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3 Introduction 

 

1  Chapter 1 

Introduction 

Metamaterials are rationally designed structures often made of periodic building 

blocks. Ideally, such a metamaterial can be interpreted as a continuum with effective 

properties. This approach is along the lines of established continuum theories mapping 

effective properties to matter made from atoms. In metamaterials, the effective prop-

erties go qualitatively or quantitatively beyond those of the constituent materials since 

the effective properties arise from the structure and not from the constituent mate-

rial [1]. 

The field of metamaterials started with electro-magnetic metamaterials showing a tai-

lored response to electromagnetic radiation including materials that show negative re-

fractive index as probably one of the most famous examples [2–5]. From that point on, 

the field quickly evolved to many disciplines including mechanical metamaterials that 

allow a tailored response to mechanical stimuli [1, 6]. Famous examples are auxetics 

that contract laterally upon a compression [7–13]. Interpreted as a continuous material, 

such metamaterials are said to have an effective negative Poisson’s ratio. Another ex-

ample are chiral metamaterials that have properties not included in classical elasticity 

[14], like a twisting motion upon compression [14, 15] or circular phonon eigenmodes 

that lead to the phenomenon of acoustical activity [16, 17].      

Advances in the field of metamaterials allow to tailor metamaterials with desired prop-

erties, but once fabricated the material properties are fixed. However, sometimes it is 

favourable that a material changes its properties in response to an external stimulus. 

Nature shows us the way. For example, some plants like the Leguminosae contain cells 

that contract on irradiation with light and thereby move the leaves of the plant towards 

the sun. This allows the plant to cope with the constantly changing direction of the sun-

light. [18] But also, a lot of responsive materials were discovered that can be employed 

for technical applications. Already in use in daily life are piezoelectric materials that 
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contract or expand in response to an electric field and are employed in actuators, trans-

ducers or oscillators [19]. Shape memory alloys alter their shape in response to a tem-

perature change and are used as actuators in cars, in the wings of aircrafts, in stents, 

and for many more applications [20]. Another important example are liquid crystals, 

which consist of molecules with a long-range orientational order along a common di-

rection called the director. This long-rang order causes the liquid crystals to be birefrin-

gent with the optic axis along the director. The orientation of the director can be ma-

nipulated via electric fields, which is widely used in displays [21].  

There are also responsive materials that are currently in discussion for a lot of possible 

applications. Liquid-crystal elastomers [22–25] for example respond to heat or light 

with a large anisotropic shape change. Envisioned applications include for example ac-

tuators or microrobots [26]. Hydrogels like pNIPAAM show a large isotropic expansion 

in aqueous conditions for different stimuli like temperature, pH or solvents [25]. Appli-

cations are suggested for example in the biomedical area [27]. This is only a small se-

lection and there are many more responsive materials [28, 29]. 

Most of the examples listed so far react with a shape transformation exposed to an 

external stimulus. Exploiting shape transformations, responsive metamaterials [1, 30, 

31] offer a route to create materials with all kind of tuneable effective properties, since 

the effective properties of metamaterials arise from their structure.    

Concerning responsive mechanical metamaterials there are many published examples 

including structures tuning stiffness [32–36], Poisson’s ratio [37–41], stopbands [42–

44] and shape [45, 46] using temperature [35, 39–41, 45, 46], pressure [34], electrical 

voltage[33, 44], static magnetic fields[32, 36–38, 42] or light[43] as a stimulus. How-

ever, all the presented examples are limited to macroscopic models [32–44, 46], 2D 

structures [37–42, 44, 46] or have a limited parameter tuning range [45].  

In this thesis, I present an approach to design and fabricate 3D optomechanical met-

amaterials with feature sizes in the micrometre regime. Similar to the above example 

of the light induced reorientation of plants, the presented 3D metamaterials change 

their shape upon illumination and thereby change their effective mechanical proper-

ties. I illustrate the approach on the basis of two different metamaterials. The first met-

amaterial shows a tuneable effective Poisson’s ratio, while the second one is a chiral 

metamaterial with a tuneable twist per strain. For both structures the respective effec-

tive properties can be tuned on a large scale and even be flipped in sign in response to 

the light of the external LED.  
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Both responsive metamaterials presented in this thesis are manufactured from liquid-

crystal elastomers via a novel 3D laser microprinting technique I established as a part 

of this thesis. In contrast to other techniques [47–73] it allows for structures from liquid-

crystal elastomers with feature sizes in the micrometre regime with sample sizes in the 

millimetre regime at the same time. The director can be freely adjusted in three dimen-

sions at any point during manufacturing. This is a key requirement for complex 3D re-

sponsive metamaterials and is not achieved to this extent by other techniques pub-

lished so far. 

Outline of this Thesis 

The fundamentals necessary to understand the thesis are summarized in chapter 2. 

First, I introduce the fundamentals concerning liquid crystals and liquid-crystal elasto-

mers, since the printed optomechanical metamaterials are made from liquid-crystal 

elastomers and the employed photoresins are liquid crystals. During the 3D laser mi-

croprinting process, a laser has to be focused into the liquid-crystal resin, which is bire-

fringent. Therefore, I introduce the concepts of birefringence and explain how to calcu-

late the shape of a laser that is focused into such a birefringent resin. The chapter is 

closed with an introduction to continuum mechanics. The equations of continuum me-

chanics are used within this thesis to predict the effective properties of the two pre-

sented 3D optomechanical metamaterials.  

In chapter 3, I present the novel 3D laser microprinting technique that I established to 

print the presented 3D optomechanical metamaterials. The three major challenges I 

had to solve are described. First, I explain how to control the director orientation within 

the liquid-crystal resin. This is done via strong quasi-static electric fields induced by a 

set of electrodes developed by myself. I describe the working principle of the elec-

trodes, how to fabricate them and how they are used. The second challenge that is dis-

cussed concerns the focusing of the laser used for the printing. I present solutions how 

to achieve a tightly focused laser beam for different orientations of director within the 

liquid-crystal resin. The last challenge I describe is the composition of the liquid-crystal 

resin itself. I describe the composition of the two resins employed in this thesis and 

characterize the resulting liquid-crystal elastomer with regard to its thermal expansion. 

In the end of the chapter, I present printed structures proofing that the technique pro-

duces defined 3D structures from liquid-crystal elastomer with spatial control over the 

director orientation.  

In chapter 4, I present two examples for 3D optomechanical metamaterials printed 

from liquid-crystal elastomer. In the beginning of the chapter, I provide details on the 
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fabrication process of the metamaterials. This is followed by a description of the setup 

used to characterized the metamaterials. Moreover, I present the model employed for 

the finite element calculations that I used to predict the effective properties of the met-

amaterials. Finally, I present the results of the experimental characterisation of the met-

amaterials and compare the experimental data to the results of the finite element cal-

culations. In detail I show that the effective Poisson’s ratio of the first metamaterial and 

the twist per strain of the second metamaterial can be tuned on a large range and that 

even the sign of the effective properties can be flipped. 

In chapter 5, I summarize this thesis and set the results into the context of the literature. 

In the end I give an outlook on future developments.    



 

7 Liquid Crystals 

 

2  Chapter 2 

Fundamentals 

In this chapter, I provide the fundamentals that are necessary to understand the 3D 

laser microprinting of liquid-crystal elastomers. First of all, I give a brief introduction to 

the basic concepts of liquid crystals and liquid-crystal elastomers. This is followed by an 

introduction to birefringence and the focussing of laser light into a liquid-crystal resin. 

In the end of this chapter, I give a short introduction to the equations of continuum 

mechanics, which I used to predict the effective properties of the 3D optomechanical 

metamaterials discussed in this thesis. 

2.1  Liquid Crystals 
A basic understanding about the physics of liquid crystals is necessary to understand 

the challenges in 3D laser microprinting of liquid-crystal elastomers and how to solve 

them. The following information is taken from [74–76]. 

The term liquid crystal denotes a state of matter. There are many different classes of 

liquid crystals but in this thesis, I will only deal with so called nematic liquid crystals. 

Nematic liquid crystals are formed of rod-shaped molecules pointing in a direction �⃗� ′.  

An example is 4-Cyano-4'-pentylbiphenyl also called 5CB, which is depicted in Figure 1a. 

The position of the rod-shaped molecules is random like in a liquid, however, the mol-

ecules tend to align in a common direction on a long range as depicted in Figure 1b. This 

common direction is called the director �⃗� . Usually, the orientation �⃗� ′ of a liquid-crystal 

molecule is equally probable as its opposite orientation −�⃗� ′. This implies that the di-

rector �⃗�  is equivalent to −�⃗� .  
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the director. In total, this means that all orientations on the black circles in Figure 1d 

are equally probable. The probability only depends on the polar angle 𝜃 and is described 

by the distribution function 𝑓(𝜃). Figure 1c shows the distribution function of 5CB at 

room temperature. It shows, that the probability is highest for an orientation parallel 

to the director and lowest for an orientation perpendicular to the director.  

An important physical quantity to summarize the degree of orientational order is called 

the order parameter. An order parameter is usually defined such, that it is zero for no 

orientational order and reaches in some sense a maximum for perfect order. An intui-

tive approach to construct such an order parameter is to average over the orientations 

 

Figure 1. (a) 4-Cyano-4'-pentylbiphenyl (5CB) is an example for a rigid rod-shaped mole-
cule that shows a nematic phase. The orientation of the molecule is denoted with the 
vector �⃗� ′. (b) In the nematic phase, the molecules align along a common direction, the 
director �⃗� . The angle between the director and the molecule is denoted by 𝜃. (c) 𝑓(𝜃) 
describes the probability of a certain orientation of a molecule within the nematic phase 
at room temperature. (d) According to experimental observations all orientations on the 
two black circles are equally probable for a given 𝜃. 
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of the single molecules. However, since an orientation �⃗� ′ is equally probable than −�⃗� ′, 

the average 

 〈�⃗� ′〉 = ∫ �⃗� ′𝑓(𝜃)dΩ = 0 (1) 

vanishes. A solution to this problem is the definition of a second order tensor 𝑸 that 

serves as an order parameter for a nematic liquid crystal. An easy to interpret definition 

is given by 

 𝑄𝑎𝑏 =
1

2
(3〈𝑛𝑎

′ 𝑛𝑏
′ 〉 − 𝛿𝑎𝑏) (2) 

with 
〈𝑛𝑎
′ 𝑛𝑏

′ 〉 = ∫𝑛𝑎
′ 𝑛𝑏

′ 𝑓(𝜃)dΩ. (3) 

To interpret the meaning of the second order tensor 𝑸, a coordinate system must be 

chosen, where 𝑒 𝑧 coincides with the director �⃗� . The second order tensor 𝑸 then be-

comes 

 𝑸 = 𝑆

(

 
 
−
1

2
0 0

0 −
1

2
0

0 0 1)

 
 

 (4) 

with 
𝑆 =

1

2
(3〈𝑛3

′ 𝑛3
′ 〉 − 1). (5) 

The coefficient 𝑆 is called the strength of the nematic order. For perfect alignment along 

the director (𝑓(𝜃) = 𝛿(𝜃)/2𝜋), 𝑆 equals one. In the isotropic case (𝑓(𝜃) = 1/4𝜋), 𝑆 

equals zero. 

The non-diagonal terms in the matrix representation of 𝑸 vanish, since there is an 

equally probable orientation �⃗� ″ for every orientation �⃗� ′ of a molecule, which fulfils the 

condition  

 𝑛𝑎
′ 𝑛𝑏

′ = −𝑛𝑎
″𝑛𝑏

″ for 𝑎 ≠ 𝑏. (6) 

This condition can easily be validated with the help of Figure 1d.  

For an arbitrary choice of the coordinate system 𝑒 𝑥
′ , 𝑒 𝑦

′ , 𝑒 𝑧
′  the order parameter will not 

have a diagonal shape. However, there is always an orthogonal matrix 𝑶, that diago-

nalizes the order parameter tensor, such that 
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 𝑸D = 𝑶𝑸𝑶T = 𝑆

(

 
 
−
1

2
0 0

0 −
1

2
0

0 0 1)

 
 
. (7) 

The director �⃗�  is then given by the eigenvector of 𝑸 that corresponds to the third ei-

genvalue. This means in practice that 

 �⃗� = 𝑶𝑒 𝑧
′ . (8) 

In total, the order parameter contains the information on the director orientation and 

the strength of the nematic order. I want to mention, that the order parameter can also 

be written in terms of the director instead of the average over molecule orientations 

 𝑄𝑖𝑗 =
1

2
𝑆(3𝑛𝑖𝑛𝑗 − 𝛿𝑖𝑗). (9) 

Due to the strong orientational order of liquid crystals, their physical properties are of-

ten strongly anisotropic. An important example is the anisotropic permittivity at low 

frequencies, which can be used to align liquid crystals with an electric field. The align-

ment of liquid crystals via electric fields will be discussed in the sections 2.1.1 and 2.1.2. 

The anisotropy of the permittivity at optical frequencies is the reason for the strong 

birefringence in liquid crystals. This is a challenge in 3D laser printing of liquid-crystal 

elastomers, since it requires to tightly focus a laser beam into a liquid-crystal resin. For 

that reason, I introduce the fundamentals of birefringence in section 2.2. Also, I discuss 

how to focus light into a liquid crystal in section 2.3. 

The degree of anisotropy depends on the nematic strength. If the molecules are less 

well aligned, the anisotropy is less pronounced. Since the order of the molecules de-

creases with increasing temperature, the nematic strength decreases with increasing 

temperature as well. At a critical temperature, a phase transition happens to the iso-

tropic phase. The behaviour of the nematic strength close to the phase transition is 

described by the Landau-deGennes theory discussed in the next section.  

2.1.1 Landau-deGennes Theory 
In this section, the Landau-deGennes theory describing the nematic to isotropic phase 

transition is introduced. The theory assumes that the order parameter is small close to 

the phase transition. In this case, the free energy of the liquid crystal can be expanded 

in powers of 𝑄𝑖𝑗. The expansion must contain uneven orders of 𝑸, since 𝑸 and −𝑸 
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represent different physical realizations, which can easily be seen for example for 𝑆 =

0.5 and 𝑆 = −0.5. In the first case it is  

 〈𝑛3
′ 𝑛3

′ 〉 =
2

3
 , (10) 

which represents a decent alignment of the molecules along the director, while in the 

second case it is 

 〈𝑛3
′ 𝑛3

′ 〉 = 0 , (11) 

which represents an orientation of the molecules perpendicular to the director. Since 

the trace of the order parameter vanishes, the first order in the expansion vanishes. In 

total the expansion up the fourth order in 𝑸 is given by 

 
𝐹 = 𝐹0 +

2

3
𝐴(𝑇 − 𝑇∗)𝑄𝑖𝑗𝑄𝑗𝑖 −

4

3
𝐵𝑄𝑖𝑗𝑄𝑗𝑘𝑄𝑘𝑖

+
2

9
𝐶 [(𝑄𝑖𝑗𝑄𝑗𝑖)

2
+ 2𝑄𝑖𝑗𝑄𝑗𝑘𝑄𝑘𝑙𝑄𝑙𝑖]. 

(12) 

In this expansion the temperature dependence of the factor in the quadratic order is 

approximated to be linear and completely neglected in the higher order terms. Inserting 

the definition of 𝑸 results in 

 𝐹(𝑆, 𝑇) = 𝐹0 + 𝐴(𝑇 − 𝑇
∗)𝑆2 − 𝐵𝑆3 + 𝐶𝑆4. (13) 

To obtain the nematic strength 𝑆 for a given temperature 𝑇, the free energy must be 

minimal. The free energy is minimal for  

 𝑆 =

{
 
 

 
 0 for 𝑇 ≥ 𝑇ni = 𝑇

∗ +
𝐵2

4𝐴𝐶

3𝐵 +√9𝐵2 − 32𝐴𝐶(𝑇 − 𝑇∗)

8𝐶
for 𝑇 ≤ 𝑇ni

 . (14) 

The nematic strength is plotted versus the temperature in Figure 2a for temperatures 

close to the critical temperature 𝑇𝑛𝑖. At the critical temperature 𝑇ni there is a jump in 𝑆 

of  

 Δ𝑆 =
𝐵

2𝐶
 , (15) 

indicating a first order phase transition. Due to the phenomena of supercooling and 

superheating, the phase transition often does not occur at the critical temperature but 
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slightly above or below. For example, the isotropic phase represents a metastable equi-

librium for 𝑇∗ < 𝑇 < 𝑇ni, since  

 
𝜕2𝐹

𝜕𝑆2
(𝑆 = 0, 𝑇) > 0 for 𝑇 > 𝑇∗. (16) 

This means, that on slow cooling from the isotropic phase, the isotropic to nematic tran-

sition appears at 𝑇∗ < 𝑇ni. This effect is called supercooling. For  

 𝑇ni < 𝑇 < 𝑇sh = 𝑇∗ +
9

8

𝐵2

4𝐴𝐶
 , (17) 

the nematic phase represents a metastable equilibrium. On slow heating from the ne-

matic phase, the nematic to isotropic transition appears at 𝑇sh > 𝑇ni. This is called su-

perheating. Figure 2b shows the free energy versus the nematic strength for 𝑇∗, 𝑇ni, 𝑇sh 

and a temperature 𝑇∗ < 𝑇 < 𝑇ni. The metastable equilibrium states are clearly visible. 

Within the presented approximation, the entropy is given by  

 𝑠(𝑉, 𝑇) = −(
𝜕𝐹

𝜕𝑇
)
𝑉
= −𝐴𝑆2. (18) 

 

Figure 2. (a) Nematic strength versus the temperature close to the critical temperature 
𝑇𝑛𝑖. At this temperature a first order phase transition to the isotropic phase occurs. (b) 
The free energy is depicted for different temperatures. At 𝑇𝑠ℎ the metastable nematic 
phase becomes instable. At 𝑇𝑛𝑖 the nematic and the isotropic phase have the same free 
energy. Between 𝑇∗ and 𝑇𝑛𝑖 the isotropic phase is metastable. At 𝑇∗ the metastable iso-
tropic phase becomes instable.    



 

13 Liquid Crystals 

From this equation the latent heat at the phase transition can be calculated. It is given 

by  

 Δ𝑄 = 𝑇niΔ𝑠 = 𝑇ni
𝐴𝐵2

4𝐶2
 . (19) 

The constants 𝐴, 𝐵, 𝐶 that appear in the expression for the free energy can be roughly 

estimated from simple observations. Mean field theories predict the phase transition 

of liquid crystals for a nematic strength of about 𝑆 ≈ 0.4 [75]. From equation (15) it 

follows  

 𝐵 ≈ 0.8𝐶 . (20) 

Assuming 𝑇𝑛𝑖 − 𝑇
∗ ≈ 1 K [76] results with equation (14) in  

 𝐵2 = 4𝐴𝐶 ⋅ 1 K . (21) 

Finally, the latent heat is usually on the order of 1 − 2 J ⋅ g−1 [76]. In comparison, this 

is three orders of magnitude lower than for water. 5CB for example shows a latent heat 

of about 1.6 J ⋅ g−1 [77], a density of 1 g ⋅ cm−3 [78] and 𝑇ni ≈ 308 K [77]. Together 

with equation (19), the three observations result in  

 𝐴 ≈ 3.2 ⋅ 104
J

m3K
 ,  𝐵 ≈ 1.6 ⋅ 105

J

m3 ,  𝐶 ≈ 2.0 ⋅ 10
5
J

m3 . (22) 

The application of an external force, that aligns the liquid-crystal molecules to a com-

mon direction adds new phenomena to the already discussed thermal behaviour. Espe-

cially, the external force prevents the transition to the isotropic phase on heating. In-

stead there is a transition to a para-nematic phase that still retains a nematic strength 

𝑆 > 0. For strong forces the behaviour becomes super-critical. This behaviour can easily 

be studied theoretically with electric fields representing the aligning external force. In 

the presence of electric fields, the free energy must be corrected by the term 

 𝑊 = −
𝜖0
2
𝐸𝑖ϵ𝑖𝑗𝐸𝑗  (23) 

with 
ϵ𝑖𝑗 =

2

3
Δ𝜖𝑄𝑖𝑗 + 𝜖�̅�𝑖𝑗 , (24) 

 
Δ𝜖 = 𝜖∥ − 𝜖⊥, (25) 
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𝜖̅ =

1

3
𝜖∥ +

2

3
𝜖⊥. (26) 

𝜖∥ represents the permittivity along the director, while 𝜖⊥ represents the permittivity 

perpendicular to the director. Inserting the definition of the order parameter 𝑸 results 

in  

 𝑊 = −
ϵ0
2
(
1

3
Δϵ𝑆(3(𝐸𝑖𝑛𝑖)

2 − 𝐸2) + 𝜖�̅�2 ). (27) 

Assuming that the liquid crystals are free to rotate, the energy becomes minimal, when 

the director and the field are in parallel. In total the free energy becomes 

 𝐹(𝑆, 𝑇) = 𝐹0 + 𝐴(𝑇 − 𝑇
∗)𝑆2 − 𝐵𝑆3 + 𝐶𝑆4 − 𝑓𝑆 (28) 

with 
𝑓 = −

𝜖0
3
Δ𝜖𝐸2. (29) 

The terms in 𝑊 that are not proportional to 𝑆 are absorbed in 𝐹0.  

It turns out, that there is no easy to obtain analytical solution for 𝑆(𝑇) anymore. How-

ever, solutions for different field strengths are plotted in Figure 3. For a small non-van-

ishing electric field there is still a jump in 𝑆 at the phase transition, however, the ne-

matic strength does not drop to zero. It is a phase transition to a so-called para-nematic 

phase. At a critical field strength, the jump in 𝑆 vanishes and above the critical field 

strength, the behaviour is called super-critical. The critical point is reached for 

 

Figure 3. At the presence of an 
aligning force, there is no transi-
tion to the isotropic phase any-
more. For small forces a phase 
transition to a para-nematic 
phase occurs. For a critical force, 
the jump in the nematic strength 
vanishes. For forces above the 
critical force, the behaviour is 
called supercritical.  
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𝑓𝑐 =

𝐵3

16𝐶2
   [76]. 

 
(30) 

For 5CB this results in a critical field around 14 V µm−1 which represents a rather large 

electric field.  

Such a behaviour will also be important when I talk about liquid-crystal elastomers. 

However, there it is not an electric field that aligns the liquid crystals but the cross-links 

that restrict the rotation of the rod-like constituents and therefore induce a supercriti-

cal behaviour [79]. 

2.1.2  Distorted Nematic Liquid Crystals 
Up to now, a liquid crystal with a homogeneous spatial director profile was implicitly 

assumed. However, in reality the spatial director profile is distorted. This can happen 

due to a prescribed alignment of the molecules at the walls of a container or due to an 

applied electric or magnetic field. Assuming that the distortion of the director field oc-

curs on a much larger scale than the size of the molecules allows to formulate a contin-

uum theory.  

In the continuum theory, it is assumed that there is a volume around every point 𝑥  in 

space that is small enough to contain only molecules that in average align along a com-

mon director �⃗� (𝑥 ). On the other hand, the volume is supposed to be so large, that the 

notion of long-range order and the definition of an order parameter 𝑄 within this vol-

ume is meaningful. Furthermore, it is assumed that the nematic strength is not affected 

by the distortions. These assumptions lead to a spatially varying order parameter  

 𝑄𝑖𝑗(𝑥 ) =
1

2
𝑆(3𝑛𝑖(𝑥 )𝑛𝑗(𝑥 ) − 𝛿𝑖𝑗). (31) 

To predict the director field, the free energy arising from the distortion has to be mini-

mized. The free energy is given by the Frank-Oseen-Zocher free energy 

 𝐹d = ∫𝑓dd
3𝑥 (32) 

with 
𝑓d =

1

2
𝐾1(∇ ⋅ �⃗� (𝑥 ))

2
+
1

2
𝐾2(�⃗� (𝑥 ) ⋅ ∇ × �⃗� (𝑥 ))

2
+ 

+
1

2
𝐾3(�⃗� (𝑥 ) × ∇ × �⃗� (𝑥 ))

2
. 

(33) 

The interpretation of the individual terms is illustrated in Figure 4. Director fields with 

a non-zero divergence are called splay fields. An example of a splay field is given in Fig-

ure 4b. On the other hand, one speaks of a twist field, when �⃗� ⋅ ∇ × �⃗� ≠ 0. An 
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exemplary twist field is depicted in Figure 4c. For �⃗� × ∇ × �⃗� ≠ 0 the director field shows 

a bending as shown in Figure 4d.  

The constants 𝐾𝑖 are called Frank constants. At 25 °C, the Frank constants for 5CB are 

approximately [80] 

 𝐾1 ≈ 0.6 ⋅ 10
−11 N,  (34) 

 
𝐾2 ≈ 0.3 ⋅ 10

−11 N, (35) 

 
𝐾3 ≈ 0.8 ⋅ 10

−11N. (36) 

As already mentioned, the director can also be manipulated by electric fields. To model 

the effect of electric fields, equation (27) has to be added to the Frank-Oseen-Zocher 

free energy. Neglecting the terms that do not depend on the director field, one obtains  

 
𝑓d =

1

2
𝐾1(∇ ⋅ �⃗� (𝑥 ))

2
+
1

2
𝐾2(�⃗� (𝑥 ) ⋅ ∇ × �⃗� (𝑥 ))

2

+
1

2
𝐾3(�⃗� (𝑥 ) × ∇ × �⃗� (𝑥 ))

2
−
ϵ0
2
Δϵ𝑆(E⃗⃗ ⋅ n⃗ )

2
. 

(37) 

For 5CB the difference in the permittivity is 𝑆Δ𝜖 ≈ 11 at 25 °C [81]. 

In the following, I want to discuss an example that shows, how a prescribed alignment 

at a surface influences the director profile in the volume while an electric field is present 

at the same time. The example is illustrated in Figure 5a. The orientation of the director 

is along the 𝑧-axis at the surface going through the origin of the coordinate system. 

 

Figure 4. (a) Undisturbed equilibrium state of a nematic liquid crystal. (b) Example for a 
splay field that results in 𝛻 ⋅ �⃗� ≠ 0. (c) Example of a twist fields that leads to  �⃗� ⋅ 𝛻 × �⃗� ≠
0. The molecules are rotating out of the plane. (d) Example of a bending field that leads 
to �⃗� × 𝛻 × �⃗� ≠ 0. 
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In an experiment this could be achieved by a polymer surface that is rubbed with a 

cotton cloth. Additionally, a homogeneous electric field is applied in the 𝑥 – direction. 

The electric field causes the director to be aligned along the 𝑥 – direction far away from 

the rubbed surface. In between, a rotation of the director must occur. The orientation 

of the director is fully described by the angle 𝜃 defined in Figure 5a. With the ansatz  

 �⃗� = (
sin 𝜃
0

cos 𝜃
), (38) 

the free energy density is given by 

 𝑓d =
𝐾2
2
(
𝜕𝜃

𝜕𝑦
)
2

−
𝜖0
2
Δ𝜖𝑆𝐸2 sin2 𝜃 .  (39) 

The application of the Euler- Lagrange Equation results in the differential equation  

 𝜉2
d2𝜃

d𝑦2
+ sin 𝜃 cos 𝜃 = 0 (40) 

with the electric coherence length  

 𝜉 = √
𝐾2

𝜖0Δ𝜖𝑆

1

𝐸
. (41) 

 

Figure 5. (a) The orientation of the director (red) is prescribed at the surface on the left. 
At the same time an electric field prescribes the orientation of the director far away from 
the surface. In between, the surface and the electric field determine the orientation of 
the director. (b) Orientation of the director versus the distance from the surface. At about 
5𝜉 the director is fully aligned with the electric field.   
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The solution to equation (40) is given by [74] 

 𝜃(𝑦) =
𝜋

2
− 2 tan−1 [exp (−

𝑦

𝜉
)]. (42) 

The angle 𝜃(𝑦) is plotted in Figure 5b. The figure shows, that after about 5𝜉 the director 

points along the direction of the electric field. For 5CB the electric coherence length is 

about 𝜉 ≈ 0.35 µm for an electric field strength of 𝐸 = 0.5 V ⋅ µm−1. That means, that 

for such high electric field strengths, the influence of the surface can already be ne-

glected at a distance of 2 µm. This is a justification for the simplifying assumption in 

chapter 3.2 that the liquid crystals are aligned with the electric field at every point in 

the volume.  

2.1.3 Liquid-Crystal Elastomers  
Nematic liquid-crystal elastomers are elastomers formed from nematic monomers. Like 

ordinary nematic liquid crystals, the nematic monomers contain a rigid and rod-like core 

that leads to a nematic phase. On top of that, they are equipped with one or more 

functional groups that allow to connect and cross-link the monomers in a polymeriza-

tion reaction. Due to the tendency of the rigid cores to align in parallel along the direc-

tor, the resulting elastomer is anisotropic even after the polymerization reaction. An 

illustration of such an elastomer is given in Figure 6a. Such a liquid-crystal elastomer 

behaves anisotropic in all kind of properties. Especially, it shows uniaxial birefringence 

with the director representing the optic axis.  

Heating the liquid-crystal elastomer leads to a reduction of the order parameter as for 

common liquid crystals. This means that the orientation of the rigid cores deviates more 

and more from the director, leading to a less anisotropic elastomer. As a consequence, 

the polymer backbone deforms such, that the elastomer expands perpendicular to the 

director and shrinks along the director. This is illustrated in Figure 6b.  

Weakly cross-linked liquid-crystal elastomers show at some point a first order phase 

transition. In these elastomers, the order parameter quickly drops close to zero for a 

small temperature step of a few Kelvins. This leads to a sudden deformation of the liq-

uid-crystal elastomer in a small temperature step [82, 83]. The sudden drop in the order 

parameter is similar as for ordinary liquid crystals.  

In principle, liquid-crystal elastomers should show a first order phase transition to the 

isotropic phase at a certain temperature as discussed in section 2.1.1. However, in re-

ality the composition of liquid-crystal elastomers usually slightly varies in space, which 

leads to different phase transition temperatures at different positions in space. This 
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smears out the thermal response. On top of that, the cross-links restrict the motion of 

the rigid cores and therefore force them to align along the director even at elevated 

temperatures. As discussed in section 2.1.1 this prevents a phase transition to the iso-

tropic phase and leads either to a transition to a para-nematic phase or a supercritical 

behaviour for a large cross-linking density. Experimental evidence suggests that in real 

liquid-crystal elastomers the cross-linking density varies in space and therefore also the 

thermal response of the liquid-crystal elastomer. It might even be that some parts of a 

liquid-crystal elastomer show a transition to a para-nematic phase, while others behave 

supercritical [79]. 

In the liquid-crystal elastomers discussed in this thesis, the cross-linking density seems 

to be sufficiently high, that I did not observe a sudden deformation for a certain tem-

perature. Actually, I observed a continuous deformation on heating starting at room 

temperature up to more than 200 °C. A measurement of the anisotropic thermal ex-

pansion is shown in Figure 27 in chapter 3.5.   

 

Figure 6. (a) A liquid-crystal elastomer in the nematic state with high nematic strength. 
The polymer backbone is highly anisotropic. (b) At elevated temperatures, the nematic 
strength is lower, which leads to a less anisotropic polymer backbone. On the macro-
scopic scale, the liquid-crystal elastomer shrinks along the director and expands perpen-
dicular to it.  
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2.2 Birefringence  
In this thesis, I present structures made of liquid-crystal elastomer which were 3D 

printed from a liquid-crystal resin. For this technique a laser must be tightly focused 

into the highly birefringent liquid-crystal resin in order to start a polymerization reac-

tion, which I explain in further detail in chapter 3. In addition, the printed liquid-crystal 

elastomer structures are also birefringent and I exploit this to estimate the director ori-

entation within the printed samples. For both cases it is important to understand the 

concepts of birefringence. The following introduction mainly follows the theoretical op-

tics lecture held by Carsten Rockstuhl.  

In birefringent systems, the permittivity 𝝐 is a second-order tensor. In general, this 

means, that the direction of the electric displacement field �⃗⃗�  does not coincide with 

the direction of the electric field �⃗� , since both are connected by the permittivity tensor 

as described by  

 �⃗⃗� = 𝜖0𝝐�⃗� . (43) 

Only along a principal axis of the permittivity tensor the directions of both vectors co-

incide. In the principal system the permittivity becomes diagonal and can be ex-

pressed by  

 𝝐 = (

𝜖1 0 0
0 𝜖2 0
0 0 𝜖3

). (44) 

To obtain the eigenmodes inside a birefringent medium, Maxwell’s equations have to 

be solved. After a Fourier transform, Maxwell’s equations are represented by the fol-

lowing four equations assuming a permeability of one: 

 �⃗� ⋅ �⃗⃗� = 0 (45) 

 
�⃗� ⋅ �⃗⃗� = 0 (46) 

 
�⃗� × �⃗� = 𝜔𝜇0�⃗⃗�  (47) 

 
�⃗� × �⃗⃗� = −𝜔�⃗⃗� . (48) 
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Using equation (47) and (48) the following wave equation can be extracted from Max-

well’s equation 

 −�⃗� × (�⃗� × �⃗� ) = −�⃗� (�⃗� ⋅ �⃗� ) + 𝑘2�⃗� =
𝜔2

𝑐0
2

1

𝜖0
�⃗⃗� . (49) 

With equation (43) the �⃗⃗�  – field in the wave equation can be eliminated to obtain  

 (
𝜔2

𝑐0
2 𝜖𝑖 − 𝑘

2)𝐸𝑖 + 𝑘𝑖∑𝑘𝑗𝐸𝑗

3

𝑗=1

= 0. (50) 

Inserting the dispersion relation  

 �⃗� =
𝜔

𝑐0
𝑛�⃗�  with |�⃗� | = 1 (51) 

into the wave equation results in the final representation of the wave equation  

 
(𝜖𝑖 − 𝑛

2)𝐸𝑖 + 𝑛
2𝑢𝑖∑𝑢𝑗𝐸𝑗

3

𝑗=1

= 0. (52) 

This wave equation represents a set of linear equations which only has nontrivial solu-

tions if the determinant of the matrix of coefficients is zero leading to 

𝑢1
2(𝑛2 − ϵ2)(𝑛

2 − ϵ3)𝑛
2 + 𝑢2

2(𝑛2 − 𝜖1)(𝑛
2 − ϵ3)𝑛

2 + 

+𝑢3
2(𝑛2 − ϵ1)(𝑛

2 − ϵ2)𝑛
2 

= (𝑛2 − ϵ1)(𝑛
2 − ϵ2)(𝑛

2 − ϵ3). 

(53) 

Due to the rotational symmetry of liquid crystals around the director, two eigenvalues 

of the permittivity tensor are equal. We choose the principal system such that the per-

mittivity is defined by 

 𝜖1 = 𝜖2 = 𝜖or and 𝜖3 = 𝜖e . (54) 

Inserting this permittivity tensor into equation (53) leads to 

𝑢2
2(𝑛2 − ϵ𝑒)(𝑛

2 − ϵ𝑜𝑟)𝑛
2 + 𝑢2

2(𝑛2 − ϵ𝑒)(𝑛
2 − ϵ𝑜𝑟)𝑛

2 + 𝑢3
2(𝑛2 − ϵ𝑜𝑟)

2 
= (𝑛2 − ϵ𝑜𝑟)

2(𝑛2 − ϵ𝑒). 
(55) 

This equation has two solutions. Either 

 𝑛2 = 𝜖or (56) 
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or 
𝑢3
2

𝜖or
+
𝑢1
2 + 𝑢2

2

𝜖e
=
1

𝑛2
 . (57) 

This means that there are two eigenmodes, while the refractive index of one mode is 

independent of the direction of the wave vector. This mode is called the ordinary mode. 

The refractive index of the second mode depends on the direction of the wave vector. 

This mode is called the extraordinary mode. For a wave travelling along the director 

both modes correspond to the same refractive index. This special direction is also called 

the optic axis. Since there is only one optic axis, such media are called uniaxial. 

To obtain the polarization of the two modes, the wave equation (52) can be used. For 

the ordinary mode it directly results in  

 �⃗� ⋅ �⃗� or = 0 (58) 

and 
𝐸3
or = 0. (59) 

Using both, one can obtain the statement  

 
𝐸1
or

𝐸2
or =

𝑢2
𝑢1
∈ ℝ. (60) 

This means that the ordinary mode is linearly polarized. According to equation (43) it 

directly follows from equation (54) and (59) that  

 �⃗⃗� or ∥ �⃗� or. (61) 

For the extraordinary mode, equation (52) can be used to obtain the fraction between 

two arbitrary components of the electric field vector. The fraction is given by  

 

Figure 7. The director �⃗�  represents the optic axis of a 

liquid crystal. For a given wave vector �⃗� , the ordinary 
mode is polarized perpendicular the plane spanned 
by the director and the wave vector. The extraordi-

nary mode is polarized within this plane. The �⃗⃗�  – field 

is perpendicular to the wave vector, the �⃗�  – field is 

not. The Poynting vector 𝑆 e does not coincide with 
the wave vector. 
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𝐸𝑖
e

𝐸𝑗
e =

𝑛2 − 𝜖𝑗

𝑛2 − 𝜖𝑖

𝑢𝑖
𝑢𝑗
∈ ℝ . (62) 

Since the fraction is real for all components, the extraordinary eigenmode is also line-

arly polarized. Furthermore, it can be shown that the ordinary and extraordinary modes 

are perpendicular to each other. From equations (52), (54) and (59) it directly follows 

that 

 �⃗� e ⋅ �⃗� or ∝
𝑛2𝑢1

𝑛2 − 𝜖or
𝐸1
or +

𝑛2𝑢2
𝑛2 − 𝜖or

𝐸2
or =

𝑛2

𝑛2 − 𝜖or
�⃗� ⋅ �⃗� or = 0. (63) 

Similarly, it can be shown, that  

 �⃗⃗� e ⋅ �⃗⃗� or = 0 . (64) 

Figure 7 summarizes all the obtained relations for the �⃗�  – and �⃗⃗�  – fields of the ordinary 

and the extraordinary modes for a given wave vector. It also shows the Poynting vectors 

of the ordinary and the extraordinary modes that are defined by  

 𝑆 = �⃗� × �⃗⃗� . (65) 

For the extraordinary mode, the directions of the wavevector and the Poynting vector 

do not coincide, since the directions of the electric field �⃗� e and �⃗⃗� e do not coincide.  

2.2.1 4 × 4 Matrix Formalism 
At an interface between two media light gets refracted. For birefringent media the re-

fraction is not easy to predict, since the refractive index depends in general on the di-

rection of the wave vector. A formalism that provides an easy to follow recipe to calcu-

late the refracted fields inside birefringent media is the 4 × 4 matrix formalism. It even 

allows to propagate light through a stack of different birefringent layers. The following 

theory closely follows the book of Pochi Yeh [84]. 

Let us start with a stack of 𝑁 birefringent layers with a surface normal in 𝑧 – direction. 

The stack is embedded inside two different semi-infinitely extended media. The permit-

tivity tensor of such a stack is given by   
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 𝝐 =

{
 
 

 
 

𝝐(0) 𝑧 < 𝑧0
𝝐(1) 𝑧0 < 𝑧 < 𝑧1
𝝐(2) 𝑧1 < 𝑧 < 𝑧2
⋮  

𝝐(𝑁) 𝑧𝑁−1 < 𝑧 < 𝑧𝑁
𝝐(𝑁 + 1) 𝑧𝑁 < 𝑧

. (66) 

For a wave passing the stack, the components 𝑘𝑥  and 𝑘𝑦 of the wave vector �⃗�  are the 

same in every layer due to translational symmetry in 𝑥 – and 𝑦 – direction. To obtain 

the possible modes within every layer for given 𝑘𝑥 , 𝑘𝑦  the wave equation must be 

solved. The wave equation was already derived in the last section and is given by 

 �⃗� × (�⃗� × �⃗� ) + 𝑘0
2𝝐�⃗� = 0 . (67) 

This set of linear equations can be expressed as  

(

𝑘0
2𝜖𝑥𝑥 − 𝑘𝑦

2 − 𝑘𝑧
2 𝑘0

2𝜖𝑥𝑦 + 𝑘𝑥𝑘𝑦 𝑘0
2𝜖𝑥𝑧 + 𝑘𝑥𝑘𝑧

𝑘0
2𝜖𝑦𝑥 + 𝑘𝑦𝑘𝑥 𝑘0

2𝜖𝑦𝑦 − 𝑘𝑥
2 − 𝑘𝑧

2 𝑘0
2𝜖𝑦𝑧 + 𝑘𝑦𝑘𝑧

𝑘0
2𝜖𝑧𝑥 + 𝑘𝑧𝑘𝑥 𝑘0

2𝜖𝑧𝑦 + 𝑘𝑧𝑘𝑦 𝑘0
2𝜖𝑧𝑧 − 𝑘𝑥

2 − 𝑘𝑦
2

)(

𝐸𝑥
𝐸𝑦
𝐸𝑧

) = 0. (68) 

For non-trivial solutions, the determinant of the coefficient matrix must be zero. This 

results in an equation of fourth order in 𝑘𝑧 with four roots and therefore four modes. 

Some of these modes might be evanescent if 𝑘𝑧 is complex. Modes with 𝑘𝑧 < 0 repre-

sent back reflected modes, while modes with 𝑘𝑧 > 0 represent modes that travel for-

wards. For every root 𝑘𝑧
𝜎 , 𝜎 = 1…4 a normalized vector 𝑝 𝜎 can be found that solves 

the wave equation. In the case of degenerate roots, orthonormal vectors that span the 

solution space can be found. The roots are degenerate in isotropic media or for propa-

gation along the optic axis in uniaxial media. 

With these solutions the electric field within layer 𝑛 can be written as a superposition 

of the estimated eigenmodes within the layer.  

 �⃗� = ∑𝐴𝜎(𝑛)𝑝 𝜎(𝑛) exp{𝑖[𝜔𝑡 − 𝑘𝑥𝑥 − 𝑘𝑦𝑦 − 𝑘𝑧
𝜎(𝑛)(𝑧 − 𝑧𝑛)} 

4

𝜎=1

 (69) 

According to Maxwell’s equation (47) the �⃗⃗�  – field is then given by 

 �⃗⃗� = ∑𝐴𝜎(𝑛)𝑞 𝜎(𝑛) exp{𝑖[𝜔𝑡 − 𝑘𝑥𝑥 − 𝑘𝑦𝑦 − 𝑘𝑧
𝜎(𝑛)(𝑧 − 𝑧𝑛)]}

4

𝜎=1

 (70) 
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with 
 𝑞 𝜎(𝑛) =

�⃗� 𝜎(𝑛) × 𝑝 𝜎(𝑛)

𝜔𝜇0
 . (71) 

The remaining task is to estimate the coefficients 𝐴𝜎(𝑛) for each layer. This is done by 

enforcing the continuity of 𝐸𝑥 , 𝐸𝑦 , 𝐻𝑥 and 𝐻𝑦 at the interfaces, as demanded by the 

Maxwell’s equations. Imposing continuity at the interface 𝑧 = 𝑧𝑛−1 leads to 

 ∑𝐴𝜎(𝑛 − 1)𝑝 𝜎(𝑛 − 1) ⋅ 𝑥 

4

𝜎=1

= ∑𝐴𝜎(𝑛)𝑝 𝜎(𝑛) ⋅ 𝑥 exp{𝑖𝑘𝑧
𝜎(𝑛)𝑡𝑛} 

4

𝜎=1

 (72) 

 

∑𝐴𝜎(𝑛 − 1)𝑝 𝜎(𝑛 − 1) ⋅ 𝑦 

4

𝜎=1

= ∑𝐴𝜎(𝑛)𝑝 𝜎(𝑛) ⋅ 𝑦 exp{𝑖𝑘𝑧
𝜎(𝑛)𝑡𝑛} 

4

𝜎=1

 (73) 

 

∑𝐴𝜎(𝑛 − 1)𝑞 𝜎(𝑛 − 1) ⋅ 𝑥 

4

𝜎=1

= ∑𝐴𝜎(𝑛)𝑞 𝜎(𝑛) ⋅ 𝑥 exp{𝑖𝑘𝑧
𝜎(𝑛)𝑡𝑛} 

4

𝜎=1

 (74) 

 

∑𝐴𝜎(𝑛 − 1)𝑞 𝜎(𝑛 − 1) ⋅ 𝑦 

4

𝜎=1

= ∑𝐴𝜎(𝑛)𝑞 𝜎(𝑛) ⋅ 𝑦 exp{𝑖𝑘𝑧
𝜎(𝑛)𝑡𝑛} 

4

𝜎=1

 (75) 

with 𝑡𝑛 = 𝑧𝑛 − 𝑧𝑛−1. This set of equations can be rewritten in terms of the matrix equa-

tion 

 

(

 

𝐴1(𝑛 − 1)

𝐴2(𝑛 − 1)

𝐴3(𝑛 − 1)

𝐴4(𝑛 − 1))

 = 𝐷−1(𝑛 − 1)𝐷(𝑛)𝑃(𝑛)

(

 

𝐴1(𝑛)

𝐴2(𝑛)

𝐴3(𝑛)

𝐴4(𝑛))

 , (76) 

where 
 

𝐷(𝑛) =

(

 
 
𝑥 ⋅ 𝑝 1(𝑛) 𝑥 ⋅ 𝑝 2(𝑛) 𝑥 ⋅ 𝑝 3(𝑛) 𝑥 ⋅ 𝑝 4(𝑛)

𝑦 ⋅ 𝑞 1(𝑛) 𝑦 ⋅ 𝑞 2(𝑛) 𝑦 ⋅ 𝑞 3(𝑛) 𝑦 ⋅ 𝑞 4(𝑛)

𝑦 ⋅ 𝑝 1(𝑛) 𝑦 ⋅ 𝑝 2(𝑛) 𝑦 ⋅ 𝑝 3(𝑛) 𝑦 ⋅ 𝑝 4(𝑛)

𝑥 ⋅ 𝑞 1(𝑛) 𝑥 ⋅ 𝑞 2(𝑛) 𝑥 ⋅ 𝑞 3(𝑛) 𝑥 ⋅ 𝑞 4(𝑛))

 
 
, (77) 

and 𝑃(𝑛) = diag

(

 
 
exp(𝑖𝑘𝑧

1(𝑛)𝑡𝑛)

exp(𝑖𝑘𝑧
2(𝑛)𝑡𝑛)

exp(𝑖𝑘𝑧
3(𝑛)𝑡𝑛)

exp(𝑖𝑘𝑧
4(𝑛)𝑡𝑛))

 
 
. (78) 

𝐷(𝑛) is called dynamical matrix and 𝑃(𝑛) is called the propagation matrix. With the 

definition of the transfer matrix  

 𝑇𝑛−1,𝑛 = 𝐷
−1(𝑛 − 1)𝐷(𝑛)𝑃(𝑛), (79) 
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the matrix equation (76) can be rewritten to 

 

(

 

𝐴1(0)

𝐴2(0)

𝐴3(0)

𝐴4(0))

 = 𝑇0,1𝑇1,2𝑇2,3⋯𝑇𝑁−1,𝑁𝑇𝑁,𝑠

(

 

𝐴1(𝑁 + 1)

𝐴2(𝑁 + 1)

𝐴3(𝑁 + 1)

𝐴4(𝑁 + 1))

 . (80) 

The knowledge of four coefficients 𝐴𝜎 within the embedding layers allows now to solve 

the whole system via the transfer matrices. In the next section, this will be applied to 

an isotropic-uniaxial interface. 

2.2.2 Transmission at an Isotropic-Uniaxial Interface 
The aim of this section is to give formulas for the energy transmission coefficients at 

the interface of an isotropic medium and a uniaxial medium. The transmission into the 

ordinary mode and the extraordinary mode are distinguished.  

According to equation (80) the following equation holds at the interface of the isotropic 

medium and the uniaxial medium  

 (

𝐴1
𝐴2
𝐴3
𝐴4

) = 𝑇(

𝐴o
0
𝐴e
0

). (81) 

The modes are ordered such, that 𝐴1 and 𝐴3 correspond to forward traveling waves 

within the isotropic medium. On the other hand, 𝐴2 and 𝐴4 represent modes that are 

reflected by the interface and travel backwards in the isotropic medium. The values 𝐴o 

and 𝐴e represent the transmitted ordinary and extraordinary modes that are travelling 

forwards in the uniaxial medium. In this scenario, no backwards travelling waves are 

excited within the uniaxial medium. The transmission matrix 𝑇 can be calculated as de-

scribed in the last section. 

This set of equations can be solved to obtain  

 𝐴o =
𝑇33𝐴1 − 𝑇13𝐴3
𝑇11𝑇33 − 𝑇13𝑇31

 (82) 

and 
𝐴e =

𝑇11𝐴3 − 𝑇31𝐴1
𝑇11𝑇33 − 𝑇13𝑇31

. (83) 

To calculate the energy transmitted to the ordinary and extraordinary modes, the Poyn-

ting vector 𝑆  within the isotropic medium and the Poynting vectors 𝑆 o corresponding 
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to the ordinary mode and 𝑆 e corresponding to the extraordinary mode must be calcu-

lated by the formulas 

 𝑆 =
|𝐴1|

2

𝜔𝜇0
𝑝 1 × 𝑞 1

∗ +
|𝐴3|

2

𝜔𝜇0
𝑝 3 × 𝑞 3

∗ , (84) 

 
𝑆 o =

|𝐴o|
2

𝜔𝜇0
𝑝 o × 𝑞 o

∗ , (85) 

and 𝑆 𝑒 =
|𝐴𝑒|

2

𝜔𝜇0
𝑝 𝑒 × 𝑞 𝑒

∗ . (86) 

The vectors 𝑝  and 𝑞  have to be estimated as described in the last section. From the 

Poynting vectors, the energy transmission coefficients 𝑇o and 𝑇e are given by 

 𝑇o = |
𝑆 o ⋅ 𝑧 

𝑆 ⋅ 𝑧 
| (87) 

and 𝑇e = |
𝑆 e ⋅ 𝑧 

𝑆 ⋅ 𝑧 
|. (88) 

The first coefficient represents the fraction of energy that is transmitted to the ordinary 

mode, while the second coefficient represents the energy that is transmitted to the 

extraordinary mode. These formulas are used in the next chapter in a ray optics model 

for the focusing of light into a birefringent medium. A more sophisticated model used 

to calculate the intensity distribution within the uniaxial medium is given in the next 

section. 

2.3 Focusing of Optical Fields 
Within this section, I describe a method to calculate the intensity distribution in the 

focus of tightly focused light. I mainly follow the approach presented in the book of 

Lukas Novotny [85]. At the end of this section, I extend the approach to calculate the 

intensity distribution at the focus of light focused into a uniaxial medium. 

2.3.1 Far-Field 
The first step is to establish a link between the field far away from the focus and the 

field at the position of the focus at 𝑧 = 0. This can be done starting from the angular 

spectrum representation of the electric field 

 �⃗� (𝑥, 𝑦, 𝑧) = ∬ �⃗� (𝑘𝑥 , 𝑘𝑦; 𝑧 = 0)
∞

−∞

𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧]𝑑𝑘𝑥𝑑𝑘𝑦 . (89) 
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To get an expression for the far field, one has to evaluate the integral (89) at a point 𝑟 ∞ 

far away from the origin, i.e. 𝑘𝑟 ≫ 1 with 𝑟 = |𝑟 ∞|. The far field in the direction 𝑠 =

𝑟 ∞/𝑟 can then be written as 

�⃗� ∞(𝑠𝑥, 𝑠𝑦 , 𝑠𝑧) = ∬ �⃗� (𝑘𝑥 , 𝑘𝑦; 𝑧 = 0)𝑒
𝑖𝑘𝑟[

𝑘𝑥
𝑘
𝑠𝑥+

𝑘𝑦
𝑘
𝑠𝑦+

𝑘𝑧
𝑘
𝑠𝑧]𝑑𝑘𝑥𝑑𝑘𝑦

 

(𝑘𝑥
2+𝑘𝑦

2)≤𝑘2

. (90) 

The boundaries of the integral are restricted since, evanescent fields do not contribute 

to the far field. In the limit of 𝑘𝑟 → ∞, the method of stationary phase can be used to 

approximate the integral. According to [85] the far field can be approximated by the 

equation 

 �⃗� ∞(𝑠𝑥, 𝑠𝑦, 𝑠𝑧) ≈ −2𝜋𝑖𝑘𝑧�⃗� (𝑘𝑠𝑥, 𝑘𝑠𝑦; 𝑧 = 0)
𝑒𝑖𝑘𝑟

𝑟
 . (91) 

This means that on one hand that the far field in the direction 𝑠  is fully described by the 

Fourier coefficient �⃗� (𝑘𝑠𝑥, 𝑘𝑠𝑦; 𝑧 = 0) corresponding to the wave vector �⃗� = 𝑘𝑠 . On 

the other hand, one can calculate the Fourier coefficients of the field in the focus from 

the far field 

 �⃗� (𝑘𝑥 , 𝑘𝑦; 𝑧 = 0) =
𝑖𝑟𝑒−𝑖𝑘𝑟

2𝜋𝑘𝑧
�⃗� ∞ (

𝑘𝑥
𝑘
,
𝑘𝑦

𝑘
,
𝑘𝑧
𝑘
). (92) 

With these Fourier coefficients the field can be calculated at every position in space 

only from the far-field with 

�⃗� (𝑥, 𝑦, 𝑧) =
𝑖𝑟𝑒−𝑖𝑘𝑟

2𝜋
∬ �⃗� ∞ (

𝑘𝑥
𝑘
,
𝑘𝑦

𝑘
,
𝑘𝑧
𝑘
) 𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧]

1

𝑘𝑧
𝑑𝑘𝑥𝑑𝑘𝑦

 

(𝑘𝑥
2+𝑘𝑦

2)≤𝑘2

. (93) 

In the next section, I use the Richards-Wolf method to obtain an expression for the far 

field that is created by an aplanatic lens focusing a collimated beam.  

2.3.2 Richards-Wolf Method 
The Richards-Wolf method is a geometrical optics approach to estimate the field close 

to the reference sphere of an aplanatic lens used to focus a collimated beam. It is as-

sumed that each ray emerging from the focus gets refracted at a reference sphere with 

radius 𝑓. After this refraction, the ray is assumed to be parallel to the optical axis with 

a distance  

 ℎ = 𝑓 sin 𝜃, (94) 
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while 𝜃 denotes the orientation of the ray emerging from the focus in spherical coordi-

nates. This situation is depicted in Figure 8a. For the energy conservation to hold, the 

electric field �⃗� 1 on the left-hand side of the lens and the electric field �⃗� 2 on the right-

hand side must be connected by the intensity law 

 𝐸2 = 𝐸1√
𝑛1

𝑛2
cos1/2 𝜃, (95) 

as motivated in Figure 8b. 

The electric field �⃗� 1 of an incident collimated beam is best described in cylindrical coor-

dinates 

 �⃗� 1 = [�⃗� 1 ⋅ �⃗� 𝜙]�⃗� 𝜙 + [�⃗� 1 ⋅ �⃗� 𝜌]�⃗� 𝜌. (96) 

In contrast, the refracted field  �⃗� ∞ is best described in spherical coordinates. During the 

refraction, the s – polarized fields in �⃗� 𝜙 – direction stay unaffected. However, the p – 

polarized fields in �⃗� 𝜌 – direction get mapped to the �⃗� 𝜃 – direction by the refraction. 

This is illustrated in Figure 9. Together with the intensity law (95), the refracted field is 

given by 

 �⃗� ∞ = ([�⃗� 1 ⋅ �⃗� 𝜙]�⃗� 𝜙 + [�⃗� 1 ⋅ �⃗� 𝜌]�⃗� 𝜃)√
𝑛1

𝑛2
cos

1
2 𝜃 . (97) 

 

Figure 8. (a) The incident ray parallel to the optical axis is refracted at the reference 
sphere towards the focal point at 𝑧 = 0. The distance between the focal point and the 
reference sphere is the focal width 𝑓. (b) illustrates the intensity law. For the refracted 
ray the surface perpendicular to the wave vector is larger at the reference sphere than 
for the incident ray. Therefore, the intensity of the refracted ray must be lower to fulfil 
energy conservation.  
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The subscript ∞ indicates the identification of this refracted field with the far field of 

the field at the position of the focus. Expressed with cartesian base vectors, the far field 

is given by 

 

�⃗� ∞ = [�⃗� inc ⋅ (
− sin𝜙
cos𝜙
0

)](
− sin𝜙
cos𝜙
0

)√
𝑛1

𝑛2
cos

1
2 𝜃 + 

+ [�⃗� inc ⋅ (
cos𝜙
sin𝜙
0

)](
cos𝜙 cos 𝜃
sin𝜙 cos 𝜃
− sin 𝜃

)√
𝑛1

𝑛2
cos

1
2 𝜃 

(98) 

To obtain an expression depending on 𝑘𝑥 , 𝑘𝑦 and 𝑘𝑧 one can use the relations 

 
sin 𝜙 =

𝑘𝑦

√𝑘𝑥
2 + 𝑘𝑦

2

 ,  
(99) 

 
cos𝜙 =

𝑘𝑥

√𝑘𝑥
2 + 𝑘𝑦

2

 , 
(100) 

 

sin 𝜃 =

√𝑘𝑥
2 + 𝑘𝑦

2

𝑘
 , 

(101) 

and 
cos 𝜃 =

𝑘𝑧
𝑘
 . (102) 

 

Figure 9. The incident field �⃗� 1 is described in cylindrical coordinates with the base vectors 

�⃗� 𝜌 and �⃗� 𝜙. The refracted field �⃗� ∞ is described in spherical coordinates with the base 

vectors �⃗� 𝜃 and �⃗� 𝜙. 
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Using the resulting expression �⃗� ∞ (
𝑘𝑥

𝑘
,
𝑘𝑦

𝑘
,
𝑘𝑧

𝑘
), and using formula (93) the focal field is 

given by 

�⃗� (𝑥, 𝑦, 𝑧) =
𝑖𝑓𝑒−𝑖𝑘𝑓

2𝜋
∬ �⃗� ∞ (

𝑘𝑥
𝑘
,
𝑘𝑦

𝑘
,
𝑘𝑧
𝑘
) 𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧]

1

𝑘𝑧
𝑑𝑘𝑥𝑑𝑘𝑦

 

(𝑘𝑥
2+𝑘𝑦

2)≤𝑘2

. (103) 

In this equation the distance 𝑟 was replaced by the focal width 𝑓.  

In the following section, this approach is extended to describe the focusing of light into 

a uniaxial medium. 

2.3.3 Focusing into Uniaxial Media 
In the 3D printing approach described in this thesis it is important to tightly focus light 

into a liquid-crystal resin, which is a highly birefringent uniaxial medium. The problem 

can be modelled as depicted in Figure 10. An aplanatic lens is immersed in an isotropic 

medium with refractive index 𝑛1. Between the aplanatic lens and the focal plane of the 

lens, there is an interface at the position 𝑧 = −𝑧0 separating the isotropic medium and 

a uniaxial medium. The focal plane of the lens located at 𝑧 = 0 lies within the uniaxial 

medium. 

According to formula (92) and (89) the Fourier coefficients of the field at the interface 

at 𝑧 = −𝑧0 within the isotropic medium are given by 

 �⃗� 1(𝑘𝑥, 𝑘𝑦; −𝑧0) =
𝑖𝑟𝑒−𝑖𝑘𝑟

2𝜋(𝑘1)𝑧
�⃗� ∞(𝑘𝑥 , 𝑘𝑦)𝑒

−𝑖(𝑘1)𝑧𝑧0 . (104) 

 

Figure 10. The incident ray is refracted twice. First, at the reference sphere and subse-
quently at the interface between the isotropic medium and the uniaxial medium. The 
refractive index in the isotropic medium is 𝑛1. The uniaxial medium is characterized by 
the ordinary refractive index 𝑛𝑜 and the extraordinary refractive index 𝑛𝑒. Within the 
uniaxial medium an ordinary and an extraordinary mode are excited. 
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The field within the uniaxial medium at the interface is found by the 4 × 4 matrix 

method presented in section 2.2. First, one has to split the field �⃗� 1 into the two forwards 

propagating eigenmodes 𝑝 1, 𝑝 3 within the isotropic medium. This results in 

 �⃗� 1 = 𝐴1𝑝 1 + 𝐴3𝑝 3 (105) 

with 𝐴1 = �⃗� 1(𝑘𝑥 , 𝑘𝑦; −𝑧0) ⋅ 𝑝 1 

 
(106) 

and 
𝐴3 = �⃗� 1(𝑘𝑥 , 𝑘𝑦; −𝑧0) ⋅ 𝑝 3. (107) 

Then, the coefficients 𝐴o and 𝐴e corresponding to the ordinary and the extraordinary 

mode in the uniaxial medium can be directly calculated from 𝐴1 and 𝐴3 via the transfer 

matrix formalism described in section 2.2. With these coefficients, the field �⃗� 2 in the 

uniaxial medium can be expressed by   

 �⃗� 2(𝑘𝑥 , 𝑘𝑦; −𝑧0) = 𝐴o𝑝 o + 𝐴𝑒𝑝 𝑒 (108) 

with the eigenmodes 𝑝 o and 𝑝 e within the uniaxial medium. Multiplying the respective 

propagators, the Fourier coefficients at the position 𝑧 = 0 are given by 

  �⃗� 2(𝑘𝑥, 𝑘𝑦; 0) = 𝐴o𝑝 o𝑒
𝑖(𝑘o)𝑧𝑧0 + 𝐴𝑒𝑝 𝑒𝑒

𝑖(𝑘e)𝑧𝑧0 . (109) 

From that, the fields close to the focal plane can be expressed in the angular spectrum 

representation 

�⃗� (𝑥, 𝑦, 𝑧) = ∬ [𝐴o𝑝 o𝑒
𝑖(𝑘o)𝑧[𝑧0+𝑧] + 𝐴𝑒𝑝 𝑒𝑒

𝑖(𝑘e)𝑧[𝑧0+𝑧]]
∞

−∞

𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦]𝑑𝑘𝑥𝑑𝑘𝑦 . (110) 

Results for different orientations of the optic axis and different incident polarizations 

are presented in the next chapter.  

2.4 Continuum Mechanics 
In this section, I give a short introduction to continuum mechanics, that mainly follows 

the book of W.S. Slaughter [86]. The theory of continuum mechanics is important to 

predict the properties of mechanical metamaterials.  

In reality, matter consists of atoms and is therefore discrete. However, if the character-

istic length scale of a deformation is much larger than an atom, then the assumption of 
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a continuous material is justified. This is the basic assumption of continuum mechanics. 

In continuum mechanics, a body 𝔹 is thought to be an infinite set of material points, 

while a material point is an infinitesimally small amount of matter. A set that consists 

of coordinates in space, where each coordinate corresponds to a material point in the  

body, is called a configuration of the body. The configuration corresponding to the time 

𝑡 is called the current configuration ℛ𝑡 with 

 ℛ𝑡 = {𝑥 (𝑃, 𝑡), 𝑃 ∈ 𝔹}. (111) 

The configuration of the undeformed body at a time 𝑡0 is called the reference configu-

ration ℛ with 

 

Figure 11.  A body 𝔹 consists of material points 𝑃. In the reference configuration ℛ, rep-
resenting the undeformed body in space, the material point 𝑃 is located at the position 

𝑋 (𝑃). In the current configuration ℛ𝑡, representing the deformed configuration at time 
𝑡, the material point is located at the position 𝑥 (𝑃, 𝑡). The current configuration and the 
reference configuration are linked by the motion 𝜒 .  

𝔹 

𝑃 

ℛ  

ℛ𝑡 

𝑥 (𝑃, 𝑡) 

𝑋 (𝑃) 

ℝ3 

ℝ3 

𝑋 (⋅) 

𝑥 (⋅, 𝑡) 

𝜒 (𝑋 , 𝑡) 
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 ℛ = {𝑋 (𝑃), 𝑃 ∈ 𝔹}. (112) 

Every configuration is compared to this reference configuration. The motion 𝜒 of the 

body is a one to one map  

 𝜒: (𝑋 (𝑃), 𝑡) ↦ 𝑥 (𝑃, 𝑡), (113) 

assigning the position of a material point in the reference configuration to the position 

of the same material point in the current configuration at a time 𝑡. It connects the ref-

erence configuration with the current configuration. This concept is illustrated in Figure 

11. 

The physical properties of the body are represented by continuous tensor fields 𝑻(𝑃, 𝑡). 

These tensor fields can be either expressed in the coordinates of the reference config-

uration or in coordinates of the current configuration. In the first case, one calls 𝑻(𝑋 , 𝑡) 

the material description and in the second case one calls 𝑻(𝑥 , 𝑡) the spatial description 

of the tensor field. Whenever I address the components of a tensor, I use small letters 

when I reference a quantity that is described in terms of a base in the current configu-

ration and I use capitalized letters, when the corresponding quantity is described in 

terms of a base in the reference configuration.  

A material path 𝔾 is defined as a path inside the body following a line of material points. 

The shape of the path in space depends on the configuration of the body. The terms 

material surface and material volume are defined similarly.  

In the next subsection, the notions necessary to describe the deformation of a body are 

explained. This is followed by a description of the stresses inside a body and the equa-

tions of motion governing the kinetics of a body. To connect the terms of deformation 

and stresses a constitutive model is described. Finally, the thermal expansion of bodies 

is studied including geometrical nonlinearities.   

2.4.1 Kinematics  
The most obvious way to describe the kinematics of a body is the displacement of the 

material points relative to the reference configuration. In the material description the 

displacement field �⃗�  is given by 

 �⃗� (𝑋 , 𝑡) = 𝜒 (𝑋 , 𝑡) − 𝑋 . (114) 
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The displacement field describes the translation, the rotation and the deformation of a 

body. However, it is also necessary to develop measures for the deformation of a body 

only.  

A possibility to neglect the translation of a body is to describe the positions of each 

material point in space relative to an arbitrary material point 𝑃 ∈ 𝔹. To describe the 

position of a material point 𝑄 ∈ 𝔹 relative to 𝑃, a material path 𝔾 connecting 𝑃 and 𝑄 

can be defined. The vector 𝑟 𝑃𝑄 connecting both points in the current configuration is 

then given by  

 𝑟 𝑃𝑄 = ∫ d𝑥 
𝛾𝑡

= ∫𝑭 ⋅ d𝑋 
𝛾

 (115) 

with 
𝐹𝑖𝐽(𝑋 , 𝑡) =

𝜕𝜒𝑖(𝑋 , 𝑡)

𝜕𝑋𝐽
 . 

(116) 

In this formula, 𝛾𝑡 is the spatial description of the material path 𝔾, while 𝛾 represents 

the material description. The tensor 𝑭 is called the deformation gradient tensor and is 

defined by equation (116). It allows to calculate the vector connecting two points in the 

current configuration in coordinates of the reference configuration as described by 

equation (115). It therefore contains the information about the rotation and the defor-

mation of the body but it excludes the information about the translation of a body.  

Calculating only the length 𝑠𝑃𝑄 of the path between the two points 𝑃 and 𝑄 leads to a 

description that only contains the information about the deformation of the body. The 

length of this path is given by 

 𝑠𝑃𝑄 = ∫ d𝑠
𝛾𝑡

= ∫(Υ⃗⃗ T ⋅ 𝑪 ⋅ Υ⃗⃗ )
1/2
d𝑆

𝛾

 (117) 

with 𝑪 = 𝑭T𝑭. (118) 

In this formula, Υ⃗⃗  is the normal vector tangential to the path 𝛾, while 𝑪 is called the 

Right Cauchy Green deformation tensor. With the tensor 𝑪, the length in the current 

configuration of a path connecting two material points can be calculated in coordinates 

of the reference configuration. The integral in equation (117) also gives a local interpre-

tation of 𝑪. The integrand is the factor, by which the material is locally stretched in the 

direction of Υ⃗⃗ . This factor is also called the stretch Λ(Υ⃗⃗ ) and is defined by  

 Λ(Υ⃗⃗ ) = (Υ⃗⃗ T ⋅ 𝑪 ⋅ Υ⃗⃗ )
1
2. (119) 
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The square roots of the eigenvalues of 𝐶(𝑋 , 𝑡) are called the principal stretches. Two of 

them comprise the smallest and the largest stretch applied to the material at the point 

𝑋  at the time 𝑡. The corresponding eigenvectors represent the direction of these ex-

tremal stretches.  

Another quantity that is commonly used to measure deformations of a body is the La-

grange Strain tensor 𝑬 defined by  

 𝑬 =
1

2
(𝑪 − 𝑰 ). (120) 

It is closely related to the Right Cauchy Green deformation tensor. The Lagrange Strain 

tensor can be expressed by the displacement field via 

 
𝐸𝐼𝐽 =

1

2
(
𝜕𝑢𝐼
𝜕𝑋𝐽

+
𝜕𝑢𝐽

𝜕𝑋𝐼
+
𝜕𝑢𝐾
𝜕𝑋𝐼

𝜕𝑢𝐾
𝜕𝑋𝐽

). (121) 

2.4.2 Kinetics   
In this section I introduce stress tensors that describe the forces acting within a body. 

With these stress tensors it is possible to generalize the equations of motion known 

from mechanics to describe continuous bodies.  

External forces are forces acting on a body 𝔹 from the outside. They are separated in 

surface forces acting on 𝜕𝔹 and body forces acting on 𝔹. Internal forces are forces aris-

ing from interactions of the body with itself. To study the internal forces, one has to cut 

out in mind a free body 𝔹′ from the body 𝔹. Then, the internal forces can be categorized 

into external forces with respect to the free body and internal forces with respect to 

the free body. This means that the external forces that act on the free body also include 

the forces arising from the interactions of the free body with the rest of the body.   

To describe the external forces acting on the surface of the free body 𝔹′, a material 

point 𝑃 ∈ 𝜕𝔹′ and a material surface Δ𝕊 ⊂ 𝜕𝔹′ with 𝑃 ∈ Δ𝕊 can be chosen. The total 

external force on Δ𝕊 is called 𝐹 𝑆, while the total external torque on Δ𝕊 with respect to 

𝑃 is called �⃗⃗� 𝑆. Within the theory of continuum mechanics, it is postulated that  

a) lim
Δ𝕊→𝑃

�⃗⃗� 𝑆
Δ𝑆

= 0, (122) 

b) lim
Δ𝕊→𝑃

𝐹 𝑆
Δ𝑆

= 𝑡 (𝑋 , �⃗⃗� , 𝑡). (123) 
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Here, Δ𝑆 is the spatial description of Δ𝕊 and 𝑡  is called the traction vector. The traction 

vector represents the force per unit area acting from the outside of the free body on 

the surface of the free body at the point 𝑃. If 𝑃 is located within the body 𝔹 and not on 

the surface of the body, then the traction arises from internal forces within the body. 

This is how the principle of the free body allows to quantify the internal forces within a 

body. The vector �⃗⃗�  is the normal vector on Δ𝕊 at the point 𝑃 in the reference configu-

ration. The dependence of the traction vector on �⃗⃗�  implies that it is postulated that the 

traction vector does not depend on the choice of the surface but only on the normal 

vector of the surface at the point 𝑃. 

It can be shown [86] that there is a second order tensor 𝑺 that fulfils 

 𝑡𝑖(𝑋 , �⃗⃗� , 𝑡) = 𝑁𝐽𝑆𝐽𝑖(𝑋 , 𝑡) (124) 

and thus, fully describes all the internal forces acting within a body. For every choice of 

the free body, the traction is fully described by 𝑺.  

The same procedure can be repeated for the external body forces acting on the free 

body. To do so, choose a point 𝑄 ∈ 𝔹′ and a material volume Δ𝔹′ that contains the 

point 𝑄 and lies within the free body. The total external force on Δ𝔹′ is called 𝐹 𝐵 while 

the total external torque on Δ𝔹′ with respect to 𝑄 is called �⃗⃗� 𝐵. It is postulated that 

c) lim
Δ𝔹→𝑄

�⃗⃗� 𝐵
Δ𝐵

= 0, (125) 

d) lim
Δ𝔹→𝑄

𝐹 𝐵
Δ𝐵

= 𝜌0�⃗� . (126) 

In this definition, 𝜌0 is the mass density and 𝜌0�⃗�  is the body force per unit volume acting 

on 𝑄.  

Using the first Piola-Kirchhoff stress tensor 𝑺 and the body force vector �⃗� , the force 

acting on the free body is given by  

 𝐹𝑖 = ∫ 𝑡𝑖(𝑋 , �⃗⃗� , 𝑡)d𝐴
𝜕𝔹′

+∫ 𝜌0(𝑋 )𝑏𝑖(𝑋 , 𝑡)d𝑉
𝔹′

 (127) 

              = ∫ 𝑁𝐽 ⋅ 𝑆𝐽𝑖(𝑋 , 𝑡)
𝜕𝔹′

d𝐴 +∫ 𝜌0(𝑋 )𝑏𝑖(𝑋 , 𝑡)d𝑉
𝔹′

 (128) 
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 = ∫ (

𝜕𝑆𝐽𝑖

𝜕𝑋𝐽
+ 𝜌0(𝑋 )𝑏𝑖(𝑋 , 𝑡)) d𝑉

𝔹′
. (129) 

With equation (129) Newton’s second law can be generalized resulting in  

 
d

d𝑡
∫ 𝜌0(𝑋 )𝑣𝑖d𝑉
𝔹′

= ∫ 𝜌0(𝑋 )𝑎𝑖d𝑉
𝔹′

= ∫ (
𝜕𝑆𝐽𝑖

𝜕𝑋𝐽
+ 𝜌0(𝑋 )𝑏𝑖(𝑋 , 𝑡)) d𝑉

𝔹′
.  (130) 

Since the choice of the free body 𝔹′ was arbitrary, the local formulation also holds. The 

local formulation is given by 

 
𝜕𝑆𝐽𝑖

𝜕𝑋𝐽
+ 𝜌0(𝑋 )𝑏𝑖(𝑋 , 𝑡) = 𝜌0(𝑋 )𝑎𝑖 . (131) 

Similarly, the total torque on the free body can be calculated. It is given by  

 
𝑀𝑖 = ∫ 𝜖𝑖𝑗𝑘𝑥𝑗𝑡𝑘(𝑋 , �⃗⃗� , 𝑡)d𝐴

𝜕𝔹′
+∫ 𝜖𝑖𝑗𝑘𝑥𝑗𝜌0(𝑋 )𝑏𝑘(𝑋 , 𝑡)d𝑉

𝔹′
 (132) 

  
 = ∫ 𝜖𝑖𝑗𝑘𝑥𝑗𝑁𝑀𝑆𝑀𝑘(𝑋 , �⃗⃗� , 𝑡)d𝐴

𝜕𝔹′
+∫ 𝜖𝑖𝑗𝑘𝑥𝑗𝜌0(𝑋 )𝑏𝑘(𝑋 , 𝑡)d𝑉

𝔹′
 (133) 

  
= ∫

𝜕

𝜕𝑋𝑀
(𝜖𝑖𝑗𝑘𝑥𝑗𝑆𝑀𝑘(𝑋 , �⃗⃗� , 𝑡)) + 𝜖𝑖𝑗𝑘𝑥𝑗𝜌0(𝑋 )𝑏𝑘(𝑋 , 𝑡)d𝑉

𝔹′
 (134) 

  
 = ∫ 𝜖𝑖𝑗𝑘 [𝐹𝑗𝑀𝑆𝑀𝑘(𝑋 , �⃗⃗� , 𝑡) + 𝑥𝑗 (

𝜕𝑆𝑀𝑘
𝜕𝑋𝑀

+ 𝜌0(𝑋 )𝑏𝑘(𝑋 , 𝑡))]d𝑉
𝔹′

. 

 

(135) 

Equation (135) can now be used to generalize the angular equation of motion described 

by  

 

d

d𝑡
∫ 𝜌0(𝑋 )𝜖𝑖𝑗𝑘𝑥𝑗𝑣𝑘d𝑉
𝔹′

= ∫ 𝜌0(𝑋 )𝜖𝑖𝑗𝑘𝑥𝑗𝑎𝑘d𝑉
𝔹′

= ∫ 𝜖𝑖𝑗𝑘 [𝐹𝑗𝑀𝑆𝑀𝑘(𝑋 , �⃗⃗� , 𝑡)
𝔹′

+ 𝑥𝑗 (
𝜕𝑆𝑀𝑘
𝜕𝑋𝑀

+ 𝜌0(𝑋 )𝑏𝑘(𝑋 , 𝑡))]d𝑉. 

(136) 

Together with equation (131) and (136), one obtains 

 ∫ 𝜖𝑖𝑗𝑘𝐹𝑗𝑀𝑆𝑀𝑘(𝑋 , �⃗⃗� , 𝑡)d𝑉
𝔹′

= 0. (137) 
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Since the choice of the free body was arbitrary, also the local angular equation of mo-

tion holds, which is given by 

 𝐹𝑗𝑀𝑆𝑀𝑘 = 𝐹𝑘𝑀𝑆𝑀𝑗 . (138) 

The angular equation of motion (138) implies that the first Piola-Kirchhoff stress tensor 

is not symmetric. A symmetric tensor describing the stresses within a body is given by 

the second Piola-Kirchhoff stress tensor �̃�. It is defined by 

 �̃�𝐽𝑀 = 𝑆𝐽𝑘𝐹𝑘𝑀
−1. (139) 

2.4.3 Linear Elastic Model 
I introduced the notions to describe the strains and stresses inside a body in the upper 

two sections. However, to link stress and strain, assumptions about the material of the 

body must be made. For a linear elastic material, the generalization of Hook’s law holds, 

which is given by [86] 

 �̃�𝐼𝐽 = 𝐶𝐼𝐽𝐾𝐿𝐸𝐾𝐿 (140) 

with 
𝐶𝐼𝐽𝐾𝐿 = 𝜆𝛿𝐼𝐽𝛿𝐾𝐿 + 𝜇(𝛿𝐼𝐾𝛿𝐽𝐿 + 𝛿𝐼𝐿𝛿𝐽𝐾). (141) 

The constants 𝜇 and 𝜆 are called the Lamé parameters. In the following subsection, I 

will discuss two material parameters that are equivalent to the Lamé parameters, 

namely the Young’s Modulus and the Poisson’s Ratio. 

Young’s Modulus and Poisson’s Ratio 

Imagine a cuboid compressed by a load 𝜎 applied along the vertical direction (see Figure 

12). According to equation (131) the first Piola-Kirchhoff stress tensor 𝑺 must be of the 

form 

 𝑆𝐼𝑗 = 𝛿𝐼3𝛿𝑗3𝜎, (142) 

According to equation (139) the second Piola-Kirchhoff stress tensor �̃� is then given by 

 
�̃�𝐼𝐽 = 𝛿𝐼3𝛿𝐽3𝐹33

−1𝜎 =∶ 𝛿𝐼3𝛿𝐽3�̃�. 

 
 

(143) 
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With the constitutive equation (141) the Lagrange strain tensor 𝑬 can be calculated 

from the second Piola-Kirchhoff stress tensor. It is given by 

 𝐸𝐼𝐽 = 𝐸𝐼𝛿𝐼𝐽 (144) 

with 
𝐸1 = 𝐸2 = −𝜈𝐸3, (145) 

 
𝐸3 = 𝑌

−1�̃�, (146) 

 𝑌 =
𝜇(3𝜆 + 2𝜇)

𝜆 + 𝜇
, (147) 

and 
𝜈 =

𝜆

2(𝜆 + 𝜇)
 . (148) 

The resulting constant 𝑌 is called the Young’s Modulus and the constant 𝜈 is called the 

Poisson’s ratio 𝜈. The Young’s Modulus directly links the vertically applied stress with 

the resulting vertical component of the strain. The Poisson’s ratio on the other hand 

links the resulting horizontal and vertical strain. A cuboid with a positive Poisson’s ratio 

expands horizontally as a response to a vertical push. This is the behaviour common 

 

Figure 12.  A cuboid with height ℎ0 and width 𝑏0 is compressed by a vertical load 𝜎 by 
𝛥ℎ and expands in the horizontal direction by 𝛥𝑏.   

Δℎ 

𝜎 

ℎ0 

𝑏0 Δ𝑏/2 
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materials show in our everyday life. However, also materials with a negative Poisson’s 

ratio exist. There, the cuboid contracts horizontally as a response to a vertical push.   

With formula (121) the displacement field �⃗�  within the cube is given by  

 �⃗� = (

(√1 + 2𝐸3𝜈 − 1)𝑋1

(√1 + 2𝐸3𝜈 − 1)𝑋2

(√1 + 2𝐸3 − 1)𝑋3

) ≈ 𝐸3 (

𝜈𝑋1
𝜈𝑋2
𝑋3

). (149) 

For small strains 𝐸3, the formula can be approximated as shown on the right-hand side 

of the equation.  

From the displacement field of the cube, simple equations can be derived that allow to 

calculate the strain component 𝐸3 and the Poisson’s Ratio 𝜈 from the shape change of 

the cube after the compression in an experiment. According to equation (149) the dis-

placement in the vertical direction can be expressed by 

 𝑢3(𝑋1, 𝑋2, ℎ0) = Δℎ ≈ ℎ0𝐸3. (150) 

The value Δℎ is the change in height of the cube and ℎ0 is the initial height of the cube. 

It follows that the strain in the vertical direction is given by 

 𝐸3 ≈
Δℎ

ℎ0
. (151) 

In the horizontal direction, the displacement can be expressed equivalently by  

 
𝑢2 (𝑋1,

𝑏0
2
, 𝑋3) =

Δ𝑏

2
≈ 𝜈

𝑏0
2
𝐸3. (152) 

The value Δ𝑏 is the change in width of the cube and 𝑏0 is the initial width of the cube. 

In total, it follows that the Poisson’s ratio is given by 

 𝜈 ≈
Δ𝑏

𝑏0
⋅
ℎ0
Δℎ
. (153) 

With this approximate formula, the Poisson’s ratio can be calculated for small strains 

𝐸3.  
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2.4.4 Thermal Expansion 
The liquid-crystal elastomers used in this thesis exhibit a large uniaxial thermal expan-

sion. Large thermal expansions can be described via a multiplicative decomposition of 

the deformation gradient tensor [87]. The idea is that additionally to the reference con-

figuration ℛ at the temperature 𝑇0 and the current configuration ℛ𝑡 at temperature 𝑇 

a third intermediate configuration at temperature 𝑇 is added that is stress free. This 

intermediate configuration does in general not suffice the boundary conditions, how-

ever, it is helpful to solve the problem. The deformation gradient tensor 𝑭el connects 

the intermediate configuration with the current configuration, while the deformation 

gradient tensor 𝑭th connects the reference configuration with the intermediate config-

uration. Finally, the deformation gradient tensor 𝑭 connecting the reference configura-

tion with the current configuration is then given by the product of both tensors  

 

Figure 13.  A body is at the temperature  𝑇0 in the reference configuration ℛ. In the cur-
rent configuration ℛ𝑡 at temperature 𝑇 the body is deformed due to thermal expansion. 
This thermal expansion in combination with certain boundary conditions might induce 

stresses �̃� ≠ 0 inside the body. A third fictitious destressed configuration (bottom right) 
is used to decompose the deformation gradient in a pure thermal expansion and an elas-
tic deformation.   

ℛ  

ℛ𝑡 

ℝ3 

𝑭 = 𝑭el𝑭th 

𝑭th 

𝑭el 

ℝ3 

ℝ3 

𝑇0
  𝔹 𝑇, �̃� = 0 

𝑇, �̃� 
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 𝑭 = 𝑭el𝑭th. (154) 

The tensor 𝑭th describes the thermal expansion free of any restrictions and can there-

fore be expressed by the equation for a uniaxial thermal expansion   

 𝑭th = (Λ∥ − Λ⊥)�⃗� �⃗� 
T + Λ⊥𝑰. (155) 

The value Λ∥ is the thermal stretch along the axis �⃗�  and Λ⊥ is the thermal stretch per-

pendicular to it. This concept is illustrated in Figure 13. 

For every deformation gradient tensor, a corresponding Lagrange strain tensor can be 

defined by  

 𝑬th =
1

2
[𝑭th

T 𝑭th − 𝑰 ], (156) 

 
𝑬el =

1

2
[𝑭el

T 𝑭el − 𝑰 ] 
(157) 

and 
𝑬 =

1

2
[𝑭T𝑭 − 𝑰 ]. 

(158) 

Using equation (154), the Lagrange strain tensor 𝑬el can be expressed by the other two 

Lagrange strain tensors 

𝑬el = 𝑭th
−T[𝑬 − 𝑬th]𝑭th. (159) 

In the following, I deduce a constitutive equation that connects the second Piola stress 

tensor 𝑺 ̃with the Lagrange strain tensor 𝑬el. For this, the temporal derivation of 𝑬el 

can be used. It is given by 

 �̇�el = 𝑭el
T �̇� 𝑭el

−1 − [(𝛼∥ − 𝛼⊥)�⃗� �⃗� 
T + 𝛼⊥𝑰 ](1 + 2𝑬el)�̇�. (160) 

The coefficients 𝛼 =
1

Λ

𝜕Λ

𝜕𝑇
 are the linear thermal expansion coefficients.  

Due to the introduction of the intermediate configuration, it is possible to write the 

specific Helmholtz free energy 𝑓 as a sum of an energy function 𝑓𝑒(𝑬el, 𝑇) describing an 

isothermal linear elastic process at temperature 𝑇 and an energy function 𝑓T(𝑇) de-

scribing a heating process that contains no elastic contributions [87]. In total the free 

energy is given by [87] 
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 𝑓 = 𝑓𝑒(𝑬el, 𝑇) + 𝑓T(𝑇) (161) 

with 𝜌T𝑓e(𝑬el, 𝑇) = 𝐶𝑖𝑗𝑘𝑙(𝐸th)𝑖𝑗(𝐸th)𝑘𝑙 . (162) 

The value 𝜌𝑇 is the density of the material in the intermediate configuration and 𝑪 is 

the stiffness tensor. Now, the temporal derivation of the specific Helmholtz free energy 

is given by  

 𝑓̇ =
𝜕𝑓e
𝜕𝑬th

: �̇�th +
𝜕𝑓e
𝜕𝑇

�̇� +
𝑑𝑓T
𝑑𝑇

�̇�. (163) 

Inserting equation (160) leads to  

𝑓̇ = 𝑭el
−1

𝜕𝑓e
𝜕𝑬el

𝑭el
−T: �̇� −

𝜕𝑓e
𝜕𝑬el

: [(𝛼∥ − 𝛼⊥)�⃗� �⃗� 
T + 𝛼⊥𝑰](1 + 2𝑬el)�̇� + 

+
𝜕𝑓e
𝜕𝑇

�̇� +
𝑑𝑓T
𝑑𝑇

�̇�. 

(164) 

At the same time 𝑓̇ is given by [87] 

 𝑓̇ =
1

𝜌0
𝑺 ̃: �̇� − 𝑠�̇�. (165) 

A comparison of coefficients leads to the final constitutive equation including thermal 

expansion 

 𝑺 ̃ = det(𝑭th) 𝑭th
−1(𝑪: 𝑬el)𝑭th

−T. (166) 

I use this equation in chapter 4 to model the thermal expansion of liquid-crystal elasto-

mers. 
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3D printing of liquid-crystal elastomers allows to create 3D structures with a spatially 

varying director field. An example of a printed 3D structure with an inhomogeneous 

director field is shown in Figure 14. The scanning electron micrograph shown in Figure 

14c depicts the 3D geometry of the structure, which consists of a central post with eight 

arms attached to it. Each arm is built from two connected layers with different director 

orientations. The director within the arms is indicated in the top view drawing pre-

sented in Figure 14a. One layer of each arm has a director tangential to the arm and the 

other layer has a director pointing out of the plane. Due to the anisotropic thermal ex-

pansion of the liquid-crystal elastomer, the arms bend significantly on heating. This 

bending motion is depicted in Figure 14b for different temperatures of the structure. 

The bi-layered beam bending motion is the fundamental mechanism that is exploited 

in this work to design 3D structures that change their shape on an external stimulus 

such as heat or light.  

This chapter describes the 3D laser microprinting technique I developed to print 3D mi-

crostructures with nearly arbitrary orientation of the director at every point in space. 

First, the general printing principle is outlined followed by all crucial parts such as the 

employed liquid-crystal resins, the director alignment mechanism and how to focus the 

printing laser within the birefringent resin. At the end of the chapter, I present printed 

test structures that proof the control over the director during printing of the samples.  

 

3  Chapter 3 

3D Printing of Liquid-Crystal Elasto-
mers 
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3.1 Printing principle 
The 3D printing technique described here is based on common 3D laser microprinting. 

In 3D laser microprinting, a femto-second pulsed laser is focused into a liquid photo-

resin. In the laser focus, a two-photon-absorption induced polymerization reaction 

starts that locally solidifies a volume called ‘voxel’. By scanning the laser focus in the 

photoresin, nearly arbitrary 3D structures can be formed out of the resin. In the end, 

the remaining liquid resin is washed away by a suitable solvent and one ends up with a 

3D printed microstructure. 

Figure 15a shows a sketch of common 3D laser microprinting. An objective lens focusses 

a femto-second pulsed laser into a droplet of a photo-resin located on a glass substrate 

where the microstructure is printed on. By scanning the laser with galvanometric mir-

rors, a slice of a structure can be polymerized on top of the substrate as depicted in 

Figure 15b. After this slice, the substrate is moved one step away from the objective 

lens, allowing to print another slice on top of the existing slice by scanning the laser, as 

 

Figure 14. Liquid-crystal elastomer 3D structure with an inhomogeneous director profile. 
(a) The arrows in the drawing of the printed geometry indicate the intended director 
profile. (b) The optical microscope images show a large bending motion of the eight arms 
in the counter-clockwise direction for increasing temperatures. (c) Scanning electron mi-
crograph of the structure. Figure taken from [88] (CC BY 4.0).     
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shown in Figure 15c. This strategy allows in principle to print structures of arbitrary 

height.  

To print liquid-crystal elastomers, an additional mechanism to control the director dur-

ing printing is required. In this work, the director is aligned by a variable electric field, 

which in turn is induced by a custom-made electrode. The two-sided indium tin oxide 

(ITO) electrode is placed between the objective lens and the substrate as illustrated in 

Figure 16. The substrate itself is now covered with ITO on the backside and acts as a 

counter electrode. In combination, the electrode and the substrate allow to induce ar-

bitrarily oriented electric fields within a liquid-crystal resin located in between the elec-

trode and the substrate. 

As described in the fundamentals chapter, the liquid-crystal director aligns parallel to 

the induced electric fields. The following polymerization of the liquid-crystal resin fixes 

the liquid-crystal elastomers director to the orientation of the electric field [58]. In a 

further step, the electric field can be oriented in another direction allowing to print liq-

uid-crystal elastomer with another director orientation, while the already printed liq-

uid-crystal elastomer keeps its director orientation.  

 

Figure 15. Illustration of common 3D laser microprinting. (a) An objective lens focusses 
a femto-second pulsed laser beam into a resin located on a glass substrate. (b) A zoom-
in at the position of the laser focus shows, that a polymerization reaction occurs at the 
laser focus (red, numerical aperture not to scale). By scanning the laser focus via galva-
nometric mirrors, a slice can be polymerized on top of the glass substrate. (c) Retracting 
the substrate from the objective lens, further slices can be polymerized on top of the 
existing slices. With that strategy structures of nearly arbitrary size and shape can be 
printed.   



 

48 3D Printing of Liquid-Crystal Elastomers 

One could, for example, apply a horizontal electric field to print a block of liquid-crystal 

elastomer with a horizontal director orientation as depicted in Figure 16b. In a second 

step, one could apply a vertical electric field to print another block of liquid-crystal elas-

tomer on top with a vertical director orientation, as shown in Figure 16c. After devel-

opment of the structure, one ends up with a block of liquid-crystal elastomer with a 

 

Figure 16. Illustration of the technique established to 3D print liquid-crystal elastomers 
with control over the spatial director field. (a) The objective lens is enclosed by a mount 
that positions a transparent electrode closely above the front lens of the objective. (see 
Figure 23 for a detailed description). The inset depicts a top-view optical microscope im-
age of the electrode. It shows patterns of indium tin oxide (ITO) on the front- and back-
side of the electrode. The patterns appearing in green are on the front of the electrode, 
while the pattern that appears light-blue points towards the objective lens. (b) A zoom-
in drawing at the position of the laser focus (red, numerical aperture not to scale). The 
gap between the objective lens and the electrode is filled with immersion oil, while the 
gap between the electrode and the substrate is filled with a liquid-crystal resin. The sub-
strate itself is coated with indium tin oxide on its backside. In the depicted configuration, 
a horizontal electric field is applied via the electrode, aligning the director of the resin in 
the focal plane along the horizontal direction. In the focus of the laser, the polymeriza-
tion reaction forms a liquid-crystal elastomer with a permanently fixed horizontal direc-
tor orientation. (c) Changing to a vertical electric field reorients the director within the 
resin but not within the polymerized material. Thereafter, another part of the structure 
can be printed with a vertical director orientation, leaving the director of the already 
printed structure unaffected. During printing, the electrode position is fixed, whereas the 
substrate is moves freely. This allows for structures of nearly arbitrary height. Figure 
adapted from [88] (CC BY 4.0). 
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director horizontal to the substrate on the bottom and a director vertical to the sub-

strate on top.  

Since the electrode is fixed at a certain distance to the objective lens and since the sub-

strate is free to move, one can in principle print structures of arbitrary footprint and 

height. The limitations in height are governed by the range of the stage and the maxi-

mum available voltage. 

Three aspects are crucial for this printing technique to work. First, it is required to in-

duce sufficiently homogeneous and sufficiently strong electric fields within the resin. 

Second, the femto-second laser beam must be properly focused into the highly birefrin-

gent liquid-crystal resin. Third, the liquid-crystal resin has to be nematic and liquid at 

room temperature. These three aspects are discussed in the following.   

3.2 Inducing Electric Fields in the Liquid-Crystal Resin  
In this section, the electrode design I developed is presented in detail, along with finite 

element calculations I performed to verify that the electrode can induce sufficiently ho-

mogeneous electric fields within the liquid-crystal resin. Furthermore, the electrode 

fabrication is discussed followed by a discussion of the electrode driver and a discussion 

about the alignment of the electrode in the actual setup. 

3.2.1 Electrode Design 
The electrode is fabricated on a 13 mm × 13 mm × 0.17 mm glass (D263M) coverslip 

by coating a layer of patterned indium tin oxide on the front- and the backside. A light 

microscope image of an electrode is shown in the inset of Figure 16a. The front pattern, 

which appears green, consists of four separate pads. The back pattern, which appears 

blue, consists of one larger pad.  

A 3D sketch of the electrode together with the substrate is displayed in Figure 17a. 

There, the substrate is located at a variable distance ℎ above the electrode. To prevent 

a large voltage drop over the substrate, it is made of c-plane sapphire for its high per-

mittivity. The substrate has a thickness of 430 µm. The printing area, i.e. the area where 

the focus of the printing laser is scanned is marked in red. It is located 100 µm above 

the surface of the electrode and has a square shape with a width of 150 µm. The elec-

trode is designed to assert sufficiently homogenous electric fields within in the printing 

area. 

To verify the homogeneity of the electric field within the printing area, one first needs 

to calculate the electric field distribution, for which the Poisson’s equation must be 
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solved for the geometry depicted in Figure 17a. The potential at the electrode pad 𝑖 is 

given by 𝜑𝑖 with 𝑖 = 1…6 as depicted in Figure 17a. As a simplification of the problem, 

I assumed that the director of the liquid-crystal resin always aligns parallel to the elec-

tric field. The assumption of parallel electric field and director is justified in section 

2.1.2. To obtain a solution to the described problem, I employed a finite element ap-

proach using COMSOL Multiphysics.  

Choosing two different sets 𝜑𝑖
𝑥 and 𝜑𝑖

𝑧, I solved the problem for different distances ℎ 

between the substrate and the electrode ranging from 100 µm to 1 mm. Here, the su-

perscript denotes the mean direction of the electric field in the printing area. 

𝜑1
𝑥 = 𝜑2

𝑥 = 𝜑5
𝑥 = 𝜑6

𝑥 = 𝑈𝑥, 𝜑3
𝑥 = 0 V, 𝜑4

x = 2𝑈𝑥, 𝑈𝑥 = 1428.6 V (167) 

 

Figure 17. (a) 3D schematic of the electrode geometry used for the finite element calcu-
lations. The sketch shows the patterned electrode and the sapphire substrate located at 
a distance ℎ above the electrode. The electrostatic potential applied to pad 𝑖 is labelled 
𝜑𝑖 with 𝑖 = 1…6. The printing area is located 100 µ𝑚 above the electrode and is 
marked in red. (b) Results of finite element calculations characterizing the electric fields 

�⃗� 𝑥, �⃗� 𝑦 in the printing are for two different sets of potentials 𝜑𝑖
𝑥, 𝜑𝑖

𝑧. The superscripts 
denote the average direction of the resulting electric fields. The top panel shows the av-
erage magnitude of the respective electric fields for different ℎ. The central panel depicts 
the maximum and the mean angular electric-field deviation with respect to its mean di-
rection within the printing area. The bottom panel shows the mean and maximum mag-
nitude electric-field deviation with respect to the mean electric-field magnitude within 
the printing area. Figure adapted from [88] (CC BY 4.0). 
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𝜑1
𝑧 = 𝜑2

𝑧 = 𝜑3
𝑧 = 𝜑4

𝑧 = 𝑈𝑧, 𝜑5
𝑧 = 0 V,𝜑6

z = 3𝑈𝑧, 𝑈𝑧 = 504.4 V (168) 

Assuming permittivities of 𝜖LC = 19 for the liquid-crystal resin, 𝜖∥
S = 11.54, 𝜖⊥

S = 9.34 

for the sapphire substrate and 𝜖E = 4.6 for the electrode, I obtained a solution for the 

electric field-distribution, which is plotted in Figure 17b and Figure 18. 

In the top panel of Figure 17b the average field strength is displayed for distances ℎ 

ranging from 100 µm to 1 mm. The field strength for fields in the 𝑥 – direction depends 

only weakly on ℎ. This is intuitively clear, since the relevant distance between pads 3 

and 4 is independent of ℎ. On the other hand, the field strength for fields in the 𝑧 – 

direction decrease monotonously with growing ℎ. This is also intuitive, since the rele-

vant distance between the pads 5 and 6 directly depends on ℎ.  

The modulus of the deviation of the field strength to the mean field strength within the 

printing area is plotted in Figure 18b, while the mean value and the maximum value of 

this quantity within the printing area are plotted in the bottom panel of Figure 17b. For 

the fields in the 𝑥 – direction, the field strength increases towards the electrode pads 3 

and 4, which is characteristic for a stray field. The maximum deviation from the mean 

field strength is below 4.6 % and the mean deviation below 2 % for all distances ℎ be-

low 1 mm. For the fields in the 𝑧 – direction, the maximum and mean deviations are 

well below 0.5 % and result from the finite size of pad 5.    

The mean direction of the electric field is as desired for both sets of potentials and all 

distances ℎ. The deviation to the desired direction within the printing area is plotted in 

Figure 18a for different distances ℎ. The mean and the maximum deviation within the 

printing area are plotted in the central panel of Figure 17b.  

For fields in the 𝑥 – direction, the angular deviation is zero along the 𝑦 – axis starting 

from the centre of the printing area, which results from the mirror symmetry of the 

electrode. The deviations get stronger following the 𝑥 – axis starting from the centre of 

the printing area. This is also expected, since it is a stray field and the field vectors start 

to tilt towards the substrate leaving the centre of the electrode. The deviation is strong-

est in the corners of the printing area due to the finite size of the electrode pads 3 

and 4. The maximum angular deviations are below 3° and the mean deviations are be-

low 1.5° for all considered distances ℎ. For small separation distances ℎ, the substrate 

has an adverse influence on the homogeneity of the field direction. However, the an-

gular deviations decrease quickly for larger separation distances. Alternatively, the de-

viations  
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Figure 18. Homogeneity of the electric field within the printing area for different dis-
tances between the electrode and the substrate resulting from finite element calcula-
tions. (a) Angle between the electric field vector and the average field direction within 
the printing area. (b) Deviation in magnitude of the electric field compared to the aver-
age magnitude of the electric field within the printing area. Figure taken from [88] (CC 
BY 4.0). 
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would also decrease for a larger distance between the electrode pads 3 and 4. However, 

then, the field strength would decrease for a fixed set of potentials. For fields in the 𝑧 – 

direction, the angular deviation in angle is zero in the centre of the printing area, which 

is due to the fourfold rotational symmetry of the electrode. Due to the finite size of 

pad 5, the deviations increase towards the boundaries of the printing area. This could 

in principle be compensated with a suitable set of potentials 𝜑1 - 𝜑4 for every distance 

ℎ. However, I fixed the potentials for simplicity. For my choice of potentials, there is no 

deviation at a distance of about 340 µm. The maximum deviation is below 2° and the 

mean deviation is below 1° for all distances ℎ below 1 mm. 

Overall, I consider the fields to be sufficiently homogeneous for both configurations. 

Since the electrode has a four-fold rotational symmetry, the same considerations hold 

for fields in the 𝑦 – direction that are obtained by a set of potentials 𝜑𝑖
𝑦

. 

 𝜑3
𝑦
= 𝜑4

𝑦
= 𝜑5

𝑦
= 𝜑6

𝑦
= 𝑈𝑥, 𝜑1

𝑦
= 0 V,𝜑2

𝑦
= 2𝑈𝑥  (169) 

Due to the principle of superposition, it is not only possible to apply fields along the 

principal axes, but in all other directions. The potentials to apply for a desired field with 

field strength 𝐸 in the direction (ϕ, 𝜃) for a certain distance ℎ are given by 

 
𝜑𝑖(𝐸,𝜙, 𝜃, ℎ) =

𝐸

𝐸𝑥(ℎ)
[cos𝜙 sin 𝜃 𝜑𝑖

𝑥 + sin𝜙 sin 𝜃 𝜑𝑖
𝑦
]

+
𝐸

𝐸𝑧(ℎ)
cos 𝜃 𝜑𝑖

𝑧 + 𝜑0, 𝑖 = 1…6. 
(170) 

Here, 𝜑0 is a constant potential that can be added to shift the resulting potentials to 

reasonable values.  

To validate the performance of the electrode experimentally, I assembled an electrode 

and a substrate spaced by ℎ = 100 µm with two layers of scotch tape and infiltrated 

the assembly with E7 liquid-crystal mixture. I observed the assembly in between two 

crossed polarizers in an optical bright-field microscope. The motivation for this config-

uration is that the E7 mixture is birefringent with an optic axis coinciding with the di-

rector. This means that the resulting images are black whenever the director is perpen-

dicular or parallel to one of the polarizers. This means, that the observed dark areas are 

an indicator, whether the electrode aligns the liquid crystal in the desired direction or 

not.  
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In the experiment, I examined three different configurations of the electric field, as dis-

played in Figure 19, comprising a field perpendicular to the substrate and two fields 

parallel to the substrate being rotated by 45° with respect to each other. For the first 

configuration, the printing area appears black for both configurations of the polarizers. 

This proves, that the director is perpendicular to the substrate as desired. For the other 

two configurations, the printing area appears black, whenever one of the polarizers is 

parallel to the desired direction of the director. On the other hand, the printing area 

appears bright if the desired director is not parallel or perpendicular to one of the po-

larizers. These observations agree with the desired director orientation. In conclusion, 

these observations are first indications that the electrode works as desired. A more 

 

Figure 19. Optical microscope image of an electrode and a substrate at a distance of ℎ =
100 µ𝑚 infiltrated with E7 liquid-crystal mixture. The assembly is placed in between 
crossed polarizers (indicated by the crossed arrows at the bottom left) and illuminated 
in transmission. The image appears black, whenever the director of the E7 mixture is 
perpendicular or parallel to one of the polarizers. The orientation of the polarizers is in-
dicated by the white arrows. The printing area is marked with a dotted square in the 
centre of the electrode. Three different field configurations are observed. (a) Field is ap-
plied perpendicular to 𝑥𝑦 – plane. (b) Field is applied in 𝑥 – direction. (c) Field is applied 
in the 𝑥𝑦 – plane rotated by 45° with respect to the 𝑥 – axis.     
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rigorous proof that the director of printed objects coincides with the desired direction 

is given in section 3.6.1. 

Besides a homogenous field distribution, the electrode must also have a sufficiently low 

capacity 𝐶𝑖𝑗 between two pads 𝑖 and 𝑗, as I will point out in the next section. Using the 

above presented finite-element method, I compute the following capacitances: 

 𝐶𝑖𝑗 ≈

(

 
 
 

− 0 0 0 0 0.5
0 − 0 0 0 0.5
0 0 − 0 0 0.5
0 0 0 − 0 0.5
0 0 0 0 − 1.5
0.5 0.5 0.5 0.5 1.5 − )

 
 
 
 pF. (171) 

 

3.2.2 Driving the Electrode 
In order to prevent breakdowns and deteriorations of the resin and the electrodes, it is 

important to drive the electrode with an AC voltage instead of an DC voltage [89]. 

Within this work, I chose a frequency of 800 Hz, which proved to be sufficient to pre-

vent breakdowns and deteriorations even during printing jobs taking more than 

15 hours. To obtain electric fields with a strength on the order of 1 V µm−1, it is neces-

sary to provide six potentials 𝜑𝑖 with independent amplitude up to 3 kV at the same 

phase. Conceptually, it would be the easiest to use six high voltage amplifiers with six 

synchronized function generators. However, amplifiers that provide voltages of about 

3 kV at frequencies of 800 Hz are expensive. Therefore, I decided to use a system con-

sisting of one amplifier, one computer-controlled function generator and a set of six 

computer-controlled variable voltage dividers that are connected in parallel to the am-

plifier.  

A circuit diagram of such a voltage divider is shown in Figure 20a. The voltage divider 

consists of a fixed capacitor �̃�𝑖 and a variable capacitor 𝐶𝑖. The voltage divider is built 

from capacitors instead of resistors, since it is complicated to obtain variable resistors 

with a sufficiently long lifetime. The output signal 𝜑𝑖 of a single voltage divider is related 

to the input signal 𝜑 by the equation (1) and can therefore be adjusted by the variable 

capacitor 𝐶𝑖.  

 𝜑𝑖 =
�̃�𝑖

𝐶𝑖 + �̃�𝑖
𝜑 (172) 

A reed relay is employed to set the output potential 𝜑𝑖 to GND if necessary. Addition-

ally, a second voltage divider is connected in parallel and provides a probe signal     
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𝜑𝑖
𝑀 = 𝑚𝜑𝑖 that is in the range of ±3 V and proportional to 𝜑𝑖. I used the circuit shown 

in Figure 20c to automatically measure the probe signal. To obtain the proportionality 

factor 𝑚, I connected the output 𝜑𝑖 of each voltage divider directly with the input 𝜑 and 

measured 𝜑𝑖
M = 𝑚𝜑 for different 𝜑. From the resulting data, I extracted 𝑚 by a linear 

fit (not shown) and thereby calibrated the measurement.  

The voltage dividers are connected to a HiVolt HA51U-3B2 amplifier which is specified 

to a maximum load of 166 pF at a frequency of 800 Hz and an output amplitude of 

3 kV. Therefore, the capacitors used in the voltage dividers must be in the range of 

several tens of pico-farads. For the fixed capacitors I chose �̃�𝑖≠6 = 33.3 pF and �̃�6 =

 

Figure 20. (a) Circuit diagram of a voltage divider used to drive the electrode. Here, 𝜑 
labels the output of the amplifier, while 𝜑𝑖 labels the output of the voltage divider. The 

voltage divider consists of a tuneable capacitor 𝐶𝑖 and a fixed capacitor �̃�𝑖. A second 

voltage divider is used to supply a signal 𝜑𝑖
𝑀 that is proportional to 𝜑𝑖 and can be meas-

ured easily. A switch is used to put the output of the voltage divider to ground (GND) if 
necessary. (b) A photograph of a voltage divider used in the actual setup. The rotary 
plate capacitor 𝐶𝑖 is clearly visible. Shields are necessary to prevent electromagnetic cou-

pling of the voltage dividers. (c) Diagram of the circuit used to measure the signal 𝜑𝑖
𝑀 

supplied by the voltage dividers. It is important to measure one voltage divider after the 
other and put the remaining measurement outputs to GND to not introduce couplings 
between the voltage dividers. Figure adapted from [88] (CC BY 4.0). 
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50 pF with 𝑖 = 1…6 and for the variable capacitor I chose an Amidon rotary plate ca-

pacitor with a specified range of 𝐶𝑖(𝛼) = 6 − 130 pF. The position 𝛼 of the plate ca-

pacitor is controlled by a stepper motor and ranges from 0° to 180°. The arrangement 

of the components is depicted in Figure 20b. 

The components of each voltage divider are located in a separate shielded container, 

which is important since the coupling capacity 𝐶𝑖𝑗 between two voltage dividers 𝑖 and 𝑗 

can easily reach several picofarads. This has to be avoided, since high coupling capaci-

ties limit the system. The higher the coupling, the less independent is the choice of out-

put signals. In the extreme case of an infinite coupling capacity, all output signals are 

the same. For the same reason, the electrode is connected to the voltage divider via 

shielded cables. Since commercially available shielded cables typically have a too large 

capacity for the system to work, I custom built coaxially-shielded cables with an outer 

diameter of 2 cm and a length of 40 cm. However, due to the coupling capacities 𝐶𝑖𝑗 of 

the electrode itself on the order of 1 pF, the voltage dividers must still be treated as a 

coupled system.  

Due to the coupling of the voltage dividers by the electrode itself, it is not possible to 

estimate the required configurations of the variable capacitors for a desired set of out-

put potentials 𝜑𝑖 by equation (172). Actually, the more complicated equation  

 𝑟𝑖 =
𝜑 − 𝜑𝑖
𝜑𝑖

+∑
𝜑𝑗 − 𝜑𝑖

𝜑𝑖
𝑟𝑖𝑗

6

𝑗=1

 (173) 

has to be used. Here, 𝑟𝑖 and 𝑟𝑖𝑗 denote ratios of the capacities 𝐶𝑖 and 𝐶𝑖𝑗 relative to the 

fixed capacitors �̃�𝑖 defined by  

 𝑟𝑖(𝛼) ≔
𝐶𝑖(𝛼)

�̃�𝑖
, 𝑟𝑖𝑗 ≔

𝐶𝑖𝑗

�̃�𝑖
, 𝑖, 𝑗 = 1…6. (174) 

In general, equation (173) will not lead to values 𝑟𝑖 that can be reached by the rotary 

plate capacitor. However, it is possible to shift all potentials 𝜑𝑖 by a common value 𝜑0 

and scale the potentials by a common factor 𝑛 to obtain an electric field with at least 

the desired direction but possibly a smaller magnitude. The problem is to find a poten-

tial 𝜑0 such that 𝑛 and therefore the magnitude if the resulting electric field is as large 

as possible. I start by replacing 𝜑𝑖 with 𝑛(𝜑𝑖 − 𝜑0) in equation (173) to obtain  

 
𝜑′ + 𝜑0 + 𝑎𝑖
𝜑𝑖 − 𝜑0

= 𝑟𝑖 (175) 
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with  𝜑′ ≔
𝜑

𝑛
 , (176) 

 𝑎𝑖 ≔∑(𝜑𝑗 − 𝜑𝑖)𝑟𝑖𝑗
𝑗

−𝜑𝑖 . 
(177) 

Since 𝑟𝑖 is restricted by 𝑟𝑖
min ≤ 𝑟𝑖 ≤ 𝑟𝑖

max, it follows from equation (175) and the as-

sumption 𝜑𝑖 ≥ 𝜑0  that: 

 
𝑟𝑖
min(𝜑𝑖 − 𝜑0) − 𝑎𝑖 −𝜑0 ≤ 𝜑

′ ≤ 𝑟𝑖
max(𝜑𝑖 −𝜑0) − 𝑎𝑖 −𝜑0,

𝑖 = 1…6 
(178) 

⇒ 
𝑟𝑖
min(𝜑𝑖 − 𝜑0) − 𝑎𝑖 − 𝜑0 ≤ 𝑟𝑗

max(𝜑𝑗 − 𝜑0) − 𝑎𝑗 − 𝜑0,

𝑖, 𝑗 = 1…6 
(179) 

⇒ 𝐴𝑖𝑗 ≤ 𝐵𝑖𝑗𝜑0 (180) 

with 𝐴𝑖𝑗 = 𝑟𝑖
min𝜑

𝑖
− 𝑟𝑗

max𝜑
𝑗
− 𝑎𝑖 + 𝑎𝑗 (181) 

 
𝐵𝑖𝑗 = 𝑟𝑖

min − 𝑟𝑗
max. (182) 

In the setup described above, it is 𝐵𝑖𝑗 < 0 for 𝑖, 𝑗 = 1…6, and therefore 𝜑
0
≤ 𝐴𝑖𝑗/𝐵𝑖𝑗 

for 𝑖, 𝑗 = 1…6. To maximize 𝑛, I choose  

 𝜑0 = min
𝑖,𝑗

𝐴𝑖𝑗

𝐵𝑖𝑗
 . (183) 

The smallest possible value for 𝜑′ is then according to equation (178) given by 

 𝜑′ = max
𝑖
(𝑟𝑖

min(𝜑𝑖 − 𝜑0) − 𝑎𝑖 − 𝜑0), (184) 

which results in the maximum value 𝑛max 

 𝑛max =
𝜑

max
𝑖
(𝑟𝑖

min(𝜑𝑖 − 𝜑0) − 𝑎𝑖 − 𝜑0)
 . (185) 

Plugging the results of equation (183) and (184) in equation (175) results in the config-

urations of the variable capacitors necessary to obtain an electric field pointing in the 

direction of the field described by the set of potentials 𝜑𝑖. The largest possible field 

strength for each direction is displayed in the false-colour plot in Figure 21. The connec-

tion between the centre of the coordinate system and a point on the shown sphere 
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encodes the direction of the electric field and the colour of the sphere at that point 

encodes the larges possible field strength. Figure 21a assumes a distance ℎ = 100 µm 

between the electrode and the substrate and Figure 21b assumes a distance of ℎ =

1 mm. The available fields strengths are always above 0.3 V µm−1 for all configurations 

and separation distances ℎ ≤ 1 mm.  

Using equation (175) to calculate the configuration of the rotary plate capacitors re-

quires knowledge about the boundaries 𝑟𝑖
min and 𝑟𝑖

max and the coupling capacities 𝑟𝑖𝑗. 

Additionally, the relation 𝑟𝑖(𝛼) is needed to set the estimated configuration with the 

stepper motor connected to the rotary plate capacitor. With the electronics presented 

here, it is possible to measure these quantities in the assembled setup without large 

effort. It is only necessary to measure the output potential 𝜑𝑖 in different configura-

tions. For these measurements, it is important to only measure at one measurement 

port at a time and set the other measurement ports to ground (GND) to suppress fur-

ther couplings of the voltage dividers. A detailed description of the algorithm is pro-

vided in the following. 

The measurement of the capacities in the setup is a two-step process. In a first step, set 

𝜑𝑗 = 0 for 𝑗 ≠ 𝑖 and measure �̃�𝑖(𝛼𝑖) = (𝜑 − 𝜑𝑖)/𝜑𝑖 for different configurations 𝛼𝑖 of 

the rotary plate capacitor 𝐶𝑖. In a second step, set 𝜑𝑗 = 𝜑 for 𝑗 ≠ 𝑖 and 𝜑𝑘 = 0 for 𝑘 ≠

𝑖, 𝑗 and measure �̃�𝑖𝑗(𝛼𝑖) = (𝜑 − 𝜑𝑖)/𝜑𝑖 for the same configurations 𝛼𝑖 of the rotary 

plate capacitor 𝑖. The idea behind this measurement is that in the first step all coupling 

capacities lie in parallel to the rotary plate capacitor 𝐶𝑖. In the second step, 𝐶𝑖𝑗 is parallel  

 

Figure 21.  Available electric field strengths in the presented setup. The connection be-
tween the centre of the normalized coordinate system and a point on the sphere encodes 
the direction of the electric field and the colour of the sphere at that point encodes the 
larges possible field strength. The calculation is based on equation (185) and the results 
of the finite element calculations presented in the top panel of Figure 17b. (a) ℎ =
100 µ𝑚. (b) ℎ = 1 𝑚𝑚. 



 

60 3D Printing of Liquid-Crystal Elastomers 

to �̃�𝑖 and the remaining coupling capacities remain parallel to 𝐶𝑖. This leads to the fol-

lowing set of equations: 

 �̃�𝑖(𝛼𝑖) =
𝐶𝑖(𝛼𝑖) + ∑ 𝐶𝑖𝑗𝑗≠𝑖

�̃�𝑖
 (186) 

and 
�̃�𝑖𝑗(𝛼𝑖) =

𝐶𝑖(𝛼𝑖) + ∑ 𝐶𝑖𝑘𝑘≠𝑖,𝑗

�̃�𝑖 + 𝐶𝑖𝑗
. (187) 

This set of equations can be solved for the desired quantities 𝑟𝑖(𝛼𝑖) and 𝑟𝑖𝑗:  

 𝑟𝑖𝑗 =
𝐶𝑖𝑗

�̃�𝑖
=
�̃�𝑖 − �̃�𝑖𝑗

1 + �̃�𝑖𝑗
 (188) 

and 
𝑟𝑖(𝛼𝑖) =

𝐶𝑖(𝛼𝑖)

�̃�𝑖
= �̃�𝑖(𝛼𝑖) −∑𝑟𝑖𝑗

𝑗≠𝑖

. (189) 

The boundaries 𝑟𝑖
min and 𝑟𝑖

max can be directly derived as the minimum and maximum 

of 𝑟𝑖(𝛼𝑖).The following values represent a typical measurement for a distance of ℎ =

100 µm between the electrode and the substrate: 

𝑟𝑖
min =

(

  
 

1.01
1.02
1.03
0.93
1.48
0.64)

  
 

, 𝑟𝑖
max =

(

 
 
 

4.52
4.47
4.54
4.44
4.93
3.09)

 
 
 

, 𝑟𝑖𝑗 =

(

  
 

− 0 0.01 0.01 0.03 0.03
0.01 − 0.01 0.01 0.04 0.02
0.01 0 − 0.01 0.03 0.01
0.01 0 0.01 − 0.03 0.02
0.03 0.03 0.03 0.03 − 0.05
0.02 0.01 0.01 0.01 0.03 − )

  
 

 

 

Figure 22. Capacity ratio 𝑟𝑖 versus the capacitor position 𝛼 for the six voltage dividers 
connected to an assembled electrode and a substrate with a liquid-crystal resin applied 
in between.  
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The corresponding relations 𝑟𝑖(𝛼𝑖) are depicted in Figure 22 for all six voltage dividers. 

The slope of the curves 𝑟𝑖 for 𝑖 = 1…5 is the same due to the same fixed capacitor �̃�𝑖. 

Since the capacitor �̃�6 is intentionally larger than the others, the slope of 𝑟6 is smaller 

than the others. The curve 𝑟5 is shifted to larger values due to the coupling of the ob-

jective lens, which is electrically connected to pad 5, to the grounded holder of the 

electrode. This effectively increases 𝐶5 with respect to 𝐶𝑖 for 𝑖 = 1…4. 

In principle the coupling capacities 𝑟𝑖𝑗 depend on the distance ℎ between the electrode 

and the substrate. However, I neglected this dependency for the sake of simplicity. Even 

with this simplification I observed an accuracy in the electric potentials of about 2 %. 

Large changes of the orientation of the electric field vector within the liquid-crystal 

resin, lead to strong orientational defects in the resin. The relaxation time to the or-

dered ground state appears to be irreproducible and varies from seconds to minutes. 

Hence, it is better to divide large changes in the orientation of an electric field in smaller 

steps. If one wants to change the orientation of the electric field from (ϕs, 𝜃s) to 

(ϕe, 𝜃e), then one can add intermediate states along the great circle connecting both 

configurations. Starting from the coordinates of the start and end configurations given 

by 

 𝑣 s = (

cos𝜙s sin 𝜃s
sin𝜙s sin 𝜃s
cos 𝜃s

) , 𝑣 e = (

cos𝜙e sin 𝜃e
sin 𝜙e sin 𝜃e
cos 𝜃e

), (190) 

the intermediate points 𝑣 𝑛 can be calculated by 

 𝑣 𝑛 = 𝑣 𝑠 cos 𝑛Δ𝛼 +
(𝑣 𝑠 × 𝑣 𝑒) × 𝑣 𝑠
|(𝑣 𝑠 × 𝑣 𝑒) × 𝑣 𝑠|

sin 𝑛Δ𝛼 (191) 

with 
𝑛 ≤

cos−1 𝑣 𝑠 ⋅ 𝑣 𝑒
Δ𝛼

. (192) 

Here, I chose Δ𝛼 = 15° for the setup. With this strategy the orientational defects within 

the resin vanish reproducibly after a few seconds when changing the orientation of the 

electric field within the liquid-crystal resin. 

3.2.3 Mounting and Electrical Connection 
For an easy handling of the fragile electrode, it is glued to a chip made from polyox-

ymethylene, as depicted in Figure 23a and Figure 23b. The pads of the electrode are 

connected to copper stripes on the chip via a conducting silver epoxy glue (Polytec 

EC244). In between the copper stripes, a non-conducting epoxy glue (UHU Plus Endfest 

300) is employed to fix the electrode from the bottom to the chip and to prevent 
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leakage of liquid-crystal resin applied to the top of the electrode. For a good adhesion 

of the glue to the polyoxymethylene, it is important to treat the chip with an air plasma 

for about 45 minutes.    

To position the electrode above the objective lens, the chip is screwed onto a holder 

surrounding the objective lens as shown in Figure 23c. With this holder it is possible to 

translate the electrode in the 𝑥 – and 𝑦 – direction with two fine-adjustment screws. 

Translation in the 𝑧 – direction is possible with three micrometer screws that also allow 

to tilt the electrode around the 𝑥 – and 𝑦 – axis. The slotted holes in the cap of the 

holder allow a rotation around the 𝑧 – axis. 

The chip is electrically connected via spring contacts located on the cap of the holder. 

They press onto the copper stripes on the chip that hold the electrode. The spring con-

tacts are connected via copper stripes to plugs that are fixed to the cap of the holder. 

Via these plugs, the electrode is connected to the voltage dividers that are described in 

section 3.2.2. 

To prevent electrical breakdowns between pad 5 of the electrode and the objective 

lens, which are separated by 100 µm, the objective lens and pad 5 are electrically con-

nected. This connection is realized with a wire pushing onto the objective lens. The wire 

is fixed to the cap of the holder and connected to pad 5 of the electrode. To electrically 

 

Figure 23. (a) Top view of an electrode mounted in a chip. (b) Bottom view of an electrode 
mounted in a chip. Copper stripes are used to contact the electrode via spring contacts 
located on the electrode holder. (c) The electrode holder surrounds the objective lens. 
The position and orientation of the electrode can be adjusted via fine-adjustment screws, 
micrometre screws and slotted holes on the cap of the holder.  
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isolate the objective lens from the environment, its threaded mount is made from pol-

yvinylchloride.  

To prevent accidents and user injuries, all accessible conductive parts of the holder are 

set to ground and the high-voltage copper stripes on the cap are isolated with a polyi-

mide tape. 

A drawback of the described strategy to mount the electrode within a chip is that the 

electrode is not the topmost part. The boundaries of the electrode are covered with 

400 µm of polyoxymethylene of the chip. Since the distance between the electrode and 

the substrate starts from ℎ = 100 µm, the substrates must fit into the opening of the 

chip which is 8 mm × 8 mm. I chose a size of 3 mm× 3 mm× 0.47 mm for the sub-

strates. These dimensions allow the substrates to dip into the chip’s opening and also 

allows for a horizontal translation of the substrate during the printing. This is important 

to print structures larger than the printing area.  

As described in section 3.2.1, it is necessary that the substrates are electrically conduct-

ing on their backside. For simplicity, the substrates were not coated with indium tin 

oxide but mounted on the counter-electrode, a glass substrate that is coated with in-

dium tin oxide. This conducting layer is connected to a voltage divider described in sec-

tion 3.2.2. The substrate is fixed to this counter-electrode with fix-o-gum (Marabu) ap-

plied to the side walls of the substrate. This allows the substrate to move very close to 

the electrode, since no glue is on top of the substrate.  

3.2.4 Alignment of the Electrode 
At the beginning of the printing process the electrode and the substrate are at a dis-

tance of ℎ = 100 µm. Due to the large extent of the electrode (13 mm× 13 mm) only 

a small tilt between electrode and substrate is allowed. This requires a parallel align-

ment of the electrode and the substrate. 

To observe the tilt of the electrode and the substrate with respect to the front lens of 

the objective lens, a Helium-Neon laser beam is employed. The laser is reflected off the 

surface to be aligned and the reflex is observed at a 60 cm distant screen. As reference, 

the position of the reflex from the objective lens’ front lens is marked on the screen 

before applying immersion oil. Then the electrode and the substrate are aligned such, 

that the corresponding reflexes impinge at the reference mark on the screen. Following 

this method, an accuracy in parallelism of about 0.4 mrad is achievable. This value 

translates to a separation height difference of 5 µm across the electrode. 
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To set the correct height of the electrode with respect to the objective lens, an addi-

tional lens in a removable mount is placed in front of the camera (see section 3.4) to 

image the plane 100 µm below the nominal focal plane of the objective lens. The elec-

trode is in the correct position, when the top pattern of the electrode is sharp in the 

camera image. 

To centre the electrode with respect to the printing field, four alignment markers in the 

top pattern of the electrode are employed. Those are visible as small squares in the 

inset of Figure 16a. 

3.2.5 Cleaning of the Electrode 
To clean the electrode, the chip with the electrode is removed from the holder. The 

chip is then placed in acetone and ultrasonicated for 10 minutes. Afterwards, it is placed 

in deionized water and ultrasonicated again for 10 minutes. Then, the electrode is dried 

in a stream of nitrogen. It is important to perform this procedure after and directly be-

fore using the electrode. Otherwise, I observed that the director of the liquid-crystal 

resin is aligned in random patterns at the surface of the electrode.  

3.2.6 Fabrication of the Electrode 
The electrodes were fabricated in a cleanroom to prevent contamination with dust dur-

ing the fabrication. Dust on the substrates prior to the indium tin oxide (ITO) evapora-

tion can lead to spikes in the ITO layer. These spikes can lead to electrical breakdowns 

due to field concentration. Furthermore, dust on the substrate or in the resin during 

spin-coating can lead to defects in the pattern of the electrode.  

As substrates for the electrodes, D263M coverslips with a size of 13 mm × 13 mm×

0.17 mm were used. The coverslips were cleaned in a multi-step procedure adapted 

from a procedure provided by Schott AG. In this procedure, the substrates were ultra-

sonicated alternatingly in 60 °C hot detergent baths and baths of pure deionized 60 °C 

hot water. In the first step, Deconex OP 146 (Borer Chemie AG, 4 vol%) was used as a 

detergent. In the second step, Deconex OP 12PA-x (Borer Chemie AG, 2 vol%) was used 

and in the third step, Deconex OP 171 (Borer Chemie AG, 2 vol%) was employed. Af-

terwards, the substrates were dried in a stream of nitrogen.  

The clean substrates were then coated with 100 nm ITO on both sides by electron beam 

deposition at a deposition rate 0.5 Å s−1 with a distance of  39 cm between the crucible 

and the substrates. During the deposition, the oxygen partial pressure in the evapora-

tion chamber was set to 5 ⋅ 10−5 torr. The coated substrates were then heated to 
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550 °C for 1 h to oxidize the ITO layers in a tube furnace. Afterwards, the oven was 

switched off and the samples cooled down slowly to room temperature. 

To structure the ITO, a 3 µm thick layer of AZ10XT (Microchemicals) was spin-coated 

onto the substrate at 4000 U min−1 followed by pre-bake at 110 °C for 2 minutes in 

an oven. Then, a flood-illumination with the front-side pattern for was performed 29 

seconds at 13 mJ cm−2 using a mask aligner (Karl Suess MA/BA 6). The back side of the 

substrates was then spin-coated and pre-baked to protect the second ITO layer. After-

wards, the substrates were development in AZ400K (Microchemicals) and deionized 

water (1: 4) for 8 minutes followed by an etching step with aqua regia consisting of HCl 

(20 vol%) and HNO3 (5 vol%) for 30 minutes. After etching, the substrates were 

washed with acetone in an ultrasonic bath. The same procedure was repeated to struc-

ture the back side of the substrate. 

At the end, both sides were coated with 100 nm SiO2 for electrical insulation via elec-

tron beam deposition at a rate of 1 Å s−1 in the presence of oxygen at a partial pressure 

of 10−5 torr. 

3.3 Laser Focussing into Birefringent Media 
For 3D laser microprinting, it is necessary to obtain a single confined laser focus within 

the resin used for printing. Obtaining a single confined laser focus is a difficult task, since 

the resins employed in this thesis are birefringent. In general, when a wave hits the 

interface between the electrode and the birefringent resin, an ordinary and an extraor-

dinary wave are induced as illustrated in Figure 24a. It is intuitive, that this will not lead 

to a good focus quality. Moreover, for a director perpendicular to the interface even 

two separate foci can appear. 

In the following I present a strategy that allows for a single confined laser focus within 

the birefringent resin for a large set of different director orientations. The strategy as-

sumes that the refractive index of the immersion oil and the electrode coincide with 

the ordinary refractive index of the liquid-crystal resin. If it is possible to suppress the 

transmission of the printing laser into extraordinary modes a laser focus of good quality 

must be the result. Then the situation is equivalent to a homogeneous isotropic medium 

with a refractive index for which the objective lens is optimized.  

In the rest of this section I show that the suppression of the extraordinary modes is 

possible with the proper polarization of the printing laser. In detail, for a director per-

pendicular to the substrate an azimuthal polarization is sufficient, while for a  
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Figure 24. (a) Schematic cut close to the laser focus. Rays of the focused laser beam ex-
cite an ordinary and an extraordinary ray at the interface between electrode and resin. 
(b) Power that is transmitted to extraordinary modes divided by the power transmitted 
to ordinary modes depending on the director orientation for two different polarizations 
of the printing laser. Four special cases are highlighted. (c) Normalized spatial intensity 
profile in a plane containing the optical axis. Each panel corresponds to one of the high-
lighted cases. Case #1 shows two foci, while the cases #2 - #4 show a single focus. (d) 
Normalized spatial intensity profile in the focal plane indicated by the white line in panel 
(c). Figure taken from [88] (CC BY 4.0). 



 

67 Laser Focussing into Birefringent Media 

director parallel to the substrate a linear polarization perpendicular to the director is 

sufficient.  

Moreover, it turns out that printing is possible for a large set of director orientations 

using an azimuthal or a linear polarization of the printing laser. 

To get an overview I employ a ray optics model to calculate the fraction of the power 

that is transmitted into extraordinary modes divided by the power transmitted into or-

dinary modes. As discussed above, a low fraction indicates a good focus quality.  

The calculation starts from the Fourier spectrum of the field refracted by the objective 

lens, delivered by the Richards-Wolf method, described in section 2.3.2. Each wave in 

the refracted spectrum originates from a ray of the laser beam that can be labelled in 

cylindrical coordinates by 𝜌 and 𝜑 (see Figure 10). For every plane wave (𝜌, 𝜑) in the 

spectrum I calculated the transmittance 𝑇o(𝜌, 𝜑) with respect to the ordinary mode and 

𝑇e(𝜌, 𝜑) with respect to the extraordinary mode according to formulas (87) and (88) 

described in section 2.2.2. To obtain the overall transmittance to the ordinary and ex-

traordinary modes, I integrated the transmitted energy of all rays in the laser beam 

normalized to the overall energy as described by formulas (193) and (194). For the beam 

profile I assumed a gaussian profile as described by Formula (195).   

 𝑇o =
∫ ∫ 𝐼𝜎(𝜌)𝑇o(𝜌, 𝜑)𝜌𝑑𝜌𝑑𝜑 

2𝜋

0

𝜌max
0

∫ ∫ 𝐼𝜎(𝜌)𝜌𝑑𝜌𝑑𝜑 
2𝜋

0

𝜌max
0

 (193) 

 𝑇e =
∫ ∫ 𝐼𝜎(𝜌)𝑇e(𝜌, 𝜑)𝜌𝑑𝜌𝑑𝜑 

2𝜋

0

𝜌max
0

∫ ∫ 𝐼𝜎(𝜌)𝜌𝑑𝜌𝑑𝜑 
2𝜋

0

𝜌max
0

 (194) 

 𝐼𝜎(𝜌) = 𝐼0𝑒
−
𝜌2

2𝜎2 (195) 

Figure 24b shows the ratio 𝑇e/𝑇o for linear polarization perpendicular to the optic axis 

(blue) and azimuthal polarization (red) versus the orientation of the optic axis repre-

sented by 0 < 𝜃 <
𝜋

2
. These 𝜃 represent all possible orientations of the optic axis. The 

ratio is zero for an azimuthal polarization and 𝜃 = 0 indicating that all transmitted en-

ergy is transmitted to the ordinary modes. In contrast, it is unity for a linear polarization 

indicating that half of the transmitted energy goes to extraordinary modes. In contrast, 

for 𝜃 = 𝜋/2 the ratio is zero for linear polarization and larger than one for azimuthal 

polarization. In between the ratio is below 0.5 for angles 𝜃 > 35° for linear polarization 

and below 0.5 for angles 𝜃 < 25° for azimuthal polarization.  
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I conclude that the laser focus quality is good for a director perpendicular to the sub-

strate using an azimuthal polarization of the printing laser. In contrast, for a director 

parallel to the substrate, a linear polarization perpendicular to the director is sufficient 

for a good focus quality. The calculations also raise the hope that for the director con-

figurations in between one of the two polarizations of the laser beam are sufficient for 

printing. 

To assess the focus quality, Dominik Beutel calculated spatial intensity profiles within 

the liquid-crystal resin for different director orientations using the formalism described 

in section 2.3. The resulting spatial intensity profiles are depicted in the four panels in 

Figure 24c and Figure 24d. Each panel corresponds to one of the highlighted cases in 

Figure 24b. Figure 24c shows a cut containing the optical axis, while Figure 24d shows 

a cut through the focal plane. In the first panel, the director is oriented perpendicularly 

to the interface, while the printing laser is linearly polarized. A well confined laser focus 

is visible in the focal plane of the objective lens, which is indicated by a white line. How-

ever, a second laser focus exists separated from the first one on the optical axis, which 

is clearly unwanted for printing. Changing the polarization of the printing laser to an 

azimuthal polarization results in a single confined laser focus in the focal plane as de-

picted in the second panel. In the focal plane the focus shows the expected toroidal 

shape. The third and the fourth panel show the spatial intensity distribution for 𝜃 =

45° and 𝜃 = 90° while the printing laser is polarized linearly and perpendicularly to the 

director. For both configurations a single well confined laser focus is visible. These re-

sults support the conclusion that the printing laser can be focused into the liquid-crystal 

resin for a large set of different director orientations. 

For all calculations shown, a refractive index of 1.5 was assumed for the immersion oil 

and the electrode. The ITO on the surface of the electrode was neglected. The ordinary 

index of the resin was assumed to be 1.5 while the extraordinary index was assumed to 

be 1.7. For the objective lens a magnification of 25 and a numerical aperture of 0.8 

were assumed resulting in 𝜌max = 5.3 mm and 𝑓 = 6.6 mm. For the laser beam 𝜎 =

4.75 mm and 𝜆 = 790 nm were assumed. The distance between the surface of the 

electrode and the focal plane was 100 µm. 

3.4 Optical Setup 
The optical setup of the printer presented in Figure 25 is a modified version of the setup 

described in [90] and was mainly built by Vincent Hahn and Pascal Kiefer. The auto-

mated polarization control was added to the setup by me.  
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For the experiments presented in section 3.6 a titanium sapphire laser (Spectra Physics 

MaiTai) was employed with a wavelength of 790 nm, a repetition rate of 80 MHz and 

a pulse duration of 90 fs. For the experiments presented in Chapter 4 the laser was 

replaced by a Coherent Chameleon Ultra II with a wavelength of 790 nm, a repetition 

rate of 80 MHz and a pulse length of 140 fs. At the entrance pupil of the objective lens 

a pulse length of 166 fs was measured. The laser is modulated by an acousto-optical 

modulator (AOM, AA MT80-A1.5-IR). To automatically rotate the linear polarization a 

broadband half-wave plate was employed in a motorized rotation mount. To switch be-

tween linear polarization and azimuthal polarization a variable spiral plate from Ar-

coptix was used. Both were positioned in a conjugate plane of the entrance pupil of the 

objective lens. Two separate galvanometric mirrors (GX, GY, Cambridge Technology 

6215H) were employed to scan the laser focus within the printing area. The dashed line 

between the two galvanometric mirrors indicates a flip in the coordinate system, nec-

essary to image the setup in a plane. Passing the galvanometric mirrors, the laser is 

focused by an objective lens (Zeiss LCI Plan-Neofluar 25×/0.8) into the liquid-crystal 

resin located between the electrode and a substrate. The substrate is mounted to a 3D 

translation stage (Märzhäuser-Wetzlar Scan IM 120 × 100, PI Q-545.140). A light-emit-

ting diode (LED) and a camera are used to observe the printing process. 

 

Figure 25. Optical setup of the used 3D laser printer. The green components represent 
the polarization control. The polarization control consists of a broadband half-wave 
plate (𝜆/2) in a rotation mount that rotates the linear polarization of the laser and a 
variable spiral plate (VSP) that can convert linear polarization to an azimuthal polariza-
tion. Figure taken from [88] (CC BY 4.0). 
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3.5 Liquid-Crystal Resins 
In this section I describe the composition of two liquid-crystal resins employed in this 

thesis and compare the resulting liquid-crystal elastomers with regard to thermal ex-

pansion and thermal stability.  

The presented 3D laser microprinting approach requires a liquid resin, since the dis-

tance ℎ between the electrode and the substrate varies in height during printing. This 

requires the resin to flow. Furthermore, the resin must be in a nematic state during the 

printing, in order to be aligned by the electric fields. Within this work, two different 

liquid-crystal resin compositions were employed that satisfy both requirements. The 

second resin is an improved version of the first one. 

Both employed resins are composed of the molecules depicted in Figure 26. Irgacure 

369 (IRG369) is a photoinitiator used to start a two-photon induced polymerization re-

action. The molecules LC1 – LC3 are reactive nematic mesogens that form a liquid-crys-

tal elastomer upon polymerization. All three mesogens are solid at room temperature. 

Therefore, I dissolved them in E7 mixture, whose composition is also depicted in Figure 

26. However, this comes at the cost of a large shrinkage after development, since the 

E7 mixture is not part of the network after polymerization. It is therefore necessary to 

use as less E7 mixture as possible.  

 

 

 

Figure 26. Molecules employed in the two resins used in this thesis. LC1 – LC3 are nematic 
mesogens with an acrylate group. The E7 mixture consists of four different nematic 
mesogens. It is used to dissolve the reactive mesogens LC1 – LC3. Irgacure 369 (IRG369) 
is a photo-initiator used to start a photopolymerization.  
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Table 1. Composition of the resins used in this thesis. The labels correspond to the mol-
ecules depicted in Figure 26. 

 Resin 1 Resin 2 

LC1 33.1 wt% 50 wt% 

LC2 - 12 wt% 

LC3 16.5 wt% 12 wt% 
E7 49.7 wt% 25 wt% 

IRG396 0.7 wt% 1 wt% 
 

The composition of both resins is given in Table 1. Resin 1 consists of the monomers 

LC1 and LC3. To form a stable resin which stays liquid at room temperature it is neces-

sary to add the same amount of E7 than monomers. The resin composition is inspired 

by [58, 91]. 

Resin 2 contains LC2 in addition. This drastically increases the solubility of the mono-

mers in the E7 mixture. In Resin 2 only 25 wt% of E7 is required to form a stable resin 

which stays liquid at room temperature. Adding LC2 to the resin was inspired by 

 

Figure 27. Strain parallel and perpendicular to the director versus temperature for a heat-
ing and a cooling cycle. (a) Data for a liquid-crystal elastomer printed from Resin 1. The 
strain perpendicular to the director is not identical for the heating and the cooling cycle. 
The deformation is not reversible. (b)  Data for a liquid-crystal elastomer printed from 
Resin 2. The strain perpendicular to the director is nearly identical for the heating and 
the cooling cycle. The deformation is reversible. The inset shows a membrane supported 
by a cylindrical post that was used to measure the data. The scale bar is 30 µm. The figure 
is taken from [93] (CC BY 4.0). 
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McCracken et al. They found that the crystalline to nematic transition temperature 

drastically dropped by adding LC2 to their resin [92]. 

To prepare the resins, all components were added to a vial and heated to 80 °C under 

constant stirring. Subsequently, to remove insoluble remains, the resin was filtered with 

a 0.45 µm PTFE syringe filter with a diameter of 13 mm. Prior to printing, the resin was 

heated to 80 °C to ensure a homogeneous solution. All mesogens were bought from 

SYNTHON Chemicals GmbH & Co. KG and used without further purification. 

To measure the thermal expansion of the resulting liquid-crystal elastomers, I printed 

small disk-like membranes supported by a cylindrical post from both resins with a ho-

mogeneous director in the plane of the membrane. A scanning electron micrograph of  

such a structure is depicted in the inset of Figure 27b. The structures printed from 

resin 1 were developed in isopropanol at 40 °C for 90 s to prevent heavy shrinkage. The 

structures printed from resin 2 were developed for 15 minutes in ethanol and were 

dried in a critical-point dryer.  

I observed the membranes in an optical light microscope equipped with an Instec 

mk2000 heating stage. With the heating stage, I performed a heating and a cooling cycle 

with a heating rate of 10 °C min−1 and took images at different temperatures reaching 

up 250 °C. In each picture I fitted ellipses to the shape of the membranes to obtain the 

extent parallel and perpendicular to the director. Referencing the extent at a certain 

temperature to the extent at room temperature resulted in a strain of the membrane 

at that temperature.  The resulting strain versus temperature behaviour along and 

 

Figure 28.  Strain parallel and perpendicular to the director versus temperature for four 
consecutive heating cycles. The strain is referenced to the initial extent of the membrane 
in the first run at room temperature. The strain is fully reversible and repeatable. The 
figure is adapted from [93] (CC BY 4.0). 
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perpendicular to the director is displayed in Figure 27a for resin 1 and in Figure 27b for 

resin 2.  

It is clearly visible that the liquid-crystal elastomer formed from resin 1 does not behave 

the same in the heating cycle compared to the cooling cycle. In contrast, the liquid-

crystal elastomer formed from resin 2 behaves fully reversible in the presented experi-

ment. I assume that not all E7 mixture was removed in the development of the mem-

branes from resin 1 due to the short development time. Therefore, E7 mixture could 

evaporate at elevated temperatures. 

To test the repeatability of the thermal actuation of the liquid-crystal elastomer formed 

from resin 2, I cycled the temperature from room temperature to 200 °C for four times 

and observed the shape of the membrane. For the calculation of the strain, I referenced 

to the extent within the first cycle at room temperature. The resulting strain versus 

temperature behaviour for the five cycles is given in Figure 28. The thermal expansion 

is fully repeatable. 

For all membranes no shrinkage was observed along the director. For the membranes 

printed with resin 1 a shrinkage of about 13 % perpendicular to the director was ob-

served. For longer development times, the shrinkage was significantly larger. For the 

membranes printed with resin 2 a shrinkage of about 14 % was observed perpendicular 

to the director. Using the development strategy employed for resin 1, only a shrinkage 

of 6 % was observed perpendicular to the director for resin 2. However, the thermal 

expansion was irreversible again, similar to the structures made from Resin 1. This ob-

servation supports the hypothesis that remaining E7 evaporates during heating when it 

is not fully removed during development. 

3.6  3D Printed Test Structures 
In this section, three different kinds of 3D printed samples are discussed. The first set 

of samples proves that structures with a homogeneous director field for several director 

orientations can be printed. The second example proves the ability to print structures 

with an inhomogeneous director field. Finally, the third example shows that even struc-

tures exhibiting complex motions like a buckling instability can be fabricated with the 

presented 3D printing technique. 

All structures presented in this section are printed with the first resin composition de-

scribed in section 3.5. The used substrates were functionalized with 3-(trimethoxysi-

lyl)propyl methacrylate to promote adhesion of the samples to the substrate. For doing 

that, the substrates were activated with an air plasma for 5 minutes and afterwards 
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placed inside a desiccator with a droplet of about 10 µL of silane for 1 hour. All samples 

were developed in isopropanol at 40 °C for 90 seconds. The electric field strength dur-

ing printing nominally was 0.3 V µm−1 for all director orientations. After every stage 

movement in 𝑧 – direction of 0.5 µm during printing, a pause of 20 ms was imple-

mented and a pause of 2 seconds was implemented for larger stage movements to set-

tle motions in the resin that disturb the director field.  

3.6.1 Homogeneous Alignment 
To proof that the presented 3D printing technique allows to control the director, I 

printed several test structures with different director orientations. The structures con-

sist of disc-like thin membranes oriented parallel or perpendicular to the substrate and 

are supported by cylindrical posts. For both orientations of the membranes, I printed 

five samples. Four with a director in the plane of the membrane, each rotated by 45° 

respectively and one with a director perpendicular to the plane for both orientations of 

the membrane. The designed orientation of the director is indicated in the top panel of 

Figure 29 together with bright field microscope images of the structures. In the bright 

field images, the structures show an ellipsoidal shape already indicating the director 

orientation. The director is oriented along the semi-major axis since there is only shrink-

age perpendicular to the director orientation as described in section 3.5. This coincides 

with the designed director orientations.  

Scanning electron micrographs are depicted in the bottom panel of Figure 29. I want to 

emphasize the defined shape of the structures that indicate a good focus quality for all 

director orientations. 

Since the director coincides with the optic axis of the liquid-crystal elastomer, it is also 

possible to verify the director orientation with a polarizing optical microscope. In a po-

larizing optical microscope, the sample is located between two crossed linear polariz-

ers. Due to the crossed polarizers, light can only pass if its polarization is rotated by the 

sample. This means, that no light is transmitted, whenever the optic axis of the sample 

is parallel or perpendicular to one of the polarizers. Polarizing optical microscope im-

ages of the structures are depicted in the third panel of Figure 29 for two different ori-

entations of the polarizers as indicated by the arrows in the panel. It is clearly visible, 

that the structure appears dark, whenever the designed director orientation is perpen-

dicular or parallel to one of the polarizers. The small director rotations in the vicinity of 

the supporting post for 𝜃 = ±45° may be due to semi-soft deformations [76]. These 

semi-soft deformations may be caused by shrinkage during development inducing 

strains in the vicinity of the supporting cylindrical post.  
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I conclude, that it is possible to print structures with a defined director orientation in 

the case of a homogeneous director field. In the next section I present structures that 

successfully implement an inhomogeneous director field. 

Printing Parameters 

The structures on the left-hand side of Figure 29 are printed in a spiral with a hatching 

of 0.08 µm and a slicing distance of 0.5 µm at a speed of 5 mm s–1. The laser power 

was 28 mW for 𝜃 = 0° and 32 mW for 𝜃 = 90°. 

The structures on right hand side of Figure 29 are printed using straight hatching lines 

with a distance of 0.05 µm. The slicing distance was 0.5 µm and the scan speed was 

5 mm s–1. The laser power was 36 mW for 𝜃 < 90° and 24 mW for 𝜃 = 90°. 

 

Figure 29. Circular membranes in the 𝑥𝑦 – plane and in the 𝑦𝑧 – plane supported by 
cylindrical posts. The director orientation is displayed by the arrows in the top panel. 
Bright-field light microscope images are shown in the second panel. The membranes ap-
pear elliptically deformed due to shrinkage after development, while the semi-major axis 
points in the direction of the director. The third panel shows polarizing optical micro-
scope (POM) images, where the membranes are located between two crossed polarizers. 
The orientation of the polarizers is indicated by black arrows. The membranes appear 
dark whenever the designed director is parallel or perpendicular to one of the polarizers. 
Scanning electron micrographs (SEM) are shown in the bottom panel. The printed struc-
tures appear defined indicating a good focus quality of the printing laser. Figure taken 
from [88] (CC BY 4.0). 



 

76 3D Printing of Liquid-Crystal Elastomers 

3.6.2 Bi-Layered Beams 
With the structure presented in this section I prove that the presented printing tech-

nique also allows to print structures with inhomogeneous director fields. The structure 

presented in this section consists of a cylindrical post with eight arms attached to it. 

Each arm consists of two layers with different director orientations as depicted in Figure 

30a. The director is tangential to an arm in one layer and perpendicular to the substrate 

in the other layer. A scanning electron microscope image of the printed structure is 

shown in Figure 30c. In the scanning electron microscope image, a bending of the arms 

in a clockwise direction is visible. This is expected, since the constituent liquid-crystal 

elastomer shrinks only perpendicular to the director during development as discussed 

in section 3.5. Therefore, the layer on the right-hand side, viewing from the centre of 

the structure, reduces its length, while the length of the left-hand side layer remains  

 

Figure 30.  A 3D structure printed from liquid-crystal elastomer with an inhomogeneous 
director profile that performs a large bending motion on heating. (a) Printed geometry 
with arrows that indicate the designed director profile. It shows a central post with eight 
arms attached to it. Each arm consists of two layers, while the director in one layer is 
tangential to the beam and in the other layers the director points out of the plane. (b) 
Optical light microscope images of a printed structure at different temperatures. A large 
bending motion of the eight arms in the counter-clockwise direction is visible. (c) Scan-
ning electron micrograph of the structure. Figure taken from [88] (CC BY 4.0).   
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the same resulting in a bending in a clockwise direction. This is a first indicator that the 

director profile is as designed.  

A second indicator that the director profile is as designed is the thermally induced mo-

tion of the structure. To study the thermally induced motion, the sample was placed in 

a heating stage connected to an optical light microscope that allowed to observe the 

structure during heating (see section 3.5). Figure 30b shows the structure at different 

temperatures. It is clearly visible that the arms bend in the counter-clockwise direction 

on heating. This behaviour is expected, since the left layer of each arm, viewing from 

centre of the structure, reduces its length on heating, while the right layer expands in 

length. This leads to the observed counter-clockwise bending of the arms.  

Due to the expected deformation on shrinkage during development and the expected 

motion on heating, I conclude that the director profile of the printed structure is as 

designed. With the presented printing technique, it is also possible to print structures 

from liquid-crystal elastomer with an inhomogeneous director profile. These results 

made me confident to implement structures with yet more complex motions as dis-

cussed in the next section. 

Printing Parameters 

The supporting post of the structure was printed in a spiral with a hatching of 0.08 µm 

and a slicing distance of 0.5 µm at a scan speed of 5 mm s–1 and a laser power of 

46 mW. The arms were printed with straight hatching lines along the arm with a dis-

tance of 0.2 µm and a slicing distance of 0.5 µm. The scan speed was 100 mm s–1 with 

a laser power of 101 mW for 𝜃 = 0° and 61 mW for 𝜃 = 90° and 𝜑 = 0°, 62 mW for 

𝜑 = ± 45° and 63 mW for 𝜑 = 90°. 

3.6.3 Towards Complex Motions 
In this chapter, I want to show that even complex thermally induced motions like a me-

chanical buckling instability can be implemented with the presented 3D laser micro-

printing approach. A thermally induced mechanical buckling instability is a discontinu-

ous mechanical motion at a critical temperature, which results from the geometry of 

the structure and not from any discontinuity in the thermal expansion of the constitu-

ent material. Close to the critical temperature, such an instability allows for large de-

formations by a small increase in temperature. 

The structure to be discussed consists of cosine-shaped bars supported by rectangular 

shaped posts and is inspired by [94]. The printed geometry is depicted in Figure 31a 

together with the designed director profile. A scanning electron micrograph of the 

printed sample after development is shown in Figure 31d. The cosine shaped bars are 
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designed such, that the bars straighten on heating and thereby get compressed be-

tween the supporting posts. At some point the configuration gets unstable and the 

beams suddenly relax to the opposite direction.   

To observe the motion of the beams, the sample is located in an optical microscope 

equipped with a heating stage (see section 3.5). To quantify the motion, the tip located 

at the middle of each beam is tracked via image cross-correlation [95]. From that, the 

distance 𝑑 between the supporting post and the tip is calculated (see Figure 31a).  

 

Figure 31. (a) Top view of the printed structure with arrows indicating the desired direc-
tor field. It consists of two cosine-shaped bars supported by rectangular posts. The dis-
tance 𝑑 between the tip at the middle of a bar and the supporting posts is defined. (b) 
The distance 𝑑 is plotted versus the sample temperature for the top and bottom bar. The 
temperature is cycled from room temperature to 240 °𝐶 and back again to 220 °𝐶. 
There is a discontinuity in 𝑑 for both bars in the heating and the cooling cycle. A hyste-
resis behaviour is visible. (c) The distance 𝑑 is plotted versus the temperature. The tem-
perature is cycled five times around the critical temperature of the top bar. The ampli-
tude of the discontinuous jump in 𝑑 decreases with every cycle. Cycle 5 does not show 
any discontinuity in 𝑑 anymore.  (d) Scanning electron micrograph of the printed struc-
ture. (e) Optical microscope images of the sample at the critical temperatures and 
slightly above. The large extent of the discontinuous motion is clearly visible. Figure 
taken from [88] (CC BY 4.0).  
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The quantity 𝑑 is plotted versus the temperature of the sample in Figure 31b for both 

bars. It is clearly visible, that for the top bar there is a continuous change in 𝑑 until a 

critical temperature of 230 °C. At the critical temperature a large discontinuous jump 

in 𝑑 appears within a temperature step of less than 0.3 °C. In the cooling cycle, there  

appears a discontinuous recovery in 𝑑 at a temperature of 226 °C and therefore a hys-

teresis behaviour is observed. A similar behaviour can be observed for the bottom bar 

but with slightly different critical temperatures and a larger hysteresis. I attribute this 

difference to sample imperfections.  

Light microscope images of the structure at the critical temperatures for the top bar 

and the bottom bar are depicted in Figure 31e together with images of the structure at 

temperatures slightly above the critical temperatures. The large and sudden defor-

mation is clearly visible.   

To investigate the repeatability of the mechanical buckling motion, the temperature 

was cycled five times around the critical temperature of the top bar, while tracking the 

tip of the top bar. In Figure 31c the resulting values of 𝑑 are plotted versus the sample 

temperature. It becomes clear that the amplitude of the jump in 𝑑 decreases with every 

cycle, while there is no discontinuity anymore in cycle 5. I assume that this degradation 

is due to a mixture of plastic or viscoelastic deformations caused by large strains in the 

top bar and the degradation of the constituent material that appears for the first resin 

mixture as discussed in section 3.5. As shown in section 3.5, the degradation of the 

constituent material can be resolved, however, plastic or viscoelastic deformation will 

remain a problem in terms of repeatability.  

In conclusion, I presented a structure that successfully implemented a complex ther-

mally induced mechanical buckling instability.  

Printing Parameters 

The rectangular posts were printed with straight hatching lines spaced by 0.2 µm and a 

slicing distance of 0.5 µm at a scan speed of 100 mm s–1 with a laser power of 108 mW. 

The bars attached to the posts were printed with cosine-shaped hatching lines along 

the bar with a distance of 0.2 µm and a slicing distance of 0.5 µm. The scan speed was 

100 mm s–1 with a laser power of 108 mW for 𝜃 = 0° and 67 mW for 𝜃 = 90° and 

𝜑 = 0°, 68 mW for 𝜑 = ± 45° and 69 mW for 𝜑 = 90°. 

3.7 Discussion 
In conclusion, I have presented a 3D laser microprinting method that allows to print 

complex 3D architectures from liquid-crystal elastomer with feature sizes in the range 
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of a few micrometres, while the overall sample size can be in the millimetre range. 

Many orientations of the director are possible, while the director can in principle be 

chosen independently at every point in space. The resulting liquid-crystal elastomers 

printed from resin 2 also show a fully reversible and repeatable thermal expansion.  

Other 3D laser microprinting approaches published so far are based on sandwich cells 

where the director is aligned via specially prepared surfaces [47–55, 55–57] or a com-

bination of surface alignment and vertical electric fields [58–60]. In contrast to the tech-

nique presented in this thesis, these approaches are all limited to sample heights in the 

range of about 100 µm due to the fixed height of the sandwich cell. The approaches 

based on surface alignment can achieve complex two-dimensional director patterns but 

only very simple 3D patterns like twists of the director field [54–56]. One approach to 

achieve more complex 3D director patterns was to print cubes with a homogeneous 

director field in a sandwich cell and manually assemble them in arbitrary orienta-

tions [57]. By this, also structures with more complex director fields can be achieved, 

however, the process appears time consuming and error-prone. In the approaches em-

ploying an additional vertical electric field one can choose between two director orien-

tations at every point in space. The director is either aligned by the surface or by the 

electric field [58–60]. This allows for more complex director orientations. However, the 

choice of the director orientation is still limited to two different orientations in contrast 

to the approach presented in this thesis.      

There is also a published approach combining digital light processor printing with mag-

netic fields to print liquid-crystal elastomers [61]. Compared to the approach intro-

duced in this thesis, the director can only be adjusted in the horizontal plane, however, 

the orientation can be freely chosen within this plane at every point in space. The voxel 

size is about a factor of 50 larger and the presented sample sizes are up to 1 cm.        

Several groups have published direct ink writing approaches to print liquid-crystal elas-

tomers [62–73]. There, the liquid-crystal elastomer is pushed through a nozzle and 

thereby mechanically aligned along the printing direction. This usually limits the direc-

tor orientation to the horizontal plane. The printed structures published so far are ei-

ther two dimensional or very simple 3D structures. The voxel is usually two orders of 

magnitude larger than what is presented here, while the size of the samples published 

so far is usually on the centimetre scale. However, the resulting liquid-crystal elasto-

mers show similar actuations reported here for a much lower increase in temperature. 

Such resins are not yet available for 3D laser microprinting approaches. 

Overall, I conclude that to my knowledge the technique described in this thesis is the 

only technique published so far that allows to print complex 3D architectures with the 
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free choice of the director orientation at any point in space. This is crucial for the fabri-

cation of the 3D optomechanical metamaterials I present in the next chapter. Up to 

now, these metamaterials represent to my knowledge the most complex 3D structures 

fabricated from liquid-crystal elastomer presented in the literature.  
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4  Chapter 4 

3D Optomechanical Metamaterials 

 

Figure 32. Illustration of two different 3D optomechanical metamaterials illuminated by 
a blue LED. (a) The Poisson’s ratio of the metamaterial is positive for no illumination and 
monotonously decreases with increasing intensity of the LED. In the figure, the Poisson’s 
ratio is negative for the illuminated case. (b) The twist per strain is positive for no illumi-
nation and continuously depends on the intensity of the LED. In the illustration, the twist 
per strain is negative for the illuminated case. Figure taken from [93] (CC BY 4.0). 

In this chapter I demonstrate metamaterials that drastically change a mechanical prop-

erty upon optical irradiation. I call this type of materials 3D optomechanical metamate-

rials. In a first example, I present a metamaterial whose Poisson’s ratio continuously 

depends on the intensity of a blue LED irradiating the sample. Without any irradiation, 

the Poisson’s ratio is positive, while it decreases monotonously with increasing inten-

sity. For large enough intensities, even negative Poisson’s ratios are possible. Figure 32a 

illustrates the metamaterial without illumination, where the Poisson’s ratio is positive, 

and in an illuminated state exhibiting negative Poisson’s ratio. This auxetic metamate-

rial is discussed in section 4.4. 
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As a second example, I present a chiral metamaterial that shows a twisting motion on 

compression, while the magnitude and the sign of the twist depend on the intensity of 

the blue LED present during application of a strain. Figure 32b shows a sketch of the 

metamaterial exhibiting a positive twist per strain on compression for no light present 

and a negative twist per strain for an illuminated state. This chiral metamaterial is pre-

sented in section 4.5. 

Both metamaterials shown in this chapter are fabricated via the 3D laser printing tech-

nique introduced in chapter 3. After printing, the samples were dyed with disperse red 

1 methacrylate to introduce a mechanism to absorb the light of the blue LED. The ab-

sorbed light is converted to heat [96] and thereby causes a thermal expansion that al-

ters the geometry of the metamaterial. Section 4.1 covers the methods I employed for 

fabrication in detail. 

In section 4.2, I discuss the methods used for characterisation of the metamaterials. In 

Section 4.3, I introduce a computer model employed to understand the behaviour of 

both metamaterials. 

4.1 Sample Fabrication 
To print both metamaterials shown in this chapter, I employed the 3D laser printing 

technique presented in chapter 3 using resin 2 presented in section 3.5. During printing, 

I manually added additional resin after each increase in distance of 200 µm between 

the electrode and the substrate. 

For both metamaterials the hatching distance was 0.2 µm while the slicing distance was 

0.5 µm. The scan speed of the laser focus was 50 mm s−1. The laser power was 

116 mW for a vertical director orientation, 104 mW for a diagonal director orientation 

and 78 mW for a horizontal director orientation. The laser powers were measured at 

the entrance pupil of the objective lens. The electric field strength was set to the maxi-

mum possible value for a given director orientation (see Figure 21). 

After printing, I developed each sample for 15 minutes in ethanol followed by critical-

point drying using ethanol as a solvent. It was necessary to be very careful during the 

sample transfer to the critical point dryer to ensure that the sample never falls dry.  

To introduce a light absorber to the printed metamaterials, I dyed them after develop-

ment with disperse red 1 methacrylate according to a recipe provided by Li-Yun Hsu 

(see also [97]). I prepared a solution of 1 mg of disperse red 1 methacrylate and 0.1 mg 

Irgacure 819 in 0.1 ml of a 10 ∶  1 mixture of isopropanol and dichloromethane. Then, 

I clamped a developed sample in a PTFE holder that allows to entirely cover the 
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structure with 0.05 ml of dye solution. To prevent evaporation of the dye solution, I 

covered the holder with a coverslip. To fix the dye to the polymer matrix of the sample, 

I illuminated it with an UV LED (VL-4.LC @ 254 nm) for 1 hour at a distance of 2 cm. 

After the illumination, I washed the sample in ethanol and removed the solvent in a 

critical-point dryer. 

4.2 Characterisation Setup 
In this section, I present the setup used to characterize the printed 3D optomechanical 

metamaterials. To characterize a 3D optomechanical metamaterial according to its 

Poisson’s ratio or twist per strain depending on the LED intensity, it is necessary to apply 

a strain during illumination of the sample. The employed setup is presented in Figure 

33a. There, a sample is mounted upside down with glue (Marabu Fixogum) to an LED 

(Osram LE B P1W FY-W) which is screwed to a motorized and computer-controlled 

translation stage. The stage pushes the sample onto a glass sheet and thereby allows to 

apply a strain to the sample while the LED illuminates it. The glass sheet is covered with 

immersion oil (Zeiss Immersol 518F) to prevent that the sample sticks to the glass sheet. 

During the experiment, the sample is observed via two optical microscopes from the 

side and from the bottom through the glass sheet. The microscopes allow to record 

images of the samples before and after application of a strain. From these images the 

deformation of a sample is quantified via image cross-correlation. The details on the 

image cross-correlation depend on the studied metamaterial and are given in the sec-

tions 4.4 and 4.5. 

To get a rough estimate of the light intensity at a distance 𝑑 from the LED, I assume that 

the LED is a Lambertian emitter. A Lambertian emitter emits a power  

 d2𝑃 =
𝑃tot(𝐼)

𝐴1𝜋
cos 𝜃 dΩ d𝐴1 (196) 

from an infinitesimal area d𝐴1 located at a point (𝑥1, 𝑦1) on the emitters surface into 

the spherical angle dΩ. Here, 𝑃tot(𝐼) is the total power emitted by the LED with the 

emitting surface 𝐴1 for a current 𝐼. If one is interested in the power that is transmitted 

to an infinitesimal surface d𝐴2 at the point (𝑥2, 𝑦2) on a plane at a distance 𝑑, the 

spherical angle can be replaced by  

 dΩ =
d𝐴2 cos 𝜃

(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + 𝑑2
 

(197) 

and the angle 𝜃 can be estimated by 
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Figure 33. (a) The metamaterial samples are mounted upside down to an LED that is 
fixed to a motorized translation stage. The stage pushes the sample onto a glass sheet 
opposing the sample. The sample is observed with two optical microscopes from the side 
and from the bottom. The inset shows an optical photograph of a sample mounted onto 
the LED. The LED is emitting blue light. (b) Molar extinction coefficient of disperse red 1 
in toluene and the LED intensity versus the optical wavelength. The LED emits at a wave-
length that is close to the maximum in the molar extinction coefficient of the employed 
dye. (c) An infinitesimal area 𝑑𝐴1 on the LED emits light towards the infinitesimal area 
𝑑𝐴2 on the sample. (d) Average Intensity in a plane at a distance 𝑑 from the LED for an 
LED current of 1 𝐴. 𝑑0 is the distance from the bottom of a sample to the LED. The insets 
show the intensity in the plane. The scalebar is 250 µ𝑚. (e) Intensity of the LED versus 
the LED current at 𝑑 = 𝑑0. Figure is partially adapted from [93] (CC BY 4.0) 
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The situation is depicted in Figure 33c. 

The intensity 𝐼(𝑥2, 𝑦2) results from integration of d2𝑃 over the emitting surface 𝐴1 of 

the LED  

𝐼(𝑥2, 𝑦2) =
𝑃tot(𝐼)

𝐴1𝜋
𝑑2∬

1

((𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + 𝑑2)2𝐴1

d𝐴1. 
(199) 

Figure 33d shows the intensity averaged over a surface of 600 µm × 600 µm at differ-

ent distances 𝑑 from the emitting surface of the LED for an LED current of 𝐼 = 1 A. 

There, the distance between the bottom of a sample and the emitting surface of the 

LED is called 𝑑0 = 0.91 mm. As expected, the intensity decreases with the distance 𝑑. 

The insets show the intensity in the plane at the specified distance 𝑑. Due to the large 

size of the emitting surface of the LED compared to the sample size, the homogeneity 

is acceptable. Figure 33d illustrates the averaged intensity versus the LED current at the 

distance 𝑑0. 

I obtained the necessary values for the overall emitted power of the LED by a simple 

measurement.  First, I brought the LED in contact with a power sensor (Thorlabs S170C) 

to ensure that all emitted light is collected. In this step the LED current was low enough 

to not saturate the sensor. Then, I increased the distance between the sensor and the 

LED and measured the power falling on the sensor versus the LED current up to 1.5 A. 

Referencing to the value measured in the first step, I obtained the full power 𝑃tot(𝐼) 

emitted by the LED for currents up to 1.5 A (not shown). 

The emission spectrum of the LED is plotted in blue in Figure 33b together with the 

molar extinction coefficient of disperse red 1 methacrylate. The molar extinction coef-

ficient of the dye was measured by Li-Yun Hsu in toluene with a concentration of 

95.0 µmol L−1. The emission spectrum was measured by me with a spectrometer. The 

LED was chosen such that its peak in emission is close to the peak in the molar extinction 

coefficient of the employed dye. 

4.3 Finite-Element Modelling 
In this section, I present the model used to calculate the effective mechanical properties 

of the two metamaterials investigated in this thesis in response to the light of the blue 

LED. The model assumes that the metamaterials consist of a linear elastic material with 

an isotropic and homogenous Young’s modulus of 𝑌 = 20 MPa and a Poisson’s ratio of 

𝜈 = 0.45. This is a major simplification, since in liquid-crystal elastomers usually both 

 cos 𝜃 =
𝑑

√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + 𝑑2
 . 

(198) 
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quantities are inhomogeneous and anisotropic [54, 98, 99] and heavily depend on the 

temperature [100]. However, the simplification is justified by the good agreement of 

the model with the measured data. The thermal expansion of the constituent material 

is assumed to be anisotropic and the model takes the measured values shown in Figure 

28 as input. An initial anisotropic shrinkage of −14.2 % perpendicular to the director is 

assumed to model the shrinkage of the samples during development. This value agrees 

with the measured shrinkage as presented in section 3.5.  

For the conversion of the LED light to heat, I employed a simplified model assuming a 

spatial heat source 𝑄 

 
𝑄(𝑧) = 𝑄0𝑒

−𝛼𝑧. 
(200) 

Here, 𝑧 measures the distance to the active surface of the LED, while 𝑄0 is proportional 

to the intensity of the LED. The exponential decay is justified by the decrease of the LED 

light with increasing distance to the LED surface as shown in Figure 33d and due to the 

absorption of the light by the material itself (Beer’s law). With this assumption the tem-

perature within an illuminated metamaterial is governed by the heat equation  

 𝜆
𝜕2𝑇

𝜕𝑧2
= 𝑄0𝑒

−𝛼𝑧. (201) 

For a homogeneous cuboid with a height ℎ whose temperature is fixed to room tem-

perature 𝑇𝑅 at the bottom and the top, the resulting temperature profile is given by  

 𝑇(𝑧) =
𝑇p − 𝑇R

𝑓1
× (𝑒−𝛼𝑧 − 1 − (𝑒−𝛼ℎ − 1) ×

𝑧

ℎ
) + 𝑇R (202) 

with 𝑓1 = 𝑒
−𝛼𝑧p − 1 − (𝑒−𝛼ℎ − 1) ×

𝑧p

ℎ
 (203) 

and 
𝑧p = −

1

𝛼
ln (

1 − 𝑒−𝛼ℎ

𝛼ℎ
) . 

(204) 

Here, 𝑇p is the peak temperature depending linearly on 𝑄0 that is reached at position 

𝑧p within the sample. 

For the metamaterials, I assumed the same temperature profile with an effective pa-

rameter 𝛼 that also accounts for the geometry of the sample. I obtained good agree-

ment with the experiments assuming 𝛼 = 2/845 µm−1.  
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Since 𝑇p depends linearly on 𝑄0 it also depends linearly on the intensity of the LED light. 

On the other hand, the intensity of the LED depends roughly linearly on the LED current 

according to Figure 33e. Therefore, I assumed a linear relationship between the peak 

temperature 𝑇𝑝 within the sample and the electrical current 𝐼 applied to the LED. The 

factor relating both quantities depends on the geometry of the sample and the concen-

tration of dye within the polymer and is therefore different for the metamaterials dis-

cussed in this chapter. I chose the factors such, that the computed results of the Pois-

son’s ratio or the twist per strain of the metamaterials fitted best to the experimentally 

obtained values. For the metamaterial discussed in section 4.4 the peak temperature is 

given by  

 𝑇p = 135
K

A
× 𝐼 + 𝑇R (205) 

 while it is given by  

 
𝑇p = 175

K

A
× 𝐼 + 𝑇R 

(206) 

for the metamaterial discussed in section 4.5. 

To obtain the deformed geometry of a metamaterial that results from the shrinkage, 

the thermal expansion and certain boundary conditions like an applied displacement, I 

employed the structural mechanics module in COMSOL Multiphysics. The software uses 

a finite-element algorithm to solve the equations of motion of continuum mechanics. 

Due to the large strains appearing during the thermal expansion, I took account of ge-

ometrical non-linearities by solving the general form of the equations of motion of con-

tinuum mechanics and not the linearized equations. I repeat the relevant set of equa-

tions (207)-(213) here. See section 2.4 for further information.    

 ∇ ⋅ (𝑭�̃�)
T
= 0 (207) 

 
𝑭 = 𝑰 +

𝜕�⃗� 

𝜕𝑋 
 (208) 

 
𝑬el =

1

2
[𝑭el

T 𝑭el − 1] (209) 

 
𝑭el = 𝑭𝑭th

−1 (210) 
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𝑭th = (Λ∥(𝑇(𝑍)) − Λ⊥(𝑇(𝑍))) �⃗� �⃗� 

T + Λ⊥(𝑇(𝑍))𝑰 (211) 

 
𝑺 ̃ = det(𝑭th) 𝑭th

−1(𝑪: 𝑬el)𝑭th
−T (212) 

 
𝐶𝐼𝐽𝐾𝐿 =

𝑌𝜈

(1 + 𝜈)(1 − 2𝜈)
𝛿𝐼𝐽𝛿𝐾𝐿 +

𝑌

2(1 + 𝜈)
(𝛿𝐼𝐾𝛿𝐽𝐿 + 𝛿𝐼𝐿𝛿𝐽𝐾) (213) 

More details on the finite-element calculations are given in the following two sections 

that discuss the two 3D optomechanical metamaterial examples presented in this chap-

ter. 

4.4 Auxetic Metamaterial 
In this section, I present a 3D optomechanical metamaterial that changes its Poisson’s 

ratio according to the light intensity of a blue LED irradiating it. The geometry of the 

unit cell is depicted in Figure 34a together with the intended director field. The depicted 

unit cell represents the printed geometry. However, due to an anisotropic shrinkage 

during development, the unit cell changes its shape during development. Figure 34b 

shows a cut through the developed unit cell at room temperature. Heating the unit cell 

to 200 °C leads to the deformed geometry depicted in Figure 34c.  

Pushing on the unit cell at room temperature increases the lateral extent of the unit 

cell. In contrast, pushing on the unit cell at an elevated temperature of 200 °C leads to 

a decrease of the lateral extent. According to these results, a metamaterial built from 

these unit cells would show a positive Poison’s ratio at room temperature and a nega-

tive Poison’s ratio at elevated temperatures.  

Figure 34d shows an optical microscope image of a printed and developed metamate-

rial comprising 3 × 3 × 5 unit cells. The liquid-crystal elastomer appears colourless be-

fore the dyeing of the metamaterial. After dyeing of the metamaterial, it appears red 

as depicted in Figure 34e. The red colour nicely illustrates that dye has infiltrated the 

polymer network. A scanning electron micrograph of the metamaterial is shown in Fig-

ure 34f. The shape of the unit cells appears to be close to the expected shape, indicating 

a correct director distribution. 
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Figure 34. 3D optomechanical metamaterial with variable Poisson’s ratio. (a) Design of 
the unit-cell as printed including two different director orientations. (b) Cut through the 
developed unit cell at room temperature obtained by a finite element calculation. The 
shape differs from the printed design due to anisotropic shrinkage during development. 
The application of an axial strain leads to a horizontal expansion of the unit cell. A met-
amaterial built from this unit cell shows a positive effective Poisson’s ratio at room tem-
perature. (c) Cut through the same unit cell at 200 °𝐶. The application of an axial strain 
leads to a horizontal contraction. A metamaterial built from the presented unit cell 
shows a negative effective Poisson’s ratio at 200 °𝐶. (d) Optical microscope image of a 
printed and developed metamaterial built from 3 × 3 × 5 unit cells. The sample appears 
transparent with a white colour. (e) Optical microscope image of the same sample after 
dyeing with disperse red 1. The red colour proofs that the dye is fixed to the polymer. (f) 
Scanning electron micrograph of the same sample. Figure is partially  adapted from [93] 
(CC BY 4.0). 
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To study the deformation of the printed metamaterial upon optical irradiation with the 

blue LED, I mounted the sample in the characterisation setup described in section 4.2. 

Figure 35 shows optical microscope images in different configurations. In Figure 35a, 

the LED is turned off while in Figure 35b the LED current is 1.5 A. In both configurations 

there is no glass sheet in contact with the top of the sample. The unit cells behave as 

described in Figure 34b and Figure 34c. This is another strong indicator that the director 

profile within the printed sample is close to the design. In Figure 35c the LED current is 

also set to 1.5 A, but a glass sheet is in contact with the top of the metamaterial sample. 

This leads to a reduced actuation at the top of the sample compared to Figure 35b, 

indicating that the temperature is near room temperature there.   

Overall, the printed metamaterial looks as expected after development and deforms as 

expected. Both points are strong indicators that the director profile of the constituent 

liquid-crystal elastomer is close to the design. 

 

Figure 35. Light microscope images showing the side of the first metamaterial example 
mounted in the characterisation setup in different configurations. (a) The blue LED is 
turned off. The cells of the metamaterial show the expected shape at room temperature. 
(b) The blue LED is biased with a current of 1.5 𝐴. The unit cells show the expected shape 
at elevated temperatures for the top four rows. (c) The blue LED is biased with a current 
of 1.5 𝐴. However, a glass sheet is in contact with the top of the sample. The top row of 
unit cells is much less deformed than without the glass sheet, indicating a much lower 
temperature there.   
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In a further step, I studied how the Poisson’s ratio of the metamaterial sample depends 

on the LED current. Therefore, I mounted the sample in the characterisation setup de-

scribed in section 4.2 and performed the following steps to measure the Poisson’s ratio 

for a given value of the LED current. First, I applied the desired electrical current to the 

blue LED leading to a deformation of the sample. After the deformation, I manually 

moved the sample with a linear stage towards the glass sheet (see section 4.2) until the 

top of the sample touched the glass sheet. In this unstrained configuration, I recorded 

an optical microscope image of the sample in side view. An example is depicted in Figure 

36a. Next, I applied a strain of about 3 % via the computer-controlled stage and took 

an optical microscope image in side view. This image represents the strained configu-

ration. An example is depicted in Figure 36b. To quantify the deformation caused by the 

applied strain, I manually placed markers in the microscope image in the unstrained 

case as depicted in Figure 36a. Via image cross-correlation, I searched for the corre-

sponding positions in the microscope image of the strained configuration as depicted 

in Figure 36b . With this information, I calculated the width 𝑏𝑖 and the height ℎ𝑖 of the 

 

Figure 36. Light microscope images of the first metamaterial example recorded in the 
characterisation setup. The blue LED is biased with an electrical current of 1.5 𝐴. A glass 
sheet is in contact with the top of the sample. (a) No strain is applied to the sample. The 
red crosses mark the positions that are tracked by image cross-correlation. The crosses 
are labelled 𝑥𝑖𝑗  and 𝑦𝑖𝑗. Thereby, the index 𝑖 = 1…4 labels the row of unit cells, while 𝑗 

enumerates the labels within one row. (b) A strain of 3 % is applied to the metamaterial. 
The crosses labelled with a primed label mark the positions that correspond to the un-
primed markers. The position of the primed markers is obtained via image cross-correla-
tion. Figure taken from [93] (CC BY 4.0). 
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individual layers 𝑖 = 2,3,4 of the metamaterial sample in the strained and unstrained 

configuration according to  

 ℎ𝑖 =
1

3
∑(𝑦𝑖𝑗 − 𝑦𝑖−1,𝑗)

3

𝑗=1

 (214) 

and 
𝑏𝑖 =

1

2
[(𝑥𝑖1 + 𝑥𝑖2) − (𝑥𝑖3 + 𝑥𝑖4)]. 

(215) 

From the width 𝑏𝑖 and height ℎ𝑖, I assigned a Poissons’s ratio 𝜈𝑖 to the individual layers 

as defined by 

 𝜈𝑖 = −
𝑏𝑖 − 𝑏𝑖

′

𝑏𝑖
⋅

ℎ𝑖
ℎ𝑖 − ℎ𝑖

′ (216) 

(see section 2.4.3). The Poisson’s ratio of the individual layers differs mainly due to an 

inhomogeneous temperature profile within the sample caused be the LED. Further-

more, I calculated a mean Poisson’s ratio of the full sample using 

 

𝑣mean = −

1
3
∑ (𝑏𝑖 − 𝑏𝑖

′)4
𝑖=2

1
3
∑ 𝑏𝑖
4
𝑖=2

⋅
∑ ℎ𝑖
4
𝑖=2

∑ (ℎ𝑖 − ℎ𝑖
′)4

𝑖=2

 

(217) 

In the experiment, I swept the LED current four times from zero to 1.5 A in steps of 

0.15 A. The resulting Poisson’s ratios for the individual layers 𝑖 = 2,3,4 and the mean 

Poisson’s ratio are depicted in Figure 37a versus the LED current for every run. Addi-

tionally, the average over the individual results of the four runs for every LED current is 

given. The mean Poisson’s ratio averaged over the four runs is 0.47 for no LED current 

and decreases monotonically to −0.27 at an LED current of 1.5 A. This especially means 

that the Poisson’s ratio flips its sign on illumination for an LED current of above roughly 

1 A. Furthermore, a good repeatability and reversibility are observed in the four indi-

vidual runs.  

To further deepen my understanding, I performed finite element calculations with the 

aim to reproduce the measured Poisson’s ratio. Therein, I modelled the constituent ma-

terial and the temperature profile within the sample for a given LED current as de-

scribed in section 4.3. To reproduce the experimental Poisson’s ratios, I had to slightly 

modify the director distribution within the unit cell compared to the designed distribu-

tion. The updated director distribution is depicted in Figure 37d, where a layer is now 

slightly bended upwards. This bending of a layer within the bottom bar is also visible in  
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the scanning electron micrograph in Figure 37c. The reason for this bending is a shrink-

age that occurs during polymerization of the layer printed on top.  

 

Figure 37. (a) The Poisson’s ratio averaged over the three central layers is depicted by 
small black dots versus the LED current. The average over the four individual measure-
ments for every current is depicted by large black dots. The results from finite element 
calculations (FEM) are represented by a black solid curve. The respective results for the 
individual layers of the metamaterial are indicated by white symbols (see legend). The 
Poisson’s ratio flips its sign from positive to negative with increasing LED current. (b) 
Compares light microscope images of the metamaterial to calculated geometries for LED 
currents of zero and 1.5 𝐴. The calculated temperature profile is plotted in false colours. 
(c) Scanning electron micrograph of the metamaterial. The insets show two different 
bars with printing artefacts. The two layers building a bar are not perfectly stacked. (d) 
Shows the design of the unit cell used for the finite element calculations. The design 
models the observed printing artefacts. Figure is partially adapted from [93] (CC BY 4.0). 
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My strategy to obtain the Poisson’s ratio in the finite element calculations was similar 

to the experiment. In a first step, I calculated the deformed geometry for a certain LED 

current while the bottom plate of the metamaterial sample was fixed. The result repre-

sents the unstrained configuration. In the unstrained configuration, I probed for the 

height of the geometry. With this information, I performed a second calculation with 

an additional strain of 3 % applied to the top of the sample. The result of this calculation 

represents the strained configuration. In both configurations, I probed for the same 

points as in the experiment (see Figure 36) and calculated the Poisson’s ratio for the 

individual layers and the mean Poisson’s ratio according to equations (216) and (217). 

The resulting Poisson’s ratios versus the LED current are plotted in Figure 37a in addi-

tion to the experimental data. The resulting curves agree well with the measured data. 

Furthermore, Figure 37b shows the calculated unstrained configurations for no LED cur-

rent and an LED current of 1.5 A. The calculated temperature profile is depicted in false 

colours. The calculated geometries are compared to light microscope images recorded 

at the respective LED currents. The shape of the metamaterial sample in the experiment 

matches well to the calculated geometry for both currents.  

In conclusion, the Poisson’s ratios in the finite element calculations agree well with the 

measured Poisson’s ratio as well as the observed deformations match with the calcu-

lated geometries. From that, I conclude that the finite element model describes the 

printed samples well. 

To further study the reversibility and repeatability of the light induced deformation, I 

performed another experiment. I mounted a new but nominally identical sample to the 

characterisation setup. Next, I performed 100 illumination cycles. In each cycle, the LED 

is turned on with an electrical current of 1 A for 1 second and turned off for 3 seconds. 

To observe the deformation of the sample, I recorded a video with 70 frames per sec-

ond with the optical microscope observing the side of the sample. In every frame of the 

resulting video, I extracted the height of the sample via image cross-correlation. From 

the recovered height information, I calculated the strain of the sample in each frame 

with respect to the height in the first frame, where the LED is turned off and the sample 

is unstrained. The resulting strain over the 100 illumination cycles is plotted versus time 

in Figure 38d. 

In each cycle, the strain repeatably reaches 21 %, however, the sample does not re-

cover to the same height. After the first cycle, the sample recovers to a height that is 

0.4 % smaller than before. After every following cycle, the sample recovers to a height 

that is 0.01 % smaller than the height at the beginning of the cycle. This might be due 

to plastic or viscoelastic deformations due to high local strains. A finite element 
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calculation shows that the local strains reach values up to 60 %. Figure 38a shows the 

first and third principal stretch in a cut through the metamaterial sample and illustrate 

the positions where the large strains occur. These high strains might be mitigated with 

a more careful design. However, even after 100 cycles, the irreversible effects are small 

compared to the overall actuation of the metamaterial. 

Figure 38e shows a zoom into the first cycle of illumination and allows to extract the 

actuation times and recovery times. For this cycle, I extracted an actuation time of 75 ±

1 ms and a recovery time of 63 ± 2 ms. These times can in principle be different be-

cause they rely on different mechanisms. During the actuation, the light is converted to 

heat in the volume and therefore the actuation time depends on the efficiency of the 

conversion from light to heat and the intensity of the incident light. For the recovery 

the heat must be conducted through the volume of the sample to the surrounding and 

therefore depends only on the heat conductivity of the sample. 

 

Figure 38. (a) A cut through the metamaterial at an LED current of 1.5 A. The first and 
third principal stretch is plotted in false colours. (b) Optical microscope image of the dyed 
metamaterial before any illumination with the blue LED. (c) Optical microscope image of 
the same sample after the measurement of the Poisson’s ratio. In total the sample was 
illuminated for about 25 minutes. (d) Measured strain of the metamaterial versus time 
during 100 cycles of illumination. In every cycle the LED is biased by 1 𝐴 for one second 
and turned off for three seconds afterwards. (f) A zoom into the first cycle of illumination.  
Figure is adapted from [93] (CC BY 4.0). 
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To verify the role of the dye during the actuation of the sample with light, I tried to 

actuate a sample without dye. For an LED current of 1 A, I obtain a 400 times reduced 

strain with respect to the samples that contain the absorber dye. This proofs that the 

dye is the main converter of light to heat in the system. 

The importance of the dye for the light absorption also means that bleaching of the dye 

is another mechanism that limits the repeatability. Figure 38b depicts the sample used 

to measure the poisons ratios before the experiment and Figure 38c shows the sample 

after the measurement. The bleaching of the dye is clearly visible after an illumination 

time of about 25 minutes during the experiment. The bleaching seems to be strongest 

at the second and third layer. I also expect these layers to be hottest during the exper-

iments. This indicates that the bleaching of the dye might be due to thermal decompo-

sition. According to the work of Nguyen et al. [101] the dye thermally decomposes at a 

rate of about 5 % min−1 at a temperature of 250 °C, which would result in a decom-

position of about 72 % of the dye in 25 minutes. To recover the dye, the sample could 

in principle be re-infiltrated with dye. 

In conclusion, I have presented a 3D optomechanical metamaterial with a tunable Pois-

son’s ratio made from liquid-crystal elastomer incorporating two different director ori-

entations. The structures showed to work nearly repeatably and reversible for many 

cycles. 

4.5 Chiral Metamaterial 
In this section, I present a second 3D optomechanical metamaterial made from liquid-

crystal elastomer that responds with a twist to an axial strain. The twist depends on the 

intensity of a blue LED and even changes its sign for a large enough intensity.  

In the design of the unit cell of the metamaterial, I was supported by Franziska Fürniß. 

Within the frame of her master thesis, she developed an early version of the unit cell 

under my guidance. The unit cell developed by Franziska was initially inspired by the 

work of Frenzel et al. [14, 15] and is the basis of the unit cell presented here.    

The geometry of the unit cell is depicted in Figure 39a. It consists of chiral motifs on the 

faces of a cube consisting of a central cylindrical plate and four bi-layered arms con-

nected to it. The arms of each motif are connected at the corners of the cube with 

spheres. In the horizontal direction the unit-cells are connected via bars attached to the 

cylindrical plates. Vertically, the cylindrical plates of adjacent unit cells are directly con-

nected.  
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The different colours in Figure 39a indicate the director orientation of the liquid-crystal 

elastomer. In total, nine different director orientations are included in the design. Each 

arm in the chiral motifs consists of two layers with a director tangential to the arm in 

one layer and perpendicular to the respective face of the cube in the other layer. The 

bi-layered arms perform a geometry transformation of the unit cell upon irradiation. 

The director orientations are chosen such, that the chiral motifs change their handed-

ness upon irradiation. 

Due to the anisotropic shrinkage of the constituent liquid-crystal elastomer during de-

velopment (see section 3.5), the developed structure is expected to look different than 

the designed structure that was used for printing. The expected shape of the printed 

 

Figure 39. (a) Chiral unit cell design as printed. It comprises nine different director orien-
tations indicated by the different colours. (b) The shape of the unit cell at room temper-
ature differs from the printed structure due anisotropic shrinkage during development. 
(c) The same unit cell changes its handedness at elevated temperatures. (d) Application 
of an axial strain (orange arrows) leads to a counter clockwise twist. Due to the chirality, 
the central plates rotate (white arrows) leading to a tilt of the corners (black arrows). 
The tilt of the corners rotates the unit cell on top. (e) At elevated temperatures the unit 
cell twists in the clockwise direction due to the flip of the handedness. Figure partially 
adapted from [93] (CC BY 4.0).  
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unit cell after shrinkage is presented in Figure 39b. Upon heating, the unit cell changes 

its handedness as depicted in Figure 39c. The images were obtained via finite element 

calculations as described in section 4.3. 

The response of the unit cell upon an axial strain is illustrated in Figure 39d at room 

temperature and in Figure 39e at elevated temperatures. The axial strain is indicated 

via orange arrows in both images. Due to the chirality of the motifs on the sides of the 

unit cell, the central plates start to rotate as indicated by the white arrows. For a non-

chiral design, this would not be the case due to symmetry reasons. Due to the rotation 

of the central plates, the corners of the unit cell start to tilt counter-clockwise at room 

temperature and clockwise at elevated temperatures, as illustrated by the black arrows. 

The result is a rotation of the unit cell that is on top of the observed unit cell. Therefore, 

a metamaterial consisting of the presented unit cell responds with a twist upon an axial 

strain. 

The twisting motion upon an axial strain is a problem for a real measurement, since 

pushing on the top and the bottom of a sample usually permits sliding boundary condi-

tions. This would result in a suppression of the twisting motion. A solution to this prob-

lem was suggested in [14]. There, two structures are combined with opposite handed-

ness, which cancels the twisting motion at the bottom and the top of the sample. The 

twist is then measured at the middle of the overall sample. Following this idea, I printed 

a sample consisting of 2 × 2 × 2 unit cells on the bottom with a certain handedness 

and 2 × 2 × 2 unit cells with the opposite handedness on top. Both parts of the sample 

are separated by a central plate. The twist per strain is directly related to the rotation 

of the central plate. The top and bottom of the sample are also equipped with a plate.  

A scanning electron micrograph of the printed and developed sample is depicted in Fig-

ure 40b. Due to the restrictions induced by the plates, it is not easy to tell what shape 

is expected after development of the printed sample. For this reason, Figure 40a depicts 

the shape of the designed sample after shrinkage calculated by the finite element ap-

proach presented in section 4.3. The calculated geometry agrees well with the printed 

structure, which indicates that the director profile is as designed within the printed 

sample. 

The optical microscope image of the printed sample in Figure 40c shows a red colour. 

The red colour indicates that the dye has been successfully infiltrated into the polymer. 

Figure 40d, e and f show optical microscope images of the printed sample mounted in 

the characterisation setup described in section 4.2. In Figure 40d the LED current is zero, 

while in Figure 40e the LED current is 1.05 A. In both configurations the glass sheet is  
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not in contact with the sample. It is visible, that the unit cells change their handedness 

upon irradiation. In Figure 40f, the LED current is also set to 1.05 A, however, the glass 

sheet is in contact with the top of the sample. The lack of deformation at the top of the 

sample indicates that the temperature of the sample is close to room temperature at 

the top. 

 

Figure 40. (a) Calculated shape of the metamaterial after anisotropic shrinkage. (b) 
Scanning electron micrograph of the printed metamaterial. The shape of the metamate-
rial agrees with the calculation. (c) Optical microscope image of the metamaterial. The 
red colour is caused by the infiltrated dye. (d) Optical microscope image of the printed 
metamaterial mounted in the characterisation setup. The LED current is zero. (e) Same 
as (d) but with an LED current of 1.05 𝐴. The handedness of the unit cells flipped as ex-
pected. (f) Same as (e) but with a glass sheet touching the sample at the top. The actu-
ation at the top is reduced indicating a reduced temperature there. Figure partially 
adapted from [93] (CC BY 4.0).  
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Overall, the printed sample shows the expected shape after development and the unit 

cells change their handedness upon irradiation. This is a strong indicator that the direc-

tor field of the constituent liquid-crystal elastomer is as designed.  

To characterize the sample with respect to twist per strain versus the intensity of the 

LED, I mounted the sample in the characterisation setup described in section 4.2. The 

measurement procedure is equivalent to the procedure described in section 4.4. First, 

I applied a certain current to the LED. The light of the LED immediately triggers a defor-

mation of the sample. After the deformation of the sample, I manually moved the sam-

ple towards the glass sheet until the top of the sample touched the glass sheet. In this 

unstrained reference configuration, I recorded an image from the top of the central 

plate and the side of the sample. Afterwards, I applied a strain of about 1.8 % via the 

computer-controlled stage and took an image from the top of the central plate and the 

side of the sample in the strained configuration. In the end, I released the strain and 

turned off the LED.  

To calculate the twist per strain, the rotation of the central plate and the applied strain 

must be extracted. Both are extracted from the recorded images via image cross-corre-

lation. To measure the rotation, I manually placed markers at the corners of the central 

plate in the image of the unstrained configuration. Via image cross-correlation, I calcu-

lated the corresponding markers in the image of the strained configuration. From the 

displacement of the corners, I calculated the rotation of the central plate. To extract 

the applied strain, I manually placed markers at the top and bottom corners of the sam-

ple in the side-view image in the unstrained configuration. Again, I calculated the cor-

responding markers in the side-view of the strained configuration via image cross-cor-

relation. From the displacement of the markers, I calculated the axial strain applied to 

the sample. In the end, I divided the rotation angle of the central plate by the applied 

axial strain and divided the result by two, to obtain the twist per strain per unit cell. 

To characterize the sample, I performed four runs sweeping the LED current in each run 

from zero to 1.05 A in steps of 0.15 A. Figure 41a shows the measured twist per strain 

versus the LED current for the four runs together with a mean over the four runs for 

every LED current. The measured twist per strain increases up to an LED current of 

0.45 A and then rapidly decreases until it has a negative sign for an LED current of 

0.75 A. The variation in between the runs might be partly due to viscoelastic or plastic 

deformations or even fractures due to large local strains, as discussed below. 

To further deepen my understanding, I calculated the twist per strain versus the LED 

current via finite element calculations (see section 4.3). These finite element calcula-

tions were performed similar to the experiment.  
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First, I applied a displacement of 20 µm perpendicular to the outer boundary of the 

bottom plate to mimic the partial detachment of the bottom plate observed in the elec-

tron micrograph in Figure 40b. Then, I calculated the temperature profile according to 

section 4.3 corresponding to a certain LED current. With that temperature profile, I cal-

culated the deformed geometry and probed for the average height of the deformed 

geometry. In a second step, I used the obtained height information to additionally apply 

an axial strain of 1.8 % to the sample and probed for the resulting rotation of the cen-

tral plate and calculated the twist per strain similarly to the experiment. The resulting 

twist per strain is plotted as a solid curve together with the experimental data in Figure 

41a. The calculated data agrees well with the measured values. 

Figure 41b compares the measured unstrained configurations to the unstrained config-

urations obtained by the finite element calculation. The calculated temperature profile 

is indicated in false colours. The calculated shape of the structures agrees well with the 

recorded optical microscope images.  

From the good agreement of the calculated twist per strain and the measured twist per 

strain together with the good agreement of the calculated geometry and the experi-

mentally observed geometry for different LED currents, I conclude that the presented 

finite element model describes the metamaterial well. 

 

Figure 41. (a) The measured twist per strain is indicated by small dots for different LED 
currents. The average over the four individual measurement for every LED current is rep-
resented by large dots. The calculated twist per strain is plotted as a solid curve. (b) Com-
pares the light microscope images of the printed sample to calculated geometries for 
LED currents of zero and 1.05 𝐴. Thereby, the calculated temperature is indicated in false 
colours. Figure adapted from [93] (CC BY 4.0). 
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As mentioned above, the variation between the runs in the measurement of the twist 

per strain might be due to viscoelastic or plastic deformations or even fractures caused 

by large local strains. To further investigate this, I calculated the principal stretches via 

finite element calculations. The calculations show that locally, the material expands up 

to 40 % and gets compressed up to 90 %. Figure 42a and b depict the first and third 

principal stretch in a slice of the metamaterial in false colours for an LED current of 

1.05 A. It is visible that the large strains appear at the corners of the unit cells close to 

the central plate, since there the temperature is highest. Due to the high strains ap-

pearing during illumination, it is plausible that plastic or viscoelastic deformations oc-

cur. The scanning electron micrograph depicted in Figure 42c even shows three frac-

tured bars located at the positions of high strain as indicated by the red arrows. It is 

plausible that such irreversible deformations irreversibly change the behaviour of the 

overall sample. Maybe, this could be avoided with a more careful design of the unit cell. 

As already found by other researchers, the twist per strain depends on the number of 

unit cells in the footprint of the metamaterial. The twist per strain is expected to van-

ish in the limit of an infinite number of unit cells in the footprint of the metamaterial. 

[14, 15]. However, studies on similar unit cells have shown, that there is first an in-

crease in the twist per strain versus the number of unit cells until it reaches a maxi-

mum and decreases from there to zero. To study the behaviour of the presented met-

amaterial with respect to the sample size, I performed finite element calculations for 

zero LED current and a varying sample size with a footprint of 𝑁 × 𝑁 unit cells with  

 

Figure 42. (a) Shows cuts through the metamaterial at an LED current of 1.05 𝐴. The first 
and third principal stretch are depicted in false colours. High strains are present at the 
corners of the unit cells close to the central plate. (b) Scanning electron micrograph of 
the metamaterial sample showing fractured beams at the positions of high strain close 
to the central plate.  
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𝑁 ≤ 6. The resulting twist per strain is plotted in Figure 43 versus the integer 𝑁. The 

twist per strain is increasing monotonously. Therefore, the maximum twist per strain 

must appear for 𝑁 ≥ 6. It is prominent, that the twist per strain is negative for 𝑁 = 1. 

I assume that this is caused by the top, bottom and central plate that restrict the 

shrinkage of the unit cells.  

In conclusion, I have presented a chiral metamaterial with a tunable twist per strain 

printed from liquid-crystal elastomer incorporating nine different director orientations. 

The twist per strain of the measured samples together with the geometries for different 

LED current agree well with the finite element calculations, suggesting that the pre-

sented model describes the reality well. Variations of the measured twist per strain 

might be due to irreversible deformations caused by large strains. This might be avoided 

by a more careful sample design. 

A discussion of the obtained results is given in the next chapter. 

  

 

Figure 43. Twist per strain calculated for metamaterials with 𝑁 × 𝑁 × 2𝑁 unit cells. The 
twist per strain increases up to 𝑁 = 6. The insets show the geometries for 𝑁 = 1 and 
𝑁 = 3 including the anisotropic shrinkage. The case 𝑁 = 2 represents the metamaterial 
sample discussed in this section. Figure taken from [93] (CC BY 4.0). 
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5  Chapter 5 

Discussion and Conclusion 

Many applications in everyday life already employ materials with tuneable properties. 

Examples are liquid crystals in displays where the orientation of the optic axis is tuned 

via electric fields, or piezoelectric crystals that contract or expand in response to electric 

voltages. However, the palette of tuneable materials offered by nature is limited and 

does not cover all conceivable applications. Responsive metamaterials promise a route 

to enhance this palette with all kinds of tuneable effective parameters.  

To create such 3D responsive materials, I developed a novel 3D laser microprinting tech-

nique. This technique allows to print complex 3D architectures from liquid-crystal elas-

tomer with feature sizes in the range of a few micrometres and an overall sample size 

that can be in the millimetre range. Almost all liquid-crystal director orientations can be 

printed, with the freedom to choose the director independently and in situ at every 

voxel location.  

For the alignment of the director, I designed and fabricated a custom electrode that 

permits high electric fields on the order of 1 V ⋅ µm−1 and an arbitrary orientation of 

the electric field vector in the focal plane of the objective lens during the printing pro-

cess. With the help of Dominik Beutel, I demonstrated that manipulations of the print-

ing laser polarisation suffice to confine the laser focus for a large range of director ori-

entations, despite the highly birefringent photoresin. I used an azimuthal polarisation 

when printing vertical director orientations and a linear polarisation for all other direc-

tor orientations. Changing the director orientation during the printing requires a pho-

toresin that is liquid. This is in contrast to many other 3D laser microprinting approaches 

presented in the literature [47–57]. The novel resin I developed, polymerizes to a liquid-

crystal elastomer that shows a large, fully reversible and repeatable thermal expansion.  
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As already pointed out in chapter 3, the 3D laser microprinting technique described in 

this thesis is to my knowledge the only technique published so far that allows to print 

complex 3D architectures with a free choice of the director orientation at any point in 

space. This development is an essential prerequisite for printing 3D optomechanical 

metamaterials.  

In chapter 4, I presented two examples of such 3D optomechanical metamaterials that 

allow tuning an effective parameter on a large range with the light of an LED. In the first 

example, the Poisson’s ratio can be tuned from 0.47 to −0.27 using intensities up to 

30 W ⋅ cm−2. The measured effective Poisson’s ratios agree well with those obtained 

from finite element calculations. The metamaterial showed a good reversibility and re-

peatability in 100 cycles. The response time for actuation and recovery was below 

100 ms in this experiment.  

The second responsive metamaterial is a chiral metamaterial that shows a tuneable 

twist angle when strained. The twist per strain can be adjusted between −0.1 and 0.3 

using intensities up to 25 W ⋅ cm−2. The measured values for the twist per strain agree 

well with the values obtained from finite element calculations.  

Looking into the literature, there are already many examples for stimuli responsive met-

amaterials [32–46]. However, they were either effectively two-dimensional [37–42, 44, 

46], macroscopic models [32–44, 46] or show a narrow parameter tuning range [45]. 

The responsive metamaterials presented in this thesis are to my knowledge the first 

that are three-dimensional, with feature sizes on the micrometre scale, and with effec-

tive properties that are tuneable on a large range. Beyond that, they represent to my 

knowledge by far the most complex 3D structures fabricated from liquid-crystal elasto-

mer published in literature until now.  

Although this thesis represents a great step forward in the field of responsive met-

amaterials, further work has to be done to increase the number of unit cells of the 

printed metamaterials, which is currently limited by the speed of the printer. With fur-

ther improvement in this regard, I envision that many more 3D optomechanical met-

amaterials can be designed and fabricated along the routes I have presented. For ex-

ample, I could imagine a chiral optomechanical metamaterial showing tuneable acous-

tical activity [16]. There, the linear polarisation of a transverse elastic wave would be 

rotated by an angle that depends on an external light source.  

Further work could also be spent on the composition of the liquid-crystal resin. In the 

literature, liquid-crystal elastomers are reported that show similar strains as those re-

ported in this thesis, however using temperature swings of 10 °C starting at room 
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temperature [102]. If such materials could be made compatible with the 3D laser mi-

croprinting technique I developed in this thesis, the tuning of 3D optomechanical met-

amaterials with sunlight might become possible.    

Another route to follow could be to fabricate responsive metamaterials that simultane-

ously respond to several stimuli in a controlled fashion. For, example, one could think 

about structures that respond to humidity [48] and light at the same time.  

I want to close this discussion with the thought that the methods developed in this the-

sis might not only be interesting in the context of responsive metamaterials but also for 

researchers in other fields. Especially the developed 3D laser microprinting approach 

for printing liquid-crystal elastomers, the design methods, and the model to predict the 

behaviour of 3D liquid-crystal elastomer structures might stimulate progress in other 

fields like for example micro-robotics. 
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