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Abstract: Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium
and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been
investigated as possible redox switching elements for molecular electronics. An electrochemical study
was complemented by atomic force microscopy (AFM) and scanning tunneling microscopy (STM)
methods. STM was used for determination of the SAM conductance values, and computation of the
attenuation factor β from tunneling current–distance curves. We have shown that SAMs of Os-tripod
molecules contain larger adlayer structures compared with SAMs of Ru-tripod molecules, which are
characterized by a large number of almost evenly distributed small islands. Furthermore, upon cyclic
voltammetric experimentation, Os-tripod films rearrange to form a smaller number of even larger
islands, reminiscent of the Ostwald ripening process. Os-tripod SAMs displayed a higher surface
concentration of molecules and lower conductance compared with Ru-tripod SAMs. The attenuation
factor of Os-tripod films changed dramatically, upon electrochemical cycling, to a higher value. These
observations are in accordance with previously reported electron transfer kinetics studies.

Keywords: self-assembled monolayer; redox switching; electron transfer; AFM; STM

1. Introduction

Transition metal complexes rank among the most promising building blocks for
new electrochromic [1,2] and molecular electronic devices [3–12]. This work presents a
combined electrochemical and scanning probe microscopy (AFM and STM) study of the
adsorption properties of the osmium and ruthenium–terpyridine (tpy) complexes that
are connected to the gold electrode surface via a tripodal anchor. Our previous work
confirmed the advantages of such groups in the design of sturdy and well conducting
molecular wires for molecular electronics [13,14]. The binding affinity of terpyridine ligand
towards cations decreases in the order Ru(II) > Os(II) > Fe(II) > Zn(II) > Cd(II). Consequently,
octahedral “closed-shell” [M(tpy)2]2+ complexes of ruthenium, osmium and iron cations are
the most suitable building blocks for the design of supramolecular architectures suitable for
molecular electronic devices [6,9,15,16]. Furthermore, the electrically gated manipulation
of spin states (spintronic devices) has been demonstrated in Mn(II)-containing terpyridine–
metal complexes [5].

Current-voltage characteristics of molecular wires, based on metal–organic frame-
works, have been studied previously by current sensing atomic force microscopy [17]
and STM [18] techniques. Metal–organic wire systems also include bis(terpyridine)metal
wires [6,7,19–23] with reported attenuation factor in the range β = 0.07−0.001 Å−1. Based
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on this low conductance attenuation ability, bis(terpyridine)metal wires are excellent candi-
dates for long-distance charge transport that surpass even the charge transport characteris-
tics reported for oligo-porphyrin molecular wires [18,24–27].

Self-assembled monolayers (SAMs) of ruthenium and osmium–bis-terpyridine com-
plexes, with pendant 4-pyridyl substituent serving as an anchoring group, were studied
in the work of Figgemeier et al. [28]. These authors used STM and electrochemistry for
the characterization of SAMs on a Pt electrode. Higher surface coverage was found for the
osmium complex compared with ruthenium one; whereas, Frumkin isotherm was utilized
to account for the repulsive interactions within the monolayer. Electrochemical behavior in
different solvents was explained by different solvents’ ability to screen charges according
to its polarity. These authors also calculated the interaction energies between molecules
within the monolayers. They found higher values for ruthenium complexes compared
with their osmium analogues, which is consistent with the higher repulsive interactions
observed for ruthenium complexes.

The present work studies the electrochemical and charge transport properties of SAMs
containing molecules that can be connected to gold electrode via three thiolate anchors, as
seen in Figure 1. Such tripodal arrangement should provide better geometry [13,14,29–32]
and enhanced electronic coupling between the electrode and redox switching element [33].
In our previous work [34], we reported that molecules shown in Figure 1 form SAMs
with higher surface coverage for molecule Os-tripod compared with Ru-tripod, with less
pronounced mutual interaction between redox centers. Interestingly, surface coverage
was higher than that reported by Figgemeier et al. [28] for pyridine-anchored molecules,
confirming favorable upright orientation of redox centers due to the presence of covalently
bonded tripodal pedestals. We also reported electron transfer (ET) rate constants for these
SAMs. They were obtained by three independent electrochemical methods, providing the
value of 1.4 × 103 s−1 for Os-tripod SAM and 1.6 × 103 s−1 for Ru-tripod SAM. Thus, ET
was slightly faster within the Ru-tripod SAMs.
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Figure 1. (a) Schematic arrangement of molecule with [M(tpy)2]2+ redox center in STM experiment;
(b) chemical structure of Ru-tripod and Os-tripod molecules.

2. Results and Discussion

SAMs of molecules shown in Figure 1 were prepared on a large monocrystalline
Au(111) on mica electrode and studied using a combination of cyclic voltammetry and
scanning probe techniques. Figure 2 shows a typical cyclic voltammogram (CV) obtained
in the acetonitrile solvent, using a tetrabutylammonium hexafluorophosphate (TBAPF6)
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supporting electrolyte for the oxidation of the Os-tripod SAM, chemisorbed either on
a polycrystalline gold bead (a) or a monocrystalline Au(111) on mica (b) electrode, for
comparison. In both cases, the electrochemical behavior of the Os-tripod SAM was similar.
Namely, during the first potential scan in the positive potential direction, two distinct
current peaks were observed; the first peak disappeared upon repeated electrode potential
cycling between the negative and positive potential directions, leading to a final steady-
state CV, shown in the red color. It has characteristics typical of a 1-electron reversible
surface-confined redox system with repulsive interactions between the individual redox-
active moieties, meaning that the full width at half maximum of the peak current is larger
than 90.6 mV, which is theoretically predicted for non-interacting redox centers in the
adsorbed state [34]. Figure 3 shows the same type of the voltammetric experiment for
the Ru-tripod SAM. CV shows only one oxidation and one reduction peak, independent
of the type of the gold electrode substrate or the number of the potential cycles needed
to reach the final steady-state signal. Thus, the main difference between these two films
seems to be the molecular arrangement within the SAM structure. The full electrochemical
characterization of the final voltammograms on the gold bead electrode has been provided
in our previous publication [34]. In summary, the surface concentration of the Os-tripod
film was found to be higher than that of the Ru-tripod SAM; whereas, from the comparison
of the full width at half maximum of the peak current, it was concluded that the repulsion
interactions are more pronounced in the Ru-tripod SAMs. This difference in the degree of
repulsive interactions was used to explain the higher surface concentration of Os-tripod
molecules in the compact SAM, compared with the Ru-tripod SAM [34].

Previously obtained results, as well as the present measurements on Au(111) elec-
trode surface, are in very good agreement with experimental observations reported by
Figgemeier et al. [28] for ruthenium and osmium–terpyridine complexes anchored to the
electrode by only one anchoring group; the only difference being a much higher sur-
face concentration of tripodal molecules reported in this work compared with monopo-
dal molecules. The saturation surface concentration of monopodal ruthenium and os-
mium complexes on the Pt electrode surface was reported to be (2.5 ± 0.2) × 10−11

and (3.3 ± 0.2) × 10−11 mol cm−2, respectively. The same procedure, using the charge
under the oxidation and reduction peaks, led to the value of (4.0 ± 0.2) × 10−10 and
(4.5 ± 0.2) × 10−10 mol cm−2 for the Ru-tripod and Os-tripod SAMs on the polycrystalline
gold bead electrode [34]. The difference in the saturation surface concentration between
this work and that of Figgemeier et al. [28] stems from the use of different anchoring groups.
Whereas the aforementioned [28] authors used a conventional pyridine anchor, we used a
tripodal thiol-based anchoring group. In the former case, the bond between the nitrogen
and Pt is not particularly strong, thus allowing the movement of the redox centers on the
electrode surface and enabling the repulsive interactions between the individual molecules
to dictate the surface concentration, leading to a rather loose packing. In the case of a
thiolate–gold bond (three bonds per one redox unit), the redox centers are less likely to
move away from each other on the electrode surface due to their repulsive interactions
(compare CVs in Figures 2 and 3). Our tripodal anchors thus dictate the packing of the
molecules on the electrode surface, and at the same time keep the redox units more or less
perpendicular to the electrode surface. This arrangement allows more individual molecules
to be packed within the SAM. Our previous studies of SAMs using similar tripodal an-
choring groups [14] reported a surface concentration of 5.2 × 10−10 mol cm−2 for compact
monolayers, which is close to the values reported in this work.
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After we confirmed similar CV behavior for both polycrystalline and monocrystalline
gold electrodes (see Figures 2 and 3), we subjected the SAMs chemisorbed on the monocrys-
talline Au(111) to atomic force microscopy (AFM) studies. The AFM method is based on
surface imaging at the preset constant force between the tip and the SAM surface. AFM
was used with the tapping mode regime to avoid damage to the SAM. Corresponding AFM
topography images for the Os-tripod SAM are shown in Figure 4, and for the Ru-tripod
SAM in Figure 5. Each figure provides two images. The left image (a) was obtained from
the SAM surface directly after its preparation. The right image (b) was taken from the
part of the surface that was subjected to the CV experiment (red curves) shown in either
Figure 2b for the Os-tripod SAM or in Figure 3b for the Ru-tripod SAM, respectively.
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All topography images in Figures 4 and 5 represent a surface area of 3 × 3 µm2. The
main difference between the Os-tripod and Ru-tripod SAMs concerns the overall surface
structure appearance. Even though we are not able to achieve molecular level resolution
or confirm the existence or absence of more than one layer of molecules on the electrode
surface, we know that the surface coverages, based on the experimentally-determined
surface concentrations on the bead electrodes, must be very close to one (the exact value
would, of course, depend on the molecular packing model used). Nevertheless, comparison
of the AFM images of the Os-tripod and Ru-tripod SAMs before the electrochemical
experiment indicates the presence of a higher number of small and evenly distributed
islands of Ru-tripod molecules, compared with the lower number of larger ones for Os-
tripod molecules. Height profiles along the selected lines in the AFM images confirm this
statement. Whereas, for the Os-tripod SAM (Figure 4a), height changes of less than 1 nm
can be observed in the AFM image, much larger differences in the height profile—spaced at
much shorter lateral distances—can be obtained for Ru-tripod SAM (see Figure 5a). What
is more important is the effect of the electrode potential cycling on the topography of the
compact films. In this work, we have been able to show that the surface topography does
change for the Os-tripod SAM; meanwhile, it stands virtually the same in the case of the
Ru-tripod films (compare Figures 4 and 5). One can argue that in the case of the Ru-tripod
film, the islands are even more equally distributed, but the overall characteristics of the
layer stay the same. On the other hand, the Os-tripod SAM, after the potential cycling
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leads to the formation of larger adlayer structures (similar to Ostwald ripening process).
This process can be considered a convincing demonstration of the less repulsive nature of
mutual interactions between the individual redox centers in Os-tripod SAMs compared
with Ru-tripod ones. At this point, we should note that AFM images were obtained ex situ,
in the air, before and after the electrochemical experiments shown in Figures 2b and 3b.
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We attempted to provide more insight into the observed experimental differences in
CV and AFM measurements by using quantum chemical calculations of the interaction
energies Eint between two molecules of either Ru-tripod or Os-tripod complexes, in the
form of acetyl-protected thiols. Calculations were performed for neutral clusters including
two PF6

- counterions per molecule in vacuo. Final geometry-optimized cluster structures
are shown in Figure 6. Computational details are given in the Section 3.5.

The Eint was calculated using the equation Ecluster − (E1 + E2) where Ecluster is the
energy of the cluster of two Ru-tripod or Os-tripod molecules, and E1 and E2 are the
energies of individual molecules.
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The value of Eint calculated for the Ru-tripod cluster is −33.9 kcal/mol, and for
the Os-tripod cluster is −37.4 kcal/mol. This difference indicates that the formation of
Os-tripod clusters is more likely than the formation of Ru-tripod clusters, which is in
accordance with our AFM observations. These results are further supported by different
distances between Os atoms (9.98 Å) and Ru atoms (10.69 Å) in the calculated cluster
geometries. These calculations also provide the rationale for greater repulsive interactions
between individual Ru-tripod molecules in self-assembled monolayers observed in the
cyclic voltammetric studies. Indeed, the full width at half maximum of the CV peak for the
Os-tripod SAM is 103 mV (see Figure 2); whereas, it is 138 mV for the CV peak of the Ru-
tripod SAM (see Figure 3). The counterions also play an important role in the stabilization
of the self-assembled monolayers. We have observed that the average distance between
the central Os atom and nearest neighbor P atoms (of hexafluoro phosphate anions) is
5.63 Å, whereas it is 6.10 Å for the central Ru atom and nearest neighbor P atoms. Even
though our Eint calculated values cannot be directly compared with the interaction energies
obtained by Figgemeier et al. [28] for their molecules, we observed the same trend. Namely,
that the interaction energy of Os-containing complexes in the SAM has a higher negative
value compared with Ru-containing complexes. These authors employed a statistical
mechanical treatment in which they had to assume the number of nearest neighbors within
the monolayer.

Knowing the state of the SAMs, and employing the AFM imaging, we utilized STM
methodology [35,36] to obtain the conductance G of both Au|SAM assemblies. In this work,
we characterized SAMs of Os-tripod and Ru-tripod using a series of current–voltage (I–V)
and current–distance (I–z) measurements. The I–V characteristics of molecular wires [37]
provided the value of conductance G from their slope—at low bias voltage V—in the
so-called ohmic regime. Values reported here represent G, calculated as ∆I/∆V within
the ± 0.01 V interval. In this work, we measured the conductance values at four constant
distances between the gold substrate and tip, which were accomplished by applying four
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different setpoint currents, namely 0.1, 0.2, 0.5 nA and 1 nA. A statistically-significant
number of I–V curves were analyzed at each setpoint current to provide the resistance
R = 1/G for the Au|SAM system. These measurements were taken using freshly prepared
Os-tripod and Ru-tripod SAMs. Figure 7 shows the resistance histograms for Au|Os-
tripod and Au|Ru-tripod SAM systems, obtained by the evaluation of 500 I–V curves at
each setpoint current. The inset shows the AFM image of the actual sample being analyzed.
In general, the lower the setpoint current (and the further the distance of the gold tip from
the SAM surface) the larger the Gaussian peak width, and the wider the spread of resistance
values. In addition, the shorter the distance between the Au|SAM surface and the gold tip,
the more closely the I–V curves should represent the conductance of the SAM, without a
significant contribution from the through-space (through-air) tunneling.
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Table 1 summarizes the most probable resistance (conductance) values of the Au|SAM
systems, obtained from the histograms in Figure 7, at four distances from the SAM surface.
One can see that the obtained resistance (conductance) of the Os-tripod SAM is always
higher (lower) than that of the Ru-tripod one. This would mean that the osmium-based
monolayer as prepared is less conducting, based purely on the tunneling current measure-
ments. Table 1 clearly shows that the conductance decays exponentially with the distance,
since G values obtained from I–V curves scale linearly with the setpoint currents used.
Assuming the simple Simmons model for temperature-independent non-resonant tunnel-
ing [38–40] one can assign a constant effective tunneling barrier height to each Au|SAM
system, which would be obviously lower for the Ru-tripod SAM. In this model, an electron
with an effective mass m tunnels through a rectangular barrier of height ∆E to the inter-
electrode distance d. The current drops exponentially, providing I~exp(−βd), where the
attenuation factor β has the form (2/h̄)

√
2m∆E.
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Table 1. Resistance (MΩ) and conductance (nS) values for Au|SAM systems obtained from I–V
curves at different setpoint currents indicated, and at constant bias voltage of 0.05 V. Potential sweep
rate was 0.38 V/s.

Setpoint Current * 0.1 nA 0.2 nA 0.5 nA 1.0 nA

Ru-tripod SAM 552.0 ± 73.1 MΩ
1.81 ± 0.24 nS

271.8 ± 31.6 MΩ
3.68 ± 0.43 nS

111.7 ± 8.2 MΩ
8.95 ± 0.65 nS

53.9 ± 5.5 MΩ
18.6 ± 1.9 nS

Os-tripod SAM 557.0 ± 74.6 MΩ
1.79 ± 0.24 nS

281.6 ± 19.3 MΩ
3.55 ± 0.24 nS

114.0 ± 9.5 MΩ
8.77 ± 0.73 nS

57.0 ± 4.3 MΩ
17.5 ± 1.3 nS

* Resistance (conductance) values obtained from Gaussian peak fits of the histograms in Figure 7.

At this point, we measured the current–distance (I–z) curves for both systems, from
which one can obtain the effective tunneling barrier height directly through the evaluation
of the attenuation factor β. The measurements were taken at three distances of the gold tip
from the Au|SAM system, which were realized by the preset constant value of the setpoint
current indicated in the figure caption. Each histogram in Figures 8 and 9 represents
300 current–distance experimental curves. The darkest areas indicate the most frequently
observed [log(I);z] data pairs. Data were further analyzed to obtain the most probable
linear dependence between the log(I) and z values. This analysis required us first to
determine the most probable [log(I);z] data pair from the histograms in Figures 8 and 9.
This was accomplished by finding the most probable z value from the best Gaussian fit of
the dominant z peak (one-dimensional z histogram), observed at constant log(I) value, i.e.,
along the horizontal line at any preselected log(I) value. After the most probable [log(I);z]
data pairs were obtained, they were used to calculate the most probable linear dependence
between log(I) and z (see red line in Figures 8 and 9). The slopes of the best linear, least
square fits to these red lines are summarized in Table 2.
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change of the SAM in the case of the Os-tripod film. The actual values of the attenuation 
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Figure 8. 2D semilogarithmic histogram of tunneling current–distance (I–z) curves for the Os-tripod
SAM on Au(111): (a) before; (b) after cyclic voltammetry experiment. Three sets of I–z curves were
measured starting at setpoint currents of 0.1 nA, 0.2 nA and 0.4 nA. Approach rate was 1 nm s−1, bin
size log(I) = 0.02, z = 0.02 nm. Red line represents the best least square fit of the most probable log(I)
values as a function of z.
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Table 2. Attenuation factor β for Au|SAM systems obtained from tunneling current–distance curves
by statistical analysis.

System
Attenuation Factor

Before CV After CV

Ru-tripod SAM (0.693 ± 0.012) nm−1 (0.668 ± 0.007) nm−1

Os-tripod SAM (0.468 ± 0.005) nm−1 (0.843 ± 0.021) nm−1

Figure 8 shows the 2D semilogarithmic histogram of the I–z curves for the Os-tripod
SAM before and after electrochemical experiment. Figure 9 shows the same for the Ru-
tripod SAM. Although there is a slope change in the log(I)-z histogram for osmium-based
films before and after the electrochemical experiment, no such change was observed for Ru-
tripod SAMs. This result is in accordance with the AFM observation of the structural change
of the SAM in the case of the Os-tripod film. The actual values of the attenuation factors β
are summarized in Table 2. They represent the slopes of the red lines in Figures 8 and 9.
The β attenuation factor of the Ru-tripod SAM changes only slightly from 0.693 nm−1

to 0.668 nm−1; however, there is a significant change in the β value for the Os-tripod
film upon cyclic voltammetric experiment. The β value, corresponding to the Os-tripod
SAM structure shown in Figure 4b, is 0.843 ± 0.021 nm−1, which is much higher than
0.668 ± 0.007 nm−1 obtained for the Ru-tripod SAM (see corresponding SAM structure
in Figure 5b). This experimental result means that the effective barrier height for charge
transport should be much smaller for the Ru-tripod SAM compared with the Os-tripod
SAM structure.

Comparing the results from STM characterization using both I–V and I–z measure-
ments, one can state that based on the I–V curves, the Au|SAM structure based on Os-
tripod molecules has lower conductance, while the current (conductance) attenuation
factor changes dramatically upon cycling between two redox states of this transition metal
complex. In any case, the lower conductance value for the Os-tripod SAM observed in this
work is in accordance with previously observed differences in the electron transfer rate
constants of these layers, pointing to the energetically more demanding but faster process,
in the case of ET in Ru-tripod SAMs.
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3. Materials and Methods
3.1. Chemicals and Materials

Molecules for the preparation of the Os-tripod and Ru-tripod SAMs were prepared ac-
cording to previously described procedures in the form of thiol-protecting acetates [13,34,41].
The following chemicals were used as received: gold wire, 0.25 mm in diameter, 99.99+%
purity, Goodfellow; ferrocene, 98%, Fluka, Switzerland; ethanol, 99.8%, molecular biology
grade, Applichem GmbH, Germany and p.a. Penta, Czech Republic; triethylamine,≥99.5%,
BioUltra, Sigma-Aldrich, Belgium; nitric acid, 65%, p. a. Lach-Ner, Czech Republic; sulfuric
acid, 96%, p. a. Lach-Ner, Czech Republic; hydrogen peroxide, 30%, p. a. unstabilized,
Lach-Ner, Czech Republic; argon gas, 99.998%, Messer, Czech Republic. Acetonitrile, 99.8%,
anhydrous, Sigma-Aldrich, Germany was dried with activated sieves size 0.3 nm, Lachema,
Czech Republic. Further treatment to remove water residue was performed by alumina
powder activated in the oven at 200 ◦C. Tetrabutylammonium hexafluorophosphate, ≥99%,
p. a., for electrochemical use, Sigma-Aldrich, Switzerland was dried in the oven at 80 ◦C
before use.

All glassware, PTFE chambers and Kalrez O-rings for SAM preparation, electrochem-
istry and STM characterization were cleaned by boiling in 25% nitric acid, which was
followed by repeated boiling in deionized water of resistivity 18.2 MΩ cm and maximum
TOC 3 ppb (Milli-Q Integral 5 water purification system, Merck Millipore, Saint-Quentin
Fallavier, France).

3.2. SAM Preparation

Au bead electrodes (area 0.267 cm2, determined experimentally in 0.1 M sulfuric
acid [42]) were cleaned in freshly prepared Piranha solution (sulfuric acid and peroxide
in the v/v ratio 3:1) and flame-annealed with a butane torch before the SAM deposition.
CAUTION: Piranha solution must be handled with care! Au(111) on mica (area 1× 1.1 cm2,
Keysight technologies, Wokingham, UK) electrodes were flame-annealed with the butane
torch and cooled down under the argon atmosphere before SAM formation. Glass weighing
bottles were filled with 3.3 mL of 5 × 10−5 M ethanolic solution of either Os-tripod or Ru-
tripod acetate-protected molecules. Triethylamine deprotecting agent (0.33 mL) was added
immediately after immersion of the gold electrodes. Bottles were de-aerated with argon
gas and closed. They were kept in closed PTFE chambers at 60 ◦C for 19 h. Subsequently,
each substrate was washed copiously—at least five times—with absolute ethanol and dried
in a stream of Ar gas. Au bead electrodes were used for comparative CV measurements
and Au(111) electrodes were used for cyclic voltammetry, AFM and STM measurements.

3.3. Electrochemistry

Cyclic voltammetry measurements were performed in an all glass, electrochemical
three-electrode cell. Gold electrodes served as the working electrode, Pt wire as the auxil-
iary electrode and a Ag|AgCl|1 M LiCl electrode served as the reference electrode. The
latter was separated from the main compartment by a salt bridge via double-fritted junc-
tion. Oxygen was removed by a stream of Ar gas, which blanketed solution throughout
the experiment. Ferrocene was used as an internal standard. All CV experiments were
performed using potentiostat PGSTAT30 (Metrohm, Herisau, Switzerland) equipped with
an FRA2 impedance module. Positive feedback iR compensation was used.

3.4. AFM and STM Measurements

AFM imaging and STM spectroscopy of SAMs in the air were performed using Agilent
5500 Scanning Probe Microscope (Agilent Technologies, Palo Alto, CA, USA). Tapping mode
AFM was used for obtaining topography images, using AAC cantilevers of the nominal
resonant frequency 190 kHz and nominal force constant 48 N/m. STM measurements were
performed with electrochemically-etched gold tips, according to the etching procedure
reported elsewhere [43]. AFM images were examined using SPM data visualization and
analysis software Gwyddion 2.41 (Czech Metrology Institute, Jihlava, Czech Republic) [44].
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All shown AFM images were plane corrected. Each current–voltage I–V curve was obtained
at constant distance between STM tip and substrate (defined by the selected setpoint current
value and bias voltage 50 mV). During I–V curve measurements, the substrate voltage was
swept between −0.2 V and 0.2 V at one of the two potential sweep duration times, 0.48 s
or 1.04 s. For each STM tip–substrate distance, 500 curves were collected, each containing
2000 data points. Resistance values were obtained from the slopes of the individual I–V
curves, within the potential range between −0.01 V and 0.01 V. These measurements
were obtained from SAM samples that were subjected to topographic AFM imaging only.
Current–distance (I–z) curves were initiated at three different distances from the electrode
(100 curves for each starting position), and can be considered as the STM tip approach
curves. The starting z piezo position was determined by selected sample bias (50 mV)
and setpoint current value, and maintained by a feedback loop between each I–z curve
measurement. The approach rate was 1 nm s−1. Data at three setpoint currents (0.1, 0.2 and
0.4 nA) were grouped together and a 2D histogram of [log(I);z] pairs was computed using
the bin size of log(I) = 0.02 and z = 0.02 nm. Further analysis required construction of 1D
histograms of z values at preselected log(I) (horizontal lines in 2D histograms), followed by
the Gaussian fit of the dominant z peak. These thus-obtained points (Gaussian maxima)
were fitted to a straight line (see red lines in Figures 8 and 9). STM measurements were
performed on samples before as well as after CV measurements.

3.5. Theoretical Calculations

Clusters of Ru-tripod and Os-tripod complexes (see Figure 6) were formed from two
Ru-tripod and Os-tripod molecules. The geometry-optimized structures of individual
Ru-tripod and Os-tripod molecules are not shown.

Firstly, the Ru-tripod complex was geometry optimized by B3LYP [45] functional ap-
plied within the density functional theory (DFT). DFT calculation included a D3 dispersion
coefficient [46]. The 6-31G(d) basis set for S, N, H, O atoms [47–51] and the LANL2DZ [52]
basis set (including relevant relativistic pseudopotential) for Ru atoms were used. The
polarizable continuum model (PCM), describing acetonitrile as solvent, was also used [53].
This geometry-optimized task was performed by Gaussian quantum chemistry program
version 09 [54]. This complex was modelled with positive charge 2 e. The vibration analysis
was performed within linear harmonic approximation. No imaginary frequencies were
obtained by this vibrational analysis. Secondly, on the basis of the geometry-optimized
structure of the Ru-tripod complex, the new complex of Ru-tripod cation interacting with
two PF6

− counterions was prepared. The structure of this molecule was geometry opti-
mized (in vacuo) by using program MOPAC [55] as implemented in the graphical user
interface of ADF program version 2017 [56]. For the geometry optimization step, the
semiempirical PM6-D3H4 method was used. The calculations performed by PM6-D3H4
method using PCM approach are not implemented in the GUI of the ADF program used.
Therefore, these calculations were performed in an in vacuo environment. The PM6-D3H4
quantum chemistry method included corrections to hydrogen bonding and dispersion
interactions [57]. The resulting Ru-tripod structure was used for geometry optimization of
the Ru-tripod cluster (consisting of two Ru-tripod molecules). The electronic energy of the
geometry-optimized cluster was used as the value of Ecluster energy for calculation of the
Eint energy. Finally, the individual Ru-tripod molecules were geometry optimized using
PM6-D3H4 method, starting from the geometry of individual molecules in the geometry-
optimized Ru-tripod cluster in vacuo. The resulting structures of molecules 1 and 2, and
their electronic energies E1 and E2 were used for calculation of the Eint energy according
to the equation Eint = Ecluster − (E1 + E2). The initial structure of the Os-tripod cluster
(consisting of two Os-tripod molecules) was created through the substitution of Ru atoms
with Os atoms. Then, the Os-tripod cluster was geometry optimized using PM6-D3H4
method. The Eint was calculated using the same procedure as used for the Ru-tripod cluster
mentioned above.



Molecules 2022, 27, 8320 13 of 15

4. Conclusions

A combined electrochemical and scanning probe microscopy study of the conductance
properties of SAMs of two transition metal complexes, with a rigid tripodal anchoring
scaffold to the conducting substrate, has been discussed. The AFM characterization of
SAMs revealed the differences in the overall structural details between the Ru-tripod
and Os-tripod SAMs, in accordance with different degrees of repulsive interactions as
observed by cyclic voltammetry. A quantum-chemical computation of the interaction
energies between molecules also supports this observation. The conductance properties of
each film were studied by scanning tunneling spectroscopy, assuming a simple Simmons
model for non-resonant tunneling in the Au|SAMs. The conductance values at different
distances from the SAM surface were systematically lower for Os-tripod molecules, in-
dicating better conductance of Ru-tripod SAMs. The later SAMs are characterized by a
lower surface concentration of Ru-tripod molecules on the electrode surface, with more
evenly distributed molecules. Both AFM and STM characterization showed changes in
the structural and conducting characteristics of Os-tripod SAMs upon cyclic voltammetric
experiment, i.e., upon the redox switching of the Os2+/3+ center in the transition metal
complex. Interestingly, the conductance characteristics of these SAMs obtained in the
non-resonant tunneling regime correlate with the electron transfer rate constants obtained
for SAMs in a classical electrochemical experiment. Our results demonstrate the promising
potential of tripodal scaffolds for the fabrication of molecular electronic devices profiting
from the electrochemical features of the molecular layer, where such tripodal architectures
enhance control and stability over the surface geometry, and thus improve the arrangement
of the exposed functionality on metallic surfaces.
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