WILEY-VCH

European Chemical Societies Publishing

Take Advantage and Publish Open Access

By publishing your paper open access, you'll be making it immediately freely available to anyone everywhere in the world.

That's maximum access and visibility worldwide with the same rigor of peer review you would expect from any high-quality journal.

Submit your paper today.

www.chemistry-europe.org

Reactivity of E_4 ($E_4 = P_4$, As_4 , AsP_3) towards Low-Valent Al(I) and Ga(I) Compounds

Maria Haimerl,^[a] Martin Piesch,^[a] Ravi Yadav,^[b] Peter W. Roesky,^[b] and Manfred Scheer^{*[a]}

Dedicated to Professor Dieter Fenske on the occasion of his 80th birthday.

Abstract: The reactivity of yellow arsenic and the interpnictogen compound AsP₃ towards low-valent group 13 compounds was investigated. The reactions of [LAI] (1, L= [{N(C₆H₃ⁱPr₂-2,6)C(Me)}₂CH]⁻) with As₄ and AsP₃ lead to [(LAI)₂(μ , $\eta^{1:1:1:1}$ -E₄)] (E₄=As₄ (**3b**), AsP₃ (**3c**)) by insertion of two fragments [LAI] into two of the six E–E edges of the E₄ tetrahedra. Furthermore, the reaction of [LGa] (**2**) with E₄ afforded [LGa($\eta^{1:1}$ -E₄)] (E₄=As₄ (**4b**), AsP₃ (**4c**)). In these compounds, only one E–E bond of the E₄ tetrahedra was cleaved. These compounds represent the first examples of the conversion of yellow arsenic and AsP₃, respectively, with

Introduction

Yellow arsenic (As₄) is the isostructural higher homolog of white phosphorus, with both of them representing at room temperature kinetically stable and at the same time the most reactive group 15 allotropes. While the reactivity of white phosphorus towards transition metal and main group compounds has been extensively investigated,^[11] there are just a few examples of the conversion of As₄ with main group compounds. The reason for this lies in its thermodynamic instability, light- and air sensitivity and the lack of storage possibilities of yellow arsenic.^[2] The deficiencies in the characterization of product mixtures present another problem, since the ⁷⁵As NMR spectroscopic method only works for very symmetric compounds such as As₄. *West* et al. reported the reactivity of yellow arsenic towards silicon compounds.^[3] The reaction of [Mes₂Si=SiMes₂] (Mes=mesityl) with As₄ leads to 1-arsa-2,3-disilacyclopropyl-1,4,5-triarsa-2,3,-

- [a] Dr. M. Haimerl, Dr. M. Piesch, Prof. Dr. M. Scheer Institute for Inorganic Chemistry University of Regensburg Universitätsstraße 31, 93053 Regensburg (Germany) E-mail: Manfred.scheer@ur.de
- [b] Dr. R. Yadav, Prof. Dr. P. W. Roesky Institute for Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstraße 15, 76131 Karlsruhe (Germany)
- Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202202529
- © 2022 The Authors. Chemistry A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

group 13 compounds. Furthermore, the reactivity of the gallium complexes towards unsaturated transition metal units or polypnictogen (E_n) ligand complexes was investigated. This leads to the heterobimetallic compounds [(LGa)(μ , $\eta^{2:1:1}$ -P₄)(LNi)] (**5 a**), [(Cp^{'''}Co)(μ , $\eta^{4:1:1}$ -E₄)(LGa)] (E=P (**6 a**), As (**6 b**), Cp^{'''}= η^{5} -C₅H₂^tBu₃) and [(Cp^{'''}Ni)($\eta^{3:1:1}$ -E₃)(LGa)] (E=P (**7 a**), As (**7 b**)), which combine two different ligand systems in one complex (nacnac and Cp) as well as two different types of metals (main group and transition metals). The products were characterized by crystallographic and spectroscopic methods.

disilabicyclo[2.1.0]pentane (**A**, Scheme 1) and 1,3-diarsa-2,4disilabicyclobutane products (**B**, Scheme 1). When heating this mixture to 95 °C, a conversion of **A** to the Si₂As₂ butterfly compound **B** takes place. The reaction of P₄ with different disilenes leads to products similar to **B**. A totally different outcome was observed for the reaction of yellow arsenic with silylene [PhC(N^tBu)₂SiN(SiMe₃)₂] which gave an As₁₀ cage with a nortricyclane core stabilized by three arsasilene fragments (**D**, Scheme 1). In contrast, treatment of the disilene [(Me₃Si)₂N(η¹-Me₅C₅)Si=Si(η¹-Me₅C₅)N(SiMe₃)₂]^[4] with As₄ leads to [Cp* {(SiMe₃)₂N}SiAs]₂ (**C**, Cp* = η⁵-C₅Me₅, Scheme 1) with a butterflylike central core. By using a main group radical (Cp^{PET}, Cp^{PET} = η⁵-C₅(4-EtC₆H₄)₅), the first organo-substituted As₄ butterfly compound [Cp^{PET}₂As₄]^[5] (**E**, Scheme 1) was synthesized. This compound was able to release yellow arsenic under thermal or

Scheme 1. Examples of the conversion of yellow arsenic with main group compounds.

© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

photochemical conditions. All known examples of the conversion of yellow arsenic with main group compounds are from group 14 reactivities. In contrast to yellow arsenic, the binary interpnictogen compound $AsP_3^{[6]}$ is stable, isolatable and can be handled as easily as P_4 . However, within the last decade, only a few examples of the reaction of AsP_3 with main group and transition metal compounds were reported.^[7]

Moreover, the groups of *H. W. Roesky*, *R. A. Fischer* and *J. J. Weigand* reported the reaction of the main group metal compounds [LAI] (1, L = [{N(C₆H₃ⁱPr₂-2,6)C(Me)}₂CH]⁻)^[8] and [LGa] (2)^[9] with white phosphorus. Here the formation of [(LAI)₂(μ , η ^{1:1:1:1}-P₄)] (3a),^[10] [LGa(η ^{1:1}-P₄)] (4a)^[11] and other polyphosphines stabilized by two {LGa} fragments was observed.^[12] Moreover, 2 was reacted with the antimony reagent [Cp*Sb]₄ to form [(LGa)₂(μ , η ^{1:1:1:1}-Sb₄)].^[13]

Motivated by these results of the reactivity of white phosphorus towards group 13 metal complexes, the question arose if there are similarities or differences in their reactivity towards yellow arsenic and AsP₃. Furthermore, the reactivity of such products towards unsaturated metal fragments is of interest. On the basis of our results regarding the reactivity of Cu(I) nacnac (β -diketiminato ligand (L)) complexes towards E_n ligand complexes,^[13] the question arose as to what extent the E–E bonds in E_n ligand complexes can be activated or cleaved by main group fragments. Herein, we present the conversion of yellow arsenic and AsP₃ with Al(I) (1) and Ga (I) (2) compounds, the first examples of the conversion of yellow arsenic and AsP₃ with group 13 metal compounds to obtain[(LAI)₂(μ , η ^{1:1:1:1}-E₄)]

 $(E_4 = As_4 (\mathbf{3}\mathbf{b}), AsP_3 (\mathbf{3}\mathbf{c}))$ and $[LGa(\eta^{1:1}-E_4)] (E_4 = As_4 (\mathbf{4}\mathbf{b}), AsP_3 (\mathbf{4}\mathbf{c}))$. Furthermore, the reactivity of the resulting gallium compounds towards unsaturated metal compounds and E_n ligand complexes was investigated.

Result and Discussion

The reaction of [LAI] (1) and [LGa] (2) with an excess of yellow arsenic in toluene at room temperature leads to $[(LAI)_2(\mu,\eta^{1:1:1:1}-As_4)]$ (3b) and $[LGa(\eta^{1:1}-As_4)]$ (4b), which are isolated as orange (3b) and yellow (4b) air-sensitive solids in crystalline yields of 14% and 38%, respectively (Scheme 2). Reacting 1 and 2 with AsP₃, yields dinuclear $[(LAI)_2(\mu,\eta^{1:1:1:1}-AsP_3)]$ (3c) and mononuclear species $[LGa(\eta^{1:1}-AsP_3)]$ (4c), respectively, as orange and yellow air-sensitive solids in isolated crystalline yields of 11% (3c) and 12% (4c), respectively (Scheme 2).

The reaction of **1** with an excess of P_4 also leads to **3 a**, the ³¹P{¹H} NMR spectrum shows only traces of a mononuclear species (see Supporting Information). According to DFT calculations at the B3LYP/def2-SVE level of theory, the formation of the dinuclear species is, in the case of aluminum, by 112 (**3 a**), 95 (**3 b**) and 116 (**3 c**) kJmol⁻¹ more likely than the formation of the mononuclear species. A similar behavior is calculated for the gallium compounds, the dinuclear species should be favored by 25 (**4 a**), 31 (**4 b**) and 29 (**4 c**) kJmol⁻¹. Even after changing the reaction conditions (e.g. temperature, stoichiometry), the reaction of **2** with As₄ only leads to **4b**.^[14] In

Scheme 2. Reaction of As₄ and AsP₃ with 1 and 2 (dipp=2,6-diisopropylphenyl).

Chem. Eur. J. 2022, e202202529 (2 of 7)

© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Chemistry Europe European Chemical Societies Publishing

comparison with the lighter homolog phosphorus, the reaction of 2 with white phosphorus in a 1:0.75 ratio at 180°C^[15] leads to the formation of 4a and $[(LGa)_2(P_n)]$ (n = 4, 6, 8, 12, 14, 16).^[12] Freshly dissolved $\mathbf{3b}$ in C_6D_6 was characterized by ¹H NMR spectroscopy at room temperature, showing one set of signals for the two equivalent nacnac ligands. Similarly, the ¹H NMR spectrum of 4b (C₆D₆, r.t.) reveals a full set of signals for the nacnac ligand. The ³¹P{¹H} NMR spectra of the crude reaction mixture of 3c and 4c show the formation of various compounds (see Supporting Information), but only compounds 3c and 4c could be isolated (see below). The ³¹P{¹H} NMR spectrum of crystals of 4c dissolved in C₆D₆ shows two sets of signals corresponding to two isomers indicating different chemical and magnetic environments, which can be explained by the different position of the arsenic atom in the AsP₃ unit (Figure 1). The formation of isomers of 4c depends on the different bond cleavage of the AsP₃ tetrahedron. According to DFT calculations, the cleavage of an As-P bond is preferred by 25 kJmol⁻¹ vs. a P–P bond.^[7d] If the P–As bond is broken, the major isomer 4c1 is formed, with the gallium atom being coordinated to the arsenic atom (Figure 3). A P-P bond cleavage leads to the formation of the minor isomer 4c2, with the arsenic atom being located at the bridgehead position of the ligand (Figure 3). In the ³¹P{¹H} NMR spectrum of **4c**, both isomers are visible. For the major isomer 4c1, a triplet at $\delta =$ 179.1 ppm and a doublet at $\delta\!=\!-319.8\,\text{ppm}$ ($^1\!J_{\text{PP}}\!=\!155\,\text{Hz}$) in an integral ratio of 1:2 can be detected. The signals for the isomer 4c2 revealing a doublet at $\delta =$ 227.6 ppm and a triplet at -279.4 ppm (¹J_{PP} = 164 Hz) in an integral ratio of 2:1. The ratio of the compounds 4c1 and 4c2 according to the ³¹P{¹H} NMR spectrum of the crystals is determined to be 1:0.1. There are also traces of 4a visible (${}^{31}P{}^{1}H$): $\delta = -328.7$ (t) and 212.7 ppm (t)), due to P₄ impurities in AsP₃.

The ³¹P{¹H} NMR spectrum of the crude reaction solution of [LAI] with AsP₃ shows two sets of signals corresponding to two mononuclear isomers of a compound that is analogous to **4 c**. For one isomer, a doublet at $\delta = 117.7$ ppm (¹J_{PP} = 162 Hz, 2P) and a triplet at $\delta = -284.8$ ppm (¹J_{PP} = 162 Hz, 1P) can be detected, while for the other isomer there is a triplet at $\delta = -324.9$ ppm (¹J_{PP} = 151 Hz, 1P) and a doublet at $\delta = -324.9$ ppm

 $(^{1}J_{PP} = 151 \text{ Hz}, 2P)$. Both isomers are in an integral ratio of 3:2. Based on the striking similarity of the ³¹P{¹H} NMR spectroscopic data of the two isomers and 4c (see above), the two isomers represent the analogs of I-3 c in which the As atom possesses a wing tip and is located in the bridgehead position, respectively. Furthermore, signals are detected for 3c, which is the only product that was obtained by crystallization regardless of numerous attempts. The ¹H NMR spectrum of a sample prepared by dissolved crystals of 3c in C₆D₆ at room temperature shows two sets of signals for the Me-groups and the $\alpha\text{-H}$ atoms, due to the magnetically nonequivalent ligands. This is caused by the position of the arsenic atom within the AsP₃ unit. In the ³¹P{¹H} NMR spectrum of the same sample of 3c, a doublet at $\delta = 62.1 \text{ ppm}$ (${}^{1}J_{\text{PP}} = 24 \text{ Hz}$) and a triplet at $\delta =$ 50.0 ppm (${}^{1}J_{PP} = 24$ Hz) in an integral ratio of 2:1 can be detected. In the ³¹P{¹H} NMR spectrum of **3**c, also a small signal for **3a** is visible (**3a**: ${}^{31}P{}^{1}H{}$: $\delta = 78.6 \text{ ppm}^{[10]}$). The small ${}^{1}J_{PP}$ coupling constants could be explained by the pronounced 3p character of the P-P bond and the predominantly 3 s character of the phosphorus lone-pairs, which leads to a small s-overlap integral for the P-P bond and was reported also for diphosphines.^[17] NBO analysis nicely shows the high p character of the E-E bonds (P1-P2: sp^{9.4}, P2-As3: sp¹⁰, As3-P4: sp¹⁰, P1-P4: sp^{9.2}). In the LIFDI-MS spectra of **3b**, **4b** and **4c**, the corresponding molecular ion peaks are detected.

The molecular structures of **3b** and **3c** reveal dinuclear compounds bearing a strongly folded As₄ or AsP₃ ring, coordinating in an $\eta^{1:1}$ fashion to both {LAI} fragments, which are twisted (**3b**: 97.70(11)°; **3c**: 81.99(11)°) to each other (Figure 2). The arsenic atom in **3c** is disordered over all four pnictogen positions (for the occupation of the phosphorus and arsenic positions see Table 1). The As–As distances in **3b** are between 2.5096(6) and 2.5220(6) Å, which is elongated in comparison to an As–As single bond.^[18] The Wiberg bond

Figure 2. Molecular structure of 3 b (left) and 3 c (right, one of the four isomers) in the solid state. Anisotropic displacement ellipsoids are shown at 50% probability level (T = 123 K). Hydrogen atoms are omitted for clarity.

Table 1. Occupation of the phosphorus and arsenic positions in compound 3c and 4c as determined by single crystal X-ray crystallography.					
	atom E	1	2	3	4
3c	P	0.91	0.90	0.69	0.67
	As	0.09	0.10	0.31	0.33
4c	P	0.49	0.65	0.98	0.97
	As	0.51	0.35	0.02	0.03

© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

indices show the integrity of the As–As bonds (all WBIs around 0.93). A similar M_2As_4 core was observed in [(Cp*Co-(CO))_2(μ , $\eta^{1:1:1:1}$ -As_4)] (F).^[19] The As1...As3 and As2...As4 distances (3.329 and 3.341 Å) of **3b** are clearly longer than those in **F** (2.838(2) and 2.881(2) Å), which indicates a complete bond cleavage of two As–As edges of the As₄ tetrahedra. The P–As distances in **3c** are in the range of 2.28(2) and 2.561(14) Å, the P–P distances are in between 2.301(7) and 2.407(8) Å (WBIs between 0.93 and 0.96). The average Al–As distance in **3b** is 2.4513 Å, which is comparable to the one of the recently reported compound [LAI(AsH₂)₂] (L=[{N(C₆H₃ⁱPr₂-2,6)C-(Me)}₂CH]⁻) (Al-As_(av.) 2.474(3) Å).^[20]

The molecular structures of **4b** and **4c** each reveal a mononuclear compound bearing an As₄ or AsP₃ butterfly ligand, coordinating in $\eta^{1:1}$ fashion to the {LGa} fragment (Figure 3). The arsenic atom in **4c** is disordered over all four pnictogen positions. The major isomer **4c1** with the gallium-coordinated arsenic atom and the minor isomer **4c2** with the arsenic atom in the bridgehead position of the ligand were determined to be in a ratio of 85:6 (9% are **4a**) in the solid state (for the occupation of the phosphorus and arsenic positions see Table 1). According to DFT calculations at the B3LYP/def2-SVE level of theory, **4c1** is just by 0.3 kJ mol⁻¹ more stable than **4c2**.

The six-membered GaN₂C₃ ring is nearly perpendicularly oriented (4b: 91.8°; 4c: 87.9°) to the E1-Ga-E2 plane. The As1---As2 distance with 3.452 Å lies in a non-bonding range for 4b (WBI: 0.1). The E1...E2 distances of 4c are 3.291(13), 3.365(10) and 3.295(13) Å and lie in a non-bonding range, respectively. The As-As distances of 4b are all between 2.4608(5) and 2.4693(6) Å, except for the As3-As4 length which is as short as 2.3830(6) Å. A similar trend of the As-As distances within the As₄ butterfly moiety was also found in $[Cp*Co(CO)(\eta^{1:1}-As_4)]^{[19]}$ and $[(Cp^{R}M(CO)_{n})_{2}(\mu,\eta^{1:1}-As_{4})]^{[21]}$ (Cp''', M = Fe, n = 2; Cp*, M = Cr, n=3). The P-As distances in 4c are in the range between 2.315(4) and 2.52(4) Å, the P-P distances are in between 2.155(4) and 2.301(5) Å which matches the values of 4a well.[11] Moreover, the WBIs of all E-E bonds distances were calculated and show the integrity of the bonds. The Ga-As distances are 2.4259(5)/2.4415(5) Å for 4b and 2.412(3)/2.421(8) Å for compound 4c. This is comparable to the Ga-As distances found in [Ga(Cp*)L(GaL)(μ , $\eta^{3:2}$ -As₃)], which exhibit Ga–As bond lengths of the η^2 -coordinated Ga of 2.4183(3) and 2.4224(3) Å. The E–E bond in the bridgehead of the butterfly unit of 4a can be further activated in the case of phosphorus with another molecule of 2.^[12] Despite numerous attempts, such a reactivity of a main group compound could not be found for the arsenic compound 4b. Thus, the question arose if such gallium complexes are able to react further with unsaturated transition metal complexes and if this would also be the case for the As₄ derivative 4b. We focused especially on the synthesis of heterometallic mixed main group (group 13 metals) and transition metal complexes which, surprisingly, have only been little explored.^[22] In order to investigate the reactivity of 4a and 4b towards unsaturated transition metal fragments, they were reacted with 0.5 equivalents of $[(LNi)_2 tol]^{[23]}$ and $[(Cp'''Co)_2(\mu,\eta^{4:4} (C_7H_8)^{[24]}$ to deliver just one metal fragment, leading to the quantitative formation of $[(LGa)(\mu,\eta^{2:1:1}-P_4)(LNi)]$ (5 a) and $[(Cp'''Co)(\mu,\eta^{4:1:1}-E_4)(LGa)]$ (E = P (6a), As (6b)), which are isolated as orange (5 a) or green (6 a, 6 b) air-sensitive solids in crystalline yields of 61% (5a, Scheme 3) and 59% (6b, Scheme 3), respectively. The reaction of 4a with [(Cp'"Co)2tol] is not as selective as that of **4b**. In addition to $[(Cp'''Co)(\mu,\eta^{4:1:1}-P_4)(LGa)]$ (6a), $[(Cp'''Co)(\mu,\eta^{2:2}-P_2)_2]$ (G) is also formed during this reaction showing that 4a can deliver P₄ units to {Cp'''Co} fragments.^[25] To examine if [LGa] is also able to open an E-E bond of a cyclo- E_n complex, $[Cp'''Co(\eta^4-P_4)]$ (H) and $[Cp'''Ni(\eta^3-E_3)]$ (E = P, As) (I) is reacted with 2 (Scheme 3). The reaction of H with 2 leads to the selective formation of 6a. By the reaction of I with 2, compounds $[(Cp'''Ni)(\eta^{3:1:1}-E_3)(LGa)]$ (E = P (7 a), As (7 b)) are formed as orange air-sensitive solids in crystalline yields of 40% (7a) and 69% (7b), respectively (Scheme 3). These products represent novel neutral, heterometallic compounds containing mixed main group and transition metals.

Whereas the ³¹P{¹H} NMR spectrum of **5a** in C₆D₆ at room temperature is silent, the ¹H NMR spectrum displays broad and shifted signals revealing a paramagnetic compound. The effective magnetic moment (μ_{eff}) is determined by the Evans method to be 2.29 μ_{B} corresponding approximately to one unpaired electron. The paramagnetic nature of **5a** is confirmed by X-band EPR spectroscopy at room temperature and at 77 K (r.t.: g=2.156, 77 K: g₁=2.236, g₂=2.121 and g₃=2.038, Figure 4). DFT calculations (B3LYP/def2-SVE level) show that the spin density is delocalized over the nickel atom and all four phosphorus atoms (Figure 4), which is in agreement with the observed hyperfine coupling. The ¹H NMR spectrum of the

Figure 3. Molecular structure of 4b (left), one of the major isomers 4c1 (middle) and one of the minor isomers 4c2 (right) in the solid state. Anisotropic displacement ellipsoids are shown at 50% probability level (T = 123 K). Hydrogen atoms are omitted for clarity.

Figure 4. left: X-band EPR spectrum of **5a** (B in [mT], frozen toluene solution 77 K (black), simulation (blue)); right: spin density distribution in **5a**, calculated at the B3LYP/def2-SVE level.

© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Chem. Eur. J. 2022, e202202529 (4 of 7)

5213765, 0

aloaded from http://chemistry-europe.onlinelibary.wiley.com/a/01/0102/chem.202202529 by Karlsruher Inst F. Technologie, Wiley Online Libary on [15/12/2022]. See the Terms and Conditions (https://onlinelibary.wiley.com/terms-and-conditions) on Wiley Online Libary for rules of use; O Antrices are governed by the applicable Creative Commons License

Scheme 3. Reaction of 4 with unsaturated transition metal complexes and reaction of 2 with E_n ligand complexes (dipp = 2,6-diisopropylphenyl, $Cp''' = C_5H_2$ 'Bu₃).

reaction of **4b** with $[(LNi)_2tol]$ exhibits broad and shifted signals similar to **5a**, crystallization, however, was not possible, regardless of numerous attempts.

The ¹H NMR spectra of the reaction solutions of **6b** and **7b**, respectively, in C₆D₆ indicate that the reactions are very selective, they exhibit four doublets centered at $\delta =$ 1.90, 1.63, 1.19 and 0.82 ppm (**6b**); $\delta = 1.67$, 1.60, 1.14 and 1.04 ppm (**7b**) and two septets centered at $\delta = 3.95$ and 2.58 (6b) or $\delta = 1.56$ and 1.48 (7b) for the isopropyl groups, respectively. This indicates that the chemical environment of all isopropyl groups is different. Similar signals could be obtained for 6a and 7a in the ¹H NMR spectrum. The ³¹P{¹H} NMR spectrum of **6a** in C_6D_6 reveals two multiplets centered at $\delta = 94.0$ and -54.0 ppm, respectively, with an integral ratio of 1:1 displaying an AA'XX' spin system (see Supporting Information). This shows high similarities to the anionic heterobimetallic complex [K- $(dme)_{2}(^{Mes}BIAN)Co(\mu,\eta^{4:1:1}-P_{4})(LGa)]$ (^{Mes}BIAN = 1,2-bis(2,4,6dimethylphenylimino)acenaphthene).^[22b] The ³¹P{¹H} NMR spectrum of **7 a** in C₆D₆ reveals a doublet at $\delta = 163.8$ ppm (2P, ¹J_{PP} = 325 Hz) and a triplet at $\delta =$ 109.1 ppm (1P, ¹J_{PP} = 325 Hz).

The molecular structure of **5a** displays a heterobimetallic complex bearing a P₄ butterfly unit, coordinating in $\eta^{1:1}$ fashion to the {LGa} fragment and in η^2 fashion to the {LNi} fragment (Figure 5). The P1…P2 distances of compound **5a** are 3.178(2) Å,

which is in the same range as for **4a** (3.173(3) Å^[11]) and in a non-bonding area (WBI: P1…P2 0.12). The P–P bond distances of **5a** are all between 2.237(2) and 2.239(2) Å (all WBIs around 0.9), except for the P3-P4 bond distance which is elongated to 2.2566(15) Å (WBI: 0.78). Compound **5a** is a rare example of a mixed main group transition metal nacnac complex. To the best of our knowledge, only one example of a similar compound with mixed metal nacnac ligands is known, namely the nickel silicon compound [(LSi)(μ , $\eta^{2:1:1}$ -P₄)(LNi)].^[22c]

Compounds **6b**, **7a** and **7b** are heterodinuclear sandwich complexes with an {LM} fragment η^4 - or η^3 -coordinated to the As₄ or E₃ chain and an {LGa} fragment in $\eta^{1:1}$ -coordination mode (Figure 5). In comparison to **4b**, in **6b**, two more As–As bonds are broken. Compounds **7a** and **7b** show an insertion of the {LGa} fragment into the *cyclo*-E₃ unit. The butadiene-like As₄ unit of **6b** is nearly planar (deviation 2.8 °). The As1-As2 and As3-As4 distances in **6b** are 2.3227(6) and 2.3270(6) Å, the As2-As3 bond distance is slightly longer (2.4018(6) Å). The E–E bond distances are 2.1586(11) and 2.1818(11) Å for **7a** and 2.4059(4) and 2.4095(4) Å for **7b**, respectively. The As1-mAs4 (**6b**), P1-mP3 (**7a**) and As1-mAs3 (**7b**) distances are with 3.4434(6) Å (**6b**), 3.0939(9) Å (**7a**) and 3.2753(6) Å (**7b**) in the non-bonding area and slightly shorter than the comparable distance (2.4271(5) Research Article doi.org/10.1002/chem.202202529

Figure 5. Molecular structures of 5 a, 6 b, 7 a and 7 b in the solid state. Anisotropic displacement ellipsoids are shown at 50% probability level (T = 123 K (5 a, 7 a); 100 K (6 b, 7 b)). Hydrogen atoms and solvent molecules are omitted for clarity.

and 2.4481(5) Å) similar to **4b**. The six-membered GaN₂C₃ ring is nearly perpendicular (**6b**: 92.4 °, **7a**: 95.9 ° **7b**: 89.6 °) to the E1–Ga–E4/E3 plane, which is folded by 113.7 ° (**6b**), 126.0 ° (**7a**) or 120.5° (**7b**) to the E_{4/3} unit. Compound **6b** contains a core that is similar to the one of the homodinuclear compound [(Cp*Co)(μ , $\eta^{4:1:1}$ -As₄)(Co(CO)Cp*)].^[19]

Conclusion

In summary, we reported the synthesis of novel homobimetallic compounds $[(LAI)_2(\mu,\eta^{1:1:1:1}-E_4)]$ (E = As (3b), AsP₃ (3c)) and the mononuclear compounds [LGa($\eta^{1:1}$ -E₄)] (E = As (4b), AsP₃ (4c)), the first examples of the conversion of yellow arsenic and AsP₃ with low-valent group 13 compounds. We have shown that, in the case of AsP₃, the occurrence of an As-P bond activation is more likely than that of a P–P bond activation. The ³¹P{¹H} NMR spectrum of 4c shows two isomers depending on the position of the arsenic atom. The crude reaction solution of 3c also indicates the formation of a mononuclear compound in solution, representing the first step on the reaction pathway to a double substitution. In the case of the gallium complexes, further reactivities towards unsaturated metal complexes or E_n (n=3, 4) ligand complexes were investigated. Thus, the [(LGa)(μ,η^{2:1:1}-P₄)(LNi)] heterometallic compounds (5 a), [(Cp‴Co)(μ,η^{4:1:1}-E₄)(LGa)] (E = P)(6 a), (6 b)) As and $[(Cp'''Ni)(\mu\eta^{3:1:1}-E_3)(LGa)]$ (E = P (7a), As (7b)) were synthesized. These complexes unite different ligand systems (Cp and nacnac) and also different, merged metal moieties, main group as well as transition metals, and thus revealing unprecedented examples of mixed main group/transition metal complexes.

Experimental Section

The full experimental details and characterization data can be found in the Supporting Information.

Deposition Number(s) 2192193 (**3b**), 2192194 (**3c**), 2192195 (**4b**), 2192196 (**4c**), 2192197 (**5a**), 2192198 (**6b**), 2192199 (**7a**) and

2192200 (**7b**) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft within the projects Sche 384/40-1, RO 2008/21-1 and Sche 384/45-1. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: aluminium · gallium · main group compound · nacnac ligands · yellow arsenic

- a) M. Scheer, E. Herrmann, Z. Chem. **1990**, 30, 41–55; b) O. J. Scherer, Angew. Chem. Int. Ed. **1990**, 29, 1104–1122; Angew. Chem. **1990**, 102, 1137–1155; c) O. J. Scherer, Acc. Chem. Res. **1999**, 32, 751–762; d) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. **2010**, 110, 4164–4177; e) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. **2010**, 110, 4178–4235; f) C. M. Hoidn, D. J. Scott, R. Wolf, Chem. Eur. J. **2021**, 27, 1886–1902; g) L. Giusti, V. R. Landaeta, M. Vanni, J. A. Kelly, R. Wolf, M. Caporali, Coord. Chem. Rev. **2021**, 441, 213927.
- [2] a) M. Seidl, G. Balázs, M. Scheer, *Chem. Rev.* 2019, *119*, 8406–8434;
 b) A. E. Seitz, F. Hippauf, W. Kremer, S. Kaskel, M. Scheer, *Nat. Commun.* 2018, *9*, 361.
- [3] R. P. Tan, N. M. Comerlato, D. R. Powell, R. West, Angew. Chem. Int. Ed. Engl. 1992, 31, 1217–1218.
- [4] A. E. Seitz, M. Eckhardt, S. S. Sen, A. Erlebach, E. V. Peresypkina, H. W. Roesky, M. Sierka, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 6655–6659; Angew. Chem. 2017, 129, 6755–6759.

© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

- [5] S. Heinl, G. Balázs, A. Stauber, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 15524–15527; Angew. Chem. 2016, 128, 15751–15755.
- [6] a) B. M. Cossairt, M.-C. Diawara, C. C. Cummins, *Science* 2009, 323, 602–602; b) B. M. Cossairt, C. C. Cummins, A. R. Head, D. L. Lichtenberger, R. J. F. Berger, S. A. Hayes, N. W. Mitzel, G. Wu, *J. Am. Chem. Soc.* 2010, 132, 8459–8465.
- [7] a) B. M. Cossairt, C. C. Cummins, J. Am. Chem. Soc. 2009, 131, 15501–15511; b) B. M. Cossairt, C. C. Cummins, Chem. Eur. J. 2010, 16, 12603–12608; c) C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel, A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins, R. Kempe, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 7283–7286; Angew. Chem. 2011, 123, 7421–7424; d) T. A. Engesser, W. J. Transue, P. Weis, C. C. Cummins, I. Krossing, Eur. J. Inorg. Chem. 2019, 2019, 2607–2612.
- [8] C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao, F. Cimpoesu, Angew. Chem. Int. Ed. 2000, 39, 4274–4276; Angew. Chem. 2000, 112, 4444–4446.
- [9] N. J. Hardman, B. E. Eichler, P. P. Power, Chem. Commun. 2000, 1991– 1992.
- [10] Y. Peng, H. Fan, H. Zhu, H. W. Roesky, J. Magull, C. E. Hughes, Angew. Chem. Int. Ed. 2004, 43, 3443–3445; Angew. Chem. 2004, 116, 3525– 3527.
- [11] G. Prabusankar, A. Doddi, C. Gemel, M. Winter, R. A. Fischer, *Inorg. Chem.* 2010, 49, 7976–7980.
- [12] F. Hennersdorf, J. Frötschel, J. J. Weigand, J. Am. Chem. Soc. 2017, 139, 14592–14604.
- [13] C. Ganesamoorthy, J. Krüger, C. Wölper, A. S. Nizovtsev, S. Schulz, Chem. Eur. J. 2017, 23, 2461–2468.
- [14] M. Haimerl, M. Piesch, G. Balázs, P. Mastrorilli, W. Kremer, M. Scheer, Inorg. Chem. 2021, 60, 5840–5850.
- [15] No hints of a disubstituted gallium compound were found by $^1\!{\rm H}$ NMR monitoring.

- [16] In a screw-cap Schlenk flask, the solution was heated to 180°C for 19 h. See citation [9].
- [17] a) O. Kühl, Phosphorus-31 NMR Spectroscopy; A Concise Introduction for the Synthetic Organic and Organometallic Chemist, Springer-Verlag Berlin Heidelberg, 2008; b) H. C. E. McFarlane, W. McFarlane, J. A. Nash, J. Chem. Soc. Dalton Trans. 1980, 240–244.
- [18] a) Y. Morino, T. Ukaji, T. Ito, Bull. Chem. Soc. Jpn. 1966, 39, 64–71; b) P. Pyykkö, M. Atsumi, Chem. Eur. J. 2008, 15, 186–197; c) H. A. Spinney, N. A. Piro, C. C. Cummins, J. Am. Chem. Soc. 2009, 131, 16233–16243.
- [19] O. J. Scherer, K. Pfeiffer, G. Wolmershäuser, *Chem. Ber.* 1992, *125*, 2367–2372.
 [20] P. Li, G. Paure, M. G. H. & Y. Tim, J. H. & G. Jun, T. S. Jun, J. S. Start, and S. S. Start
- [20] B. Li, S. Bauer, M. Seidl, A. Y. Timoshkin, M. Scheer, Chem. Eur. J. 2019, 25, 13714–13718.
- [21] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077–9081; Angew. Chem. 2014, 126, 9223–9227.
- [22] a) R. Yadav, T. Simler, B. Goswami, C. Schoo, R. Köppe, S. Dey, P. W. Roesky, *Angew. Chem. Int. Ed.* 2020, *59*, 9443–9447; *Angew. Chem.* 2020, *132*, 9530–9534; b) C. G. P. Ziegler, T. M. Maier, S. Pelties, C. Taube, F. Hennersdorf, A. W. Ehlers, J. J. Weigand, R. Wolf, *Chem. Sci.* 2019, *10*, 1302–1308; c) Y. Xiong, S. Yao, E. Bill, M. Driess, *Inorg. Chem.* 2009, *48*, 7522–7524.
- [23] G. Bai, P. Wei, D. W. Stephan, Organometallics 2005, 24, 5901.
- [24] J. J. Schneider, D. Wolf, C. Janiak, O. Heinemann, J. Rust, C. Krüger, Chem. Eur. J. 1998, 4, 1982–1991.
- [25] O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1995, 128, 635-639.

Manuscript received: August 15, 2022 Accepted manuscript online: September 29, 2022 Version of record online:

RESEARCH ARTICLE

Bond by bond. The conversion of yellow arsenic with the group 13 metal compound [LGa] (L = [{N- $(C_6H_3^iPr_2-2,6)C(Me)\}_2CH]^-$) leads to one As–As bond cleavage in [LGa($\eta^{1:1}$ -As₄)]. By reacting this product with an

unsaturated metal complex, two further As—As bonds are broken, to form a butadiene-like As₄ chain stabilized in the coordination sphere of transition metals as well as main group metals. Dr. M. Haimerl, Dr. M. Piesch, Dr. R. Yadav, Prof. Dr. P. W. Roesky, Prof. Dr. M. Scheer*

1 – 8

Reactivity of E_4 ($E_4 = P_4$, As_4 , AsP_3) towards Low-Valent Al(I) and Ga(I) Compounds