𝑐𝑡𝑥𝑡𝑥𝑖𝑑[16:31]

Encrypted 
revocation 
transaction

3. Calculate transaction
id of old commitment 
transaction

4. Split into two halves 5. Encrypt revocation 
transaction and reward key 
using second half of txid as key

6. Append to Channel Justice File

Channel Justice File 𝐹𝑗𝑢𝑠𝑡𝑖𝑐𝑒

2. Create revocation 
transaction including output 
redeemable with reward key

Encrypted
reward key

Reward key
𝑟𝑘

7. Upload Channel Justice File to IPFS

8. Publish updated IPNS entry

CID of Channel 
Justice File

1. Receive revocation 
secret during state update

Fig. 1. Workflow of a user during a state update in the payment channel.
The user creates the revocation transaction and a reward key, encrypts them
with the second half of the old commitment transaction id and adds this data
to the Channel Justice File.

address of the previously created key pair is added to the
commitment transactions of the opposing party. This is done
with the with the OP_RETURN instruction. The OP_RETURN
instruction stores arbitrary data like the IPNS address of
Fjustice in a separate output. To make it easier to check if
a transaction contains an IPFS address to Fjustice the ‘CJF:’
prefix is added before the IPNS address.

The IPNS address is included in every commitment trans-
action but the IPNS address will be included at most once in
the blockchain because at most one commitment transaction
will be published.

2) Updating Fjustice: With every new state in a payment
channel, Fjustice needs to be extended (see Fig. 1). The
new revocation transaction is built with the revocation secret
received from the counterparty and contains the reward output
for the watchtower. The private key of the Bitcoin address
receiving the incentive output and the revocation transaction
are encrypted with the second half of the commitment trans-
action id. Together with the first half of the commitment
transaction id, both encryptions are appended to the Channel
Justice File Fjustice. After updating Fjustice, it is shared via
IPFS. Because the content of the file changed, it receives a new
CID. Therefore, the CID that the IPNS address contained in the
commitment transactions points to must be updated to point to
the CID of the updated Fjustice. After the IPNS address has
been updated, watchtowers can read the Channel Justice File
via the IPNS address in a published commitment transaction
and revoke it if a matching revocation transaction exists.

Encrypted 
revocation 
transaction

Commitment 
transaction 𝑐𝑡𝑥

4. Calculate 
transaction id

7. Use second half of commitment transaction id 
to decrypt revocation transaction and reward key

Revocation 
transaction 𝑟𝑡𝑥

8. Publish revocation 
transaction on blockchain

New transactions on 
blockchain

1. Select transaction that contains the 
IPNS address of a Channel Justice File

3. Download Channel 
Justice File through IPFS

𝑐𝑡𝑥𝑡𝑥𝑖𝑑Channel Justice File 𝐹𝑗𝑢𝑠𝑡𝑖𝑐𝑒

2. Resolve IPNS address

Reward key
𝑟𝑘

Encrypted
reward key

9. Use reward key 
to redeem reward

𝑐𝑡𝑥𝑡𝑥𝑖𝑑 [0:15] 𝑐𝑡𝑥𝑡𝑥𝑖𝑑 [16:31]

6a. If no match 
found, wait and 
reresolve IPNS 
address.

5. Check if first half matches 
any txid in Channel Justice File

6b. If match found, read encrypted revocation transaction and reward key 
associated with first half of commitment transaction id from Channel Justice File

Fig. 2. A watchtower watches the blockchain for new transactions and
processes commitment transactions transactions that contain the IPNS address
of a Channel Justice File. If the observed commitment transaction was
outdated, the watchtower decrypts and publishes the revocation transaction
and is rewarded using the revocation transaction’s reward output.

C. Workflow of Watchtower

The main task of a watchtower is to check the blockchain
for outdated commitment transactions (see Fig. 2). If a trans-
action containing an IPNS address to the Channel Justice
File Fjustice is found, the watchtower resolves the IPNS
address and reads Fjustice. If Fjustice contains the revocation
transaction for the commitment transaction, the watchtower
decrypts the revocation transaction and publishes it on the
blockchain. If Fjustice does not have a revocation transaction
for the found commitment transaction, the IPNS address might
not be updated yet or still needs some time to propagate.
Therefore the watchtower will regularly try to resolve the IPNS
address and check for a matching revocation transaction. If
no revocation transaction was found within a certain amount
of time, the watchtower will discard the IPNS address. In
this case, the observed commitment transaction might be the
latest commitment transaction and therefore no revocation is
possible and needed.

D. Reward

Running a watchtower requires resources and therefore most
people will not run a watchtower for free. To incentivize others



to run watchtowers, a reward is added that can be claimed by a
watchtower that revokes fraudulent commitment transactions.
This reward is offered by adding an additional output, the
‘reward output’, to the revocation transaction which can be
spent using the reward key rk. This reward key is included in
Fjustice and, thus, can be used by the watchtowers. Because
this output can only be spent once, this reward creates a race
for the watchtowers to publish the revocation transaction and
be the first to spend the reward output.

IV. EVALUATION & DISCUSSION

A. Scalability of the Channel Justice File Fjustice

The size of the Channel Justice File Fjustice of a payment
channel grows with every transaction performed in the chan-
nel. For channels with a high number of transactions, the size
of Fjustice increases considerably. A channel with one million
transactions would have a Channel Justice File Fjustice with
the size of 501 megabytes.4 This can be problematic if the
user that is sharing the Channel Justice File Fjustice has a
slow upload speed: To be able to rely on the watchtower,
the user only accepts new states of the payment channel
after the previous Fjustice has been shared with a pinning
service. Therefore the upload creates a limit for the transaction
throughput of the channel. A simple fix for this problem
would be to close a payment channel after a certain amount of
transactions and open a new payment channel. Alternatively,
the rate at which Fjustice grows can be reduced by storing the
encrypted revocation transactions and the encrypted private
keys of the reward output in separate files and not in the
Channel Justice File Fjustice directly. The Channel Justice
File Fjustice would then just be used as an index, containing
references in the form of CIDs to the files containing the actual
data. Depending on the hashing algorithm used, the size of the
CID can vary. The current default hashing algorithm for CIDs
in IPFS is SHA-256 [20] which creates a CID of 42 bytes.
That means an hierarchical Fjustice of a channel with one
million transactions would only have a size of 60 megabytes5

instead of 501 megabytes.

B. Privacy

While the Channel Justice File Fjustice is publicly available
over IPFS, it cannot be linked to a payment channel as long
as the channel is not closed using a commitment transaction.
After a commitment transaction has been published, the IPNS
address contained in the commitment transaction can be used
to link Fjustice to the payment channel. However, only the
number of transactions that occurred in the payment channel
is leaked because all relevant data contained in the Channel
Justice File Fjustice is encrypted.

416 bytes for the first half of the commitment transaction id, 450 bytes for
the revocation transaction, 32 bytes for the reward key rk and 3 bytes for
spaces and the newline result in 501 bytes per line. 501 bytes * 1.000.000 ≈
501 megabytes

516 bytes for the first half of the commitment transaction id, 42 bytes for
the CID and 2 bytes for the space and the newline result in 60 bytes per line.
60 bytes * 1.000.000 ≈ 60 megabytes.

The decentralized watchtower approach has similar pri-
vacy properties as the Monitor and Outpost watchtowers.
Even when a commitment transaction has been published,
a third party can only gain knowledge about the number
of transactions that occurred in a payment channel because
the revocation transactions in Fjustice are encrypted. The
distribution of the funds inside the payment channel is private
and only the final distribution of funds is revealed once the
channel is closed. The TEE Guard watchtower provides more
privacy compared to the decentralized watchtower approach:
If we assume that the secure enclaves are truly secure, then
the provider has no access to the enclave’s data and, therefore,
gains no knowledge about the payment channel.

C. Cost

The watchtower needs access to the Bitcoin blockchain
which is done by running a Bitcoin node. The watchtower
also needs a way to access files from the IPFS network. This
can be done by either using an IPFS gateway or running
an IPFS node. Because the watchtower only has to check
new transactions on the blockchain for an IPNS address, the
required processing power is very low. In case a fraud happens,
the downloading and reading of the Channel Justice File
Fjustice requires additional bandwidth and processing power.
Therefore running a watchtower is cheap and can even be
profitable if some rewards are claimed successfully now and
then.

However, the impact of the rewards is estimated to be rather
low because they require a fraud to happen in the first place.
Also, multiple watchtowers might engage in a race about the
reward. In this case, a watchtower can improve its chance
to claim the reward by increasing the transaction fee of the
transaction that spends the reward output which at the same
time reduces the watchtower’s profit.

The cost on the user side depends on the cost of pinning the
Channel Justice File Fjustice off site. This could be practically
free if there are altruistic pinning services or if there exists a
community that pins each other’s files. However, pinning could
be associated with costs if a more advanced strategy is chosen
such as pinning the Fjustice on multiple servers in multiple
locations. Most pinning services provide this functionality and
also directly integrate with the IPFS client.

Comparing the cost of the decentralized watchtower ap-
proach to other watchtowers is not trivial because the cost
of using a decentralized watchtower strongly depends on the
way that is used to persist Fjustice in IPFS.

D. Reliability

The reliability of the watchtower depends mostly on the
availability of the Channel Justice File Fjustice. Ideally, the
IPNS address of Fjustice is never revealed to the public.
However, both parties in a payment channel know the address
and if one party is dishonest, they might try to deplete
the bandwidth of the hosts pinning the Channel Justice File
Fjustice or use other ways to make the file unavailable (e.g.,
eclipse attacks on the storage hosts [21]). This could be



mitigated by using multiple servers with high bandwidth or
even a DoS protection service.

Because users of payment channels do not interact directly
with watchtowers, there are no contracts or guarantees in
place that can be enforced. Therefore, a user of a payment
channel who uses decentralized watchtowers has to trust that
someone else runs a watchtower. This could be mitigated by
having a trusted entity in the payment channel community that
provides watchtowers. Our approach to incentivize running a
watchtower is the reward output. However, this reward can
only be claimed if a fraud happens and only one watchtower
can receive the payout even if multiple watchtowers are active.

V. CONCLUSION

This work introduced a novel approach for watchtowers for
payment channels. The main idea of the approach is to replace
the dependence on a specific watchtower provider by relying
on a storage provider and an arbitrary watchtower. This idea
is implemented by sharing the data required by watchtowers
via IPFS and linking the data to the payment channel through
an IPNS address in each commitment transaction. Our decen-
tralized approach still requires cooperation of other parties to
make it possible for payment channel users to go offline for
a certain amount of time without risking to loose their funds.
However, by separating the tasks of storage and watching,
specific incentive mechanisms can be used and, for example,
approaches for incentivization found by the IPFS community
can be used for the storage provider.

The decentralized approach, as presented here, leaves open
questions regarding a precise analysis of privacy and scala-
bility properties and regarding incentivization of watchtowers
and storage hosts. In future work, we plan to approach
these challenges, improve and extend the approach, and to
implement a prototype.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Tech.
Rep., 2008.

[2] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”
arXiv:1407.3561 [cs], Jul. 2014, arXiv: 1407.3561. [Online]. Available:
http://arxiv.org/abs/1407.3561

[3] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” Tech. Rep., 2016.

[4] C. Decker and R. Wattenhofer, “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels,” in Stabilization,
Safety, and Security of Distributed Systems, A. Pelc and A. A.
Schwarzmann, Eds. Cham: Springer International Publishing, 2015,
vol. 9212, pp. 3–18. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-21741-3 1

[5] M. Green and I. Miers, “Bolt: Anonymous Payment Channels
for Decentralized Currencies,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 473–489. [Online]. Available: https:
//doi.org/10.1145/3133956.3134093

[6] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles - SOSP ’19. Huntsville, Ontario, Canada: ACM
Press, 2019, pp. 63–79. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=3341301.3359627

[7] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual Payment Hubs over Cryptocurrencies,” in 2019 IEEE
Symposium on Security and Privacy (SP). San Francisco, CA,
USA: IEEE, May 2019, pp. 106–123. [Online]. Available: https:
//ieeexplore.ieee.org/document/8835315/

[8] M. Jourenko, M. Larangeira, and K. Tanaka, “Payment Trees: Low
Collateral Payments for Payment Channel Networks,” in Financial Cryp-
tography and Data Security, ser. Lecture Notes in Computer Science,
N. Borisov and C. Diaz, Eds. Berlin, Heidelberg: Springer, 2021, pp.
189–208.

[9] L. Aumayr, M. Maffei, O. Ersoy, A. Erwig, S. Faust, S. Riahi,
K. Hostáková, and P. Moreno-Sanchez, “Bitcoin-Compatible Virtual
Channels,” in 2021 IEEE Symposium on Security and Privacy (SP),
May 2021, pp. 901–918, iSSN: 2375-1207.

[10] T. Dryja, “Unlinkable Outsourced Channel Monitoring,” Milan,
Oct. 2016. [Online]. Available: https://scalingbitcoin.org/milan2016/
presentations/D1%20-%208%20-%20Tadge%20Dryja.pdf

[11] M. Khabbazian, T. Nadahalli, and R. Wattenhofer, “Outpost: A
Responsive Lightweight Watchtower,” in Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, ser. AFT ’19.
New York, NY, USA: ACM, Oct. 2019, pp. 31–40. [Online]. Available:
https://doi.org/10.1145/3318041.3355464

[12] M. Leinweber, M. Grundmann, L. Schönborn, and H. Hartenstein,
“TEE-Based Distributed Watchtowers for Fraud Protection in the
Lightning Network,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology, ser. Lecture Notes in Computer Science,
C. Pérez-Solà, G. Navarro-Arribas, A. Biryukov, and J. Garcia-Alfaro,
Eds., vol. 11737. Springer International Publishing, Sep. 2019, pp.
177–194.

[13] O. Osuntokun, “Hardening Lightning,” Stanford University, Jan. 2018.
[Online]. Available: https://youtu.be/V3f4yYVCxpk

[14] G. Avarikioti, F. Laufenberg, J. Sliwinski, Y. Wang, and R. Wattenhofer,
“Towards Secure and Efficient Payment Channels,” arXiv:1811.12740
[cs], Nov. 2018, arXiv: 1811.12740. [Online]. Available: http:
//arxiv.org/abs/1811.12740

[15] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, “Pisa:
Arbitration Outsourcing for State Channels,” in Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, ser. AFT ’19.
New York, NY, USA: ACM, Oct. 2019, pp. 16–30. [Online]. Available:
https://doi.org/10.1145/3318041.3355461

[16] B. Liu, P. Szalachowski, and S. Sun, “Fail-safe Watchtowers and
Short-lived Assertions for Payment Channels,” in Proceedings of
the 15th ACM Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’20. New York, NY, USA: Association for
Computing Machinery, Oct. 2020, pp. 506–518. [Online]. Available:
https://doi.org/10.1145/3320269.3384716

[17] Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, and D. Zindros,
“Brick: Asynchronous Incentive-Compatible Payment Channels,” in
Financial Cryptography and Data Security, 2021, p. 29.

[18] Z. Avarikioti, O. S. Thyfronitis Litos, and R. Wattenhofer, “Cerberus
Channels: Incentivizing Watchtowers for Bitcoin,” in Financial Cryp-
tography and Data Security, ser. Lecture Notes in Computer Science,
J. Bonneau and N. Heninger, Eds. Cham: Springer International
Publishing, Feb. 2020, pp. 346–366.

[19] A. Mirzaei, A. Sakzad, J. Yu, and R. Steinfeld, “FPPW: A Fair and
Privacy Preserving Watchtower For Bitcoin,” Tech. Rep. 117, 2021.
[Online]. Available: https://eprint.iacr.org/2021/117

[20] IPFS. Content addressing and cids. [Online]. Available: https:
//docs.ipfs.io/concepts/content-addressing/

[21] B. Prünster, A. Marsalek, and T. Zefferer, “Total Eclipse of
the Heart – Disrupting the InterPlanetary File System,” 31st
USENIX Security Symposium, Sep. 2021. [Online]. Available: https:
//blog.ipfs.io/2020-10-30-dht-hardening/




