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Abstract

This paper presents a novel computational framework for simulating finite deformation elasticity in Eulerian space
combined with the multi-phase field method. A key novel aspect of this work is the phase-field mapping method
developed to track interfaces (e.g. grain boundaries) in a multi-phase system (e.g. electrode microstructure) undergoing
large deformation. The elastic material response is modelled employing a polyconvex, cubic anisotropic material law
which has been implemented in the multiphase-field context and validated using benchmark cases. The performance
of this framework is demonstrated through representative numerical examples. The model is well-suited for the
simulation of multi-crystalline samples where different phases may possess distinct elastic properties and anisotropies
which is shown exemplarily for the electrode calendering process at the nano-scale. Additionally, Kelvin-Voigt
visco-elasticity is included in the model which allows for simulation of large deformation in an aerogel under
compressive load and, furthermore, enables treatment of fluid structure interaction within a common configuration.
Finally, a broad outlook of technical applications as well as model extensions is given.

Keywords: finite deformation elasticity, multiphase-field method, reference map, fluid structure interaction

1. Introduction

Microstructural processes which are driven by large elastic and plastic deformations can be found in various
fields of engineering, be it biomechanics or battery technologies, among others. In the field of biomechanics, certain
biological cells (e.g. blood cells) undergo deformations in the finite strain regime and exhibit a highly non-linear
viscoelastic material behaviour [1]. The elastic properties of these cells serve as an indicator of their state, thereby
facilitating the diagnosis of diseases [2, 3]. In the field of battery technologies, large mechanical deformations can
occur during fabrication as well as during cycling. During battery cycling, some electrode materials undergo large
elastic deformations which can lead to fracture or other phase transformation phenomena. The difference in volume
between the fully charged and discharged states is about 17% in NaFePO4 [4], 80% in the lithium-sulfur conversion
reaction [5], and as high as 300% in silicon-based anodes for lithium batteries [6]. Furthermore, battery electrodes
exhibit a porous microstructure, which introduces additional challenges for modelling the deformation processes.
All the above-mentioned applications are of high technological interest, and thereby demand a better fundamental
understanding of the underlying microstructural processes.

Numerical modelling of these processes not only poses the computational challenge associated with large
deformations, but also of strongly coupled physical fields and interactions. Battery materials are governed by a
rich interplay of electro-chemical and elastic forces [7] and the consistent coupling compliant with thermodynamic
principles is a non-trivial task. Over the past years, the phase-field method (PFM) has established itself as a powerful
tool for investigation of phase transformation processes driven by various physical forces (e.g. capillary, chemical and
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mechanical) as described in review articles [8–10]. An important feature in this context is its capability to naturally
describe the motion of evolving interfaces driven by these forces without having to explicitly track the position
of the interface. This is achieved by replacing the sharp interface between neighbouring phases with a smooth
diffuse interface region, where physical fields vary continuously and phase-inherent quantities are interpolated.
Some prominent applications of this approach include solidification [11], anisotropic crystal growth [12, 13] and
dissolution [14], multi-phase flow [15, 16] as well as intercalation in battery materials [6, 17, 18]. In the field of solid
mechanics, the PFM is nowadays well-established for the modelling of fracture mechanics, see e.g. [19–21], where
a crack phase-field is introduced as a regularization of the corresponding sharp interface problem. This approach
naturally describes crack initiation and branching and has been included into classical FEM frameworks such as
ABAQUS [22]. The investigation of solid-solid phase transitions as in martensitic steels, on the other hand, has
generated a large variety of phase-field models that combine a diffuse parametrization of phase boundaries (e.g.
grains) with mechanical driving forces [23, 24]. These models often rely on a multiphase-field description [9, 25, 26]
to describe phase transitions within polycrystalline microstructures [27]. Different interpolation methods of stresses
in the diffuse interface region have been discussed [28, 29], also in the context of large deformations in a Lagrangian
framework [30–32].

Efforts to account for large mechanical deformations within the PFM have been undertaken using different
approaches. For instance, the work by Chen et al. [6] is based on the classical Cahn-Hilliard equation. They utilized
the local concentration as an order parameter which is coupled to large elasto-plastic deformations. They pointed
out that, in order to determine the local concentration and also distinguish between the crystalline and amorphous
states, two fields (i.e. concentration and an order parameter) are necessary. The phase-field variables (also called
order parameters) are non-conserved and, thus, their evolution is governed by Allen-Cahn equations. Modelling of
processes which include more than two phases, like electrode calendering, cycling of polycrystalline materials and
fluid interaction with various solid bodies, calls for a consistent description of multiple order parameters. While these
multi-physics are the motivation for our work and will be addressed in the future, the present work is mainly focused
on large deformation mechanics while the phase variables are employed for parametrization of various physical
phases (e.g. grain with varying orientation or different stiffnesses). However, inclusion of phase transformations
within this framework is straight-forward.

Generally, finite deformation problems can be solved in two different frames of reference:

1. Lagrangian description: This frame of reference is set in the material configuration. Formulations in this material
coordinates treat free and moving boundaries in a natural manner. However, it suffers from large numerical
errors if the mesh is highly distorted. Typical applications include simulation of large deformations using the
finite element method [33].

2. Eulerian description: This approach is based on the current configuration and, therefore, is free from mesh
distortion. It is commonly used in fluid mechanics and thus in the field of fluid structure interaction (e.g.
biological applications [34]), it can be beneficial to also treat the solid in the same configuration and thus have
one common mesh [35, 36]. Operation in Eulerian space requires the consideration of convective terms, which
poses a numerical challenge in the sense that many discretization schemes feature numerical diffusion and
introduce errors to the convective transport of constitutive variables.

In this work, we pursue an approach based on the Eulerian frame of reference for various reasons. Firstly, the
multiphase-field framework employed here is based on a equidistant Cartesian grid, where the set of coupled partial
differential equations are discretized using finite difference schemes. This procedure easily accounts for representative
volume elements (RVEs) which are often encountered in microstructure simulation, and furthermore, allows for
massive parallelization using Message passing interface (MPI) [37]. Moreover, as the PFM naturally includes interface
tracking in the evolution of order parameters, no additional computationally challenging method is needed. At very
large deformations, the Eulerian frame may be more robust than the Lagrangian counterpart, as mesh distortion is
omitted [38]. Finally, consideration of fluid structure interaction within a single configuration is enabled, since fluid
flow is typically treated in an Eulerian framework. Applicability is shown for elastic bodies immersed in weakly
compressible fluid within this work.

Multiphase-field approaches that are based on Allen-Cahn equations and include large deformations in the
Eulerian frame can also be found in literature. For instance, Borukhovich et al. [38] combined a spectral solver
on regular grids to compute multiple small deformation steps with a convection scheme, in order to solve large
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deformations in the Eulerian frame of reference. However, this approach is limited to periodic boundaries. Even
during pure elastic deformations, the phase-field evolution is utilized as an interface stabilisation mechanism, which
counteracts undesirable modelling artefacts like numerical diffusion and interface distortion [39]. These artefacts
occur due to numerical errors that are introduced by the discretisation of the convective terms of the balance equations.
However, such an approach hinders the correct interface movement and artificially lowers the interface velocity [38].

Another important aspect of modelling large deformations is the correct formulation of a constitutive relation. In
the case of rate formulations (hypo-elastic materials) the work-conjugacy of stress and strain measures needs to be
fulfilled [40]. The class of hyperelastic (Green elastic) materials on the other hand, is characterized by a potential
function that describes the stored free energy during deformation. Polyconvexity of this function is a sufficient
criterion for the existence of an equilibrium state for the elastic boundary-value problem [41]. While, some material
models like the Moonley-Rivlin and Odgen materials satisfy the criterion of polyconvexity [41], the widely used Sait
Venant-Kirchhoff law, which is geometrically non-linear but physically linear, does not [42]. Despite the fact that the
non-polyconvexity of the Saint Venant-Kirchoff material law has been shown as early as 1986 [42], many recent
works [43, 44] are still based on this constitutive relation due to its straight-forward implementation. It performs
decently well in cases of large rigid body motion (translation and rotation) combined with small strains but fails at
high strains due to its linearity. Some loads may lead to cases where the invertibility of the deformation gradient is
not ensured.

In the present work, we utilize a polyconvex constitutive relation for cubic materials based on the work of
Kambouchev et al. [45], and systematically demonstrate the material response of different multiphase materials
undergoing extremely large elastic deformations. Furthermore, we introduce a Phase-field Mapping approach to
circumvent the previously discussed discretization artefacts of the convective term. This allows us to reduce the
numerical errors induced by the convective scheme which result in distortion of diffuse interfaces, thereby severely
affecting the correct tracking of grain boundaries in deforming microstructures. Details will be presented in the
following sections, which are organized as follows: Section 2 discusses the computational method including the
model equations for I) kinematics, II) balance equations in the Eulerian space, III) constitutive relation, and IV) the
multiphase-field formulation in the context of large deformation. In Sec. 3, the implementation and performance of
the modelling framework are validated through representative numerical examples. Section 4 contains application
examples namely the battery electrode calendering on nano-scale, an aerogel under compressiv load, and the
deformation of a biological cell within a channel flow. Finally, the paper is concluded by recapitulating the important
highlights and scientific contributions of the present work, followed by an outlook for further extensions in Sec. 5.

2. Finite deformation elasticity in Eulerian framework

2.1. Kinematics
We consider the motion of a homogeneous body B in a continuum representation described by a motion function

χ : (X, t) 7→ x. The motion function maps each material point X in the initial configuration B0 at t = 0 to
the corresponding spatial point x in the current configuration B at any time t > 0, as depicted in Fig. 1. In the
Eulerian frame of reference, all fields are parametrized with respect to spatial points x, which correspond to the
current position of material points located at X in the initial configuration. The inverse motion function, or so-called
reference map ξ(x, t) = χ−1(x, t), maps the current position x (at t > 0) of a material point to its initial one X , and
thus

X = ξ (x, t) ,

as also illustrated in Fig. 1. In the present approach, we choose the inverse motion function ξ and spatial velocity v as
the primary variables, similar to the works of Kamrin et al. [36, 46]. As the initial position X of all material points is
constant with respect to time, an equation for the evolution of the inverse motion is derived by requiring the material
time derivative given by ˙(·) of the reference map ξ to be zero, thereby resulting in the following initial value problem

ξ̇ =
∂ξ

∂t
+ v · (∇ξ) = 0, ξ(x, t = 0) = x, (1)
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Figure 1: Initial and current configuration of a body B inside the spatially fixed computational domain Ω and illustration of the inverse motion
function ξ.

where the ∇ denotes the spatial gradient operator with respect to current position x. Eq. (1) represents a convective
transport equation for the reference map. In contrast to other widely used tensorial fields such as the deformation
gradient [47–49] or the left Cauchy-Green tensor [50] as primary variables, the reference map ξ is a vectorial quantity.
The numerical solution of the vectorial convective transport equation is computationally cheaper as compared to the
corresponding equations of tensor fields, which are based on the upper-convected Maxwell time derivative. In the
latter case, the overhead not only arises from the higher number of components, that need to be considered, but also
from an additional term entering the transport equation of tensor fields compared to the one of vector fields [50].
The deformation gradient in spatial parametrization is given in terms of the reference map by

F (x, t) =
(
∇ξ(x, t)

)−1
. (2)

In order to model coupled multiphysics phenomena involving e.g. thermal and diffusion processes, the corresponding
contributions to the deformation gradient (i.e. temperature dependent part FT (T ), chemical contribution Fc(c)
dependent on the concentration tuple c of the species, and so on) are separated by a multiplicative split. Thus, the
elastic deformation gradient Fel can be generally formulated as

Fel = FF−1
T (T )F−1

c (c) . . . , (3)

where the symbol (. . .) in eq. (3) indicates that further contributions could be accounted for. In the large deformation
regime, the absolute deformation measures namely the elastic left and right Cauchy-Green tensors (denoted by B
and C , respectively) are given by

B := Fel(Fel)
⊤ and C := (Fel)

⊤Fel.

2.2. Balance equations in the Eulerian space
The mechanics of materials is governed by the mechanical balance equations for mass and momentum. The

momentum balance in Eulerian space is given by

ρv̇ = ρb+∇ · σ, (4)

where ρ(x, t) denotes the current mass density, σ(x, t) represents the Cauchy stress tensor, and b(x, t) is a body
force (given per mass in ms−2 e.g. gravity). The balance of mass is ensured by requiring the material mass density
ρ0(X) to be time invariant in the initial configuration. It is related to the current mass density ρ via

ρ0 = Jρ, (5)

where J := det(F ) denotes the determinant of the deformation gradient, which represents a local volume change
in the current configuration with respect to the initial one. Note, that in the Eulerian framework, the quantities in
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eq. (5) are parametrized with respect to (x, t) and thus ρ0(X) = ρ0(ξ(x, t)) introduces a time dependency. The
material time derivative of the velocity v̇ in eq. (4) is given by

ρv̇ = ρ

(
∂v

∂t
+ v · ∇v

)
=

∂

∂t
(ρv) +∇ · (ρv ⊗ v) (6)

where the operator ⊗ denotes the dyadic product. The last part in eq. (6) is obtained by utilising the mass balance.

2.3. Constitutive law
In addition to the kinematic relations in Sec. 2.1, constitutive equations relating the stress and deformation are

required in order to complete the system of balance equations. The stored elastic free energy of a solid body under
mechanical loading should be at minimum in mechanical equilibrium. Consequently, the existence of an equilibrium
solution for the elastic boundary value problem (with arbitrary Dirichlet boundary conditions) needs to be ensured
by the choice of the respective material law. Therefore, the stored elastic free energy must satisfy the convexity
conditions (see Ball [41]). The elastic free energy density takes the form

fel(Fel) = g(Fel, adj Fel,detFel),

g being a convex function and adj() denoting the adjugate of a tensor. In the present work, we employ a free
energy formulation for materials with cubic symmetry proposed by Kambouchev et al. [45], that satisfies convexity.
The stored elastic free energy based on the Kambouchev law is formulated as a linear combination of polyconvex
monomials of the elastic right Cauchy-Green tensor C

fel(C) = −k1 ln(det(C)) + k2 det(C) + k3 tr
2(MC) + k4 tr(C), (7)

where tr(·) denotes the trace of a tensor. The tensorial object M in eq. (7) is a structural tensor representing the
material symmetry. For materials exhibiting cubic symmetry, M takes the following form

M =

3∑
ι=1

vι ⊗ vι,

where vι ∀ ι ∈ {1, 2, 3} denote the three orthogonal privileged directions of the cubic anisotropy. From the coefficients
ki ∀ i ∈ {1, 2, 4} in eq. (7) only two are independent. They are related to the Lamé constants λ and µ as by

k1 = (λ+ 2µ)/4, k2 = λ/4, k4 = µ/2.

The third coefficient k3 in eq. (7) accounts for the strength of cubic anisotropy in the material law, and serves as the
third material stiffness parameter in addition to the two Lamé constants. The anisotropic formulation with k3 ̸= 0 is
well-suited for simulating the material response of polycrystalline structures, where each crystal exhibits a random
crystallographic orientation in space. For the choice k3 = 0, the third term (containing structural tensor M ) in
eq. (7) vanishes, resulting in the isotropic formulation of the constitutive law. From the stored elastic free energy
function eq.(7), the second Piola-Kirchoff stress tensor S is computed as

S = 2
∂fel(C)

∂C
= 2
(
−k1C

−1 + k2 det(C)C−1 + 2k3 tr(MC)M + k4I
)
, (8)

where I denotes the second order identity tensor. In order to use this constitutive law within the Eulerian framework,
a formulation with respect to the Cauchy stress tensor σ is required. This can be derived from eq. (8) using the
transformation σ = (FSF T )/J . The transformation can be simplified in the absence of inelastic strains, i.e. F = Fel

holds, such that eq. (8) can be re-formulated in terms of the Cauchy stress as

σ =
2

J

(
k4B + (k2J

2 − k1)I + 2k3 tr(MC)FMF⊤
)
. (9)

5



Using the following relations derived from tensor algebra

FMF⊤ =

3∑
ι=1

Fvι ⊗ Fvι and tr(MC) =

3∑
ι=1

vι ·Cvι =

3∑
ι=1

Fvι · Fvι,

and substituting them into eq. (9), the final expression for the Cauchy stress tensor reads

σ =
2

J

k4B + (k2J
2 − k1)I + 2k3

3∑
ι=1

(ṽι · ṽι)ṽι ⊗ ṽι

 , (10)

where ṽι := Fvι denotes the transformed priviledged direction. Eq. (10) relates the Cauchy stress tensor to the Left
Cauchy-green deformation tensor B for materials obeying cubic anisotropy according to the Kambouchev law.
The Kambouchev Material law can be generalized for other symmetry groups via a general invariant formulation of
the anisotropic constitutive equation cf., e.g., [51]. Let {v1,v2,v3} be three orthogonal vectors and

Mικ = vι ⊗ vκ, ι, κ ∈ {1, 2, 3}

the corresponding structural tensors, then the anisotropic part of the second Piola-Kirchhoff stress can be expressed
via

Saniso =

3∑
ι=1

αιιMιι +

3∑
ι=2

ι∑
κ=1

αικ (Mικ +Mκι) ,

αικ = αικ

(
tr(M11C), . . . , tr(M13C), . . . , tr(M33C)

)
.

The special case of cubic anisotropy is retrieved with the choice α11 = α22 = α33 = 2k3
∑

ι tr(MιιC) and
∀ι ̸= κ : αικ = 0. In addition to elasticity, it is straightforward to include Kelvin–Voigt viscoelastic material
behaviour in the present model by additionally considering the viscous stress term

σvisc = η
(
∇v +∇⊤v

)
+

(
ζ − 2

3
η

)
∇ · v I, (11)

where η denotes the dynamic and ζ the volumetric viscosity. The viscous stress term can be directly calculated from
the velocity field v obtained from Eq. (6). While the validation cases in Sec. 3 are purely elastic, some application
examples include viscous effects.

2.4. Multiphase-field formulation
In order to describe a multigrain system with N solid phases, we consider a tuple ϕ = {ϕ1, . . . , ϕN}T of N

order parameters known as the phase-fields. Each phase-field parameter ϕα(x, t) ∈ [0, 1] represents the local volume
fraction of phase α ∈ {1, . . . , N} at the spatial position x and time t. The solid phases may differ in elastic and/or
structural properties. The interfaces between neighbouring phases (e.g. grain boundaries in a multigrain system,
fracture surface in a cracked-specimen) are parametrized by a smooth but steep transition region, the diffuse interface.
At any point in time and space, the Gibbs simplex constraint G =

{
ϕ ∈ RN :

∑
α ϕα = 1, ϕα ≥ 0

}
needs to be

fulfilled. As the length scale of interest is typically well-above the physical scale of the diffuse transition between
phases, we employ a multiphase-field model which explicitly decouples interfacial and bulk energy contributions [11,
26]. The free energy functional can thus be written as

F(ϕ,∇ϕ,Fel) =

∫
Ω

{
finterfacial(ϕ,∇ϕ) + fbulk(ϕ,Fel)

}
dV,

where ∇ϕ denotes the tuple of respective gradients of ϕ. The interfacial contribution finterfacial is further composed
of a gradient term fgrad(∇ϕ) and a potential term fpot(ϕ) [52, 53]

finterfacial(ϕ,∇ϕ) = −ε
∑
α

∑
β>α

γαβ∇ϕα ·∇ϕβ +
16

επ2

∑
α

∑
β>α

γαβϕαϕβ
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which are formulated such that stable interface regions form between the grains with an interfacial energy of γαβ in
any αβ-interface [54]. Triple junction angles obey the sharp interface solution of Young’s law [55]. The parameter
ε scales the width of the diffuse interface in its normal direction [54] and is chosen in the following such that the
diffuse transition is discretized by 8-10 grid points. The bulk free energy density term fbulk(ϕ,Fel) is formulated as
the sum of phase-dependent contributions

fbulk(ϕ,Fel) =

N∑
α=1

fα
bulkϕα,

where linear interpolation with the volume fraction ϕα is performed. Within this work, the bulk driving forces are
purely elastic, i.e. fα

bulk = fα
el(Fel, k

α
i ,M

α). The elastic free energy density fα
el of phase α is calculated by means of

eq. (7) inserting the phase-inherent quantities kαi , i ∈ {1, 2, 3, 4} and Mα. The evolution of phase-field variables ϕα

is governed by [8]

ϕ̇α = − 1

Ñε

Ñ∑
β ̸=α

Mαβ

δfinterfacial

δϕα
− δfinterfacial

δϕβ
+

8

π

√
ϕαϕβ

(
δfbulk

δϕα
− δfbulk

δϕβ

), (12)

where Ñ(x, t) ≤ N denotes the number of phases which are locally present and Mαβ is the pairwise mobility of an
αβ-interface. Within this work, the evolution driven by energy minimization is used to create the initial morphology
with well-defined diffuse interface regions. This is achieved by solving eq. (12) using a pseudo-time. Since the focus
of this work is set on the impact of convective terms arising from mechanical deformation, phase transformation is
not considered in the further course of the simulations for t > 0. In the absence of phase transformation, the phase
variable of a material point X does not change in time, and thus the material time derivative vanishes leading to the
set of purely convective transport equations

∀α = 1, . . . , N : ϕ̇α =
∂ϕα

∂t
+ v · ∇ϕα = 0. (13)

Consequently, the phase-variables are transported by the convective term of the material derivative, under a given
velocity field arising from the mechanical deformation. For the discretisation of the convective term in eq. (13),
different numerical schemes can be employed including standard schemes like upwind or central differences but
also advanced flux-limiter schemes. The numerical solution introduces discretisation errors leading to undesired
distortion and widening of the phase-fields interface even in absence of velocity gradients. The magnitude of those
numerical errors depend on the resolution and the discretisation scheme [56]. In order to preserve stability, a certain
amount of numerical diffusion is required, which comes along with lower order of accuracy though. In the past,
several discretisation schemes have been constructed for such transport problems in order to maintain as much
accuracy as possible while ensuring stability. Amongst those are schemes, that introduce a flux limiter in such a
way, that the condition of a total variation diminishing (TVD) discretisation is fulfilled [57]. A commonly used
TVD-scheme is the one of van Leer [58]. However, even the most sophisticated discretisation schemes introduce
discretisation errors, that are accumulative in time leading to a deviation of the phase-field equilibrium profile as can
be seen in Appendix A.

2.5. Phase-field mapping
Instead of directly solving the phase-field transport via eq. (13), we employ a novel mapping technique in order

to avoid large errors arising from the discretisation (discussed in the previous paragraph). This Phase-field mapping
uses the initial configuration such, that each phase-field ϕα(x, t) at any spatial position x and time t is set from the
initial phase-field ϕ0

α (X) by the following parametrization,

∀α = 1, . . . , N : ϕα(x, t) = ϕ0
α

(
ξ(x, t)

)
= ϕ0

α (X) . (14)

Thus ϕα(x, t) in the current configuration is retrieved by mapping the current position to the initial position and
assigning the corresponding value of the initial phase-field, which is known from the initial conditions. Equation (14)
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essentially implies, that the phase-field of a material point does not change in time. However, it would also be possible
to consider phase-transformation in the initial configuration, such that ∂ϕ0

α (X, t) /∂t ̸= 0, since the mapping only
tracks the change in phase-field due to the deformation. In order to apply the mapping (14), the inverse motion
field ξ needs to be known to retrieve the initial position X of any material point. In the current configuration, ξ
is computed from the convective transport equation eq. (1). Note, that calculation of the inverse motion ξ is also
required to solve for the deformation gradient and, therefore, does not add any additional computational cost for the
phase-field update. With larger number N of phases, this feature gets even more considerable, since otherwise the
equation system (13) with N equations needs to be solved, which is avoided by the mapping. A similar mapping
approach has previously been used in the context of a level-set method by Cottet et al. [34] and in the sharp interface
model of Dunne and Rannacher [59].

xi,jX

ϕ0
I,J

ϕ0(X) from linear interpolation of
ϕ0
I,J , ϕ0

I−1,J , ϕ0
I,J−1, ϕ0

I−1,J−1X

ξ(xi,j , t)

Γ d

B0
B

t = 0 t > 0

0 1. . . i
0
1

...

j

Figure 2: Diffuse interface representation of the body B in current and initial configuration on the numerical grid. Visualisation of the mapping
approach and the interpolation of ϕ0 in the initial configuration, where I, J correspond to the node indices in the initial configuration.

As the initial phase-field ϕ0
α is only saved at discrete grid points, an interpolation of the values ϕ0

α to the location
ξ(x, t) is done. The concept of the mapping and the interpolation in the initial configuration is illustrated in figure 2.
In contrast to the numerical error of solving the transport equation, the interpolation error arising through this
procedure is time independent and thus not accumulative. It is also possible, to save the initial phase-field with a
higher grid resolution to further decrease the interpolation error without increasing computational cost. Since the
inverse motion is also determined via a convective transport equation by means of eq. (1), the question of mapping
accuracy arises. The main difference between the phase-field and the inverse motion are the initial conditions. While
the phase-field exhibits locally steep gradients, as we deal with finite but small interfacial regions, the inverse motion
is initially linear and thus the calculated gradient is exact. As evolution proceeds over time, the inverse motion
function becomes less smooth if velocity gradients arise, which makes the numerical error problem dependent. For
many cases, we expect gradients in ξ to be smaller than in ϕ, which leads to higher accuracy of equation (1) compared
to (13). For the absence of velocity gradients, the inverse motion is always exactly obtained and the mapping approach
preserves the shape almost perfectly, whereas the direct transport of the phase-field via eq. (13) in such a simple setup
still accumulatively introduces large errors even for sophisticated schemes as shown in the example in Appendix A.

It has to be mentioned, that ξ may also point to a location outside the computational domain Ω , where X /∈ Ω .
An assumption for the phase-field ϕ0

α needs to be done in that case, which corresponds to the boundary conditions
specifying the phase-field of inflowing matter, as they would also be required, if the transport equation (13) was
employed. In this work, we use Neumann boundary conditions with zero normal gradient and thus ϕ0

α is set to the
value of the nearest boundary node. E.g. if ξx(x, t) < 0, then the value of ϕα(x, t) = ϕ0

α([0, ξy, ξz]
⊤, t) is assigned.

It is straightforward to implement periodic or Dirichlet boundary conditions for the mapping approach.
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3. Model validation

In the following subsections, the implementation of the large deformation framework with the cubic-anisotropic
Kambouchev material model in Eulerian configuration is validated. First, simple load cases (i.e. simple shear, uniaxial
tension and compression) are considered in Sec. 3.1. Next, the influence of the cubic anisotropy and its parameters on
the material response of multiphase/polycrystalline systems under large deformations is systematically investigated
in Sec. 3.2 and 3.3. The chosen material properties (i.e. Young’s modulus E and Poisson ratio ν) along with the other
derived material parameters are listed in table 1. Other system-specific parameters are specified in the respective
sections.

Table 1: Material parameters used in the simulations

Parameters Symbol Expression Value
Young’s modulus E − 0.210
Poisson’s ratio ν − 0.3
Lamé parameter 1 λ Eν

(1+ν)(1−2ν)

Lamé parameter 2 µ E
2(1+ν)

3.1. Isotropic material response under simple shear
As a starting point, we validate the model implementation by simulating the purely isotropic material response

under simple shear and uniaxial loading. The analytical relations are derived and, thereafter, the numerically obtained
material responses from the simulations are compared with these relations.

We consider a square specimen embedded in a matrix under the boundary conditions of simple shear as shown
in figure 3a. The material properties (i.e. Young’s modulus E and Poisson’s ratio ν) of the specimen and matrix
are chosen to be identical as given in table 1 which allows for visualization and validation of the diffuse interface
approach in the Eulerian framework. The velocity is set to zero at vertical boundaries while the deformation is
prescribed on the horizontal edges, either using Dirichlet (i.e. u1 = ū) or Neumann (i.e. t1 = t̄) boundary conditions.
The numerical setup with the diffuse interface description is depicted in Fig. 3b. For the case of simple shear, the
deformation gradient FFF and the Right Cauchy-Green deformation tensor CCC are given by

FFF =

1 F12 0
0 1 0
0 0 1

 =⇒ CCC = FTFTFTFFF =

 1 F12 0
F12 1 + F 2

12 0
0 0 1

 .

Using the isotropic Kambouchev material law (eq. (10), with k3 = 0), we obtain the following analytical equations
for the non-zero stress components σ11, σ12 and σ21

σ11 = µF 2
12 and σ12 = σ21 = µF12 (15)

of the Cauchy stress tensor σσσ in terms of the non-zero component F12 of the deformation gradient. For this
deformation mode, simulations were performed under two different boundary conditions: 1) traction force or 2)
displacement, as illustrated in Fig. 3a. We varied the values of the traction force component t1 = t̄ or displacement
u1 = ū, and the non-zero components of the Cauchy stress and deformation gradient are obtained at the mechanical
equilibrium. The resulting stress-deformation response is plotted in Fig. 3c, along with the respective analytical
relations (i.e. eq (15)). The numerically derived material response shows perfect match with the analytical equations.
It is noteworthy that the modeling framework is capable of accurately simulating large shear deformations, with the
shear deformation component F12 reaching a value upto 3.7, and as also visible in the inset pictures of the deformed
specimen in Fig. 3c. A similar validation was performed for the case of uniaxial tension and, again, perfect agreement
of simulations and analytics was found (see Section 1 of the Supplementary Material).

9



1

2

u t

u t

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2 2.5 3 3.5 54.54

1
0
0
 c

el
ls

c)

b)a)

200 cells

1

0

[−]

Matrix

Specimen

(Analytical)  

(Numerical)

(Analytical)  

(Numerical)

Figure 3: a) Boundary conditions of a 2-D square specimen embedded in a matrix of same material under simple shear load. b) Diffuse interface
description of the problem where the phase-field ϕs ∈ [0, 1] determines the position of specimen in the computational domain. The plots of
σ12-F12 and σ11-F12 under various boundary loads in the 1-direction on the surfaces normal to the 2-direction. The inset pictures depict the
simulated deformation of the specimen under mechanical equilibrium.

3.2. Cubic-anisotropic material response
In this section, we validate the numerical implementation of cubic-anisotropy accounted by the non-zero

anisotropic strength parameter k3 in the material law eq. (10). We consider a rectangular inclusion embedded
in a matrix of the same material as sketched in Fig. 4a. Both, matrix and inclusion, are chosen to exhibit cubic
anisotropy described by the two orthogonal privileged directions, illustrated in the same figure. We denote the
angle between the first privileged direction and the 1-direction by θ. On the vertical edges of this matrix-inclusion
system, the Dirichlet boundary conditions (i.e. u1 = ±ū) corresponding to uniaxial compression are applied on the
respective boundaries. For uniaxial loading, the deformation gradient FFF and Right Cauchy-Green tensor CCC are given
analytically. The resulting stress from the Kambouchev law yields the non-zero components

σ11 =

(
µ+

λ

2

)[
F11 −

1

F11

]
+ 4k3F11

[
F 2
11 + 2 sin2 θ cos2 θ

(
1− F 2

11

)]
, (16a)

σ22 =
λ

2

[
F11 −

1

F11

]
+

4k3
F11

[
1 + 2 sin2 θ cos2 θ

(
F 2
11 − 1

)]
, and (16b)

σ12 = 4k3 sin
2 θ cos2 θ

(
F 2
11 − 1

)(
cos2 θ − sin2 θ

)
, (16c)
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which can be used for validation.
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Figure 4: a) Boundary conditions of a 2-D rectangular inclusion embedded in a matrix of same material under uniaxial compressive load. The
symbol θ denotes the angle of the first priviledged direction with respect to the 1-direction. b) Diffuse interface description of the problem where
the phase-field ϕInc ∈ [0, 1] determines the position of inclusion in the computational domain. c) Deformed configuration of the inclusion at the
mechanical equilibrium for the case with θ = π/6 and k3 = 0.065. Polar plots of d) -σ11, e) σ22 and f) σ12 as a function of θ. The numerical
results match well with the analytical relations.

Figure 4b depicts the diffuse interface description of the system at the unloaded state. For different values of the
anisotropic strength parameter k3 and the angle θ, simulations were performed. Figure 4c shows the deformed state
of the inclusion at mechanical equilibrium for θ = π/6 and k3 = 0.065, with a slight shear deformation due to the
presence of non-zero shear stress σ12, as also expected from eq. (16c). For this case, all the components of the Cauchy
stress tensor σσσ are homogeneous in the complete domain, and their magnitudes are σ11 = −0.0448, σ22 = 0.2629
and σ12 = −0.0349. We plot the variation of −σ11, σ22 and σ12 as a function of θ and anisotropic strength parameter
k3, both from the analytical relations of eq. (16) and those obtained from the simulations, see figures 4d-f. The
numerically obtained variations of the stress components match well with the analytical relations, thereby validating
the implementation of the Cubic-anisotropic Kambouchev material model in the present simulation framework.
With the increasing value of anisotropic strength parameter k3, the stress components are observed to become
strongly dependent on the orientation θ, as expected. For the given boundary conditions, from the plots of the normal
stress components σ11 and σ22 in figure 4d-e, as the value of k3 increases, the −σ11 component decreases while
σ22 component increases. This essentially implies that phase with higher value of k3 exhibits a lower compressive
stiffness in 1-direction and higher tensile stiffness in the 2-direction.
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3.3. Multi-phase system with varying anisotropy strength
Next, we study the impact of cubic anisotropy in multiphase/polycrystalline systems where each phase α

may exhibit different anisotropic strength parameters kα3 and may be oriented differently in space, where the
crystallographic orientation is characterized by the phase-dependent angle θα of the first priviledged direction with
respect to the 1-axis. Note, that in the diffuse interface, stresses are calculated using the linear interpolation

σ =

N∑
α=1

ϕασα

of the phase inherent stresses σα(F , kαi ,M
α, ηα, ζα). Herein, the elastic stress is obtained by means of eq. (9),

where Mα and kαi , i ∈ {1, 2, 3, 4} refer to the phase inherent structural tensor and elastic parameters of phase α,
respectively. The viscous part is accounted for by eq. (11). The choice ζα = ηα = 0 of the phase-inherent viscosities
results in purely elastic behaviour, while non-zero values leads to visco-elastic material response. Instead of linear
interpolation, more sophisticated diffuse interface approximations like the one proposed in Schneider et al. [31],
which satisfies both the balance of linear momentum on a singular surface and the Hadamard condition, could also
be adopted to the Eulerian framework. This is part of future work.

We consider a bar under uniaxial compression with the boundary displacement ū = L/8, where L corresponds to
the domain length. Two cases are considered, where a different amount of phases are combined in series as depicted
in figures 5a,b. For case 1 two phases are combined in series, whereas in case 2 four phases are considered. For all
phases both cases, the orientation θα = 0o (where α ∈ {A,Matrix} in case 1 and α ∈ {A,B,C,Matrix} in case 2) of
the first priviledged direction was set, while different values of the anisotropic strength parameters were chosen,
given in the caption of the figure. The deformed states under mechanical equilibrium are depicted in figures 5c,d.
We analyse the mechanical response for the two cases. For both cases, a homogeneous stress component σ11 is
obtained in the whole domain with the values of -0.081 and -0.09 for the case 1 and 2, respectively. Moreover, as the
orientation is θ = 0o, no shear stresses (i.e. σ12 = 0) occur in both cases. We analyse the non-zero fields (i.e the
component F11 of the deformation gradient and the normal stress component σ22). Figure 5e-h depict the contour
plots and the variation of F11 and σ22 along the white dashed line highlighted in figure 5c,d. In the bulk regions of
different phases, we observe that the phase with a higher value of kα3 exhibits a lower value of the component F11 of
the deformation gradient (and thereby a larger compressive deformation) and, secondly, a higher value of the normal
stress component σ22. These results are consistent with the plots of σ11 and σ22 in Fig. 4d) and e). In the interface
region between any two phases, a smooth variation of the F11 and σ22 fields is observed, owing to the smoothly
varying phase-fields of the respective phases.
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Figure 5: a) Numerical setup and boundary conditions of a 2-D two-phase bar with phases A and matrix, combined in series. The matrix is isotropic,
while the phase A is anisotropic with the strength parameter kA3 = 0.065. The diffuse interface description of the problem is given below. b)
Deformed state of the bar. The contour plots along with the field variation along the white dashed lines (shown in part b) of the same figure) for c)
F11 component of the deformation gradient and d) σ22 component of the Cauchy stress. e) Numerical setup and boundary conditions of the
multiphase bar with four different phases namely A, B, C and matrix, combined in series. The matrix is isotropic, whereas the phases A, B and C
are anisotropic with the phase-specific anisotropic strength parameters kA3 = 0.025, kB3 = 0.05 and kC3 = 0.065. f) Deformed state of the bar.
The contour plots along with the field variation along the white dashed line (shown in part a of the same figure) for g) F11 component of the
deformation gradient and h) σ22 component of the Cauchy stress.

4. Application examples

4.1. Battery electrode calendering on the nano-scale
On the microscale, electrodes are composed of a network of particles, binder and pores with a porosity of

about 50-60% after the drying process [60, 61]. The compaction during calendering is necessary to achieve higher
energy densities and is carried out by applying mechanical pressure through rollers. This procedure results in an
irreversible compaction through elimination of larger pore spaces which also includes breaking of previously existing
binder connections as well as plastic deformation and fracture of active material particles. Modeling this process
is rather difficult due to the multiple effects occurring simultaneously and the computational expense of moving
interfaces, solid-body contact and large deformations involved. At sub-microscale, electrode particles often exhibit a
polycrystalline structure, e.g. NMC and NCA cathodes for Li-ion batteries [62] as shown in Fig. 6a. These crystals
may exhibit anisotropic material properties which need to be accounted for to provide an accurate description of
the resulting stresses as well as the onset of fracture. We consider a simplified model system of polycrystalline
material, analogous to a portion of an electrode particle, with four randomly oriented grain phases. At the left and
right boundary, a matrix phase is introduced to apply the compaction pressure within the Eulerian framework. This
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would not be necessary in the application with a fully-resolved electrode microstructure. The numerical setup and
the boundary conditions of this system are shown in Fig. 6b.

The Young’s modulus and Poisson’s ratio of all the phases are chosen as given in Tab. 1. The phase-dependent
anisotropic strength parameters are chosen to be identical, i.e. kA3 = kB3 = k3 = kD3 = kmatrix

3 = 0.01. However, all
the phases differ in the crystallographic orientation, with the angles of the first priviledged direction with respect to
the 1-direction given by θA = 30o, θB = 15o, θC = 60o, θD = 45o and θmatrix = 0o, as schematically illustrated in
figure 6b. The simulation was performed under a displacement-driven setting with ū = 5L/60, where L is the total
domain length. Fig. 6c shows the deformed state of the system. The contour plots of different components of the
displacement and stress are shown in figures 6d-h. Due to the differences in the crystallographic orientation of the
phases, all the resulting fields are non-homogeneous in the computational domain. It is to be noted that, due to the
diffuse nature of the interfaces in the system (characterized by the phase fields), these fields show a transition across
the grain boundaries. This example illustrates the potential of the presented framework to also address mechanics on
the nano-scale during the calendering process.
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Figure 6: a) SEM of cross-section of a spherical NCA single particle exhibiting polycrystalline structure at submicroscale as schematically shown
in the zoomed inset picture. Figure adapted from Tsai et al.(2018) [62]. b) Numerical setup and boundary conditions for a polycrystalline system
laterally covered by a matrix. Different phases are shown in different shades of grey for the sake of visualization. c) The deformed state of the
system. The contour plots of the displacement fields d) u1 in the 1-direction and e) u2 in the 2-direction. Contour plots of the resulting stress
components f) σ11, g) σ22 and h) σ12 in the computational domain. Due to the differences in the crystallographic orientation, the displacement
and stress fields are non-homogeneous, and exhibit transition across the grain boundaries.
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4.2. Aerogel under compressive load
The second example encompasses the compression of a two-layer composite consisting of two open-pore foams

with different stiffnesses. These nano-structured and open-pore materials are called aerogels if the pore space is
filled with air and can be made from various material classes such as silica, metals or organic materials [63]. Due to
their low density combined with unique thermal and mechanical properties, they can be found in a huge range of
applications, e.g. construction, life sciences and chemical engineering [63].

The initial setup shown in Fig. 7 a) includes two layeres of aerogel which can be periodically extended in the
x- and y-direction in the spirit of a representative volume element. The randomized morphology is obtained from
Voronoi tessellation and subsequent creation of ligaments in all multi-junctions using the algorithm introduced by
August et al. [64]. Each layer has an initial height of 0.5H0. The materials are modelled using an isotropic visco-elastic
material law as introduced in the previous sections with an elastic modulus of Efoam1 = Eref in the upper (blue) layer
and Efoam2 = 0.5Eref in the lower (orange) layer. Note that all material properties as well as stresses are given in a
non-dimensionalized manner throughout this section. The pore space is filled with air modelled as a visco-elastic
phase with vanishing shear modulus and a relatively low compression modulus (Eair = 0.01Eref). Viscosity is used in
this case to stabilize the convergence of simulations as the high contrast of stiffnesses (3 orders of magnitude) results
in a numerically stiff problem. The simulation setup further includes two stiff plates (Efoam2 = 10Eref) on the top and
bottom side of the domain to apply compressive loading as shown in Fig. 7a). All boundary conditions in x- and
y-direction are periodic while the top and bottom sides are subject to a time-dependent displacement BC ramping from
zero displacement at t = 0 to 25% of the total computational domain in the final state, i.e. ubottom

x = −u
top
x = 0.25H0.

As a result, the two-layer foam structure is compressed to 47% of its initial height H0.

H0
H = H0 H = 0.72H0 H = 0.47H0
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Figure 7: Compression of a two-layer foam structure with initial height H0 in the three-dimensional setup shown in a). The upper layer (blue)
exhibits twice the Young’s modulus of the lower (orange) one. Different stages of deformation are shown in b) where the air phase is rendered
transparent and the compressive plates are shown in gray. All phases are visualized by the iso-surfaces of ϕα = 0.5 which corresponds to
the sharp interface problem. Subfigure c) shows the Frobenius-norm of the deviatoric part σdev of the Cauchy stress tensor normalized by its
maximum value within the domain Ω .

The front view of the simulation domain in Fig. 7b) clearly shows a stronger compaction of the orange foam layer
due to its lower stiffness. The corresponding stress state is visualized as the Frobenius-norm of the deviatoric part σdev

of the Cauchy stress tensor, starting from a stress-free state in the initial configuration. Increasing the load leads to
increasing stresses which are unevenly distributed in the complex network of ligaments. At even higher compression
load, breaking or plastification of single ligaments as well as self-contact of the foam structure would be observed in
experiments which pose severe computational challenges. Due to the small but non-zero stiffness of the air phase
(Eair = 0.01Eref), a thin layer remains between ligaments when they would get in contact. Treating the pore phase as
a fluid with zero elastic stiffness rises the problem of correct interpolation within the diffuse interface regions. Once
two solid bodies get in contact, the reference map of the contact point would be pointing to two different locations
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in the reference configuration which can not be handled by the current definition of the deformation gradient in
Eq. (2). A possible solution is the usage of individual ξ-fields for each solid phase and a proper extrapolation of those
fields into the pore phase as in the work of Valkov et al. [46]. This treatment allows for phase-inherent deformation
gradients and thus stresses, which could be appropriately interpolated in the diffuse interface regions [30–32]. Such
an approach within the Eulerian framework already captures the contact of solid bodies like the active particles
without further need to pre-define surfaces that might come into contact at later simulation times as is the standard
procedure in Lagrangian descriptions. Extension of the model in that direction will be subjected to future work. The
application example highlights the model’s ability to account for large deformations in complex, three-dimensional
microstructures.

4.3. Deformation of a visco-elastic biological cell
The stiffness of biological cells is an indicator used for e.g. disease diagnosis. In order to measure it, real-time

deformability cytometry can be used where cells are transported through a channel by fluid flow and their resulting
deformation allows to determine the stiffness [2]. In this section, a simulation setup which replicates such experiments
is used as an example of fluid structure interaction but the proposed framework is by no means limited to this special
case. Since fluid flow is naturally described in the Eulerian framework, it is favourable to model both fluid and solid
in the same configuration. Within the present model, the motion of a fluid can be treated by consideration of a
visco-elastic phase with vanishing shear modulus and no anisotropy. From eq. (10) and (11), the stress relation

σα =
λα

2
(J − J−1)I + ηα

(
∇v +∇⊤v

)
+

(
ζα − 2

3
ηα
)
∇ · v I

can be derived which corresponds to a weakly compressible fluid cf., e.g., [65]. The assumption of weakly compressible
fluids corresponds to neglecting the temperature-dependence of the pressure and thus, the equation of state is only
density dependant yielding p(ρ). Note, that J−1 = ρ/ρ0 holds and λα acts as phase-inherent compressibility modulus
in this case. Thus, we obtain the equation of state p = λ(J−1 − J)/2 which can be linearized around J−1 = 1 to
yield the widely used relation p = λ(J−1 − 1) [66]. Since J is obtained from the inverse motion, we do not need
to employ the mass balance equation for the fluid as e.g. in [65]. Thus the present model can account for weakly
compressible fluids if complemented with suitable boundary conditions.

a) b)
4H

H

4H/5

vin

t = 0 t > 0
µup

µs

Cell consisting of two viscoelastic
phases:

setup I: µup = µs

setup II: µup = µs/4

Figure 8: Viscoelastic sphere within a channel flow. a) problem setup including the initial shape at t = 0 and the final deformed shape plotted by
means of the phase-field iso-surface with ϕf = 0.5. b) Cell consisting of two phases: For setup I, the cell consists of one phase with µs, for setup II
it consists of two phases with differing stiffness.

We consider the channel flow sketched in Fig. 8 subject to velocity boundary conditions using a parabolic inflow
profile with mean velocity vin. The cell is initially spherical with a diameter of 3H/5, where H is the channel height.
The density is chosen constant as ρf = ρs = ρ, where the superscripts f and s refer to fluid and solid, respectively.
Thus gravity has no impact. The relevant characteristic numbers are the Reynoldsnumber Re = ρvinH/ηf = 0.17, as
well as the ratio µsH/(ηfvin) = 46 between the elastic and viscous contribution. The further material parameters
read

λs = λf = 100µs, ζ f = ηf/10, ηs = ηf/2, ζs = ηf/20.
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In order to show the model’s ability to also consider multiphase systems, we conduct a similar simulation, where the
cell persists of two phases, which initially take the upper and lower half of the sphere, respectively. The phase in the
upper part of the body has a reduced shear modulus of µup = µs/4, while all other parameters are kept unchanged.

Figure 9a shows the deformation of the cell over time. The behaviour observed shows qualitatively good agreement
with the literature e.g. to the results of Mokbel et al. [50]. However, quantitative comparison is not possible, since they
consider a pipeflow instead of a channel flow and employ incompressible modelling for both fluid and solid alongside
a Neo-Hooke law for the latter. So far, we also neglect surface tension effects, which however can straightforwardly
be added in context of the phasefield method by using a capillary stress tensor, which depends on ∇ϕ (see e.g. [15]).
Figure 9b shows the spatial distribution of the elastic stress part σel

11 in the cell. Note, that within the cell, the velocity
gradient becomes extremely small and thus the viscous stress is negligible there. Additionally, the final shapes for
both the case with a single and two solid phases are depicted in figure 9c. In the latter case, the mismatch of shear
moduli between upper and lower part of the cell introduces a clearly unsymmetrical behaviour. This is also observed
in the simulation snapshots depicted in figure 10, where the F11 component of the deformation gradient is depicted.
The values of F11 range from 0.2-1.7 in the fluid phase and from 0.9-1.05 in the cell. The Jacobi determinant J ranges
from 0.98-1 with the chosen parameters.
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Figure 9: Deformation of the cell. a) cell deformation over time by means of 1− S = 1− 2
√
Aπ/P , where S is the sphericity, A the area and P

the perimeter of the 2D cell. b) Distribution of elastic stress σel
11 in the cell. c) Cell shape at t = tend for the case, where the cell persists of one

solid phase (I) and the case where it consists of two (II), with the upper part exhibiting a lower shear modulus.
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Figure 10: Snapshot of the simulation showing the F11-component of the deformation gradient. The black line represents the 0.5 iso-contour of
the fluid phase. a) Case I with single solid phase. b) Case II with two solid phases, where the gray line represents the solid-solid interface.
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5. Conclusion and Outlook

In this article, we present a generalized and rigorous computational framework for simulating large deformation
processes in multiphase and polycrystalline materials based on a phase-field approach. The framework is well-suited
for a variety of applications like modelling the calendering process for battery electrode manufacturing, deformation
of foam structures like aerogels as well as fluid-structure interaction. The model is validated on benchmark examples
and possible model extensions are discussed and sketched in this work e.g. the consideration of non-solid pore phases.
We chose a formulation in the Eulerian configuration for several reasons. Firstly, with this model, mesh distortions
and the associated numerical issues of the Lagrangian approaches are obviated, which allows for consideration of
very large deformations as shown in Fig. 3. Secondly, the Eulerian framework offers the potential to treat contact of
different solid bodies naturally without the need for interface tracking. Additionally, extensions in several directions
that are well-suited for addressing coupled multiphysics are possible. The primary contributions and highlights of
this work are summarized in the following points:

1. A key novel feature of the computational model is the developed phase-field mapping method for tracking the
location of interfaces (i.e. grain boundaries) of a multiphase system undergoing large mechanical deformation.
With this method, the numerical errors generated by the discretisation of the convective terms (in the balance
relation) using traditional convection schemes are avoided because this method retrieves the position of the
interface by utilizing the evolution equation for the reference map. Superiority of phase-field mapping in
comparison with other convection schemes is clearly visible in applications with large displacement like the
rigid body motion demonstrated in Appendix A.

2. The poly-convex material model with cubic anisotropy [45] is employed as the constitutive relationship. We
formulate this with respect to the Cauchy stresses in order to incorporate it within the Eulerian framework.
Unlike the conventional Saint Venant Kirchoff law, this material model is polyconvex in nature, ensuring the
occurrence of a energetic minimum. Analytical relations for simple cases were derived for this material model,
and the numerical implementation has been validated using numerical benchmark problems. Additionally, the
consideration of Kelvin-Voigt viscoelastic behaviour can naturally be included in the proposed framework. The
simulation results proof that the current model is capable of simulating extremely large deformations. Within
the multi-phase field framework, each phase can exhibit distinct material behaviour by assigning different
material properties to it, such as varying stiffness, cubic anisotropy as well as zero or non-zero viscosity.

3. We demonstrate applicability in the context of the calendering process for battery electrode manufacturing
at the nano-scale. Owing to the incorporated anisotropy, the model can be employed to polycrystalline
agglomerates where each primary particle features a different crystallographic orientation.

4. The compression of a two-layer aerogel highlights the model’s ability to account for large deformations in
complex, three-dimensional microstructures. The inclusion of viscous stresses ensures numerical convergence
although the ratio of Young’s moduli spans three orders of magnitude. Model limitations considering a pore
phase with zero stiffness are discussed in detail.

5. The ability of the viscoelastic model to account for fluid structure interaction with weakly compressible fluids
is shown exemplarily for biological cell in a channel flow.

Irreversible deformations can be included via the multiplicative split of the deformation gradient (eq. (3)), which
allows for an extension towards temperature- or concentration-dependent inelastic strains as well as plasticity. The
potential of model extension with the inclusion of general eigenstrains is discussed in more detail in Section 3
of the Supplementary Material. Furthermore, coupling large elastic deformations with other fields such as phase
transformations and chemical driving forces is possible through the multiphase-field method.
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Appendix A. Phase-field mapping vs other convection schemes: Rigid body motion

To demonstrate the problem of accumulative discretization errors during convective transport, we consider the
motion of a star-shaped body parametrized with a phase-field as shown in figure A.11a. The body is transported
within a constant velocity field v = vex. The convective transport equation (13) is solved employing different
schemes for the discretisation of the convective term and compared with a simulation using the phase-field mapping
method. Figure A.11b depicts the simulated rigid body motion at two different representative timesteps using different
approaches. In particular, the performance of three convection schemes namely upwind scheme as well as total
variation diminishing schemes with van Leer [58] and superbee [67] flux limiter are analysed in comparison to the
phase-field mapping. It is observed, that the upwind scheme introduces enormous numerical diffusion, which leads to
a complete loss of shape. The more advanced flux limiter schemes are able to better preserve the shape. The phase-field
mapping method clearly stands out among these schemes, with no interface and shape distortion as depicted in
the last row of figure A.11b. The reason for this is, that the inverse motion is exactly obtained by equation (1) due
to the absence of velocity gradients. If velocity gradients occur, the mapping also leads to inaccuracies due to the
numerical solution of the inverse motion function. However, these errors tend to be smaller than those from the
direct convective transport of the phase-field as the velocity field often exhibits smaller local gradients.
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Figure A.11: a) Numerical setup for a star-shaped rigid body transported within a constant horizontal velocity field. Two timesteps of the simulated
rigid body motion are shown comparatively for different convective schemes. The phase-field mapping shows superior performance in cases with
weak velocity gradients while all other schemes exhibit substantial interface- and shape-distortion.
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[29] D. Schneider, O. Tschukin, A. Choudhury, M. Selzer, T. Böhlke, B. Nestler, Phase-field elasticity model based on mechanical jump conditions,
Computational Mechanics 55 (5) (2015) 887–901. doi:10.1007/s00466-015-1141-6.

[30] J. Mosler, O. Shchyglo, H. Montazer Hojjat, A novel homogenization method for phase field approaches based on partial rank-one relaxation,
Journal of the Mechanics and Physics of Solids 68 (1) (2014) 251–266. doi:10.1016/j.jmps.2014.04.002.

[31] D. Schneider, F. Schwab, E. Schoof, A. Reiter, C. Herrmann, M. Selzer, T. Böhlke, B. Nestler, On the stress calculation within phase-field
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