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In this work, a cooperative local trajectory planner based on negotiation theory

for human-robot interaction is developed. It is implemented on a robot, which

accompanies patients to examination rooms as part of the HoLLiECares project.

For this purpose, an existing human–machine cooperation model for decision-

making in one-time conflict cases is applied to a time-repeated negotiation of

motion primitives. In negotiation theory, time pressure in the form of deadlines

is classically used to achieve agreements. Since deadlines do not naturally exist

in all technical applications and their artificial insertion would create an

unintuitive system behavior for an involved human, a reciprocal tit-for-tat

strategy for the automation is applied in the present work to achieve

agreements. This leads to a system behavior that is able to dynamically

change between human-in-the-lead behavior or automation-in-the-lead

behavior and everything in between depending on the concession of the

human and thus on human’s desire. The cooperative negotiation-based

local trajectory planner is tested simulatively.
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1 Introduction

As part of the HoLLiECares project, the existing humanoid robot HoLLiE is to be

modified and further developed as a nursing robot. One core task of the robot will be to

accompany patients to examination rooms. As a lot of patients need walking support,

especially after surgeries in the hip and leg area, patients can lean on a special forearm rest,

which is mounted on the robot arm, while they are accompanied to treating rooms.

Figure 1 shows the robot and a human in the accompanying setting.

To the knowledge of the authors, there are no existing systems that haptically guide

people while providing walking support at the same time. Existing systems can be divided

into human guiding applications without haptic interaction like a robot tour guide in

Fiore et al. (2015), e.g., for museums in Bueno et al. (2011). On the other side, there are

systems that provide walking support, e.g., rehabilitation applications like the

WalkTrainer (Stauffer et al., 2009) or an omnidirectional walking platform proposed

by Aguirre-Ollinger and Yu (2021). Other systems that provide walking support are

exoskeletons, e.g., Quintero et al. (2012), Lu et al. (2014), Bai et al. (2017), and Li et al.

(2020, 2021). All these systems have in common that they implement a static

leader–follower approach. Either the robot leads the way and the human must follow
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like in the studies by Bueno et al. (2011), Stauffer et al. (2009),

Quintero et al. (2012), Lu et al. (2014), and Bai et al. (2017) or the

human is the leader in providing the path and velocity as a

reference and the robot follows as in Aguirre-Ollinger and Yu

(2021).

Instead of a static leader–follower implementation, we want

to apply a cooperative approach to dynamically negotiate about

the leadership role. This approach is motivated by the fact that

even though the robot knows the way to the examination room,

at the same time, the human locally wants to go a different way

than the robot specifies. This may happen in cases where the

human wants to cut a path around the bend, while the robot, for

example, always wants to walk on the right side of the corridor in

order to comply with the right-hand driving rule comparable to

road traffic. However, after the curve, it could be that the human

again matches the robot’s motion request. We expect higher

acceptance of the accompanying service if we respect the patient’s

local wishes for a special path. Furthermore, we consider the

ethical aspect of the right of self-determination of the patient

according to the MEESTAR model (Weber, 2015) already in the

design of the accompanying service. Even in the situation of

accompanying a patient to an examination room, it is a respectful

manner of good care to respect and react to the patients’ path

wishes.

1.1 Related work

1.1.1 Emancipated change of leadership roles
An attempt at required dynamical change of leader roles in a

human–robot accompanying scenario is presented in Fiore et al.

(2015). They have investigated whether human speed can be

influenced by having the robot suggest a speed. However, they

have not taken into account feedback from the human, i.e., the

robot’s reaction to the human’s reaction to the presented offer.

In order to implement a method to dynamically change

between the leadership roles, some method is needed to find

an agreement. In this process, neither agent should lead

preferentially; there should instead be a form of negotiation

with equal rights for both agents. A human–machine

cooperation model that provides equal rights and authority

for both the human and the machine is presented in Rothfuß

(2022), with one model instantiation using negotiation theory

and another instantiation using game theory. To the knowledge

of the author, the presented human–machine cooperation model

is the only existing formal method so far, which describes

decision-making processes between automation and humans

in an emancipated manner while also considering the

cognitive limitations ofthe human. For a deeper insight into

the state of the art on this topic, please refer Rothfuß (2022).

Although the method presented in Rothfuß (2022) is suitable

for decision-making in one-time conflict cases and discrete

agreements, such as deciding which turn to take at a

crossroad or which direction to take in an evasive maneuver,

the presented application is not intended to negotiate the

leadership role once and discretely but to decide dynamically

which trajectory to follow even with the possible result on a

trajectory compromise at some point between the human and the

robot. The method must, therefore, be further developed.

Inspired by the scenario of making a joint decision at a

crossroad, one could model the process of finding a common

trajectory in a very simple way as in Figure 2. Instead of

negotiating about different turns at a crossroad, one could

negotiate on different trajectory candidates like the three

candidates in Figure 2. The trajectory T1 would cut the

FIGURE 1
HoLLiE robot in hospital accompanying a patient.

FIGURE 2
Basic idea of negotiating trajectories.
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corner, whereas T3 would follow the rule to go on the right side.

Two partners could find a common trajectory by negotiating on

the three candidates and finding an agreement. However, this

approach requires the human to formulate their whole trajectory

wish in advance. As the depicted corridor in Figure 2 is a

continuous space, the human cannot easily formulate their

desired trajectory around a corner. One would need, for

example, different trajectories suggested by the robot on a

display or via a projection on the floor. As this suggestion

would be a rather undesirable restriction for a human, the

approach of finding a common trajectory by negotiation could

be preserved by the negotiation on motion primitives. These

motion primitives specify the trajectory only for a limited

distance in advance, and the desired motion primitives of the

human could be estimated via a haptic connection, i.e., the

human does not need to formulate it like an entire trajectory

to the target. The combination of the negotiated motion

primitives then leads to a common trajectory toward the

target. This approach converts the problem of finding a

common trajectory into the repeated negotiation on motion

primitives.

1.1.2 Negotiation theory
The idea of the present work is negotiation over motion

primitives. The classical flow of a negotiation process is shown in

Figure 3. For example, agent 1 gets an offer from agent 2 and

evaluates it by determining the utility of this offer. If the offer’s

utility fulfills the acceptance strategy of agent 1, an agreement is

found. Otherwise, a counteroffer is presented to agent 2. There

exist different negotiation protocols that specify in detail the

exchange of offers, e.g., synchronous or asynchronous modes. In

order to determine the utility of an offer and a potential

counteroffer, a utility function is required. The acceptance

strategy determines the condition under which an agent

accepts the other agent’s offer. The bidding strategy describes

the behavior of an agent to find a suitable offer with respect to the

current situation. This strategy can be based on the behavior of

the cooperation partner (behavior-based strategy) like a tit-for-

tat strategy or depending on time (time-based strategy). As

behavior-based strategies cannot model the urgency of

decision-making in dynamic systems, time-based strategies are

preferred to find an agreement in time critical decision problems

under pressure (Rothfuß et al., 2019).

In order to motivate the agents involved in a negotiation to

reach an agreement, time pressure is classically used in

negotiation theory (Stuhlmacher et al., 1998), which Rothfuß

(2022) implemented in the form of a deadline. After the deadline

has passed, an agreement must be reached. In the study by

Rothfuß (2022), agreements are achieved by a time-based

bidding strategy. The closer the deadline is, the lower the own

value of the presented offer becomes and the more likely the

partner is to accept this offer. In the application of cooperative

trajectory planning presented, no natural deadlines arise from the

application, as they do, for example, in the case of cooperative

agreement on an evasive maneuver when approaching an

obstacle. Here, the natural deadline would be the crash with

the obstacle. In contrast, the motion primitives in the present case

do not have a defined end but can be executed as long as they lead

both partners along the global path or in the direction of the

partner’s motion request. For the application of time-based

bidding strategies to guarantee agreements, a deadline would

have to be artificially inserted for the conflict case of different

movement desires. Different human users would probably want

different deadlines for this, which would require a parameter to

be identified for the automation design and would therefore

provide more effort. To avoid the insertion of artificial deadlines,

automation could instead choose its bidding strategy depending

on human behavior. In contrast, the tit-for-tat behavioral

strategies commonly found in the literature (Baarslag, 2016,

p. 28) are of little help here in ensuring that agreements are

reached. Instead, automation could observe the human’s offers

over a period of time and choose a reciprocal tit-for-tat strategy:

If it is a very concessive human, the automation insists on its

desire to move. If it is a very unyielding person, the automation

gives in more frequently.

1.1.3 Motion planning
In this work, it is assumed that the resulting joint motion

results from a compromise of the individual motion desires of the

human and the robot. The single motion desires result from

individual motion planning. This can be divided into global and

local navigation for the robot (Zhou et al., (2022); Gul et al.,

FIGURE 3
Flowchart of a negotiation, source: Rothfuß et al. (2019)
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(2019)). In global navigation, prior knowledge of the

environment is used, and offline planning of a path or

trajectory is possible. In order to respond to dynamic changes

and uncertainties in the environment, local navigation is

additionally required, which is performed online.

In the field of motion planning, a distinction is also made

between path planning and trajectory planning (Gasparetto et al.

(2015)). A path is a purely geometric description of a path in

space. A trajectory assigns a time dependency to this geometric

path. This is achieved by linking the path to a speed profile.

1.2 Contribution

In this work, an existingmethod for emancipated cooperative

decision-making between a human and a machine in one-time

conflict cases is extended to time-repeated decision-making

processes. Compromises are found without inserting an

artificial deadline. This is achieved by the application of a new

behavior-based strategy within negotiation theory, namely, a

reciprocal tit-for-tat strategy. The developed method is applied

to cooperative trajectory planning.

Before introducing the exact procedure of negotiating

motion primitives and the resulting necessary adjustments,

there is a presentation of the problem first and the system

model in Section 2. Section 3 gives a brief introduction into

negotiation theory at its beginning and presents the cooperative

local trajectory planner. The corresponding results are shown in

Section 4. Section 5 concludes the article.

2 Problem formulation, system
structure, and system model

In the present application, the accompaniment of a patient

by a humanoid robot shown in Figure 1 is to be implemented.

Patients can lean on a forearm rest while walking together with

the robot. In addition, the robot projects the direction toward

the examination room on the ground. The problem is that both

agents have to plan and execute a trajectory under the

constraint that the distance between both agents has to

remain within a certain range. In our model, the movement

desire results from a globally planned path existing for both

agents that contains the individual movement preferences (e.g.,

shortest way, adherence to the ‘right-hand driving

commandment,’ etc.). Since the two agents do not know

each other’s global paths, the compromise must be found at

the level below: the local planning level. Here, depending on

one’s own motion desire and the partner’s motion desire,

motion primitives are determined based on negotiation (see

Section 3.2 for a more detailed explanation). The motion desire

of the partner is estimated from the interaction force FInt
between the human and robot (see Section 3.1 for a more

detailed explanation). This interaction force is measured in the

shoulder of the robot by using a force–torque sensor. The

motion primitives are subsequently adjusted by underlying

control loops of the robot and by the human’s locomotor

system. The interaction force FInt comes from the execution

of the motion primitives by the human and the robot which—as

just described—serves as an input variable for local planning.

Figure 4 shows the described system structure as a block

diagram. The global planning for the human and robot is

assumed to be given and collision-free in the context of this

work. In addition, for real-world applications, dynamic

obstacles and cooperative measures for collision avoidance

would need to be considered in the local planning layer.

Since the focus of this work is on the methodology for

emancipated compromise finding in the presence of different

global paths, dynamic obstacles are not considered in this work

for simplicity. Collision avoidance control strategies in multi-

agent systems can be found, for example, in the study proposed

by Huang et al. (2019).

The calculation of the local trajectory depends on the course

of the global path. Therefore, the two agents must not move too

far away from their global paths. With corridors in mind, we

assume that the human and robot are always in sufficiently close

distance to their global paths. Nevertheless, if it happens that an

agent moves farther than a certain threshold value from its global

path, a replanning of the global path can be started from the

current position. Before the functionality of the negotiation-

based local path planning is explained, the system model of

the coupled system is presented in the following.

2.1 System model

Since no models exist in the literature for the presented

application, this work proposes a new modeling of the scenario.

The walking motion of humans can be described for goal-

directed movements using the non-holonomic unicycle model

(Arechavaleta et al., 2006; Mombaur et al., 2008). Here, the

human always stays tangentially along their trajectory with a

velocity greater than or equal to zero. In the presented case, no

dynamic obstacles are considered, so no sudden orthogonal

sideway movements of the human are necessary. Eq. 1

describes the non-linear unicycle model with state variables

x1, x2, and x3 and control variables v and ω. The states x1 and

x2 describe the coordinates in the plane, and x3 � arctan(x2x1)
describes the current angle around the vertical axis.

_x �
v · cos x3( )
v · sin x3( )

ω

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (1)

To produce the human-expectable behavior, such as that of

an attendant caregiver by means of automation, non-holonomic

unicycle kinematics is also chosen for the robot platform motion
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kinematics. Eq. 2 shows the overall state equations with the state

variables for the human (index H) and the state variables of the

robot (index R).

_x �

vH · cos x3( )
vH · sin x3( )

ωH

vR · cos x6( )
vR · sin x6( )

ωR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

Eq. 3 shows the outputs:

y � x4 x5 x6 FInt,x FInt,y[ ]T. (3)

Themeasurable positions x4 and x5 of the robot and the robot

angle x6 are the output variables. The position, velocity, and

angular velocity of the human are not measurable. In addition,

the magnitude and direction of the interaction force are

presented, which is described by the planar, two-dimensional

vector FInt. This has the entries FInt,x and FInt,y in the plane

parallel to the ground. The measured interaction force results on

the one hand from the application of force by the human hand on

the handle. Second, it results from different directions of

movement between the human and the robot. It should be

noted that the arm of the robot remains stationary for safety

reasons.

2.2 Motion primitives

As described previously, the negotiation of motion primitives

p takes place in the local motion planning. A motion primitive

can be described by the parameter velocity v and angular velocity

ω. For the velocity v = 1 ms−1 and a set of discrete angular

velocities, the set of motion primitives shown in Figure 5 is

defined for a simulation step time of t = 1 s. Hence, the motion

primitives, i.e., output variable of the local motion planning, are

conveniently described by the same parameters (velocity and

angular velocity) as the control variables of the coupled system

model. Thus, a conversion between motion primitives and input

variables of the system model is not necessary.

3 Negotiation-based local trajectory
planner

The starting point of the negotiation-based cooperative

trajectory planner is the individual movement desire of each

agent. This corresponds to each agent’s own local trajectory

planning, which is independent of the partner’s behavior. The

FIGURE 4
System structure of the accompanying problem.

FIGURE 5
Set of sampled motion primitives.

Frontiers in Control Engineering frontiersin.org05

Schneider et al. 10.3389/fcteg.2022.1058980

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2022.1058980


local trajectory planning for the robot was implemented using the

base local planner algorithm (Marder-Eppstein and Perko, 2022).

This algorithm samples a discrete set of motion primitives pi �
[vi, ωi]T from a discrete set of velocity values and angular

velocity values. All non-colliding motion primitives are then

evaluated using a cost function JMP (index MP: motion

primitives), and the best evaluated motion primitive is

selected. The cost function JMP evaluates the distance di of

each motion primitive pi to the global path and the control

effort of the respective motion primitive v2i and w2
i by means of

the following expression:

JMP � w1 · d + w2 · v2 + w3 · w2, (4)
where the parameters w1,w2, and w3 are weighting factors. The

best-valued motion primitive p* is then determined by means of

p* � min
v,ω

JMP{ }. (5)

Figure 6 shows an example set of sampled motion primitives with

the best rated trajectory. This trajectory describes in the following

the ‘personal’ motion desire of the robot in each step. This

personal motion desire must then be compared to the human

motion desire. Figure 7 shows the subsystem of the robot’s local

trajectory planner. In order to compare the motion desire p* with

the human’s motion desire, a motion primitive estimation of the

human is first required (highlighted in yellow in Figure 7). This

estimates from the measured interaction force FInt a motion

primitive p that the human requires from the robot in order to

comply with the human’s motion request. This is denoted by the

index R (motion primitive for the robot) and the exponent H

(demand of the human): pHR .

3.1 Motion primitive estimation

The basic idea behind the motion primitive estimation is that

one agent exerts an interaction force on its partner (agent 2) to

make the overall system follow the motion request of agent 1.

With the interaction force FInt, agent 1 communicates to agent

2 what agent 2 should do to follow agent 1’s trajectory desire.

Thus, a mapping f: FInt → pA1A2,R
2 → R2 is sought, which

determines a motion primitive pA1A2 (control input of agent

2 demanded by agent 1) from the measured interaction force

FInt (system output of the coupled system) in order to follow the

motion request of agent 1. This is a classical control engineering

problem, namely, the search for a control law u(y) with an output

feedback. Due to the nonlinearities of the coupled system, this

control law is determined heuristically in the following.

Figure 8 shows an example interaction force FInt at the

contact point C of the human with the robot on the forearm

rest in the local robot coordinate system {rx, ry}. Here, rx always

points in the direction of motion of the robot. The interaction

FIGURE 6
Set of sampled motion primitives with the best rated trajectory p*.
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force FInt drawn in this local coordinate system has the

components [FInt,x, FInt,y]T. The interaction force provided by

the human is interpreted by the robot like the input of a joystick.

The example force FInt drawn in Figure 8 with FInt,x > 0 and

FInt,y > 0 (quadrant I) means that the robot should move to the

left and accelerate. An interaction force in quadrant II would

correspondingly require a rightward motion and acceleration.

Quadrant III also means a rightward motion but deceleration,

and quadrant IV correspondingly means a decelerating leftward

motion. The force component FInt,x can thus be considered in a

heuristic view as proportional to an acceleration a, and the

component FInt,y becomes correspondingly proportional to an

angular acceleration €α � _ω. Since in the present application

discrete velocity and angular velocity values are considered to

form a set of motion primitives, in the following, the velocity

changes are written as Δv and Δω. Thus, from the interaction

force, the change in the motion primitive Δp = [Δv,Δω]T is

interpreted with respect to the current executed motion

primitive.

The changesΔv andΔω are calculated as follows: a maximum

allowable interaction force FInt, max is introduced. Larger forces

imposed by humans are not considered. In the range 0 < FInt,x <
FInt, max or 0 < FInt,y < FInt, max, the proportional conversion into a

velocity change Δv or angular velocity change Δω takes place by

means of the following formulas:

Δv � sgn FInt,x( ) · min |FInt,x|, FInt,max( )
FInt,max

· vub − vlb( ) · fv (6)

Δω � sgn FInt,y( ) · min |FInt,y|, FInt,max( )
FInt,max

· ωub · fω. (7)

The fraction in Eq. 6, 7 calculates a percentage of force that

describes how much the acceleration or angular acceleration

change should be. If FInt,x = FInt,max is applied, this fraction

becomes one and represents a maximum change request. This is

multiplied by the maximum possible range of the control input

(vub − vlb), where the indices ub and lb mean upper bound and

lower bound, respectively. If vR = vlb holds and FInt,x = + FInt, max

is applied, vR (at fv = 1) changes to the largest possible velocity vub.

The sign function determines the sign of the acceleration

function. The factor fv ≥ 1 represents a parameter which

increases the sensitivity of FInt. If fv > 1 is chosen, Δv

FIGURE 7
System architecture of the accompanying problem with a detailed view into the local planning of the robot.
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increases faster and thus reacts more sensitively to values FInt,x <
FInt,max. The calculation rule for Δω results analogously. Since the

discrete set of angular velocities is symmetric about the origin

(ωub = −ωlb), the fraction is multiplied only by the maximum

positive angular velocity ωub. The sign of the angular velocity

change also results from the sign of the applied force. In case

|Δv| > vub − vlb resp. |Δω| > ωub, this is internally limited to vub −

vlb resp. ωub.

Equations 6, 7 together form the function

f: FInt → pA1A2,R
2 → R2, which estimates the motion primitive

pA1A2 from the applied interaction force FInt. From this, together

with the actual motion desire pA2* of agent A2, a motion

primitive pA2 must be determined based on negotiation (see

Figure 7). For this purpose, the components of the negotiation

model are explained as follows.

3.2 Negotiation of motion primitives

The humanmachine cooperationmodel by Rothfuß (2022) that

allows for emancipated decision-making processes consists of

several components. The model’s agent set P is defined by P =

{H, R} that is composed of the two agents, the human (H) and robot

(R). The other components are defined in this work as follows:

1. Negotiation protocol: The negotiation starts in an event-

based manner when the interaction force exceeds a threshold

value Fthresh. If this case occurs, it is obvious that the robot has

a different motion request than the human or that the human

wants to communicate a motion request to the robot. Since

the interaction force is a vector in the plane, the Euclidean

norm or two-norm of the interaction force FInt is compared

with the threshold value:

‖FInt‖2 >Fthresh. (8)

1. The use of the two-norm also ensures that a conflict is

detected in both directions: first, when both agents are

moving away from each other, and second, when the two

agents are moving toward each other. After the

negotiation has started, offers are exchanged

simultaneously since the interaction force acts on both

agents simultaneously too.

2. Negotiation deadline: As discussed in the previous section, it

does not make sense to consider a negotiation deadline in the

presented application. Therefore, this model component is

not considered here. Agreements are reached through a

behavior-based offer strategy with a reciprocal tit-for-tat

strategy (see as follows).

3. Offers: In the presented application, the exchanged offers

o between the agents are the exchange of motion

primitives p. However, these are not explicitly

communicated but are passed on to the other agent in

the form of the interaction force FInt, which can be seen as

a function g that transforms the offers o via the coupled

system: FInt = g(o). The motion primitives demanded

from the interaction force must then be decoded by the

other agent (o = g−1(FInt)), (see Section 3.1 on motion

primitive estimation). The decision set D is the discrete

set of which global path is followed: the path of the human

or the path of the robot.

4. Utility function: The utility function U for evaluating the

opponent’s offer is a function f: o → U,O → [0, 1] that

maps a utility U ∈ [0, 1] to every offer o, where offers in this

case are motion primitives p. This utility describes how

much the offer is useful for one agent to follow its desire to

move. Therefore, the cost function JMP (Eq. 4) builds the

starting point together with the actual motion desire p* of

the robot and the required motion primitive of the human

pHR . These two motion primitives form upper and lower

bounds for the robot with respect to the possible velocity

and angular velocity values. The motion primitives

between these upper and lower bounds form a window

of possible motion primitives, which is considered in the

following. The utility function U within these bounds is

normalized to the range between zero and one, where the

motion primitive pmin with the lowest utility in the

windowed utility range is assigned the value zero. The

motion primitive p* is assigned with the utility value

one. To do this, pmin must first be determined:

pmin � min
v,ω

JMP{ }, (9)
s.t. vlwb ≤ v≤ vuwb, (10)

FIGURE 8
Interaction force FInt in local robot coordinates.
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ωlwb ≤ω≤ωuwb, (11)
where the indices lwb and uwb stand for lower window bound

and upper window bound, respectively. These bounds result

from the two motion primitives p* and pHR that form the

boundary of the window.

Then, the utility function in the windowed region is

normalized, and U (d, v, ω) ∈ [0, 1] denotes the normalized

utility function with JMP(pmin) ≥ JMP(d, v, ω) ≥ JMP(p*) > 0.

U d, v,ω( ) � JMP pmin( ) − JMP d, v,ω( )
JMP pmin( ) − JMP p*( ) ,

v ∈ vlwb, vuwb[ ], ω ∈ ωlwb,ωuwb[ ].
(12)

5. Bidding Strategy: The bidding strategy specifies the

dependency, in which the target utility value Utarget ≤ 1 of

the robot decreases per negotiation round in order to

accommodate the human. A behavioral reciprocal tit-for-

tat strategy is implemented here as the bidding strategy. The

classical tit-for-tat strategy observes the behavior of the

partner over the last k steps and shows the same behavior

in percentage or absolute terms. In the presented

application, a reciprocal tit-for-tat strategy is to be

implemented for the robot, which yields more the more

unyielding the human behaves. In the reciprocal tit-for-tat

strategy applied here, the target utility Utarget value of the

robot should change depending on the concession of the

human. For this purpose, the utility loss UL is introduced

with Utarget = U (p*) − UL = 1 − UL. The utility loss UL

describes the extent to which an agent is willing to deviate

from its desired movement primitive per round. For the

reciprocal tit-for-tat strategy to be implemented, a function

is now sought that maps the partner’s behavior, i.e., its

concession to a utility loss UL.

Since the concession of the human cannot be measured

directly, it must be estimated indirectly via the robot’s own

behavior. If both agents move away from each other because

of their individual desire to move, the interaction force increases

and both agents are unyielding. If they move in parallel because

the global paths are parallel, the interaction force remains

approximately within a threshold range, and there is also no

concession. If the interaction force becomes smaller even though

the robot did not move toward the human, there is concession on

the part of the human. If the interaction force is smaller because

the robot moved toward the human, the robot is yielding.

Yielding of the robot toward the human is accompanied by a

loss of utility UL � U(p*) − U(p), UL ∈ [0, 1] because it has to

deviate from the best-valued motion primitive p*. If the robot

sticks to its motion path with p*, there is no utility loss. To

estimate the concession of the human, value pairs (UL|ΔI) (ΔI:
effect on interaction force) are formed over the last l steps using a

heuristic considering

d
dt
FInt � _FInt ≈ FInt t � k · T( ) − FInt t � k − 1( ) · T( ). (13)

The smaller the value ΔI, the higher the concession of the

human is:

• UL = 0 and ‖ _FInt‖< 0: the interaction force became

smaller, although the robot did not approach, ΔI = −2

and (UL| − 2).

• UL > 0 and ‖ _FInt‖< 0: the interaction force became smaller,

although the robot approached, ΔI = −1 and (UL| − 1).

• UL = 0 and ‖ _FInt‖≈ 0: the interaction force remained

approximately the same with the robot not approaching,

ΔI = 0 and (UL|0).

• UL = 1 and ‖ _FInt‖> 0: the interaction force increased, with

the robot not approaching, ΔI = +1 and (UL| + 1).

• UL < 1 and ‖ _FInt‖> 0: the interaction force became larger

despite the robot approaching, ΔI = +2 and (UL| + 2).

Summing up ΔI over the last l steps gives the sum

M ≔ ∑l
j�1

Ij. (14)

IfM = −2l, it is a very yielding human, and the robot can remain

compliant (UL = 0). If M = 2l, it is a very unyielding human and

the robot shall become all the more yielding UL. Based on M, this

reciprocal tit-for-tat behavior for UL is now calculated by means

of the function

UL �
0, M< 0

fM · 1

2l( )2 ·M
2, M≥ 0

⎧⎪⎪⎨⎪⎪⎩ . (15)

FIGURE 9
Quadratic function for UL to behave with reciprocal tit-
for-tat.
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For M = 2l, it follows UL = 1 and UL = 0 results for M ≤ 0. The

parameter 0 < fM ≤ 1 is introduced to increase the sensitivity of

UL. The function UL(M) is shown in Figure 9 for fM = 1.The next

offer of the agent o (k + 1) = p is then calculated by

p � min
v,ω

|U d, v,ω( ) − UL|{ }. (16)

6. Acceptance strategy: A motion primitive ok proposed by the

partner at time step k is accepted if the utility Uk(o) of the

motion primitive is higher than the utilityUk+1(o) of the motion

primitive that the agent would propose in the next step.

3.3 Existence of a solution

For the developed cooperative trajectory planner, it can be

said that an agreement for a joint movement between the human

and robot is always found. The problem formulation in Section 2

shows that conflicting direction requests between the human and

robot (e.g., humans want to go left and robots want to go right)

do not have to be considered because both agents are aiming for

the same goal and thus for the same general direction. Under this

condition, it must now be shown that the human and robot

always come to an agreement. This can be shown by considering

the conflict case. In this case, there would be an interaction force

‖FInt‖2 > Fthresh. According to (8), this triggers negotiation. Now,

it must be ensured that an agreement is reached in finite time,

which is generally achieved by a mutual loss of utility. The

extreme case corresponds to a completely unyielding human

not allowing any loss of utility. In this case, the robot has to adapt

to the movement request pHR of the human in finite time. Since

the boundaries of the setO of the utility functionU(o) are formed

by one’s own preferred movement request p* and the partner’s

movement request pHR , the movement primitive pHR is definitely

in the set O of considered motion primitives with JMP(pHR )≥ 0.

The bidding strategy presented in Section 3.2, with the reciprocal

tit-for-tat strategy, then ensures that pHR is executed after l steps at

the latest. This happens until the robot has approached the

human sufficiently close and ‖FInt‖2 ≤ Fthresh holds.

4 Simulative evaluation

In the following, the scenario shown in Figure 10 is used for

the analysis of three differently concessive patient types. In all

three cases, human behavior is simulated in the same way as

robot behavior: local path planning using the global path shown

in Figure 10 and the base local planner algorithm and

negotiation-based selection between own motion primitive

and the motion primitive requested by the robot. The human

bidding strategy is assumed to be constant in contrast to the

reciprocal tit-for-tat behavior of the robot. A constant UL,H is

specified in each case for the human. The robot applies the

reciprocal tit-for-tat strategy.

Figure 11A shows the cooperative scenario for a totally

unyielding patient who always follows his personal motion

request. This can be seen in the only small deviation between

the human’s global path and the executed trajectory. In the case

of the robot’s trajectory, it can be seen that it initially follows its

global path but then moves toward the human’s path and

subsequently maintains an approximately constant distance

from the human. On average over all simulation steps, the

mean value of UL,R is UL,R, mean = 0.543. This parameter can

be understood as a measure of howmuch the robot deviates from

its own desired movement and accommodates the human on

average over the entire simulation time. Its range of values is 0 ≤

FIGURE 10
Simulation scenario with a starting point in the bottom left
and target at the top.
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UL,R,mean ≤ 1, where UL,R,mean = 0 means that the robot always

executes the motion primitive that is demanded by the human,

and UL,R,mean = 1 means the constant selection of its own desired

motion primitive. Table 1 shows the mean value of the distance

between the human and robot dH,R,mean, the mean value of the

distance between the human and his global reference dH,ref,mean,

and the mean value of the distance between the robot and its

global reference dR,ref,mean for each simulation scenario. For the

first simulation scenario, the first line shows that on average a

distance of 0.573 m is maintained between the robot and the

human. The human deviates on average 0.098 m from its global

reference, whereas the robot deviates 0.345 m from its global

reference.

The second simulation is performed with an approximately

balanced concession between the human and robot and is shown

in Figure 11B. The constant utility loss of the human in this

scenario is set toUL,H = 0.12. Both agents go in themiddle of their

global wishes. It can be seen that there is a closer following of the

human’s global path at the beginning. After that, both actors

move toward the robot’s path before following the human’s path

more closely again toward the end. The reciprocal tit-for-tat-

strategy yields an average of utility loss of the robot ofUL,R, mean =

0.428. The second row in Table 1 shows the second simulation

scenario that on average, a distance of 0.506 m is maintained

between the robot and the human. The human deviates on

average 0.235 m from its global reference, whereas the robot

deviates 0.277 m from its global reference. These two deviations

show an approximately equal deviation of the human and robot

from their global references.

In the third simulation scenario in Figures 11A,C, significant

yielding behavior of the human is set with UL,H = 0.6. It can be

seen that both agents follow the path and motion request of the

robot (Figure 11C). The average utility loss of the robot here is

UL,R, mean = 0.284. The third row in Table 1 shows the third

simulation scenario that on average, a distance of 0.464 m is

maintained between the robot and the human. The human

deviates on average 0.578 m from its global reference, whereas

the robot deviates 0.083 m from its global reference.

The simulation results in Figure 11 show an adaptive

adjustment of the robot to the human’s motion request for

different degrees of human’s concession. If the human is very

unyielding, the robot adapts to the human’s trajectory. If the

human is very compliant, the overall system follows the robot’s

lead. If, on the other hand, the human is only compliant to a

FIGURE 11
Simulation results for three simulation scenarios. (A) Totally unyielding patient. (B) Yielding patient. (C) Totally yielding patient.

TABLE 1 Mean value of distance between the human and robot
dH,R,mean, the mean value of distance between the human and his
global reference dH,ref,mean, and the mean value of distance between
the robot and its global reference dR,ref,mean for each simulation
scenario.

Simulation number dH,R,mean dH,ref,mean dR,ref,mean

1 0.573 m 0.098 m 0.345 m

2 0.506 m 0.235 m 0.277 m

3 0.464 m 0.578 m 0.083 m
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certain degree, both find a compromise between their movement

wishes. These results confirm that a dynamic leadership role

allocation is possible in the context of accompanying a human.

5 Conclusion

In the present work, a negotiation-based local trajectory planner

that adapts to human behavior was implemented. For this purpose, a

conventional local trajectory planner was used together with a

negotiation-based human–machine interaction model from the

literature for repeated negotiation over motion primitives. For this

purpose, a different bidding strategy had to be introduced in the

human–machine interaction model to achieve agreement even in

applications without natural deadlines. In the presented application, a

novel reciprocal tit-for-tat strategy was implemented that adapts to

human behavior: If the human is very unyielding, the robot acts even

more yielding. If the human insists very little on his own desire to

move, the robot dictates the movement. This behavior was

successfully demonstrated in the simulative evaluation. As a result,

there is an automation behavior that adapts to human-in-the-lead

behavior if the human wishes to do so or it adapts to automation-in-

the-lead behavior if the human acts very yielding.

The work has only been tested simulatively so far and will be

evaluated practically in the next step. In the course of this, it is

particularly important to investigate how well the dynamic

adaptation of the leadership role performs with real people.

For this purpose, it must be investigated in particular to what

extent the human input signal can be considered a reliable

expression of the human’s desire to move or whether

additional uncertainties in the interpretation of the input

signal must be taken into account. In addition, dynamic

obstacles must be considered for real-world applications, and

a cooperative collision avoidance strategy must be implemented.
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