
From Easy to Hopeless—Predicting the Difficulty
of Phylogenetic Analyses
Julia Haag ,*,1 Dimitri Höhler ,1 Ben Bettisworth,1 and Alexandros Stamatakis 1,2

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany

*Corresponding author: E-mail: julia.haag@h-its.org.
Associate editor: Naruya Saitou

Abstract
Phylogenetic analyzes under the Maximum-Likelihood (ML) model are time and resource intensive. To adequately
capture the vastness of tree space, one needs to infer multiple independent trees. On some datasets, multiple
tree inferences converge to similar tree topologies, on others to multiple, topologically highly distinct yet statistically
indistinguishable topologies. At present, no method exists to quantify and predict this behavior. We introduce a
method to quantify the degree of difficulty for analyzing a dataset and present Pythia, a Random Forest Regressor
that accurately predicts this difficulty. Pythia predicts the degree of difficulty of analyzing a dataset prior to initiating
ML-based tree inferences. Pythia can be used to increase user awareness with respect to the amount of signal and
uncertainty to be expected in phylogenetic analyzes, and hence inform an appropriate (post-)analysis setup.
Further, it can be used to select appropriate search algorithms for easy-, intermediate-, and hard-to-analyze datasets.

Key words: phylogenetics, maximum likelihood, machine learning, random forest regression.

Open Access
© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

A
rticle

Introduction
The goal of a phylogenetic inference is to find the phylo-
genetic tree that best explains the given biological se-
quence data. Since the number of possible tree
topologies grows super-exponentially with the number of
taxa, one cannot compute and score every possible tree
topology. Instead, one deploys tree inference heuristics
that explore the tree space to find a tree with a “good”
score, for example under the Maximum-Likelihood (ML)
criterion (Yang et al. 1995). However, these heuristics do
not guarantee that the tree inference will converge to
the globally optimal tree. Therefore, under ML, one typical-
ly infers multiple trees and subsequently summarizes the
inferred, locally optimal trees via a consensus tree. One
can observe that for some datasets, all individual, inde-
pendent ML tree searches converge to topologically similar
trees. This suggests that the likelihood surface of such da-
tasets exhibits a single likelihood peak, yielding the dataset
easy to analyze. For other datasets, one observes that the
independent tree inferences converge to multiple topo-
logically distinct, yet, with respect to their ML score, statis-
tically indistinguishable, locally optimal trees. These
datasets are hence difficult to analyze, and we say that
they exhibit a rugged likelihood surface. This diverse behav-
ior of phylogenetic tree searches has already been reported
in several publications (Lakner et al. 2008; Stamatakis 2011;
Morel et al. 2020). In general, the more tree inferences we
perform, the better our understanding of the behavior of
data sets and coverage of the respective tree space will
be. However, under ML, inferring a single tree can already

require multiple hours or even days of CPU time. In order
to save time and resources, an optimal analysis setup
will perform as few tree inferences as necessary. For
easy-to-analyze datasets with a single-likelihood peak, we
require fewer and less involved tree search heuristics and
bootstrap replicate searches to adequately sample the
tree space, as opposed to difficult-to-analyze datasets
with rugged likelihood surfaces. To the best of our knowl-
edge, and despite anecdotal reports on the behavior of dif-
ficult datasets, there does not yet exist a quantifiable
definition of dataset difficulty that captures the behavior
of ML tree searches on datasets.

In order to speedup ML tree inferences, researchers
have developed elaborate ML tree inference tools that
combine multiple search strategies to reduce the risk of
becoming stuck in local optima. There also exist
early-stopping criteria to determine whether the tree in-
ference has converged. Such early-stopping methods de-
ploy ad hoc or statistical criteria to terminate the tree
inference. For example, the ML tree inference software
FastTree (Price et al. 2010) relies on a maximum number
of topology optimization iterations as a function of the
number of sequences in the dataset. The ML software
RAxML (Stamatakis 2014) implements an early-stopping
criterion based on the topological distance between the
respective best trees found in two consecutive optimiza-
tion cycles (Stamatakis 2011). Vinh and von Haeseler
(2004) propose an estimation criterion that determines
with 95% confidence whether continuing the tree infer-
ence will yield a better tree than the currently best tree.

Mol. Biol. Evol. 39(12):msac254 https://doi.org/10.1093/molbev/msac254 Advance Access publication November 17, 2022 1

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://orcid.org/0000-0002-7493-3917
https://orcid.org/0000-0002-4144-6709
https://orcid.org/0000-0003-0353-0691
mailto:julia.haag@h-its.org
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/molbev/msac254

Haag et al. · https://doi.org/10.1093/molbev/msac254 MBE

However, early-stopping criteria only determine the con-
vergence of the current tree search, but they do evidently
not guarantee that the search has converged to the global-
ly optimal tree. Thus, to better characterize and explore
the tree search space, additional tree inferences and subse-
quent a posteriori analyzes are required. In contrast, asses-
sing the expected behavior of a dataset prior to
conducting compute-intensive tree inferences allows for
a more informed decision on the most appropriate tree in-
ference and post-analysis setup. It also allows users to re-
assemble/modify difficult datasets as these will most
likely require resource-intensive analyzes that yield contra-
dicting, yet almost equally likely, tree topologies with low
confidence. Several methods have already been developed
to assess the information content of datasets prior to tree
inference, the most prominent example being the treelike-
ness of a dataset (Bandelt and Dress 1992; Lyons-Weiler
et al. 1996; White et al. 2007). Simple and fast-to-compute
metrics include the sites-over-taxa ratio. For instance,
Rosenberg and Kumar (2001) conclude that a higher
phylogenetic inference accuracy can be achieved by in-
creasing the MSA length, rather than including more
taxa/sequences. A more involved method was proposed
by Holland et al. (2002). The authors suggest the use of
δ-plots, that is histograms, based on all quartet distances
in the Multiple Sequence Alignment (MSA). However,
computing the δ-plots is time-intensive due to the compu-
tational complexity of O(n4), where n is the number of
taxa in the MSA. Misof et al. (2014) provide an overview
of various methods for calculating the treelikeness, prior
to a phylogenetic analysis. The authors acknowledge that
the considered treelikeness estimation methods capture
certain aspects of the MSAs. However, they conclude
that none of them sufficiently informs the user about
the expected behavior of phylogenetic analyzes in general,
and suggest further research in this area.

New Approach
Here, we initially introduce a quantification of difficulty
based on the result of 100 ML tree inferences per MSA.
We then show that this quantification adequately repre-
sents the behavior of the ML searches on the dataset.
Since executing 100 ML tree searches is computationally
prohibitive in general, we train a Random Forest
Regressor Ho (1995) that can predict the difficulty of a gi-
ven MSA that is exclusively based on MSA attributes and
some fast and thus substantially less expensive parsimony-
based tree inferences (Farris 1970; Fitch 1971). By extract-
ing multiple simple and fast-to-compute attributes, such
as the sites-over-taxa ratio, and by deploying machine
learning, we devise an accurate difficulty predictor called
Pythia. We attain a high prediction accuracy, with a
mean absolute prediction error (MAE) of 0.09 and a
mean absolute percentage error (MAPE) of 2.9%.
Computing the prediction features and predicting the dif-
ficulty is on average approximately five times faster than a
single ML tree inference. Pythia predicts the difficulty of a

dataset on a scale ranging between 0.0 (easy) and 1.0
(difficult).

In contrast to the aforementioned early-stopping cri-
teria that can be applied during ML searches, Pythia in-
forms the user about the expected behavior of the MSA
in ML phylogenetic analysis prior to any ML phylogenetic
inference. Thereby, users can take informed decisions on
the most appropriate ML analysis and post-analysis setup.
This includes, for example, a careful consideration of the
number of required independent, resource-intensive, tree
searches based on the difficulty. Also, for difficult MSAs,
the user will be able to improve the informativeness of
the MSA, for example, by increasing sequence length or re-
moving sequences, to assemble an MSA that is easier to
analyze. Thereby, one can save valuable time and resources
by not performing tree inferences on difficult MSAs. We
therefore suggest that an analysis with Pythia should be
conducted at the beginning of any ML phylogenetic ana-
lysis. Note that the predicted difficulty does not directly
predict the number of tree inferences required to suffi-
ciently sample the tree space, as this number also depends
on the implemented tree inference heuristic.

Pythia is available as open source software libraries in C
and Python. Both libraries include the trained Random
Forest Regressor and the computation of the required
prediction features. The C library CPythia is an addition
to the COre RAXml LIBrary (Coraxlib) (Exelixis-Lab 2022)
and is available at https://github.com/tschuelia/
CPythia. Additionally, we provide PyPythia, a light-
weight, stand-alone Python library, including a respect-
ive command line interface. PyPythia is available at
https://github.com/tschuelia/PyPythia. Finally, by
using the phylogenetic tree data that is being collected
by our dynamically growing RAxML Grove (Höhler et al.
2021) database, we regularly retrain Pythia and update
the predictor in both libraries.

Results
Difficulty Prediction Accuracy
Our training data contains 3250 empirical MSAs obtained
from TreeBASE Piel et al. (2009). We divide this training
data into a training set (80%) and a test set (20%). The
training set is used for training the predictor and the
test set is exclusively used for evaluating the trained pre-
dictor. Pythia predicts the degree of difficulty on a scale be-
tween 0.0 and 1.0. A value of 1.0 indicates a difficult
(hopeless) MSA with a rugged tree space. We expect
such an MSA to exhibit multiple, statistically indistinguish-
able locally optimal yet topologically highly distinct trees.
In contrast, we expect an MSA with a value of 0.0 to be
easy to analyze by requiring only few independent tree
searches. Pythia attains a mean absolute error (MAE) of
0.09. This corresponds to a mean average percentage error
(MAPE) of 2.9%. The mean squared error (MSE) is 0.02 and
the R2 score is 0.79. Supplementary figures S5a and S5b,
Supplementary Material online show the distribution of

2

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://github.com/tschuelia/CPythia
https://github.com/tschuelia/CPythia
https://github.com/tschuelia/PyPythia
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
https://doi.org/10.1093/molbev/msac254

Phylogenetic Difficulty Prediction · https://doi.org/10.1093/molbev/msac254 MBE

prediction errors for the training data. When analyzing the
prediction error, we notice that Pythia tends to overesti-
mate the difficulty of MSAs with a difficulty ≤0.3 and
underestimate the difficulty for MSAs with a difficulty
>0.3 (supplementary fig. S4, Supplementary Material on-
line). We suspect that this is caused by an uneven distribu-
tion of difficulties in the training data. Our training data
contain substantially more “easy” MSAs than difficult
MSAs: for approximately 60% of MSAs the assigned diffi-
culty is ≤0.3 and only about 10% have a difficulty ≥0.7
(supplementary fig. S2, Supplementary Material online).

Feature Importance
In our study, we analyze a plethora of distinct features of
the MSA, of trees inferred under parsimony, and features
based on a single ML tree inference using RAxML-NG. In
order to decrease the runtime of Pythia’s difficulty predic-
tion, we analyze the runtime of computing each feature for
all MSAs in our training data, as well as the importance of
the feature for the prediction. Based on these results, we
selected a subset of eight features:

• Sites-over-taxa ratio:

Sites
Taxa

=
Number of alignment columns

Number of taxa

• Patterns-over-taxa ratio:

Patterns
Taxa

=
Number of unique sites

Number of taxa

• % Invariant sites: Percentage of fully conserved sites.
• % Gaps: Proportion of gaps in the MSA.
• Entropy: Shannon Entropy Shannon (1948) as average

over all per-column/site entropies. See the supple-
mentary information for a more detailed description.

• Bollback Multinomial: Multinomial test statistic ac-
cording to Bollback (2002). See the supplementary in-
formation for a more detailed description.

• RF-Distance Parsimony Trees: RF-Distances between
100 trees inferred using parsimony.

• % Unique Topologies Parsimony Trees: Percentage of
unique topologies among the 100 inferred parsimony
trees.

Four of these are direct attributes of the MSA: the
sites-over-taxa ratio, the patterns-over-taxa ratio, the per-
centage of gaps, and the percentage of invariant sites. Two
features quantify the amount of information in the MSA:
the Shannon entropy (Shannon 1948) and the Bollback
multinomial (Bollback 2002). Two additional features are
based on rapid parsimony tree inferences: we infer 100 par-
simony trees via a randomized step-wise addition order
procedure and compute their average pairwise topological
distances using the Robinson–Foulds distance metric
(RF-Distance) (Robinson and Foulds 1981), as well as the
proportion of unique topologies in this set of 100 parsi-
mony trees. In supplementary section S2, Supplementary
Material online, we present all features we considered
and analyzed in more detail, alongside the respective fea-
ture importance and runtime to justify the selection of
the eight features we finally use. Table 1 shows the predic-
tion importances of the eight features upon which the dif-
ficulty prediction is based. We use the permutation
importance (Breiman 2001) for computing feature import-
ance. As the table shows, the difficulty prediction heavily
relies on the average RF-Distance and the proportion of
unique topologies among the inferred parsimony trees.
This is expected, as our difficulty definition under ML re-
flects the ruggedness of the tree space and correlates
well with the ruggedness under parsimony.

Runtime of Feature Computation
Computing the selected set of prediction features takes on
average 5 ± 31 s (μ ± σ) with a median runtime of 1 s. For
our training data, this corresponds to a runtime of 21.5 ±
88.6% relative to the runtime for inferring a single ML tree
using RAxML-NG. The median is 6.8%. The high average
compared to the median, and the large spread, are due to
the fact that the runtime of computing the prediction fea-
tures predominantly depends on the size of the MSA. The
larger the MSA, the faster the feature computation is com-
pared with a single ML tree inference. Supplementary figure
S3, Supplementary Material online depicts this correlation.
For benchmarking the runtimes of the feature computation,
we used the implementation in our Python library. When
running a subsequent ML tree inference, the runtime over-
head induced by the prediction can be amortized by passing
the inferred maximum parsimony trees as starting trees
to the ML inference tool (e.g. RAxML-NG). Instead of re-
computing parsimony starting trees, the RAxML-NG simply
initiates its tree searches on the provided parsimony starting
trees.

Discussion
Predicting the difficulty of MSAs to gain a priori insights
into the expected behavior of phylogenetic tree searches
and the shape of the likelihood surface constitutes a vital
step towards faster phylogenetic inference and a more
targeted setup of the computational analyzes and post-
analyzes. Our difficulty prediction allows for careful

Table 1. Importance of the Subset of Features we use to Train Pythia.

Feature Impurity Importance

% Unique topologies parsimony trees 42.9%
RF-distance parsimony trees 33.2%
Entropy 17.0%
Patterns-over-taxa 13.6%
% Gaps 2.5%
Bollback 2.3%
Sites-over-taxa 1.5%
% Invariant 0.6%

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
https://doi.org/10.1093/molbev/msac254

Haag et al. · https://doi.org/10.1093/molbev/msac254 MBE

consideration of the number of tree inference required to
sufficiently sample tree space prior to ML analyzes.
Especially for easy MSAs, this has the potential to save
valuable time and resources. In this paper, we presented
a quantifiable definition of difficulty for MSAs and showed
that this definition adequately represents the ruggedness
of the tree space of the dataset under ML. Using this def-
inition, we trained Pythia, a Random Forest Regressor, to
predict the difficulty on a scale ranging between 0.0 and
1.0. We showed that Pythia achieves a high prediction ac-
curacy. We further showed that the runtime to compute
the prediction features is on average only approximately
one-fifth of the runtime required for inferring a single
ML tree with RAxML-NG. The more taxa and sites the
MSA has, the faster the feature computation is relative
to a single ML tree inference, making Pythia especially valu-
able for phylogenetic analyzes on MSAs with many sites
and taxa. We conclude that predicting the difficulty of
an MSA prior to any tree inference allows for faster ana-
lyzes, informing user expectations regarding the stability
of the inferred tree, and Pythia should be included in ML
phylogenetic inference pipelines. As a cautionary note,
we emphasize that the ruggedness of the tree space might
also depend on the model and tree inference heuristic
being used. Yet, the fact that Pythia relies on parsimony
trees to predict the ruggedness of ML trees shows that
there exists a correlation between models regarding the
ruggedness of the tree space and thus, the difficulty of
the analysis.

Using our dynamically growing RAxML Grove database,
we perpetually enlarge our training data and retrain Pythia
at regular intervals. The goal of this retraining is to con-
tinuously improve the predictive power of Pythia by pro-
viding more, and more diverse data in terms of the
distribution of feature values. At the time of writing this
paper, the difficulty labels in our training data are unevenly
distributed. Since we carefully select the new MSAs from
RAxML Grove we include for retraining (see Section
“Retraining the Model”), we expect the effect of uneven la-
bel distribution to cancel out over time.

Use and Misuse of Pythia
We suggest predicting the difficulty using Pythia prior to
any ML phylogenetic inference, as this will allow for
more targeted analysis setups. For example, for a difficult
MSA, the user should be careful to report a single ML
tree as best-known tree, as the tree space most likely exhi-
bits multiple, indistinguishable local optima. The user
should also be aware that a more difficult MSA requires
a higher number of independent tree searches to con-
struct a reliable consensus tree. Furthermore, difficult
MSAs require a more careful consideration of necessary
additional phylogenetic analyzes and post-processing
steps. Especially for very difficult MSAs (difficulty >0.8)
we suggest to consider improving upon the difficulty of
the MSA prior to analysis. This is because a phylogenetic
analysis on very difficult MSAs, will most likely not yield

a well-resolved tree, even if a consensus of numerous al-
most equally likely yet topologically distinct ML trees is
built. Pythia is not intended to directly predict the num-
ber of independent tree searches required for conduct-
ing a thorough ML analysis, as this number also heavily
depends on the search strategy of the respective ML
inference tool.

Future Work
Potential future applications of Pythia include, for in-
stance, the assembly of benchmark datasets which cover
a broad and representative difficulty range for testing no-
vel phylogenetic models and tools. Pythia can also serve as
a criterion during the empirical dataset assembly process.
For instance, additional sequence data can be added to
yield a dataset that is easier to analyze.

Another avenue for future work is to implement a
difficulty-aware tree inference heuristic. Depending on
the difficulty of the MSA, we can, for example, apply differ-
ent heuristic search strategies. For instance, on easy MSAs
it might be sufficient to explore the tree space via a less
thorough exploration strategy, that is, by only using
Nearest-Neighbor-Interchange (NNI) moves. In compari-
son to Subtree Pruning and Regrafting (SPR) moves, this
reduces the tree topology search complexity from O(n2)
to O(n) (Heath and Ramakrishnan 2010).

In our study, we focused on predicting the difficulty of
ML phylogenetic inferences. Another popular method to
explore the tree space of an MSA is Markov chain
Monte Carlo (MCMC) based Bayesian phylogenetic infer-
ence. Since both methods, ML and MCMC, rely on the
same input MSA and on the same likelihood function,
we suspect the difficulty to be reflected in the apparent
convergence speed of MCMC methods. In this section,
we will explore this potential correlation on three exem-
plary MSAs.

Besides informing the computational setup of ML
phylogenetic analyzes, Pythia can also potentially be ap-
plied to adjust user expectations regarding the bootstrap
support of the best-known tree as well as related support
measures. For instance, the perhaps most common and re-
current user inquiry on the RAxML Google user support
group concerns possible reasons for often unexpected
and disappointingly low bootstrap support values. In
this section, we also present an exploratory analysis of
the correlation between the difficulty as predicted by
Pythia, and the bootstrap support values for three
MSAs.

Since both, MCMC phylogenetic analyzes and bootstrap
analyzes, constitute extremely time- and resource-intensive
tasks, a thorough exploration of their connection to diffi-
culty prediction is beyond the scope of this work.

MCMC Convergence Prediction
The features we use to predict the difficulty of an MSA are in-
dependent of the inference method used for the subsequent
analyzes. However, as we describe in the Quantification of

4

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://doi.org/10.1093/molbev/msac254

Phylogenetic Difficulty Prediction · https://doi.org/10.1093/molbev/msac254 MBE

Difficulty subsection, our difficulty quantification is based on
100 tree inferences using RAxML-NG which implements the
ML method. Therefore, our predictions might be biased to-
wards ML analyzes and potentially not describe the rugged-
ness of the tree space in a model-independent manner. To
assess if our predictions can be generalized, we compare
our difficulty prediction to convergence diagnostics of
MCMC-based phylogenetic analyzes. For three DNA MSAs
[D27 (Hedges et al. 1990), D125 (Poulakakis and Stamatakis
2010), and D354 (Grimm et al. 2006)], we perform MCMC
analysis using MrBayes Ronquist et al. (2012). We run four
chains for 10 million generations each using the general
time reversible (GTR) model with four Γ rate categories to ac-
count for among site rate heterogeneity. MrBayes reports the
average standard deviation of split frequencies (ASDSF; split
frequencies: relative number of occurrence of splits/biparti-
tions in the set of posterior trees) as a convergence diagnostic
metric and suggests executing additional generations as long
as the ASDSF is ≥0.01. D125 is an easy dataset with an ex-
pected clear, single-likelihood peak. The difficulty according
to our definition is low (≪0.1) and MrBayes appears to con-
verge: the ASDSF value drops below 0.01 after 150,000 genera-
tions and is ≪ 0.01 after only 1 million generations. D27
exhibits at least two distinct likelihood peaks, suggesting
that the MSA is rather difficult to analyze (Lakner et al.
2008). The difficulty according to our definition is 0.45 and
after 10 million generations MrBayes reports an ASDSF of
0.011, indicating that the MCMC did not converge to a single
local optimum. D354 exhibits a rugged likelihood surface
(Grimm et al. 2006), so we expect a high difficulty and no con-
vergence. The assigned difficulty for D354 is 0.6 and after 10
million generations the ASDSF is 0.009. According to
MrBayes this suggests convergence and adding more genera-
tions should improve the ASDSF. However, we observe that
the ASDSF did not improve during the last 2 million genera-
tions, and adding more generations did not further improve
the ASDSF. D125 with 125 taxa and approximately 30,000
sites is a larger dataset than D354 with 354 taxa and only
460 sites. Yet, D125 converges after 1 million generations,
while for D354 the ASDSF drops below 0.01 only after 8 mil-
lion generations. The smallest dataset D27 with 27 taxa and
1,940 sites indicates no convergence after 10 million genera-
tions according to the ASDSF. We thus suspect that the num-
ber of generations required for the MCMC is correlated to the
difficulty rather than to the size of the dataset.

Bootstrap Support Values
As already mentioned, the perhaps most common question
on the RAxML user support Google group is related to dis-
appointingly low support values. We expect the difficulty,
and thus the vastness of the tree space, to correlate with
the support values of the best-known tree in a subsequent
bootstrapping analysis. We use the same MSAs for the same
reasons as for the exploratory MCMC convergence predic-
tion conducted above: D27, D125, and D354. For each MSA,
we run RAxML-NG using its --all execution mode. This
mode infers 20 ML trees for the MSA, infers bootstrap rep-
licate trees, and draws support values on the tree with the

highest log-likelihood (best-known tree). Per default,
RAxML-NG infers at most 1,000 bootstrap replicates, but
implements an early-stopping criterion that determines
convergence based on the bootstopping criterion pre-
sented by Pattengale et al. (2010). To explore the correl-
ation between the difficulty prediction value and the
bootstrap support values, we compute the average and
standard deviation μ ± σ of bootstrap support values on
the respective best-known trees. As stated above, D125 is
an easy dataset exhibiting a clear signal with an assigned dif-
ficulty ≪0.1. This is reflected by the high bootstrap support
values: μ ± σ = 97.64 ± 8.38%. The assigned difficulty for
D27 is 0.45 and RAxML-NG reports the bootstrap support
values as μ ± σ = 51.5 ± 29.02%. Dataset D354 is the
most difficult among the three example MSAs with a
predicted difficulty of 0.6. Hence, the bootstrap support
values are the lowest among the three MSAs with
μ ± σ = 43.41 ± 32.48%.

Materials and Methods
We formulate the difficulty prediction challenge as a su-
pervised regression task. The goal is to predict the difficulty
on a scale ranging between 0.0 (easy) to 1.0 (difficult). We
face two main challenges: (i) obtaining a sufficiently large
set of MSAs to train Pythia on, ideally consisting of empir-
ical MSAs, and (ii) obtaining ground-truth difficulties that
represent the actual difficulty of the training data. In the
following, we present how we obtain the training data
and assign ground-truth difficulties. We further present
our trained regression model, and finally present our heur-
istic for regularly retraining the regression model to con-
tinuously improve the prediction accuracy of Pythia.

Quantification of Difficulty
In order to train a reliable difficulty predictor, we need a
reliable ground-truth label for each training datum. To ob-
tain such labels, we require a quantifiable difficulty defin-
ition. To stringently quantify the difficulty of an MSA, we
would have to explore the entire tree space. Since this is
computationally not feasible, we need to rely on a heuristic
definition. Our heuristic to quantify the difficulty is based
on 100 ML tree inferences. In our analyzes, we use
RAxML-NG. First, we infer Nall= 100 ML trees and compute
the average pairwise relative RF-Distance between all trees
(RFall), as well as the number of unique topologies among
the 100 inferred trees (N∗all). We determine the best tree
among the 100 inferred trees according to the
log-likelihood, and compare all trees to this best tree using
statistical significance tests. We assign trees that are not
significantly worse than the best tree to a so-called plaus-
ible tree set. In our analyzes, we use the statistical signifi-
cance tests as implemented in the IQ-TREE software
package Minh et al. (2020). Due to the continuing debate
about the most appropriate significance test for compar-
ing phylogenetic trees, we use the approach suggested
by Morel et al. (2020): we only include trees that pass all

5

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://doi.org/10.1093/molbev/msac254

Haag et al. · https://doi.org/10.1093/molbev/msac254 MBE

significance tests in the plausible tree set. We further refer
to the number of trees in this plausible tree set as Npl. We
compute the average pairwise relative RF-Distances be-
tween trees in the plausible tree set (RFpl), as well as the
number of unique topologies (N∗pl). Finally, we compute
the difficulty of the dataset based on the following for-
mula:

difficulty =
1
5
· RFall + RFpl

(1)

+
N∗all

Nall
+

N∗pl

Npl
(2)

+ 1 −
Npl

Nall

(3)

The reasoning for expression (1) is that if the RF-Distance is
high, the tree space consists of multiple distinct, locally op-
timal tree topologies which characterize a dataset that is
difficult to analyze. With expression (2) the reasoning is
that the tree surface becomes more rugged, the more dis-
tinct locally optimal tree topologies the tree inference
yields, and the more tree topologies are not significantly
different from the best tree. Finally, the rationale for ex-
pression (3) is that, the more tree inferences yield a plaus-
ible tree, the more informative the MSA will be about the
underlying evolutionary process and the easier the MSA
will be to analyze. Each term is a value between 0.0 and
1.0, leading to an average value between 0.0 and 1.0 that
quantifies the overall difficulty.

For each MSA in our training data, we compute the
difficulty according to this definition. To this end, we
implement a training data generation pipeline that auto-
matically performs all required tree inferences, statistical
tests, and computes the difficulty label alongside the fea-
tures required for training Pythia. We implement this pipe-
line using the Snakemake workflow management system
(Köster and Rahmann 2012) and Python 3. The pipeline
code is available at https://github.com/tschuelia/difficulty-
prediction-training-data. In supplementary section S6,
Supplementary Material online, we list the software versions
we use in the described pipeline.

Training Data
We train Pythia using empirical MSAs obtained from
TreeBASE (Piel et al. 2009). To date, our training data con-
sist of 3,250 MSAs, of which 74% contain DNA data and
26% contain Amino Acid (AA) data. The training data in-
cludes partitioned and unpartitioned MSAs. We provide a
detailed overview of the training data in supplementary
section S1, Supplementary Material online. We include
DNA and AA data in the same setup as, according to
our analyzes, the prediction behaves analogously on
both data types. We provide a more thorough justification
of this equal treatment of DNA and AA data in
supplementary section S5, Supplementary Material online.

Note that while we include partitioned MSAs in our train-
ing data, we compute all features across the entire MSA re-
gardless of the defined partitions. The high feature
importance of the parsimony tree based features, as well
as the entropy that are all partition-agnostic, justifies
this choice.

Figure 1 depicts the workflow for training data gener-
ation. For each MSA, we compute the difficulty according
to the above definition as ground-truth label for super-
vised training using the training data generation pipeline.
We compute the corresponding prediction features using
our Python library. The set of prediction features and the
corresponding difficulty label form our training data. For
training the regression model, we split this training data
into two sets: a training set and a test set. The training
set comprises 80% of the training data and the test set
the remaining 20%. The test set is exclusively used for
evaluating the predictive power of the difficulty predictor.
To ensure an even distribution of difficulty labels in the
training and test sets, we deploy stratified sampling.
Stratified sampling splits all difficulty labels into disjoint
subsets and draws random samples from each subset inde-
pendently. In principle, using simulated data would allow
us to increase the size of the training data. However, since
simulating data that behaves analogously to empirical data
under ML tree inferences constitutes a challenging task
(Höhler et al. 2021), we decided against using any simu-
lated data.

Label Validation
Due to the lack of absolute ground-truth labels, we need to
rely on the inferred difficulty labels. The motivation of the
difficulty prediction is to limit the number of tree infer-
ences required to sufficiently sample the tree space and
obtain a representative consensus tree. To verify the label
assignment for each dataset, we conduct two analyzes.
First, we compare the consensus tree obtained from the
plausible tree set constructed from all 100 ML tree infer-
ences (baseline tree) to the consensus of the plausible trees
we obtain when inferring only 100 * difficulty trees (predic-
tion tree). Note that for this analysis we use the difficulty we
compute according to the above definition rather than
using a predicted difficulty. We compare the topologies
of the consensus trees using the RF-Distance. The
RF-Distance between the baseline tree and the prediction
tree is on average 9.6 ± 15.8%. This noticeable topological
difference suggests that either (a) the difficulty labels do
not sufficiently represent the tree search behavior of the
dataset, or (b) 100 tree inferences do not sufficiently sam-
ple the tree space. To determine the impact of (b), we re-
peatedly sample 99 trees out of the 100 tree inferences and
compute the consensus tree Ci of the respective plausible
tree set. We then assess the average RF-Distance between
all consensus trees Ci. For our training data, this
RF-Distance is on average 8.1 ± 14.5%. We conclude that
mostly (b) causes the high topological distances between
the baseline tree and the prediction tree. In fact, a high

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://github.com/tschuelia/difficulty-prediction-training-data
https://github.com/tschuelia/difficulty-prediction-training-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
https://doi.org/10.1093/molbev/msac254

Phylogenetic Difficulty Prediction · https://doi.org/10.1093/molbev/msac254 MBE

RF-Distance between the consensus trees Ci for an MSA is
correlated with its difficulty. Spearman’s rank correlation
coefficient is 0.88 with a p-value of 0.0 (≪ 10−300). Thus,
the more difficult the MSA, the higher the topological dis-
tances between the consensus trees Ci will be.

The second analysis to justify our quantification of diffi-
culty ensures that selecting the number of tree inferences

based on the difficulty does not negatively impact the qual-
ity of the tree inference. As stated above, the difficulty can, in
general, not predict the number of tree searches required to
sufficiently sample the tree space, as this number also de-
pends on the implemented tree inference heuristic.
However, since we define the difficulty based on 100 ML
tree inference in RAxML-NG, we can use the difficulty to

FIG. 1. Schematic depiction of the training data generation procedure. For each MSA, we compute the difficulty label based on our difficulty quan-
tification using our training data generation pipeline (left dashed box). We further compute the prediction features using our Python prediction library
PyPythia (right dashed box). Using the difficulty label and the corresponding prediction features for all MSAs in our training data, we train Pythia.

7

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://doi.org/10.1093/molbev/msac254

Haag et al. · https://doi.org/10.1093/molbev/msac254 MBE

determine the number of required tree inferences when
again using RAxML-NG as a fraction of 100. Thus, to analyze
the influence of the difficulty on the quality of the tree infer-
ence, we compare the log-likelihoods obtained from 100 in-
dependent RAxML-NG tree searches (LnLs100) to the
log-likelihoods of |difficulty · 100| tree searches (LnLsdiff)
for all MSAs in our training data. We compare the respective
best found log-likelihoods LnL∗100 and LnL∗diff , as well as the
average log-likelihoods LnL100 and LnLdiff .

For 81% of the MSAs, the best found log-likelihoods
LnL∗100 and LnL∗diff are identical. For the remaining 19% of
MSAs, LnL∗diff is on average ≪0.01% worse than LnL∗100.
The average log-likelihoods LnL100 and LnLdiff deviate on
average by 0.01% only.

This analysis only serves for justifying the definition of
our difficulty quantification. Predicting the number of
tree inferences as a fraction of 100 is only applicable to
ML tree inference with RAxML-NG. It should further be
mentioned, that RAxML-NG infers only 20 trees by default
and simply increasing the number of tree inferences to
|difficulty · 100| is discouraged.

Given these analyzes, we conclude that our difficulty
quantification is sufficiently accurate to capture the tree
search complexity and the behavior of an MSA under
ML-based phylogenetic analysis.

Machine Learning and Evaluation
During our experiments, we trained distinct regression al-
gorithms and compared their predictive power according
to the R2 score, the MSE, the MAE, and the MAPE. We div-
ide the training data into two sets: a training set and a test
set. We use the training set to train the prediction algo-
rithms and the test set to evaluate the trained predictors
on unseen data. We train multiple different regression mod-
els, namely Linear Regression, Lasso Regression (Tibshirani
1996), Random Forest Regression (Ho 1995), Adaptive
Boosting (AdaBoost) (Freund and Schapire 1996), and
Support Vector Regression (Boser et al. 1992). Random
Forest Regression proves to be the most suitable Machine
Learning algorithm for the task at hand, and outperforms
all other tested regression models according to all our me-
trics. In supplementary section S3, Supplementary Material
online, we present the results for all trained regression mod-
els. Random Forest Regression is an ensemble method that
averages over the predictions of multiple independently
trained decision trees. To determine the optimal set of hy-
perparameters for the Random Forest Regression, we imple-
mented a grid search that tests various combinations of
hyperparameter values. For this grid search, we use an add-
itional validation set, obtained by further subdividing the
training set. We then perform hyperparameter optimization
using this validation set. Our final difficulty predictor con-
sists of 100 decision trees with a maximum depth of 10.
To prevent overfitting, we set the minimum number of
samples in a leaf node to 10 and the minimum number of
samples required for a split to 20. Further, we train the indi-
vidual decision trees on bootstrapped training data. We set

the sample size for the bootstrapping to 75% of the training
data size. Note that this bootstrapping procedure samples
the training data (features and corresponding label) and is
not the phylogenetic bootstrap.

Retraining the Model
To continuously and automatically improve the prediction
accuracy of Pythia, we regularly extend the training data
set and subsequently retrain the predictor. We extend
the training data using the anonymized MSAs that we con-
tinuously obtain during our RAxML Grove database up-
dates. Note that these MSAs are only available internally
in RAxML Grove and are not publicly available. To limit
the amount of resources required for retraining, we do
not include every incoming, new MSA. We select MSAs
based on a heuristic instead. At the time of writing, we se-
lect the set of new MSAs such that it diversifies the distri-
bution of features in our training data. Algorithm 1 shows
the heuristic for deciding whether to use a given MSA for
retraining. For each feature fi, we compute the respective
histogram Hi on the training data using a predefined num-
ber of bins nbins. Next, we compute the respective feature
value for the given MSA and find the corresponding bin
hist_bin in the histogram Hi. The goal is to attain an
even distribution of features, that is, all histogram bins
should have the same height h̅i = 1/nbins. To quantify
the deviation vi from this even distribution, we divide
this desired height h̅i by the actual height hi of hist_bin.
The deviation vi is negatively correlated to the number
of samples in the corresponding histogram bin. For bins
with fewer samples than the desired even distribution,
the deviation is >1. We sum the deviations vi across all fea-
tures. We use the given MSA for retraining if this sum is
≥14 or any of the deviations vi is ≥4. The rationale for
the first threshold is that in this case, on average, for
each feature fi the corresponding bin hist_bin has only
half the desired height. The rationale for the second
threshold is that in this case, one of the feature bins has
only 1/4th of the desired height.

ALGORITHM 1: Heuristic for deciding whether to use a given MSA for re-
training Pythia.

Foreach feature fi do
Hi = histogram(training_data, fi, nbins)
feat = compute_feature_value(MSA)
h̅i = 1/nbins
hist_bin = find_bin_for_value(Hi, feat)
hi = height(hist_bin)
vi = h̅i/hi

end
V =

vi

analyze_msa = V ≥ 14 or max(vi) ≥ 4
return analyze_msa

For all MSAs we select, we compute the ground-truth
label and prediction features as described in the Training
Data subsection. Based on this enlarged training data, we

8

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
https://doi.org/10.1093/molbev/msac254

Phylogenetic Difficulty Prediction · https://doi.org/10.1093/molbev/msac254 MBE

9

retrain Pythia and automatically update the trained pre-
dictor in our Python and C libraries.

Code and Data Availability
We provide Pythia as open source software libraries in C
and Python. Both libraries include the trained Random
Forest Regressor and the computation of the required pre-
diction features. The C library CPythia is an addition to
Coraxlib and is available at https://github.com/tschuelia/
CPythia. Additionally, we provide PyPythia, a lightweight,
stand-alone Python library, including a command line
interface. PyPythia is available at https://github.com/
tschuelia/PyPythia. The implemented pipeline to compute
the prediction features and ground-truth difficulty labels
for the training data is available at https://github.com/
tschuelia/difficulty-prediction-training-data. This reposi-
tory also contains the training data as parquet file.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
The authors gratefully acknowledge the support of the
Klaus Tschira Foundation. This project has received fund-
ing from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie
grant agreement No. 764840.

References
Bandelt H-J, Dress AW. 1992. Split decomposition: a new and useful

approach to phylogenetic analysis of distance data. Mol
Phylogenet Evol. 1(3):242–252.

Bollback JP. 2002. Bayesian model adequacy and choice in phyloge-
netics. Mol Biol Evol. 19(7):1171–1180.

Boser BE, Guyon IM, Vapnik VN. 1992. A training algorithm for op-
timal margin classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, COLT ’92.
New York, NY, USA: Association for Computing Machinery.
p. 144–152.

Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
Exelixis-Lab. 2022. Core RAxML library (coraxlib). Available from:

https://codeberg.org/Exelixis-Lab/coraxlib.
Farris JS. 1970. Methods for computing wagner trees. Syst Biol. 19(1):

83–92.
Fitch WM. 1971. Toward defining the course of evolution:

minimum change for a specific tree topology. Syst Zool. 20(4):406–416.
Freund Y, Schapire RE. 1996. Experiments with a new boosting algorithm.

In Proceedings of the Thirteenth International Conference on
International Conference on Machine Learning, ICML’96.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. p. 148–156.

Grimm GW, Renner SS, Stamatakis A, Hemleben V. 2006. A nuclear
ribosomal DNA phylogeny of Acer inferred with maximum like-
lihood, splits graphs, and motif analysis of 606 sequences. Evol
Bioinform. 2:7–22.

Heath LS, Ramakrishnan N. 2010. Problem solving handbook in com-
putational biology and bioinformatics. 1st ed. Berlin, Heidelberg:
Springer-Verlag.

Hedges SB, Moberg KD, Maxson LR. 1990. Tetrapod phylogeny inferred
from 18s and 28s ribosomal RNA sequences and a review of the evi-
dence for amniote relationships. Mol Biol Evol. 7(6):607–633.

Ho TK. 1995. Random decision forests. In Proceedings of 3rd
International Conference on Document Analysis and
Recognition. Montreal, QC, Canada: IEEE. Vol. 1. p. 278–282.

Höhler D, Pfeiffer W, Ioannidis V, Stockinger H, Stamatakis A. 2021.
RAxML Grove: an empirical phylogenetic tree database.
Bioinformatics 38(6):1741–1742.

Holland BR, Huber KT, Dress A, Moulton V. 2002. δ plots: a tool for
analyzing phylogenetic distance data. Mol Biol Evol. 19(12):
2051–2059.

Köster J, Rahmann S. 2012. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 28(19):2520–2522.

Lakner C, van der Mark P, Huelsenbeck JP, Larget B, Ronquist F. 2008.
Efficiency of Markov chain monte carlo tree proposals in
Bayesian phylogenetics. Syst Biol. 57(1):86–103.

Lyons-Weiler J, Hoelzer GA, Tausch RJ. 1996. Relative apparent syn-
apomorphy analysis (RASA). I. The statistical measurement of
phylogenetic signal. Mol Biol Evol. 13(6):749–757.

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD,
von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and ef-
ficient methods for phylogenetic inference in the genomic era.
Mol Biol Evol. 37(5):1530–1534.

Misof B, Meusemann K, von Reumont BM, Kück P, Prohaska SJ,
Stadler PF. 2014. A priori assessment of data quality in molecular
phylogenetics. Algorithms Mol Biol. 9(1):22.

Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S,
Serdari D, Kostaki E-G, Mamais I, Kozlov AM, et al. 2020.
Phylogenetic analysis of SARS-CoV-2 data is difficult. Mol Biol
Evol. 38(5):1777–1791.

Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM,
Stamatakis A. 2010. How many bootstrap replicates are neces-
sary? J Comput Biol. 17(3):337–354.

Piel WH, Chan L, Dominus MJ, Ruan J, Vos RA, Tannen V. 2009.
TreeBASE v. 2: A Database of Phylogenetic Knowledge.
e-BioSphere 2009.

Poulakakis N, Stamatakis A. 2010. Recapitulating the evolution of
Afrotheria: 57 genes and rare genomic changes (RGCs) consoli-
date their history. Syst Biodivers. 8(3):395–408.

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2–approximately
maximum-likelihood trees for large alignments. PLoS ONE 5(3):1–10.

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees.
Math Biosci. 53(1–2):131–147.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna
S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2:
efficient Bayesian phylogenetic inference and model choice
across a large model space. Syst Biol. 61(3):539–542.

Rosenberg MS, Kumar S. 2001. Incomplete taxon sampling is not a
problem for phylogenetic inference. Proc Natl Acad Sci. 98(19):
10751–10756.

Shannon CE. 1948. A mathematical theory of communication. Bell
Syst Tech J. 27(3):379–423.

Stamatakis A. 2011. Phylogenetic search algorithms for maximum likeli-
hood. John Wiley & Sons, Ltd. p. 547–577, chapter 25.
doi:10.1002/9780470892107.ch25.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30(9):
1312–1313.

Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J
R Stat Soc B (Methodol). 58(1):267–288.

Vinh LS, von Haeseler A. 2004. IQPNNI: moving fast through
tree space and stopping in time. Mol Biol Evol. 21(8):
1565–1571.

White W, Hills S, Gaddam R, Holland B, Penny D. 2007. Treeness tri-
angles: visualizing the loss of phylogenetic signal. Mol Biol Evol.
24(9):2029–2039.

Yang Z, Goldman N, Friday A. 1995. Maximum likelihood trees from
DNA sequences: a peculiar statistical estimation problem. Syst
Biol. 44:384–399.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/12/m
sac254/6832260 by KIT Library user on 04 January 2023

https://github.com/tschuelia/CPythia
https://github.com/tschuelia/CPythia
https://github.com/tschuelia/PyPythia
https://github.com/tschuelia/PyPythia
https://github.com/tschuelia/difficulty-prediction-training-data
https://github.com/tschuelia/difficulty-prediction-training-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac254#supplementary-data
https://codeberg.org/Exelixis-Lab/coraxlib
https://doi.org/10.1093/molbev/msac254

	From Easy to Hopeless—Predicting the Difficulty of Phylogenetic Analyses
	Introduction
	New Approach

	Results
	Difficulty Prediction Accuracy
	Feature Importance
	Runtime of Feature Computation

	Discussion
	Use and Misuse of Pythia
	Future Work
	MCMC Convergence Prediction
	Bootstrap Support Values

	Materials and Methods
	Quantification of Difficulty
	Training Data
	Label Validation
	Machine Learning and Evaluation
	Retraining the Model

	Code and Data Availability
	Supplementary Material
	Acknowledgments
	References

