
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 22, NOVEMBER 15, 2022 7279

Improved Soft-Aided Decoding of Product Codes
With Dynamic Reliability Scores

Sisi Miao , Student Member, IEEE, Lukas Rapp , Student Member, IEEE,
and Laurent Schmalen , Senior Member, IEEE

Abstract—Products codes (PCs) are conventionally decoded with
efficient iterative bounded-distance decoding (iBDD) based on
hard-decision channel outputs which entails a performance loss
compared to a soft-decision decoder. Recently, several hybrid algo-
rithms have been proposed aimed to improve the performance of
iBDD decoders via the aid of a certain amount of soft information
while keeping the decoding complexity similarly low as in iBDD. We
propose a novel hybrid low-complexity decoder for PCs based on
error-and-erasure (EaE) decoding and dynamic reliability scores
(DRSs). This decoder is based on a novel EaE component code
decoder, which is able to decode beyond the designed distance of
the component code but suffers from an increased miscorrection
probability. The DRSs, reflecting the reliability of a codeword bit,
are used to detect and avoid miscorrections. Simulation results
show that this policy can reduce the miscorrection rate significantly
and improves the decoding performance. The decoder requires
only ternary message passing and a slight increase of computa-
tional complexity compared to iBDD, which makes it suitable for
high-speed communication systems. Coding gains of up to 1.2 dB
compared to the conventional iBDD decoder are observed.

Index Terms—Soft-aided hard decision decoding, product codes,
optical communication.

I. INTRODUCTION

PRODUCT codes (PCs) [2] are powerful code constructions
with high net coding gains (NCGs) that can be obtained

with low-complexity decoders suitable for e.g., high-speed op-
tical fiber communications. A PC codeword is a 2-D array where
every row and column is protected by a component code, which
is typically a Reed–Solomon (RS) code or a Bose–Chaudhuri–
Hocquenghem (BCH) code. In high-throughput applications,
PCs are typically decoded with iterative bounded-distance de-
coding (iBDD) where the component code is decoded by an
efficient algebraic component code decoder based on the hard-
decision channel output. iBDD is also often referred to as hard
decision decoding (HDD) of PCs.

Manuscript received 1 April 2022; revised 11 July 2022 and 15 August 2022;
accepted 17 August 2022. Date of publication 26 August 2022; date of current
version 16 November 2022. This work was supported by the European Research
Council under the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 101001899. Parts of this paper have been presented at
the Optical Fiber Communication Conference, 2022 [1]. (Corresponding author:
Sisi Miao.)

The authors are with the Karlsruhe Institute of Technology (KIT), Com-
munications Engineering Lab (CEL), 76187 Karlsruhe, Germany (e-mail:
sisi.miao@kit.edu; lukas.rapp3@student.kit.edu; schmalen@kit.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2022.3201951.

Digital Object Identifier 10.1109/JLT.2022.3201951

Soft decision decoding (SDD) of PCs, also known as turbo
product decoding (TPD) [3] improves the error-correcting abil-
ity of PCs by exploiting soft channel information and list-based
decoding. Typically, a 1-2 dB coding gain improvement can
be observed compared to HDD/iBDD [4]. However, the high
internal decoder data flow required by the soft-message passing
in TPD makes it challenging to adapt for ultra-high-speed optical
fiber communication systems operating at throughputs of 800
Gbit/s and beyond [5]. In contrast, HDD provides a significant
reduction in internal decoder data flow by only passing hard
messages. Recently, several hybrid SDD/HDD schemes have
been proposed which provide a performance/complexity trade-
off. The unifying idea of these algorithms is to use soft channel
information to aid the hard-decision decoder while keeping the
complexity similarly low as in iBDD.

One promising approach for hybrid SDD/HDD is to use
ternary messages and error-and-erasure (EaE) decoding. EaE
decoding with a stall pattern analysis was studied in [6], as-
suming miscorrection-free decoding. In [7], a thorough analysis
of iterative error-and-erasure decoding (iEaED) with extrin-
sic message passing (EMP) based on density evolution (DE)
takes miscorrections into account. The results show that iEaED
without miscorrection detection yields only small coding gains
compared to HDD. The binary message passing based on EaE
decoding for PCs (BEE-PC) proposed in [8] uses EaE decoding
with a relatively high-cost miscorrection control and yields the
best performance of hybrid SDD/HDD PC decoding so far. BEE-
PC is also based on the idea of combining properly scaled soft
channel reliability with the component code decoding decision,
which was proposed and developed in [9], [10], [11], [12], [13].

Soft-aided bit marking (SABM) decoder was proposed in [14]
and later improved to SABM with scaled reliabilities (SABM-
SR) in [15] for PCs. The bits with high channel log-likelihood
ratios (LLRs) are marked as highly reliable bits (HRBs) and
used for miscorrection detection based on the principle that a
BDD output is considered as miscorrection if it conflicts with
any HRBs. However, the effect of erroneous HRBs are difficult
to be eliminated without an effective update mechanism for the
HRBs.

In [16], anchor decoding (AD) was proposed. Unlike the
above-mentioned hybrid decoders, AD requires no soft channel
output but instead operates purely on the hard-decision channel
output. The anchor bits are dynamically set during decoding
and used for miscorrection detection as in SABM. However, the
achievable coding gain is limited due to wrongly marked anchor

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3483-7891
https://orcid.org/0000-0003-2746-2187
https://orcid.org/0000-0002-1459-9128
mailto:sisi.miao@kit.edu
mailto:lukas.rapp3@student.kit.edu
mailto:schmalen@kit.edu
https://doi.org/10.1109/JLT.2022.3201951

7280 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 22, NOVEMBER 15, 2022

bits, especially in the first decoding iterations. AD has also been
shown to be useful in reducing the decoding complexity and
improving the decoding performance when combined with list
decoding for low rate PCs [17], [18].

In this paper, we propose a novel hybrid decoding scheme for
PCs. We first propose a modified EaE decoder able to decode
beyond the minimum distance of the component codes, at the
cost of an increased miscorrection rate. The miscorrection prob-
lem is then solved with a novel miscorrection detection scheme
which resembles a combination of AD and SABM. We introduce
a new reliability measurement called dynamic reliability score
(DRS) that is initialized with the soft channel output and updated
during iterative decoding. The DRSs are then used to identify the
anchor bits and to detect miscorrections. We present the decoder
and a detailed analysis of the decoding behavior.

The remainder of the paper is organized as follows. In Sec-
tion II, the preliminaries are given. In Section III, we introduce
the proposed EaE decoder used as the component code decoder
for PCs and calculate the decoding ability of such decoder
assuming no miscorrections. In Section IV, we introduce the
DRS and describe the architecture of the proposed decoding
algorithm. The simulation results in Section V shows that the
proposed decoder yields improved decoding performance and
approaches miscorrection-free decoding. The reason of the de-
coding performance gain is heuristically illustrated in Section VI
with an example. In Section VII, we analyze the computational
and storage overhead. The last section concludes the paper.

Notation: We use boldface letters to denote vectors and ma-
trices, e.g., y and Y . The i-th component of vector y is denoted
by yi, and the element at the i-th row and j-th column of Y is
denoted by Yi,j . Let yi be the i-th row of a matrix Y . Z32 stands
for the set {0, 1, . . . , 31}. R stands for the set of real numbers
and R≥0 for the set of non-negative real numbers. For x ∈ R,
�x� is the floor function that gives the greatest integer less than or
equal to x. We use a superscript to denote the maximum number
of iterations carried out by an iterative decoder, e.g., iBDD10.

II. PRELIMINARIES

A product code (PC) codeword is a two-dimensional rectan-
gular array where every row and every column is a codeword
of a component code chosen to be same (n, k, t) code C.1 We
consider C being either a (2ν − 1, k0, t) binary BCH code or its
(2ν − 1, k0 − 1, t) even-weight subcode, both able to correct t
errors with standard bounded distance decoding (BDD). Let ddes

be the design distance of C (ddes ≤ dmin, with dmin the minimum
Hamming distance of C) and t = �(ddes − 1)/2�. The rate of the
constructed PC is r = k2/n2.

We consider a binary phase shift keying (BPSK) modulation
and assume that the codewords are transmitted over a binary
input additive white Gaussian noise (BI-AWGN) channel. For
any transmitted bit xi, the channel output is

ỹi = (−1)xi + ni,

1We only consider PCs with identical row and column codes in this paper.
However, the proposed decoding scheme naturally extends to general PCs where
the row and column code are not necessarily the same.

Fig. 1. Channel model of the EaE channel.

where ni is (real-valued) AWGN with noise variance σ2
n =

(2rEb/N0)
−1. Let Lc := 2/σ2

n. The channel LLR for the BI-
AWGN channel is given by

L(Ỹ = ỹ|X) = ln

⎛
⎝ 1√

2πσn
exp

(
−(ỹ−1)2

2σ2
n

)
1√

2πσn
exp

(
−(ỹ+1)2

2σ2
n

)
⎞
⎠ = Lc · ỹ,

proportional to the magnitude of the channel output. There-
fore, when performing a hard-decision at the channel output,
a received value ỹi with small magnitude is considered to be
unreliable. We define T , a configurable threshold, such that
values ỹi ∈ [−T,+T] are declared as erasures “?”. For |ỹi| > T ,
yi = sign(ỹi) by the usual HDD rule. Therefore, the channel
outputs are mapped to three discrete values as depicted in Fig. 1
where

δc = Q

(√
2r

Eb

N0
(T + 1)

)

is the error probability and

εc = 1−Q

(√
2r

Eb

N0
(T − 1)

)
−Q

(√
2r

Eb

N0
(T + 1)

)

is the erasure probability. When T = 0, the EaE channel reduces
to a binary symmetric channel (BSC).

An error-only BDD succeeds when its input word is in a
Hamming sphere

St(c) = {y ∈ {0, 1}n : d(y, c) ≤ t}
of radius t around a codeword c ∈ C where d(y, c) is the
Hamming distance between y and c.

We define the BDD decoding rule for a binary vector y ∈
{0, 1}n as

BDD(y) =

{
c ∃c ∈ C such that y ∈ St(c)
y otherwise.

Similarly, we define

S3t (c) := {y ∈ {0, ?, 1}n : 2 d∼E(y)(y, c) + E(y) < ddes},
as the Hamming sphere in {0, ?, 1}n for a codeword c ∈ C
where E(y) := |{i : yi = ?}| is the number of erasures of y and
d∼E(y)(y, c) is the Hamming distance between y and c at the
unerased coordinates of y.

PCs are conventionally decoded with an iterative decoding
scheme where the rows and columns of the PC block are al-
ternately decoded with the component code decoder DC until

MIAO et al.: IMPROVED SOFT-AIDED DECODING OF PRODUCT CODES WITH DYNAMIC RELIABILITY SCORES 7281

the maximum number of iterations L is reached. In the conven-
tional iBDD decoding scheme described in Algorithm 1 DC is a
BDD decoder. In this paper, we replace DC by an EaE decoder
described later in Section III.

Throughout this paper, we always let the result of a component
decoder DC be

w := DC(y) ∈ C ∪ y

where w = y in case of a decoding failure.
A miscorrection of y happens when DC(y) = c ∈ C but c �=

x, the transmitted codeword. For component BCH or RS codes
with small t, which are often used in fiber optical communication
systems, miscorrections severely degrade the decoding perfor-
mance of PCs. In such systems, miscorrections are frequent and
occur approximately with probability 1/t! [19], [20].

III. ERROR-AND-ERASURE DECODING

A. Error-and-Erasure Decoder (EaED)

In this paper, we propose the following error-and-erasure
decoder (EaED), which is a modification of [21], Sec. 3.8.1].
Let y ∈ {0, ?, 1}n be the received row/column vector, and let
w := EaED(y) be the decoding result.

If E(y) ≥ ddes, the EaED does not decode and declares a
failure, returning w = y, as a large number of erasures cannot
be handled by the decoder.

If E(y) < ddes, the erasure positions of y are first filled with
two complementary random vectorsp(1),p(2) ∈ {0, 1}E(y), i.e.,
p(1) + p(2) = (1, 1, . . . , 1), resulting in two words y(1),y(2) ∈
{0, 1}n. The pair of vectors (p(1),p(2)) is called a filling pattern

for the erasures. Note that p(1) and p(2) are not constant but
generated randomly in every execution of the EaED.

Then, two BDD steps are performed. Let

w(i) := BDD
(
y(i)

)
for i ∈ {1, 2}. The EaED output is determined based on the two
BDD outputs using the following rules:

Case 1: If both BDD steps fail, set w = y.
Case 2: If w(i) ∈ C for exactly one w(i), set w = w(i).
Case 3: If both BDD steps succeed, let

di = d∼E(y)

(
y,w(i)

)
for i ∈ {1, 2}. We chose w = w(1) if d1 < d2 and w = w(2)

if d1 > d2; If d1 = d2, one of the codewords w(i) is chosen at
random.

The EaED algorithm is summarized in Algorithm 2. Note that
the EaED reduces to a conventional BDD decoder when there
are no erasures, i.e., E(y) = 0.

Another commonly-used EaE decoder is a one-step EaE de-
coding algorithm2 proposed by Forney in [22]. It extends the
Gorenstein-Zierler algorithm [23], Ch. 6] and resolves errors
and erasures at the same time by solving the key equation. It
requires some modifications in the key equation solver inside
the decoder while EaED uses two legacy BDDs for the BSC
with some additional operations and control logic. Let w denote
the decoding result. Forney’s EaE decoder follows the decoding
rule given by

w =

{
c ∃c ∈ C such that y ∈ S3t (c)
y otherwise.

We do not use Forney’s EaE decoder in this paper because
an EaED, like Forney’s EaE decoder, can correct any joint EaE
pattern if y ∈ S3t (c) [7], Theorem 1].

Moreover, the EaED may correct some EaE patterns for
2 d∼E(y)(y, c) + E(y) ≥ ddes because all (or large enough num-
ber) of the erasures may possibly be filled with a correct transmit
value when generating y(1) and y(2). Thus, the EaED has poten-
tially higher error-correcting capabilities than the one-step EaE
decoder (see also Section III-B) but is also more prone to miscor-
rections without the constraint thatw ∈ S3t (y). Consequently, in
our previous work, the EaED did not yield a satisfying decoding
performance gain for PCs due to the lack of miscorrection
control [7]. In this paper, we deal with the miscorrection problem
to fully exploit the error-correcting potential of the EaED.

B. Failure Analysis of EaED With Ideal Miscorrection
Detection

In this section, we analyze the error-correcting ability of a
genie-aided ideal EaED following the decoding rule given by

ideal EaED(y) =

{
x if EaED(y) = x

y otherwise,

2This decoder was previously referred to as EaED+ in [7]. We do not use this
name to avoid confusion with DRSD+ proposed in the later sections.

7282 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 22, NOVEMBER 15, 2022

Fig. 2. Graphical illustration of the number of EaEs with a filling pattern
(p(1),p(2)) assuming the zero codeword was transmitted.

where x is the transmit codeword. It can be seen as an EaED
followed by an ideal miscorrection detection that discards all
miscorrections. Although such a decoder may be impossible
to realize, our simulation results in Section VI show that our
proposed novel decoder approaches its performance when the
number of erasures is moderate.

If no miscorrections happen, the success rate of one compo-
nent code decoding by ideal EaED can be calculated combinator-
ically. Let Ps(D,E) denote the ideal EaED success probability
when decoding with D errors and E erasures.

Case 1: If D > t or E ≥ ddes, Ps(D,E) = 0. When D > t,
miscorrection-free BDD decoding succeeds neither for y(1) nor
y(2). When E ≥ ddes, we do not decode (see Algorithm 2).

Case 2: Assume D ≤ t, E < ddes, the ideal EaED succeeds
if and only if

∃i ∈ {1, 2},BDD
(
y(i)

)
= w(i) = x.

Let e denote the number of positions in p(1) that differ from
the transmit codeword x. Fig. 2 illustrates the received word y
and both y(1) and y(2) where the erasures have been replaced
by the filling patterns. Under the assumption that x = 0 was
transmitted, e denotes the number of “1”s in p(1). Then, the
number of such positions in p(2) is E − e because p(1) and
p(2) are complementary. The number of errors in y(1) is D + e
and the number of errors in y(2) is D + E − e. Therefore, the
condition for correctability reduces to D + e ≤ t or D + E −
e ≤ t, i.e.,

e ∈ [0, t−D] ∪ [E +D − t, E]. (1)

Case 2.1: If 2D + E < ddes ≤ 2t+ 2, Ps(D,E) = 1 (with
ddes = 2t+ 1 for BCH codes and ddes = 2t+ 2 for their even-
weight subcodes). Assume that (1) does not hold, i.e., t−D <
e < E +D − t for some e, which is the same as saying t−D +
1 ≤ e ≤ E − (t−D)− 1. This means that 2D + E ≥ 2t+ 2,
contradicting 2D + E < ddes.

Case 2.2: If 2D + E ≥ ddes, we calculatePs(D,E) by count-
ing the number of cases where (1) holds. We first show that it
is impossible that e ≤ t−D and e ≥ E +D − t are true at
the same time. Assume that both conditions are fulfilled, then
E +D − t ≤ e ≤ t−D for some e. This leads to 2D + E ≤
2t. As ddes > 2t, this is impossible. Therefore, eithery(1) ory(2)

leads to the correct transmit codeword. If e ≤ t−D, there are

TABLE I
EAED SUCCESS RATE FOR DIFFERENT EAE PATTERN FOR A t = 2, dDES = 6

COMPONENT CODE

TABLE II
FORNEY’S EAE DECODER SUCCESS RATE FOR DIFFERENT EAE PATTERN FOR A

t = 2, dDES = 6 COMPONENT CODE

TABLE III
EAED SUCCESS RATE FOR DIFFERENT EAE PATTERN FOR A t = 2, dDES = 6

COMPONENT CODE IN � = 5 DECODING TRIALS

∑t−D
e=0

(
E
e

)
possible filling patterns. If e ≥ E +D − t, there are∑E

e=E−(t−D)

(
E
e

)
possible filling patterns. Therefore, there are

t−D∑
e=0

(
E

e

)
+

E∑
e=E−(t−D)

(
E

e

)
= 2

t−D∑
e=0

(
E

e

)

cases where decoding will succeed. In total, there are2E possible
filling patterns for the E erasures and each pattern is equally
likely. Thus, Ps(D,E) = 2

∑t−D
e=0

(
E
e

)
/2E in this case.

Therefore, we summarize

Ps(D,E) =

⎧⎪⎨
⎪⎩
1 2D + E < ddes,

0 E ≥ ddes or D > t,

21−E
∑t−D

e=0

(
E
e

)
otherwise.

For example, Table I gives the success rate of EaED when
decoding with various numbers of EaEs for a t = 2, ddes = 6
component code. When 2D + E ≥ ddes, the success probability
decreases with an increasing number of EaEs. However, the
values are not zero as for the one-step EaE decoder by Forney
(Table II). The advantage of ideal EaED becomes larger during
iterative decoding, where new, independent filling patterns are
chosen each time a codeword is decoded. With ideal miscorrec-
tion detection, if the success probability of one EaED step is Ps,
the probability of success after � decoding trials is 1− (1− Ps)

�.
For example, Table III shows the success probability after � = 5
decoding trials for EaED with ideal miscorrection detection.
This also proves that random filling patterns (p(1),p(2)) are
crucial for the performance of the proposed decoder. As the
number of EaEs is reduced during the PC decoding process,
the actual success rate can be potentially even higher. Moreover,
the decoding success probability 1− (1− Ps)

� approaches 1
with a sufficiently large number of iterations, which is not

MIAO et al.: IMPROVED SOFT-AIDED DECODING OF PRODUCT CODES WITH DYNAMIC RELIABILITY SCORES 7283

Fig. 3. Block diagram of the proposed DRSD.

Algorithm 3: Initialization of the Dynamic Reliability
Scores (DRSs).

1 Input: Ỹ ∈ Rn×n

2 z̃ ← reshape (Ỹ) // (2)
3 z ← sort |z̃| ascendingly
4 σ(·)← permutation function of the indices
5 S ← assign DRS according to z // (3)
6 Output: S ∈ {9, 10, . . . , 24}n×n

realistic in practice. Thus, we only use 10 decoding iterations of
the ideal EaED when using it as a benchmark.

IV. DYNAMIC RELIABILITY SCORE (DRS) DECODING

To represent and update the reliability of a bit in the PC block,
we introduce a reliability measure called DRS, which is stored
in an additional register separately from the PC codeword. The
DRS reflects the reliability of a bit from both its channel LLR
and its behavior during decoding. We propose to represent the
DRSs by 5-bit integers in the range [0,31] (as we observe that
further increasing the number of representation levels does not
improve the performance of the proposed decoder significantly).
We introduce an anchor threshold Ta. All bits with a DRS > Ta

are classified as anchor bits (following [16]) during decoding
and are not allowed to be flipped by a component code decoder.
Note that the DRS is not a fully-accurate measurement of the
reliability, i.e., we cannot say that a bit with higher DRS must be
more reliable than a bit with lower DRS. However, we can say
that bits with DRS above the threshold Ta can be considered as
correct with high confidence. The DRS is used for miscorrection
detection in iterative decoding with EaED.

The block diagram and workflow of the proposed dynamic
reliability score decoder (DRSD) is shown in Fig. 3.

At the initialization, the received unquantized real-valued
channel output of the PC block Ỹ ∈ Rn×n is fed to two paths.
In the upper path, the initial value of the DRSs S is calculated
for the PC block. To do this, we first reshape Ỹ into a vector
z̃ = (z̃1, z̃2, . . . , z̃n2) ∈ Rn2

where

z̃n(i−1)+j = Ỹi,j (2)

Then the absolute value of z̃ is taken and sorted ascendingly,
resulting in a vector z = (z1, z2, . . . , zn2) ∈ Rn2

≥0 with

zi ≥ zj , ∀i > j,

where

zσ(i) = |z̃i|

and σ(·) is a permutation of the indices corresponding to the
sorting operation. Then, the initial DRSsS ∈ Zn×n

32 are assigned

7284 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 22, NOVEMBER 15, 2022

by

Si,j = 9 +

⌊
16 · (σ (n (i− 1) + j)− 1)

n2

⌋
, (3)

such that the initial DRSs are in the range of [9,24]. This process
is summarized in Algorithm 3. This initial DRS value is stored
in the DRS register. The anchor threshold Ta is set as the optimal
value found during simulation (see Section V).

In the lower branch, erasures are marked, i.e., Yi,j = ? if
|Ỹi,j | < T , with T (defined in Section II) being an optimiz-
able threshold. For non-erased bits, a usual hard-decision is
performed. The initial block Y ∈ {0, ?, 1}n×n is passed to the
iterative row and column decoder.

During iterative decoding, the rows and columns are decoded
alternately until the maximal number of iterations L is reached,
as in a conventional iBDD decoder. We replace the BDD decoder
by an EaED. Moreover, every EaED decoding step is followed by
the miscorrection detection step evaluating whether an anchor
bit is flipped by the EaED output. In this case, this decoder
output is discarded and the DRS for all the anchor bits in
conflict with this EaED output is reduced by 1. If a decoding
step does not flip any anchor bit, this EaED output will be
accepted while the DRS of all flipped bits is reduced by 1. If a
vector is already a codeword and thus no decoding is performed,
the DRS of every bit in it is increased by 1. This is based
on the observation that the longer a bit stays constant during
iterative decoding, the more reliable it is. A similar idea has
been exploited in AD [16]. The messages used for updating the
DRS are all set to 1 to enable a simple hardware implementation
of the DRS register avoiding the need for full adders. The DRS
values will be clipped to 0 and 31, respectively. In the case of
an EaED decoding failure, neither the codeword nor the DRS
is changed. In addition, the anchor threshold Ta is increased
by 1 after every five decoding iterations, such that a small
penalty is given for words that fail to decode consistently. With
the update of the DRSs, the anchor bits are reevaluated every
iteration. For DRSDL, the last L/5 iterations are performed
with plain iEaED. This is to eliminate the effect of erroneous
anchor bits with high DRS. After L iterations, the erased values
which have not been resolved are replaced with a random binary
value. We call the proposed decoder DRSD and the complete
algorithm of the proposed decoding scheme is summarized in
Algorithm 4.

Furthermore, when L is sufficiently large, (e.g. L = 20), we
propose an alternative termination option where the few final
decoding iterations are no longer plain iEaED but DRSD with
a very high and constant but optimizable anchor threshold T ∗a
(see Algorithm 4, lines 37-38). We call the resulting algorithm
DRSD+. The DRSD+ is motivated by the observation that most
of the correct bits will have very high DRSs after a sufficiently
large number of iterations (see Section VI). Consequently, when
a large T ∗a is used, the erroneous anchor bits are removed while
a relatively large set of correct anchor bits are still preserved,
resulting in a decoding performance improvement.

V. SIMULATION RESULTS

A. Preparation

We verify and demonstrate the performance of DRS decoding
using numerical examples. For the proposed DRSD, we consider
both L = 10 and L = 20 as 10 iterations are often used in
the literature for soft-aided PC codewords, but we observe that
DRSD can benefit from more than 10 iterations.

We determine the noise threshold as the minimal Eb/N0 with
which the target bit error rate (BER) of 10−4 after a fixed number
of iterations is achieved. For two decoders, we compare their
performance by calculating the noise threshold difference (gain)
Δ(Eb/N0)

∗. The noise thresholds are calculated numerically by
a Monte Carlo approach along with a binary search and both the
optimal erasure threshold T (Topt) and the optimal initial anchor
threshold Ta are found during the search. As the initial DRSs are
in the range of [9,24], the initial Ta is also in this range. More-
over, as a too small number of anchor bits does not contribute to
the miscorrection detection significantly, we narrow down the
search space for Ta to [9,15]. Then, the parameter optimization
for both T and Ta can be carried out by a grid search. The anchor
threshold Ta depends mostly on t. For L = 20, the estimated
optimal initial value of the anchor threshold is Ta = 9 for t = 2,
Ta = 10 for t = 3, and Ta = 12 for t = 4. For the (127, k, 4)
component codes, we exceptionally find Ta = 14. For L = 10,
the initial anchor threshold Ta is reduced by 1 for all component
codes. The optimal erasure thresholdsTopt are as shown in Fig. 4.
We observe that slightly varying T (within ±10%) does not
degrade the performance severely.

B. Noise Threshold Gain Δ(Eb/N0)
∗

The noise threshold gainΔ(Eb/N0)
∗ that a DRSD20 achieves

compared to an iBDD20 decoder is calculated and shown in
Fig. 4 with the non-transparent markers. We additional show the
noise threshold gain of EaED with ideal miscorrection detection
and L = 16 iterations compared to iBDD20 with the transparent
markers (the optimal threshold T may differ slightly but is not
plotted for the sake of clarity). We use L = 16 for EaED with
ideal miscorrection detection as it does not require the final
4 iterations of EaED to mitigate the risk of erroneous anchor
bits. The dotted line depicts the capacity gain of the BI-AWGN
channel compared to the hard-decision BSC. Note that when
a data point exceeds the dotted line, the code does not operate
beyond capacity. This simply means that the noise threshold gain
of DRSD compared to iBDD is larger than the capacity gain of
the BI-AWGN channel compared to the BSC. In general, for
PCs with various component codes, the noise threshold gain
of DRSD is similarly large as the noise threshold gain of EaED
with ideal miscorrection detection. This means that our proposed
decoder is nearly miscorrection-free. For larger t and higher code
rate, the gap between DRSD and the ideal case becomes even
smaller.

C. BER Results

In Fig. 5, we compare the residual post-decoding BER for
different decoders. We construct two PCs from even-weight

MIAO et al.: IMPROVED SOFT-AIDED DECODING OF PRODUCT CODES WITH DYNAMIC RELIABILITY SCORES 7285

Fig. 4. Simulation results of the parameter analysis: The optimal erasure thresholdTopt for DRSD20 found during numerical simulation is plotted in the left subplot.
The noise threshold gain that the DRSD20 achieves compared to iBDD20 is plotted in the right subplot with the non-transparent markers. The component codes are
(n, k, t)− BCH codes with n ∈ {127, 255, 511} and t ∈ {2, 3, 4} or their even-weight subcodes. The abscissa corresponds to the rate r of the constructed PCs.
Additionally on the right subplot, the transparent markers corresponds to the respective EaED with ideal miscorrection detection and L = 16 iterations (denoted
as “ideal EaED”). The dotted curve marks the capacity gain due to soft decision decoding (SDD) on the binary-input AWGN channel.

Fig. 5. BER vs. Eb/N0 (in dB) curve for product codes of rate 0.78 (28% overhead, component code C1, left plot) and 0.87 (15% overhead, component code
C2, right plot). The superscript of the labels denotes the maximum number of decoding iterations L.

subcodes of BCH codes denoted by C1(127,112,2) and
C2(255,238,2) with PC rates of 0.78 (28% overhead) and 0.87
(15% overhead), respectively. For reference, we show the results
of TPD [3], SABM-SR [15], BEE-PC [8], and AD [16] with the
data points provided in [8] and [15] where the component codes
are singly-extended BCH codes with parameters (128,113,2)
and (256,239,2) (hence with a small, negligible rate difference
compared to our codes). For iBDD, we observe that the de-
coding results of L = 10 and L = 20 do not have a noticeable
difference. Thus, we only show the results of iBDD 10. For both
PCs, an obvious gain compared to iBDD can be observed with
DRSD and the performance is further improved by running 20
iterations. With twice the number of iterations, our decoder be-
haves very closely to an EaED with ideal miscorrection detection
(denoted as “ideal EaEDL” in the figure) and has only a small
gap to the significantly more complex TPD. For the rate 0.78 PC,
we estimate, at a residual BER of 10−15, an NCG of 10.88 dB
(DRSD10) and 11.03 dB (DRSD20). The NCGs are obtained by
extrapolating the simulation results from Fig. 5 using berfit

in MATLAB assuming no error floor. For the rate 0.87 PC, the
conjectured NCGs are 10.51 dB and 10.59 dB respectively. The
modified DRSD+20 provides an additional 0.05 dB coding gain
compared to DRSD 20 without extra complexity. The optimal
erasure threshold for DRSD+20 is Topt + 0.2 with Topt the opti-
mal erasure threshold of DRSD20 and the optimized T ∗a = 24.
Compared to a plain iBDD decoder, the DRSD+20 yields 1.14
dB and 0.89 dB decoding gain for the rate 0.78 and rate 0.87
PCs, respectively. (As DRSD+10 does not improve the decoding
performance significantly, its results are not shown).

We observe that DRSD yields significantly better perfor-
mance when 20 iterations are used. The reason behind this is
that: first, the decoder needs to obtain a both large and reliable
set of anchor bits in the first few iterations of decoding as we will
show in Section VI. Second, assuming no miscorrections, the use
of random filling of the erasures ensures that the probability of
correctly decoding words with erasures rises with the number
of iterations as shown in Section III. Moreover, as Section VII
will show, using 20 iterations does not increase the decoding

7286 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 22, NOVEMBER 15, 2022

Fig. 6. BER vs. Eb/N0 (in dB) curve for product codes with component code
C1 and C2 when decoded with various modifications of DRSD. The superscript
of the labels denotes the maximum number of decoding iterations L.

complexity significantly. We conclude that it is much more
beneficial to use 20 decoding iterations.

D. The Importance of Random Filling Patterns

In Fig. 6, additionally to the BER results after decoding
with the proposed decoding scheme, we show the performance
when using deterministic filling vectors for the erased positions
within the EaED. The purple curves depict the decoding perfor-
mance using a DRSD but we replace the random filling pattern
(p(1),p(2)) in Algorithm 2 (line 5) with (0,1) as in [21], Sec.
3.8.1]. This degrades the decoding performance by more than
0.1 dB for both PCs. Moreover, we observe that when using
a deterministic value for p(1) and p(2), allowing 20 iterations
does not yield performance gains as large as we observe with
DRSD. This is due to the fact that with identical filling patterns,
row/column words which cause a decoding failure in early
iterations will still cause a decoding failure if its EaEs are not
corrected by the corresponding column/row code.

E. Choice of Parameters

In Section IV, we gave the algorithm description with a
predefined number of 32 DRS representation levels and an initial
DRS range of [9,24]. In this section, we provide some intuition
and numerical simulation results which support this choice of
parameters.

Figure 7 shows the decoding performance of DRSD20 with
different DRS representation levels. We consider the number
of levels in terms of the number of bits required for storage.
All thresholds inside the algorithm are scaled relatively to the
number of representation levels. If the number of representation
levels is smaller than 32, we observe a degradation of the
decoding performance. However, if a smaller storage space is
preferred, the DRSD algorithm can still be used with some loss
in decoding performance. As using 64 levels does not improve
upon 32 levels significantly, we choose 32 levels for the proposed
DRSD throughout this paper.

Fig. 7. DRSD20 decoding performance for a PC based on the (255,238,2)
even-weight BCH subcode with different DRS representation levels.

Fig. 8. DRSD20 decoding performance for a PC based on the (255,238,2)
even-weight BCH subcode with different initial DRS ranges [a, b].

Next, we consider the range into which the initial DRS are
distributed: first, the range should not be too small so that the
channel output reliability information can be fully exploited.
Second, it should not be too big either, otherwise, the updating
mechanism during iterative decoding would have too little im-
pact on the scores and thus cannot efficiently update the anchor
bits. We exemplarily show the performance for some ranges
[a, b] in Fig. 8 for 32 DRS representation levels. We observe that
an initial range that is too big or too small degrades the decoding
performance. Hence, we choose to use the initial range of [9,24],
as it is a good compromise between representing the soft channel
output and leaving sufficient room for increasing and decreasing
the scores.

VI. HEURISTIC PERFORMANCE ANALYSIS

In this section, we investigate the iterative decoding process
to show the connection between anchor bits and miscorrections.
This also illustrates the advantage of the DRSD+ termination
variant. Figure 9 shows the fraction of anchor bits, erroneous
anchor bits, and miscorrections during the decoding of a PC
with component code C2 and L = 20 iterations. The quantities
are provided for each half iteration which is defined as the
processing of decoding all the rows or all the columns of a PC
block once. The values are calculated by averaging the respective

MIAO et al.: IMPROVED SOFT-AIDED DECODING OF PRODUCT CODES WITH DYNAMIC RELIABILITY SCORES 7287

Fig. 9. Percentage of marked anchor bits, percentage of wrongly marked anchor bits, and average number of miscorrections in every iteration in the decoding of
a (255,238,2) even-weight BCH subcode for various Eb/N0. The solid oranges lines stand for DRSD20 and the dashed pink lines for DRSD+20.

quantities during the Monte-Carlo simulations which produced
Fig. 5.

The leftmost subfigure depicts the fraction of anchors in
each iteration and the middle subfigure depicts the fraction
of wrongly marked anchor bits for different values of Eb/N0

(the 0-th half iteration stands for the state after initialization
and before iterative decoding). According to Section V, we
set the initial anchor threshold to Ta = 9. Since there are 16
representation levels (in the interval [9,24]) for the initial DRSs,
the initial fraction of anchor bits (DRS > Ta) is always around
15/16 ≈ 93.8%. The number of erroneous anchor bits decreases
as Eb/N0 increases. The ratio of anchor bits increases during
iterative decoding due to the raise of DRSs for the bits that are
successfully decoded. At the same time, the DRS of the bits
where the row and column decoders disagree is reduced. This
reduces the number of erroneous anchor bits. Ta is increased
by 1 after every 10 half-iterations, corresponding to the drop in
both overall and erroneous anchor bits. As the last 4 iterations
of DRSD are plain iEaED and the DRSs are not used, the solid
lines stops after 32 half-iterations.

The rightmost subfigure in Fig. 9 shows the number of
miscorrections in each half iteration. For a poor Eb/N0 with
a high post-decoding BER, the DRS updates fail to raise
the ratio of anchor bits and decrease the ratio of erroneous
anchor bits sufficiently. Consequently, the number of mis-
corrections is high and even increases during decoding (due
to error propagation). However, in the waterfall region, our
decoder effectively prevents miscorrections. When Eb/N0 ≥
4.29 dB, nearly all decoded bits are marked correctly as anchor
bits after a few iterations, resulting in almost no miscorrec-
tions, whereas a plain iEaED without miscorrection detection
will have more than a hundred miscorrections in each iter-
ation given the same Eb/N0 value, as we observed during
experiments.

As shown in Fig. 9, the number of miscorrections in the last
few plain iEaED decoding iterations is relatively high. However,
we observe that without these termination iterations, the decod-
ing performance suffers from a high error floor due to erroneous
anchor bits. The DRSD+ termination option removes almost

all erroneous anchors with the high anchor threshold T ∗a . This
reduces the number of miscorrections in the last iterations while
also eliminating the effect of erroneous anchor bits, leading to
the improved decoding performance.

VII. COMPLEXITY ANALYSIS

The proposed decoder does not require soft message passing.
The DRS register sends a binary message to the EaED indicating
whether a bit is an anchor or not. The EaED signals to the DRS
register if DRSs should be increased or decreased. During EaE
decoding, ternary messages are passed.

The major computational overhead of the proposed DRSD
compared to iBDD is the usage of EaED, where the presence
of erasures in a component word entails two BDD steps. This
increases the overall number of BDD steps, especially in the first
few iterations, before the erasures are resolved. Words without
erasures can be decoded with simple BDD. The additional
storage for DRSs is relatively small as the DRSs are stored
using 5-bit integers. As the main cause of the computational
overhead is the increase in the number of BDD steps, we show
in Fig. 10 an exemplary comparison of the BDD steps in the
decoding of a PC with component code C2. See Fig. 5 for the
decoding performance of this code. We record the number of
BDD steps used in three decoding schemes. One is the conven-
tional iBDD10, which serves as a baseline. Then we plot the
results of DRSD10 and DRSD20 respectively. All the results are
normalized by (255 · 20), which is the total number of BDD
steps in the iBDD10 decoding process. Two facts cause the
normalized value to be less than 1: one is early termination due to
the decoding success of the entire PC block. Another one is that
we do not count the decoding of words with zero-syndrome, as
the actual decoding algorithm does not need to be carried out. In
the low Eb/N0 region, the DRSD decoder requires a relatively
large number of BDD steps. However, for larger Eb/N0, the
number of decodings steps is within the same order of magnitude
as for iBDD. We also observe that the effective number of BDD
steps in the DRSD20 scheme increases only slightly compared
to DRSD10. Other soft-aided decoding schemes such as the

7288 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 22, NOVEMBER 15, 2022

Fig. 10. Normalized number of BDD steps in decoding of a (255,238,2) even-
weight BCH code-based PC with iBDD and DRSD.

SABM-SR decoder [15] also require a number of BDD steps
that is likely within the same order of magnitude than DRSD.

VIII. CONCLUSION

We proposed a novel hybrid decoding scheme for PCs and
simulation results show that the proposed DRS decoder signif-
icantly improves the decoding performance of the conventional
hard decision iBDD for PCs with near miscorrection-free EaE
decoding. For two exemplary PCs of rate 0.87 and rate 0.78,
DRSD closes roughly 80% of the gap between hard-decision
iBDD and soft-decision TPD which outperforms other soft-
aided HDD schemes. Complexity analysis shows that the de-
coding complexity is similarly low as for conventional HDD
iBDD decoder. The high NCGs make this scheme a promis-
ing candidate for future low-complexity optical communication
systems.

One of the open questions is the error floor of the proposed
DRSD. With a proper choice of the parameters, we conjecture
that the proposed DRSD should not have a worse error floor than
a plain iterative EaE decoder, which has been investigated in [6]
for PCs with relatively small block lengths. The reason is that
DRSD does not introduce additional miscorrections compared
with the plain iterative EaE decoder. However, the EaE decoder
used in this work is different from the EaE decoder studied in [6].
Therefore, accurately calculating the error floor for decoding the
PCs with large block lengths that are used in this work remains
difficult and is left as future work.

ACKNOWLEDGMENT

The authors would like to thank Alex Alvarado and Alireza
Sheikh for providing the numerical BEE-PC simulation results
used in Fig. 5.

REFERENCES

[1] S. Miao, L. Rapp, and L. Schmalen, “Improved soft-aided error-and-
erasure decoding of product codes with dynamic reliability scores,” in
Proc. Opt. Fiber Commun. Conf., 2022, Paper W3H.2.

[2] P. Elias, “Coding for noisy channels,” in Proc. IRE Conv. Rec., Part IV,
1955, pp. 37–46.

[3] R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug. 1998.

[4] V. Inc., “ECC66100 series SD-FEC encoder/decoder cores,”
2017, Accessed: Jun. 01, 2022. [Online]. Available: https:
//www.viasat.com/content/dam/us-site/semiconductors/documents/
ecc_66100_datasheet_2_pgr_007_web_0_1126494.pdf

[5] H. Sun et al., “800 G DSP ASIC design using probabilistic shaping and
digital sub-carrier multiplexing,” J. Lightw. Technol., vol. 38, no. 17,
pp. 4744–4756, 2020.

[6] D. K. Soma, A. K. Pradhan, and K. Narayanan, “Errors and erasures
decoding of product codes for optical transport networks,” IEEE Commun.
Lett., vol. 25, no. 8, pp. 2482–2486, Aug. 2021.

[7] L. Rapp and L. Schmalen, “Error-and-erasure decoding of product and
staircase codes,” IEEE Trans. Commun., vol. 70, no. 1, pp. 32–44,
Jan. 2022.

[8] A. Sheikh, A. G. i. Amat, and A. Alvarado, “Novel high-throughput decod-
ing algorithms for product and staircase codes based on error-and-erasure
decoding,” J. Lightw. Technol., vol. 39, no. 15, pp. 4909–4922, 2021.

[9] A. Sheikh, A. G. i. Amat, and G. Liva, “Iterative bounded distance decoding
of product codes with scaled reliability,” in Proc. IEEE Eur. Conf. Opt.
Commun., 2018, pp. 1–3.

[10] A. Sheikh, A. G. i. Amat, and G. Liva, “Binary message passing de-
coding of product-like codes,” IEEE Trans. Commun., vol. 67, no. 12,
pp. 8167–8178, Dec. 2019.

[11] A. Sheikh, A. G. i. Amat, G. Liva, and A. Alvarado, “Refined reliability
combining for binary message passing decoding of product codes,” J.
Lightw. Technol., vol. 39, no. 15, pp. 4958–4973, Aug. 2021.

[12] A. Sheikh, A. G. i. Amat, G. Liva, C. Häger, and H. D. Pfister, “On
low-complexity decoding of product codes for high-throughput fiber-optic
systems,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process., 2018,
pp. 1–5.

[13] A. Sheikh, A. G. i. Amat, and G. Liva, “Binary message passing decoding
of product codes based on generalized minimum distance decoding,” in
Proc. IEEE 53rd Annu. Conf. Inf. Sci. Syst., 2019, pp. 1–5.

[14] Y. Lei et al., “Improved decoding of staircase codes: The soft-aided
bit-marking (SABM) algorithm,” IEEE Trans. Commun., vol. 67, no. 12,
pp. 8220–8232, Dec. 2019.

[15] G. Liga, A. Sheikh, and A. Alvarado, “A novel soft-aided bit-marking
decoder for product codes,” in Proc. Eur. Conf. Opt. Commun., 2019,
pp. 1–4.

[16] C. Häger and H. D. Pfister, “Approaching miscorrection-free performance
of product codes with anchor decoding,” IEEE Trans. Commun., vol. 66,
no. 7, pp. 2797–2808, Jul. 2018.

[17] C. Senger, “Improved iterative decoding of product codes based on trusted
symbols,” in Proc. Int. Symp. Inf. Theory, 2019, pp. 1342–1346.

[18] C. Senger, “On list decoding of generalized Reed-Solomon codes under
partial codeword knowledge,” in Proc. IEEE 12th Int. ITG Conf. Syst.,
Commun. Coding, 2019, pp. 1–5.

[19] R. McEliece and L. Swanson, “On the decoder error probability for
Reed-Solomon codes (corresp.),” IEEE Trans. Inf. Theory, vol. 32, no. 5,
pp. 701–703, Sep. 1986.

[20] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[21] T. K. Moon, Error Correction Coding - Mathematical Methods and
Algorithms. Hoboken, NJ, USA: Wiley, 2005.

[22] G. Forney, “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. 11,
no. 4, pp. 549–557, Oct. 1965.

[23] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

https://www.viasat.com/content/dam/us-site/semiconductors/documents/ecc_66100_datasheet_2_pgr_007_web_0_1126494.pdf
https://www.viasat.com/content/dam/us-site/semiconductors/documents/ecc_66100_datasheet_2_pgr_007_web_0_1126494.pdf
https://www.viasat.com/content/dam/us-site/semiconductors/documents/ecc_66100_datasheet_2_pgr_007_web_0_1126494.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

