

Experimental plans to validate the He-II based payload cooling

<u>Xhesika Koroveshi</u>, Piero Rapagnani Valentina Mangano, Steffen Grohmann

28-30 September 2022 GWD Vac'22 (Elba)

He-II based payload cooling for ET-LF

X. Koroveshi (2022) - Feasibility of He-II suspensions based on thermal noise modelling

Cryogenic supply box V57

Karlsruhe Institute of Technology

He supply capillaries:

L. Busch (KIT, 2021)

Cryogenic supply box \leftrightarrow Payload (i.e. suspension

Length ~ 10-20 m \rightarrow cryogenic supply box away from cryostat tower to reduce vibration input

4 30.09.2022 Experimental plans to validate the He-II based payload cooling

Experimental validation of concept

Experimental setup requirements

Mechanical losses in suspensions (theoretical):

 $\Phi_{\text{fiber}}(\omega) = \Phi_{\text{bulk}} + \Phi_{\text{thermoelastic}}(\omega) + \Phi_{\text{surface}} + (\Phi_{\text{clamping}})$

Quality factor (Q) measurements define the actual losses

- Ring-down method as measurement concept
- Identification of the specific contributions to the total measured Q_{tot} is non-trivial:
 - Sensitive measurements \rightarrow Step-by-step complexity increase of measurements

Possible stages of experimental validation

Q-Measurements of suspension:

- I. As a simple suspension rod (room-temperature & cryogenic)
- II. As an empty suspension tube (room-temperature & cryogenic)
- III. As a He-II-filled suspension tube

Q-Measurements stages

20.00.2022

8 30.09.2022 Experimental plans to validate the He-II based payload cooling

Q-Measurement experimental setup

Q-Measurement Cryostat

Properties:

Mechanical design

- Same cryostat (test stand) for Stages I-III
 - At RT
 - Cryogenic
- Bottom-to-top design to facilitate He-II experiments (Stage III)
- Cooling strategy
 - Cryocooler cooling, simplier and cost-efficient
 - Outer shield: CCST 1 e.g. 100 W @ 60 K
 - Inner shield: CCST 2 e.g. 2.7 W @ 4.2 K
 - Sample cooling: faster via Helium contact gas

He-II supply

- Compact He-II refrigeration system (in-house)
- $\dot{Q} \approx x \cdot 100 \text{ mW}$

Q-Measurement Cryostat

Instruments

- Excitation/sensing :
 - Combination: PZCs (contact) and contactless concept
 - Excitation of the flexural mode of the tube
- Temperature sensors on:
 - Shields
 - Suspension clamp
 - Suspension tube
 - Test mass (TM)
- Dimensions and measurements
 - Measurements @ T = 4.2 300 K (Stages I-II),
 - @T = 2 K (Stage III)
 - Load ~ 300-400 kg: CuW as possible material for TM
 - Length of tube/rod: 1.0 -1.2 m

Q-Measurement experiments - Stage I

Bulk suspension tube (RT)

- $_{\odot}$ Measurements without and with load (300-400 kg)
- $_{\odot}$ $\,$ Determination of load's effect on dissipation

- Bulk suspension tube (cryogenic)
 - o Measurements without and with load

Q-Measurement experiments - Stage II

- Hollow suspension tube (RT)
 - o Determination of hollow tube's effect
 - o Measurements without/with load

- Hollow suspension tube (cryogenic)
 - o Determination of temperature's effect
 - o Measurements without/with load

Q-Measurement experiments - Stage III

He-II-filled suspension tube

• Effect of He-II and of the clamping of He-II supply path

- He-II-filled suspension tube
 - \circ Load end temperature and effect of tension on dissipation

Additional vibration measurements

Prospects

16 30.09.2022 Experimental plans to validate the He-II based payload cooling

Cryogenic payload experiments

Conclusions

1) Q-Measurements of suspension

- I. As a simple suspension rod (room-temperature & cryogenic)
- II. As an empty suspension tube (room-temperature & cryogenic)
- III. As a He-II-filled suspension tube

2) Cryogenic payload experiments for investigating:

- Thermal behaviour (instationary & stationary)
- Cooling Interface to He infrastructure
- Thermal noise behaviour
- System control concepts (actuation+sensing)

Thank you for your attention

Xhesika.koroveshi@kit.edu