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Abstract – The notion of nonreciprocity, in essence when going forwards is different from going
backwards, emerges in all branches of physics from cosmology to electromagnetism. Intriguingly,
the breakdown of reciprocity is typically associated with extraordinary phenomena, which may
be readily capitalized on in the design of (for example) nontrivial electromagnetic devices when
Lorentz reciprocity is broken. However, in order to enable the exploitation of nonreciprocal-like
effects in the next generation of quantum technologies, basic quantum optical theories are required.
Here we present a versatile model describing a pair of driven-dissipative quantum resonators, where
the relative phase difference between the coherent and incoherent couplings induces an asymmetry.
The interplay between the diverse dissipative landscape —which encompasses both intrinsic losses
and dissipative couplings— and the coherent interactions leads to some remarkable consequences
including highly directional (or even one-way) energy transport. Our work proffers the tantalizing
prospect of observing dissipation-induced quantum directionality in areas like photonics or cavity
magnonics (spin waves), which may aid the design of unconventional nanoscopic devices.
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Introduction. – In perhaps one of the most profound
conversations in Confucianism, Tsze-kung asks “Is there
one word which may serve as a rule of practice for all one’s
life?” The Master replies “Is not shu (reciprocity) such a
word? What you do not want done to yourself, do not do
to others” [1].

In physics, reciprocity is a famous hallmark across the
entire discipline, from the equal and opposite quality of
Newton’s third law of motion [2] to the Lorentz reciprocity
in electromagnetism, which guarantees the same response
when the source and receiver are interchanged [3]. Intro-
ducing various types of asymmetries can lead to a treasure
trove of curiosities, which in optics precipitated the excit-
ing subfields of chiral plasmonics [4,5] and chiral quantum
optics [6–8]. Within device physics, it has already been
shown that exploiting nonreciprocity can give rise to prac-
tical applications like high quality factor, large bandwidth
devices [9] (which are predicated upon the induced asym-
metric transport properties), optical isolators [10] (where
the governing scattering matrix is inherently asymmetric),
and even magnetic diodes [11] (where it was demonstrated

(a)E-mail: c.a.downing@exeter.ac.uk (corresponding author)

that the magnetic coupling between two coils above a con-
ductor —moving with constant velocity— may become
asymmetric, leading to a diode for magnetic fields).

Here we investigate a basic quantum optical model,
namely a pair of driven-dissipative resonators, with a
view to inducing asymmetric behaviour [12–15]. We con-
sider two oscillators, which are in general coupled both
coherently and incoherently, where the first resonator is
additionally coherently driven by a laser as sketched in
fig. 1. The admixture between the coherent and incoher-
ent couplings, which are in general complex quantities,
has profound consequences for directionality in the sys-
tem. There are four principle coupling regimes of our
model: i) coherent coupling, where the direct hopping
between the resonators dominates (gray rod in the fig-
ure), ii) dissipative coupling, where incoherent coupling
between the resonators is of primary importance (as me-
diated by their common heat bath, the blue disk in
the figure), iii) unidirectional coupling, where the cou-
pling between the resonators is completely one-way, and
iv) asymmetric coupling, where the mixture of coherent
and incoherent coupling leads to asymmetries in the in-
teractions between the resonator pair (such that this case
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Fig. 1: A sketch of a pair of driven-dissipative resonators. The
first resonator (red pillar) is driven by a laser with amplitude
Ω, while the second resonator (green pillar) is undriven (cf.
eq. (1)). The coherent coupling (of magnitude g and phase θ)
between the resonators is represented by the gray rod, while the
dissipative coupling (of magnitude Γ and phase φ) is mediated
by the common bath (blue disk), cf. eq. (2). The individual
loss γ of each resonator is associated with the red and green
disks.

generalizes the more extreme limiting case iii)). In what
follows, we provide a simple analysis of the population
dynamics in these regimes.

Model. – The driven coupled oscillators model repre-
sented in fig. 1 may be described by the Hamiltonian Ĥ
(with � = 1)

Ĥ = ωΔ(b†
1b1 + b†

2b2) + Ω(b†
1 + b1)

+ geiθb†
1b2 + ge−iθb†

2b1, (1)

where the n-th oscillator sustains bosonic excitations cre-
ated (destroyed) by the operator b†

n(bn). The coherent
oscillator-oscillator coupling is of strength g ≥ 0 and phase
θ. The first oscillator is driven by a laser of amplitude Ω,
and the detunings ωΔ arise in the chosen rotating reference
frame of the laser1.

We include dissipation in the model through a quantum
master equation, which describes the time evolution of the
density matrix ρ of the system via (see [16,17] and the SM)

∂tρ = i[ρ, Ĥ]

+
∑

n=1,2

γ

2
(2bnρb†

n − b†
nbnρ− ρb†

nbn)

+
Γeiφ

2
(2b2ρb†

1 − b†
1b2ρ− ρb†

1b2)

+
Γe−iφ

2
(2b1ρb†

2 − b†
2b1ρ− ρb†

2b1). (2)

The first line of eq. (2) is the von Neumann equation,
describing the unitary evolution of the closed system as
governed by the Hamiltonian Ĥ of eq. (1). The non-
unitary evolution is captured by the three lower lines of
eq. (2), which are written as Lindblad terms and describe

1Please see the Supplementary Material Supplementary
material.pdf (SM) for the background theory supporting the
results reported in the main text. Included is a systematic review
of a single driven-dissipative oscillator, before a detailed treatment
of a pair of coupled driven-dissipative oscillators. It includes
refs. [7,12,15,16].

the open quantum system sketched in fig. 1. In particular,
the second line on the right-hand side of eq. (2) accounts
for the intrinsic loss γ of each oscillator. The third and
fourth lines of eq. (2) track the dissipative (incoherent)
coupling between the pair of oscillators due to their shared
heat bath, which can generally be regarded as a complex
quantity of magnitude Γ and phase φ (subject to the con-
dition 0 ≤ Γ ≤ γ).

The first moments 〈bn〉 of the system described by
eq. (1) and eq. (2) may be found by the following pair
of coupled first-order equations (see the SM):

i∂t

(〈b1〉
〈b2〉

)
=

(
ωΔ − iγ

2 G−
G∗

+ ωΔ − iγ
2

) (〈b1〉
〈b2〉

)
+

(
Ω
0

)
, (3)

where we have introduced two generalized coupling con-
stants G+ and G−, hereby defined as

G± = geiθ ± 1
2
Γeiφ, (4)

which accounts for the admixture between the compet-
ing coherent and dissipative couplings, including their
magnitudes and phases. Most notably, this analysis
reveals that the oscillator-oscillator coupling may be
completely unidirectional, as was first noticed in the cele-
brated works on cascaded quantum systems [18,19]. When
G− = 0 in eq. (3) one-way coupling in the rightwards
direction (→) arises, and likewise when G∗

+ = 0 in
eq. (3) the coupling is completely leftwards (←). Amongst
the entire space of possible couplings, these two spe-
cial circumstances occur when the following conditions
on the coupling magnitudes and relative phases hold
(cf. eq. (4)):

Γ = 2g, θ − φ =

⎧⎪⎨
⎪⎩

π

2
(→) ,

3π

2
(←) .

(5)

Away from these twin conditions for unidirectionality, the
overall coupling is generally asymmetric. Wonderfully, the
basic theoretical model encapsulated by eq. (1) and eq. (2)
may be realized in an eclectic range of systems. For ex-
ample, in spin-photon systems such as cavity magnons
with coherent and dissipative couplings [20,21], in circuit-
QED setups utilizing superconducting qubits [22,23], in
plasmonic epsilon-near-zero waveguides [24], in metal-
lic nanoparticle architectures exploiting plasmonic re-
sponses [25], and with coupled cavity-based photonic
devices [12,26]. In what follows we keep our discussion

of the model general, keeping in mind specializations are
readily obtainable experimentally.

Coherent coupling. – Let us first consider the sim-
plest case of purely coherent coupling between the res-
onators (so that Γ = 0), as is represented in the sketch of
fig. 2(a). We are interested in the populations 〈b†

nbn〉 of
the resonators, which may be calculated from the second
moment analogue of eq. (3), as discussed in the SM.
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Fig. 2: The populations of a pair of driven-dissipative resonators. First column: sketches of the coherent, dissipative and
unidirectional coupling regimes. Second column: the scaled steady state populations limt→∞〈b†

nbn〉 × (γ/Ω)2 of the pair (red
and green lines), as a function of the coherent coupling strength g or the dissipative coupling strength Γ. The population
imbalance Δ is shown as thick orange lines (cf. eq. (8)). Third column: the dynamic populations 〈b†

nbn〉 of the pair, as a
function of time t (in units of the inverse loss rate γ−1). In the figure, the first resonator is driven with an amplitude Ω = γ/10,
in panel (c) g = 2γ and in panels (f) and (i) Γ = (4/5)γ.

At long time scales, the competition between the driv-
ing and dissipation leads to a well-defined steady state,
described by the analytic expressions (see the SM)

lim
t→∞〈b

†
1b1〉 =

(
2γΩ

γ2 + 4g2

)2

, (6)

lim
t→∞〈b

†
2b2〉 =

(
4gΩ

γ2 + 4g2

)2

. (7)

These populations, scaled by (γ/Ω)2, are plotted as a
function of the coherent coupling strength g for the first
resonator (red line) and second resonator (green line) in
fig. 2(b). Clearly, since only the first resonator is driven,
its steady state population is bounded by its maximum
of (2Ω/γ)2 when g � γ, and decreases to {γΩ/

(
2g2

)}2
when g 	 γ. In these limits, the second (and undriven)
resonator population is zero when g � γ and (Ω/g)2 when
g 	 γ, its maximum population of (Ω/γ)2 is instead met
when g = γ/2. Hence the population imbalance between
the resonators is a useful quantity to describe the system,
in the steady state it reads

Δ = lim
t→∞

〈b†
1b1〉 − 〈b†

2b2〉
〈b†

1b1〉+ 〈b†
2b2〉

. (8)

In this coherent coupling regime, Δ is a sign-changing
quantity, which is explicitly given by

Δ = 1− 8g2

γ2 + 4g2
, (9)

which observes the bounds of −1 ≤ Δ ≤ 1, as displayed
with the thick orange line in fig. 2(b). The critical point
of completely balanced populations across the resonators
Δ = 0 is reached when g = γ/2, and above this coupling
strength the second resonator has a larger steady state
population despite being undriven.

The full dynamic populations 〈b†
nbn〉 of the coupled res-

onators are given by the exact equations (see the SM)

〈b†
1b1〉 =

(
2γΩ

γ2 + 4g2

)2

+ 2
(

2γΩ
γ2 + 4g2

)2 {
2g sin (gt)

− γ cos (gt)
}

e− γt
2 +

{[
γ2 + 4g2

]

×
[
γ2 + 4g2 + 4Ω2

]
+

[ (
γ2 + 4g2

)2

+ 4Ω2
(
γ2 − 4g2

)]
cos (2gt)

− 16gγΩ2 sin (2gt)
}

e−γt

2 (γ2 + 4g2)2
, (10)
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〈b†
2b2〉 =

(
4gΩ

γ2 + 4g2

)2

−
(

4gΩ
γ2 + 4g2

)2 {
2g cos (gt)

+ γ sin (gt)
}

e− γt
2 +

{[
γ2 + 4g2

]

×
[
γ2 + 4g2 + 4Ω2

]
−

[ (
γ2 + 4g2

)2

+ 4Ω2
(
γ2 − 4g2

)]
cos (2gt)

+ 16gγΩ2 sin (2gt)
}

e−γt

2 (γ2 + 4g2)2
, (11)

which are plotted in fig. 2(c) as a function of time
(for the example case of g = 2γ). The characteristic
damped Rabi oscillations are shown, and the two different
time constants appearing in the above expressions (1/γ
and 2/γ) are characteristic of coherently driven systems.
This sets out the stall for the most well-known coupling
regime.

Dissipative coupling. – When the coherent coupling
is negligible (that is, g = 0), the system is in the dissipa-
tive coupling regime. This setup is sketched in fig. 2(d),
where the blue disk represents the common heat bath en-
abling the incoherent coupling. In the steady state, the
resonator populations are described by the simple forms
(see the SM)

lim
t→∞〈b

†
1b1〉 =

(
2γΩ

γ2 − Γ2

)2

, (12)

lim
t→∞〈b

†
2b2〉 =

(
2ΓΩ

γ2 − Γ2

)2

. (13)

In the weak dissipative coupling limit Γ� γ of course only
the first, driven resonator is populated, with (2Ω/γ)2. In
the opposing strong dissipative coupling Γ → γ limit the
bosonic nature of the resonators becomes readily apparent,
since both populations tend towards infinity, as is shown
in fig. 2(e). The population imbalance (cf. eq. (8)) is
always singled-signed and reads

Δ = 1− 2Γ2

Γ2 + γ2
, (14)

which exposes the necessarily non-negative bounds of 0 ≤
Δ ≤ 1, as show by the thick orange line in fig. 2(e). This
is in stark contrast to the coherent coupling regime, which
allows for positive and negative imbalances (cf. panel (b)).

The time-dependent populations are described by the
following expressions (see the SM):

〈b†
1b1〉 =

(
2γΩ

γ2 − Γ2

)2

+
(

cosh (Γt) + 1 +
4Ω2

γ2 − Γ2

)
e−γt

2

+ Ω2

{
e−(γ+Γ)t

(γ + Γ)2
+

e−(γ−Γ)t

(γ − Γ)2

}
− 4γΩ2

γ2 − Γ2

×
{

e− (γ+Γ)t
2

γ + Γ
+

e− (γ−Γ)t
2

γ − Γ

}
, (15)

〈b†
2b2〉 =

(
2ΓΩ

γ2 − Γ2

)2

+
(

cosh (Γt)− 1− 4Ω2

γ2 − Γ2

)
e−γt

2

+ Ω2

{
e−(γ+Γ)t

(γ + Γ)2
+

e−(γ−Γ)t

(γ − Γ)2

}
+

4ΓΩ2

γ2 − Γ2

×
{

e− (γ+Γ)t
2

γ + Γ
− e− (γ−Γ)t

2

γ − Γ

}
, (16)

as displayed in fig. 2(f) for the example case of reasonably
strong dissipative coupling Γ = (4/5)γ. A hallmark of this
coupling regime is the lack of any Rabi oscillations due to
the absence of any coherent coupling, and the supremacy
in population of the first resonator for any value of
the dissipative coupling strength Γ, as suggested by
eq. (14).

Unidirectional coupling. – The final special case
of coupling that we shall consider is that of unidirec-
tional coupling, and in particular when the conditions of
eq. (5) are met for the rightwards (→) direction only, as
represented by the picture in fig. 2(g). The lack of
back-action ensures that the first resonator population
is coupling independent (in this regime, the dissipative
coupling strength Γ = 2g is fixed) while the second
resonator population is enhanced due to the one-way na-
ture of the interaction. The steady state results are simply
(see the SM)

lim
t→∞〈b

†
1b1〉 =

(
2Ω
γ2

)2

, (17)

lim
t→∞〈b

†
2b2〉 =

(
4ΓΩ
γ2

)2

, (18)

which are plotted in fig. 2(h) as a function of Γ. As must
be the case, the first resonator population (red line) is
exactly that of a single driven-dissipative oscillator
(see the SM), while the second resonator presents
a quadratic scaling with the dissipative coupling Γ.
Therefore, the population imbalance (cf. eq. (8)) is given
by

Δ = 1− 8Γ2

γ2 + 4Γ2
, (19)

as plotted as the thick orange line in fig. 2(h). Unlike
in the dissipative coupling regime, this population im-
balance is a sign-changing quantity, being bounded by
−3/5 ≤ Δ ≤ 1. The critical point of Δ = 0 is
reached when Γ = γ/2, such that above this dissipative
coupling strength the undriven second resonator is
more highly populated that the driven and first
resonator.

The dynamic populations are given by the compact an-
alytical expressions (see the SM)

〈b†
1b1〉 =

(
2Ω
γ

)2

− 2
(

2Ω
γ

)2

e− γt
2 +

{
1 +

(
2Ω
γ

)2 }
e−γt,

(20)
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Fig. 3: Phase-dependent population imbalance of coupled
driven-dissipative resonators. The population imbalance Δ of
the pair in the steady state (cf. eq. (24)), as a function of
the relative phase θ − φ between the coherent and dissipative
couplings, and the magnitude Γ of the dissipative coupling (in
units of the loss rate γ). In the figure, the magnitude of coher-
ent coupling g = γ/2.

〈b†
2b2〉 =

(
4ΓΩ
γ

)2

−
(

4ΓΩ
γ

)2

(2 + γt) e− γt
2

+
(

Γ
γ

)2 {
(γt)2 + (2 + γt)2

(
2Ω
γ

)2 }
e−γt,

(21)

where eq. (20) is exactly the form for a solitary driven
resonator, as if the second resonator was not there,
due to the completely suppressed backaction. We plot
the expressions of eq. (20) and eq. (21) in fig. 2(i) for the
case of the rather strong coupling Γ = (4/5)γ. This cou-
pling arrangement allows for the second resonator popu-
lation (green line) to become dominant after only a short
timescale t ∼ 1/γ, which is maintained through to the
steady state and thus evermore.

Asymmetric coupling. – In general, the coupling
encompassed by the model of eq. (2) is asymmetric
—with the preceding unidirectional case being the most
extreme example. Most generally then (when g �= 0 and
Γ �= 0), the resonator steady states become dependent on
the relative phase θ − φ as follows (see the SM):

lim
t→∞〈b

†
1b1〉 =

(2γΩ)2

16g4 + 8g2γ2 + (γ2 − Γ2)2 + 8g2Γ2 cos (2 [θ − φ])
,

(22)

Fig. 4: Phase-dependent population dynamics of coupled
driven-dissipative resonators. The dynamic populations 〈b†

nbn〉
of the pair, as a function of time t (in units of the inverse loss
rate γ−1). The relative phase θ − φ between the coherent and
dissipative couplings is increased from 0 to π/2 to 3π/2 upon
descending the column of panels. In the figure, the first res-
onator is driven with an amplitude Ω = γ/10 and the magni-
tudes of the coherent and dissipative couplings are g = γ/2 and
Γ = γ, so that the magnitude unidirectional coupling condition
Γ = 2g is met (cf. eq. (5)).

lim
t→∞〈b

†
2b2〉 =

4Ω2
(
4g2 + Γ2 + 4gΓ sin [θ − φ]

)2

16g4 + 8g2γ2 + (γ2 − Γ2)2 + 8g2Γ2 cos (2 [θ − φ])
,

(23)

from which the analogous results in other, more special-
ized coupling regimes may be derived. The population

35001-p5



C. A. Downing and T. J. Sturges

imbalance measure (cf. eq. (8)) is given by the rich ex-
pression

Δ =

2γ2

16g4 + 8g2γ2 + (γ2 − Γ2)2 + 8g2Γ2 cos (2 [θ − φ])
− 1,

(24)

and is plotted in fig. 3, as a function of the relative phase
θ − φ and the dimensionless dissipative coupling strength
Γ/γ, for the example case where the magnitude of the
coherent coupling g = γ/2. Clearly, the map of fig. 3 ex-
poses the importance of the phase as the determiner of
the asymmetry of the coupling, since modulating θ − φ
allows for either positive (yellow to red) or negative (cyan
to blue) steady state population imbalances while holding
the magnitudes of all other parameters constant. In par-
ticular, the red area around θ − φ = π/2 and blue region
around θ − φ = 3π/2 are plausible from the knowledge of
the unidirectional phase conditions of eq. (5).

The dynamical populations are shown in fig. 4 for the
case of g = γ/2 and maximal dissipative coupling Γ = γ,
so that the magnitude unidirectional coupling condition
is met (cf. eq. (5)). In panel (a) the relative phase is
zero (θ − φ = 0) and the large incoherent-to-coherent
coupling ratio of Γ/g = 2 ensures that Rabi cycles are
not discernible within the damped population cycles. In
panel (b) the rightwards (→) unidirectional phase condi-
tion θ−φ = π/2 is fulfilled, such that the lack of backaction
sees a purely exponential decay of the first resonator pop-
ulation (red line) and strong enhancement of the second
resonator population (green line). Finally, in panel (c) the
leftwards (←) unidirectional phase condition θ−φ = 3π/2
is satisfied, such that the undriven second resonator is
never populated, in the most dramatic realization of the
directionality of the coupled system.

Conclusions. – We have studied a simple yet explana-
torily powerful model of a pair of driven-dissipative res-
onators with both coherent and incoherent couplings. Our
theory acts as a prototypical example of how dissipation-
induced directionality may arise in quantum optical sys-
tems, with dramatic implications. In particular, we have
shown how tailoring the relative magntiude and phase of
the coherent and dissipative coupling can lead to highly
directional and even one-way quantum transport. Our re-
sults provide perspectives for the quantum engineering of
coupled resonators [27], with applications for directional
devices such as isolators, circulators and quantum batter-
ies [28–30].
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