
Engineering Algorithms for
Dynamic and Time-Dependent

Route Planning

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tim Zeitz

Tag der mündlichen Prüfung: 9.12.2022
Erste Referentin: Prof. Dr. Dorothea Wagner
Zweiter Referent: Prof. Dr. Matthias Müller-Hannemann

i

Acknowledgements

I want to start this thesis by thanking a number of people. First of all, I want to thank Dorothea
Wagner for offering me a position at her group, for her supervision, her pragmatic management,
and for establishing an environment where we could focus on research without worrying about
much else. It was a privilege to do research under these conditions.
I want to thank my colleagues for making this such a fun place to work. A huge thank

you to Jonas Sauer for countless scientifically fruitful DOS and counter-DOS attacks, for his
proofreading, for his work on whiteboard animal species protection, for always answering the
call of duty and for generally being an awesome office mate. I want to thank Torsten Ueckerdt
for math consulting, Paul Jungeblut and Laura Merker for keeping the Maracuja in check, Marcel
Radermacher for his input on approximation algorithm, Lukas Barth for bringing hacker culture
to the group, Thomas Bläsius for hiring foosball-playing PhD students, Christopher Weyand and
Marcus Wilhelm for pointing me at subpath optimality at a critical moment, Michael Zündorf
for last-minute LATEX and typography support, and last but definitely not least Michael Haman
for getting me into research. I also want to thank the route planners Moritz Baum, Tobias
Zündorf and Valentin Buchhold for many fruitful discussions and finding the fastest way to the
cafeteria.1 Further, I want to thank Ben Strasser for the research directions he gave me at the
beginning of my PhD. These ideas proved immensely fruitful throughout this work. There are
also a few colleagues whose work often goes vastly underappreciated. A huge thank you to Ralf
Kölmel for managing our server infrastructure and making everything appear to just workTM.
Also, thank you to Lilian Beckert, Laurette Laufer, Tanja Wehrmann, and Isabelle Junge for
doing all the office management and handling all the bureaucracy.

This work also greatly benefited from several proofreaders. As alreadymentioned, Jonas Sauer
did much of that, but I also want to thank my colleagues Paul Jungeblut and Lars Gottesbühren.
Further, thank you to Matthias Grundmann and Stephan Heidel for providing helpful feedback
on the introduction.
I would also like to thank Alexander Kleff and Frank Schulz from PTV for the pleasant,

informal cooperation, the interesting problems they suggested and for providing easy access to
production-grade routing data for our research.

Lastly, I want to thank the people outside of academia who helped me through this project. I
want to thank my parents for encouraging me to start my PhD and to follow through with it.
Finally and most importantly, I want to thank my wife Ann-Sophie for her love and encourage-
ment, her practical support, for enduring me in the times when this project did not go quite so
well and for keeping me sane in insane times.
1Not over the bridge!

iii

Abstract

Efficiently computing shortest paths is an essential building block of many mobility applications,
most prominently route planning/navigation devices and applications. In this thesis, we apply
the algorithm engineering methodology to design algorithms for route planning in dynamic
(for example, considering real-time traffic) and time-dependent (for example, considering traffic
predictions) problem settings. We build on and extend the popular Contraction Hierarchies (CH)
speedup technique. With a few minutes of preprocessing, CH can optimally answer shortest
path queries on continental-sized road networks with tens of millions of vertices and edges in
less than a millisecond, i.e. around four orders of magnitude faster than Dijkstra’s algorithm. CH
already has been extended to dynamic and time-dependent problem settings. However, these
adaptations suffer from limitations. For example, the time-dependent variant of CH exhibits
prohibitive memory consumption on large road networks with detailed traffic predictions.
This thesis contains the following key contributions: First, we introduce CH-Potentials, an

A*-based routing framework. CH-Potentials computes optimal distance estimates for A* using
CH with a lower bound weight function derived at preprocessing time. The framework can
be applied to any routing problem where appropriate lower bounds can be obtained. The
achieved speedups range between one and three orders of magnitude over Dijkstra’s algorithm,
depending on how tight the lower bounds are. Second, we propose several improvements to
Customizable Contraction Hierarchies (CCH), the CH adaptation for dynamic route planning.
Our improvements yield speedups of up to an order of magnitude. Further, we augment CCH
to efficiently support essential extensions such as turn costs, alternative route computation
and point-of-interest queries. Third, we present the first space-efficient, fast and exact speedup
technique for time-dependent routing. Compared to the previous time-dependent variant of CH,
our technique requires up to 40 times less memory, needs at most a third of the preprocessing
time, and achieves only marginally slower query running times. Fourth, we generalize A* and
introduce time-dependent A* potentials. This allows us to design the first approach for routing
with combined live and predicted traffic, which achieves interactive running times for exact
queries while allowing live traffic updates in a fraction of a minute. Fifth, we study extended
problem models for routing with imperfect data and routing for truck drivers and present
efficient algorithms for these variants. Sixth and finally, we present various complexity results
for non-FIFO time-dependent routing and the extended problem models.

v

Contents

Abstract iii

1 Introduction 1
1.1 Related Work . 3

1.1.1 Route Planning in Static Road Networks 3
1.1.2 Dynamic Route Planning . 5
1.1.3 Time-Dependent Route Planning . 6
1.1.4 Dynamic and Time-Dependent Route Planning 7
1.1.5 Other Extended Route Planning Problems 8

1.2 Contribution and Outline . 9
2 Preliminaries and Notation 11

I Modelling 13
3 Formalizing Routing Problems 15

3.1 Dynamic Route Planning . 16
3.2 Time-Dependent Route Planning . 17

3.2.1 Complexity . 19
3.2.2 Shortest Travel Time Profiles . 20
3.2.3 Accelerating Time-Dependent Route Planning 21

3.3 Dynamic and Time-Dependent Route Planning 21
3.4 NP-Hardness of Shortest Path Problems in Networks with Non-FIFO Time-

Dependent Travel Times . 22

Contents

vi

4 Route Planning Data 29
4.1 Data Sources and Instance Extraction . 29

4.1.1 9th DIMACS Implementation Challenge 29
4.1.2 PTV . 30
4.1.3 TomTom . 30
4.1.4 OpenStreetMap . 31
4.1.5 Mapbox . 31
4.1.6 BMW and Here . 32

4.2 Benchmark Instances . 33
4.2.1 Static Road Networks . 33
4.2.2 Networks with Traffic Predictions . 33
4.2.3 Real-Time Traffic Snapshots . 36

II Speedup Techniques 37
5 Fundamental Algorithms and Data Structures 39

5.1 Representing Graphs . 39
5.2 Dijkstra’s Algorithm . 39
5.3 A* . 41
5.4 Contraction Hierarchies . 41

5.4.1 (R)PHAST . 42
5.4.2 Bucket Query . 43

5.5 Timestamp Arrays . 44
5.6 Periodic Piecewise Linear Functions . 44

6 A Fast and Tight Heuristic for A* in Road Networks 45
6.1 The Incremental Many-to-One Problem . 46

6.1.1 Lazy RPHAST . 47
6.2 Optimizations for A* in Road Networks . 48

6.2.1 Low-Degree A* Improvements . 48
6.2.2 Bidirectional A* . 49

6.3 The CH-Potentials Framework . 51
6.3.1 Formal Problem Setup: Inputs, Outputs, and Phases 51
6.3.2 CH-Potentials . 52
6.3.3 Applications . 52

6.4 Evaluation . 54
6.4.1 Lazy RPHAST . 55
6.4.2 CH-Potentials Heuristic . 57
6.4.3 Bidirectional A* . 59
6.4.4 Applications . 61

6.5 Conclusion . 64

Contents

vii

7 The Customizable Contraction Hierarchies Framework 65
7.1 Metric-Independent Preprocessing . 66

7.1.1 Ordering . 67
7.1.2 Contraction . 68
7.1.3 Elimination Tree . 69
7.1.4 Reconstructing Separator Decompositions 69

7.2 Customization . 70
7.2.1 Batched Triangle Relaxation . 72
7.2.2 Parallelization . 74

7.3 Queries . 75
7.4 Extended Queries . 76

7.4.1 Lazy RPHAST on CCH . 76
7.4.2 Nearest Neighbor Queries . 77
7.4.3 Alternative Routes . 79
7.4.4 Turn Costs and Restrictions . 80

7.5 Evaluation . 83
7.5.1 CCH Performance . 84
7.5.2 Lazy RPHAST . 88
7.5.3 Point-of-Interest Queries . 90
7.5.4 Alternative Routes . 91
7.5.5 Turn Costs . 92

7.6 Conclusion . 95
8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks 97

8.1 Shortcut Unpacking Data . 99
8.2 Preprocessing . 102

8.2.1 Pruning . 104
8.2.2 Perfect Customization . 105
8.2.3 Parallelization . 105
8.2.4 Approximation . 105

8.3 Queries . 106
8.3.1 Earliest Arrival Queries . 106
8.3.2 Profile Queries . 110

8.4 Evaluation . 112
8.4.1 Preprocessing . 114
8.4.2 Queries . 117
8.4.3 Comparison with Related Work . 121

8.5 Conclusion . 124

Contents

viii

9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials 125
9.1 Model Refinement . 126
9.2 Time-Dependent A* Potentials . 127
9.3 Lazy RPHAST-based Time-Dependent Potentials 129

9.3.1 Multi-Metric Potentials . 130
9.3.2 Interval-Minimum Potentials . 131
9.3.3 Optimizations . 132
9.3.4 Compression . 133

9.4 Evaluation . 134
9.5 Conclusion . 139

III Extended Problem Settings 141
10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch

with Lazy RPHAST 143
10.1 Smooth Paths . 144
10.2 Complexity . 145
10.3 Algorithms . 146

10.3.1 Avoiding Blocked Paths . 147
10.3.2 Efficient UBS Computation . 149
10.3.3 Iterative Path Fixing . 151

10.4 Evaluation . 152
10.5 Conclusion . 158

11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and
Rated Parking Areas 159
11.1 Problem . 161
11.2 Algorithm . 162
11.3 Analysis . 164

11.3.1 Intractability of the General Problem . 165
11.3.2 Tractable Problem Variant . 167

11.4 Implementation . 170
11.5 Evaluation . 170
11.6 Conclusion . 175

12 Conclusion 177

Bibliography 179

List of Acronyms 201

List of Symbols 205

Contents

ix

A The Customizable Contraction Hierarchies Framework: Additional Experi-
mental Results 213
A.1 Customization . 213
A.2 Lazy RPHAST . 213
A.3 Nearest-Neighbor . 214
A.4 Turn Costs . 217

B CH-Potentials and CCH-Potentials in Comparison 219

C CATCHUp: Additional Experimental Results 223

D Time-Dependent A* Potentials: Additional Experimental Results 227

E Smooth Path Performance Profiles 233

F Temporary Road Closures: Visualization ofQuery Sets A1 and A2 239

Deutsche Zusammenfassung 241

1

1 Introduction

Recent years have seen a drastic increase in the usage of mobile navigation applications. Tradi-
tionally, route planning had to be done manually with a road atlas while listening to the traffic
radio. Nowadays, mobile navigation applications find suitable routes within the blink of an eye.
Due to the proper integration of live traffic data, one does not even need to worry about whether
a detour around a traffic jam is worth it. Combined with advanced turn-by-turn guidance, this
makes navigating road networks much more comfortable. It may even help to distribute the
traffic load better over the network, to avoid further congestion, and thus to reduce emissions.

Integrating traffic data into the routing is crucial to obtaining “good” routes [DGPW17]. Even
users knowing their way often use navigation applications because of the traffic information.
Traffic data comes in two variants: On the one hand, there is data on the current traffic situation.
This data is highly dynamic and depends on the current time of day. On the other hand, there
are predictions on recurring traffic flows caused, for example, by commuters. To integrate traffic
predictions into the routing, the travel time of a road segment can be considered dependent on
the time of day when it is traversed. Such time-dependent predictions change less frequently,
i.e. are usually not dynamic. In contrast, dynamic live traffic data does have a time-dependent
component. Traffic jams will resolve at some point in the future. Planning a detour around
congestion 400 kilometres away is not necessarily helpful. The subject of this thesis is the
development of practical routing algorithms that integrate dynamic and time-dependent data.

For the practicality of routing algorithms, three central requirements have emerged: Interac-
tive running times to compute routes, exactness with regards to the chosen problem model and
a simple implementation. The history of navigation devices and routing applications demon-
strates why these requirements are critical [DSSW09]. Classical navigation devices for cars have
been commercially available since the 1980s. These devices applied heuristic methods to obtain

Chapter 1 Introduction

2

Algorithm

Engineering

Ex
pe
rim

ent
Im

pl
em

en
t

Analyze

D
es
ig
n

Model Figure 1.1: A visualization of the algorithm engineering methodol-
ogy as introduced by [San09] and [MS10]. Algorithm engineering
is a cyclic process consisting of modelling the problem, followed
by the design and analysis of an algorithm, which is subsequently
implemented and experimentally evaluated, before the next cycle
begins. Figure kindly provided by Tobias Zündorf [Zün22].

routes in reasonable computation times [IOAI91]. This sometimes resulted in questionable
route suggestions. In the early 2000s, the first results on speedup techniques for efficient and
provably exact shortest path computation in road networks were published [SWW00, Lau04,
GH05, SS05]. The core ingredient of these techniques is an offline preprocessing phase where
some auxiliary data is computed from the road network. Utilizing this auxiliary data, shortest
path computations can be accelerated significantly. Building on these still relatively complicated
techniques, the first web-based navigation applications went online, most prominently Google
Maps, and quickly became successful. Around 2010, several results were published which
made speedup techniques significantly simpler [GSSD08, GSSV12] and more flexible [DSW16,
DGPW17]. This enabled the widespread adoption of these techniques. Today, many commercial
and non-commercial navigation applications and websites are built on these results.

While algorithms for route planning are already widely used, there is still room for improve-
ment. For example, algorithms for time-dependent route planning are often very complicated
and prohibitively resource-hungry. For dynamic route planning, the situation is better and
efficient algorithms exist. However, even handling minor extensions to the problem can be
surprisingly challenging. Designing extensible and flexible routing algorithms is an open chal-
lenge. The situation is especially unsatisfactory for routing considering real-time and predicted
traffic. To the best of our knowledge, no efficient and exact algorithm for this problem has been
presented in the literature. With this thesis, we aim to approach these problems and advance
the state of the art in dynamic and time-dependent route planning algorithms. We do so using
the algorithm engineering methodology.

Methodology. The development of algorithms aimed at practical requirements is the goal
of the algorithm engineering research methodology [San09, MS10]. Algorithm engineering
complements classic algorithm theory through experimental studies. The methodology is a
specialized application of Popper’s scientific method with its cycle of hypothesis building and
experimental validation or falsification. It can be depicted as a cyclic process with five stages,
as visualized in Figure 1.1. In the model stage, the practical problem is formalized. Routing
problems in road networks can be formalized as the shortest path problem on directed, weighted
graphs. This problem can be solved with the classical textbook algorithm of Dijkstra [Dij59],

Related Work Section 1.1

3

and from a purely theoretical algorithms standpoint, there appears to be little room for improve-
ment [Tho04]. However, the focus on practical applications allows for a crucial refinement of
this simple model. Many shortest path queries will have to be answered on the same unchanging
network for typical routing applications. Therefore, it may pay of to invest some time prepro-
cessing the network and precomputing auxiliary data, which can help to accelerate shortest path
computations. Thus, a refined problem model has two phases: An offline preprocessing phase
and an online query phase. Designing and analyzing an efficient algorithm for this problem
make up the next two steps of the methodology. These steps coincide with classical algorithm
theory. However, the focus lies on practical performance rather than asymptotic worst-case
bounds. Therefore, the algorithm is then implemented and optimized, taking into account
the features of modern computer architectures, such as cache memory and parallelism. The
final step is the experimental evaluation with realistic problem instances. Insights gained from
the experiments may lead to new ideas for refinements of the model, the algorithms or the
implementation, which may be realized following iterations of the methodology.

1.1 Related Work

The algorithm engineering methodology has been successfully applied in the context of naviga-
tion applications. A wide range of speedup techniques has been developed [Bas+16]. In the
following, we highlight key results for the classical shortest path problem on road networks.
Then, we discuss adaptions of these techniques, first, to dynamic and second, to time-dependent
problem models. Third, we look at settings with combined dynamic and time-dependent data.
Finally, we briefly touch on other route planning problems and applications.

1.1.1 Route Planning in Static Road Networks

A* [HNR68] is a classical approach to accelerate shortest path queries by directing the search
towards the target through heuristic distance estimates. It is one of the algorithms fundamental
to our work (a technical introduction will be given in Section 5.3). A* has been successfully em-
ployed in many problems beyond route planning [SHB14, Coh+18, BGHS19]. The performance
of A* depends on the quality of the heuristic estimates. For example, while geographic distances
may seem like a natural choice for distance estimates in road networks, the resulting heuristic
is relatively ineffective: it performs worse than Dijkstra’s algorithm [GH05]. A more accurate
heuristic can be obtained with ALT [GH05, GW05], one of the early speedup techniques for
routing in road networks. It uses precomputed distances to specific landmark vertices combined
with the triangle inequality to compute distance estimates. On road networks, this achieves
speedups of around two orders of magnitude over Dijkstra’s algorithm.
Arc-Flags [Lau04, Lau06] is another speedup technique employing goal-direction. During

preprocessing, the vertices are partitioned into several cells. Each edge is associated with a
bitvector where the 𝑖th bit indicates whether the edge lies on any shortest path toward cell 𝑖 .
At query times, edges without the flag for the cell of the target vertex can be ignored. For long-

Chapter 1 Introduction

4

range queries, Arc-Flags obtains speedups of over three orders of magnitude over Dijkstra’s
algorithm. However, the preprocessing takes hours which is comparatively expensive and
produces large amounts of auxiliary data.

Hierarchical speedup techniques utilize the inherent hierarchy in road networks. The critical
observation is that large parts of the road network are only relevant to few shortest paths. Rural
roads and residential areas are examples for such rarely relevant parts. In contrast, highways
are relevant to almost all long-range routes. To a lesser extent, this also holds for country
roads. Thus, there are many vertices which lie on few shortest paths and few vertices which lie
on many shortest paths. The earliest approach explicitly utilizing this insight was Highway
Hierarchies (HH) [SS05]. Highway Node Routing [SS07] improves on HH with a simpler query
procedure and is significantly more space-efficient. Contraction Hierarchies (CH) [GSSV12]
refines and simplifies the hierarchical approach further. Arguably, CH currently is the most
popular speedup technique. It has been used successfully in many real-world applications, and
several open-source implementations exist.1 It also is a fundamental algorithm for this work.
In the preprocessing step, the “importance” of vertices is determined heuristically. Additional
shortcut edges are inserted, which allow skipping over less important vertices at query time.
The process of inserting shortcuts skipping over a vertex is the name-giving contraction. On
continental-sized road networks, this results in queries taking less than a tenth of a millisecond.
This is more than four orders of magnitude faster than Dijkstra’s algorithm. The preprocessing
takes only a few minutes and produces little more auxiliary data than the input graph.
There are many works augmenting CH for extended problems. For example, the auxiliary

data from CH preprocessing can be used for query types other than point-to-point. PHAST,
a one-to-all CH query variant from one source vertex to all other vertices, was introduced
in [DGNW13]. RPHAST [DGW11] is a PHAST extension for one-to-many queries to a subset of
vertices known in advance. In [GV11], turn information is integrated into CH. Considering that
a left turn often takes significantly longer than going straight ahead is critical for high-quality
routing in cities. The proposed CH extension achieves fast queries, but preprocessing becomes
an order of magnitude slower than classical CH. Another extension considers alternative route
computation [ADGW13]. CH-based techniques will also be discussed in the following sections.

Another important hierarchical speedup technique is Multi-Level-Dijkstra (MLD). For MLD,
important vertices are determined based on a multi-level partition of the network computed
during preprocessing. MLD was initially used to accelerate shortest path computations on
public transit networks [SWW00, SWZ02, HSW08] but variants specifically engineered to road
networks have also been proposed [Del+06]. MLD only utilizes the network topology hierarchy
but not the hierarchy in the edge weights. Therefore, it is much more robust against edge
weights with a less pronounced hierarchy such as geographic distances. Many variants with
different performance trade-offs exist. With the most recent results [DGPW17], queries are
slightly slower than CH queries but still around three orders of magnitude faster than Dijkstra’s
algorithm. The memory consumption is even smaller than with CH.

1https://gist.github.com/PayasR/bc46af938195a827e42006c3f5544e4a

https://gist.github.com/PayasR/bc46af938195a827e42006c3f5544e4a

Related Work Section 1.1

5

Hierarchical and goal-directed speedup techniques have also been combined [GKW07]. For
example Core-ALT [Bau+10] is an accelerated ALT variant where the goal-directed search is
only performed on a core of important vertices. This yields speedups of about three orders
of magnitude compared to Dijkstra’s algorithm. SHARC [BD09] combines Arc-Flags with
shortcuts. This significantly improves the expensive preprocessing of Arc-Flags, and queries
also become slightly faster. CHASE [Bau+10] combines CH with Arc-Flags for query times
within a few tenths of microseconds.

The speedup technique currently known for achieving the fastest queries is Hub Labels
(HL) [ADGW12, DGW13]. With HL, query times in less than a microsecond are possible. That
is the same time as a few uncached memory accesses. These query speeds come at the cost of
an expensive preprocessing phase and a tremendous memory footprint, more than an order of
magnitude larger than the input graph.
Clearly, the design space for speedup techniques for computing shortest paths in road

networks has been thoroughly explored. A variety of techniques with different trade-offs has
been introduced. Interestingly, it is not the fastest techniques which have become most popular.
For example, despite the extremely fast query times, it appears that the trade-off offered by
HL is, in practice, often not very attractive. Simpler techniques like CH already offer queries
fast enough to completely disappear behind other parts of practical applications (for example,
network latency). We observe that simplicity and extensibility, while quite important in practice,
have rarely been addressed explicitly in existing research. Therefore, in this thesis, we aim
to design algorithms which do not solely optimize running times but are also extensible and
straightforward to implement.

1.1.2 Dynamic Route Planning

Some speedup techniques were extended to dynamic scenarios. Highway Node Routing [SS07]
supports single edge weight updates within a few milliseconds, complete metric updates within
a few minutes and fast queries. However, since then, little development has happened on HNR
because CH superseded it.

A*/ALT-based approaches were also among the early techniques [DW07] for dynamic route
planning. However, because the heuristic is ALT-based, the accuracy of the estimates is limited,
and the resulting query performance is not competitive. Further, the evaluation was performed
with only synthetic traffic data. As we show in Chapter 8, the problem becomes significantly
more challenging when using production-grade real-world traffic data. Using Core-ALT in a
dynamic context was studied in [DN12]. Even though Core-ALT is significantly faster than
pure ALT, the obtained speedups are not competitive with purely hierarchical techniques.

Customizable Route Planning (CRP) [DGPW17] is an engineered variant [DGPW11] of MLD
which was developed to allow updating weights without invalidating the entire preprocessing.
For this, a second, faster preprocessing phase is introduced, which takes at most a few sec-
onds [DW13]. This phase is called the customization. It can be run regularly to update weights.
This enables the integration of dynamic live traffic. Further, it is possible to model user prefer-

Chapter 1 Introduction

6

ences in a custom metric per user. Queries in CRP take at most a few milliseconds. Because CRP
is built on MLD and utilizes a multi-level partition to determine the hierarchy, the performance
is similar for any metric. CRP is one of the few examples of a speedup technique designed for
flexibility rather than maximum query performance. For example, CRP was designed to support
turn costs without additional modifications. Further, computing not only the shortest path
but a set of reasonable alternatives is also possible in the CRP framework. Refined CRP-based
methods for alternative routes have been extensively discussed in [Kob15]. Efficiently realizing
Point-of-Interest queries in CRP has been studied in [DW15]. However, as discussed in the next
section, the flexibility of CRP also has limits.
The three-phase setup has proven to be instrumental in supporting live traffic in practical

applications [CP12]. Therefore, a CH variant operating in this three-phase setup also has been
developed: Customizable Contraction Hierarchies (CCH) [DSW16]. CCH also uses a multi-level
separator decomposition of the road network to obtain a CH order that only depends on the
network topology and not on the edge weights. CCH queries are roughly as fast as CH queries,
i.e. an order of magnitude faster than MLD/CRP. Improved customization algorithms were
proposed in [BSW19]. Moreover, a CCH extension for efficient Point-of-Interest queries was
presented in [BW21].

Both CRP and CCH are routing frameworks that have received considerable research interest.
CRP, to this day, provides the most feature-complete routing framework and many essential
extensions such as alternative routes and turn costs can be supported. CCH, in contrast, although
conceptually more straightforward, is less flexible and fewer extensions have been proposed.
For example, neither turn costs nor computing alternative routes have been studied in a CCH
context. Still, CCH query times are somewhat faster than CRP. We conclude that making CCH
more extensible would be a worthwhile endeavour to advance dynamic route planning.

1.1.3 Time-Dependent Route Planning

Several time-independent speedup techniques have been generalized to the time-dependent
setting. However, dealing with travel time functions instead of scalar weights makes the pre-
processing much harder and leads to difficult trade-offs. ALT [GH05] has been generalized to
TD-ALT [NDSL12] and successively extendedwith vertex contraction to TD-CALT [DN12]. Even
combined with approximation, TD-CALT queries may take longer than 10ms on continental-
sized graphs. SHARC [BD09] was extended to the time-dependent scenario [Del11]. Additionally,
it can be combined with ALT into L-SHARC [Del11]. There also is a heuristic SHARC vari-
ant [Del11] which can find short paths in less than a millisecond. However, the preprocessing
becomes quite expensive and takes hours, even on country-sized networks.

Both CH and MLD have been extended to time-dependent routing. MLD/CRP [DGPW17] has
been extended to TD-CRP [BDPW16]. Like CRP, TD-CRP follows a three-phase approach and
has a relatively fast customization phase. However, achieving reasonable memory consumption
and query times was only possible by giving up exactness. Further, TD-CRP can only compute
approximate shortest distances rather than paths.

Related Work Section 1.1

7

There are several approaches based on Contraction Hierarchies [GSSV12, Bat14]. Three
were introduced by Batz et al. in [BGSV13]: Time-dependent CH (TCH), inexact TCH, and
Approximated TCH (ATCH). TCH has fast queries but a costly preprocessing phase taking
several hours and may produce prohibitive amounts of auxiliary data, i.e. hundreds of Gigabytes.
The amount of auxiliary data can be reduced at the cost of exactness (inexact TCH) or query
performance (ATCH). An open-source reimplementation of [BGSV13] named KaTCH2 exists. A
simple heuristic named Time-Dependent Sampling (TD-S) was introduced by Strasser [Str17].
It samples a fixed set of weight functions with scalar values from the time-dependent functions.
For each of these weight functions, a time-independent CH is constructed. To answer queries,
a shortest path in each sample is computed. These paths are then combined into a small
subgraph, and a non-accelerated time-dependent query is performed on the subgraph. This
simple approach requires only manageable auxiliary data and produces surprisingly good results
but is, of course, not exact.
Another approach is FLAT [Kon+16] and its extension CFLAT [Kon+17]. CFLAT features

sublinear query running time after subquadratic preprocessing and guarantees a maximum
approximation error. It uses timestamped combinatoric structures to represent the changes in
shortest paths over time and computes travel times lazily. Unfortunately, preprocessing takes
long in practice and generates prohibitive amounts of auxiliary data.

We observe that all existing approaches either produce prohibitive amounts of auxiliary data
during preprocessing, have slow queries or are not exact. However, all these properties are
essential in practice. Therefore, there is still significant room for making time-dependent route
planning more practical.

1.1.4 Dynamic and Time-Dependent Route Planning

The combination of dynamic and time-dependent traffic information has not received as much
research interest as the individual problems. Dynamic updates to time-dependent information
have been studied for both ALT [DW07] and Core-ALT [DN12]. However, even for Core-ALT,
running times are only competitive for approximate queries.

TD-CRP [BDPW16] has a customization phase where time-dependent travel time functions
may be exchanged. In the evaluation in [BDPW16], the customization takes a fraction of a
minute, which would be fast enough for regularly integrating real-time traffic updates. However,
the evaluation was only performed on relatively old instances with little traffic prediction
information. It is unclear how well this customization algorithm scales to instances with more
and more complex predictions. Also, queries are inexact without any approximation guarantee,
and path retrieval is not supported.
The TD-S heuristic [Str17] employs a different approach to model real-time traffic. The

predicted time-dependent travel times remain unchanged. However, queries do not search for
shortest paths for the predictions but with respect to a new travel time function which combines

2https://github.com/GVeitBatz/KaTCH

https://github.com/GVeitBatz/KaTCH

Chapter 1 Introduction

8

real-time traffic and traffic predictions. In this combined function, it depends on the evaluation
time, whether the predicted or the real-time travel time is used. The real-time information
is used only when the evaluation time is sufficiently close to the time the real-time data was
observed. Still, TD-S is only a heuristic and will not necessarily find shortest paths.

Another approach with a similar problem model is described in a Google Patent [Gei15]. The
algorithm proposed in the patent starts with an unaccelerated Dijkstra search on the network
with real-time traffic information. This search runs until the distances exceed the assumed
validity of the real-time traffic (for example, 30 minutes). Then, a (possibly time-dependent) CH
search is performed from many sources to the target. The CH search sources are the remaining
active vertices in the queue of the Dijkstra search with their respective distances. This algorithm
finds exact shortest paths. However, its performance depends on the assumed validity time
for the real-time traffic information. Further, it inherits all performance problems of TCH
mentioned in the previous section. Moreover, to the best of our knowledge, no research paper
introduces it in greater detail and evaluates it compared to other approaches.
We conclude that an efficient and exact technique for routing in a setting with combined

predicted and real-time traffic is still an open problem.

1.1.5 Other Extended Route Planning Problems

Many problem extensions other than dynamic and time-dependent routing have been considered
in the literature. For example, electric vehicle routing has been studied extensively [EFS11,
Bau18, Bau+19b, Bau+20]. Multi-criteria optimization is another problem variant which appears
in many applications [GKS10, FNS16]. Routing with incomplete and noisy traffic data has been
studied in [DSS18]. Finding reliable routes with stochastic routing has also received considerable
research interest [Kob15, PYJ20]. Another topic which introduces interesting challenges is truck
driver routing. Traversing certain roads with a truck may only be allowed at certain times.
Further, there are regulatory driving time constraints. Finding appropriate parking locations
for mandatory breaks may also be challenging. These problems have been studied in [TWB18].

So far, we have only discussed routing in road networks. While beyond the scope of this work,
we still want to point out that journey planning in public transit networks is also a relevant
routing problem and an area of active research [Bau+19a, Zün22]. Sometimes the problem
is even modelled as a time-dependent shortest path problem [PSWZ07, KMPZ22]. However,
public transit networks have a fundamentally different structure than road networks. Thus,
timetable-based approaches are often more effective [DPSW13, DPW15, Wit15]. Therefore, in
this work, we focus only on road networks.

Another related problem outside the scope of this work is the Vehicle Route Planning (VRP)
problem. However, the problem is more related to the traveling salesman problem than to
the point-to-point shortest path problems we study in this thesis. Time-dependent shortest
path algorithms are sometimes used as a subroutine in time-dependent vehicle routing prob-
lems [HZVG17]. For an overview over time-dependent VRP and other time-dependent routing
problem variants we refer to [GGG15].

Contribution and Outline Section 1.2

9

1.2 Contribution and Outline
This thesis aims to advance routing algorithms in dynamic and time-dependent problem settings
by applying the algorithm engineering methodology. It is organized into three parts. The first
part deals with translating practical navigation application problems intowell-defined theoretical
computer science problems. In Chapter 3, we discuss our problem models for dynamic and
time-dependent routing problems. The chapter also includes some refined complexity results on
time-dependent shortest path problems. Chapter 4 contains a detailed discussion of our routing
data sources and how we extract benchmark instances to evaluate our algorithms.
The second part focuses on speedup techniques for shortest path computations. Chapter 5

gives a formal introduction to the existing algorithms and techniques on which we build. In
Chapter 6, we introduce CH-Potentials, a novel CH-based A* heuristic. In contrast to most other
speedup techniques, we design this approach for extensibility rather than maximum query
performance. The result is a surprisingly flexible building block. On the one hand, CH-Potentials
is an effective speedup technique on its own and can be applied directly to all problem models
discussed in this work. On the other hand, it is an extremely useful subroutine, and we utilize it
in all but one of the following chapters. Chapter 7 discusses the Customization Contraction
Hierarchies framework. Its contribution is threefold: We review recent advances on CCH,
present several incremental improvements, and provide an extensive evaluation of the current
state of the art of CCH. Our improvements yield speedups of up to an order of magnitude for
the different phases. As a result, CCH running times are now competitive with both CH and
CRP. Further, with our extensions, CCH now supports all necessary features for a practical
route planning framework. The refined CCH algorithms are also an essential ingredient in
the following three chapters. In Chapter 8, we present Customizable Approximated Time-
Dependent Contraction Hierarchies through Unpacking (CATCHUp), a speedup technique
for time-dependent routing. To the best of our knowledge, it is the first technique that is
space-efficient, fast and exact at the same time. In Chapter 9, we introduce a time-dependent
generalization of A* potentials. We then combine the results from the previous three chapters
and present two efficient realizations of such time-dependent potentials. We use these potentials
to design the first exact technique for route planning with combined predicted and real-time
traffic information with interactive query performance.
In the third part, we prove the extensibility of the techniques from the second part and

apply them to extended problem formulations. In Chapter 10, we study shortest smooth paths.
This problem model aims to avoid undesired detours due to incomplete and noisy real-time
traffic data. We settle its theoretical complexity and present exact and heuristic algorithms
outperforming the state of the art by around two orders of magnitude. Previously, this problem
has only been studied for dynamic route planning. Using our time-dependent A* potentials, we
can also approach this problem with predicted traffic and combined traffic. Finally, in Chapter 11,
we present a problem model for truck routing which integrates time-dependent temporary
driving bans and necessary parking breaks. We also give a CH-Potentials-based exact algorithm
that can answer realistic queries in less than a second, enabling practical applications.

11

2 Preliminaries and Notation

In this chapter, we introduce fundamental concepts and notation used throughout this work.
Our notation follows a few basic conventions such that the formatting of symbols indicates
the type of the represented object. For example, we use calligraphic letters A,B, C, . . . to
represent sets. Capital letters 𝐴, 𝐵,𝐶, . . . indicate tuples, sequences or intervals. Lower case
letters 𝑎, 𝑏, 𝑐, . . . are used primarily for elementary variables. We use Greek letters 𝛼, 𝛽,𝛾, . . .
for parameters of instances, problems or algorithms. However, there are a few exceptions
where some Greek letters have a well-established meaning, for example, Y as an infinitesimal
small number. When symbols represent concrete objects in an implementation context instead
of abstract mathematical objects, we indicate this by using a monospace font A, B, C, For
example D[i] would represent the value of an array D at index i.

We consider directed graphs 𝐺 = (V, E) where E ⊆ V × V with 𝑛 = |V | vertices and𝑚 = |E |
edges. We use 𝑢𝑣 as a short notation for an edge from a tail vertex 𝑢 to a head vertex 𝑣 .
The reversed graph ←−𝐺 = (V,←−E) contains a reversed edge 𝑣𝑢 for every edge 𝑢𝑣 ∈ E . The
neighborhood N (𝑣) of a vertex 𝑣 is the set of adjacent vertices 𝑢 such that there is an edge from
𝑣 to 𝑢. Further, we denote the number of neighbors deg(𝑣) = |N (𝑣) | as the degree of 𝑣 . The
undirected neighborhood

←→
N (𝑣) of a vertex 𝑣 is the set of adjacent vertices 𝑢 in terms of edges in

either direction, i.e.←→N (𝑣) = {𝑢 | 𝑢𝑣 ∈ E ∨ 𝑣𝑢 ∈ E} and←→deg(𝑣) the corresponding undirected

degree. Note that we mainly work with simple graphs throughout this work, i.e. there are no
multiedges and no loops. However, there are a few exceptions which we will address explicitly.
Nevertheless, to ease notation, we will provide basic definitions only in terms of simple graphs.
A sequence of vertices 𝑃 = (𝑣1, . . . , 𝑣𝑘) where 𝑣𝑖𝑣𝑖+1 ∈ E is called a path. Paths may be non-

simple, i.e. contain the same vertexmultiple times. We denote by 𝑃𝑖, 𝑗 = (𝑣𝑖 , . . . , 𝑣 𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘

a subpath of 𝑃 . If it is clear that a path is simple and more convenient to notate we will

Chapter 2 Preliminaries and Notation

12

also use 𝑃 𝑣𝑖 ,𝑣 𝑗 = 𝑃𝑖, 𝑗 as a subpath notation. The concatenation of two paths is written as
(𝑢, . . . , 𝑣) · (𝑣, . . . ,𝑤) = (𝑢, . . . , 𝑣, . . . ,𝑤).
Edge length functions ℓ : E → (ℝ → ℝ≥0) (sometimes also called weights) map edges to

time-dependent functions, which in turn map a departure time 𝜏 at the tail 𝑢 to a travel time
ℓ (𝑢𝑣) (𝜏). To simplify notation, we will often write ℓ (𝑢𝑣, 𝜏). When it is clear from the context
that we are writing about constant functions, we omit the time argument and write ℓ (𝑢𝑣). For
time-independent length functions, we also define the corresponding reversed weight functions:
←−
ℓ (𝑣𝑢) = ℓ (𝑢𝑣). From a time-dependent length functions, we can obtain constant lower and
upper bound functions ℓ (𝑒) = min𝜏∈ℝ ℓ (𝑒, 𝜏) and ℓ (𝑒) = max𝜏∈ℝ ℓ (𝑒, 𝜏). Note that even though
we defined length functions for the most general case on ℝ, we restrict ourselves to integer-
defined functions whenever possible. This primarily simplifies the implementation but also has
complexity implications as we show in the next chapter.
We extend the definition of length functions to paths. The length/travel time of a path

𝑃 = (𝑣1, . . . , 𝑣𝑘) is defined recursively ℓ (𝑃, 𝜏) = ℓ (𝑣1𝑣2, 𝜏) + ℓ ((𝑣2, . . . , 𝑣𝑘), 𝜏 + ℓ (𝑣1𝑣2, 𝜏)). The
travel time of a path with only one vertex (or less) is zero. A path’s travel time can be obtained
by successively evaluating travel times of the edges of the path.
We are interested in computing shortest paths. A shortest path from 𝑠 to 𝑡 for the departure

time 𝜏dep, is a path such that no other 𝑠𝑡 path departing at the same time has a shorter length.
We denote the length of such a shortest path as the distance dist(𝑠, 𝑡, 𝜏dep). When there are
multiple relevant length functions, for example ℓpred and ℓlive, we write distpred and distlive to
denote the respective shortest distances. When referring to distances with respect to constant
bounds ℓ or ℓ of a time-dependent length function ℓ , we will use the notation dist and dist,
respectively. The time-dependent function of shortest travel times 𝑓 (𝜏) = dist(𝑠, 𝑡, 𝜏) is denoted
as the travel time profile of 𝑠 and 𝑡 .

For any time-dependent travel time function 𝑓 , we define the respective arrival time function

𝑓 (𝜏) = 𝑓 (𝜏) + 𝜏 . This often simplifies the notation when dealing with the travel time functions
of paths. For example, for two edges 𝑢𝑣 and 𝑣𝑤 , the travel time function for traversing them
successively is ℓ (𝑢𝑣, 𝜏) + ℓ (𝑣𝑤, 𝜏 + ℓ (𝑢𝑣, 𝜏)) while in arrival time representation the result is just
the composition ℓ̂ (𝑣𝑤, ℓ̂ (𝑢𝑣, 𝜏)). However, to simplify notation further for travel time functions,
we will simply write ℓ (𝑢𝑣) ⊕ ℓ (𝑣𝑤) to denote the travel time function of first traversing 𝑢𝑣 and
then 𝑣𝑤 , i.e. (ℓ (𝑢𝑣) ⊕ ℓ (𝑣𝑤)) (𝜏) = ℓ (𝑢𝑣, 𝜏) + ℓ (𝑣𝑤, 𝜏 + ℓ (𝑢𝑣, 𝜏)). We write 𝑓 |𝑇 to denote a partial
function equal to 𝑓 for any 𝜏 ∈ 𝑇 , and otherwise undefined. In a slight abuse of notation, we
use the union operator to denote the combination of partial functions, i.e. 𝑓 |𝑇 ∪ 𝑓 |𝑇 ′ = 𝑓 |𝑇∪𝑇 ′ .

In this work, time-dependent travel time functions for graphs are typically periodic piecewise

linear functions (PPLF) represented by a sequence of breakpoints. They are defined on a limited
time interval which we call horizon 𝐻 . Typically, the horizon covers one day. We denote the
number of breakpoints in piecewise linear function 𝑓 as the complexity |𝑓 |.

Part I

Modelling

15

3 Formalizing Routing Problems

A properly formalized problem is essential not only to the algorithm engineering methodology
but to any algorithmic study. Therefore, we begin this thesis by discussing problem models for
routing applications. This chapter focuses on the theoretical side. The complexity proofs in
Section 3.4 are based on our article [Zei22b] published in Information Processing Letters. In the
second chapter of this part, we discuss available routing data sets and how we derive realistic
problem instances from them, which enable practically conclusive experimental evaluations.

The core task of navigation applications is to find “good” routes between two locations. This
task admits a very natural problem model. The road network is modelled as a directed graph.
Vertices represent intersections. Road segments are modelled as edges. Edges are weighted
by their traversal time. Matching the source and target locations onto respective vertices (or
positions on edges), we can obtain a route by solving the classical shortest path problem (SPP).

Definition 3.1 (ShortestPathProblem). Given a weighted, directed graph 𝐺 = (V, E)
with a non-negative scalar edge length function ℓ : E → ℤ≥0 and vertices 𝑠 and 𝑡 , obtain a path

from 𝑠 to 𝑡 in 𝐺 of length dist(𝑠, 𝑡).

This is a classical problem of theoretical computer science, and it has been studied since at
least the 1950s. It can be solved efficiently with well-known algorithms such as the one by
Bellman and Ford [Bel58] or, most importantly for this thesis, the algorithm of Dijkstra [Dij59].
Even though it is already more than half a century old, it is still considered the practically fastest
algorithm for this general problem [Bas+16]. Nevertheless, Dijkstra’s algorithm is too slow on
realistic problem instances such as the ones we will consider throughout this thesis. It takes
seconds to answer point-to-point shortest path queries on continental road networks. This is
infeasible for practical applications. Fortunately, improvements are possible when considering

Chapter 3 Formalizing Routing Problems

16

a more realistic model based on a simple observation: Practical applications do not answer
singular, isolated shortest path queries. Instead, many shortest path queries will be answered
on the same rarely changing graph. This allows a problem formalization with two phases.
During an offline preprocessing phase, the graph 𝐺 = (V, E) with its weights ℓ is given. A

preprocessing algorithmmay compute auxiliary data, possibly taking a long (but still reasonable)
time. The second phase is the online query phase. Here, many source-target pairs 𝑠, 𝑡 ∈ V
are provided, and the shortest distances on 𝐺 must be computed quickly. Crucially, the query
algorithm may utilize the auxiliary data from the preprocessing to accelerate shortest path
computations. We denote this as the two-phase shortest path problem.

The Case for Exactness. In this thesis, we go to great lengths to solve problems exactly. While
ad-hoc algorithms might be practically tempting, we believe that an adequately formalized
problem solved to exactness has great practical value. First, proper formalization is a prerequisite
to any theoretical study. Without a problem model, there is nothing to examine. Second, a
problem model allows a separation of concerns between routing data and algorithms. Each can
be refined independently. Third, implementations of exact algorithms are debuggable. If an
implementation produces unexpected results, the results can be verified. There might be a bug
in the implementation. Alternatively, there might be artefacts in the data causing the results.
It might even turn out that the problem formalization needs refinement. Nevertheless, in any
case, there is a clear path forward. Fourth and finally, obtaining exact results helps to present
users with a consistent worldview where travel times do not suddenly become better when the
user takes an unexpected alternative.
Of course, a chosen model sometimes appears infeasible to solve in a reasonable timeframe.

In that case, heuristic algorithms might be an option, ideally with approximation guarantees.
However, we only employ this strategy as a last resort. Often, a better alternative is to try to
find a refined, feasible problem model, like, for example, the two-phase model.

3.1 Dynamic Route Planning

One focus of this thesis is dynamic route planning. More specifically, our goal is to integrate
dynamic real-time traffic information into our route planning algorithms. The underlying
problem is still the SPP. However, the simple two-phase model becomes problematic. The
assumption that the graph 𝐺 = (V, E) is known at preprocessing time and will not change for
the queries is still valid. However, the edge lengths ℓ representing travel times will change due
to the current traffic situation. We consider two different formalizations for this problem.
In the first model, we want instantaneous traffic updates. Here, the edge weights are fully

dynamic and may change for any query. From an application perspective, this approach is most
flexible and yields accurate and up-to-date results at the moment of the request. However, from
an algorithm design perspective, the options to design speedup techniques are somewhat limited.
In a preprocessing phase, only the graph topology𝐺 = (V, E) could be utilized. However, we

Time-Dependent Route Planning Section 3.2

17

can also derive a model refinement based on the observation that traffic will only increase travel
times. For preprocessing, we can consider travel times without traffic, i.e. the preprocessing
also has access to a free-flow edge length function ℓfree. On the query side, the query weights ℓq
may change arbitrarily between queries but must adhere to one constraint: query travel times
must not be faster than the free-flow travel times, i.e. ℓq(𝑒) ≥ ℓfree(𝑒) for every edge 𝑒 ∈ E . We
denote this model as the two-phase shortest path problem with dynamic traffic weights.

We also consider a second model for live traffic built around batched traffic updates. Here, we
accept a slight delay before traffic updates must be reflected in the shortest paths. This delay
can be used for a second, faster preprocessing phase which we call the update phase. This phase
is often called customization in the literature. In this work, we distinguish between the update
phase and the customization algorithms as we sometimes apply customization algorithms in
other phases. We call this the three-phase shortest path problem. The advantage of this model is
that we do not need any additional constraints on the weights. In the preprocessing phase, only
the graph topology 𝐺 = (V, E) is given. The edge length function ℓ is provided in the update
phase. Finally, queries must be answered quickly for vertex pairs provided online on 𝐺 for the
current edge length function ℓ .

Dynamic route planning models provide excellent results for short-range queries. However,
for long-range queries where the user may drive for several hours, the traffic information used
to determine the route may be outdated when the user reaches later parts of the route. A
pragmatic mitigation for this problem is repeatedly recomputing the best path for the remaining
route while underway. However, sometimes a routing decision in the current moment has
far-reaching implications, for example deciding between a northern and a southern route from
Karlsruhe to Berlin. In such cases, a purely dynamic route planning model is not ideal.

3.2 Time-Dependent Route Planning
The other focus of this thesis is time-dependent route planning. Time-dependent routing is
primarily aimed at integrating traffic predictions. With traffic predictions, the travel time of
a road segment depends on the time at which it is traversed. Therefore, the classical shortest
path problem is insufficient to model this problem. Thus, we consider an extended problem
formulation, the time-dependent shortest path problem (TD-SPP):

Definition 3.2 (TimeDependentShortestPathProblem𝑇). Given is a weighted, di-

rected graph 𝐺 = (V, E) with time-dependent edge length functions ℓ : E → (𝑇 → 𝑇 ≥0) defined
over a domain𝑇 , vertices 𝑠 and 𝑡 , and a departure time 𝜏dep ∈ 𝑇 . Obtain a path in𝐺 departing at 𝑠

at instant 𝜏dep and arriving at the earliest possible time dist(𝑠, 𝑡, 𝜏dep) at 𝑡 .

This problem statement deliberately leaves out two crucial details: the representation of
the travel time functions and the time domain 𝑇 . Both have significant consequences as they
determine which operations can be implemented efficiently for travel time functions. Previous
works have established periodic piecewise linear functions (PPLF) as the standard function class
used in time-dependent routing. The sorted sequence of breakpoints is a compact and flexible

Chapter 3 Formalizing Routing Problems

18

𝑢 𝑣 𝑤
0 2 4 6 8 10

0
1
2
3
4
5

𝜏

ℓ (𝑢𝑣, 𝜏)

0 2 4 6 8 10
0
1
2
3
4
5

𝜏

ℓ (𝑣𝑤, 𝜏)

0 2 4 6 8 10
0
4
5
6
7
8

𝜏

ℓ ((𝑢, 𝑣,𝑤), 𝜏)

Figure 3.1: Example of the travel time of a path in either the integer or the rational/real domain. The
thick black crosses are the interpolation points of the piecewise linear functions. Interpolating linearly
with integer division between the breakpoints of the path travel time function leads to different results
than successively evaluating the travel time functions of the path edges.

representation. Functions can be evaluated in time logarithmic in the number of breakpoints with
a binary search for the adjacent breakpoints for a given evaluation time and then interpolating
linearly. As for the time domain, setting𝑇 = ℤ and using integers in some subsecond resolution1
appears to be the most desirable approach from an implementation perspective. When the linear
interpolation yields results outside of ℤ, integer division provides a convenient, efficient and
consistent way of rounding back into the domain. Calculating with integers avoids all of the
implementation complications associated with representations of fractional numbers or, even
worse, lossy representations of reals as floating point numbers. Therefore, using the TD-SPPℤ
to model time-dependent routing problems appears promising.
Sadly, this is not always possible. Practically, function evaluation is not the only important

operation. Another crucial operation is computing the function composition. This operation is
necessary whenever we need to obtain the travel time function of a path. For many algorithms
(for example [BGSV13] and Chapter 8), it is critical that composed functions

• stay in the same function class,

• remain as small as possible, i.e. have breakpoints at most linear in the number of break-
points of the composed functions,

• and can be computed efficiently, i.e. in linear running time in the output size.

PPLF on ℚ or ℝ support these requirements. On ℤ, however, this is not the case. The integer
rounding may introduce jumps in the composed function. See Figure 3.1 for an example. We
are aware of no better way to represent these jumps than to insert all the breakpoints. This
approach is infeasible because the input function sizes do not bound the number of these
additional breakpoints. Therefore, whenever we use algorithms that require computing exact
travel time function compositions, we must switch to the TD-SPPℚ or the TD-SPPℝ problem.
1A resolution in seconds is typically slightly too coarse. Many short edges (for example, for intersections modelled
in detail) would have travel times rounded down to zero.

Time-Dependent Route Planning Section 3.2

19

3.2.1 Complexity

Choosing a suitable function class and time domain is not the only complication with the
time-dependent shortest path problem. Additionally, the problem is only polynomially-time
solvable (assuming P ≠ NP) when certain constraints are placed on the travel time functions.
Most importantly, all travel time functions must conform to the first-in first-out (FIFO) property:
Definition 3.3 (First-In First-Out Property). A travel time function 𝑓 adheres to the first-in
first-out property when the following holds:

∀𝜏 ∈ 𝑇, Y > 0 : 𝑓 (𝜏) ≤ Y + 𝑓 (𝜏 + Y)

Assuming continuous functions, time intervals where the FIFO property is violated have
slopes less than -1 in travel time representation and slopes less than zero in arrival time
representation. Informally, the FIFO property holds when it is impossible to arrive earlier by
departing later. For networks where this property holds, the earliest arrival problem can be
solved efficiently with a variation of Dijkstra’s algorithm [Dre69].
The FIFO property might appear quite natural for travel times on road networks. However,

there are exceptions. An example in road networks might be an important tunnel which can only
be traversed during certain times. When arriving too early while the tunnel has not yet opened,
one may have to drive a longer detour. Of course, it may be possible to avoid such a detour
by waiting at the tunnel entry. Likewise, non-FIFO functions can be transformed into FIFO
functions when modelling waiting at the tail vertex as part of the travel time function. However,
allowing waiting at arbitrary locations and times may not always be a realistic modelling
assumption. Therefore, investigating the complexity of the problem in non-FIFO settings is also
relevant. The complexity of the shortest path problem in non-FIFO time-dependent networks
has been studied before, most prominently by Orda and Rom [OR90, OR91]. In [OR90], they
present several time-dependent shortest path algorithms and study different waiting policies.
They prove that under certain assumptions allowing waiting at the source vertex is sufficient to
find paths with the same arrival as the fastest path with waiting allowed everywhere. Also, they
present examples where the earliest arrival path has an infinite number of edges. See Figure 3.2
for an example. Therefore, searching for a shortest path is no longer a well-defined problem.
Many recent works [DW09, NDSL12, FHS14, GGG15] cite [OR90] stating that the TD-SPP

in non-FIFO time-dependent networks is NP-hard. However, the paper only states that the
hardness can be shown (second paragraph of Section 3.2) but does not provide any evidence.
Some works [Bat14] state the hardness referring to an unpublished manuscript by Orda and
Rom [OR89]. We could not find this manuscript in any public source but could only obtain it
through personal contact with the authors. In this manuscript, Orda and Rom proved the weak
NP-hardness of the time-dependent earliest arrival problem with travel time functions defined
on integers and forbidden waiting by reduction from FiniteFunctionGeneration. They
also show that the problem can be solved in pseudo-polynomial time. However, since the
proof is quite complex and was never published, we conducted our own study and reproduced,
simplified and extended the complexity results. We present the proofs in Section 3.4.

Chapter 3 Formalizing Routing Problems

20

𝑠 𝑣 𝑡
ℓ (𝑠𝑣, 𝜏) = 1

0 1 2
0

1
𝜏

ℓ (𝑣𝑣, 𝜏)

0 1 2
0

1

2

𝜏

ℓ (𝑣𝑡, 𝜏)

Figure 3.2: Example of a non-finite shortest path as previously observed in [OR90]. When departing at
𝜏dep = 0, the travel time from 𝑠 to 𝑡 decreases with each round through the loop at 𝑣 . Taking the loop 𝑘
times leads to an arrival time of 2 + 1

2𝑘 .

In the light of these complexity results, we follow previous practical works [DW09, NDSL12,
BGSV13, BDPW16] and only allow FIFO travel time functions for time-dependent routing
problems. At least for cars, there usually are sufficient possibilities for waiting and parking.
Therefore, we believe that this is a justifiable modelling decision. However, the situation is
significantly different for trucks. Therefore, in Chapter 11, we present a model specifically
developed to enable efficient routing while handling non-FIFO travel times and waiting only at
designated locations.

3.2.2 Shortest Travel Time Profiles

In time-dependent networks, asking for the shortest path when departing at a specific time is
not the only important problem. User may also want to know all shortest travel times (and the
respective paths) during a specific time window or the departure time for which the travel time
will be minimal. We formalize this as the travel time profile problem:

Definition 3.4 (TravelTimeProfileProblem𝑇). Given is a weighted, directed graph

𝐺 = (V, E) with a time-dependent edge length functions ℓ : E → (𝑇 → 𝑇 ≥0), vertices 𝑠 and 𝑡 , and
a time window 𝑇 ′ ⊆ 𝑇 . Obtain the time dependent function 𝑓 (𝜏) = dist(𝑠, 𝑡, 𝜏), 𝑓 : 𝑇 ′ → 𝑇 ≥0 of
the shortest travel times of paths in𝐺 departing at 𝑠 at any time 𝜏 ∈ 𝑇 ′ and arriving at the earliest
possible time at 𝑡 .

As shown by Foschini et al. [FHS14], with FIFO piecewise linear functions, the number of
breakpoints in such a profile may be super-polynomial in the input size. Therefore, we will
not be able to design guaranteed efficient algorithms for this problem. Nevertheless, we will
investigate algorithms achieving practically good performance.

Dynamic and Time-Dependent Route Planning Section 3.4

21

3.2.3 Accelerating Time-Dependent Route Planning

To improve running times in practice, we again consider two-phase variants of these time-
dependent routing problems, denoted as the two-phase time-dependent shortest path problem.
The graph 𝐺 and the time-dependent travel time functions ℓ are given during preprocessing. In
the online query phase, many source, target, departure (or time window) triples are queried. The
respective time-dependent shortest path problems must be solved quickly using the auxiliary
data from the preprocessing for acceleration. As the time-dependent functions are part of the
preprocessing, this problem model is only reasonable for rarely changing traffic predictions
such as commuter flows. However, considering only traffic predictions is also not satisfactory
in practice. Therefore, we propose a problem model for combined traffic information in the
next section.

3.3 Dynamic and Time-Dependent Route Planning

We consider a three-phasemodel to combine predicted and dynamic traffic information. As in the
two-phase time-dependent shortest path problem, the graph 𝐺 = (V, E) and a weight function
ℓpred of time-dependent traffic predictions are given in the preprocessing phase. Predicted travel
time functions are periodic piecewise linear functions represented by a sequence of breakpoints
covering one day. A preprocessing algorithm may now precompute auxiliary data, which may
take several hours. Preprocessing should still be fast enough to rerun it daily. In the update
phase, a weight function ℓlive of currently observed live travel times are given for the current
moment 𝜏now. These live travel times are time-independent and can be represented by a single
scalar value. Further, each edge 𝑒 has a point in time 𝜏end(𝑒) when we switch back to the
predicted travel time. For edges without live traffic data, we consider 𝜏end(𝑒) = 𝜏now. The update
phase will be repeated frequently and should be as fast as possible. For the query phase, we
define a combined travel time function:

ℓcomb(𝑒, 𝜏) =

ℓpred(𝑒, 𝜏) if 𝜏 ≥ 𝜏end(𝑒)
min(ℓlive(𝑒), ℓpred(𝑒, 𝜏end(𝑒)) + 𝜏end(𝑒) − 𝜏) else if ℓlive(𝑒) ≥ ℓpred(𝑒, 𝜏end(𝑒))
max(ℓlive(𝑒), ℓpred(𝑒, 𝜏end(𝑒)) − 𝜏end(𝑒) + 𝜏) else

Now, many shortest path queries (𝑠, 𝑡, 𝜏dep) where 𝜏dep ≥ 𝜏now should be answered as quickly
as possible by obtaining a path 𝑃 = (𝑠, . . . , 𝑡) that minimizes ℓcomb(𝑃, 𝜏dep). We denote this as
the three-phase combined traffic shortest path problem.

Note that with this model, we do not try to support fast updates to the travel time predictions.
The dynamic real-time traffic information ℓlive is handled separately from the traffic predictions
ℓpred. Fast prediction updates would, of course, also be desirable. However, the traffic predictions
are periodic, and traffic incidents are not expected to repeat after 24 hours. Therefore, separately
handling real-time traffic makes more sense than frequently adjusting predictions. Further, this
approach opens up possibilities for the design of efficient algorithms.

Chapter 3 Formalizing Routing Problems

22

𝑠 𝑣1 𝑣2 𝑣𝑘 𝑡

𝑎1

0

𝑎2

0

. . . 0 𝑏
0

𝑏 + 1

𝜏

ℓ (𝑣𝑘𝑡, 𝜏)

Figure 3.3: Transformed TDEA instance for SubsetSum instance (A = {𝑎1, . . . , 𝑎𝑘 }, 𝑏).

3.4 NP-Hardness of Shortest Path Problems in Networks with
Non-FIFO Time-Dependent Travel Times

In this section, we present a simple proof of the weakNP-hardness of the earliest arrival problem
on networks with time-dependent travel times defined on integers when waiting is forbidden.
Additionally, this proof implies that the problem becomes strongly NP-hard when the functions
are defined on rational numbers. Further, we show that the problem remains strongly NP-hard
when we limit ourselves to a more practical travel time function model where functions are
piecewise linear and given as a sequence of breakpoints with integer coordinates, but the
computation is performed in the rational number domain. As an intermediate result we show
that SubsetProduct on rational numbers is strongly NP-complete. Note that we published
these complexity results in [Zei22b].
To argue about the complexity of the TD-SPP problem, we first introduce an appropriate

decision problem, the time-dependent earliest arrival problem:

Definition 3.5 (TDEA𝑇). Given a graph 𝐺 = (V, E) with non-negative travel times ℓ : E →
(𝑇 → 𝑇 ≥0), vertices 𝑠 and 𝑡 , a departure time 𝜏dep ∈ 𝑇 and a maximum arrival time 𝜏max ∈ 𝑇 , is
there a path 𝑃 = (𝑠, . . . , 𝑡) such that 𝜏dep + ℓ (𝑃, 𝜏dep) ≤ 𝜏max

?

On integers, this problem is weakly NP-hard.

Theorem 3.1. TDEAℤ is weakly NP-hard.

Proof. We prove NP-hardness by reduction from the weakly NP-complete problem Subset-
Sum [GJ79]. A SubsetSum instance consists of a multiset A of integers 𝑎𝑖 and a target value
𝑏.2 The goal is to decide whether there is a subset A′ ⊆ A such that

∑
𝑎∈A′ 𝑎 = 𝑏. We construct

our TDEAℤ instance as follows: The instance has vertices V = {𝑣𝑖 | 𝑎𝑖 ∈ A} ∪ {𝑠, 𝑡}. Let 𝑣0 = 𝑠

and 𝑘 = |A|. For each SubsetSum element 𝑎𝑖 ∈ A, we create two edges from 𝑣𝑖−1 to 𝑣𝑖 . The
2Note that usually SubsetSum is defined in terms of a set and a function mapping each element to a not
necessarily unique weight. To simplify notation, we instead use a multiset containing the weights directly as
elements.

NP-Hardness of Shortest Path Problems in Networks with Non-FIFO Time-Dependent Travel Times Section 3.4

23

first one denoted as 𝑒′𝑖 has constant travel time zero and the second one denoted as 𝑒𝑖 constant
travel time 𝑎𝑖 . We insert a final edge 𝑣𝑘𝑡 with the following non-FIFO travel time function:

ℓ (𝑣𝑘𝑡, 𝜏) =
{
0 if 𝜏 = 𝑏

𝑏 + 1 else

Setting 𝜏dep = 0 and 𝜏max = 𝑏 completes the instance. See Figure 3.3 for an illustration. This
transformation runs in O(|A|). The transformed graph contains zero weights and multiedges,
but neither is necessary. Zero weights can be eliminated by adding 1 to the travel time of each
edge, shifting the instant where ℓ (𝑣 |A |+1𝑡) has its minimum back by 𝑘 time units and increasing
the arrival time 𝜏max by 𝑘 + 1. Multiedges can be avoided by inserting an additional vertex in
the middle of each multiedge.
We now show the equivalence of the transformed instance. Assume that the SubsetSum

instance admits a subset A′ with
∑

𝑎∈A′ 𝑎 = 𝑏. Consider the path 𝑃 from 𝑠 to 𝑣𝑘 which uses 𝑒𝑖
if 𝑎𝑖 ∈ A′ and 𝑒′𝑖 otherwise. Obviously, it has a constant total travel time of 𝑏. Thus, the edge
𝑣𝑘𝑡 will be traversed at 𝜏 = 𝑏. Since ℓ (𝑣𝑘𝑡, 𝑏) = 0 the total travel time is 𝑏. It follows that the
TDEAℤ instance admits a feasible path.

Conversely, assume that the TDEAℤ instance admits a path 𝑃 of travel time 𝑏. Since the last
edge has a travel time greater than 𝑏 for all times except 𝑏, the travel time to 𝑣𝑘 must have been
𝑏, too. Let A′ = {𝑎𝑖 | 𝑒𝑖 ∈ 𝑃}. Since the travel time to 𝑣𝑘 was 𝑏,

∑
𝑎∈A′ 𝑎 = 𝑏 has to hold and the

SubsetSum instance also admits a feasible solution. This proves the weak NP-hardness. □

To prove that the problem is not strongly NP-hard, we now give a pseudo-polynomial
algorithm. Algorithm 3.1 shows the procedure in pseudocode. The algorithm is a time-expanded
variation of the shortest path algorithm of Bellman and Ford [Bel58]. Instead of a distance array,
it maintains a 2-dimensional array indicating whether it is possible to reach a vertex at a given
time. Instead of scanning edges 𝑛 times, edges are relaxed for each instant between 𝜏dep and
𝜏max. This leads to a running time in O(𝜏max ·𝑚) which makes the algorithm pseudo-polynomial
in the input size.

For simplicity, we describe the algorithm under the assumption that all travel times are strictly
positive. Travel times of zero can be handled by repeating the loop in line 4 𝑛 times.

We prove correctness inductively. We show that in step 𝜏 of the loop in line 3 for all vertices
𝑣 , all possible arrival times 𝜏 ′ ≤ 𝜏 have been correctly marked in R. Clearly, the base case holds,
because in the absence of zero travel times, 𝑠 is the only vertex reachable at 𝜏dep. Assume the
induction hypothesis for 𝜏 − 1. For any path (𝑠, . . . , 𝑢, 𝑣) of travel time 𝜏 − 𝜏dep the vertex 𝑢
was reachable at a time 𝜏 ′ < 𝜏 . Thus, R[𝑢] [𝜏 ′] was correctly set, the outgoing edges of 𝑢 were
relaxed and R[𝑣] [𝜏] will also be set which completes the inductive step. Repeating the loop
in line 4 𝑛 times would additionally allow intermediate paths of travel time zero with up to 𝑛
vertices, which clearly suffices to solve this case, too.

Wojtczak showed in [Woj18] that many common weakly NP-hard problems, including
SubsetSum, become strongly NP-hard when defined on rational numbers. As our proof
generalizes to rational numbers without modification, we get the following corollary:

Chapter 3 Formalizing Routing Problems

24

Algorithm 3.1: Time-Expanded Bellman-Ford Algorithm.
Data: R[𝑢] [𝜏]: 2-dimensional array of booleans indicating whether it is possible to

arrive at vertex 𝑢 at time 𝜏 .
Data: 𝐺 = (V, E): Directed graph with travel time functions ℓ .

1 Function TimeExpandedBellmanFord(𝑠, 𝑡, 𝜏dep, 𝜏max):
2 R[𝑠] [𝜏dep] ← true
3 for 𝜏 ∈ [𝜏dep, 𝜏max] do
4 for 𝑢𝑣 ∈ E do
5 if R[𝑢] [𝜏] then
6 if 𝑢 = 𝑡 then
7 return true
8 R[𝑣] [𝜏 + ℓ (𝑢𝑣, 𝜏)] ← true
9 return false

Corollary 3.2. TDEAℚ is strongly NP-hard.

In practice, however, we usually use a very limited subclass of rational functions: piecewise
linear functions represented as a sequence of breakpoints. Further, as input data usually comes
at a limited resolution, input breakpoint coordinates usually can be represented by integers.
The result of a linear interpolation may, of course, still be a rational number. This lead us to
the question if TDEAℚ on piecewise linear functions with integer coordinates is weakly or
strongly NP-hard. In the following we consider non-periodic piecewise linear functions. We
define the travel times before the first and after the last breakpoints to equal the travel time of
the first and last breakpoint, respectively. However, this does not make any difference in terms
of complexity. The construction for the reduction only uses a limited time horizon.

With piecewise linear functions with integer breakpoints, we cannot easily construct constant
travel time functions with arbitrary rational travel times. Thus, generalizing the reduction from
SubsetSum is difficult. However, we can encode rational numbers in the slope of arrival time
function and exploit that when composing linear functions, the result function’s slope is equal
to the product of the slopes of the composed functions. In the following, we show the strong
NP-hardness with a two-step reduction from SubsetProduct on rational numbers as an
intermediate problem. On integers, SubsetProduct is weakly NP-complete [GJ79, Joh81].3

3Garey and Johnson [GJ79] state that SubsetProduct on ℤ≥0 is strongly NP-complete by reduction from
ExactCoverBy3Sets with reference to private communication with A. C. Yao in 1978. This is surprising
since there is no obvious reason why the pseudo-polynomial dynamic programming algorithm for SubsetSum
should not be applicable to SubsetProduct. This suggests that the problem is only weakly NP-complete
and that the reduction proved only weak hardness. While we were unable to obtain the original proof, other
realizations of the reduction can be found online [Jon14]. This reduction uses a number exponential in the input
size for the target product 𝑏. Clearly, this admits a pseudo-polynomial algorithm. As it turns out, on integers,
the problem is only weakly NP-hard. Johnson’s NP-completeness column later contains a correction [Joh81].

NP-Hardness of Shortest Path Problems in Networks with Non-FIFO Time-Dependent Travel Times Section 3.4

25

However, as we now show, when allowing rational numbers, the problem becomes strongly
NP-complete. SubsetProduct is defined as follows:

Definition 3.6 (SubsetProduct). Given a finite multiset of positive numbers A and a positive

number 𝑏, is there a subset A′ ⊆ A such that

∏
𝑎∈A′ 𝑎 = 𝑏?

Theorem 3.3. SubsetProduct on rational numbers is strongly NP-complete.

Proof. A guessed solution for SubsetProduct can be verified in polynomial time. In the
worst case, all numerators and denominators in the solution would have to be multiplied with
each other. Thus, SubsetProduct is in NP even with rational numbers.
For hardness, we reduce from the ExactCoverBy3Sets problem. It is strongly NP-

complete due to [GJ79] and defined as follows:

Definition 3.7 (ExactCoverBy3Sets (X3C)). Given a set X = {𝑥1, . . . , 𝑥𝑘 } with 𝑘 being a

multiple of 3, and a collection C of 3-element subsets of X , does C contain an exact cover C′ for X ,

where C′ ⊆ C and every element in X occurs in exactly one element of C′?

For the transformation, we first generate the first 2𝑘+1 primes. We refer to these primes in two
groups of each 𝑘 primes {𝑝1, . . . , 𝑝𝑘 } and {𝑝′1, . . . , 𝑝′𝑘 } and one final prime number 𝑝∗. Generating
these primes takes polynomial running time [Woj18]. We construct the set A = AX ∪AC from
one number for each element in X and one number for each 3-element set in C:

AX =

{
𝑝𝑖𝑝
′
𝑖+1

𝑝′
𝑖

����𝑥𝑖 ∈ X \ 𝑥𝑘
}
∪
{
𝑝∗ ·

𝑝𝑘𝑝
′
1

𝑝′
𝑘

}
AC =

{
1

𝑝𝑖𝑝 𝑗𝑝𝑘

���� {𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘} ∈ C
}

Setting 𝑏 = 𝑝∗ completes the instance.
Assume that the X3C instance admits a set C′ ⊆ C which covers X . Consider the set

A′ = AX ∪AC′ containing all elements from AX and all elements from AC corresponding to
elements form C′. By construction, the product over all numbers in A′ equals 𝑝∗:∏

𝑎∈A′
𝑎 =

∏
𝑎∈AX

𝑎 ·
∏

𝑎∈AC′

𝑎 = 𝑝∗
∏
𝑥𝑖 ∈X

𝑝𝑖𝑝
′
𝑖

𝑝′
𝑖

·
∏
𝑥𝑖 ∈X

1
𝑝𝑖

= 𝑝∗

It follows that the SubsetProduct admits a feasible subset, too.
Conversely, assume S ′ is a fulfilling subset for the SubsetProduct instance. First, since

𝑎𝑘 is the only element which contains 𝑝∗ as a factor, it must be contained in S ′. Secondly, note
that if S ′ contains any element from AX , it has to contain all elements in AX to cancel out
the 𝑝′𝑖 prime factors. The product of all elements in AX is equal to 𝑝∗ ·∏𝑥𝑖 ∈X 𝑝𝑖 . For the total
product of all elements in S ′ to be equal to 𝑝∗, the product of the remaining elements in S ′ has
to equal exactly

∏
𝑥𝑖 ∈X 𝑝−1𝑖 . This can only be the case when the elements of C corresponding

to these remaining elements in S ′ form an exact cover of X . Thus, the X3C instance admits a
feasible cover. □

Chapter 3 Formalizing Routing Problems

26

With the strong hardness of SubsetProduct on rational numbers, we can now prove
strong hardness for the probably most practical model.

Theorem 3.4. TDEAℚ with piecewise linear functions represented by a sequence of breakpoints

is strongly NP-hard even when all input numbers are integers.

Proof. Let A = { 𝑝1
𝑞1
, . . . ,

𝑝𝑘
𝑞𝑘
}, 𝑏 =

𝑝∗

𝑞∗ be our SubsetProduct instance. First, we sort A in
ascending order, i.e. 𝑝𝑖

𝑞𝑖
≤ 𝑝𝑖+1

𝑞𝑖+1
. We then construct the TDEAℚ instance as follows: Similarly to

the hardness proof for TDEAℤ, we build a graph with 𝑘 + 2 vertices and two parallel edges
𝑒𝑖 and 𝑒′𝑖 between 𝑣𝑖−1 and 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑘 and a final non-FIFO edge between 𝑣𝑘 and 𝑡 . All
edges 𝑒′𝑖 get constant travel time zero. The edges 𝑒𝑖 get a time-dependent travel time function
which has slope 𝑝𝑖

𝑞𝑖
in the arrival time representation. The final edge has a travel time function

with breakpoints (0, 𝑝∗ + 1) and (𝑝∗, 0). The topology is the same as in the previous proof as
illustrated in Figure 3.3. We set 𝜏dep = 𝑞∗ and 𝜏max = 𝑝∗. We pick the breakpoints for the 𝑒𝑖
functions in such a way that the arrival time function has the correct slope at least for all times
in [0,max(𝑝∗, 𝑞∗)]. Thus, with 𝑠𝑖 = ⌈max(𝑝∗,𝑞∗)

𝑞𝑖
⌉ the edge 𝑒𝑖 will have the arrival time function

breakpoints (0, 0) and (𝑠𝑖𝑞𝑖 , 𝑠𝑖𝑝𝑖). This transformation has polynomial running time and also all
numbers are polynomially bounded in the size of the SubsetProduct instance.

Some of these arrival time functions have slope < 1 and thus for 𝜏 ∈ [0, 𝜏max] we get ℓ̂ (𝜏) < 𝜏 .
This means the corresponding travel time functions have negative travel times. We can obtain
an equivalent instance without negative weights as follows: Let 𝑒𝑖 be an edge with a breakpoint
(𝑥, 𝑦) in the travel time function where 𝑦 < 0. We increase the travel times of both 𝑒𝑖 and 𝑒′𝑖
by the constant 𝑐 = −𝑦 . Additionally, the departure times coordinates of breakpoints in every
following travel time function must be increased by 𝑐 , i.e. for (𝑥, 𝑦) a breakpoint of a travel time
function of an edge with head 𝑣 𝑗 where 𝑗 > 𝑖 , this breakpoint will be set to (𝑥 + 𝑐, 𝑦). Also, 𝜏max

must be increased by 𝑐 . Even though negative travel times are not necessary, we still use them
during the rest of the proof because it simplifies the calculations. This also applies to travel
times of zero which can be avoided similarly.
Suppose the SubsetProduct instance admits a subset A′ such that the product of all

elements in A′ is𝑏. We consider the 𝑠𝑡-path which uses 𝑒𝑖 when 𝑝𝑖
𝑞𝑖
∈ A′ and 𝑒′𝑖 otherwise. When

visiting vertex 𝑣𝑖−1 at instant 𝜏𝑖−1 and traversing the edge 𝑒𝑖 with arrival time breakpoints (0, 0)
and (𝑠𝑖𝑞𝑖 , 𝑠𝑖𝑝𝑖) with 𝜏𝑖−1 ≤ 𝑠𝑖𝑞𝑖 , the arrival time at 𝑣𝑖 can be computed by linear interpolation:
𝜏𝑖 = 𝜏𝑖−1 · 𝑝𝑖𝑞𝑖 . Assuming 𝜏𝑖−1 < 𝑠𝑖𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑘 , the arrival time 𝜏𝑘 at the final vertex 𝑣𝑘 before
𝑡 can be computed as 𝜏dep ·∏𝑎𝑖 ∈A′

𝑝𝑖
𝑞𝑖

= 𝑞∗ · 𝑝
∗

𝑞∗ = 𝑝∗. The final edge has a travel time of 0 at 𝑝∗
which leads to an arrival of 𝑝∗ at 𝑡 which shows, that the TDEAℚ instance admits a feasible
path given that our assumption on the 𝜏𝑖 holds. This assumption is valid because the elements
of A and thus the slopes of the edges are ordered ascendingly. For all 𝑝𝑖

𝑞𝑖
≤ 1, 𝜏𝑖 ≤ 𝜏𝑖−1, i.e. the

travel time is negative, and we arrive earlier than we started, so 𝜏𝑖 < 𝑞∗ holds. Once edges with
𝑝𝑖
𝑞𝑖

> 1 are reached, the 𝜏𝑖 grow monotonically. But since the final result 𝑝∗ is within the desired
range, all intermediate 𝜏𝑖 have to be, too. Thus, the assumption holds for all 𝜏𝑖 .

Conversely, assume the TDEAℚ instance admits a path 𝑃 with the desired arrival time. This

NP-Hardness of Shortest Path Problems in Networks with Non-FIFO Time-Dependent Travel Times Section 3.4

27

𝑠 𝑡

1
0 2𝑘

0

2𝑘 + 1

𝜏

ℓ (𝑠𝑡, 𝜏)

Figure 3.4: Example graph with a shortest path with an exponential number of hops.

is only possible when 𝜏𝑘 = 𝑝∗ because before 𝑝∗, the arrival time function has a strictly negative
slope and after 𝑝∗ a strictly positive slope. With the same argument as in the previous paragraph,
we get that all 𝜏𝑖 ≤ max(𝑝∗, 𝑞∗). Hence, the following holds: 𝜏dep ·∏𝑒𝑖 ∈𝑃

𝑠𝑖𝑝𝑖
𝑠𝑖𝑞𝑖

= 𝜏max = 𝑝∗ which

is equivalent to
∏

𝑒𝑖 ∈𝑃
𝑝𝑖
𝑞𝑖

=
𝑝∗

𝑞∗ . Thus, the set A′ =
{
𝑝𝑖
𝑞𝑖
| 𝑒𝑖 ∈ 𝑃

}
is a fulfilling subset for the

SubsetProduct instance. □

So far, we only discussed NP-hardness but not inclusion in NP. On first glance, it appears
likely that the TDEA problem lies in NP because verifying path lengths takes running time
linear time in the path length. However, this is not sufficient because solutions might have
superpolynomial length in the input size. Consider a graph with two vertices 𝑠 and 𝑡 , one loop
edge at 𝑠 with constant travel time 1 and one 𝑠𝑡 edge with travel time 0 at instant 2𝑘 and travel
time 2𝑘+1 during the rest of the time as depicted in Figure 3.4. For an instance with 𝜏dep = 0
and 𝜏max = 2𝑘 , the solution is a path which uses the loop at 𝑠 2𝑘 times. A naive encoding of
this solution would already be exponentially bigger than the (binary encoded) input. Even if it
would be possible to show that a compact encoding of solutions is always possible, one would
still need to find a way to evaluate the travel time of this path in polynomial running time in the
input size. Whether this is possible likely depends on the involved function classes. Therefore,
the question remains open. Nevertheless, we only used acyclic graphs and simple paths in our
reductions. Thus, the problem remains hard even when considering problem variants restricted
to acyclic graphs or when only allowing simple paths. Since paths with an exponential number
of hops are not possible in these variants, guessed solutions could be verified in polynomial
time assuming polynomial time function evaluation. Therefore, we can at least conclude that
such restricted TDEA variants would be NP-complete.

29

4 Route Planning Data

A crucial ingredient to the algorithm engineering methodology is to evaluate the designed
algorithms with realistic benchmark instances. In this chapter, we present the primary data sets
used throughout this work. In Section 4.1, we discuss our data sources and methodology to turn
the raw map and traffic data into problem instances for the models presented in the previous
chapter. Our benchmark instances and a discussion of their relevant properties are presented in
Section 4.2.

4.1 Data Sources and Instance Extraction

4.1.1 9th DIMACS Implementation Challenge

We use the Europe instance from the 9th DIMACS Implementation Challenge [DGJ09] from
2006. This instance is probably the most used benchmark instance for routing algorithms. Most
speedup techniques have been evaluated on it [Bas+16]. As it was the first production-grade
continental-sized routing graph available to a broad range of researchers, it was instrumental
in the success of route planning algorithm research. The instance was provided by PTV and
is based on TomTom data. It is not publicly available but can be obtained free of charge for
research purposes.1

The instance is provided as a weighted directed graph. Both travel time and distance weights
are provided. Further, geographical coordinates of the vertices are provided. Therefore, we can
use this instance without adjustments for our routing problems.
1https://i11www.iti.kit.edu/resources/roadgraphs.php,
https://i11www.iti.kit.edu/information/roadgraphs

https://i11www.iti.kit.edu/resources/roadgraphs.php
https://i11www.iti.kit.edu/information/roadgraphs

Chapter 4 Route Planning Data

30

Sadly, we are not aware of any real-world traffic data for this instance. Synthetic traffic
data has been generated [NDSL12] and used in previous works to evaluate time-dependent
speedup techniques [NDSL12, BGSV13]. These time-dependent travel times are still available
on the technical infrastructure of our research group. However, the synthetic functions deviate
significantly from the properties we observe in travel time functions obtained from real-world
traffic predictions from other data sources. They resemble traffic jams caused by accidents
rather than recurring traffic patterns. Nevertheless, we include the instances in our evaluation
for reproducibility and comparability.

4.1.2 PTV

PTV2 kindly provided us with additional newer road networks and real-world traffic data sets:

• The first one is from 2006 and includes real-world traffic predictions for the subgraph of
Germany of the DIMACS Europe instance. There are different predictions for Monday,
Friday, Saturday, and Sunday, and one prediction set for Tuesday till Thursday. The traffic
predictions are given as speed predictions for 15minute intervals. From these speed
predictions, travel time functions were derived for previous works. The results are still
available on the infrastructure of our group, and we reuse those derived instances to
ensure comparability. From internal documentation, it appears that the methodology
used to derive those travel time functions was the same as we describe in Section 4.1.5.

• The second one is from 2017 and includes a graph of the road network of Europe and
traffic predictions for a typical Tuesday. Further, there are subinstances of Germany and
Luxembourg. This data set contains significantly more traffic prediction information than
the data from 2006. The traffic predictions are given as travel time functions and are
directly usable for our problem instances.

• The third set is from 2020 and covers everything that the 2017 data set did and more.
These traffic predictions cover an even larger share of the network. Further, a real-
time traffic incident snapshot is included. The traffic incidents are provided as updated
speeds for some edges of the graph. Further, each traffic incident is associated with an
expected remaining duration of the incident. The traffic predictions are given as travel
time functions and directly usable as problem instances.

4.1.3 TomTom

We also have map data provided directly by TomTom3 in 2012. The data set covers the north-
eastern part of Germany, but in the literature, it is referred to by the largest city, Berlin. It
includes speed predictions in five-minute intervals for every weekday. Like the PTV data,
2https://ptvgroup.com
3https://www.tomtom.com

https://ptvgroup.com
https://www.tomtom.com

Data Sources and Instance Extraction Section 4.1

31

time-dependent graphs were already generated for previous works with the methodology from
Section 4.1.5. We reuse these to ensure the comparability of our results.

4.1.4 OpenStreetMap

OpenStreetMap4 (OSM) is a community-maintained open-source map. It is possible to derive
routing graphs from OSM data. Since OSM can be used freely and is publicly available to
everyone, evaluating algorithms on OSM graphs helps other researchers reproduce these results.
Therefore, we also included an OSM-based instance in our evaluation. We use a snapshot of the
map of Germany from the beginning of 2020 and derive a routing graph using the import from
RoutingKit.5

Typically, OSM data contains much more information than is necessary for routing. Naively
constructed OSM graphs often contain many vertices of degree two. Their purpose in OSM is
to model the course of the street, but for the routing, they are irrelevant. Therefore, RoutingKit
will remove these vertices and combine the adjacent edges as long as no relevant attributes (for
example, a speed limit) change. We extend RoutingKit’s import to allow us to specify vertices
that should be kept as we need them to match traffic data.

4.1.5 Mapbox

In 2019, Mapbox6 kindly provided us with real-world traffic data for Germany matched to OSM.
The data includes two real-time traffic snapshots. These consist of currently observed speeds
for specific OSM edges. Some of these edges’ endpoints are vertices that the RoutingKit OSM
import would usually remove. To avoid this, we specify that these vertices must be kept during
the import. In contrast to the PTV traffic incident data, no estimated validity is provided. We
exclude live speeds which are faster than the free-flow speed computed by RoutingKit. Even
though some traffic participants might drive faster than predicted (and allowed), we believe this
should not be reflected in the routing.

The data also contains traffic predictions for some edges. These come as speed predictions for
every five-minute interval for an entire week. We build a time-dependent routing graph from
the predictions for Tuesdays. During preliminary experiments, we noticed that the predicted
speeds sometimes have heavy fluctuations. This is likely because the speeds reflect aggregated
observations instead of proper traffic predictions. Therefore, we apply some smoothing to the
data before extracting travel time functions. First, we ignore any speed predictions between
23:00 and 5:00. Second, we apply a rolling window of half an hour and set each bucket to
the average values in the window. Finally, we disregard any predicted speeds faster than the
free-flow speed computed by RoutingKit.

4https://openstreetmap.org
5https://github.com/RoutingKit/RoutingKit
6https://mapbox.com

https://openstreetmap.org
https://github.com/RoutingKit/RoutingKit
https://mapbox.com

Chapter 4 Route Planning Data

32

Obtaining Travel Time Functions from Speed Predictions

To transform speed predictions to travel time functions, we choose a direct and naive interpre-
tation of the speed predictions: Every car will drive at all times, precisely at the predicted speed.
When a car is on an edge while the time of a speed prediction ends and the next interval start,
the car’s speed will, at that moment, jump instantaneously to the new speed. While physically
impossible, this approach yields useful, piecewise linear travel time functions. The functions
are guaranteed to fulfil the FIFO property as no car can overtake another.

4.1.6 BMW and Here

Finally, we also have commercial map data for western Europe from the late 2016 release of
Here.7 The data set was kindly provided by BMW8 for research purposes. It is neither freely
available nor used in any related work we know. We include it nonetheless because we have a
week of GPS traces for the Munich region matched to the Here map. Each tracepoint contains a
timestamp, a matched edge ID and a measured current speed of the car. From these traces, we
built our own traffic predictions and constructed a time-dependent routing graph for Munich.
We use the following methodology: First, we only use the traces collected from Tuesday to

Thursday. Second, we ignore any traces with speeds faster than 1.5 times the edges’ free-flow
speed. Third, we discard the weekday information and group the traces into 15minute buckets.
Now for each edge and bucket where we have three or more data points, we compute a speed
prediction as a weighted average. For this, we sort the traces by time. Each observed speed is
weighted with the time between the data points before and after. This is because slower driving
cars stay longer on a road segment and thus produce more data points. For example, a car
waiting at a traffic light will produce many more tracepoints at a slow speed than a car driving
over the street segment at full speed. If we were to give each observation the same weight,
we would underestimate speeds. For all other buckets and edges with too few data points, we
assume the free-flow speed of the map data. To construct travel time functions from the speed
prediction we employ the method described in Section 4.1.5.

This traffic prediction methodology is, of course, rather simplistic. Much more sophisticated
approaches have been proposed [ALPR12, CZL12, JK13, PZWS13, Pan+13]. Realistic traffic
predictions can be obtained by using proper traffic flow models where the model parameters
are derived from the GPS traces [CZL12]. Unfortunately, calibrating these models is often non-
trivial. Also, for proper predictions, more GPS trace data would be necessary. We also performed
a more thorough investigation of the performance of several general-purpose statistical learning
methods [JWHT13] to obtain better speed predictions. Sadly, we cannot share the results in
detail due to non-disclosure agreements. We still want to point out that the difficulty in such
studies is that the quality of traffic predictions is tough to quantify. It is possible to split the
available data into training and evaluation sets and quantify the quality by checking the error
7https://www.here.com/
8https://www.bmwgroup.com

https://www.here.com/
https://www.bmwgroup.com

Benchmark Instances Section 4.2

33

Table 4.1: Main static road networks used for the evaluation our algorithms.

Source Vertices Edges Size
[·103] [·103] [MB]

Germany OSM 16 169.0 35 442.2 346.2
Europe DIMACS 18 010.2 42 188.7 409.6

of the learned predictions against the evaluation set. However, this only evaluates how the
learning methodology performed and not if the resulting predictions allow good routing. From
a navigation application perspective, routes must satisfy the users and using traffic predictions
is only a means to that end. Nevertheless, the focus of this work is algorithms and their
performance. Our crude predictions only make the instance harder for algorithms exploiting
the properties of regular traffic flows. Therefore, the derived instance serves as a stress test for
our algorithms. Our main conclusions will be drawn from other instances.

4.2 Benchmark Instances

4.2.1 Static Road Networks

Table 4.1 depicts our main benchmark instances for time-independent routing problems. On
the one hand, since OSM is open-source, the Germany network should allow the independent
reproduction of our results. On the other hand, the Europe instance allows for comparing our
results to the results of previous works.
Even though the Europe instance covers a significantly larger area, it is only slightly larger

than the Germany instance. This is because the OSM instance is newer and modelled in greater
detail. The degree of modelling detail is also reflected in the average degrees: on Europe, every
vertex has, on average, 2.34 outgoing edges, while on Germany, there are only 2.19 outgoing
edges per vertex.
Beside these main instances, we use some additional benchmark graphs in Chapter 7, 10

and 11. We do not discuss these here as their relevance is limited to the scope of these chapters.

4.2.2 Networks with Traffic Predictions

In Table 4.2, we give an overview of our time-dependent benchmark instances and their relevant
properties. The performance of algorithms for the classical shortest path problem with scalar
weights primarily depends on the size of the network. However, for time-dependent routing
problems, the amount and complexity of time-dependent information also significantly impact
the performance. To measure this, we report the fraction of edges with a non-constant travel
time and the average number of breakpoints. We also report the relative total delay as a measure

Chapter 4 Route Planning Data

34

Table 4.2: Time-dependent road networks used throughout this work. The TD column indicates the
share of edges for which the travel time functions are non-constant. The Avg. |ℓ (𝑒) | columns show
the average number of breakpoints among all/only the non-constant travel time functions, respectively.
Similarly, Rel. Del. indicates the relative total delay among the respective edges. The size column shows
the space requirement of a compact representation in main memory.

Vertices Edges TD Avg. |ℓ (𝑒) | Rel. Del. [%] Size
[·103] [·103] [%] all TD all TD [GB]

Mun Tue. 22.5 53.2 32.4 12.1 35.4 41.0 279.0 0.0

Ber Mon. 443.2 988.5 27.4 21.1 74.6 3.1 17.7 0.2
Tue. 443.2 988.5 27.4 21.3 75.0 3.1 17.6 0.2
Wed. 443.2 988.5 27.5 21.3 74.9 3.1 17.5 0.2
Thu. 443.2 988.5 27.6 21.5 75.2 3.2 17.7 0.2
Fri. 443.2 988.5 27.2 20.7 73.4 3.1 17.5 0.2
Sat. 443.2 988.5 20.2 14.7 69.1 2.1 14.8 0.1
Sun. 443.2 988.5 19.9 14.1 67.2 2.0 14.6 0.1

Ger06 Mon. 4 688.2 10 795.8 7.0 2.3 20.1 1.7 33.1 0.3
midw. 4 688.2 10 795.8 7.2 2.3 19.5 1.7 33.1 0.3
Fri. 4 688.2 10 795.8 6.4 2.1 18.9 1.5 32.0 0.3
Sat. 4 688.2 10 795.8 3.9 1.6 15.8 0.8 28.5 0.2
Sun. 4 688.2 10 795.8 2.5 1.3 15.0 0.4 26.2 0.2

SynEur Low 18 010.2 42 188.7 0.1 1.0 13.2 0.3 125.2 0.8
Med. 18 010.2 42 188.7 1.0 1.1 13.2 0.8 124.9 0.8
High 18 010.2 42 188.7 6.2 1.8 13.2 4.6 124.8 1.0

Ger17 Tue. 7 247.6 15 752.1 29.2 10.0 31.6 3.5 20.8 1.3

Eur17 Tue. 25 758.0 55 503.8 27.2 8.8 29.5 2.7 19.0 4.2

Ger19 Tue. 16 169.0 35 442.2 38.0 47.4 123.1 2.3 78.8 13.7

Eur20 Tue. 28 510.0 60 898.8 76.3 17.4 22.5 21.0 34.9 8.7

for the degree of time-dependency of the predictions. It is defined as:∑
𝑒∈E ℓ (𝑒) − ℓ (𝑒)∑

𝑒∈E ℓ (𝑒)

The smaller the relative delay, the greater the effectiveness of simple bound-based pruning
schemas. Variants of this measure have been used in previous works. In [Del11], Delling
reported the average relative delay of time-dependent earliest arrival queries over the result of
a time-independent query with lower bound travel times. Batz [BGSV13] reported the average

Benchmark Instances Section 4.2

35

of the relative delays ℓ (𝑒)−ℓ (𝑒)
ℓ (𝑒) over all edges 𝑒 ∈ E . We instead use the total delay because

averages of ratios have hard to interpret semantics [HB15]. For example, a short edge with a
large relative delay could have a much bigger influence on the average relative delay than on
the shortest path structure.

The Munich instance is, in terms of graph size, our smallest graph by an order of magnitude.
Still, a third of the edges have time-dependent travel times, and time-dependent functions
have more than 35 breakpoints on average, more than all other instances except Berlin and
OSM Germany. Further, the relative delay shows that the time-dependent travel times fluctuate
heavily. Considering only time-dependent edges, a path could become up to 3.8 times slower than
in the best case, depending on the departure time. This extreme fluctuation appears unrealistic
and is likely an artefact of our simplistic speed prediction methodology amplified because
the graph is small. Therefore, we do not expect this instance to yield perfectly representative
performance results. We still include it to test the robustness of speedup techniques against
extreme travel time functions.
The network of Berlin is more than an order of magnitude larger. Compared to Munich,

the share of time-dependent functions is slightly smaller, and the complexity of the functions
is even significantly greater. However, the relative delays show that the fluctuation of the
time-dependent information is an order of magnitude smaller. Thus, even though the time-
dependency is modelled in greater detail, it will likely have less impact on the shortest path
structure of the network. The differences between the weekdays are comparatively small. On
weekend days, fewer edges have time-dependent travel times. The other measurements decrease
accordingly.
The network of Ger06, the benchmark instance used in most related work, is an order of

magnitude larger than the Berlin network. However, the complexity of the time-dependent
information is minimal. Only the SynEur instance has less complex functions. Further, only
up to 7.2% of the edges have time-dependent travel times. While the total delay among these
is slightly more significant than on Berlin, the overall influence is smaller as there are so few
time-dependent edges. This makes this network one of the easier instances. Similar to Berlin,
the weekend days appear even easier.
DIMACS Europe, with synthetic traffic, exhibits unique properties that distinguish it from

real-world instances. The share of time-dependent travel time functions is tiny. Only the High
instance starts to get into the region of Ger06, the real-world instance with the smallest share of
time-dependent edges. Further, the time-dependent functions have very few breakpoints. Most
importantly, the relative delays behave somewhat peculiar. The edges with time-dependent
travel times have substantial relative delays, i.e. they may become more than two times slower
to traverse. In comparison, the total delay on all edges is vanishingly small. We conclude that
these travel time functions likely do not model recurring traffic flows. Instead, they model
significant delays on a small number of edges, i.e. traffic jams. As we model jams as dynamic

traffic, we do not expect the most conclusive results from this instance. We still include it for
comparability and completeness.

Chapter 4 Route Planning Data

36

Table 4.3: Real-time traffic snapshots.

Instance Source Date & Time Entries [·103]
OSM Germany Lite Mapbox Tue. 2019/07/16 10:21 185.3
OSM Germany Heavy Mapbox Fri. 2019/08/02 15:41 320.7
Eur20 PTV Wed. 2020/10/28 07:47 214.6

The newer graphs are not only larger in terms of the number of vertices and edges but also
have significantly more non-constant travel time functions. Ger17 has four times as many
time-dependent edges as Ger06 and about 1.5 times as many breakpoints per time-dependent
function. Even though the relative delay among non-constant functions is not as high as for
Ger06, the relative delay among all edges is twice as high. Eur17 exhibits similar characteristics
but has 3.5 times as many vertices and edges.
Ger19 is the OSM Germany network with the Mapbox traffic predictions. It has a large

network, a significant share of time-dependent edges (around one third), the time-dependent
functions are quite complex and have the largest number of breakpoints among all instances,
and it also has a significant relative delay on the time-dependent edges. This combination of
properties makes it our most challenging instance.
Our newest instance is Eur20. It features the largest share of time-dependent edges: three

quarters of edges having a non-constant travel time. With around 35%, the delay among non-
constant functions is the greatest among all instances. Further, Eur20 is the only instance where
the total relative delay on all edges is in the same ballpark as the delay for only time-dependent
edges: With 21%, it is more than an order of magnitude higher than on Ger06.
We perform experiments on the complete set of instances. Usually, however, the results on

a small subset of the instances suffice to support our claims. Thus, we often only discuss the
results on a limited subset of the graphs and report the complete results in the appendix.

4.2.3 Real-Time Traffic Snapshots

Table 4.3 lists our real-world live traffic snapshots. We have two snapshots from Mapbox for
our Germany instance. The first is from a Tuesday morning and contains only lite traffic. The
second one is from a Friday afternoon and contains significantly heavier traffic. Finally, for
the Eur20 instance, we have a traffic snapshot from PTV. It features regular traffic. Further,
estimated validity durations for the live traffic data are included.

Part II

Speedup Techniques

39

5 Fundamental Algorithms and
Data Structures

In this chapter, we discuss fundamental algorithms and data structures on which we build. We
briefly reiterate how these algorithms work as far as it is necessary to understand the following
chapters. Further, we introduce the associated terms and notation used throughout this work.

5.1 Representing Graphs

Unless mentioned otherwise, we represent graphs as adjacency arrays. To represent a graph
topology𝐺 = (V, E), we have an array firstEdge of length 𝑛 + 1 and an array head of length𝑚.
We refer to the indices of vertices and edges in these arrays as their IDs. The outgoing edges
𝑢𝑣 of vertex 𝑢 have the ID range [firstEdge[𝑢], firstEdge[𝑢 + 1]); the head vertex of each
edge is stored at the corresponding position in head. Additional data for vertices and edges
such as edge weights can be stored and accessed in additional arrays of the respective length.

5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [Dij59] computes dist(𝑠, 𝑡, 𝜏dep) by exploring vertices in increasing order of
distance from 𝑠 until 𝑡 is reached. The procedure is depicted in Algorithm 5.1. We describe the
generalized variant of Dijkstra’s algorithm [Dre69] solving the TD-SPP. The time-independent
variant is just the special case that all edge lengths are constant.

The distances from 𝑠 to each vertex 𝑢 are tracked in an array D[𝑢], initially set to∞ for all
vertices. A priority queue Q of vertices ordered by their distance from 𝑠 is maintained. We
denote by 𝑞 the minimum key in Q, i.e. the tentative distance of the closest remaining vertex. The
priority queue is initialized with 𝑠 and D[𝑠] set to 𝜏dep. In each iteration, the next closest vertex𝑢

Chapter 5 Fundamental Algorithms and Data Structures

40

Algorithm 5.1: Dijkstra’s algorithm.
Data: D[𝑣]: tentative distance from 𝑠 to vertex 𝑣 ∈ V .
Data: Minimum priority queue Q, ordered by tentative distances.

1 Function Dijkstra(𝑠):
2 D[𝑣] ← +∞ for all 𝑣 ∈ V
3 D[𝑠] ← 𝜏dep

4 Make Q only contain 𝑠

5 while Q not empty do
6 𝑢 ← pop minimum element from Q
7 for all edges 𝑢𝑣 ∈ E do
8 if D[𝑣] > D[𝑢] + ℓ (𝑢𝑣, D[𝑢]) then
9 D[𝑣] ← D[𝑢] + ℓ (𝑢𝑣, D[𝑢])

10 Add 𝑣 or decrease 𝑣 ’s key in Q to D[𝑣]

is extracted from the queue and settled. Its distance D[𝑢] from 𝑠 is now final and optimal. Then,
outgoing edges 𝑢𝑣 are relaxed, i.e. the algorithm checks if D[𝑢] + ℓ (𝑢𝑣, D[𝑢]) improves D[𝑣]. If
so, the position of 𝑣 in Q is adjusted accordingly. Once 𝑡 has been settled, the final distance is
known, and the search terminates. The shortest path can be reconstructed by maintaining an
array of parent pointers P[𝑣] where for each vertex 𝑣 , the predecessor on the shortest path is
stored. We denote visited vertices as the search space of a query.

The property that a vertices distance is final once it was popped from the queue is denoted as
label-setting. However, we also use variations of Dijkstra’s algorithm where distance labels may
be modified after the vertex was popped from the queue. These are denoted as label-correcting.
Dijkstra’s algorithm with constant edge lengths can also be run from the target 𝑡 on the

reversed graph←−𝐺 . We call this a backward search. Running two Dijkstra searches simultaneously,
one from 𝑠 and a backward search from 𝑡 , until the searches meet is called bidirectional search.
In this case, we denote by −→D , −→Q and −→𝑞 the distances, queue and minimum queue key of the
forward search and by←−D ,←−Q and←−𝑞 the respective data of the backward search. Typically, the
searches are interleaved by alternating settling a vertex from each direction. Another common
approach is to always settle a vertex from the direction with the smaller minimum queue key.
The algorithm can terminate when the sum of the minimum keys in both queues −→𝑞 + ←−𝑞 is
greater than the so far best known tentative total distance `.

Dijkstra’s algorithm can also be used to solve the TravelTimeProfileProblem. In this
case, instead of scalar distances, tentative profiles are maintained in D. Relaxing an edge 𝑢𝑣
becomes more complicated. First, one has to compute the temporary function 𝑓 = D[𝑢] ⊕ ℓ (𝑢𝑣).
This is called linking the distance label D[𝑢] with the travel time of the edge ℓ (𝑢𝑣). Then, the tem-
porary function must be merged with the current label D[𝑣], i.e. D[𝑣] (𝜏) = min(D[𝑣] (𝜏), 𝑓 (𝜏)).
The queue key of a vertex with distance D[𝑣] is the lower bound min𝜏 D[𝑣] (𝜏). This profile
search is only label-correcting. The search can terminate when 𝑞 ≥ max𝜏 D[𝑡] (𝜏).

A* Section 5.4

41

5.3 A*

A* [HNR68] is a goal-directed extension of Dijkstra’s algorithm. It uses a potential (sometimes
also called heuristic) function 𝜋𝑡 which maps vertices to an estimate of the remaining distance
to 𝑡 . A* orders the vertices in the priority queue by D[𝑣] + 𝜋𝑡 (𝑣) instead of D[𝑣] as Dijkstra’s
algorithm does it. Thus, vertices closer to the target are visited earlier, and the search space
becomes smaller. A* is equivalent to running Dijkstra’s algorithm on the graph with reduced

weights [HNR68]. This reduced weight function is defined as ℓ𝜋𝑡 (𝑢𝑣) = ℓ (𝑢𝑣) − 𝜋𝑡 (𝑢) + 𝜋𝑡 (𝑣). A
potential is called feasible, if ℓ𝜋𝑡 (𝑒) ≥ 0 for all edges 𝑒 . If the employed potential is feasible, A*
is label-setting and guaranteed to have found the optimal distance after settling 𝑡 . It can also be
guaranteed that A* has computed the shortest distance once 𝑡 is settled when the estimates of
the potential function are lower bounds of the remaining distances. However, with only lower
bound potentials, A* is only label-correcting and the theoretical worst case running time is
exponential. When the potential of the target is zero, i.e. 𝜋𝑡 (𝑡) = 0, feasibility also implies the
lower bound property. Dijkstra’s algorithm is a special case of A* with 𝜋𝑡 = 0 for all vertices.

5.4 Contraction Hierarchies

Contraction Hierarchies (CH) [GSSV12] is a speedup technique to accelerate shortest path
searches on time-independent road networks through precomputation. During the preprocess-
ing, a total order 𝑣1 ≺ · · · ≺ 𝑣𝑛 of all vertices 𝑣𝑖 ∈ V by “importance” is determined heuristically,
where more important vertices should lie on more shortest paths. The position of a vertex in
the order is also denoted as its rank. Vertices of higher rank are often informally referred to
and visualized as “higher up” in the hierarchy. Therefore, an edge 𝑢𝑣 where 𝑢 ≺ 𝑣 is an upward

edge. Analogously, when 𝑣 ≺ 𝑢, the edge 𝑢𝑣 is said to go downward.
Once such an importance ordering was obtained, all vertices are successively contracted by

ascending importance. To contract a vertex means to temporarily remove it from the graph while
inserting shortcut edges between more important neighbours to preserve shortest distances
among them. The result is an augmented graph 𝐺+ = (V, E+) with the original edges and the
additional shortcuts and corresponding length function ℓ+. Shortcut edges 𝑢𝑣 allow to “skip
over” paths (𝑢, . . . ,𝑤 𝑖 , . . . , 𝑣) where𝑤 𝑖 ≺ 𝑢 and𝑤 𝑖 ≺ 𝑣 . Therefore, ℓ+(𝑢𝑣) must have the length
of the shortest such path. We denote this distance through lower-ranked vertices as dist≺ (𝑢, 𝑣).
Note that shortcut edges are only necessary if this length is also the distance between their
endpoints. If there is a shorter path through higher-ranked vertices, the shortcut would be
superfluous. Such unnecessary shortcuts are identified through a so called witness search, a local
bidirectional Dijkstra search between the endpoints of a shortcut, before inserting a shortcut.

We often refer to the augmented graph𝐺+ split into an upward graph𝐺↑ = (V, E↑) containing
only upward edges and a downward graph 𝐺↓ = (V, E↓) containing only downward edges.
The augmented graph has the property that between any two vertices 𝑠 and 𝑡 , there exists an
up-down-path 𝑃 with ℓ+(𝑃) = distℓ (𝑠, 𝑡) which uses first only edges from E↑ and then only edges
from E↓. See Figure 5.1 for an illustration. From every shortest path in𝐺 , an up-down path of

Chapter 5 Fundamental Algorithms and Data Structures

42

𝑠

𝑡

ra
nk

Figure 5.1: Solid lines are edges in 𝐺 . Dotted lines are shortcuts. Red is a shortest 𝑠𝑡-path in 𝐺 . Blue is
equally long up-down 𝑠𝑡-path in 𝐺+.

equal length in 𝐺+ can be constructed. Such a path can be found by running the bidirectional
variant of Dijkstra’s algorithm from 𝑠 on 𝐺↑ and from 𝑡 on←−𝐺 ↓. By construction, at least the
highest-ranked vertex on the up-down path must be in the intersection of the forward and
backward search spaces. The stopping criterion of the bidirectional search must be altered
slightly: The search can only terminate once the tentative distance ` exceeds both minimal
queue keys. The set of vertices reachable in 𝐺↑ and←−𝐺 ↓ is called the CH search space of a vertex.

A shortest path in the augmented graph can be unpacked into the corresponding path in the
original graph by recursively unpacking each shortcut. For this, one can, for example, store
the ID of the vertex which was contracted when a shortcut was inserted with each shortcut.
Alternatively, one can store the IDs of the two edges which the shortcuts represents.

In CH, vertices are sometimes organized into levels. Levels correspond to the contraction
order but admit more than one vertex per level. A level assignment can be obtained as follows:
All vertices without downward neighbours are assigned to level zero. Every other vertex goes
into one level higher than the highest level of any downward neighbour.

5.4.1 (R)PHAST

PHAST [DGNW13] is a CH extension that computes distances from all vertices to one target (or
vice versa, the reverse case works analogously). This is sometimes denoted as a all-to-one (or
one-to-all) problem. The preprocessing phase remains the same as for CH. The query phase is
split into two steps. The first step is analogue to the CH query: From 𝑡 , all reachable vertices via
reversed down-edges are explored by running Dijkstra’s algorithm on←−𝐺 ↓. For the second step,
PHAST utilizes an assignment of vertices into levels. These levels correspond to the importance
ordering but allow multiple vertices in the same level. However, no edge must connect two
vertices within the same level. Such a level assignment can be obtained by assigning all vertices
without lower-ranked neighbours to the lowest level. All other vertices are iteratively assigned
to one level above the highest level of any downward neighbour.

Contraction Hierarchies Section 5.5

43

Algorithm 5.2: PHAST basic all-to-one search.
Data: D[𝑣]: tentative distance from any 𝑣 ∈ V to 𝑡 .

1 Run Dijkstra’s algorithm (Algorithm 5.1) from 𝑡 on←−𝐺 ↓, filling D
2 for all CH levels L from most to least important do
3 for all up-edges 𝑢𝑣 ∈ E↑ with 𝑢 in L do
4 if D[𝑢] > D[𝑣] + ℓ+(𝑢𝑣) then
5 D[𝑢] ← D[𝑣] + ℓ+(𝑢𝑣)

The main work of the second step consists in iterating over all CH levels from top to bottom.
In each iteration, all up-edges starting within the current level are relaxed in reverse. Once all
levels were processed, the shortest distances from all vertices to 𝑡 were computed. Pseudocode
is provided in Algorithm 5.2. PHAST is faster than Dijkstra’s algorithm on road graphs because
it is a better fit for modern processor architectures, better at utilizing data locality and, most
importantly, can be parallelized very effectively.

RPHAST [DGW11], short for Restricted PHAST, is a PHAST extension for efficiently comput-
ing distances from a smaller set of source vertices to one target vertex (again, the reverse case
works analogously), solving the many-to-one problem. Given a set of source vertices S , the first
step is to copy the combined search space of all sources into a restricted subgraph. Let V restr be
the set of vertices reachable in 𝐺↑ from any 𝑠𝑖 ∈ S . The restricted subgraph 𝐺↑restr is a subgraph
of 𝐺↑ induced by V rest. Finding and copying the relevant edges into this restricted subgraph
is called the selection step. In the query step, a target 𝑡 is given, and the PHAST algorithm is
applied, but the downward sweep (the second step of the PHAST algorithm) is performed only
on the restricted subgraph. RPHAST is particularly effective when many targets are queried for
the same source set S . If the source set changes often, selection times may become problematic.

5.4.2 BucketQuery

Bucket queries are another way to approach the many-to-one problem with CH [Kno+07]. For
every vertex 𝑣 , a bucket is maintained containing pairs of distances to specific sources and the
respective source (dist𝐺↑ (𝑠𝑖 , 𝑣), 𝑠). Buckets are filled by running Dijkstra’s algorithm from each
source vertex 𝑠𝑖 on 𝐺↑. For every settled vertex, the respective entries are inserted into the
vertices’ bucket. For competitive performance, applying stall-on-demand [GSSV12] is crucial.
Now, distances from a specific target 𝑡 to all sources can be computed. Like a classical CH query,
Dijkstra’s algorithm is executed from 𝑡 on←−𝐺 ↓. However, an array of tentative distances of
length |S | is maintained. The 𝑖th position in this array contains the tentative distance for source
𝑠𝑖 . When the backward search settles a vertex 𝑣 , the algorithm iterates over the bucket entries
of 𝑣 and updates the tentative distances accordingly. Once the backward search terminates, the
array contains the shortest distances from all sources. Like RPHAST, the bucket approach is
efficient when many targets are queried for the same source set S .

Chapter 5 Fundamental Algorithms and Data Structures

44

5.5 Timestamp Arrays
CH queries are fast because the search space is orders of magnitude smaller than the number
of vertices in the graph. However, a naive implementation of Dijkstra’s algorithm contains an
initialization phase with running time inΘ(𝑛). We avoid this problem by using timestamp arrays

to track tentative distances [Wei97]. Beside each distance entry D[𝑖], we maintain a timestamp
TS[𝑖] and a counter variable t. A distance array entry is only valid when the corresponding
timestamp matches the counter. Otherwise the default value, i.e.∞, is used. When an entry is
written, the corresponding timestamp is set to the value of the counter. Now, all distances can
be reset in O(1) by incrementing the counter variable.

5.6 Periodic Piecewise Linear Functions
We represent PPLFs as a sorted sequence of breakpoints (dt𝑖 , tt𝑖) of departure time and travel
time. W.l.o.g. let𝐻 = [0, 𝑝) be the horizon of our functions and 𝑝 the period. The first breakpoint
is always at time zero, the last one at a time smaller than 𝑝 . We evaluate PPLFs for a time 𝜏 by
first wrapping the time into the horizon, i.e. 𝜏 ′ = 𝜏 mod 𝑝 . Then, we perform a binary search
for 𝜏 ′. If this search exactly matches a point, we return its travel time. Otherwise, 𝜏 ′ is between
dt𝑖 and dt𝑖+1, and we perform linear interpolation, i.e. we return:

tt𝑖 + (tt𝑖+1 − tt𝑖)
𝜏 ′ − dt𝑖

dt𝑖+1 − dt𝑖

It has been reported that an index array or linear search might accelerate the function evalu-
ation [Bat14]. We could not reproduce any speedups. A reason may be, that our algorithms
primarily work on functions with few breakpoints. Therefore, we only use binary search.

Linking and Merging. Linking and Merging PPLFs is practically surprisingly complicated.
The implementations of KaTCH and our own code illustrate this.1 Both operations can be
implemented in linear time through coordinated linear sweeps over the breakpoints. When
linking two functions 𝑓 ⊕ 𝑔, the result functions has for every breakpoint (dt𝑓

𝑖
, tt𝑓

𝑖
) of 𝑓 a

breakpoint (dt𝑓
𝑖
, tt𝑓

𝑖
+ 𝑔(dt𝑓

𝑖
+ tt𝑓

𝑖
)), and for every breakpoint (dt𝑔

𝑖
, tt𝑔

𝑖
) of 𝑔, a breakpoint

(𝑓 −1(dt𝑔
𝑖
), dt𝑔

𝑖
− 𝑓 −1(dt𝑔

𝑖
) + tt𝑔

𝑖
). For merging two functions 𝑓 and 𝑔, the result function

has every breakpoint (dt𝑓
𝑖
, tt𝑓

𝑖
) of 𝑓 where 𝑓 (dt𝑓

𝑖
) ≤ 𝑔(dt𝑓

𝑖
) and vice versa, and additional

breakpoints where the functions intersect. The difficulty lies in determining these intersections
and handling the numerical instabilities around this operation.

1https://github.com/GVeitBatz/KaTCH/blob/master/datastr/base/pwl_ttf.h
https://github.com/kit-algo/rust_road_router/blob/master/engine/src/datastr/graph/floating_

time_dependent/piecewise_linear_function.rs

https://github.com/GVeitBatz/KaTCH/blob/master/datastr/base/pwl_ttf.h
https://github.com/kit-algo/rust_road_router/blob/master/engine/src/datastr/graph/floating_time_dependent/piecewise_linear_function.rs
https://github.com/kit-algo/rust_road_router/blob/master/engine/src/datastr/graph/floating_time_dependent/piecewise_linear_function.rs

45

6 A Fast and Tight Heuristic for A* in Road
Networks

Solving navigation problems through accelerated shortest path computations on graphs mod-
elling the road network has been a very successful approach. A multitude of effective techniques
has been developed for the two-phase shortest path problem [Bas+16]. However, for many
real-world applications, the basic model is too simplistic. For realistic routing, many addi-
tional features need to be considered. This includes predicted and dynamic traffic but also user
preferences and turn costs and restrictions. Many applications may have additional application-
specific requirements. Further, it is insufficient to handle each of these features independently.
Instead, all requirements must be supported in combination.
Extending Dijkstra’s algorithm to support these features is comparatively easy. In contrast,

extending speedup techniques is vastly more complex. The results on adopting specific speedup
techniques to extended problem fill many research papers [GV11, BGSV13, BDPW16, DSW16,
DGPW17, BWZZ20] and sometimes entire dissertations [Del09, Bat14, Bau18] (see Section 1.1).
While techniques achieving fast query times have been successfully developed for many ex-
tended scenarios, we observe two problems: The resulting techniques are complex to implement
and hard to extend further. For example, while there exist speedup techniques achieving fast
queries for each of the features mentioned above, we are unaware of any work supporting
their combination. In practice, a different trade-off between running times and extensibility
is necessary. A unified and extensible approach with manageable implementation complexity
is often more important than the fastest query performance. Therefore, in this chapter, we
prioritize a simple and extensible approach over the fastest possible query times.

Attribution. This chapter is based on joint work with Ben Strasser. The results have been
previously published as a conference paper at SEA 2021 [SZ21] and a journal article [SZ22].

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

46

Contribution and Outline. We revisit the A* algorithm and propose a flexible, unified
framework for routing problems. It can be applied to any problem where tight lower bounds
are available at preprocessing time. The core of our approach is a new CH-based A* heuristic.
It allows for much tighter estimates than previous A* heuristics and, thus, significantly faster
queries. While the query running times of our technique are not competitive with approaches
tailored to specific problems, they are often sufficient for practical applications. Further, our
approach only requires the classical CH preprocessing regardless of the specific extended routing
problem. Therefore, preprocessing time and memory consumption are typically significantly
better than approaches aiming for competitive query times in specific problems.
The remainder of this chapter is organized as follows: In Section 6.1, we introduce Lazy

RPHAST, a simple and efficient CH-based algorithm for the incremental many-to-one shortest
path problem. It is the first algorithm to efficiently support accelerated shortest path computa-
tions from dynamic source sets to a fixed target. Section 6.2 contains several optimizations for
A* in road networks accelerating the processing of low-degree vertices (Section 6.2.1) and an
improved variant of bidirectional A* (Section 6.2.2). Our main contribution, the CH-Potentials
framework, is presented in Section 6.3. We first show how to use Lazy RPHAST to build a
fast and tight heuristic for A* in road networks. Based on this heuristic, we provide a unified
framework (Section 6.3.1 and 6.3.2) for a variety of practical route planning problems (Sec-
tion 6.3.3). CH-Potentials can be applied to all of these problems without any modifications to
the preprocessing. In Section 6.4, we provide an extensive experimental evaluation analyzing
the performance characteristics of our algorithms. It shows that CH-Potentials achieve decent
running times when tight lower bounds are available at preprocessing time. However, the
strength of our approach is not in query running times but its flexibility: Problem extensions
can be supported without adjustments to the preprocessing. The price for each extension is a
query slowdown depending on how tight the lower bounds used during preprocessing remain.

Problem Statement. In this chapter, we do not aim at a specific model but consider a variety
of two-phase routing problems. This includes the classical shortest path problem, the shortest
path problem with dynamic traffic weights and the time-dependent shortest path problem.

6.1 The Incremental Many-to-One Problem

Before approaching our main problem, we first focus on a different problem model, which
naturally arises from A* heuristics. Here, the target vertex 𝑡 is known in the selection step,
but the source vertices 𝑠1, . . . , 𝑠𝑘 are queried one after another. We denote this problem as the
incremental many-to-one problem. The first step is the target selection where the target vertex 𝑡
is provided. Then, an arbitrary number of source vertices are given one after another. For each
source 𝑠𝑖 the distance dist(𝑠𝑖 , 𝑡) has to be computed before the next source 𝑠𝑖+1 is provided.

We consider the combined running time of the target selection and each incremental query as
the total running time to answer an incremental many-to-one query. Since the target selection

The Incremental Many-to-One Problem Section 6.1

47

Algorithm 6.1: The Lazy RPHAST algorithm.
Data: D↓ [𝑣]: tentative distance from any vertex 𝑣 ∈ V to 𝑡 as computed by

Algorithm 5.1 on←−𝐺 ↓.
Data: D[𝑣]: memoized distance from vertex 𝑣 ∈ V to 𝑡 , shared between invocations.

1 Function Select(𝑡):
2 Run Dijkstra’s algorithm (Algorithm 5.1) from 𝑡 on←−𝐺 ↓, filling D↓
3 D[𝑣] ← ⊥ for all 𝑣 ∈ V

4 Function ComputeAndMemoizeDist(𝑢):
5 if D[𝑢] = ⊥ then
6 D[𝑢] ← D↓ [𝑢]
7 for all up-edges 𝑢𝑣 ∈ E↑ do
8 D[𝑢] ← min(D[𝑢], ℓ+(𝑢𝑣) + ComputeAndMemoizeDist(𝑣))
9 return D[𝑢]

time is included, computing the distances to all vertices with Dijkstra or PHAST is too slow.
Also, since the source set is provided incrementally, RPHAST in its basic form is not well suited
to our problem. Fortunately, we can do better.

6.1.1 Lazy RPHAST

The core idea of our algorithm is to do the RPHAST computation lazily using memoization. In
the target selection, we first run the backward CH search on←−𝐺 ↓ from 𝑡 to obtain an array D↓.
D↓ [𝑣] is the minimum down 𝑣𝑡-path distance or +∞, if there is no such path. The distances D[𝑣]
are initialized to a sentinel value ⊥ distinct from any other valid distance (including∞). This
value indicates that the distance from 𝑣 to 𝑡 has not yet been computed.

Now, distances from many sources 𝑠𝑖 to 𝑡 can be computed incrementally by calling the
ComputeAndMemoizeDist function as shown in Algorithm 6.1. The key to doing this efficiently
is reusing the distance information D across invocations through memoization. Thus, the first
step of the algorithm is always to check if the distance for the requested vertex has already
been computed. If this is the case, it immediately returns this distance. If not, the distance
D[𝑠𝑖] is initialized to the shortest down-path distance D↓ [𝑠𝑖] obtained by the backward search.
Then, the algorithm iterates over all up-edges 𝑠𝑖𝑣 and checks if the up-down path through this
neighbour can improve the distance. The algorithm is invoked recursively to obtain the shortest
distance from a neighbour 𝑣 to 𝑡 .

Correctness. Due to [GSSV12], an up-down path of shortest distance must exist in𝐺+. Further,
𝐺+ can be decomposed into two directed acyclic graphs (DAGs) 𝐺↑ and 𝐺↓ and the up path

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

48

can be found in 𝐺↑ and the down path in 𝐺↓. The Lazy RPHAST selection finds the shortest
down path in𝐺↓. Now observe that the ComputeAndMemoizeDist function is, in fact, a recursive
depth-first search (DFS) on 𝐺↑. Edges 𝑢𝑣 are relaxed once all upward neighbors of 𝑢 have been
processed, i.e. in DFS-post order. A DFS-post order also is a reverse topological order for 𝐺↑.
Therefore, the algorithm relaxes edges 𝑢𝑣 in reverse topological order of the tail vertices 𝑢.
Since 𝐺↑ is a DAG, this yields shortest up distances in 𝐺↑. Concatenated with the down paths
obtained by the backward search, this yields optimal shortest distances.

6.2 Optimizations for A* in Road Networks

In this section, we propose optimizations for A* in road networks. First, we present several
low-degree vertex optimizations which exploit road network characteristics to reduce the
overhead of queue operations and heuristic evaluations. Second, we discuss the bidirectional A*
algorithm and propose an improved pruning criterion for symmetric bidirectional potentials.
These optimizations can be used with any A* heuristic.

6.2.1 Low-Degree A* Improvements

Preliminary experiments showed that a significant amount of query running time is spent in
heuristic evaluations and queue operations. We can reduce both by keeping some vertices out
of the queue, as the heuristic only needs to be evaluated when a vertex is pushed into the queue.
For example, consider a chain of vertices with precisely two neighbours. Traversing this chain
by successively pushing each vertex into the queue, evaluating the heuristic and popping the
vertex again from the queue appears quite wasteful. Therefore, we now explore techniques to
process such vertices consecutively without using the queue. The techniques discussed here are
essentially a lazy variant of the ideas used in TopoCore [DSW15].

Skip Degree-Two Vertices. Recall that
←→
deg(𝑢) is the number of neighbours 𝑣 such that 𝑣𝑢 ∈ E

or 𝑢𝑣 ∈ E . Our algorithm differs from classical A* when removing a vertex 𝑢 from the queue. A*
iterates over the outgoing edges 𝑢𝑣 of 𝑢 and tries to reduce D[𝑣] by relaxing 𝑢𝑣 . If A* succeeds,
𝑣 ’s weight in the queue is set to D[𝑣] + 𝜋𝑡 (𝑣). Our algorithm, however, behaves differently, if
←→
deg(𝑣) ≤ 2. Our algorithm determines the longest degree two chain of vertices 𝑢, 𝑣1, . . . , 𝑣𝑘 ,𝑤
such that

←→
deg(𝑣𝑖) = 2 and

←→
deg(𝑤) > 2. If our algorithm succeeds in reducing D[𝑣1], it does not

push 𝑣1 into the queue. Instead, it iteratively tries to reduce all D[𝑣𝑖]. It stops if a D[𝑣𝑖] cannot
be improved. If it does not reach𝑤 , then only D is modified, but no queue action is performed.
If D[𝑤] is modified and

←→
deg(𝑤) > 2,𝑤 ’s weight in the queue is set to D[𝑤] + 𝜋𝑡 (𝑤).

As the target vertex 𝑡 might have degree two, our algorithm cannot rely on stopping when 𝑡 is
removed from the queue. Instead, our algorithm stops as soon as D[𝑡] is less than the minimum
weight in the queue.

Optimizations for A* in Road Networks Section 6.2

49

Skip Degree-Three Vertices. We can also skip some degree-three vertices. Denote by
𝑢, 𝑣1, . . . , 𝑣𝑘 ,𝑤 a degree two chain as described in the previous section. If

←→
deg(𝑤) > 3 or

𝑤 is in the queue, our algorithm proceeds as in the previous section. Otherwise, there exist up
to two degree chains𝑤, 𝑥1, . . . , 𝑥𝑝 , 𝑦 and𝑤, 𝑎1, . . . , 𝑎𝑞, 𝑏 such that 𝑥1 ≠ 𝑣𝑘 ≠ 𝑎1. Our algorithm
iteratively tries to reduce all D[𝑥𝑖] and D[𝑎𝑖]. If it reaches 𝑏, 𝑏’s weight in the queue is set to
D[𝑏] + 𝜋𝑡 (𝑏). Analogously, if 𝑦 is reached, 𝑦’s weight is set to D[𝑦] + 𝜋𝑡 (𝑦). If neither 𝑦 nor
𝑏 are reached, no queue operation is performed. Using this method, we avoid pushing every
other degree-three vertex into the queue.

Stay in Largest Biconnected Component. Many vertices in road networks lead to dead
ends. Unless the source or target is in this dead-end, it is unnecessary to explore these vertices.
In the preprocessing phase, we compute the subgraph 𝐺𝐶 , called core. 𝐺𝐶 is induced by

the largest biconnected component of the undirected graph underlying 𝐺 . We compute the
core using Tarjan’s algorithm [Tar72]. For every vertex 𝑣 in the input graph 𝐺 , we store an
attachment vertex 𝑎𝑣 to the core. For vertices in the core, 𝑎𝑣 = 𝑣 . For every vertex 𝑣 outside of
the core, the attachment vertex 𝑎𝑣 is the cut vertex in the core that separates 𝑣 ’s component
from the core (or a sentinel value ⊥ for vertices in components not connected to the core).
The query phase is divided into two steps. First, we run A* on the subgraph induced by the

core and 𝑠’s component. Formulated differently, we only consider vertices which are in the core
or have the same attachment vertex as 𝑠 . We achieve this implicitly by not following edges to
vertices without this property. If 𝑡 is part of 𝐺𝐶 or in the same component as 𝑠 , this A* search
finds it. Otherwise, we find 𝑎𝑡 . In that case, we continue by searching a path from 𝑎𝑡 towards 𝑡
restricted to 𝑡 ’s component. The final result is the concatenation of both paths. When 𝑡 is not
connected to the core (𝑎𝑡 = ⊥) but 𝑠 is (𝑎𝑠 ≠ ⊥), we immediately return a distance of∞.

6.2.2 Bidirectional A*

On road graphs, bidirectional search provides a simple way to halve the practical running time
of Dijkstra’s algorithm. Thus, a bidirectional variant of A* also seems desirable. However, as
shown in [GH05], the necessary modifications are not straightforward. We revisit bidirectional
A* and propose an alternative approach. Our experiments show that it is competitive with the
solution described by [GH05].
The straightforward idea is to use two heuristics −→𝜋 𝑡 (𝑣) and←−𝜋 𝑠 (𝑣). The forward search has

its queue ordered by −→D [𝑣] + −→𝜋 𝑡 (𝑣), where −→𝜋 𝑡 (𝑣) estimates the distance dist(𝑣, 𝑡) from 𝑣 to
𝑡 . Similarly, the backward search has its queue ordered by←−D [𝑣] + ←−𝜋 𝑠 (𝑣), where←−𝜋 𝑠 (𝑣) is an
estimate of the distance dist(𝑠, 𝑣) from 𝑠 to 𝑣 .

The problem with this straightforward approach is that these two potentials induce different
reduced weights (see Section 5.3). Thus, each direction would run on a different graph in the
equivalent bidirectional Dijkstra search. This breaks the usual bidirectional Dijkstra stopping
criterion. To the best of our knowledge, no better stopping criterion exists than running both

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

50

searches until the unidirectional stopping criterion is met for one direction. The forward search
can skip vertices already settled by the backward search and vice versa. Unfortunately, this
straightforward bidirectional A* still performs more work than a unidirectional A* [GH05]. Thus,
on its own, it is not a useful algorithm. However, it can serve as a basis for further algorithmic
refinements. The authors of [GH05] refer to this as symmetric bidirectional A*.
To obtain a bidirectional stopping criterion, the average potential is proposed [GH05]. It

combines a forward and a backward heuristic −→𝜋 𝑡 and←−𝜋 𝑠 into a combined average heuristic

𝜋𝑠𝑡 . The idea is to use a common reduced graph, whose weights are the average weights
of the individual reduced graphs. Both searches run on the same common reduced graph.
This allows stopping the searches when −→𝑞 +←−𝑞 ≥ `. Formally, 𝜋𝑠𝑡 (𝑣) is defined as (−→𝜋 𝑡 (𝑣) −←−𝜋 𝑠 (𝑣))/2. The forward search uses 𝜋𝑠𝑡 (𝑣) as its heuristic. The backward search uses −𝜋𝑠𝑡 (𝑣).
Unfortunately, average potentials have two downsides. First, evaluating the average potential
requires evaluating both −→𝜋 𝑡 and←−𝜋 𝑠 . Evaluating the average heuristic is, therefore, slower than
evaluating just one of the composing heuristics. Second, the bidirectional stopping criterion
comes at the cost of worse estimates for each direction on its own. 𝜋𝑠𝑡 (𝑣) is a worse estimate
for dist(𝑣, 𝑡) than −→𝜋 𝑡 . Similarly, −𝜋𝑠𝑡 (𝑣) is a worse estimate for dist(𝑠, 𝑣) than←−𝜋 𝑠 .1 The second
downside can be partially mitigated through pruning with the composing heuristics. When the
forward search scans an edge 𝑢𝑣 where −→D [𝑢] + ℓ (𝑢𝑣) + −→𝜋 𝑠 (𝑣) > ` holds, i.e. the distance plus
the estimate of the remaining distance is already greater than the currently known tentative
distance, it is not necessary to push 𝑣 into the queue. The pruning rule for the backward search
is analogous.
To avoid the downsides of the average potential, we revisit symmetric bidirectional A* and

propose a new pruning criterion. We describe the idea for the forward search. The pruning rule
for the backward search is analogous. The central idea consists of using information from the
backward search to prune edges in the forward search. We do not use the average heuristic.
Instead of a strong stopping criterion, we use a pruning rule that gets stronger the longer the
search runs. Such a pruning rule will eventually prune all remaining branches and stop the
search. The stopping criteria for each direction remain the same (unidirectional) as before.
However, usually, the search stops early because the queues are empty.
Let 𝑢𝑣 be an edge that we relax in the forward search. Before pushing 𝑣 into the queue,

we apply the new pruning rule. If we can prove that every path using 𝑢𝑣 is at least as long
as the shortest known path length `, then we do not have to push 𝑣 . We therefore want to
obtain a lower bound for dist(𝑠,𝑢) + ℓ (𝑢𝑣) + dist(𝑣, 𝑡). As 𝑢 was settled, −→D [𝑢] contains the
shortest path length dist(𝑠,𝑢), i.e., dist(𝑠,𝑢) = −→D [𝑢]. ℓ (𝑢𝑣) is also known as it is just an edge
weight. It remains to lower bound dist(𝑣, 𝑡). Vertices are removed from the backward queue
ordered by←−𝜋 𝑠 (𝑣) + dist(𝑣, 𝑡). If 𝑣 was not yet removed from the backward queue, we know
that←−𝜋 𝑠 (𝑣) + dist(𝑣, 𝑡) ≥ ←−𝑞 . This gives us the required lower bound, i.e. dist(𝑣, 𝑡) ≥ ←−𝑞 −←−𝜋 𝑠 (𝑣).
Thus, 𝑣 does not have to be pushed if −→D [𝑢] + ℓ (𝑢𝑣) +←−𝑞 −←−𝜋 𝑠 (𝑣) ≥ `. The vertex 𝑣 might still be

1To obtain an actual lower bound from this average heuristic, one has to add←−𝜋 𝑠 (𝑡)/2 in the forward case and
−→𝜋 𝑡 (𝑠)/2 in the backward. Adding any constant to a heuristic function does not change the reduced graph.

The CH-Potentials Framework Section 6.3

51

pushed into the queue when there is another edge𝑤𝑣 for which pruning is impossible. Checking
the pruning rule requires evaluating the backward heuristic. However, pruning is only possible
once the searches have met, i.e. ` < ∞. Before that, each direction only has to evaluate its own
heuristic. Thus, our pruning improves on both downsides of the average potential.
Unless stated differently, for all bidirectional A* variants, we always alternate between

removing a vertex from the forward and the backward queues. We also evaluate expanding
the search with the smaller minimum queue key in our experiments. While this may sound
sensible, our experiments show in Table 6.3 that it is never beneficial in terms of running time.

6.3 The CH-Potentials Framework

In this section, we introduce an algorithmic framework to apply A* with a Lazy RPHAST-based
heuristic to various practical route planning problems. We call our approach CH-Potentials.
The core idea is to compute a CH augmented graph during preprocessing and use A* with a
straightforward application of Lazy RPHAST as the heuristic to answer queries. When the
CH preprocessing and the A* algorithm are performed on the same graph with the same
weight function, this yields a perfect heuristic. However, this case is, of course, not particularly
interesting. One could just answer the shortest path query directly with a CH query. The
approach becomes useful when the query runs on a different but related graph or weight function
than the preprocessing. Therefore, we start by establishing a common formal framework for
the use of CH-Potentials. Then, we exemplarily describe some extended routing problems and
how to apply the CH-Potentials framework to them.

6.3.1 Formal Problem Setup: Inputs, Outputs, and Phases

We consider a variety of different applications with slightly different problem models. The
goal is always to answer many shortest path queries quickly. To describe our framework, we
establish a shared notation: Input to each query are vertices 𝑠 and 𝑡 , and a graph𝐺q with query
weights ℓq. However, the precise formal inputs of the query and what exactly ℓq represents
depends on the application. In the simplest case, ℓq will be scalar edge weights. Live traffic is
an example of this. The challenge in this scenario is that values of ℓq might change between
queries. However, ℓq can also represent something more complex than scalar numbers. It can
be any function that computes a weight for an edge. This function can also take additional
parameters from the state of the search. In the case of traffic predictions, ℓq is a function which
maps the edge entry time to the traversal time, and the query takes an additional departure
time parameter.

To enable quick shortest path computations, we consider a two-phase setup with an additional
offline preprocessing phase before the online query phase. The input to the preprocessing phase
is a lower bound graph 𝐺pre = (Vpre, Epre) with lower bound weights ℓpre where ℓpre(𝑒) must be
a scalar value for every edge 𝑒 of𝐺pre. The preprocessing output is auxiliary data that allows to

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

52

quickly compute distances on 𝐺pre with respect to ℓpre. In the applications considered in this
chapter, ℓpre is always the free-flow travel time.

The query phase may use this auxiliary data to answer shortest path queries between vertices
𝑠 and 𝑡 on𝐺q = (Vq, Eq) with weights ℓq. Let 𝜙 : Vq → Vpre denote a function mapping vertices
in the query graph to vertices in the lower bound graph. The only requirement for a routing
problem to fit into our problem framework is that the query weight of an edge ℓq(𝑢𝑣) is greater
or equal to the shortest distance distpre(𝜙 (𝑢), 𝜙 (𝑣)) between the corresponding vertices 𝜙 (𝑢)
and 𝜙 (𝑣) in the lower bound graph 𝐺pre with respect to ℓpre. Unless stated otherwise, 𝐺q and
𝐺pre are the same graph, 𝜙 is the identity function and only ℓq changes for the queries.

6.3.2 CH-Potentials

CH-Potentials can be used to solve any problem in this setup. The preprocessing is always the
computation of the CH augmented graph 𝐺+pre and remains the same regardless of the specific
routing problem. The query consists of A* with the heuristic function 𝜋𝑡 (𝑣) = distpre(𝜙 (𝑣), 𝜙 (𝑡))
computed using Lazy RPHAST. At the beginning of each query, we perform the target selection,
i.e. a backward CH search, from the target 𝑡 . The heuristic function 𝜋𝑡 (𝑣) is implemented by
a call to the ComputeAndMemoizeDist for vertex 𝜙 (𝑣) (see Algorithm 6.1). In contrast to the
preprocessing phase, the exact implementation of the A* search depends on the application. Our
approach only provides the heuristic 𝜋𝑡 for the A* search. As the performance of A* depends on
the accuracy of the heuristic estimates, the smaller the difference between query weights and
lower bound distances, the better CH-Potentials will perform.

Correctness. Our heuristic is always feasible, i.e. ℓq(𝑢𝑣) −𝜋𝑡 (𝑢) +𝜋𝑡 (𝑣) ≥ 0 holds for all edges.
By requirement and because of the triangle inequality, the following must hold:

ℓq(𝑢𝑣) − 𝜋𝑡 (𝑢) + 𝜋𝑡 (𝑣) ≥ distpre(𝜙 (𝑢), 𝜙 (𝑣)) − distpre(𝜙 (𝑢), 𝜙 (𝑡)) + distpre(𝜙 (𝑣), 𝜙 (𝑡)) ≥ 0

Thus, A* will always determine the optimal shortest distance.

6.3.3 Applications

Avoiding Tunnels and/or Highways

Avoiding tunnels or highways is a common feature of navigation devices. Implementing this
feature with CH-Potentials is easy. We set ℓpre to the free-flow travel time. If an edge is a tunnel
or a highway, we set ℓq to +∞. Otherwise, ℓq is set to the free-flow travel time.

Forbidden Turns and Turn Costs

The classical shortest path problem allows changing edges at vertices freely. However, in the
real world, turn restrictions, such as a forbidden left or right turn, exist. Also, taking a left

The CH-Potentials Framework Section 6.3

53

turn might take longer than going straight. This can be modeled using turn weights [GV11,
DGPW17]. A turn weight ℓt : E × E → ℤ≥0 maps a pair of incident edges onto the turning
time or +∞ for forbidden turns. A path with vertices 𝑣1, 𝑣2, . . . 𝑣𝑘 has the following turn-aware

weight:

ℓ (𝑣1𝑣2) +
𝑘−1∑︁
𝑖=2

ℓt(𝑣𝑖−1𝑣𝑖 , 𝑣𝑖𝑣𝑖+1) + ℓ (𝑣𝑖𝑣𝑖+1)

The objective is to find a path between two given edges with minimum turn-aware weight. The
first term ℓ (𝑣1, 𝑣2) is the same for all paths, as it only depends on the source edge. It can thus be
ignored during optimization.

We solve this problem by constructing a turn-expanded graph [Cal61, Win02]. This construc-
tion expands the network so that road segments become vertices and allowed turns become
edges; see fig. 7.2 (middle) for an example. More precisely, the expanded graph 𝐺e = (Ve, Ee)
is obtained from 𝐺 as follows. The vertices of 𝐺e are the edges of 𝐺 , i.e, Ve = E . The edges of
𝐺e are the allowed turns of 𝐺 , i.e., Ee = {(𝑢𝑣, 𝑣𝑤) : 𝑢𝑣, 𝑣𝑤 ∈ E, ℓt(𝑢𝑣, 𝑣𝑤) ≠ ∞}. The cost of
an edge (𝑢𝑣, 𝑣𝑤) ∈ Ee is defined as ℓe((𝑢𝑣, 𝑣𝑤)) = ℓt(𝑢𝑣, 𝑣𝑤) + ℓ (𝑣𝑤). A sequence of expanded
vertices in the expanded graph𝐺e corresponds to a sequence of edges in the input network. The
weight of a path in𝐺e is equal to the turn-aware weight of the corresponding path in𝐺 minus
the irrelevant ℓ (𝑣1𝑣2) term. Thus, the turn-aware routing problem can be solved by searching
for shortest paths in 𝐺e. Therefore, we set 𝐺q = 𝐺e.

For the preprocessing, we use zero as the lower bound for every turn weight in the potential.
Thus, the preprocessing uses the input graph without turns, i.e. 𝐺pre = 𝐺 and ℓpre = ℓ . As
preprocessing and query use different graphs, we define the vertex mapping function 𝜙 as
𝜙 (𝑢𝑣) = 𝑣 . Obviously, ℓq((𝑢𝑣, 𝑣𝑤)) = ℓt(𝑢𝑣, 𝑣𝑤) + ℓ (𝑣𝑤) ≥ distpre(𝜙 (𝑢𝑣), 𝜙 (𝑣𝑤)) and this
approach yields a feasible heuristic. Sadly, the undirected graph underlying 𝐺q is always
biconnected, if the input graph is strongly connected. The BCC optimization described in
Section 6.2.1 is therefore ineffective. With this setup, CH-Potentials supports turn costs without
requiring turn information in the CH.

Predicted Traffic and Time-Dependent Routing

We can apply CH-Potentials to the two-phase time-dependent shortest path problem with FIFO
travel times to support traffic predictions. Queries use the input graph with time-dependent
weights ℓq. For the preprocessing, we set ℓpre(𝑒) = min𝜏 ℓq(𝑒, 𝜏), that is the scalar minimum
travel time of each edge. Queries and preprocessing both use the same topology, i.e. 𝐺pre = 𝐺q.
Therefore, preprocessing weights are a trivial lower bound of the query weights.

With this setup, we keep time-dependency out of the CH preprocessing. Thus, we avoid a lot
of algorithmic complications compared to [DN12, BGSV13, BDPW16] (and Chapter 8) where
shortcuts of travel time functions have to be constructed. Note that TD-ALT [DW07, NDSL12]
supported time-dependent routing with a similar strategy.

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

54

Live Traffic

Besides predicted traffic, we also consider dynamic real-time traffic. We propose three variants
to handle this traffic information with CH-Potentials. In the simplest approach, we set ℓpre to
the free-flow travel time without any traffic ℓfree. ℓq consists of scalar edge weights set to the
travel time accounting for current traffic. As traffic only increases the travel time along an edge,
ℓfree is a valid lower bound for ℓq. Values from ℓq can be updated between queries. Therefore,
CH-Potentials support the two-phase shortest path problem with dynamic traffic weights.

This setup can easily be extended to the combined traffic shortest path problem. The free-flow
travel times remain valid lower bounds. We set the query weights ℓq to the combined traffic
function ℓcomb, i.e. we use the live traffic information for some time (for example, one hour) and
then switch back to the predicted traffic. See Section 3.3 for the formal definition of ℓcomb. In our
implementation, we evaluate the formulas according to the definition of ℓcomb for each travel
time evaluation. Therefore, real-time traffic updates can still be integrated instantaneously.

Finally, we can also phase out the live traffic after some time without time-dependent traffic
predictions and instead switch back to free-flow weights. Using the notation from Section 3.3,
this would mean setting ℓpred = ℓfree, running time-dependent queries, and evaluating the ℓcomb
definition at query time.

With this setup, CH-Potentials supports a combination of real-time and predicted traffic. We
did not make any modifications that would hinder a combination with other extensions. Further
adding tunnel or highway avoidance or turn-aware routing is simple. This straightforward
integration of complex routing problems is the strength of CH-Potentials.

6.4 Evaluation

Environment. Our benchmark machine runs openSUSE Leap 15.3 (kernel 5.3.18), and has
128GiB of DDR4-2133 RAM and an Intel Xeon E5-1630 v3 CPUs, which has four cores clocked
at 3.7 Ghz and 4 × 32KiB of L1, 8 × 256KiB of L2, and 10MiB of shared L3 cache. All exper-
iments were performed sequentially. Our code is written in Rust and compiled with rustc

1.57.0-nightly in the release profile with the target-cpu=native option. The source code of
our implementation and the experimental evaluation can be found on GitHub.2

Inputs. Our primary benchmark instance for this chapter is the OSM Germany instance with
the Mapbox real-world traffic data. Turn restrictions are extracted from OSM. In this chapter,
we only use the heavy real-time traffic snapshot. Further, we use the DIMACS Europe instance
to ensure comparability with other speedup techniques. For the same reason, we also include
the time-dependent Ger06, Eur17 and Eur20 instances.

2https://github.com/kit-algo/ch_potentials

https://github.com/kit-algo/ch_potentials

Evaluation Section 6.4

55

Methodology. To evaluate point-to-point queries, we generate 10 000 queries where both
source and target are vertices drawn uniformly at random and report average results. For time-
dependent queries, we draw the departure time uniformly at random. When using live traffic
snapshots, departure times are fixed to the time of the snapshot. Lazy RPHAST is evaluated
with many-to-one queries where each query consists of a source set S with 214 sources and one
target vertex 𝑡 . However, instead of picking sources and targets from the full vertex set V , we
draw them from local subsets of vertices B of varying size |B | called balls. A ball B is generated
by picking a centre uniformly at random and running Dijkstra’s algorithm from it until the
desired number of vertices |B | is settled. This allows us to evaluate the performance depending
on the distribution of the vertices. Since we use a fixed number of sources per query, a small
ball size means that the vertices are densely clustered in the same region, while large ball sizes
mean that the vertices are distributed over large parts of the network. For each ball size, we
generate 100 balls. We pick one set of sources from each ball to which we compute distances
from 100 different targets selected uniformly at random from the same ball. Therefore, each
reported running time is the mean over 10 000 queries. With this, we follow the methodology
from [DGW11].

Preprocessing and Space Consumption. CH-Potentials inherit preprocessing times and
space usage characteristics directly from CH. Therefore, they are not the focus of our evaluation.
Preprocessing on all graphs takes at most five minutes and produces less than 1.2 GB of auxiliary
data. See [GSSV12] for a detailed discussion.

6.4.1 Lazy RPHAST

To evaluate Lazy RPHAST in the incremental setting, we measure the elapsed running time after
distances from 2𝑖 sources were queried. Figure 6.1 depicts the total elapsed time and the average
running time to compute a single distance. The first few distances are the most expensive since
much of the CH search space has not been explored yet. With around 100 `s, the running times
are comparable to standard CH queries. For later queries, little work remains to be done, and
the overhead per distance becomes almost constant depending on the ball size.
Despite laziness being the distinguishing feature in Lazy RPHAST, the algorithm can still

be used for non-incremental many-to-one queries. Figure 6.2 depicts average running times
to compute distances between one target vertex and 214 sources for different ball sizes. The
query generation methodology is the same as in the previous experiment. As this is the same
methodology also used in [DGW11], we can relate our results to the performance of other
one-to-many algorithms. Keep in mind that algorithms like RPHAST optimize for a different
setting than we do. We can compare the performance for fixed S-𝑡 terminal sets. The difference
is that with RPHAST, one can efficiently compute distances from a different 𝑡 ′ to the same S
set, while with Lazy RPHAST, one can efficiently extend S while 𝑡 stays the same.
When looking at total running times for a single many-to-one query, including selection

times, Lazy RPHAST delivers very competitive performance and is as fast if not faster than

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

56

0

5

10

15

20

25
R

un
ni

ng
 T

im
e

[m
s]

Ball Size |B|
214

217

221

224

0 2500 5000 7500 10000 12500 15000
Number of Queried Distances

0.1

1

10

Av
er

ag
e

R
un

ni
ng

 T
im

e
pe

r D
is

ta
nc

e
[

s]

Figure 6.1: Average running times of incremental Lazy RPHAST while querying |S | = 214 from a ball of
varying size |B | on OSM Germany excluding selection times. The upper figure contains the total elapsed
running time. The lower figure contains the averaged running time per source, i.e. 𝑦/𝑥 from the upper
figure. Note the different y-axis scales and units.

all algorithms evaluated in [DGW11]. For example, Delling et al. report an average RPHAST
running time of 1.97ms for selection and query combined for |B | = 214 and 28.52ms for |B | = 220
on DIMACS Europe. Lazy RPHAST takes 0.96ms and 10.76ms respectively, to compute the same
distances. These numbers are not perfectly comparable due to different benchmark machines.3
Therefore, in Appendix B, we also report running times of our own implementation of RPHAST.
They confirm that RPHAST and Lazy RPHAST perform similar and Lazy RPHAST is for a
single many-to-one query marginally faster. We can conclude that Lazy RPHAST is a valuable

3According to the comparison methodology from [Bas+16] (see https://i11www.iti.kit.edu/~pajor/survey/),
the machine used in [DGW11] (SPA-2) is about 30% slower than ours (we obtained a score of 33 159ms). However,
these scaling factors have to be interpreted very carefully. They are obtained from one-to-all Dijkstra searches
on continental-sized road networks. This experiment heavily emphasizes memory bandwidth while neglecting
other critical factors such as CPU frequency and cache size and speed, which are likely much more critical for
algorithms carefully tuned to exploit data locality.

https://i11www.iti.kit.edu/~pajor/survey/

Evaluation Section 6.4

57

14 15 16 17 18 19 20 21 22 23 24
Ball Size |B|

1

10

R
un

ni
ng

 T
im

e
[m

s]

OSM Germany
DIMACS Europe

Figure 6.2: Running times of Lazy RPHAST for many-to-one queries with |S | = 214 sources picked from
a ball of varying size |B |. The running time includes the selection and the time to compute all distances.
The boxes cover the range between the first and third quartile. The band in the box indicates the median,
the diamond the mean. The whiskers cover 1.5 times the interquartile range. All other running times are
indicated as outliers.

1.0 1.05 1.1 1.15 1.2 1.25
Weight Factor

10
1

10
0

10
1

10
2

10
3

R
un

ni
ng

 T
im

e
[m

s]

OSM Germany
DIMACS Europe

Figure 6.3: Running times on a logarithmic scale for queries on static road networks with scaled edge
weights ℓq = 𝛼 · ℓpre. The boxes cover the range between the first and third quartile. The band in the box
indicates the median, the diamond the mean. The whiskers cover 1.5 times the interquartile range. All
other running times are indicated as outliers.

extension to RPHAST. It allows for efficiently handling dynamic source sets and is competitive
in the setting where both the target and the source set change between queries.

6.4.2 CH-Potentials Heuristic

The performance of A* depends on the tightness of the heuristic and the overhead of evaluating
the heuristic. CH-Potentials computes optimal distance estimates with respect to ℓpre. However,

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

58

Table 6.1: Average query running times and number of queue pushes with different heuristics and
optimizations on OSM Ger with ℓq = 1.05 · ℓpre. The BCC, Deg2 and Deg3 columns indicate which
optimizations from Section 6.2.1 were used.

BCC Deg2 Deg3 Zero ALT CH Oracle
Ru

nn
in
g

tim
e
[m

s] ◦ ◦ ◦ 2 133.0 317.9 47.9 34.3
• ◦ ◦ 1 355.3 233.9 36.3 24.8
• • ◦ 753.4 122.6 19.5 12.7
• • • 580.7 90.8 15.9 10.1

Q
ue
ue

[·1
03
]

◦ ◦ ◦ 8 087.1 863.1 137.1 137.1
• ◦ ◦ 6 298.2 685.7 112.7 112.7
• • ◦ 2 901.4 303.4 43.3 43.3
• • • 1 681.4 179.7 26.8 26.8

for most applications, there will be a gap between ℓq and ℓpre (otherwise, one could use CH
without A*). We evaluate the impact of the difference between ℓq and ℓpre on the performance
of A*. The lower bound ℓpre is set to the free-flow travel time. The query weights ℓq are set to
𝛼 · ℓpre, where 𝛼 ≥ 1. Increasing 𝛼 degrades the heuristic’s quality. Figure 6.3 depicts the results.
Clearly, 𝛼 has a significant influence on the running time. Average running times range from
below a millisecond to a few hundred milliseconds depending on 𝛼 . Up to around 𝛼 = 1.1 the
running time grows quickly. For 𝛼 > 1.1, the growth slows down. This illustrates the strengths
and limits of our approach and goal-directed search in general. CH-Potentials can only achieve
competitive running times if the application allows tight lower bounds at preprocessing time.
We observe that the running times for a fixed 𝛼 fluctuate heavily. This is an interesting

observation, as with uniform source and target sampling, nearly all queries are long-distance.
The query distance is thus not the reason. After some investigation, we concluded that this is
due to non-uniform road network density. Some regions have more roads per area than others.
The number of vertices explored by A* depends on the density of the search space area. As the
density varies, the running times vary.

Table 6.1 depicts the performance of unidirectional A* with different heuristics and optimiza-
tions on OSM Ger with ℓq = 1.05 · ℓpre. The factor 1.05 was chosen to resemble realistic problem
settings where goal-directed search can achieve reasonable speedups (compare to Table 6.5).
We compare CH-Potentials to three other heuristics. The first heuristic is the Zero heuristic
where 𝜋𝑡 (𝑣) = 0 for all vertices 𝑣 . This corresponds to using Dijkstra’s algorithm. Secondly, we
compare against our implementation of ALT [GW05]. We use 16 landmarks generated with
the avoid strategy [GW05] and activate all during every query. Finally, we compare against a
hypothetical Oracle-A* heuristic. This heuristic has instant access to a shortest distance array
with respect to ℓpre, i.e. it is faster than the fastest heuristic possible in our model. We fill this
array before each query using a reverse Dijkstra search from the target vertex but do not include

Evaluation Section 6.4

59

Table 6.2: Performance of different variants of bidirectional A* on OSM Ger with ℓq = 1.05 · ℓpre. All
variants alternate between the forward and the backward search.

Running time [ms] Queue pushes [·103]
Low Deg. Bidir. New Zero ALT CH Oracle Zero ALT CH/

Opt. Pot. Pruning Oracle

◦ Avg. ◦ 1 441.41 126.46 62.61 37.29 4 493.97 292.01 125.16
◦ Avg. • 1 451.96 128.20 62.48 38.89 4 491.56 290.92 125.08
◦ Sym. ◦ 5 779.64 795.56 122.70 88.66 16 042.82 1 688.60 259.78
◦ Sym. • 1 453.58 261.80 59.22 37.37 4 491.56 624.25 116.71

• Avg. ◦ 365.82 33.22 19.34 9.96 916.15 57.27 23.60
• Avg. • 369.51 33.37 19.54 9.98 908.55 56.09 23.25
• Sym. ◦ 1 512.48 241.27 40.98 26.36 3 317.81 334.90 44.67
• Sym. • 368.94 72.67 21.54 11.22 908.55 123.77 20.72

the running time for this step. Thus, the reported running times of Oracle-A* do not account
for any heuristic evaluation. CH-Potentials computes the same distance estimates, but the
heuristic evaluation has some overhead. Comparing against Oracle-A* allows us to measure
this overhead. No other heuristic, which only has access to the preprocessing weights, can be
faster than Oracle-A*.
We observe that the number of queue pushes roughly correlates with running time. Each

optimization reduces both queue pushes and running times. All optimizations yield a combined
speedup of around 3. CH-Potentials outperforms ALT by a factor of between six and seven and
settle correspondingly fewer vertices. This is not surprising since ALT computes worse distance
estimates. In contrast, CH-Potentials already computes exact distances with respect to ℓpre. As
CH-Potentials and Oracle-A* have the same heuristic values, the number of queue pushes are
also equal. The only difference between CH-Potentials and Oracle-A* is the overhead of the
heuristic evaluation. This overhead leads to a slowdown of around 1.6. Thus, CH-Potentials is
already very close to the best possible heuristic in this model. No competing algorithm such as
ALT or CPD-Heuristics can be significantly faster.

6.4.3 Bidirectional A*

In this section, we investigate the performance of bidirectional A*. We first evaluate different
variants of bidirectional A* in Table 6.2 and 6.3 then compare the best ones against unidirectional
A* in Table 6.4. Table 6.2 studies the impact of our improved pruning and the low-degree
optimizations. As observed in the previous section, enabling the low-degree optimizations
achieves a speedup of roughly three. Symmetric bidirectional A* without our improved pruning
has the worst performance. Enabling the improved pruning improves the performance of

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

60

Table 6.3: Performance of different direction selection criteria of bidirectional A* on OSM Ger with
different query weights. The symmetric variant uses the improved pruning, the average variant does not.
All variants use all low-degree optimizations.

Running time [ms] Queue pushes [·103]

ℓq
Bidir. Choose Zero ALT CH Oracle Zero ALT CH/
Pot. Direction Oracle

ℓpre

Avg. Alternating 373.18 12.83 0.79 0.18 916.15 23.08 0.60
Avg. Min. Key 406.35 13.68 1.44 0.56 986.40 26.39 1.15
Sym. Alternating 376.72 40.19 0.69 0.19 908.55 76.61 0.57
Sym. Min. Key 427.51 50.46 1.77 0.83 978.62 99.62 1.44

ℓpre · 1.05

Avg. Alternating 365.82 33.22 19.34 9.96 916.15 57.27 23.60
Avg. Min. Key 391.70 38.06 21.76 11.30 986.41 67.65 26.42
Sym. Alternating 368.94 72.67 21.54 11.22 908.55 123.77 20.72
Sym. Min. Key 394.38 84.84 27.28 14.53 978.63 145.28 24.82

ℓpre · 1.5 if
speed

< 80kph

Avg. Alternating 361.83 19.50 10.92 5.34 845.06 34.03 13.25
Avg. Min. Key 391.47 31.65 21.05 11.00 917.13 52.23 23.78
Sym. Alternating 364.55 37.33 11.89 6.00 836.44 57.93 11.53
Sym. Min. Key 395.04 54.90 23.36 12.54 908.12 84.33 22.01

symmetric bidirectional A* significantly. For all heuristics except ALT, symmetric A* with
improved pruning has smaller search spaces than the average potential and similar running
times. Without the low-degree improvements, the improved symmetric variant is marginally
faster. With the low-degree improvements, the average potential remains slightly faster. This is
due to the reduced impact of the heuristic evaluation overheadwith the low-degree optimizations.
Enabling the improved pruning for the average potential reduces the search space size marginally
and slightly increases running times.

Table 6.3 shows the performance of bidirectional A* with different strategies to decide whether
to advance the forward or the backward search next. The results clearly show that alternating
the directions is always superior. Selecting the direction by minimum queue key may lead to
huge imbalances in the progress of the searches. This causes the searches to meet later and the
total search space to grow significantly.
In Table 6.4, we investigate the effectiveness of bidirectional search compared to unidirec-

tional search depending on the query weights. Interestingly, only the zero heuristic and ALT
consistently achieve speedups through bidirectional search. With ℓq = ℓpre, unidirectional CH-
Potentials is already optimal and only traverses the shortest path. Here, the bidirectional search
will only introduce unnecessary overhead. When query weights are scaled up uniformly, bidirec-
tional search achieves some search space reduction. However, it is not enough to significantly

Evaluation Section 6.4

61

Table 6.4: Performance of bidirectional and unidirectional A* on OSM Ger with different query weights.
The symmetric variant uses the improved pruning, the average variant does not. All variants use all
low-degree optimizations.

Running time [ms] Queue pushes [·103]

ℓq Zero ALT CH Oracle Zero ALT CH/
Oracle

ℓpre

Unidirectional 584.87 43.02 0.47 0.16 1 674.35 96.21 0.66
Average 373.18 12.83 0.79 0.18 916.15 23.08 0.60

Symmetric 376.72 40.19 0.69 0.19 908.55 76.61 0.57

ℓpre · 1.05
Unidirectional 580.66 90.79 15.91 10.06 1 681.39 179.66 26.78

Average 365.82 33.22 19.34 9.96 916.15 57.27 23.60
Symmetric 368.94 72.67 21.54 11.22 908.55 123.77 20.72

ℓpre · 1.5 if
speed

< 80kph

Unidirectional 637.24 96.62 21.78 14.62 1 674.26 171.02 36.54
Average 361.83 19.50 10.92 5.34 845.06 34.03 13.25

Symmetric 364.55 37.33 11.89 6.00 836.44 57.93 11.53

reduce running times due to the overhead of running a second search. This changes drastically
when the query weight increases are applied non-uniformly in the third scenario. Here only
weights with speed less than 80 kph were scaled up. This touches only the beginning and end
of most shortest paths between randomly chosen vertices. The middle part of the shortest
paths will typically use faster edges like highways. In this case, bidirectional CH-Potentials
is a factor of two faster than the unidirectional variant. This is because the search space of a
unidirectional search expands greatly while exploring the end of the path to the target where
the reduced weights are bad. In contrast, the bidirectional searches meet in the middle of the
shortest path where the reduced weights are close to zero, thus avoiding this expansion. This is
also why ALT behaves like this for all query weights. By construction, the ALT heuristic has
better reduced weights for edges which lie on many shortest paths like highways. Conversely,
unimportant edges have bad reduced weights. This makes bidirectional search so critical for the
ALT performance. In contrast, a potential as tight as CH-Potentials makes bidirectional search
in many scenarios unnecessary. Bidirectional search for CH-Potentials only pays off when the
reduced weights are bad around the terminals.

6.4.4 Applications

Table 6.5 depicts the running times of CH-Potentials in various applications as described in
Section 6.3.3. We report speedups compared to extensions of Dijkstra’s algorithm for each
application. Note that we draw source and target vertices uniformly at random, i.e. we typically
perform long-range queries spanning distances of at least four hours (OSM Germany). We start

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

62

Table 6.5: CH-Potentials performance for different route planning applications with random queries.
Depending on the problem, we apply unidirectional or bidirectional (U/B) CH-Potentials. We report
average running times and the number of queue pushes. We also report the average length increase, that
is, how much longer the final shortest distance is compared to the lower bound. Finally, we report the
average running time of Dijkstra’s algorithm as a baseline and the speedup over this baseline.

Running Queue Length Dijkstra Speedup
time [ms] [·103] incr. [%] [ms]

DIMACS Eur Unmodified ℓq = ℓpre U 0.9 1.1 0.0 2 106.0 2 405.8

OSM Ger Unmodified ℓq = ℓpre U 0.6 0.5 0.0 2 182.6 3 795.4
No Tunnels U 29.2 46.8 5.2 2 198.0 75.2

B 33.4 35.7 5.2 2 198.0 65.8
No Highways U 378.7 583.8 42.5 1 992.5 5.3

B 433.1 481.6 42.5 1 992.5 4.6
Live U 129.4 193.9 15.0 2 119.3 16.4

B 193.6 188.8 15.0 2 119.3 10.9
Temporary Live U 3.1 4.2 3.4 2 127.9 685.1
Turns U 3.0 5.7 1.1 4 708.2 1 556.0

B 1.1 0.8 1.1 4 708.2 4 223.8
TD U 120.8 104.4 12.3 3 133.7 25.9
TD + Live U 117.4 99.9 19.0 3 436.5 29.3
TD + Live + Turns U 265.1 375.7 20.0 6 420.5 24.2

Ger06 TD U 4.2 6.4 3.1 603.5 144.2
Eur17 TD U 80.4 79.8 3.9 3 454.3 43.0
Eur20 TD U 97.7 72.8 4.2 5 060.2 51.8

with the base case where ℓq = ℓpre. This is the problem variant solved by CH. CH achieves
average query running times of 0.16ms on OSM Ger. CH-Potentials is roughly four times slower
but still achieves a speedup of 3795 over Dijkstra. This shows that CH-Potentials gracefully
converges toward CH in the ℓq = ℓpre special case. On DIMACS Europe, the average degree
is somewhat higher, making the low-degree optimizations less effective and leading to more
queue operations and a slightly slower running time.

In the other scenarios, the performance of CH-Potentials strongly depends on the quality of
the estimates. We measure this quality using the length increase of ℓq compared to ℓpre. Avoiding
highways results in the greatest length increase and the smallest speedup. The other extreme are
turn costs. They have little impact on the length increase. The achieved speedups are, therefore,
comparable to CH speedups. Since turn costs and restrictions appear primarily in the beginning
and end of shortest paths and not in the middle on highways, utilizing bidirectional search

Evaluation Section 6.4

63

results in even better speedups. Mapbox live traffic has a length increase of around 15%, which
yields running times of 130ms. Applying bidirectional CH-Potentials, in this case, is detrimental
to the performance because the bad reduced edge weights appear in the middle of shortest
paths. The same is the case for forbidden tunnels or highways. Using live traffic data only for
an hour and then switching back to free-flow weights (the Temporary Live variant) leads to
much better performance with speedups over Dijkstra of almost three orders of magnitude.
This is because edge weights differing from the free-flow weights appear only at the beginning
of a query. Once the search reaches a distance greater than the validity of the live traffic, the
potentials will yield perfect distance estimates and the remaining search is extremely fast.
The length increase of Mapbox traffic predictions is about 12.3%, and results in a running

time of 120ms. The speedup in the predicted scenario is larger than in the live setting, as the
travel time function evaluations slow down Dijkstra’s algorithm. Combining predicted and
live traffic results in a running time of 117ms. Surprisingly, this is faster than the pure TD
scenario, even though the length increase is greater. This is due to the departure times being
fixed to 15:41, the time of the live traffic snapshot. Running time-dependent queries without
live traffic with this fixed departure instead of uniformly sampled departure times results in
slightly faster running times of around 106ms. Queries with this departure are faster because
a large part of the query occurs during the evening and the night when the predicted traffic
is closer to free-flow traffic, and the potentials are thus tighter.4 This is why the total length
increase does not correspond perfectly to the running times in this case. The performance is
only fully explained when we also consider the location of the increased edge weights.

Adding turn restrictions additionally increases the running times significantly. This increase
is primarily due to the graph becoming two to three times larger and the BCC optimization of
Section 6.2.1 becoming ineffective when considering turns. It is not due to the length increase
of using turns. With everything activated, our algorithm still has a speedup of 24.2 over the
baseline. Interestingly, the PTV traffic predictions have a much smaller length increase than the
Mapbox predictions. This results in somewhat faster running times of our algorithm.

Comparison with Related Work. While the query running times reported in Table 6.5
are decent in many settings, they are not competitive with techniques tailored to specific
applications. In the simple ℓq = ℓpre setting, Hub Labels can be used to answer queries in
less than a microsecond [DGW13], more than three orders of magnitude faster than with CH-
Potentials. Live traffic and arbitrary weight functions can be handled with CCH resulting in
query times of around 0.1ms [BSW19]. For time-dependent routing, TCH [BGSV13] achieves
query times more than five times faster than CH-Potentials (0.75ms compared to our 4.2ms
on Ger06). Again, these numbers are not perfectly comparable due to different benchmark
machines. Nevertheless, the overall picture is clear enough. However, the advantage of the CH-
Potentials framework over these fine-tuned techniques is that it is a unified and flexible approach

4See also the evaluation of Chapter 9 for a discussion of time-dependent A* query performance depending on the
departure time.

Chapter 6 A Fast and Tight Heuristic for A* in Road Networks

64

which can handle all these applications without any adjustments to the preprocessing. Further,
CH-Potentials preprocessing times are at least an order of magnitude faster than approaches like
TCH (more than two hours on Eur20 with 16 cores, compared to five minutes sequentially with
CH-Potentials) and require significantly less memory (Hub Labels, for example, needs 20GB on
DIMACS Europe, compared to around 770MB with CH-Potentials). Finally, to the best of our
knowledge, for problem settings such as the combination of predicted and live traffic, there does
not exist any exact technique to handle this setting, let alone to integrate turn costs additionally.
The key achievement of CH-Potentials is that problem extensions can be integrated by trading
query performance rather than developing new algorithms.

6.5 Conclusion
In this article, we introduced CH-Potentials, a fast, exact, and flexible two-phase routing
framework based on A* and CH. The approach can handle complex, integrated routing scenarios
with little implementation complexity and no changes to the preprocessing algorithms. CH-
Potentials provides exact distances for lower bound weights known at preprocessing time
as an A* heuristic. Thus, the query performance of CH-Potentials crucially depends on the
availability of reasonable lower bounds in the preprocessing phase. Our experiments show
that this availability highly depends on the application. We also show that the overhead of
our heuristic is within a factor 1.6 of a hypothetical A*-heuristic that can instantly access
lower bound distances. Achieving significantly faster running times could still be possible in
variations of the problem setting. The core building block of our approach is Lazy RPHAST,
a new CH query variant for the incremental many-to-one problem. We showed that it also
delivers competitive performance for many-to-one problems. This leads to multiple avenues for
future research.
Dropping the provable exactness requirement using a setup similar to anytime A* [ZH02,

LGT03] would be interesting. Another promising research avenue would be to investigate
graphs other than road networks. Much research for grid maps exists, including a series of
competitions called GPPC [Stu+15]. Hierarchical techniques have been shown to work well on
these graphs [UK14]. It might also be worthwhile to apply CH-Potentials to even more routing
applications, for example, to the shortest 𝜖-smooth path problem [DSS18] or the problem of
computing alternative routes [BDGS11, ADGW13, Kob15]. CH-Potentials performed very well
for turn costs and restrictions and further studies in this setting might be interesting. For
example, CH-Potentials could also be used on the compact turn model [GV11, DGPW17] for
reduced memory consumption. It would even be possible to consider time-dependent turn
costs to model traffic light patterns. Many-to-one problems also appear as subproblems in other
routing algorithms, for example, in nearest neighbour computations [BW21]. Investigating
whether Lazy RPHAST can be used to improve these algorithms appears to be a worthwhile
direction for future research. Studying the performance of Lazy RPHAST in a many-to-many
context would also be interesting.

65

7 The Customizable Contraction
Hierarchies Framework

A routing framework for modern map and navigation applications requires far more than an
effective speedup technique for the quick computation of shortest paths [DGPW17]. While the
shortest path computation should not be the bottleneck of the routing engine, there are many
additional requirements. A practical algorithm must handle not only car travel times but also
other length functions such as walking, biking, or user-defined preferences, for example, to
avoid highways. Further, dynamic routing considering real-time traffic is critical. Therefore,
updates to the length function must be fast enough for frequent adjustments. Integrating
turn costs and restrictions is also an essential requirement for high-quality routing. Another
crucial practical feature is the computation of not only the shortest path but a set of reasonable
alternatives. Finally, point-of-interest queries are also an important feature in such applications.

To the best of our knowledge, the only speedup technique currently supporting this entire set
of requirements is CRP/MLD [DW15, DGPW17]. While the CH-Potentials framework proposed
in the previous chapter also supports many of these requirements, running times may be too
slow in some cases because they depend on the tightness of the preprocessing lower bounds.
However, inspired by CRP, CH has also been extended to a three-phase setup [DSW16]. This
variant is called Customizable Contraction Hierarchies (CCH). Classical CH uses heuristic
ad-hoc methods to obtain a “good” ordering for a given weight function. Also, the construction
of the augmented graph uses heuristic witness searches to achieve reasonable preprocessing
running times. These techniques only work well for well-behaved weight functions with a
strong hierarchy. In contrast, CCH draws on nested dissection orders for the vertex ranking
and algorithms from chordal graph theory for the augmented graph construction. This yields
surprisingly elegant and simple algorithms which also have stronger theoretical guarantees.
CCH queries are roughly as fast as CH queries, i.e. around an order of magnitude faster than

Chapter 7 The Customizable Contraction Hierarchies Framework

66

CRP. On the downside, the CCH customization is slower than the CRP customization thus far.
Also, CCH currently does not support all the features mentioned above. For example, computing
alternative routes with CCH has never been studied. Still, CCH is an area of active research.
In the past few years, there have been several research articles [BSW19, GHUW19, BWZZ20,
BW21] improving and extending CCH, pushing it closer to feature parity with CRP.

Attribution. This chapter is partially based on joint work with Valentin Buchhold, Dorothea
Wagner and Michael Zündorf. Specifically, the part on CCH with turn costs is an extended
version of a part of our publication at ATMOS 2020 [BWZZ20]. The improved chordal completion
preprocessing algorithm was developed in the Bachelor’s thesis of Michael Zündorf [Zün19].
The improvements in customization algorithms and the nearest neighbour algorithm also
profited from much back and forth with my colleague Valentin Buchhold.

Contribution. In this chapter, we give a detailed overview of the state of the art of CCH. We
review recent advances on CCH, show how to combine them and propose additional refinements.
We adopt the Lazy RPHAST algorithm from the previous chapter and propose a specialized
variant for CCH. This allows us to extend CH-Potentials to CCH-Potentials. With this building
block, CCH can support all problem variants necessary for a fully featured routing framework.
An extensive evaluation confirms that a CCH(-Potentials) framework is not only comprehensive
in supported features but also competitive in performance to both CH and CRP. This chapter
also establishes the technical fundamentals of a well-tuned CCH implementation on which we
build in the following chapters.

Problem Statement. This chapter focuses on the three-phase shortest path problem and
important practical extensions.

Outline. In the next three sections, we discuss the CCH algorithms for each of the three phases.
We present the fastest known variants for each phase and discuss their efficient implementation.
In Section 7.4, we discuss query variants for extended problems. Section 7.5 contains an extensive
experimental evaluation.

7.1 Metric-Independent Preprocessing

The CCH metric-independent preprocessing phase works purely on the topology of the input
network. Since changes to the topology are reasonably rare in the context of road networks,
running time requirements for this phase are relatively lax. Running times of hours would still
be manageable. Nevertheless, faster algorithms are, of course, always an improvement.

CCH algorithms for this phase are defined on undirected graphs. Therefore, initially, for any
edge 𝑢𝑣 ∈ E where 𝑣𝑢 ∉ E , 𝑣𝑢 is added to E so the graph becomes bidirected. Then, similarly to
classical CH, an order must be computed where the vertices are sorted by their “importance”.

Metric-Independent Preprocessing Section 7.1

67

The final step of the metric-independent preprocessing is the construction of the topology of
a CH augmented graph 𝐺+. This step is conceptually similar to the classical CH contraction.
However, as there are no edge lengths, there can be no witness search, and thus, all possible
shortcuts will be part of 𝐺+. That means when a vertex 𝑣 is contracted, the upward neighbours
of 𝑣 will be completed into a clique.
This construction opens up interesting connections to graph theory [BCRW16]. The con-

struction directly corresponds to the so-called elimination game which has been extensively
studied [Par61, RT78, Heg06]. In the elimination game, vertices are successively taken out of the
graph while the neighbourhood of each vertex is completed to a clique. The goal is to minimize
the number of inserted edges. In this context, the vertex order is also called an elimination

order. An elimination order also induces a so-called elimination tree. The elimination tree is the
subgraph of 𝐺+ with only the edges from each vertex to its lowest-ranked upward neighbour.
Further, we can observe that 𝐺+ must be a chordal graph, i.e. a graph without induced cycles
of length greater than three. Moreover, the contraction order is a perfect elimination order for
𝐺+, i.e. no more additional edges will be inserted. In fact, 𝐺+ is the minimal supergraph of 𝐺
which fulfils these properties. Therefore,𝐺+ is the minimal chordally completed supergraph of𝐺
induced by the contraction order.

7.1.1 Ordering

The most crucial step of the metric-independent preprocessing is obtaining an “importance”
order. In theory, any order leads to correct queries. However, good orders are critical for
competitive performance. With bad orders, the augmented graphmay even become prohibitively
large. As no witness search is possible without a weight function, all possible shortcuts will be
inserted in the contraction step. Thus, the number of additional edges in the augmented graph
can quickly become too large, even for the main memory of high-end server machines. This
even happens with “good” classical CH orders [Zei13].

Therefore, CCH is built on nested dissection orders [Geo73, BCRW16] which are a very effective
heuristic for elimination orders. A nested dissection order is obtained by recursively computing
small vertex separators, which split the graph into two (or more) roughly balanced cells. The
vertices in the separator are assigned the highest ranks, i.e. appear last in the contraction order.
Removing these separator vertices leaves two (or more) disconnected cells. The algorithm is
applied recursively to order the vertices in these cells. The vertex order within a separator is
arbitrary. Fortunately, vertices with a high rank in this order also lie on many shortest paths.
All shortest paths from one cell to the other must use a vertex of the separator. Thus, a nested
dissection order is also a good CH order.

Computing small balanced separators is an NP-hard problem [GJS76]. Thus, in general, one
cannot expect to obtain small balanced separators efficiently. Fortunately, road networks are
easily separable due to natural features such as rivers or mountain ranges. InertialFlow [SS15] is
an example of a simple yet surprisingly effective partitioning algorithm for road networks. For
this algorithm, vertices are projected on a geographic axis (the north-south axis, for example).

Chapter 7 The Customizable Contraction Hierarchies Framework

68

contraction order contraction order

Figure 7.1: Visualization of different contraction orders derived from the same separator decomposition.
Left: A BFS-post order. The top-level separator vertices appear last in the order. Directly before them all
separator vertices of the level below. Right: A DFS-post order. Again, the top-level separator vertices
appear last in the order. Before them are the separator vertices of the blue cell and the entire blue cell.
The red cell completely appears at the beginning of the order.

The first and last quarter of vertices are contracted, and a minimum cut between these contracted
vertices is computed. The vertices on one side of the cut edges make up a separator candidate.
Repeating this process for different axes and taking the smallest separator yields surprisingly
good results.

More sophisticated algorithms for partitioning [SS12, SS13] road networks [DGRW11, HS18]
have also been developed. Some open-source implementations are available and can be deployed
as black-box ordering algorithms. A comprehensive review is beyond the scope of this work.
See [GHUW19] for a recent experimental comparison. To the best of our knowledge, Iner-
tialFlowCutter (IFC) [GHUW19], a combination of InertialFlow [SS15] and FlowCutter [HS18],
currently yields the best results. We use IFC orders for all experiments in this work.
To maximize cache efficiency, the vertices of each cell should form a consecutive range in

the ordering, i.e. the contraction order should be derived as a DFS-post order on the tree of
the separator decomposition. See Figure 7.1 for an illustration. However, InertialFlowCutter
computes a BFS-post ordering where separator vertices of each level of the decomposition appear
consecutively. Fortunately, we can reconstruct the underlying separator decomposition as
described in Section 7.1.4 and derive the corresponding DFS-post order from that decomposition.

7.1.2 Contraction

Once an importance order has been obtained, the remaining part of the metric-independent
preprocessing is to compute the topology of the augmented graph 𝐺+ = (V, E+). For cache
efficiency in this and all following phases, it is crucial to permute the vertex IDs such that IDs
equal the ranks. Since the graph is fully bidirected (𝐺↑ =←−𝐺 ↓), it is sufficient to store every edge
only at its lower-ranked endpoint, i.e. maintain𝐺↑. This graph must contain every shortcut edge
which might be relevant for any weight function. Thus, the simplest way to construct this graph

Metric-Independent Preprocessing Section 7.1

69

is to perform the classical CH preprocessing for the given order without any witness search, i.e.
iterate over all vertices by ascending rank and ensure that a shortcut edge exists between any
pair of upward neighbours of each vertex. The result of this algorithm is the minimal chordal
supergraph of 𝐺 for which the importance ordering is a perfect elimination scheme. Because
this naive approach is relatively expensive in terms of running time, the authors of [DSW16]
propose a faster algorithm based on the quotient graph [GL78]. However, this algorithm is quite
complex. Here, we describe a simpler and even faster algorithm. This algorithm has previously
only been described in a Bachelor’s thesis [Zün19]. It is heavily based on the linear-time chordal
graph recognition algorithm of [HMPV00].

The algorithm iterates over all vertices in order of ascending rank. Let 𝑣 be the current vertex
and N[v] its upward neighborhood in 𝐺↑. If this neighbourhood is non-empty, the algorithm
obtains the upward neighbour 𝑢 with minimal rank. The remaining neighborhood N[v] \ 𝑢 of 𝑣
is merged into the neighborhood of 𝑢, i.e. N[u] ← N[u] ∪ N[v] \ 𝑢. The result is the minimal
chordal supergraph of 𝐺 induced by the nested dissection order.
This algorithm can be implemented by maintaining the neighbourhood of each vertex in

a dynamic array. A theoretical worst-case running time of O(𝑛 + |E↑ |) can be achieved by
appending the neighbourhoods without checking for duplicates and only performing the dedu-
plication when extracting the minimally ranked upward neighbour. See [Zün19] for a proof of
the running time and the correctness. Practically, however, it is even more efficient to ensure
that the neighbourhoods never contain duplicates and are always sorted by rank. Merging
neighbourhoods can then be realized with a coordinated linear sweep. The worst-case running
time of this variant is slightly worse, but in practice, running times are faster.

7.1.3 Elimination Tree

The parent of a vertex 𝑣 in the elimination tree is its lowest-ranked neighbour in 𝐺↑. We
represent the elimination tree as an array ET of length 𝑛 containing the parent for each vertex
at the position of the ID of the vertex. As root vertices have no parent, we represent this with
some sentinel value, which we denote as ⊥.

7.1.4 Reconstructing Separator Decompositions

CCH vertex importance orderings are based on a separator decomposition of the input net-
work. This decomposition is helpful for several CCH algorithms, such as the parallelization
of the customization or nearest-neighbour searches. However, black-box partitioners such as
FlowCutter or InertialFlowCutter return only the vertex order but provide no easy access to the
separator decomposition. Fortunately, we can reconstruct a decomposition efficiently from the
elimination tree.

Lemma 7.1. Let 𝑣 denote the highest-ranked vertex with more than one child in the elimination

tree. The path from 𝑣 to the elimination tree root is a chain of vertices with precisely one child. The

vertices of that path are the top-level separator.

Chapter 7 The Customizable Contraction Hierarchies Framework

70

Proof. Let 𝑇𝑢 and 𝑇𝑤 be two subtrees rooted at different children of 𝑣 in the elimination tree.
Since we claim that the elimination tree path from 𝑣 upward is a separator, there must be no
edge in the input graph between vertices of these subtrees. Suppose for contradiction there
is such an edge between vertices 𝑢 and 𝑤 where 𝑢 is a vertex in 𝑇𝑢 and 𝑣 a vertex in 𝑇𝑤 . By
construction, all vertices in the subtrees have a lower rank than 𝑣 . Without loss of generality,
we assume 𝑢 ≺ 𝑤 . Because 𝑢 and 𝑤 are in distinct subtrees, we know ET[𝑢] ≠ 𝑤 and thus
ET[𝑢] ≺ 𝑤 . Otherwise, ET[𝑢] would not be 𝑢’s lowest-ranked upward neighbour. However,
due to the construction of the augmented graph, the edge (ET[𝑢],𝑤) must exist, too. This holds
inductively for every vertex in the elimination tree path from 𝑢 to 𝑣 . However, since𝑤 ≺ 𝑣 , one
of the vertices on this path would have had to have𝑤 as its lowest-ranked upward neighbour
and parent in the elimination tree. This is a contradiction. □

Thus, we can obtain the top-level separator of a cell as the path from the highest-ranked
vertex with more than one child to the root of the cell’s elimination subtree. Removing these
vertices from the original graph leaves two or more disconnected cells. Each cell contains the
vertices of a subtree where the root is a child of 𝑣 . Recursively applying this idea lets us obtain
the whole separator decomposition.

7.2 Customization
For the customization, a weight function ℓ is given, and the corresponding augmented weight
function ℓ+ for the augmented graph is computed. As a CCH augmented graph 𝐺+ usually
contains many edges which are irrelevant for a specific weight function ℓ , these can be identified
and removed in an additional optional perfect customization step to obtain a minimal augmented

graph 𝐺∗. There are up to four steps in the customization:
1. First, ℓ+ is initialized and, for every edge, set to the corresponding weight in ℓ or∞ if no

such edge exists. This step is called respecting.

2. The basic customization step is the most critical part and computes the remaining ℓ+

weights such that queries can be answered correctly. For this, all edges 𝑢𝑣 are processed
in a bottom-up fashion, i.e. by ascending rank of the endpoints. For each edge, lower
triangles (𝑢,𝑤, 𝑣) where 𝑢𝑤,𝑤𝑣 ∈ E+,𝑤 ≺ 𝑢 and𝑤 ≺ 𝑣 are enumerated and relaxed, i.e.
the weight of 𝑢𝑣 (or 𝑣𝑢, respectively) is decreased to the length of the path over𝑤 if it is
shorter. Now, every edge has the weight of the shortest path between its endpoints which
uses only lower-ranked vertices, i.e. ℓ+(𝑢𝑣) = dist≺ (𝑢, 𝑣). This is sufficient for correctness.
However, some edges have a greater weight than necessary.

3. In the perfect customization, edges 𝑢𝑣 are processed again but in a top-down fashion while
relaxing upper and intermediate triangles. For upper triangles (𝑢,𝑤, 𝑣),𝑤 has greater rank
than both 𝑢 and 𝑣 . When the rank of 𝑤 is between 𝑢 and 𝑣 , (𝑢,𝑤, 𝑣) is an intermediate

triangle. After these triangles have been relaxed, every edge 𝑢𝑣 in the augmented graph
has the weight of the shortest distance between its endpoints dist(𝑢, 𝑣).

Customization Section 7.2

71

4. Finally, in the construction step, theminimal augmented graph𝐺∗ is constructed. As shown
in [DSW16], edges 𝑢𝑣 whose weight was improved during the perfect customization, i.e.
dist≺ (𝑢, 𝑣) > dist(𝑢, 𝑣) , are superfluous and can be removed.

The first two steps are mandatory. Steps three and four only help to accelerate queries.
For the customization, we represent the augmented graph by only𝐺↑. Each edge 𝑢𝑣 ∈ E↑ also

implicitly represents the reverse edge 𝑣𝑢, i.e. we only store edges at the lower-ranked endpoint.
The weights of the edges are stored in two arrays l↑ and←−l ↓ accessible by the corresponding
edge IDs from E↑, i.e. for 𝑢𝑣 ∈ E↑, l↑ [𝑢𝑣] = ℓ+(𝑢𝑣) and←−l ↓ [𝑢𝑣] = ℓ+(𝑣𝑢). Nonexistent edges
are indicated by the weight∞. This allows us to represent a directed graph despite the topology
being bidirected.

We now focus on the basic customization. The basic description from above still leaves open
quite a few critical details. In theory, any edge iteration order which can guarantee that the
weights of the two lower edges of each triangle are final before the top edge is processed is
sufficient. In practice, the easiest method is to iterate over all vertices 𝑢 by ascending rank and
then process all outgoing edges 𝑢𝑣 with 𝑢 ≺ 𝑣 . The way triangles are enumerated is critical for
the performance. The original CCH publication [DSW16] suggests enumerating lower triangles
of an edge 𝑢𝑣 by performing a coordinated linear sweep over the incoming edges 𝑢𝑤 ∈ E↓ of 𝑢
and 𝑣𝑤 ∈ E↓ of 𝑣 . However, Buchhold et al. [BSW19] noticed that enumerating upper triangles
with a coordinated sweep over the outgoing edges in E↑ is faster than enumerating lower
triangles. Based on this observation, they suggest an improved basic customization algorithm.
Their algorithm also iterates over all edges 𝑢𝑣 ordered by the lower-ranked endpoint. However,
for each edge, the upper triangles (𝑢,𝑤, 𝑣) where𝑤 ≻ 𝑢 and𝑤 ≻ 𝑣 are enumerated. Now, the
weights of𝑤𝑣 (and 𝑣𝑤) are relaxed with the length of the path over 𝑢, i.e. the triangle is relaxed
as a lower triangle.

This method of triangle enumeration is faster because of the distribution of the vertex degrees.
The classical approach will iterate for every edge over the downward edges of both endpoints.
Thus, the total number of iterations is:∑︁

𝑢𝑣∈E↑

(
deg𝐺↓ (𝑢) + deg𝐺↓ (𝑣)

)
=
∑︁
𝑣∈V

(
deg𝐺↑ (𝑣) · deg𝐺↓ (𝑣) + deg𝐺↓ (𝑣)2

)
Enumerating upper triangles as suggested in [BSW19] requires sweeping over the upward edges
of both endpoints of each edge:∑︁

𝑢𝑣∈E↑

(
deg𝐺↑ (𝑢) + deg𝐺↑ (𝑣)

)
=
∑︁
𝑣∈V

(
deg𝐺↑ (𝑣) · deg𝐺↓ (𝑣) + deg𝐺↑ (𝑣)2

)
Buchhold et al. observe that the sum of the squared upward degrees

∑
𝑣∈𝑉 deg𝐺↑ (𝑣)2 is often

smaller than the sum of the squared downward degrees
∑

𝑣∈V deg𝐺↓ (𝑣)2 even though the number
of edges is the same. This is because the downward degrees are more widely dispersed.

Chapter 7 The Customizable Contraction Hierarchies Framework

72

Algorithm 7.1: Basic customization algorithm with batched triangle relaxing.
Data: l↑ [𝑢𝑣]: length of 𝑢𝑣 ∈ E↑ in the augmented graph.
Data:←−l ↓ [𝑢𝑣]: length of 𝑣𝑢 ∈ E↓ in the augmented graph.
Data: ID[𝑣]: edge ID of 𝑢𝑣 where 𝑢 is the current vertex in the outer loop, initially ⊥.

1 Function BasicCustomization:
2 for all vertices 𝑢 ∈ V ordered ascending by rank do
3 for all edges 𝑢𝑣 ∈ E↑ do
4 ID[𝑣] ← 𝑢𝑣

5 for all edges 𝑢𝑤 ∈ E↓ do
6 for all edges𝑤𝑣 ∈ E↑ ordered by descending rank of 𝑣 do
7 if 𝑣 ⪯ 𝑢 then
8 break
9 if ID[𝑣] ≠ ⊥ then

10 l↑ [ID[𝑣]] ← min(l↑ [ID[𝑣]],←−l ↓ [𝑢𝑤] + l↑ [𝑤𝑣]) // forward

11
←−
l ↓ [ID[𝑣]] ← min(←−l ↓ [ID[𝑣]], l↑ [𝑢𝑤] + ←−l ↓ [𝑤𝑣]) // backward

12 for all edges 𝑢𝑣 ∈ E↑ do
13 ID[𝑣] ← ⊥

7.2.1 Batched Triangle Relaxation

We accelerate the triangle enumeration further by introducing an auxiliary array ID of size 𝑛.
The entry ID[𝑣] will temporarily store the ID of an edge 𝑢𝑣 for different vertices 𝑢 throughout
the customization. This allows us to replace the coordinated sweeps with a simple iteration
over neighbours and direct access to the weights of the respective third edges. We denote this
approach as batched triangle relaxation because the triangles for all outgoing upward edges of a
single vertex are relaxed in batch. The approach pays off because all these triangles must be
relaxed. The classical coordinated sweep would be the better choice if we were only interested
in the triangles of a single edge.
Algorithm 7.1 depicts the batched lower triangle relaxation procedure for the basic cus-

tomization. Vertices are processed by ascending rank. When processing vertex 𝑢, the IDs of its
outgoing edges 𝑢𝑣 are stored in ID[𝑣]. Thus, the weight of this edge can be accessed in O(1)
by the ID of the head vertex 𝑣 . Now, lower triangles can be enumerated directly. For every
downward edge 𝑢𝑤 , the algorithm iterates over all upward edges 𝑤𝑣 of 𝑤 . If ID[𝑣] contains
an entry, a lower triangle was found, and the weights of 𝑢𝑣 and 𝑣𝑢 can be relaxed accordingly.
After all lower triangles were relaxed, the entries of ID are reset.

Additionally, the inner loop can be terminated early (see Line 8). For this, the algorithm
iterates over the upward edges𝑤𝑣 of the lowest vertex𝑤 ordered descending by rank. Thus,
when 𝑣 ⪯ 𝑢, no further lower triangles of any upward edge of 𝑢 can be found.

Note that we need to iterate over the downward edges E↓ of 𝑢 (see Line 5). Therefore, we also

Customization Section 7.2

73

Algorithm 7.2: Perfect customization algorithm with batched triangle relaxing.
Data: l↑ [𝑢𝑣]: length of 𝑢𝑣 ∈ E↑ in the augmented graph.
Data:←−l ↓ [𝑢𝑣]: length of 𝑣𝑢 ∈ E↓ in the augmented graph.
Data: ID[𝑣]: edge ID of 𝑢𝑣 where 𝑢 is the current vertex in the outer loop, initially ⊥.

1 Function PerfectCustomization:
2 for all vertices 𝑢 ∈ V ordered by descending rank do
3 for all edges 𝑢𝑣 ∈ E↑ do
4 ID[𝑣] ← 𝑢𝑣

5 for all edges 𝑢𝑤 ∈ E↑ do
6 for all edges𝑤𝑣 ∈ E↑ do
7 if ID[𝑣] ≠ ⊥ then

// upper triangle forward

8 l↑ [𝑢𝑤] ← min(l↑ [𝑢𝑤], l↑ [ID[𝑣]] + ←−l ↓ [𝑤𝑣])
// upper triangle backward

9
←−
l ↓ [𝑢𝑤] ← min(←−l ↓ [𝑢𝑤],←−l ↓ [ID[𝑣]] + l↑ [𝑤𝑣])
// intermediate triangle forward

10 l↑ [ID[𝑣]] ← min(l↑ [ID[𝑣]], l↑ [𝑢𝑤] + l↑ [𝑤𝑣])
// intermediate triangle backward

11
←−
l ↓ [ID[𝑣]] ← min(←−l ↓ [ID[𝑣]],←−l ↓ [𝑢𝑤] + l↑ [𝑤𝑣])

12 for all edges 𝑢𝑣 ∈ E↑ do
13 ID[𝑣] ← ⊥

need to store 𝐺↓. To access the weights of these edges, we store the ID of the corresponding
upward edge alongside each edge.
This procedure can also be easily extended to generate unpacking information: Maintain

an additional array with the information (for example, the IDs of the lower two edges of the
shortest lower triangle) for each edge, and update the information together with the edge
weights during relaxation.

The total number of iterations with this approach is at most∑︁
𝑣∈V

(
deg𝐺↑ (𝑣)2 + 2 · deg𝐺↑ (𝑣)

)
where the first term is for the triangle relaxations and the second term for maintaining ID. The
first term comes from counting the iterations at the lowest vertex of each triangle. With the
stopping criterion for the inner loop, the actual number of iterations will be even smaller. As
our experiments show, this yields a significant speedup.

Algorithm 7.2 depicts the batched upper and intermediate triangle relaxation approach for the
perfect customization. There are a few differences to Algorithm 7.1. First, vertices are processed

Chapter 7 The Customizable Contraction Hierarchies Framework

74

top-down, i.e. by descending rank. Second, to enumerate upper triangles, the algorithm iterates
over upward edges 𝑢𝑤 of 𝑢, and then over upward edges𝑤𝑣 of𝑤 . Third, the triangles found
this way are relaxed as both upper and intermediate triangles, i.e. both the distances of 𝑢𝑣 and
𝑢𝑤 are improved. The total number of iterations for this algorithm is∑︁

𝑣∈V

(
deg𝐺↑ (𝑣) · deg𝐺↓ (𝑣) + 2 · deg𝐺↑ (𝑣)

)
where the first term is for the relaxations and the second for maintaining the ID array.

To identify edges which should later be removed, we use an array with one boolean value
per edge, initially false. When a weight is improved, the respective byte is set to true, which
indicates that the edge can be removed later. These values are represented by one byte per
value such that every value can be addressed individually. With a compact representation, two
threads might need to write two the same address. Unpacking information does not needs to
be updated during the perfect customization. Edges with improved weights will be removed
during the construction of the reduced graph.

7.2.2 Parallelization

The original CCH publication [DSW16] proposed to parallelize both the basic and perfect
customization with a simple loop-based approach by processing edges on the same CH level
in parallel, as they are independent1 from each other. Unfortunately, this approach requires a
synchronization step after the completion of each CH level. This is detrimental to load balancing.
Buchhold et al. [BSW19] introduced a task-based parallelization approach utilizing the separator
decomposition. Each task is responsible for a subgraph 𝐺 ′. Removing the top-level separator in
𝐺 ′ decomposes the subgraph into two or more disconnected components. For each component, a
new task is spawned. If the size of subgraph𝐺 ′ is below a certain threshold, the task completely
processes 𝐺 ′ sequentially without spawning subtasks. We use 𝑛/([· 𝑐) as the threshold as
suggested by [BSW19], with 𝑐 being the number of cores and the tuning parameter [set to
32. During the basic customization, edges in the separator are processed once all child tasks
have finished. With this approach, synchronization is still necessary, but the overhead is much
smaller than the synchronization per level in the loop-based approach. During the perfect
customization, the separators are processed first. Thus, no synchronization is necessary.
Our batched triangle relaxation algorithm can easily be used with the separator-based par-

allelization. The outer loop in Line 2 must be restricted to the current subgraph. Contrary to
the customization algorithm in [BSW19], our variant requires no atomic instructions. Because
only weights associated with edges of the current vertex 𝑢 will be modified, no concurrent
modifications can occur. This makes our basic customization even more effective to parallelize.

1This is only obvious for the basic customization. However, for the perfect customization, the authors of [DSW16]
proved that the algorithm is correct, too, as long as weight updates (but not necessarily comparisons) happen
atomically.

Queries Section 7.3

75

Parallelized Reduced Graph Construction. The original CCH publication does not provide
details on the construction of the reduced augmented graph, probably because it appears trivial
from an algorithmic point of view. All that needs to be done is filter out edges from a graph in
adjacency array representation. However, building the reduced augmented graph makes up
a significant share of the running time of the customization [BSW19]. Therefore, an efficient
parallelization is essential. We propose the following parallelization scheme:

We split the graph into ^ · 𝑐 chunks of vertices with consecutive IDs, where 𝑐 is the number
of cores and ^ a tuning parameter set to 4 by default. The chunk sizes are chosen such that
every chunk contains roughly the same amount of edges (not vertices). We find the ID of the
first vertex of chunk 𝑖 by taking the tail of the edge with ID 𝑖 · ⌈𝑚

^𝑐
⌉. Then, we build the reduced

graph in three passes over all edges. In the first pass, all chunks are processed in parallel, and
the edges that will remain in each chunk are counted. A sequential prefix sum over these sums
yields the reduced edge ID range for each chunk. The remaining edges are copied to the new
graph in the second pass, processing each chunk in parallel. Edge data consists at the very least
of the head vertex of each edge and the weight. In our implementation of CCH, we also maintain
arrays with each vertex’s tail and the unpacking information. The unpacking information will
be temporarily invalid because the referenced edge IDs are from E+ and not E∗. Fixing this
is the third pass’s goal but requires an explicit edge ID mapping. We maintain an additional
array of size |E+ | for this mapping. The entries are set during the second pass when an edge is
copied to the reduced graph. Finally, in the third pass, we apply this mapping to the unpacking
information. In this pass, the chunks are unnecessary, and the unpacking data of each edge can
be processed independently.
Unpacking data consisting of the two edge IDs of the corresponding lower triangle offers

the fastest unpacking at query time. However, there are alternatives with different trade-offs.
The original CCH publication suggests maintaining no unpacking data and instead unpacking
edges at query time by enumerating lower triangles. This reduces the customization effort but
makes the unpacking somewhat slower. Another option is to store the bottom vertex of the
lower triangle to unpack with each edge. This variant makes the edge ID translation in the
reduced graph construction superfluous and offers some speedup for the unpacking but not as
much as having the edge IDs directly accessible.

7.3 Queries

The basic CH query algorithm can be applied without modification to answer point-to-point
shortest path queries. However, the construction of the CCH augmented graph 𝐺+ admits an
even simpler query algorithm [DSW16]. As proven in [BCRW16], the set of ancestors of a vertex
in the elimination tree is, in fact, equal to the CH search space of this vertex, i.e. the reachable
vertices in𝐺↑ and←−𝐺 ↓. Since𝐺↑ and←−𝐺 ↓ are directed acyclic graphs and the contraction order is
a topological ordering on these graphs, traversing the path in the elimination tree from a vertex
to the root while relaxing outgoing edges yields shortest distances. Thus, by combining the

Chapter 7 The Customizable Contraction Hierarchies Framework

76

distances from an elimination tree walk from 𝑠 on 𝐺↑ and 𝑡 on←−𝐺 ↓, we can obtain a shortest
up-down path with the length of the distance between 𝑠 and 𝑡 .
This elimination tree query is faster than the classical CH query algorithm because no pri-

ority queues are required. However, the downside is that no simple stopping criterion can be
applied. The path to the elimination tree root must always be traversed completely. Therefore,
short-range queries become unnecessarily slow. Buchhold et al. [BSW19] propose a simple
optimization to mitigate this issue: As soon as a tentative total distance ` was found, only
relax the outgoing edges of vertex 𝑣 if dist𝐺↑ (𝑠, 𝑣) < ` (or dist←−

𝐺 ↓
(𝑡, 𝑣) < ` in the backward

search). With this, elimination tree queries are consistently faster than classical CH queries
(on CCH) across all distances. Buchhold et al. present another optimization which accelerates
queries further. Because the search graphs are acyclic, the distance of a vertex will never be
read again after its outgoing edges were relaxed. Thus the stored distance can immediately be
reset to∞. A separate distance resetting step as proposed in [DSW16] becomes unnecessary.
This optimization assumes that both directions are interleaved and that the search with the
lower-ranked next vertex will always be advanced first.

7.4 ExtendedQueries

7.4.1 Lazy RPHAST on CCH

In the previous chapter, we introduced the Lazy RPHAST algorithm (see Section 6.1). Similarly
to a standard CH query, it can be applied to CCH without modifications. However, we can also
design an improved version utilizing the elimination tree.
To compute the distance D[𝑣] of a vertex 𝑣 , the distances of all upward neighbours must be

final. In Algorithm 6.1, these upward neighbour distances are computed recursively. Thus, the
search space is explored in a DFS-like fashion and distances are finalized in DFS post order.
However, the elimination tree path from a vertex to the root also is a topological order for the
search space. This is because the ancestors in the elimination tree contain the entire CH search
space [BCRW16]. Therefore, iterating over the vertices on the elimination tree path from the
root to 𝑣 while relaxing outgoing upward edges of each vertex also yields shortest distances.
Further, with this approach, when a vertex 𝑣 has a distance D[𝑣] ≠ ⊥, all ancestors of 𝑣 must
already have their final distance, too. Thus, as soon as the algorithm encounters a vertex with a
final distance, the remaining search space is known to have final distances.

We obtain the procedure described Algorithm 7.3, which utilizes the elimination tree. For any
vertex which already has a memoized distance D[𝑣] ≠ ⊥, the algorithm immediately returns
this distance. Otherwise, the algorithm follows the elimination tree upward until a node with a
finalized distance is encountered. The elimination tree can be traversed via the parent array
ET. The visited nodes are pushed onto a stack S. This enables the algorithm to enumerate
the vertices in reversed order by popping them from the stack. While popping the nodes, all
outgoing upward edges are relaxed. This finalizes the shortest distances for all vertices on the
elimination tree path, including the desired query vertex 𝑣 .

ExtendedQueries Section 7.4

77

Algorithm 7.3: Elimination tree based Lazy RPHAST algorithm.
Data: D↓ [𝑣]: tentative distance from any vertex 𝑣 ∈ V to 𝑡 as computed by

Algorithm 5.1 on←−𝐺 ↓.
Data: D[𝑣]: memoized distance from any vertex 𝑣 ∈ V to 𝑡 , shared between invocations.
Data: S: stack with vertices to compute distances, empty initially.

1 Function Select(𝑡):
2 Execute Algorithm 5.1 from 𝑡 on←−𝐺 ↓, filling D↓
3 D[𝑣] ← ⊥ for all 𝑣 ∈ V

4 Function ComputeAndMemoizeDist(𝑢):
// Determine the vertices 𝑣 for which D[𝑣] needs to be computed

5 𝑣 ← 𝑢

6 while D[𝑣] = ⊥ do
7 Push 𝑣 onto S
8 if ET[𝑣] = ⊥ then
9 break

10 𝑣 ← ET[𝑣]
// Compute D for those vertices

11 while S not empty do
12 𝑣 ← pop top element from S
13 D[𝑣] ← D↓ [𝑣]
14 for all up-edges 𝑣𝑤 ∈ E↑ do
15 D[𝑣] ← min(D[𝑣], ℓ+(𝑣𝑤) + D[𝑤])
16 return D[𝑢]

A natural application of this algorithm is to use it as a potential function for A*. Because this
variant is CCH-based, quick updates to the lower bound weights ℓfree become possible. This
allows us to obtain much better distance estimates with dynamic routing data such as real-time
traffic. Therefore, we can support various extended problem scenarios in conjunction with CCH.
We denote A* with a potential realized by Elimination Tree Lazy RPHAST in combination with
the low-degree optimizations as CCH-Potentials. However, as shown in the next section, the
approach is also advantageous as an incremental one-to-many algorithm.

7.4.2 Nearest NeighborQueries

An essential feature for practical routing applications is answering point-of-interest (POI) queries,
for example, finding gas stations. Typically, users want a few options close to their current
position. This scenario can be formalized as the 𝑘-nearest-neighbor problem. Given a graph
𝐺 = (V, E) with edge lengths ℓ , a set of targets T ⊆ V and a source vertex 𝑠 , compute a target

Chapter 7 The Customizable Contraction Hierarchies Framework

78

subset T ′ ⊆ T with |T ′ | = 𝑘 such that dist(𝑠, 𝑡) ≤ dist(𝑠, 𝑡 ′) for and 𝑡 ∈ T ′ and 𝑡 ′ ∈ T \ T ′.
For this problem, we consider four phases: Preprocessing and update are the same as before,
i.e. 𝐺 and ℓ are given, respectively. In the additional selection phase the targets T are provided.
Finally, in the query phase, 𝑠 is given, and T ′ should be computed as quickly as possible.
In [BW21], an efficient 𝑘-nearest-neighbor query algorithm for CCH was introduced. It

utilizes the separator decomposition of the network. Here, we present an improved version of
this algorithm. The original algorithm performs many point-to-point searches from the same
source vertex. We accelerate these searches with our elimination tree-based Lazy RPHAST
routine. As our experiments show, this results in speedups of up to an order of magnitude.

The algorithmworks as follows: Amax-heap of the𝑘 closest targets found so far is maintained,
which is initially empty. The graph is explored recursively using the separator decomposition.
The algorithm begins with the top level cell which is the entire graph. Let dist(𝑠, C) = min(𝑣 ∈
C)dist(𝑠, 𝑣) denote the shortest distance from from 𝑠 to any vertex in a cell C. This cell distance
determines the order in which the algorithm recursively descends into subcells. It can be
obtained efficiently and provides a rough lower bound to the distance to any target in the cell.
If this lower bound is greater than the 𝑘th-closest distance already found (accessible in the
max-heap) or if there are no targets in a cell, the cell can be skipped entirely. When exploring
a cell C, first, the distance from 𝑠 to target vertices in the separator of this cell is checked. If
one of these targets is close enough to 𝑠 , it is inserted into the max-heap, possibly replacing
a vertex further away. Then, the distance dist(𝑠, C′) from 𝑠 to each subcell C′ is computed. If
𝑠 is included in this cell, this distance is zero. The subcells C′ are then sorted increasingly by
dist(𝑠, C′). Finally, the algorithm is invoked recursively on each subcell in this order. When a
cell contains fewer target vertices than a certain threshold (experimentally determined to be 8),
the distances to each target are computed directly; the separator decomposition exploration is
stopped at this branch.

Computing distances from 𝑠 to targets and cells makes up a significant share of the running
time of this algorithm. We, therefore, propose to utilize Elimination Tree Lazy RPHAST for
this: Initially compute distances from 𝑠 on 𝐺↑ with an elimination tree walk. Then, use the
ComputeAndMemoizeDist function to quickly obtain distances from 𝑠 to any vertex 𝑣 on demand
while utilizing the already computed distances. To efficiently compute distances to a cell C,
we build on observations made in [BW21]. The perimeter P (C) of a cell is the set of vertices
adjacent to a vertex in C: P (C) = {𝑣 | 𝑢𝑣 ∈ E+, 𝑢 ∈ C, 𝑣 ∈ V \ C}. The minimum distance
from 𝑠 to any vertex in the perimeter min𝑣∈P (C) dist(𝑠, 𝑣) is a very good lower bound on the
distance from 𝑠 to any vertex in C. This lower bound is tight enough and can be computed
efficiently: All perimeter vertices must have a higher rank than the cell vertices and lie on
the elimination tree path from any cell vertex to the root. Thus, running Algorithm 7.3 once
from the lowest-ranked perimeter vertex is sufficient to ensure that the distance from 𝑠 to all
perimeter vertices has been computed. As proven in [BW21], the upward neighbours in 𝐺+

(but not𝐺∗) of the highest-ranked vertex in a cell are exactly the perimeter vertices. Therefore,
the minimum distance to any perimeter vertex can be quickly obtained by iterating over the
outgoing edges of this vertex and checking the distances computed by Algorithm 7.3.

ExtendedQueries Section 7.4

79

The algorithm also requires efficient access to the targets and vertices in a cell. For this,
one can utilize the fact that the vertices in each cell appear as a consecutive range in the
contraction order, and the separator vertices are last in this range. Thus, these vertices can be
easily identified by storing the ID of the first vertex, the last vertex and the first separator vertex
for each cell. The targets inside a separator or cell can be quickly obtained by performing a
binary search in the sorted target list. Sorting the target array makes up the selection phase.

Note that Buchhold et al. [BW21] proposed to fill an auxiliary array during the selection for
O(1) access to the targets. However, filling this array takes Θ(𝑛) running time. This constitutes
a non-negligible overhead in the selection phase, which is problematic in online settings. In
contrast, our approach takes O(|T | · log |T |) which we found significantly faster for all but the
largest target sets. Further, we could not observe any measurable overhead from the binary
searches compared to the constant-time access.

7.4.3 Alternative Routes

Providing users with multiple good alternative routes to choose from is another critical feature
for practical routing applications. To the best of our knowledge, no alternative route algorithms
based on CCH have been proposed so far. Some CH-based algorithms exist [ADGW13, Kob15],
but it is not immediately clear if these algorithms could be easily adapted to CCH. Therefore, in
this section, we propose a simple CCH-based alternative route algorithm based on a variation of
the penalty method and CCH-Potentials. The penalty method is an established framework for
computing alternative routes [BDGS11, KRS13, PZ13, Kob15]. It works iteratively. The shortest
path between 𝑠 and 𝑡 is computed in each iteration. This path represents a possible alternative.
To avoid this path in future iterations, all edge weights of the path and adjoined edges are
penalized, i.e. the edge weights are increased. Shortest paths are computed and penalized until
an obtained path becomes too long with respect to the unmodified edge weights. Typically, the
found paths are combined into an alternative graph from which alternative routes are extracted
in a second step. However, for simplicity and inspired by a variation of the penalty method
presented in [ADGW13], we return some of the obtained paths directly as alternative routes.
We refer to this approach as penalty routes. In the following, we briefly discuss our method’s
implementation details and penalization configuration.

We compute shortest paths with CCH-Potentials, i.e. we run A* with Lazy RPHAST on CCH
as the heuristic. The initial weight function without penalization will typically be travel times
adjusted to the current traffic situation. When applying the penalization, we do not run the
customization. We only run A* with the penalized weights but use the non-penalized distances
for the potential function.

Having obtained a path for the current iteration, we check which edges were present in any
previous path. If the combined non-penalized weight of the non-shared edges makes up more
than 20% of the total weight of the path, we report the path as a viable alternative.
Our penalization scheme follows the configuration presented by Kobitzsch in his disserta-

tion [Kob15, Kob21]. To the best of our knowledge, this is the latest, most thoroughly engineered

Chapter 7 The Customizable Contraction Hierarchies Framework

80

Figure 7.2: Turn representations (from left): simplified model, edge-based model, compact model.

and evaluated iteration of the penalty method. We limit the stretch of alternatives routes, i.e. for
any path 𝑃 = (𝑠, . . . , 𝑡) the length ℓ (𝑃) must not exceed (1+𝜖) ·dist(𝑢, 𝑣) with 𝜖 = 0.25. Shortest
path edges are penalized with a multiplicative factor of 𝜓 = 1.1, i.e. if an edge 𝑒 was on the
shortest path in 𝑘 iterations, its weight will be ℓpen(𝑒) = ℓ (𝑒) ·𝜓𝑘 where ℓpen are the penalized
weights. We also penalize edges incident to shortest paths with an asymmetric additive rejoin
penalty. An edge 𝑢𝑣 where 𝑢 is on a shortest path but 𝑣 is not will have its weight increased by
𝜓r · dist(𝑠, 𝑡) ·

distpen (𝑠,𝑢)
distpen (𝑠,𝑡) . Analogously, an edge 𝑢𝑣 where 𝑣 is on a shortest path but 𝑢 is not will

have its weight increased by𝜓r · dist(𝑠, 𝑡) ·
distpen (𝑣,𝑡)
distpen (𝑠,𝑡) . 𝜓r is set to 0.01. To avoid over-penalization,

we count the times a vertex was on a shortest path and do not apply penalties when this number
exceeds 𝑘max := ⌈log𝜓 (1 + 𝜖)⌉ + 2. We terminate the algorithm when any of the following
conditions becomes true:

• The desired number of alternatives has been obtained.

• All nodes on the current shortest path have been penalized 𝑘max times.

• The shortest path is longer than (1 + 𝜖) · dist(𝑠, 𝑡) with respect to the original weight
function.

• The shortest path is longer than (1 + 𝜖) ·𝜓 + 2𝜓r · dist(𝑠, 𝑡) with respect to the penalized
weight function.

The last two stopping criteria can be used for pruning in A*. Further, we run the forward and
backward search in parallel.

7.4.4 Turn Costs and Restrictions

So far, we have focused on a simplified model of the road network where turn costs and
restrictions are ignored; see Figure 7.2 (left). Since turn costs can be critical for realistic routing,
we now show how to extend CCH to support turn costs efficiently.

Edge-Based Model. The edge-based model [Cal61, Win02] expands the network so that road
segments become vertices and allowed turns become edges; see Figure 7.2 (middle) for an

ExtendedQueries Section 7.4

81

example. We have used this model already in the previous chapter; see Section 6.3.3 for the
precise construction of the expanded graph. The main advantage of this edge-based model is
that most route planning algorithms can be used on it as is, without further modifications.

Compact Model. Turns can alternatively be represented with the compact model [GV11,
DGPW17]. In this model intersections are kept as vertices, but a 𝑝 ×𝑞 turn table T𝑣 is associated
with each vertex 𝑣 , where 𝑝 and 𝑞 are the numbers of incoming and outgoing edges, respectively;
see Figure 7.2 (right) for an example. The entry T𝑣 (𝑖, 𝑗) represents the cost of the turn from the
𝑖-th incoming edge 𝑒 to the 𝑗-th outgoing edge 𝑓 , i.e., T𝑣 (𝑖, 𝑗) = ℓt(𝑒, 𝑓). The compact model’s
main advantage is its low space overhead since turn tables can be shared among vertices. The
number of distinct turn tables for continental instances such as the road network of Western
Europe used in our experiments is in the thousands rather than millions [DGPW17]. However,
as shown in [GV11, BWZZ20], (C)CH and the compact model do not work well with each other.
The preprocessing algorithms become rather complex and the achieved performance is not
competitive. Therefore, we focus on CCH and the edge-based model in the following.

CCH on the Edge-Based Model

CCH can be applied to the edge-based model without modifications. However, preprocessing
running times suffer significantly. Therefore, we propose optimizations to reduce the slowdown.

Contraction Order. Obtaining the nested dissection order is the most expensive part of
preprocessing. We can apply the same ordering algorithms as for a non-turn CCH without
modification to the edge-based graph. We refer to this order as the edge-based order. Sadly, this
approach is quite slow.

Fortunately, we can also exploit that vertices in𝐺e are edges in𝐺 and compute an edge order on
𝐺 . Algorithms for obtaining separator decompositions in road networks like InertialFlow [SS15]
and InertialFlowCutter [GHUW19] compute separators by finding a small balanced cut and
deriving a separator from that cut. However, a cut in 𝐺 corresponds directly to a separator
in 𝐺e. Thus, we compute cut-based orders by computing a small balanced cut in 𝐺 , using the
vertices corresponding to the cut edges as the highest-ranked vertices in the contraction order
for 𝐺e and recursing on the sides of the cut. We extend InertialFlowCutter with this method.

Infinite Shortcuts. Recall that CCH algorithms do not work on the original directed graph𝐺 =

(V, E), but on the corresponding bidirected graph𝐺 ′ = (V, E ′) that is obtained from𝐺 by adding
all edges {𝑤𝑣 : 𝑣𝑤 ∈ E ∧ 𝑤𝑣 ∉ E}. This can lead to the insertion of unnecessary shortcuts;
see Figure 7.3 for an example. We denote these unnecessary shortcuts as infinite shortcuts as
the edges in both directions always have weight ∞. Infinite shortcuts can be identified by
customizing with the weight function ℓ (𝑒) = 0, 𝑒 ∈ E . Afterwards, every bidirected edge with
weight ∞ in both directions is an infinite shortcut and can be removed. After obtaining the
elimination tree, we identify and remove infinite shortcuts in an additional preprocessing step.

Chapter 7 The Customizable Contraction Hierarchies Framework

82

7 2

1
1

2
4

7
∞ 2 ∞

1
1 2

6

∞
∞

4∞
rank

Figure 7.3: Original graph and preprocessing result after the basic customization. The dashed shortcut
has always weight∞ in both directions and can be removed.

Having removed some edges, we loose the guarantee that the perfect customization will set
every edge weight to the shortest distance between its endpoints. Due to removed edges, some
triangles necessary to find these shortest distances might be missing. In the example depicted
in Figure 7.3, the edge with length seven is longer than the shortest path between its endpoints.
However, for the perfect customization to find this path, the infinite shortcut is necessary.
Fortunately, this does not affect correctness. We will only potentially miss edges to remove.
The perfect customization algorithm can still be applied without modification. However, we
now do not obtain a minimal augmented graph but only a reduced one. As our experiments
show, losing this minimality guarantee has little impact on query running times. Applying the
perfect customization still yields worthwhile speedups.

Directed Hierarchies. In the simplified model, many edges have a corresponding reversed
edge. This changes in the edge-based model, and the number of edges without a corresponding
reversed edge increases. Thus, the customized graph contains many edges with weight∞ but
a finite weight for the reversed edge. Like infinite shortcuts, these edges can be identified by
customization with the zero-length function. We remove these edges after obtaining the elimi-
nation tree. The result is a directed hierarchy. Customization algorithms must now enumerate
triangles in both directions separately. However, directed hierarchies contain fewer triangles in
total. Therefore, the customization becomes faster. No adjustments are necessary for the query.

Reordering Separator Vertices. The vertices inside a separator can be ordered arbitrarily in
a nested dissection order. We exploit this to generate more infinite shortcuts. Separator vertices
in𝐺e correspond to cut edges in𝐺 . We order them according to the side on which the tail vertex
of the corresponding cut edge lies. For example consider a cut in 𝐺 with a left and a right side
(Figure 7.4). Cut edges going from the left to the ride side (i.e. their respective vertices in𝐺e) are
assigned the lower ranks, and cut edges from right to left are assigned the higher ranks. This
way, shortcuts between the lower-ranked vertices (left to right in the example) can never have
a finite weight. Any directed path between them must use one of the higher-ranked vertices (to
go back from right to left). As shortcuts are assigned the weight of the shortest path through
lower-ranked vertices, this will always be∞, and these shortcuts can be removed later.

Evaluation Section 7.5

83

𝐶

1 2

3 4

5 6

C𝑙 C𝑟

5,6

6,5

3,4

4,3

· ·
·

5,6

3,4

1,2

6,5

· ·
·

Figure 7.4: On the left is a visualization of a cut in 𝐺 . In the middle is an arbitrary contraction order
which results in no infinite edges after the first four contractions. On the right, the edges in the order
are grouped which results in three infinite edges after the first four contractions (the dotted edges).

Turns with CCH-Potentials

It is also possible to sidestep the preprocessing and customization slowdown at the cost of
some query performance. The previous chapter shows that CH-Potentials are very effective
when applied to turn costs and restrictions. Thus, we can also support turn costs by running
bidirectional A* on the expanded graph 𝐺e with Lazy RPHAST on 𝐺∗ as the potential function.

7.5 Evaluation

Environment. Our primary benchmark machine runs openSUSE Leap 15.3 (kernel 5.3.18),
and has 64GiB of DDR3-1600 RAM and two Intel Xeon E5-2670 CPUs, each of which has eight
cores clocked at 2.6 Ghz and 8 × 64 KiB of L1, 8 × 256 KiB of L2, and 20MiB of shared L3 cache.
We use this machine to ensure the comparability of our results to previous works [DSW16,
BSW19] which were also evaluated on this computer. Additionally, this machine allows a rough
comparison with the results on CRP presented in [DGPW17].2 Since the machine is already
2According to the comparison methodology from [Bas+16] (see https://i11www.iti.kit.edu/~pajor/survey/),
the machine used in [DGPW17] (SPA-2) is about 20% slower than ours (compute11). We reran the benchmark
for our machine and obtained a score of 38914ms, which is somewhat slower than the previously reported
36582ms. This is likely due to the mitigations for side-channel attacks utilizing speculative execution such as
Meltdown and Spectre. SPA-2 would only be about 12% slower than our machine compared to this updated score.
Generally, these scaling factors have to be interpreted very carefully. They are obtained from one-to-all Dijkstra
searches on continental-sized road networks. This benchmark heavily emphasizes memory bandwidth while
neglecting other critical factors such as CPU frequency, cache size and cache speed. Also, note that the authors
of [DGPW17] even used our machine to evaluate their turn-aware CH implementation, stating that it achieves

https://i11www.iti.kit.edu/~pajor/survey/

Chapter 7 The Customizable Contraction Hierarchies Framework

84

almost a decade old at the time of writing, we expect our results to be a reasonably conservative
approximation of the performance that can be expected when deploying these algorithms today.
We implemented our algorithms in Rust3 and compiled them with rustc 1.64.0-nightly

(830880640 2022-06-28) in the release profile with the target-cpu=native option. For the
computation of contraction orders, we use InertialFlowCutter (IFC)4 [GHUW19]. As shown
in the extensive evaluation in [GHUW19], IFC currently achieves the best contraction order
quality while taking only about two times as long as InertialFlow [SS15], the fastest approach
with good quality. We extend IFC with the computation of cut-based orders and the reordering
of separator vertices. These extensions were published as a pull request on GitHub5 and have
since been merged into the project. InertialFlowCutter is written in C++ and were compiled
with GCC 10.3.0 using optimization level 3.

Inputs. We use our main benchmark instances for time-independent route planning: DIMACS
Europe and OSM Germany. See Section 4.2.1 for a description and discussion of these networks.
We use synthetic turn costs of 100 s for U-Turns and free turns otherwise for DIMACS Europe
as suggested in [DGPW17]. For OSM Germany, we extract real-world turn restrictions from the
OSM data. Additionally, we include a city-scale network of the Stuttgart region provided by PTV.
This network includes real-world production-grade turn cost and restriction data. It has roughly
110 k vertices and 252 k edges, which makes it about two orders of magnitude smaller than the
Germany and Europe instances. Our evaluation in [BWZZ20] included additional city-scale
networks. Reproduced and extended results for these instances can be found in Appendix A.4.

Methodology. For the computation of the contraction order, we perform the partitioning ten
times and report the average running time. Contraction and customization running times are
obtained as averages over 100 runs. For the queries, we perform 1 000 000 point-to-point queries
where both source and target are vertices drawn uniformly at random. We utilize parallelization
for all phases except the queries.

7.5.1 CCH Performance

Table 7.1 depicts running times of the metric-independent preprocessing. The ordering, per-
formed by IFC, is two orders of magnitude slower than the contraction (with chordal completion)
and thus dominates the running time. Still, computing the contraction order of a continental-
sized network takes only about six minutes, thanks to the efficient parallelization of IFC. This
is faster than the preprocessing time of a classical non-customizable CH [GSSV12].6 We only

“comparable” performance. We conclude that our machine and SPA-2 yield running times in the same order of
magnitude and that our machine is probably, in most cases, slightly faster.

3The code for this paper and all experiments is available at https://github.com/kit-algo/cchpp
4https://github.com/kit-algo/InertialFlowCutter
5https://github.com/kit-algo/InertialFlowCutter/pull/6
6The CH preprocessing is typically performed sequentially, which makes this a somewhat unfair comparison.
Parallelization approaches for CH preprocessing have been described in the context of time-dependent CH [Vet09,

https://github.com/kit-algo/cchpp
https://github.com/kit-algo/InertialFlowCutter
https://github.com/kit-algo/InertialFlowCutter/pull/6

Evaluation Section 7.5

85

Table 7.1: Running time in seconds of the metric-independent preprocessing algorithms. Our contraction
orders were computed with IFC. For contraction, we compare our own chordal completion algorithm
against the contraction graph approach and the naive baseline as reported in [DSW16]. Our results and
the numbers from [DSW16] were obtained on the same machine. The total running time includes the
ordering, the contraction with our chordal completion approach and additionally the reconstruction of
the elimination tree and separator decomposition, modifying the order into an DFS post order and all
other setup operations.

Ordering Contraction Total
Chordal Contraction Dyn. adjacency

completion graph [DSW16] array [DSW16]

Stuttgart 0.8 0.0 – – 0.9
Germany 203.9 1.3 – – 222.9
Europe 341.2 1.6 15.5 305.8 361.1

have running times of competing contraction algorithms for Europe7. Still, the speedups are
so significant that we can safely conclude that the chordal completion algorithm is the best
approach for the contraction. Chordal completion is two orders of magnitude faster than the
naive baseline, one order of magnitude faster than the engineered contraction graph approach,
and also much simpler to implement.8 On Stuttgart, the running time is in the single-digit
milliseconds. In practice, the running time of the chordal completion is so fast that it disappears
behind memory allocation for the graph data, reconstruction of the separator decomposition
and other setup/management operations.

In Table 7.2, we investigate the performance of the customization algorithms on Stuttgart and
Europe. The results for Germany can be found in Table A.1 in the appendix. Considering the
total running time, we observe that our batched triangle relaxation-based customization in the
sequential case is roughly two times faster than the results observed in [BSW19] and about four
times faster than the baseline [DSW16]. With full parallelization with 16 threads, the picture
remains similar on Europe. However, on the smaller Stuttgart instance, the difference to the
approach from [BSW19] becomes much smaller. Interestingly, the performance differences are
fueled primarily by the construction step, where our approach is sequentially four to five times
faster than [BSW19]. One important reason is that the batched triangle relaxation allows us
to record unpacking information during the basic customization without any synchronization

BGSV13]. However, these approaches do not scale very well in the classical setting. Further, to the best of our
knowledge, there is neither a publication on parallelized CH preprocessing in the time-independent case nor any
open source implementation.

7Note that the orders used in [DSW16] were obtained with KaHiP, which finds slightly worse orders than IFC.
However, according to [GHUW19], the advantage for our algorithms from this should be at most 10%.

8See https://github.com/RoutingKit/RoutingKit/pull/75/commits/16de474b2c3where we replace the contrac-
tion graph approach in RoutingKit with the chordal completion algorithm.

https://github.com/RoutingKit/RoutingKit/pull/75/commits/16de474b2c3

Chapter 7 The Customizable Contraction Hierarchies Framework

86

Table 7.2: Running times by number of threads of different steps of the customization on Stuttgart and
Europe in comparison with the baseline results reported in [DSW16] and the improvements proposed
in [BSW19]. Our results and the numbers from [DSW16, BSW19] were obtained on the same machine.
Note that the orders used in [DSW16, BSW19] were obtained with KaHiP and InertialFlow, respectively
which find slightly worse orders than IFC. However, according to [GHUW19], the advantage for our
algorithms from this should be at most 10%.

Stuttgart [ms] Europe [s]
Impl Threads Basic Perfect Construct Total Basic Perfect Construct Total

[DSW16] 1 10.88 22.02 ≈ 9.39 ≈ 42.35
16 5.47 ≈ 9.39 ≈ 14.86

[BSW19] 1 20.51 20.77 48.64 89.93 5.60 6.48 9.39 21.47
16 4.91 4.41 4.35 13.66 1.11 0.63 0.80 2.54

[ours] 1 19.85 18.95 10.33 49.13 4.09 4.72 1.95 10.76
2 11.34 9.90 5.69 26.93 2.05 2.42 0.99 5.46
4 7.39 5.65 3.57 16.61 1.22 1.26 0.54 3.02
8 5.70 3.51 2.46 11.67 0.81 0.69 0.35 1.86
16 6.25 3.10 2.59 11.94 0.58 0.37 0.30 1.25

issues. Thus, in contrast to [BSW19], we do not need to enumerate lower triangles while
constructing the minimal augmented graph. We observe that our algorithms utilize additional
threads reasonably well, as long as the instances are sufficiently large. On Europe, the total
speedup with eight threads is 5.8 and 8.6 with 16 threads. In contrast, on Stuttgart, our best
achieved speedup is 4.2 with eight threads. Adding more threads even starts to degrade the
performance gradually. In terms of absolute numbers, our approach enables customization
of continental-sized instances in about 10 s sequentially and a little more than a second fully
parallelized. These improvements finally bring CCH customization running times into a similar
range to CRP customization running time (10.55 s sequentially, 1.05 s with 12 cores [DGPW17]).
CRP customization times can even be outperformed when only applying the basic customization.

Table 7.3 depicts elimination tree query running times and search space statistics for different
networks and weight functions. As shown in [BSW19], elimination tree queries with all
optimizations proposed in [BSW19] outperform Dijkstra-based CCH queries across all query
distances. Thus, we focus on elimination tree queries and do not evaluate Dijkstra-based queries.

We observe that with only the basic customization, the number of relaxed edges and the dis-
tance query running times are very robust against different weight functions. The only changes
are due to the pruning criterion [BSW19] which sometimes allows skipping the relaxation of
some edges. However, as we use random, i.e. primarily long-range queries for this experiment,
this happens only seldomly and has little influence on the results. Despite Germany being a
slightly smaller graph, queries take somewhat longer (around 440 `s compared to around 300 `s

Evaluation Section 7.5

87

Table 7.3: Search space statistics and running times for elimination tree queries on different graphs and
weight functions. We evaluate queries on 𝐺+ with the basic customization and on 𝐺∗ after performing
the perfect customization. The number of visited vertices remains the same because elimination tree
queries always traverse the full path to the root. The number of edges indicates the combined number
of edges relaxed in both directions. The final column contains the number of vertices on the unpacked
shortest path. All numbers are averages over 1 000 000 random queries.

Search space Running time [`s] # Path

Vertices Edges Distance Path Vertices
𝐺+ 𝐺∗ 𝐺+ 𝐺∗ 𝐺+ 𝐺∗

Stuttgart Travel time 216.4 8 846.5 3 837.1 22.9 14.5 5.6 5.4 185.9
Geo distance 216.4 8 888.6 3 303.3 22.2 13.0 4.4 4.2 149.8

Germany Travel time 1 277.9 274 113.1 78 474.2 442.0 163.2 234.6 134.4 4 681.0
Heavy traffic 1 277.9 274 478.3 85 298.9 435.0 174.2 241.7 179.5 5 363.4
Geo distance 1 277.9 274 788.5 131 985.4 438.3 246.3 383.4 336.2 6 174.7

Europe Travel time 1 041.2 186 006.5 69 312.9 300.2 137.5 95.9 71.3 1 389.8
Geo distance 1 041.2 185 701.3 92 616.8 303.3 177.9 281.3 252.9 3 158.9

on Europe). This is because the greater modelling detail of the OSM-based Germany instance
corresponds to the number of vertices on the obtained paths and the search space size. Path
unpacking times also correlate with the number of vertices on the result paths, are in the same
order of magnitude as the distance computation times and are often slightly faster.
Running the perfect customization improves query performance significantly in all aspects.

The number of relaxed edges is at least halved and the query running times are also roughly
halved. Path unpacking times also improve, but not as much. This is because, for path un-
packing, the work to perform remains the same, and only the cache locality improves. These
improvements are more significant for weight functions with a more pronounced hierarchy.
The different weight functions on Germany illustrate this clearly. Stuttgart behaves differently
because it is a city network that is much less hierarchical.
Note that our path unpacking times are significantly faster than the numbers reported

in [DSW16]. There, an unpacking time of 253 `s is reported for Europe with travel times and
524 `s with geo distances (without perfect customization). Our unpacking times are faster
because we store explicit edge unpacking information with each edge while the implementation
of [DSW16] enumerates lower triangles for unpacking. However, maintaining this unpacking
information during the customization costs some performance, specifically in the 𝐺∗ construc-
tion step. Thus, there is a trade-off between path unpacking times and customization times.
If path unpacking times are not critical and a slowdown of a factor of two is tolerable, the
customization times could be accelerated further.

Chapter 7 The Customizable Contraction Hierarchies Framework

88

Table 7.4: Running times for Dijkstra’s algorithm, CH, CRP and CCH on Europe with different weight
functions. Preprocessing and customization were executed in parallel, queries sequentially. For CH and
CRP we list unscaled results as reported in [DGPW17].

Travel time Geo distance
Prepro. Custom. Queries Prepro. Custom. Queries

[s] [s] [ms] [s] [s] [ms]

Dijkstra – – 2 359.14 – – 1 972.93
CH [DGPW17] 109 – 0.11 726 – 0.87
CRP [DGPW17] 654 1.05 1.65 654 1.04 1.91

CCH 𝐺+ 367 0.58 0.30 367 0.58 0.30
CCH 𝐺∗ 1.25 0.14 1.25 0.18

Table 7.4 depicts our results compared to other related routing algorithms on the most
prominent research benchmark instance, the DIMACS Europe graph. Dijkstra’s algorithm, the
non-accelerated baseline, requires no preprocessing but has prohibitively slow query running
times. CH [GSSV12], the non-customizable predecessor and foundation to CCH, achieves fast
queries on travel times. In this case, the (parallelized) preprocessing is 3.4 times faster than
the CCH preprocessing, and queries are also marginally faster. However, CH is not robust
against weight functions with a weaker hierarchy. Both preprocessing and query times degrade
significantly when applied to a geo distance weight function. In contrast, CRP [DGPW17] is
very robust against different weight functions and can introduce arbitrary weight functions with
a customization taking only around a second. However, queries are somewhat slower than CH
queries. With CCH, we achieve robustness against different weight functions while retaining
most of the CH query performance. The optimizations proposed in this work and [BSW19]
accelerate the CCH customization such that the basic customization is slightly faster than the
CRP customization. Queries with only the basic customization are around five times faster than
CRP queries. For even faster queries, the perfect customization can be applied. Then, the total
customization time is marginally slower than CRP, but queries are an order of magnitude faster
and roughly as fast as classical CH queries. Nevertheless, CRP still has some advantages over
CCH. First, the space required per customized weight function is smaller for CRP. Second, CRP
has been augmented to more extended problem settings and so far appeared more flexible. In
the following, we will investigate how CCH performs in these extended problem settings.

7.5.2 Lazy RPHAST

First, we investigate the performance of our elimination tree-based Lazy RPHAST realization.
For this, we pick 100 centre vertices uniformly at random. From each of these, we obtain a
ball of vertices B by running Dijkstra’s algorithm until the desired number of vertices have

Evaluation Section 7.5

89

0

10

20

30

40

50

R
un

ni
ng

 T
im

e
[m

s]

Ball Size |B|
214

217

221

224

Algorithm
CH DFS
CCH DFS
CCH ET

0 2500 5000 7500 10000 12500 15000
Number of Computed Distances

0.1

1

10

100

Av
er

ag
e

R
un

ni
ng

 T
im

e
pe

r D
is

ta
nc

e
[

s]

Figure 7.5: Average running times of Lazy RPHAST on CH and CCH while incrementally querying
|𝑆 | = 214 sources from a ball of varying size |B | on Europe, excluding selection times. The upper figure
contains the total elapsed running time. The lower figure contains the averaged running time per source,
i.e. 𝑦/𝑥 from the upper figure. Note the different y-axis scales and units.

been settled. We then pick 214 source and 100 target vertices uniformly at random from B and
incrementally compute the distances from all sources to each target. Figure 7.5 depicts the
average running times of the incrementally queried distances on Europe. We also performed
the experiment on Germany. The results are reported in Figure A.1 in the appendix and give
the same overall picture.
Lazy RPHAST on CCH is somewhat slower than on CH. This is because CCH has a denser

search space than CH. On large ball sizes, the slowdown goes up to a factor of 1.5. However, on
smaller ball sizes, the slowdown becomes less significant. The elimination tree-based variant
even becomes marginally faster than the CH variant on the two smallest ball sizes. On CCH, we
observe a minor advantage for the elimination tree-based realization due to the more efficient
implementation. Recall that for the DFS-based variant, all upward neighbours need to be checked
to determine if the distance of a vertex can be computed. In contrast, with the elimination

Chapter 7 The Customizable Contraction Hierarchies Framework

90

tree variant, it is sufficient to check the parent in the elimination tree. However, there is one
exception where the elimination tree variant is less efficient: When B is sufficiently large, and
many sources are queried, the DFS-based variant becomes marginally faster. This is because
the path to the elimination tree root might contain vertices which are not reachable in the CCH
search space because some edges were removed during the perfect customization. We confirmed
this experimentally by running the algorithms without perfect customization on 𝐺+. In this
case, the DFS traverses the same vertices as the elimination tree-based variant, and the effect
disappears. Usually, however, the number of vertices unnecessarily visited by the elimination
tree variant is small compared to the total work. It is thus more than compensated by the more
efficient implementation. We, therefore, conclude that the elimination tree-based Lazy RPHAST
variant is the better default choice on CCH. Regarding absolute numbers, the average time per
distance to compute starts in a similar range as standard (C)CH (around 0.1ms) queries and
quickly becomes faster as more distances are queried. When computing more than 210 distance
to the same target on a small ball, the average time per distance even becomes faster than HL
queries (roughly 0.5 `s). We conclude that applying Lazy RPHAST on CCH allows us to carry
over all the results from the previous chapter to a customizable setting at the cost of a minor
slowdown when the targets are distributed over large parts of the graph. We confirmed this by
repeating the experiments from the previous chapter with CCH-Potentials. These results are
reported in Appendix B.

7.5.3 Point-of-InterestQueries

We now evaluate CCH-based algorithms to answer POI queries efficiently. Figure 7.6 depicts
mean running times for finding the four closest targets from a set of varying size with the
different algorithms. We drew 100 target sets uniformly at random, performed the selection, and
executed nearest neighbour queries from 100 source vertices drawn uniformly at random for
each target set. Non-uniform target distributions are evaluated in Section A.3 in the Appendix.
There, we also present a direct comparison between the original separator-based algorithm
and our optimized version. Here, we focus on evaluating which CCH-based algorithm is most
suitable in different scenarios.
We observe that the performance of the baseline, Dijkstra’s algorithm, strongly depends

on the number of POIs. Since targets are drawn uniformly at random, having more targets
corresponds to the closest targets being much closer. With 211 or more targets, Dijkstra’s
algorithm achieves interactive query times and may present a feasible, practical option. The
selection phase for Dijkstra’s algorithm only consists of marking the targets in a bitvector so
it can be quickly determined at query time if a settled vertex is a target. Thus, it is extremely
fast. Lazy RPHAST, in contrast, does not have a selection phase and computes distances to all
targets without any stopping criterion. Thus, it is fast for small target sets. The bucket query
approach [Kno+07] (here called BCCH; see Section 5.4.2) has the fastest queries (well below
100 `s) across all target set sizes. Further, query times profit from larger target sets. However,
the selection phase is relatively slow and goes into the minutes for large target sets. Thus, the

Evaluation Section 7.5

91

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

Number of POIs

0.001

0.01

0.1

1

10

100

1000

10000

100000

R
un

ni
ng

 T
im

e
[m

s]

Dijkstra query
Dijkstra select

BCCH query
BCCH select

CCH query
CCH select

Lazy RPHAST

Figure 7.6: Average running times for different nearest-neighbor algorithms on Europe to find the 𝑘 = 4
closest targets from a POI set of varying size.

usefulness of BCCH depends on the scenario. It is the best choice in an offline scenario where
targets are known in advance. In an online scenario where the targets are part of the query (for
example, a user types “burger restaurants” in the search field of his maps application), BCCH is
not feasible. Finally, the separator-based algorithm presents a very robust trade-off. Selection
times (consisting of sorting the targets by CCH rank) are barely slower than the selection for
Dijkstra’s algorithm. Query times are consistently below 1ms, which is more than sufficient for
typical map applications. Therefore, the separator-based algorithm is the strongest contender in
online scenarios. Even though these query times are an order of magnitude slower than BCCH,
the absolute times are so fast that the algorithm is also a reasonable choice in offline scenarios.
Note that our optimizations are crucial in making the separator-based algorithm competitive for
the online scenario. Without them, the selection takes 10-20ms [BW21]. Thus, the separator-
based algorithm would be dominated by Lazy RPHAST for few targets and Dijkstra’s algorithm
for many targets.

7.5.4 Alternative Routes

Next, we evaluate the performance of finding alternative routes with CCH-Potentials and our
penalty routes method. Table 7.5 depicts the results. We observe excellent success rates and
sharing values. On Europe, we can successfully obtain four additional routes for roughly 60%
of the queries. Further, for each route, almost half of it is not shared with any other route. In

Chapter 7 The Customizable Contraction Hierarchies Framework

92

Table 7.5: Performance of the penalty routes method with CCH-Potentials. We report results on each
graph for finding up to 4 alternative routes. The success rate indicates the share of queries for which
the desired number of alternatives could be found. The running time states the total running time
for the respective number of alternatives. The iterations column denotes the number of shortest path
computations on the penalized graph in addition to the initial shortest path search. Sharing indicates the
distance of the current alternative shared with any previous path, including the initial shortest path.

Alt. Success Running # Iterations Sharing
rate [%] time [ms] [%]

Stuttgart 1 82.9 1.0 2.2 41.0
2 63.9 2.4 4.1 45.9
3 48.0 4.0 5.8 51.2
4 34.6 6.0 7.4 54.5

Germany 1 95.7 97.4 1.5 34.4
2 87.1 294.0 3.0 43.3
3 71.3 595.2 4.3 49.2
4 53.6 973.5 5.4 52.9

Europe 1 97.3 213.4 1.4 41.9
2 91.1 548.8 2.7 47.8
3 77.8 996.8 4.0 52.1
4 58.7 1 473.9 5.1 55.1

contrast, the CRP-based approach presented in [DGPW17] even finds third alternative routes
with only a success rate of 40% and fourth routes for only about 20% of the queries. Germany
exhibits similar results. On Stuttgart, we achieve slightly worse results. This is expected since
finding alternative routes becomes harder as routes become shorter [Kob15]. While our approach
is very competitive in quality, it is relatively slow. Even for the first alternative, running times
are only interactive on the Stuttgart instance. Luckily, short-range queries make up the bulk
of queries to be answered in practical applications [DSS18]. Therefore, our approach will be
feasible in many practical cases.

7.5.5 Turn Costs

We evaluate the impact of incorporating turn costs into CCH. Table 7.6 depicts the results. The
simplest way to integrate turn costs is to use CCH-Potentials, i.e. use Lazy RPHAST on CCH
without turns as an A* potential. In this case, queries are a bit more than an order of magnitude
slower than non-turn CCH but still in the single-digit milliseconds. This is fast enough for
interactive applications. The advantage of this approach is that preprocessing and customization
remain unchanged.

In contrast, the fastest queries can be achieved when applying preprocessing and customiza-

Evaluation Section 7.5

93

Table 7.6: Performance of different CCH variants and optimizations to support turn costs. We report the
number of directed edges in the augmented graph and running times. Directed hierarchies imply the
removal of infinite shortcuts. Reordering separator vertices builds on both directed hierarchies and the
removal of infinite shortcuts. All these three variants used a cut order. Preprocessing and customization
were executed in parallel, queries sequentially.

CCH Edges Prepro. Customization [ms] Query [`s]
[·103] [s] Basic Perfect Basic Perfect

St
ut
tg
ar
t

No turns 724.2 1.0 6.4 6.1 22.0 13.7
CCH-Pot. 724.2 1.0 6.4 6.1 – 441.0
Naive exp. 3 214.9 3.6 18.0 23.4 55.7 25.3
Cut order 3 359.7 1.5 17.4 22.5 54.3 25.8
Infinity 2 874.6 1.6 16.5 20.1 53.4 26.0
Directed 1 550.5 1.6 13.2 16.2 40.0 26.4
Reorder 1 440.8 1.6 11.1 13.0 28.9 25.4

Ge
rm

an
y

No turns 93 443.1 220.3 552.1 541.4 426.9 155.4
CCH-Pot. 93 443.1 220.3 552.1 541.4 – 1 659.5
Naive exp. 440 812.8 2 087.7 2 295.5 3 131.0 1 221.3 289.4
Cut order 467 191.1 371.1 2 733.2 3 400.6 1 427.9 361.0
Infinity 388 201.7 390.3 2 658.8 2 858.1 1 438.6 365.0
Directed 206 970.0 391.7 1 760.9 2 541.8 938.8 371.4
Reorder 190 597.1 391.4 1 360.7 1 899.2 647.6 378.0

Eu
ro
pe

No turns 117 727.5 367.0 587.6 666.5 297.0 135.1
CCH-Pot. 117 727.5 367.0 587.6 666.5 – 2 691.9
Naive exp. 692 995.8 3 817.5 3 169.9 4 629.9 908.3 247.7
Cut order 737 433.4 407.5 3 210.3 4 670.8 928.8 264.8
Infinity 651 921.7 435.2 3 257.5 4 451.7 951.8 265.0
Directed 363 663.3 434.6 2 184.1 3 365.7 618.1 264.8
Reorder 334 755.9 436.7 1 819.9 2 663.0 453.1 295.8

tion without any modification to the expanded graph (see the “Naive exp.” rows). With the
perfect customization, queries are only around a factor of two slower than queries without turn
costs. However, this comes at the cost of a significant slowdown for both preprocessing phases of
up to 12. Our optimizations from Section 7.4.4 help to reduce this slowdown without sacrificing
as much query performance as CCH-Potentials. Computing cut orders on the original graph
rather than a vertex separator order on the expanded graph reduces the preprocessing slowdown
from an order of magnitude to at most 1.7. The resulting order is marginally worse, which leads
to around 5% more shortcuts and roughly corresponding slowdowns in customization and query
running times. The loss in quality is likely due to certain optimizations in InertialFlowCutter for

Chapter 7 The Customizable Contraction Hierarchies Framework

94

optimal vertex orders for specific subclasses of graphs which we did not implement for cut-based
orders. We expect that implementing them would close the gap in quality between edge-based
and cut-based orders. The remaining optimizations help accelerate the customization further by
removing edges that can be guaranteed as unnecessary as part of the preprocessing. Identifying
these edges costs extra preprocessing time but computing the order is still the dominant factor.
All optimizations combined roughly achieve a speedup of 1.8 for the customization. Removing
undirected infinite shortcuts alone yields only minor improvements. Combining this with
directed hierarchies and removing all directed infinite shortcuts has a much more significant
impact. This impact can be further amplified by reordering separator vertices, which produces
even more infinite shortcuts. It is noteworthy that even though our optimizations primarily aim
for the customization running time, we also achieve a significant speedup for query running
times on 𝐺+. In that case, removing infinite edges also reduces the number of edges in the
query search space. However, with the perfect customization and queries on 𝐺∗, we observe
the opposite: Each optimization is slightly detrimental to query running times. This is because
removing more edges as part of the preprocessing leads to the perfect customization missing
more and more edges to remove. Thus, the search space on 𝐺∗ becomes larger with each
additional optimization. Nevertheless, the perfect customization still yields significant query
speedups on the larger graphs of up to 1.7.

See Appendix A.4 for results on the remaining instances evaluated in [BWZZ20] and sequen-
tial customization running times

Comparison with Related work. Table 7.7 summarizes our results on turn costs and de-
picts them in comparison to running times achieved by competing approaches as reported
in [DGPW17]. The experiments were performed on the publicly available Europe instance,
the only instance considered in related work. We observe that incorporating turns impacts all
algorithms except CRP significantly. Dijkstra becomes at least 2.5 times slower. CH queries
remain comparatively fast (at least on the edge-based model), but preprocessing slows down
by more than an order of magnitude. The CRP non-turn variant is realized as free turns in the
compact model, which explains why incorporating turns leaves the performance unaffected.
While CCH without turns achieves faster running times than CRP in all phases, without our
modifications, it is outperformed by CRP on graphs with turns. However, when using cut-based
orders and all optimizations, CCH again outperforms CRP in all phases except the customiza-
tion. Regarding customization times, CCH is slower by a factor of 1.6 or more, depending
on the configuration. We do not list CCH on the compact model here, as it was shown to be
outperformed by the optimized edge-based variant in all phases [BWZZ20]. Note that both the
CRP and CCH customization times can be further decreased by two related techniques known
as microcode [DW13] (for CRP) and triangle preprocessing [DSW16] (for CCH). However, both
techniques require significantly more space, and we choose not to use them to keep the space
requirement low. We conclude that while CCH may not be as robust against turn costs as CRP,
achieving competitive performance with CCH with turn costs is possible.

Conclusion Section 7.6

95

Table 7.7: Performance of Dijkstra, CH, CRP and CCH in the compact model, in the edge-based model
as is and with our optimizations (Edge-based*) on Europe with and without turns. Preprocessing and
customization were executed in parallel, queries sequentially. For CH and CRP, we list unscaled results
as reported in [DGPW17].

No turns Turns
Prepro. Custom. Queries Repr. Prepro. Custom. Queries

[s] [s] [ms] [s] [s] [ms]

Dijkstra - - 2 359.14 Edge-based – – 6 225.60
Compact – – 12 699.32

CH [DGPW17] 109 - 0.11 Edge-based 1 392 – 0.19
Compact 1 753 – 2.27

CRP [DGPW17] 654 1.05 1.65 Compact 654 1.10 1.67

CCH 𝐺+ 367 0.59 0.30 Edge-based 3 817 3.17 0.91
Edge-based* 437 1.82 0.45

CCH 𝐺∗ 367 1.25 0.14 Edge-based 3 817 7.80 0.25
Edge-based* 437 4.48 0.30

CCH-Pot. Edge-based 367 1.25 2.69

7.6 Conclusion
In this chapter, we reviewed and improved the state of the art on Customizable Contraction
Hierarchies. Our algorithmic contributions include a novel contraction algorithm, the batched
triangle enumeration method for faster customization, an elimination tree-based Lazy RPHAST
variant, various improvements for the separator-based CCH nearest neighbour search, and
a simple alternative routes algorithm for CCH, and a set of optimizations for CCH on turn-
expanded graphs. Further, we provide an extensive experimental evaluation which demonstrates
that CCH can be used to build a comprehensive and competitive routing framework. For future
work, it would be very interesting if the CCH separator decomposition can be utilized to
efficiently obtain via-vertices [DGPW17]. This would enable additional algorithmic extensions.
Further, we would like to apply CCH-Potentials to more extended dynamic problem settings.

97

8 Space-Efficient, Fast and Exact Routing in
Time-Dependent Road Networks

Shortcut edges are a crucial ingredient for many speedup techniques [BD09, Bau+10, GSSV12,
Bas+16, DSW16]. Recall that shortcuts are additional edges introduced during preprocessing,
which bypass parts of the input graph such as in Figure 8.1a. The weight of a shortcut is set to
the length of the shortest path between its endpoints. When computing shortest paths, only
few shortcuts are explored instead of many edges in the input graph. The path represented by a
shortcut can be obtained lazily, for example by running local Dijkstra searches [DGPW17], or
by iterating over possible middle vertices when shortcuts always represent two other (shortcut)
edges [GSSV12, DSW16].
This approach has been extended to the time-dependent setting [BGSV13, BDPW16]. In

this case, shortcuts are no longer associated with scalar weights. Instead, travel time functions

are used that map the entry time into a shortcut to the travel time through it. Unfortunately,
these functions can become very complex. Computing and storing them is expensive. In the
case of periodic piecewise linear functions, the number of breakpoints in a shortcut’s function
practically corresponds to the accumulated number of breakpoints of the functions of bypassed
edges. Contrary to the classic setting, shortcuts aggregate the complexity of paths they represent,
rather than skipping it. This leads to slow preprocessing and prohibitive memory consumption.

In this chapter, we explore an alternative approach to time-dependent shortcuts. Rather than
explicitly storing travel time functions and obtaining paths lazily, we store paths and obtain
travel times lazily. We expect that the shortest path between two vertices changes less frequently
than the travel time. Intuitively, going via a highway may be slower due to congestion but is
usually still the fastest option. Consider the functions 𝑓 and 𝑔 in Figure 8.1b. These functions
are travel time functions of two paths between the same endpoints and have many breakpoints.
If we want to store the travel time function of a shortcut between these endpoints, we need to

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

98

(a) A shortcut edge (dashed, black) bypassing several
vertices. In this work, shortcuts always skip over exactly
one vertex and two edges, which may in turn be shortcut
edges (dashed gray edges).

06:00 09:00 12:00 15:00 18:00
Entry time

8

10

12

Tr
av

el
 ti

m
e

[s
]

f
g

(b)Travel time functions for two different paths between
the same start and end vertex.

Figure 8.1: Shortcuts and their travel time functions.

store the function ℎ = min(𝑓 , 𝑔). Storing ℎ explicitly requires roughly a number of breakpoints
proportional to the number of breakpoints in 𝑓 and 𝑔. However, if we only store which path is
the fastest, we only need to store the points in time when the faster path switches. We expect
significantly fewer path switches than travel time function breakpoints. Therefore, in this
chapter, we explore a variant of time-dependent Contraction Hierarchies, where shortcuts store
paths instead of travel times.

Attribution. This chapter is based on joint work with Dorothea Wagner and Ben Strasser.
The results have been previously published as a conference paper at ESA 2020 [SWZ20] and a
journal article in MDPI Algorithms [SWZ21].

Contribution. We introduce CATCHUp (Customizable Approximated Time-dependent Con-
traction Hierarchies through Unpacking), a time-dependent generalization of Customizable
Contraction Hierarchies [DSW16]. At the heart of our approach are path unpacking shortcuts
and we carefully engineer our implementation around this idea. Preprocessing is a few times
faster than TCH [BGSV13], the only other technique we are aware of with fast, exact queries.
Moreover, our preprocessing produces up to 40 times less auxiliary data. We achieve this by
carefully employing approximation without sacrificing exactness. Further, our query running
times are interactive on all instances, i.e. take only few milliseconds.

Outline. We begin by describing our data structures, algorithms and implementation. Sec-
tion 8.1 introduces our shortcut unpacking data structure and algorithms for the efficient
reconstruction of represented paths. The preprocessing, which computes auxiliary data from
a road network with traffic predictions, is discussed in Section 8.2. In Section 8.3, we present
query algorithms which utilize the auxiliary data to efficiently compute shortest travel times and
paths between two given location. Section 8.4 contains an extensive experimental evaluation.

Problem Statement. In this chapter, we aim to design an efficient speedup technique for the
two-phase TD-SPPℝ with FIFO periodic piecewise linear functions over a horizon 𝐻 of one day.

Shortcut Unpacking Data Section 8.1

99

𝑢 𝑣

𝑤1 𝑤2

00:00 𝑢𝑤1 𝑤1𝑣

07:32 𝑢𝑤2 𝑤2𝑣

15:42 𝑢𝑤1 𝑤1𝑣

Figure 8.2: A shortcut with associated time-dependent expansions.

8.1 Shortcut Unpacking Data

CATCHUp is build on CCH and also computes an augmented graph𝐺+ during preprocessing.
See the previous chapter for an extensive discussion of CCH. The key ingredient of CATCHUp
is tomatoes the information we store with each edge of the augmented graph. We store time-
dependent unpacking information, which allows us to efficiently reconstruct the original path
represented by a shortcut for a given instant. Recall that a shortcut 𝑢𝑣 always skips over a
triangle (𝑢,𝑤, 𝑣). However, there may be several triangles and which one is the fastest may
change over time. There may also be an edge 𝑢𝑣 in the input graph which might sometimes be
the fastest path. This is the information our unpacking data structure has to capture.
For each edge 𝑢𝑣 ∈ E+, we store a set of time-dependent expansions X (𝑢𝑣) for unpacking.

Figure 8.2 presents an example. For an expansion 𝑥 ∈ X (𝑢𝑣), we denote the time during which
𝑥 represents the shortest path as the validity interval 𝑉 (𝑥) of 𝑥 . When formally referring to
the path represented by an expansion, we use the expand function exp : X → V ∪ E . exp
either maps to an original edge 𝑒 ∈ E or to the middle vertex𝑤𝑥 of the lower triangle (𝑢,𝑤𝑥 , 𝑣).
Knowing the middle vertex for each expansion is also sufficient to obtain longer paths. These
can be computed by unpacking shortcuts recursively.
In our implementation, the expansion information is represented as an array of triples
(𝜏,𝑢𝑤𝑥 ,𝑤𝑥𝑣). 𝜏 is the beginning of the validity interval and 𝑢𝑤𝑥 and 𝑤𝑥𝑣 are edge IDs. This
information can be stored in 16 bytes for each entry – 8 bytes for the timestamp and 4 bytes
for each edge ID. An expansion can also represent an original edge or no edge at all during a
certain time interval. Both these cases are represented as special edge ID values. Two invalid
edge IDs indicate no edge at all. One invalid ID indicates that the other edge ID represents an
original edge. For pruning, we also additionally maintain a scalar lower bound b[𝑢𝑣] and an
upper bound b[𝑢𝑣] on the travel time for each edge.

During preprocessing, we have to compute the expansion sets for each edge in the augmented
graph. This is done using the same scheme as in CCH. We iterate over all edges and relax their
lower triangles. Algorithm 8.1 depicts the routine for each triangle. The routine requires travel
time functions for all involved edges. We maintain these functions during preprocessing but
discard them later. To relax the lower triangle (𝑢,𝑤, 𝑣), the functions ℓ+(𝑢𝑤) and ℓ+(𝑤𝑣) are
linked and the result is merged with the current function of ℓ+(𝑢𝑣). Where (𝑢,𝑤, 𝑣) is faster,
new expansions are inserted into X (𝑢𝑣). Where the current 𝑢𝑣 travel time is faster, the current
expansions are kept.

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

100

Algorithm 8.1: Time-dependent lower triangle relaxation.
Input: Preliminary unpacking data for edge 𝑢𝑣 : X (𝑢𝑣) and travel time function ℓ+(𝑢𝑣).

Travel time functions of lower triangle edges ℓ+(𝑢𝑤) and ℓ+(𝑤𝑣).
Output: Improved expansions X (𝑢𝑣) and function ℓ+(𝑢𝑣).

1 Function LowerTriangleRelax:
2 𝑓 ← ℓ+(𝑢𝑤) ⊕ ℓ+(𝑤𝑣)
3 𝑉𝑢𝑣 ← {𝜏 | ℓ+(𝑢𝑣, 𝜏) ≤ 𝑓 (𝜏)}
4 𝑉𝑢𝑤𝑣 ← {𝜏 | 𝑓 (𝜏) < ℓ+(𝑢𝑣, 𝜏)}
5 X (𝑢𝑣) ← {NewExpansion(𝑥,𝑉𝑢𝑣 ∩𝑉 (𝑥)) | 𝑥 ∈ X (𝑢𝑣)}∪

{NewExpansion((𝑢,𝑤, 𝑣),𝑉𝑢𝑤𝑣)}
6 ℓ+(𝑢𝑣) ← min(ℓ+(𝑢𝑣), 𝑓)
7 return X (𝑢𝑣), ℓ+(𝑢𝑣)

Algorithm 8.2: Evaluating the travel time of a CATCHUp shortcut.
Input: Expansions X (𝑢𝑣) for edge 𝑢𝑣 , instant 𝜏 .
Output: Travel time when traversing 𝑢𝑣 at 𝜏 .

1 Function Eval:
2 𝑥𝜏 ← 𝑥 ∈ X (𝑢𝑣) such that 𝜏 ∈ 𝑉 (𝑥) // binary search

3 if exp(𝑥𝜏) = 𝑢𝑣 ∈ E then
4 return ℓ (𝑢𝑣, 𝜏)
5 else
6 𝑤 ← exp(𝑥𝜏)
7 tt← Eval(X (𝑢𝑤), 𝜏)
8 return tt + Eval(X (𝑤𝑣), 𝜏 + tt)

Once the unpacking information for an edge is complete, we can use it to compute the edge’s
travel time, unpack it to the path in the original graph, or compute the travel time function
for the edge. All these operations follow the same basic scheme: Determine the relevant
expansions and apply the operation recursively until edges from the input graph are reached.
The simplest case is the travel time evaluation. Algorithm 8.2 depicts this operation. First, the
relevant expansion is determined using binary search. If it points to an original edge, this edge’s
travel time can be evaluated and returned. If the expansion points to a lower triangle, we first
recursively evaluate the first edge of the triangle. Then, the second edge can be evaluated at the
entry time plus the travel time of the first edge.
Algorithm 8.3 depicts the procedure for determining the path represented by an expansion

set for a given time. The recursive scheme is the same as for Eval but the result is a path instead
of a travel time. Nevertheless, when unpacking lower triangles, we still need to evaluate the

Shortcut Unpacking Data Section 8.2

101

Algorithm 8.3: Unpacking a CATCHUp shortcut into the represented original path at
a certain time.
Input: Expansions X (𝑢𝑣) for edge 𝑢𝑣 , instant 𝜏 .
Output: Unpacked path (𝑢, . . . , 𝑣).

1 Function Unpack:
2 𝑥𝜏 ← 𝑥 ∈ X (𝑢𝑣) such that 𝜏 ∈ 𝑉 (𝑥) // binary search

3 if exp(𝑥𝜏) = 𝑢𝑣 ∈ E then
4 return (𝑢, 𝑣)
5 else
6 𝑤 ← exp(𝑥𝜏)
7 𝑃 ← Unpack(X (𝑢𝑤), 𝜏)
8 return 𝑃 · Unpack(X (𝑤𝑣), 𝜏 + ℓ (𝑃, 𝜏))

first edges travel time to determine the time for unpacking the second edge.

Constructing the travel time function is also similar and shown in Algorithm 8.4. We recur-
sively unpack expansions until we reach edges of the original graph where exact travel time
functions are available. However, we may need to unpack several expansions for different times
and combine them. For each expansion, we check if its validity overlaps with the time range for
which we want to construct the travel time function. If so, we recursively retrieve the function
for the first edge during this overlap. Then, we calculate the function for the second edge during
the overlap. For the second edge, the time interval must be shifted by the travel time of the first
edge at the start and end of the time interval. Both functions are then linked and appended to
the final function.

Implementing this algorithm naively may cause performance issues since many memory
allocations are performed for intermediate results. We avoid this by keeping all intermediate
results in two buffers which are reused for all invocations of this algorithm. The buffers are
stored as dynamically sized arrays (C++ vectors) and can grow dynamically but will never
shrink. Once they have grown to an appropriate size, no more memory allocations will be
necessary. Each buffer can contain many travel time functions stored consecutively. The link
operation will read the last two functions from one buffer and append the result to the other
buffer. Then, the two input functions will be truncated from the first buffer. After swapping,
the buffers can be used again for the next link operation. Swapping is necessary, because it is
not possible to read from and write to the same buffer during the same operation. The same
scheme can be employed for joining partial functions (see Figure 8.3 for a visualization).

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

102

Algorithm 8.4: Reconstructing the travel time profile of a shortcut.
Input: Expansions X (𝑢𝑣) for edge 𝑢𝑣 , time interval 𝑇 .
Output: Exact travel time function ℓ (𝑢𝑣) |𝑇 for time 𝑇 .

1 Function ReconstructProfile:
2 Initialize 𝑓 𝑢𝑣 as function with empty domain
3 for 𝑥 ∈ X (𝑢𝑣) do
4 [𝜏, 𝜏 ′] ← 𝑇 ∩𝑉 (𝑥)
5 if exp(𝑥) = 𝑢𝑣 ∈ E then
6 𝑓 𝑥 ← ℓ (𝑢𝑣) | [𝜏,𝜏 ′]
7 else
8 𝑤 ← exp(𝑥𝜏)
9 𝑔← ReconstructProfile(𝑢𝑤, [𝜏, 𝜏 ′])

10 ℎ ← ReconstructProfile(𝑤𝑣, [𝜏 + 𝑔(𝜏), 𝜏 ′ + 𝑔(𝜏 ′)])
11 𝑓 𝑥 ← 𝑔 ⊕ ℎ
12 𝑓 𝑢𝑣 ← 𝑓 𝑢𝑣 ∪ 𝑓 𝑥
13 return 𝑓 𝑢𝑣

8.2 Preprocessing
In this section, we present our preprocessing algorithms. As discussed in the previous chapter,
the CCH preprocessing phase is performed only on the topology of the graph. We therefore
apply the algorithms described in Section 7.1 without modification.

The goal of the CCH customization is to compute the shortcut weights ℓ+. For our approach,
we have to compute the travel time bounds and time-dependent expansions for all edges in
the augmented graph. Recall that a shortcut 𝑢𝑣 ∈ E+ always bypasses triangles (𝑢,𝑤 𝑖 , 𝑣) for
different vertices𝑤 𝑖 , where𝑤 𝑖 has lower rank than 𝑢 and 𝑣 . For the bounds, we want to find
the minimum and maximum travel time of the fastest travel time function between 𝑢 and 𝑣

over any 𝑤 𝑖 . For the expansions, we need to determine for each point in time which lower
triangle is the fastest. Assuming we know the final travel time functions of all 𝑢𝑤 𝑖 and𝑤 𝑖𝑣 , we
can compute this using the LowerTriangleRelax algorithm (see Algorithm 8.1). This leads to
the following algorithm: Maintain a set of necessary travel time functions in memory, starting
with the functions from the input graph. Iterate over all edges in the augmented graph in a
bottom-up fashion. For each edge enumerate lower triangles. Link and merge their functions
to compute the function, bounds, and expansions of the current edge. Keep the current edge’s
travel time function in memory until it is no longer needed.

We implement this scheme as follows: In the respecting step, we initialize temporary travel
time functions and expansion information for all edges in the augmented graph. Then, we
process all edges 𝑢𝑣 ordered ascending by their lower-ranked endpoint. Since the middle vertex
𝑤 of a lower triangle (𝑢,𝑤, 𝑣) has always lower rank than 𝑢 and 𝑣 , the edges 𝑢𝑤 and 𝑤𝑣 will

Preprocessing Section 8.2

103

𝑢 𝑣

𝑤

𝑧

𝑦

+

(a) Linking 𝑢𝑦 and 𝑦𝑧 to compute 𝑢𝑧.

𝑢 𝑣

𝑤

𝑧

𝑦

+

(b) Linking 𝑢𝑧 and 𝑧𝑣 to compute a part of 𝑢𝑣 with inverted buffer roles.

𝑢 𝑣

𝑤

𝑧

𝑦

+

(c) Linking 𝑢𝑤 and𝑤𝑣 to compute the other part of 𝑢𝑣 .

𝑢 𝑣

𝑤

𝑧

𝑦

+

(d) Combining both parts of 𝑢𝑣 into one function which yields the final result.

Figure 8.3: Avoiding allocations when reconstructing shortcut travel time functions with two reusable
buffers.

have been processed already. To process an edge 𝑢𝑣 we enumerate lower triangles (𝑢,𝑤, 𝑣)
using the algorithms described in Section 7.2. Then, we execute the LowerTriangleRelax
function for each triangle in both directions. Once all edges 𝑢𝑣 have been processed where 𝑢 is
the lower-ranked endpoint, we drop the travel time functions of all edges 𝑤𝑢 where 𝑢 is the
higher-ranked endpoint. This is crucial to keep memory consumption reasonable. Algorithm 8.5
depicts this in pseudocode.

So far, we described a straightforward adaptation of CCH algorithms to the time-dependent
scenario. Making this approach practically efficient requires a few engineering tricks which we

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

104

Algorithm 8.5: Outline of the CATCHUp customization.
Input: Augmented graph 𝐺+, input graph 𝐺 with travel time functions ℓ .
Output: Expansion data X (𝑢𝑣) for all edges 𝑢𝑣 .

1 Function Respecting:
2 for 𝑢𝑣 ∈ E+ do
3 ℓ+(𝑢𝑣) ← ∞
4 X (𝑢𝑣) ← ∅
5 for 𝑢𝑣 ∈ E do
6 ℓ+(𝑢𝑣) ← ℓ (𝑢𝑣)
7 X (𝑢𝑣) ← {NewExpansion(𝑢𝑣, 𝐻) }

8 Function BasicCustomization:
9 for each vertex 𝑢 ∈ V ordered by ascending rank do

10 for each edge 𝑢𝑣 ∈ E↑ do
11 for each lower triangle (𝑢,𝑤, 𝑣) of 𝑢𝑣 do
12 RelaxLowerTriangle((𝑢,𝑤, 𝑣),X (𝑢𝑣), ℓ+(𝑢𝑣), ℓ+(𝑢𝑤), ℓ+(𝑤𝑣))
13 RelaxLowerTriangle((𝑣,𝑤,𝑢),X (𝑣𝑢), ℓ+(𝑣𝑢), ℓ+(𝑣𝑤), ℓ+(𝑤𝑢))
14 for 𝑢𝑤 ∈ E↓ do
15 Drop(ℓ+(𝑢𝑤))
16 Drop(ℓ+(𝑤𝑢))

describe in the following. A crucial ingredient to this are the scalar lower and upper bounds
which we additionally maintain with each edge 𝑢𝑣 ∈ E+.

8.2.1 Pruning

Triangle Sorting. When enumerating triangles, we order them ascending by b[𝑢𝑤] + b[𝑤𝑣].
This way, we process triangles first which are likely faster. This gives us preliminary bounds
on the travel time of 𝑢𝑣 . Before linking the time-dependent functions of a triangle ℓ+(𝑢𝑤) and
ℓ+(𝑤𝑣), we check if b[𝑢𝑣] ≤ b[𝑢𝑤] + b[𝑤𝑣]. If so, the linked path would be dominated by the
shortcut, and we can skip linking and merging completely. If not, we link ℓ+(𝑢𝑤) and ℓ+(𝑤𝑣)
and obtain the temporary function 𝑓 . We still can skip merging if one function is strictly smaller
than the other, i.e. either b[𝑢𝑣] ≤ min𝜏 (𝑓 (𝜏)) or max𝜏 (𝑓 (𝜏)) ≤ b[𝑢𝑣]. Even if the bounds
overlap, one function might still dominate the other. To check for this case, we simultaneously
sweep over the breakpoints of both functions, determining the value of the respectively other
function by linear interpolation. Only when this check fails, we perform the merge operation.

Precustomization. Before the time-dependent customization, we first use the classical CCH
basic and perfect customization algorithms on lower and upper bounds ℓ and ℓ obtained from

Preprocessing Section 8.2

105

the input functions ℓ . This yields preliminary scalar lower and upper bounds ℓ+ and ℓ
+ for all

edges in the augmented graph. With these bounds, we can skip additional linking and merging
operations. Note that the scalar bounds maintained during the time-dependent customization
b and b are typically tighter than ℓ+ and ℓ

+ because they are updated based on the temporary
time-dependent travel time functions ℓ+ used throughout the customization.

8.2.2 Perfect Customization

Recall that shortcut edges 𝑢𝑣 ∈ E+ allow skipping over paths of lower-ranked vertices and
that we denote the length of the shortest such path by dist≺ (𝑢, 𝑣) = ℓ+(𝑢𝑣). So far, we used
that the customization deals with the weight function ℓ+ for the augmented graph 𝐺+ with
ℓ+(𝑢𝑣) = dist≺ (𝑢, 𝑣). This is, of course, only the basic customization. Because the augmented
graph 𝐺+ is valid for all possible weight functions, it contains many unnecessary edges for any
concrete weight function. This is addressed by the perfect customization where the edges are
processed again such that every edge gets the distance between its endpoints. Here, we refer
to the weights after the perfect customization as ℓ∗(𝑢𝑣) = dist(𝑢, 𝑣). The authors of [DSW16]
proved that edges 𝑢𝑣 where ℓ+(𝑢𝑣) > ℓ∗(𝑢𝑣) are not necessary to answer queries correctly.
CATCHUp does not support a time-dependent perfect customization because we drop the

time-dependent functions ℓ+ as soon as possible and only maintain the expansions X . However,
a decent number of unnecessary edges can be identified by running the time-independent
perfect customization on ℓ

+ to obtain ℓ
∗. Each edge 𝑢𝑣 where dist(𝑢, 𝑣, 𝜏) ≤ ℓ

∗(𝑢𝑣) < ℓ+(𝑢𝑣) ≤
dist≺ (𝑢, 𝑣, 𝜏) can be removed. Therefore, before the time-dependent customization, we run the
perfect customization on ℓ

+ and compare the obtained weights ℓ∗ to ℓ+. We remove any edges
𝑢𝑣 where ℓ∗(𝑢𝑣) < ℓ+(𝑢𝑣). After, the time dependent customization, we do the same with the
refined shortcut bounds b and b.

8.2.3 Parallelization

We employ the separator based parallelization schema [BSW19] described in the previous
chapter; see Section 7.2.2. With this approach, however, edges in the top-level separators are
processed sequentially. Since these make up a significant share of the CATCHUp customization
work, we employ loop-based parallelization [DSW16] inside the top-level separators and process
the edges of each CH level independently in parallel.

8.2.4 Approximation

As we process increasingly higher-ranked edges, the associated travel time functions become
increasingly complex, i.e. contain large numbers of breakpoints. This leads to two problems.
First, linking and merging becomes very time-consuming as running times scale with the
complexity of the functions. Second, storing these functions – even though it is only temporary
– requires a lot of memory. We employ approximation to mitigate these issues. However, for

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

106

exact queries, we need exact unpacking information. We achieve this by lazily reconstructing
parts of exact travel time functions during merging.
When approximating, we do not store one approximated function but two – a lower bound

function ℓ+lb and an upper bound function ℓ
+
ub withmaximumdifference 𝜖 where 𝜖 is a configurable

parameter. These approximations replace the exact functions ℓ+ stored for later merge operations
andwill also be droppedwhen no longer needed. To obtain the bound functions, we first compute
an approximation using the algorithm of Douglas and Peucker [DP73]1. Then, we add or subtract
𝜖 to the value of each breakpoint to obtain an upper or lower bound, respectively. This bounds
are valid, but they may not be as tight as possible. Therefore, we iterate over all approximated
points and move each point back towards the original function. Both adjacent segments in the
approximated functions have a minimum absolute error to the original function. We move the
breakpoint by the smaller of the two errors. This yields sufficiently good bounds.

When linking approximated functions, we link both lower and both upper bound functions.
Linking two lower bounds yields a valid lower bound of the linked exact functions because of
the FIFO property. The same argument holds for upper bounds.
Merging approximated functions is more involved. Our goal is to determine the exact

expansions for each edge. We use the approximated bounds to narrow down the time ranges
when intersections are possible. For this, we merge the first function’s lower bound with the
second function’s upper bound and vice versa. Where the bounds overlap, an intersection might
occur. Then, we obtain the exact functions in the overlapping times using Algorithm 8.4 and
merge them exactly. To obtain approximated upper and lower bounds of the merged function,
we merge both lower bounds and both upper bounds (see Figure 8.4 for a visualization).

We approximate whenever a function has more than 𝛽 breakpoints after merging. This
includes already approximated functions. Both 𝛽 and the maximum difference 𝜖 are tuning
parameters which influence the performance (but not the correctness). We evaluate different
choices in Section 8.4.1.

8.3 Queries

8.3.1 Earliest ArrivalQueries

Our query algorithm is based on the CCH elimination tree query algorithm [DSW16]. Recall
that, for an time-dependent shortest path query, we are given a source vertex 𝑠 , a target 𝑡 and a

1Previous works [BGSV13, BDPW16] have reported using the algorithm of Imai and Iri [II87] for approximation.
Given a maximum error bound 𝜖 , this algorithm can compute in linear time the piecewise linear function with the
minimum number of breakpoints within the given bound. The Douglas-Peucker algorithm has a quadratic worst
case running time and no such guarantees on the number of breakpoints in the approximation. However, the
theoretic guarantees of the Imai-Iri algorithm come at the cost of considerable implementation complexity and
high constant runtime factors. Preliminary experiments showed that, compared to Imai-Iri, our Douglas-Peucker
implementation actually produces insignificantly more breakpoints and also runs faster due to better constants.
In addition, the implementation needs 30 instead of 400 lines of code, so we use the Douglas-Peucker variant.

Queries Section 8.3

107

Entry time

Tr
av

el
 ti

m
e

Figure 8.4:Merging approximated travel time functions by reconstructing the exact functions where
bounds overlap.

departure time 𝜏dep from 𝑠 . The goal is to obtain the earliest arrival at 𝑡 and the respective path.
Compared to a classical CCH query, our algorithm has to deal with two challenges. First, we
cannot simply perform a backwards search, as we do not know the arrival time at the target
vertex. Second, to evaluate the travel time of a shortcut, we need to obtain the path in the
original graph which is an expensive operation. To address the first challenge, the query is
split in two steps. In the first step, we obtain a subgraph on which we can run a forward-only
Dijkstra-like search in the second step. We now present the basic query algorithm and later
introduce optimizations to address the second challenge.
In the first step, the union of the subgraphs reachable from 𝑠 in 𝐺↑ and 𝑡 in←−𝐺 ↓ is obtained.

We construct these subgraphs by traversing the elimination tree starting from both 𝑠 and 𝑡 to
the root and marking all encountered edges as part of the search space. The backward search
from 𝑡 maintains parent pointers to represent the subgraph: For each encountered edge 𝑢𝑣
(where 𝑣 has the higher rank), we store the edge ID and the tail 𝑢 at 𝑣 . This allows efficiently
traversing these downward edges in the forward-only Dijkstra in the second step. In the second
step, we run Dijkstra’s algorithm on the combined search spaces. Shortcut travel times are
evaluated with Algorithm 8.2.
By CH construction, the search space contains the shortest path. Thus Dijkstra’s algorithm

will find it and our algorithm will determine the optimal arrival at 𝑡 . However, the search space
is bigger than necessary. This slows down the query. In the next paragraph, we discuss how to
construct smaller subgraphs using an elimination tree interval query.

Elimination Tree IntervalQuery

The elimination tree interval query is a bidirectional search starting from both the source vertex
𝑠 and the target vertex 𝑡 . It constructs a smaller subgraph for the second step. We denote this

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

108

subgraph as a shortest path corridor. Vertex labels contain an upper D[𝑣] and a lower bound
D[𝑣] on the travel time to/from the search origin and a parent pointer to the previous vertex
and the respective edge id. The bounds D[𝑠], D[𝑡], D[𝑠], D[𝑡] are all initialized to zero in their
respective direction, all other bounds to infinity. We also track tentative travel time bounds for
the total travel time from 𝑠 to 𝑡 . For both directions, the path from the start vertex to the root of
the elimination tree is traversed. For each vertex 𝑢, all edges 𝑢𝑣 to higher-ranked neighbors
are relaxed, that is checking if D[𝑢] + b[𝑢𝑣] < D[𝑣] or D[𝑢] + b[𝑢𝑣] < D[𝑣] and improving the
bounds of 𝑣 if possible. When the new travel time bounds from an edge relaxation overlap with
the current bounds, more than one label has to be stored. As an optimization [BSW19], vertices
can be skipped if the lower bound on the travel time to it is already greater than the tentative
upper bound on the total travel time between 𝑠 and 𝑡 . After both directions are finished, we
have several vertices in the intersection of the search spaces. Where the sum of the forward
and backward distance bounds of such a vertex overlaps with the total travel time bounds, the
parent pointers are traversed to the search origin and all edges on the paths are marked as part
of the shortest path corridor.

Lazy Shortcut Unpacking

In the second query step, we perform Dijkstra’s algorithm on the corridor obtained in the
first step. In the basic query, shortcuts are unpacked completely to evaluate their travel time.
However, this may cause unnecessary and duplicate unpacking work. We now describe an
optimized version of the algorithm which performs unpacking lazily. The algorithm starts with
the same initialization as a regular TD-Dijkstra. All earliest arrivals are set to infinity, except for
the start vertex which is set to the departure time. The start vertex is inserted into the queue.
Then, vertices are popped from the queue until it is empty or the target vertex is reached. For
each vertex, all outgoing edges within the shortest path corridor are relaxed. When an edge is
from the input graph, its travel time function can be evaluated directly. Shortcut edges, however,
need to be unpacked. The lazy unpacking algorithm defers as much work as possible: Only the
first edge of the triangle of each shortcut will be recursively unpacked until an input edge is
reached, the second edge will be added to the corridor. Figure 8.5 shows an example. This way,
we unpack only the necessary parts and avoid relaxing edges multiple times when shortcuts
share the same paths.

Corridor A*

The query can be accelerated further, by using the lower bounds obtained during the elimination
tree interval query as potentials for an A*-search. For vertices in the CH search space of 𝑡 , the
lower bounds from the backward search can be used. For vertices in the CH search space of 𝑠 ,
we start at the meeting vertices from the corridor search and propagate the bounds backwards
down along the parent pointers. This yields potentials for all vertices in the initial corridor.
However, we also need potentials for vertices added to the corridor through unpacking. These

Queries Section 8.3

109

𝑢

𝑣

𝑤

𝑦

1. Lazy unpack/relax
2. Add to corridor
3. Lazy unpack/relax
4. Add to corridor
5. Relax

Figure 8.5: Lazy relaxation of edge 𝑢𝑣 . Since 𝑢𝑣 is a shortcut, it needs to be unpacked. This causes𝑤𝑣 to
be added to the corridor and 𝑢𝑤 to be relaxed. Relaxing 𝑢𝑤 causes 𝑦𝑤 to be added to the corridor and
𝑢𝑦 to be relaxed. In this example, 𝑢𝑦 is an original edge and the recursion stops. 𝑦𝑤 will be relaxed (or
unpacked) only once 𝑦 is popped from the queue.

potentials are computed during the shortcut unpacking. When unpacking a shortcut 𝑢𝑣 into
the edges 𝑢𝑤 and𝑤𝑣 , then 𝜋𝑡 (𝑤) will be set to min(𝜋𝑡 (𝑤), 𝜋𝑡 (𝑣) + b[𝑤𝑣]).
Justifying that A* with these potentials will always find the correct earliest arrival is sur-

prisingly non-trivial. In fact, these potentials are not feasible in the sense that ∀𝜏 ∈ 𝑇,𝑢𝑣 ∈ E :
ℓ (𝑢𝑣, 𝜏) − 𝜋𝑡 (𝑢) + 𝜋𝑡 (𝑣) ≥ 0. Figure 8.6 shows an example where the term becomes negative
and the same vertex has to be popped several times from the queue. Assume that all edges
have a constant travel time for the departure time of this query and lower bounds are equal to
the travel time. The exception is 𝑣3𝑡 which has constant travel time 100 during this query but
the lower bound is zero. We use zero weights to simplify the example. They are not strictly
necessary for such an example. The shortest path from 𝑠 to 𝑡 is (𝑠,𝑤2,𝑤1, 𝑣2, 𝑡) and has length
22. After 𝑠 is settled, the queue will contain 𝑣3 with key 1 + 0 (distance plus lower bound to
𝑡), 𝑣1 with key 1 + 2 and 𝑤2 with key 1 + 21. Then, 𝑣3 will be settled which will insert 𝑡 with
key 101 + 0 into the queue. Then, 𝑣1 will be settled and𝑤1 will be inserted into the queue with
key 3 + 0. Then, 𝑤1 will be settled even though the current distance of 3 is greater than the
actual shortest distance of 2. This will insert 𝑣2 with key 13 + 10 into the queue. Now,𝑤2 will
be popped and the distance to𝑤1 will be improved and it will be reinserted into the queue with
key 2 + 20. 𝑤1 will be popped immediately afterwards which improves the distance and key of
𝑣2 which is the next vertex to be popped from the queue. After it has been processed, the final
distance to 𝑡 (22) is known, and 𝑡 is the final vertex to be settled.

Nevertheless, we claim that once 𝑡 is popped from the queue the algorithm always has found
the correct earliest arrival. The reason is the following lemma.

Lemma 8.1. For all vertices 𝑣 ∈ V on the shortest path dist(𝑠, 𝑣, 𝜏dep) + 𝜋𝑡 (𝑣) ≤ dist(𝑠, 𝑣, 𝜏dep)
holds, i.e. the potential fulfills the lower bound property.

Proof. Let 𝑃 = (𝑠, . . . , 𝑡) be the desired shortest path from 𝑠 to 𝑡 when departing from 𝑠 at
𝜏dep. For vertices in the initial corridor obtained by the interval query, dist(𝑠, 𝑣, 𝜏dep) + 𝜋𝑡 (𝑣) ≤
dist(𝑠, 𝑡, 𝜏dep) always holds because the potential 𝜋𝑡 (𝑣) is set to the global lower bound dist(𝑣, 𝑡).
However, vertices 𝑢 added later to the corridor through unpacking may have a greater potential

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

110

Rank
𝑠

𝑣1

𝑣2

𝑣3

𝑡

𝑤1

𝑤2

1
2

1

12

1

12
2

2

10

b = 0
100

1

10
0

Figure 8.6: Example of a query where our A* potentials lead to a non-label-setting query. Dashed edges
are shortcuts. The shortcut weights are not known to the query algorithm.

than dist(𝑢, 𝑡) as depicted in the example. However, their final potential cannot be greater
than the lower bound of the travel time on the shortest path ℓ (𝑃𝑢,𝑡). This is enough to satisfy
dist(𝑠,𝑢, 𝜏dep) + 𝜋𝑡 (𝑢) ≤ dist(𝑠, 𝑡, 𝜏dep). In addition, the potential value will be set to this final
value before 𝑡 is settled. Assume for contradiction that 𝑝𝑖 is the first vertex on 𝑃 for which
this statement does not hold. Clearly, 𝑝𝑖 cannot be a vertex from the initial corridor. However,
𝜋𝑡 (𝑝𝑖) will be set at most to ℓ (𝑃𝑝𝑖 ,𝑡) once 𝑝𝑖−1 is settled which by assumption happens before 𝑡 is
settled. This is a contradiction. Thus, dist(𝑠, 𝑣, 𝜏dep) +𝜋𝑡 (𝑣) ≤ dist(𝑠, 𝑡, 𝜏dep) holds for all vertices
𝑣 ∈ 𝑃 and the query algorithm always finds the correct earliest arrival when terminating once 𝑡
is popped from the queue. □

8.3.2 ProfileQueries

A profile query asks for the function of the fastest travel time between two vertices over a
given time period 𝑇 . Here, we assume that the 𝑇 equals the entire horizon 𝐻 covered by the
input network. As discussed in Chapter 5, such a query can be answered with a variation
of Dijkstra’s algorithm. However, this algorithm exhibits both prohibitive running time and
memory consumption. Consider a path (𝑣0, . . . , 𝑣𝑘) where the travel time function of each
edge has 𝑝 breakpoints. In general, linking two functions 𝑓 and 𝑔 creates a new function with
Θ(|𝑓 | + |𝑔|) breakpoints. Thus, the travel time function from 𝑣0 to vertex 𝑣𝑖 contains Θ(𝑖 · 𝑝)
breakpoints. Therefore, when computing the function between 𝑣0 and 𝑣𝑘 , the total memory
consumption and the running time is in Θ(∑𝑘

𝑖=1 𝑝𝑖) = Θ(𝑝𝑘2), i.e. grows quadratically with the
length of the path. We conclude that Dijkstra-based approaches to profile queries are not a
promising direction. The experiments with Dijkstra-based TCH profile queries in [BGSV13]

Queries Section 8.3

111

support this conclusion. We also performed preliminary experiments with a proof-of-concept
implementation where we adapted our earliest arrival query algorithm to the profile query
setting. The Dijkstra-based approach was more than an order of magnitude slower than the
approach described in the following. Instead of a Dijkstra-like search, we employ balanced
contraction using the methods from the preprocessing. With balanced contraction, the running
time to compute the travel time profile of the path example is in Θ(𝑝 · 𝑘 log𝑘).

Our profile algorithm has four steps. The first step uses the elimination tree interval query to
obtain a shortest path corridor. It is the same as for earliest arrival queries. In the second step,
we obtain travel time functions for all edges in the shortest path corridor. During the third step,
additional shortcuts will be inserted and their unpacking data will be computed, reusing the
preprocessing algorithms. The result is a new 𝑠𝑡 shortcut with exact expansions X (𝑠𝑡). From
this unpacking information, the exact travel time function can be obtained in the fourth step.
We now describe steps 2–4 in detail.

Reconstruction. In this step, we obtain travel time functions for all edges in the shortest
path corridor. Similar to the customization, the obtained travel time functions may be either
exact, or approximated upper and lower bound functions. This keeps the memory consumption
low and linking and merging operations fast. We obtain these functions by first recursively
reconstructing the travel time functions of all edges referenced by expansions. The reconstructed
functions will be saved for both edges in the corridor and unpacked edges, in case another
reconstruction operation might reuse an edge. If all edges referenced by the expansions have
an exact function available, we can compute an exact travel time function for the current edge.
If not, we end up with an approximation. After reconstruction, we check if a function has
more than 𝛽 breakpoints. If that is the case, we approximate it to reduce the complexity (see
Section 8.2).

Contraction. In the third step, we insert additional shortcuts and compute their unpacking
data by simulating the contraction of the vertices in the shortest path corridor. We reuse the
existing nested dissection order. The ranks of 𝑠 and 𝑡 are increased such that they are higher in
the hierarchy than all other vertices. This construction leads to a shortcut between 𝑠 and 𝑡 , one
between 𝑠 and each vertex in the corridor on the path from 𝑠 to the elimination tree root, and
one from each vertex in the corridor on the path from 𝑡 to the root to 𝑡 . Some of these shortcuts
may already exist See Figure 8.7 for an illustration.

These new shortcuts are now processed as in Algorithm 8.5 to compute their unpacking data.
We initialize the shortcut bounds with the bounds obtained from the elimination tree query. This
allows to prune unnecessary operations. We process shortcuts ordered by their lower-ranked
endpoint. For each shortcut we enumerate and relax lower triangles using Algorithm 8.1. We
can enumerate these triangles efficiently using the parent pointer from the interval query. Each
shortcut has an endpoint vertex in the corridor. The parent pointers of this vertex correspond to
the triangles that need to be relaxed. The shortcuts from 𝑠 and the shortcuts to 𝑡 are independent

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

112

𝑠 𝑡

rank

Figure 8.7: Example of profile query search space with inserted shortcuts. Gray vertices and edges are
not in the shortest path corridor. Dashed edges are new shortcuts.

of each other and can be processed in parallel. The lower triangles of the 𝑠𝑡 shortcut can be
enumerated by iterating over the meeting vertices from the interval query. We also employ the
triangle sorting optimization.

Extraction. In this final step, we can use the unpacking information of the 𝑠𝑡 shortcut to
efficiently compute the final result. The shortcut already contains a possibly approximated
travel time function from the contraction step. This may suffice for some applications. If the
shortcut contains only an approximation, but we need an exact travel time profile, we can
use Algorithm 8.4 to compute it. For some practical applications, the different shortest paths
over the day may be more useful than the travel time profile. Algorithm 8.6 depicts a routine
to compute path switches and the associated shortest paths. The algorithm follows the same
scheme as all unpacking algorithms. The operation is recursively applied to all expansions
limited to the validity time of the expansion. Only the Combine operation is more involved. It
performs a coordinated linear sweep over the path sets from 𝑢𝑤 and𝑤𝑣 and appends the paths
where the validity intervals overlap. For the paths from𝑤 to 𝑣 , we only know the validity times
with respect to departure at 𝑤 . To obtain the corresponding departure time at 𝑢, we reverse
evaluate the current 𝑢𝑤 path, i.e., we successively evaluate the inverted arrival time function of
all edges on the path in reverse order.

8.4 Evaluation

In this section, we present our experimental results. We first discuss the experimental setup and
the input road networks. Then, we discuss the performance of each of our presented algorithms
in turn. Finally, we compare our approach to related work.

Evaluation Section 8.4

113

Algorithm 8.6: Reconstructing the represented path set by a shortcut.
Input: Expansions X (𝑢𝑣) for edge 𝑢𝑣 , time interval 𝑇 .
Output: Set P of unpacked paths 𝑃 with associated validity times 𝑉 𝑃 .

1 Function UnpackPaths:
2 P ← ∅
3 for 𝑥 ∈ X (𝑢𝑣) do
4 [𝜏, 𝜏 ′] ← 𝑇 ∩𝑉 (𝑥)
5 if exp(𝑥) = 𝑢𝑣 ∈ E then
6 P𝑥 ← {((𝑢, 𝑣), [𝜏, 𝜏 ′])}
7 else
8 𝑤 ← exp(𝑥)
9 P𝑢𝑤 ← UnpackPaths(𝑢𝑤, [𝜏, 𝜏 ′])

10 P𝑤𝑣 ← UnpackPaths(𝑤𝑣, [𝜏 + ℓ (P𝑢𝑤, 𝜏), 𝜏 ′ + ℓ (P𝑢𝑤, 𝜏
′)])

11 P𝑥 ← Combine(P𝑤𝑣,P𝑢𝑤)
12 P ← P ∪ P𝑥

13 return P

Environment. Our benchmark machine runs openSUSE Leap 15.2 (kernel 5.3.18), and has
192GiB of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which has eight
cores clocked at 3.5 GHz and 8 × 64KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3
cache. Hyperthreading was disabled and parallel experiments use 16 threads. We implement our
algorithms in Rust2 and compile themwith rustc 1.49.0-nightly (cf9cf7c92 2020-11-10) in
the release profile with the target-cpu=native option3. To compile competing implementations
written in C++, we use GCC 9.3.1 using optimization level 3 and the -march=native option.

Methodology. We investigated the performance of our preprocessing and query algorithms
and compared it to competing algorithms. Our experiments were focused on but not limited
to space consumption and running times. We performed preprocessing five times for each
input network and report arithmetic means of the running times. Unless reported otherwise,
preprocessing utilized all 16 cores. For queries, we generated 100 000 source, target, departure
time triples chosen uniformly at random for each graph. Thesewere executed in bulk. Competing
algorithms were evaluated with the same query set. For profile queries, we only used 1000
queries (and discarded the departure time). We report arithmetic means of query running times
and machine independent measures such as number of vertices popped from the queue and
number of evaluated travel time functions.

2The code for this paper and all experiments is available at https://github.com/kit-algo/catchup.
3We disable AVX512 instructions, as they caused misoptimizations.

https://github.com/kit-algo/catchup

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

114

Table 8.1: Preprocessing statistics. Running times are for parallel execution with 16 cores.

CCH edges Expansions per edge Data Running time [s]
[·103] Avg. Max. = 1 [%] [GB] Prepr. Custom.

Ber 1 977 1.039 31 98.6 0.09 1.5 6.2
Ger06 22 519 1.075 44 98.4 1.06 30.1 21.6
Ger17 31 488 1.090 107 98.5 1.50 35.0 107.4
Eur17 114 857 1.099 115 98.4 5.47 189.6 557.0
Ger19 75 800 1.668 369 96.1 4.30 135.7 11 581.1
Eur20 128 921 1.191 109 96.9 6.32 209.6 1 039.5

Inputs. We perform experiments on all instances listed in Section 4.2.2. However, for the
main evaluation of this chapter, we limit our discussion to a subset: The city scale Ber instance
and the Ger06 instance for comparability to related work, the Ger17, Eur17, Eur20 instances
by PTV as examples of modern networks with increasingly complex but well-behaved traffic
predictions, and the OSM/Mapbox-based Ger19 instance which is even harder as it is based
more on raw speed observations rather than modelled traffic predictions. Further, we use only
one weekday per instance. Results for the full instance set are reported in Appendix C.

8.4.1 Preprocessing

Table 8.1 reports the results for preprocessing. On Ger06, the preprocessing takes longer than
the customization. However, for the newer instances with more time-dependent edges and more
breakpoints per function this changes and the customization becomes more expensive. Despite
that, the amount of auxiliary data corresponds only to the number of edges in the augmented
graph and does not grow as much for the newer instances. The high complexity of the input
function on Ber also does not depict any negative influence on the data amount or the number
of expansions per shortcut. On average, only up to 1.2 expansions per edge need to be stored
for all graphs expect Ger19 where the average goes to a little under 1.7. About 96% or more
of all edges have only a single expansion. The maximum number of expansions per edge is
only 115 on the PTV instances and 369 for Ger19. We determined the travel time functions
of the specific shortcuts with these numbers of expansions and observed that the number of
breakpoints in their travel time functions is still two orders of magnitude larger. On Eur20, the
total preprocessing time is about 20 minutes, roughly twice as much as for Eur17. However, the
space consumption grows by less than 1GB and is in fact smaller than the input graph. On Ger19,
the preprocessing time is around three and a half hours but the space consumption remains
small. This clearly demonstrates the advantage in space efficiency of expansion information
over explicitly storing travel time functions.

Evaluation Section 8.4

115

1 2 4 8 16
Threads

0

2000

4000

6000

8000

10000

12000

14000

16000

R
un

ni
ng

 ti
m

e
[s

]

1 2 4 8 16
Threads

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Figure 8.8: Average customization running times and parallelization efficiency (speedup/number of
threads) on five customization runs of Eur20. The black bars (barely visible) indicate the standard
deviation. The dashed line indicates running time with all parallelization code disabled.

Customization

We now focus on the customization. The first part of the preprocessing did not use any time-
dependent information and only reused existing algorithms which have been evaluated in the
previous chapter. For the scope of this subsection, we only use the Eur20 graph.
To evaluate their impact, we selectively disable the triangle sorting and precustomization

optimizations. Even though both optimizations speed up the customization by improving
bounds, both have a significant impact on their own. Disabling the precustomization increases
the overall customization running time by about five minutes to 1311 s. The effect of triangle
sorting is even stronger. Disabling it roughly doubles customization running time to 2156 s.

Parallelization. We evaluate the effectiveness of our parallelization scheme and run the
customization with a varying number of threads. Figure 8.8 depicts the results. As a baseline, we
run the experiment with all parallelization code disabled. The baseline running time is indicated
by the dashed line. Enabling parallelization but running with only one thread causes only little
overhead. Running with more threads introduces more overhead due to synchronization. With
16 threads, parallel efficiency is still around 0.9. We conclude that our parallelization scheme
scales well and that customization times could be reduced further by utilizing additional cores.

Approximation. We perform customization experiments with different approximation pa-
rameters. Over the course of the customization, we track the progress over time, the memory
consumption and the average travel time function complexity. Figure 8.9 displays these measure-
ments. We use the number of processed triangles to measure the progress because it corresponds
roughly linearly to the time passed (though different parameters lead to different slopes).

C
hapter

8
Space-Eff

icient,Fast
and

Exact
R
outing

in
Tim

e-D
ependent

R
oad

N
etw

orks

116

0

1000

2000

3000

4000

5000

6000

Ti
m

e
[s

]

 = 0.1s = 0.5s = 1.0s = 5.0s = 10.0s

0

1

2

3

4

5

6

7

IP
Ps

 s
to

re
d

in
 m

em
or

y

1e9

0 2 4 6
Triangles Processed 1e8

0

1000

2000

3000

4000

5000

6000

M
ea

n
TT

F
co

m
pl

ex
ity

0 2 4 6
Triangles Processed 1e8

0 2 4 6
Triangles Processed 1e8

0 2 4 6
Triangles Processed 1e8

0 2 4 6
Triangles Processed 1e8

Threshold
100
500
1000
5000
10000

Figure 8.9: Customization behavior depending on the approximation parameters difference 𝜖 (varying by column) and threshold 𝛽

(indicated by color). The x-axis in all plots indicates the progress of the customization by number of processed triangles. The y-axis is the
passed time in the first row, the memory usage in the second row (measure by the total number of stored breakpoints), and the mean
travel time function complexity in the third row. There are many more elements which contribute to memory consumption. However, the
breakpoints for travel time functions are the biggest chunk and are the easiest to measure. A breakpoint has a size of 16 bytes in memory.
Thus, 8 · 109 breakpoints correspond to 128GB memory consumption for travel time functions alone. The configuration 𝛽 = 10000, 𝜖 = 0.1 𝑠
caused an out-of-memory error and is not listed.

Evaluation Section 8.4

117

After about 60% of the triangles, the slope, i.e. the time per triangle changes slightly. At
this point only high-level separator vertices/edges remain. These have complex travel time
functions so linking and merging becomes more expensive. Also, we switch from task based to
loop based parallelization which is less effective. Measuring progress by processed vertices (the
for loop in Line 1 in Algorithm 8.5) or processed edges (for loop in Line 2) is also insightful.
However, for these, the correspondence is not linear. The last couple of thousand vertices and
the last million edges take almost half the total time.

We observe that the choice of approximation parameters has a huge influence on running time
and memory consumption. The best running time of around 1000 s is achieved with 𝛽 = 1000
and 𝜖 = 1.0 𝑠 . Thus, we use it as our default configuration. The worst running time is over six
times higher. In the best configuration, we use only around 25GB for travel time functions
while a bad parameter choice or no approximation leads to crashes with out-of-memory errors.
Generally, a larger 𝜖 leads to looser approximation, lower travel time function complexity,
and thus less memory consumption. Conversely, a larger 𝛽 causes the approximation to be
executed less often and the memory consumption and function complexity increases. The
average function complexity is usually well below 𝛽 except for very small values of 𝜖 or 𝛽 . In
that case the complexity cannot be reduced sufficiently to keep the complexity below 𝛽 . If 𝛽 is
large, approximation is performed seldom and the influence of 𝜖 becomes smaller. Similarly,
when 𝜖 is small, the influence of 𝛽 is limited because the complexity cannot be reduced enough
no matter how often approximation is performed. Clearly, the right choice of approximation
parameters is essential to the performance of the preprocessing. When travel time functions are
too complex, too much memory is used, and linking and merging are very expensive. However,
when functions are approximated too loosely, a lot of time is spent in the reconstruction of
exact functions for the times when bounds overlap. Thus, extreme parameter choices for 𝜖 and
𝛽 are detrimental to the running time, even though they may reduce memory consumption.
Through all configurations, the memory usage peaks after around 60% of the triangles have

been processed. The reason is the way we maintain travel time functions in memory during
the customization. An edge’s travel time function is stored once its lower-ranked endpoint
has been processed until its higher-ranked endpoint has been processed. In the beginning, we
process vertices with low rank and store many travel time functions. Only once we reach the
higher-ranked vertices, we start dropping a significant amount of the stored functions. This
causes the observed peak.

8.4.2 Queries

In this section, we investigate the performance of our query algorithms. Table 8.2 depicts the
influence of the query optimizations. The basic approach does not achieve competitive running
times. Queries take almost a second on average on the newer Europe graphs. On Ger19, the
basic approach is even slower than Dijkstra’s algorithm. Clearly, naively evaluating shortcut
travel times with Algorithm 8.2 is too slow. Limiting the search space to a shortest path corridor
using the elimination tree interval query significantly reduces running times. The speedup

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

118

Table 8.2: Query performance with different optimizations. We report the number of vertices popped
from the queue, the number of evaluated travel time functions (TTFs) and the running time. All values
are arithmetic means over 100 000 queries executed in bulk with source, target and departure time drawn
uniformly at random.

Queue Evaluated Running
pops TTFs time [ms]

Ber Basic 167.4 100 820.5 8.8
+ Corridor 38.1 5 224.1 0.6
+ Lazy 1 603.6 1 747.4 0.6
+ A* 635.2 691.5 0.3

Ger06 Basic 492.3 818 721.3 46.4
+ Corridor 79.7 31 740.8 2.3
+ Lazy 3 323.2 3 838.0 1.7
+ A* 831.0 995.1 0.6

Ger17 Basic 510.3 2 100 731.8 169.7
+ Corridor 143.4 164 372.5 13.7
+ Lazy 18 450.0 19 910.5 9.1
+ A* 3 099.2 3 495.5 1.7

Eur17 Basic 861.6 9 951 623.1 808.6
+ Corridor 229.3 806 727.8 62.3
+ Lazy 39 714.8 43 581.1 20.8
+ A* 6 876.5 7 911.0 4.1

Ger19 Basic 894.2 40 675 596.0 4 329.0
+ Corridor 618.1 11 563 911.1 1 166.1
+ Lazy 193 779.2 220 416.1 151.2
+ A* 23 218.1 29 816.5 16.5

Eur20 Basic 871.0 10 527 072.7 813.2
+ Corridor 335.6 1 222 655.6 92.9
+ Lazy 62 677.7 70 145.4 33.7
+ A* 7 231.9 8 844.7 4.7

is between a factor of 20 on Ger06 and 4 and Ger19. The effectiveness of this optimization
corresponds inversely to the relative delay (see Table 4.2). Greater relative delays lead to bigger
corridors and thus smaller speedups.
The lazy evaluation optimization has a smaller but still significant impact on the running

time (speedups between 1.3 and 8). Further, it drastically shifts the balance between queue

Evaluation Section 8.4

119

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dijkstra Rank

10
1

10
0

10
1

10
2

10
3

R
un

ni
ng

 T
im

e
[m

s]

Basic
+ Corridor
+ Lazy
+ A*

Figure 8.10: Query running times in milliseconds with different optimizations by Dijkstra ranks on
Eur20. The boxes cover the range between the first and the third quartile. The band in the box indicates
the median. The whiskers indicate 1.5 times the inter quartile range. Running times outside this range
are considered as outliers and displayed separately.

operations and travel time function evaluations. On the newer graphs, the number of queue
pops increases by more than two orders of magnitude, while the number of travel time function
evaluations decreases by up to a factor of 50. The additional queue operations introduce some
overhead. However, this is mitigated by the avoided unnecessary and duplicate evaluations.
Reusing the lower bounds from the corridor search for goal directed search yields an additional
speedup of factor two to nine. On all instances, running times with all optimizations are fast
enough for interactive applications.

LocalQueries

We generate another set of queries to investigate the performance of our algorithms depending
on the distance of source and target. We draw 10 000 start vertices and departure times uniformly
at random and perform time-dependent Dijkstra without a specific target. For every 2𝑖 th settled
vertex, we store it as the target of a query of Dijkstra rank 𝑖 . This methodology was introduced
by [SS05]. Figure 8.10 shows query running times by rank for the query algorithm with the
various query optimizations enabled successively.

Obviously, query running times scale with the distance. The fully optimized algorithm takes
only fractions of milliseconds for short range queries, except for some outliers which take up
to a millisecond. For long range queries, we usually achieve query times within a couple of
milliseconds and the maximum query time was 39ms. The basic query algorithm is around two
orders of magnitude slower across all ranks. The impact of lazy optimization appears to depend
on the rank of the query. For lower ranks, it introduces some overhead but reduces outliers
compared to only the corridor optimization. This is due to the overhead of the queue operations.
For long range queries, this is completely amortized by the reduction in edge relaxations.

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

120

Table 8.3: Running times of profile queries and characteristics of the obtained profiles. We report total
running times and running times of each step (Corridor, Reconstruction, Contraction, Extraction) of the
query. The total running time is slightly larger than the sum of all steps as it includes some additional
initialization and cleanup work. We report the number of breakpoints in the obtained travel time profile
(Column |ℓ |). Column |X | contains the number of times the shortest path changes during the day. Since
the same path may be the fastest for several times, we also report the number of distinct paths in the
last column. All values are arithmetic means over 1000 queries executed in bulk with source and target
vertices drawn uniformly at random.

Running time [ms]
I II III IV Total |ℓ | |X | Distinct

TTF Paths paths

Ber 0.1 37.8 13.9 2.8 0.4 55.6 30 974.9 2.7 2.3
Ger06 0.4 56.5 23.0 0.7 0.8 83.6 9 359.6 6.9 3.3
Ger17 0.8 452.2 189.0 6.1 2.4 660.1 66 146.0 9.7 3.7
Eur17 1.7 1 135.8 732.9 13.0 7.8 1 913.2 122 192.1 16.5 6.8
Ger19 2.3 34 345.4 230 643.8 79.3 51.8 265 453.7 525 196.4 91.4 34.3
Eur20 2.8 3 166.6 1 507.7 12.3 10.3 4 747.5 107 690.7 24.4 11.6

ProfileQueries

We perform experiments for profile queries and report the results in Table 8.3. The total running
time depends on the amount of time-dependent information in the instance. From Ger06 to
Ger17 the total running time increase by a factor of 8 even though the network grows only
little. The same can be observed between Eur17 and Eur20.
The total running time is dominated by the reconstruction and contraction steps. On the

PTV instances, reconstruction of the travel time functions of the existing shortcuts takes
roughly twice as long as computing the functions for the new shortcuts in the contraction
step. In contrast, on Ger19, the contraction takes almost an order of magnitude longer than the
reconstruction. The corridor step with the elimination tree interval query takes a negligible
amount of time. Surprisingly, the time required to compute a final exact travel time profile is
not much greater than to compute a path profile (on Ger06, the path profile is even slower than
the travel time profile).

The average complexity of the final travel time function varies by orders of magnitude across
the different instances. This confirms that Ger06 is a relatively simple instance. Surprisingly,
the average complexity on Eur17 is higher than on Eur20. We suspect that this is caused by
the higher average complexity in the input graph and that many important edges that cover
many shortest paths already have a non-constant travel time function in Eur17. The number
of path switches is magnitudes smaller. It ranges from three path switches on Ber to 91 on

Evaluation Section 8.4

121

Ger19. The number of distinct paths during the day are roughly between a third and half of
that. The arithmetic mean of these numbers is slightly skewed upwards by a few very high
values. However, the median is still fairly close: For example, the median number of distinct
paths is two on Ger06 and ten on Eur20.

Total running times of our algorithm are practical but not interactive on all instances except
Ger19. Computing full day profiles for long-range queries on Ger19 takes minutes and slower
queries even take up to half an hour. Still, even being able to compute profiles for long-range
queries on this instance is something that is likely not possible with any other technique.

8.4.3 Comparison with Related Work

In the following, we provide an overview over different techniques, their preprocessing and
query times, space overhead and average query errors where approximation is used. Where
possible, we obtained the code of competing algorithms4 and evaluated them with same method-
ology, instances and queries as our algorithms. For other competitors, we report available
numbers from the respective publications.
Table 8.4 depicts the results for the Ger06 instance used in many older works. KaTCH, heu

SHARC, CFLAT and CATCHUp all achieve query times around 0.6ms. The original research
implementation TCH reports slightly slower times than KaTCH. This may be because experi-
ments were run on an older machine, but also because according to the KaTCH documentation,
the newer query is somewhat more efficient. TCH pays for this speed with 4.7 GB of auxiliary
data. Reducing the KaTCH memory consumption while keeping exactness (ATCH) brings query
times up to 1.24ms. ATCH also feature a configuration where they only keep upper and lower
bounds for each travel time function (ATCH∞). This configuration uses even less memory than
CATCHUp because the optimized order results in fewer shortcuts. However, query running
times degrade to 1.66ms. Giving up on exactness allows keeping the query times at 0.7ms (inex.
TCH) but introduces noticeable errors.

While achieving competitive query times for acceptable memory consumption, heu SHARC
suffers from preprocessing times of several hours. The publication does not report average
query errors, only a maximum error of 0.61%. TD-CALT has small memory consumption but no
competitive query times, even when approximating. Further, the exact variant is outperformed
by CH-Potentials in all dimensions. CH-Potentials has the smallest memory consumption, but
queries are relatively slow. FLAT and CFLAT both suffer from extreme preprocessing times and
memory consumption despite having no exact queries. CATCHUp offers competitive query times
for exact results while keeping memory consumption reasonable. TD-CRP offers even lower
memory consumption. However, this is only possible through the use of approximation. TD-
CRP queries depict a noticeable error and perform somewhat worse than KaTCH or CATCHUp
queries. TD-S+9 depicts the smallest average error of all non-exact approaches5.
4KaTCH: https://github.com/GVeitBatz/KaTCH
TD-S: https://github.com/ben-strasser/td_p

5[Kon+17] reported another CFLAT configuration with even smaller errors but significantly slower queries.

https://github.com/GVeitBatz/KaTCH
https://github.com/ben-strasser/td_p

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

122

Table 8.4: Comparison with related work on Ger06. We list unscaled numbers as reported in the
respective publications for algorithms we could not run ourselves. Values not reported are indicated as
n/r. A similar overview with scaled numbers can be found in [BDPW16].

Preprocessing Query
Time Cores Data Time Rel. error

[s] [GB] [ms] Avg. [%] Max. [%]

TD-Dijkstra – – – 719.26 – –
TDCALT [DN12] 540 1 0.23 5.36 – –
TDCALT-K1.15 [DN12] 540 1 0.23 1.87 0.050 13.840
eco L-SHARC [Del11] 4 680 1 1.03 6.31 – –
heu SHARC [Del11] 12 360 1 0.64 0.69 n/r 0.610
KaTCH 169 16 4.66 0.64 – –
TCH [BGSV13] 378 8 4.66 0.75 – –
ATCH (1.0) [BGSV13] 378 8 1.12 1.24 – –
ATCH (∞) [BGSV13] 378 8 0.55 1.66 – –
inex. TCH (0.1) [BGSV13] 378 8 1.34 0.70 0.020 0.100
inex. TCH (1.0) [BGSV13] 378 8 1.00 0.69 0.270 1.010
TD-CRP (0.1) [BDPW16] 289 16 0.78 1.92 0.050 0.250
TD-CRP (1.0) [BDPW16] 281 16 0.36 1.66 0.680 2.850
FLAT [Kon+17] 158 760 6 54.63 1.27 0.015 n/r
CFLAT [Kon+17] 104 220 6 34.63 0.58 0.008 0.918
TD-S+9 542 1 3.61 2.07 0.001 1.523
CH-Potentials 57 1 0.21 4.36 – –
CATCHUp 52 16 1.06 0.72 – –

Path retrieval in the time-dependent scenario is not as easy as in the static setting. Table 8.4
reports running times for the earliest arrival query and the path retrieval combined. We only
have separate numbers for KaTCH and CATCHUp. For CFLAT, [Kon+17] reported that path
retrieval takes a third of the total query time. Our experiments show a similar amount for
KaTCH. For CATCHUp, path retrieval takes up less than 10% of the query time. TD-CRP and
FLAT do not support path retrieval.
In Table 8.5, we report results for the newer instances for all algorithms were we could an

implementation and perform experiments. Compared to the Ger06 instance, the Ger17 network
provides a significantly harder challenge, despite being only slightly larger. This is because
the amount of and the complexity of the time-dependent travel times (compare Table 4.2).
KaTCH query times increase by a factor of about two. However, memory usage grows by
almost an order of magnitude. For TD-S, both the growth in space consumption and query

Evaluation Section 8.4

123

Table 8.5: Comparison with related work on newer instances for algorithms were we could obtain
source code and run them ourselves. OOM means that the program crashed while trying to allocate
more memory than available.

Preprocessing Query
Time Cores Data Time Rel. error

[s] [GB] [ms] Avg. [%] Max. [%]

Ge
r1
7

TD-Dijkstra – – – 814.60 – –
KaTCH 859 16 42.81 1.26 – –
TD-S+9 601 1 5.28 2.61 0.001 0.963

CH-Potentials 64 1 0.30 16.14 – –
CATCHUp 142 16 1.50 2.02 – –

Eu
r1
7

TD-Dijkstra – – – 2 929.72 – –
KaTCH 3 066 16 146.97 OOM – –
TD-S+9 3 149 1 18.84 4.70 0.002 1.159

CH-Potentials 340 1 1.08 81.09 – –
CATCHUp 747 16 5.47 4.92 – –

Ge
r1
9

TD-Dijkstra – – – 2 564.18 – –
KaTCH > 24 h 16 > 314.00 – – –
TD-S+9 2 538 1 11.83 4.27 0.027 4.953

CH-Potentials 291 1 0.68 128.61 – –
CATCHUp 11 717 16 4.30 16.48 – –

Eu
r2
0

TD-Dijkstra – – – 3 784.11 – –
KaTCH 7 149 16 239.78 OOM – –
TD-S+9 3 352 1 20.65 4.23 0.006 1.733

CH-Potentials 365 1 1.19 104.47 – –
CATCHUp 1 249 16 6.32 5.60 – –

times corresponds roughly to the growth of the graph size, but not to the increased number of
breakpoints. CH-Potentials preprocessing and space consumption is affected only slightly but
query times quadruple. The space consumption of CATCHUp grows by a similar factor. Query
times get about 2.7 times slower.
On Eur17, the memory consumption of KaTCH becomes prohibitive. While KaTCH is still

able to finish preprocessing and generade 150GB of data, queries crash since the 192GB RAM
of our machine are not enough. Using ATCH or inexact TCH, the memory consumption could
likely be reduced sufficiently to perform queries. However, this would either introduce errors
or slow down queries significantly. With only 5.5 GB of auxiliary data, CATCHUp is still able to

Chapter 8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

124

perform exact queries in less than 5ms on average. This is fast enough to enable interactive
applications. Total preprocessing for CATCHUp takes less than a quarter of the time KaTCH
needs. TD-S+9 is also able to handle this instance with similar query times but only with a
small average error. CH-Potentials features the fastest preprocessing and the smallest space
consumption but query times start to become problematic.

The Ger19 instance is the hardest instance in terms of amount of time-dependent information
and function complexity. Preprocessing times and space consumption of TD-S and CH-Potentials
are robust against this because these techniques completely avoid time-dependency in the
preprocessing. However, this is only possible at the cost of slow queries (CH-Potentials) or
inexact results (TD-S). On this instance, TD-S errors also become more noticeable. KaTCH is
not able to even finish its preprocessing in reasonable time on this instance: We terminated the
preprocessing after a day. At this point, 314GB of data had already been written to the disk.
Thus, performing queries would be infeasible even if the preprocessing finished. CATCHUp is
robust enough to handle this instance and achieve interactive running times for exact queries.
The space consumption also remains low. The auxiliary data needs only a third of disk space
as the input graph. Nevertheless, preprocessing takes a little more than three hours which is
relatively slow compared to the times on other instances. These results clearly demonstrate the
robustness of CATCHUp even on very hard instances.

On Eur20, the behavior is similar to Eur17, only more extreme. Despite the amount of time-
dependent information in the instance, the functions are far more well-behaved than on Ger19.
KaTCH preprocessing time takes about two hours and the space overhead is around 240GB.
The TD-S+9 numbers remain relatively stable compared to Eur17. Query times get slightly
faster but errors become larger. CH-Potentials has fast preprocessing and and requires little
space but has slow queries. Compared to Eur17, CATCHUp preprocessing times become slower
but by less than a factor of two. Query times increase to 5.6ms. The space overhead is only
6.3 GB, which is smaller than the input network.

8.5 Conclusion
We introduce CATCHUp, a speedup technique for routing in time-dependent road networks.
It features a small space overhead and fast, exact queries. To the best of our knowledge, our
approach is the first to simultaneously achieve all three objectives. We perform an extensive
experimental study to evaluate the performance of CATCHUp and compare it to competing
approaches. Our approach achieves fast preprocessing, interactive query running times and
uses up to 38 times less space than other algorithms with competitive query performance. This
demonstrates the advantage of storing expansion information instead of travel time functions.

Revisiting ATCH, TCH, and TD-CRP with the insights gained in this work could be fruitful.
Combining ATCH with our A* query extension could reduce ATCH query running times.
CATCHUp makes use of travel time independent vertex orders. Combining CATCHUp with
TCH-like vertex orders could result in further reduced space consumption and faster query
running times.

125

9 Combining Predicted and Live Traffic
with Time-Dependent A* Potentials

In this chapter, we turn to the combination of predicted and real-time traffic, i.e. we aim to
efficiently and exactly solve the three-phase combined traffic shortest path problem. CH-
Potentials, introduced in Chapter 6, can be applied in this model. However, the achieved
speedups are too small for interactive query running times. The CCH framework, discussed in
Chapter 7, has very fast queries but cannot deal with time-dependent travel times. CATCHUp,
introduced in Chapter 8, achieves fast queries in a time-dependent setting and even has a
customization algorithm, as its CCH-based. However, the CATCHUp customization is too
slow to apply it frequently in an update phase. Further, this would only allow updates to the
predictions instead of a combination of both traffic types.

Therefore, approaching the combined traffic model is only possible with a careful combination
of these approaches. In the CH-Potentials chapter, we showed how A* allows us to decouple
the problem to be solved from the speedup technique used for acceleration. The only problem
with this approach is that its performance is limited by the tightness of the preprocessing
lower bound used for the heuristic. In this chapter, we extend and improve this approach for
time-dependent routing by introducing time-dependent A* potentials. These allow us to obtain
tighter potentials and thus faster queries in time-dependent problems and variations thereof
such as the combined traffic problem.

Attribution. This chapter is based on joint work with Nils Werner. The results have been pub-
lished at ESA 2022 [WZ22]. Nils Werner developed a preliminary version of time-dependent A*
potentials throughout his Master’s thesis and applied them in a different context, i.e. cooperative
route planning.

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

126

𝜏now 𝜏end(𝑒)
𝜏

ℓcomb(𝑒, 𝜏)

ℓpred(𝑒)

ℓlive(𝑒)

ℓpred(𝑒, 𝜏end(𝑒))
+𝜏end(𝑒) − 𝜏

Figure 9.1: Combined travel time function ℓcomb (𝑒, 𝜏) = max(ℓpred (𝑒, 𝜏),min(ℓlive (𝑒), ℓpred (𝑒, 𝜏end (𝑒)) +
𝜏end (𝑒) − 𝜏)) with both predicted and live traffic information. The predicted traffic ℓpred (𝑒) is indicated
in black. The live travel time ℓlive (𝑒) with expected end 𝜏end (𝑒) is depicted in red. The switch back to
the predicted function is colored in blue. The solid line indicates the combined function ℓcomb (𝑒) for the
current day. For later days, only ℓpred will be used. Dotted lines only serve the purpose of visualization.

Contribution. We introduce a time-dependent generalization of A* potentials and present two
Lazy RPHAST extensions that realize a time-dependent potential function. Further, we show
how to apply them to queries in a setting that combines live and predicted traffic. An extensive
evaluation confirms the effectiveness of our potentials. Queries incorporating both predicted
and current traffic can be answered within few tens of milliseconds. Live traffic updates can be
integrated within a fraction of a minute. Our time-dependent potentials are up to an order of
magnitude faster than CH-Potentials and about two orders of magnitude faster than Dijkstra’s
algorithm. To the best of our knowledge, this makes our approach the first to achieve interactive
query performance while allowing fast updates in this setting.

Outline. This chapter is organized as follows. First, in Section 9.1, we reconsider the problem
model and present a slightly refined version of it. Section 9.2 introduces time-dependent
A* potentials and investigates theoretic properties necessary for correctness. Then, two Lazy
RPHAST-based practically efficient realizations are presented in Section 9.3. A thorough practical
evaluation is given in Section 9.4.

9.1 Model Refinement

We consider a variation of the three-phase combined traffic shortest path problem. As before,
traffic predictions are FIFO PPLFs with an horizon 𝐻 of one day. The difference compared
to the model as we defined it in Section 3.3 is the way we defined the combined travel time
functions. We assume that traffic predictions are conservative estimates and that live traffic
will only be slower than the predicted traffic due to accidents and other traffic incidents, i.e.
ℓpred(𝑒, 𝜏now) ≤ ℓlive(𝑒). Therefore, we define the combined travel time function ℓcomb(𝑒, 𝜏) =

Time-Dependent A* Potentials Section 9.2

127

max(ℓpred(𝑒, 𝜏),min(ℓlive(𝑒), ℓpred(𝑒, 𝜏end(𝑒))+𝜏end(𝑒)−𝜏)). It follows that ℓpred(𝑒, 𝜏) ≤ ℓcomb(𝑒, 𝜏).
Figure 9.1 depicts an example of such a combined travel time function.
The modelling assumption that predicted traffic is a lower bound of real-time traffic is, of

course, a severe restriction from a theoretical perspective. However, we argue that, from a
practical perspective, it is only a minor limitation. Live traffic should account for unexpected
traffic events which will almost exclusively only make trafficworse. If the live traffic is frequently
better than the predicted traffic, the predictions should be adjusted. Thus, the assumption will
hold for most of the time on realistic data. Further, the reason to solve routing problems to
exactness is not that the computed travel times will perfectly match reality. Traffic data is always
only an approximation of reality. Thus, a less flexible model which can be solved efficiently
and exactly may sometimes be more practical than a more flexible one that can only be solved
heuristically or inefficiently.

9.2 Time-Dependent A* Potentials

We now propose a time-dependent generalization 𝜋𝑡 : V → (𝑇 → 𝑇 ≥0) of A* potentials, i.e.
estimates are a function of the time. This allows us to obtain tighter estimates and enables faster
queries. Analogue to classical potentials, there are properties of time-dependent potentials to
consider for the correctness of A*:

• Strong First-In First-Out: 𝜋𝑡 (𝑣, 𝜏) < 𝜋𝑡 (𝑣, 𝜏 + Y) + Y for 𝑣 ∈ V , 𝜏 > dist(𝑠, 𝑣, 𝜏dep) and
Y > 0. This ensures that queue keys increase monotonically with the distance from 𝑠 .
This property has no time-independent equivalent because it holds trivially in this case.

• Feasibility: ℓ (𝑢𝑣, 𝜏) + 𝜋𝑡 (𝑣, 𝜏 + ℓ (𝑢𝑣, 𝜏)) − 𝜋𝑡 (𝑢, 𝜏) ≥ 0 for all edges 𝑢𝑣 ∈ E and times
𝜏 > dist(𝑠,𝑢, 𝜏dep). A* can be analyzed as an equivalent run of Dijkstra’s algorithm
with a modified weight function derived from the input weights and the potentials.
With feasibility, these modified weights are non-negative, which implies correctness and
polynomial running time. When 𝜋𝑡 (𝑡, 𝜏) = 0, feasibility also implies the lower bound
property. However, feasibility is not strictly necessary to guarantee correctness.

• Lower bound: 𝜋𝑡 (𝑣, 𝜏) ≤ dist(𝑣, 𝑡, 𝜏) for every vertex 𝑣 ∈ V and time 𝜏 = dist(𝑠, 𝑣, 𝜏dep).
This ensures that the search has found the correct distance once the target vertex is settled.
This is also sufficient for correctness. However, without feasibility, A* may settle vertices
multiple times. In theory, this can lead to an exponential running time.

In the following, we formally justify these properties and provide correctness proofs for A*
with time-dependent potentials adhering to them. Here, it is often more practical to use arrival
time functions ℓ̂ instead of travel time functions ℓ . With arrival time functions, we can represent
path lengths simply as the composition of the arrival time functions of the individual edges. We
use (𝑓 ◦ 𝑔) (𝜏) = 𝑓 (𝑔(𝜏)) to denote the function composition.

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

128

Similarly to the time-independent case, we can define a modified weight function ℓ𝜋𝑡 such
that running A* on the graph𝐺 with weights ℓ with a time-dependent potential 𝜋𝑡 is equivalent
to running Dijkstra’s algorithm on 𝐺 with modified weights ℓ𝜋𝑡 . Consider a vertex 𝑢 with
an arrival time of 𝜏 . In A*, its queue key is 𝜏 ′ = 𝜋𝑡 (𝑢, 𝜏) + 𝜏 = �̂�𝑡 (𝑢, 𝜏). For the equivalent
run of Dijkstra’s algorithm, we want the distances to equal these queue keys. Therefore, the
reduced weight function of edge 𝑢𝑣 must compose the original function with the potential at
the head vertex 𝑣 , i.e. �̂�𝑡 (𝑣, ℓ̂ (𝑢𝑣, 𝜏)) = (�̂�𝑡 (𝑣) ◦ ℓ̂ (𝑢𝑣)) (𝜏). However, the input of ℓ is a time
𝜏 , not the A* queue key 𝜏 ′ = �̂�𝑡 (𝑢, 𝜏). To first go back from 𝜏 ′ to 𝜏 , we also need to compose
this with the inverted potential function �̂�𝑡 (𝑢)−1. Thus, the modified weight ℓ̂𝜋𝑡 are defined as
ℓ̂𝜋𝑡 (𝑢𝑣, 𝜏 ′) = �̂�𝑡 (𝑣, ℓ̂ (𝑢𝑣, �̂�𝑡 (𝑢)−1(𝜏 ′))) = (�̂�𝑡 (𝑣) ◦ ℓ̂ (𝑢𝑣) ◦ �̂�𝑡 (𝑢)−1) (𝜏 ′).
For �̂�𝑡 (𝑢)−1 to be well-defined, we need 𝜏1 ≠ 𝜏2 =⇒ �̂�𝑡 (𝜏1) ≠ �̂�𝑡 (𝜏2). Therefore, for

potentials, we require the strong First-In First-Out property:

𝜋𝑡 (𝑣, 𝜏) < 𝜋𝑡 (𝑣, 𝜏 + Y) + Y, 𝑣 ∈ V, Y > 0

Note that potentials that only adhere to the regular FIFO property might also work in practice.
However, in this case, the modified weights for a theoretically equivalent run of Dijkstra’s
algorithm are not well-defined anymore. This breaks the following correctness argument.
Nevertheless, a more sophisticated analysis could probably work around this problem.
Shortest paths for the modified weights ℓ𝜋𝑡 are the same as with the original weights ℓ .

Consider a path 𝑃 = (𝑠, 𝑣1, . . . , 𝑣𝑘 , 𝑡). By definition, the arrival time function of a path is

ℓ̂𝜋𝑡 (𝑃) = �̂�𝑡 (𝑡) ◦ ℓ̂ (𝑣𝑘𝑡) ◦ �̂�𝑡 (𝑣𝑘)−1 ◦ �̂�𝑡 (𝑣𝑘) ◦ · · · ◦ �̂�𝑡 (𝑣1)−1 ◦ �̂�𝑡 (𝑣1) ◦ ℓ̂ (𝑠𝑣1) ◦ �̂�𝑡 (𝑠)−1

Note that all the inner potential evaluations cancel out. Besides the initial and final potential
evaluations, only the composition of the original weights remains. Now consider the modified
weights of two different 𝑠𝑡 paths. With a fixed departure, the initial inverted potential at 𝑠 is
the same for both paths. Thus, the original weights determine which path is shorter. The final
potential evaluation at 𝑡 cannot change the relative order due to the FIFO property. Therefore,
shortest paths for ℓ𝜋𝑡 are the same as for ℓ .

We can infer that if thesemodifiedweights do not have any negative travel times, then Dijkstra
and thus A* will obtain correct results. This leads to the feasibility property for time-dependent
potentials:

ℓ̂𝜋𝑡 (𝑢𝑣, 𝜏 ′) = �̂�𝑡 (𝑣, ℓ̂ (𝑢𝑣, �̂�𝑡 (𝑢)−1(𝜏 ′))) ≥ 𝜏 ′

To simplify correctness proofs for potentials, we reformulate this to a simpler equivalent
property:

�̂�𝑡 (𝑣, ℓ̂ (𝑢𝑣, 𝜏)) ≥ �̂�𝑡 (𝑢, 𝜏)
𝜋𝑡 (𝑣, ℓ (𝑢𝑣, 𝜏) + 𝜏) + ℓ (𝑢𝑣, 𝜏) + 𝜏 ≥ 𝜋𝑡 (𝑢, 𝜏) + 𝜏

𝜋𝑡 (𝑣, ℓ (𝑢𝑣, 𝜏) + 𝜏) + ℓ (𝑢𝑣, 𝜏) − 𝜋𝑡 (𝑢, 𝜏) ≥ 0

Lazy RPHAST-based Time-Dependent Potentials Section 9.3

129

This formulation also shows that the time-dependent feasibility is a generalization of the classical
feasibility property ℓ (𝑢𝑣) + 𝜋𝑡 (𝑣) − 𝜋𝑡 (𝑢) ≥ 0.

The third property is the lower bound property:

𝜋𝑡 (𝑣, 𝜏) ≤ dist(𝑣, 𝑡, 𝜏)

With a potential fulfilling this property, A* is guaranteed to have found the shortest path once
the target vertex is settled, even if the potential is not feasible. This is because every vertex
on the shortest path must have a queue key less or equal to the target when discovered with
optimal distance. Suppose for contradiction the target vertex would be settled with distance 𝑑
which is greater than the shortest distance. But because of the lower bound property, every
vertex on the shortest path will have a queue key smaller than 𝑑 as soon as it was discovered
with its shortest distance. By induction, this must happen for all vertices on the shortest path.
Thus, also the shortest path to 𝑡 must have been found. This contradicts our assumption.

Even with negative travel times due to infeasible potentials, negative cycles are not possible.
Consider a cycle 𝐶 starting and ending at vertex 𝑣 . The length of the cycle with the modified
weights is ℓ𝜋𝑡 (𝐶, 𝜏 ′) = �̂�𝑡 (𝑣, ℓ̂ (𝐶, �̂�𝑡 (𝑢)−1(𝜏 ′))) because all inner potential functions cancel out.
As �̂�𝑡 (𝑣) has to adhere to the FIFO property, the length of 𝐶 cannot be negative. We conclude
that the distance at 𝑡 is final as soon as 𝑡 is settled. Thus, A* with lower bound potentials will
obtain correct results. However, the running time may be exponential in the graph size.
Crucially, to guarantee correctness, potentials need not adhere to these properties for all

points in time 𝜏 . Assume we are running A* to answer a query from 𝑠 to 𝑡 with departure
𝜏dep. Clearly, A* will never invoke the potential 𝜋𝑡 (𝑣, 𝜏) of a vertex 𝑣 with 𝜏 < dist(𝑠, 𝑣, 𝜏dep).
Therefore, it is sufficient to guarantee the strong FIFO property at vertex 𝑣 and the feasibility
property for edge 𝑣𝑤 for 𝜏 ≥ dist(𝑠, 𝑣, 𝜏dep). For the lower bound property it even suffices to
guarantee it only at exactly 𝜏 = dist(𝑠, 𝑣, 𝜏dep). When a vertex is discovered with a suboptimal
distance, the queue key may be arbitrarily larger but never smaller because of the FIFO property.
Therefore, the inductive argument still applies. All vertices on the shortest path will be traversed
before the target is settled. Our practical potentials heavily rely on this and only compute data
for the specific times necessary to answer a query correctly.

9.3 Lazy RPHAST-based Time-Dependent Potentials
In the following, we present two practical realizations of time-dependent A* potentials. Both are
extensions of Lazy RPHAST. Lazy RPHAST/CH-Potentials is already a very efficient potential
and obtains exact distances for scalar lower bound weights, i.e. the tightest possible estimates
with a time-independent potential definition. To outperform CH-Potentials, on the one hand,
we have to obtain significantly tighter estimates. On the other hand, we also must avoid the
potential evaluation becoming too expensive. Therefore, we avoid costly operations on functions
and work with scalar values as much as possible. As a result, even though our potentials are
time-dependent, computed estimates during a single query usually will not change depending
on the visit time of a vertex.

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

130

9.3.1 Multi-Metric Potentials

Let (𝑠, 𝑡, 𝜏dep) be a query and 𝜏max an upper bound on the optimal arrival time at the target.
Consider any 𝜏 ′ ≤ 𝜏dep, 𝜏max ≤ 𝜏 ′′ and the weight function 𝑙 [𝜏 ′, 𝜏 ′′] (𝑒) := min𝜏 ′≤𝜏≤𝜏 ′′ ℓpred(𝑒, 𝜏).
Clearly, dist𝑙 [𝜏 ′,𝜏 ′′] (𝑣, 𝑡) provides lower bound estimates of distances to the target vertex during
the time relevant for this query. If 𝜏 ′ and 𝜏 ′′ are close to 𝜏dep and 𝜏max and, if the difference
between 𝜏 ′ and 𝜏 ′′ is not too big, the estimates will be significantly tighter than global lower
bound distances. The Multi-Metric Potentials (MMP) approach is based on this observation.
Instead of using a single potential based on a global lower bound valid for the entire time, we
process multiple lower bound weight functions for different time intervals. At query time,
we then select an appropriate weight function. The upper bound 𝜏max is computed with a
time-independent CCH query on a scalar upper bound function ℓ

+
comb computed during the

update phase. Efficiently computing distances with respect to the selected weight function is
done with Lazy RPHAST. Therefore, no time-dependent computations need to be performed to
evaluate this potential function. MMP only depend on the departure time of the query but not of
the potential evaluation time. Still, MMP will be significantly tighter than any time-independent
potential can be.

Phase Details. The first step of the preprocessing for this potential is to perform the regular
CCH preprocessing, i.e. compute an importance ordering and construct the unweighted aug-
mented graph. Now let I be a set of time intervals. In our implementation, we cover the time
between 6:00 and 22:00 with intervals of a length of one, two, four, and eight hours, starting
every 30 minutes, and one interval covering the entire day. We do not maintain any additional
intervals between 22:00 and 6:00 as most edge weights correspond to their respective free-flow
travel time during this period. Thus, the lower bound weights would be equal to the full-day
lower bounds. During preprocessing, for each interval [𝜏 ′𝑖 , 𝜏 ′′𝑖] ∈ I , we extract lower bound
functions 𝑙 [𝜏 ′𝑖 , 𝜏 ′′𝑖] and run the CCH customization algorithm to obtain 𝑙 [𝜏 ′𝑖 , 𝜏 ′′𝑖]+. This can
be parallelized trivially. Also, the customization can be parallelized internally. For further
engineering details, we refer to Chapter 7.

During the update phase, we compute an additional lower bound weight function starting at
𝜏now with duration _ derived from the combined weights ℓcomb and run the basic customization
for it. We use _ = 59minutes to reasonably cover the live traffic but keep the live interval
shorter than any other interval. Further, we extract an upper bound weight function ℓcomb
which is valid for the entire day for both the predicted and the live traffic, and perform the CCH
basic customization to obtain ℓ

+
comb.

The query starts with a classical CCH query on the customized upper bound ℓ+comb to obtain a
pessimistic estimate of 𝜏max. We then select the smallest interval [𝜏 ′𝑖 , 𝜏 ′′𝑖] such that [𝜏dep, 𝜏max] ⊆
[𝜏 ′𝑖 , 𝜏 ′′𝑖]. Running Lazy RPHAST on 𝐺+ with the customized weight function 𝑙 [𝜏 ′𝑖 , 𝜏 ′′𝑖]+ yields
the desired potential function.

Lazy RPHAST-based Time-Dependent Potentials Section 9.3

131

Correctness. For any given single query, the estimates obtained byMMP are time-independent.
They return the exact shortest distances with respect to a lower bound weight function valid
for the query. Constant potentials trivially adhere to the strong FIFO property. Also, as shown
in Chapter 6, shortest distances for a lower bound are feasible potentials.

9.3.2 Interval-Minimum Potentials

Interval-Minimum Potentials (IMP) is a time-dependent adaptation of the Lazy RPHAST algo-
rithm. While Lazy RPHAST has a single scalar weight for each edge, the Interval-Minimum
Potential uses a time-dependent function. This allows for tighter estimates but introduces new
challenges. First, we need an augmented graph with sufficiently accurate time-dependent lower
bounds. We utilize the existing CATCHUp customization from the previous chapter because
it is based on CCH. Second, storing the shortcut travel time functions ℓ+ may consume a lot
of memory. Further, the representation as a list of breakpoints makes the evaluation more
expensive than looking up a scalar weight. Therefore, we resort to a different representation
and store functions as piecewise constant values in buckets of equal duration. Third, evaluating
these functions requires a time argument. While 𝜋𝑡 (𝑣, 𝜏) includes the time argument 𝜏 for the
time at 𝑣 , Lazy RPHAST also needs a time for every recursive invocation. Therefore, we apply
Lazy RPHAST a second time on global upper and lower bound weight functions ℓ+comb and ℓ+pred
to quickly obtain arrival intervals for arbitrary vertices. We then use these intervals to evaluate
the edge weights and obtain tight time-dependent lower bounds.

Phase Details. The first preprocessing step is the CCH preprocessing. For the second step, we
need to obtain time-dependent travel times for the augmented graph𝐺+ based on the predicted
traffic weights ℓpred. For this, we utilize the CATCHUp customization as described in Section 8.2.
Recall that the CATCHUp customization maintains for each edge in 𝑢𝑣 ∈ E+ approximated time-

dependent lower bound functions ℓ+lb(𝑢𝑣) (see Section 8.2.4). Before we drop these functions in
the CATCHUp customization, we extract from them piecewise constant lower bound functions
ℓ+pclb(𝑢𝑣, 𝜏) := min

{
ℓ+lb(𝑢𝑣, 𝜏

′) | 𝛾 ⌊ 𝜏
𝛾
⌋ ≤ 𝜏 ′ < 𝛾 (⌊ 𝜏

𝛾
⌋ + 1)

}
where 𝛾 is the length of each constant

segment. This enables a compact representation. Functions can be represented with a fixed
number of values per edge. We use 96 buckets of length 𝛾 = 15minutes. Additionally, we store
the scalar shortcut bounds b maintained throughout the CATCHUp customization as ℓ+pred.

In the update phase, we extract a combined traffic upper bound weight function ℓcomb for the
entire day and run the CCH customization to obtain ℓ

+
comb.

The query consists of two instantiations of the Lazy RPHAST algorithm. The first one
uses the scalar bounds ℓ+pred and ℓ

+
comb and computes an interval of possible arrival times at

arbitrary vertices when departing from 𝑠 at 𝜏dep. Since arrival intervals are distances from
the source vertex, we have to apply Lazy RPHAST in reverse direction. This means we first
run Dijkstra’s algorithm from 𝑠 on 𝐺↑, and then, we apply the recursive distance-memoizing
DFS on 𝐺↓ for any vertex for which we want to obtain an arrival interval. We denote this

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

132

instance as Arrival Interval Lazy RPAHST (AILR). With these arrival intervals, we can now
compute lower bounds to the target with the second Lazy RPHAST instantiation, which uses
the time-dependent lower bounds ℓ+pclb. The first step is to run Dijkstra’s algorithm from 𝑡

on 𝐺↓. To relax an edge 𝑢𝑣 ∈ ←−E ↓, we first need to obtain an arrival interval [𝜏min, 𝜏max] at
𝑣 using AILR. This allows us to determine for 𝑣𝑢 at the relevant time a tight lower bound
𝑑 := min𝜏∈[𝜏min,𝜏max] ℓ

+
pclb(𝑣𝑢, 𝜏). Then, we check if we can improve the lower bound from 𝑣 to

𝑡 , i.e. D↓ [𝑣] ← min(D↓ [𝑣], D↓ [𝑢] + 𝑑). Having established preliminary backward distances for
all vertices in the CH search space of 𝑡 , we can now compute estimates with the recursive
distance-memoizing DFS. To obtain a distance estimate for vertex𝑢, we first recursively compute
distance estimates D[𝑣] for all upward neighbors 𝑣 where 𝑢𝑣 ∈ E↑. Then, we use AILR to obtain
an arrival interval [𝜏min, 𝜏max] at 𝑢. Finally, after initializing D[𝑢] ← D↓ [𝑢], we relax all upward
edges 𝑢𝑣 and set D[𝑢] ← min(D[𝑢], D[𝑣] + min𝜏∈[𝜏min,𝜏max] ℓ

+
pclb(𝑢𝑣, 𝜏)). This yields the final

estimate for 𝑢.
Choosing a good memory layout for the bucket weights is crucial for the performance. We

store all edge weights of each bucket consecutively. Typically, only a few buckets per edge
are relevant because the arrival intervals are relatively small. Also, all outgoing edges of each
vertex are evaluated consecutively. Thus, having their weights for the same bucket close to
each other increases cache hits.

Correctness. Estimates obtained by IMP are lower bounds of the actual time-dependent
shortest distances. This directly follows from the correctness of the CATCHUp preprocessing
and the Lazy RPHAST algorithm. Also, they do satisfy the strong FIFO property because,
for any given single query, the estimates are constant. However, they are not feasible due to
the piecewise constant approximation schema. We could not observe any practical negative
consequences of this, though.

9.3.3 Optimizations

Perfect Customization. So far, we have described our potentials in terms of the CCH aug-
mented graph𝐺+ which is valid for any length function. However, as described in Section 8.2.2,
this graph contains many unnecessary edges. We can identify and remove some of these by
utilizing the perfect customization on appropriate upper bounds.
During the update phase, we also run the perfect customization for the upper bound and

obtain ℓ
∗
comb. This allows us to remove unnecessary edges and accelerate the query phase. We

remove edges 𝑢𝑣 where dist≺comb(𝑢, 𝑣) ≥ ℓ+(𝑢𝑣) > ℓ
∗
comb(𝑢𝑣) ≥ distcomb(𝑢, 𝑣). This condition is

the same for both MMP and IMP. For MMP, we could remove even more edges if we were to
check the condition for every lower bound weight function individually. However, in this case,
we could not reuse the same reduced augmented graph topology for all weight functions. As this
would roughly double memory consumption, we only remove edges that can be removed for all
weight functions. We parallelize the reduced graph constructions as described in Section 7.2.2.

Lazy RPHAST-based Time-Dependent Potentials Section 9.3

133

Metric Switching. The tightness of MMP can be improved further by switching to weight
functions for smaller intervals as the query progresses. When initializing the potential, we
select, beside [𝜏 ′𝑖 , 𝜏 ′′𝑖] ⊇ [𝜏dep, 𝜏max], additional intervals [𝜏 ′𝑗 , 𝜏 ′′𝑗] ⊂ [𝜏 ′𝑖 , 𝜏 ′′𝑖] with 𝜏 ′′𝑗 ≥ 𝜏max.
When evaluating the potential of a vertex at instant 𝜏 , we use the weight function with the
shortest associated interval that still includes 𝜏 . However, running Lazy RPHAST separately
for each of these weight functions would be too expensive. Therefore, we modify the DFS
part of Lazy RPHAST to track, besides the distances D[𝑢], also the weight function W[𝑢] which
was used. Then, an already memoized distance D[𝑣] for vertex 𝑣 can be reused if the interval
associated with W[𝑣] is a superset of the best interval for 𝜏 . We pass the 𝜏 parameter unmodified
to recursive invocations. Thus, we maintain the invariant that if D[𝑣] is final and valid for 𝜏 ,
also all vertices in the CH search space of 𝑣 will have a valid lower bound for an interval that
includes 𝜏 . Therefore, we will only underestimate lower bounds. The lower bound property is
preserved. The strong FIFO property is preserved, too. Potential functions are now piecewise
constant with only increasing jumps. However, this breaks the feasibility property. We could
not observe any practical negative consequences of this, though.

For IMP, we employ a similar approach. We use the potential evaluation time argument 𝜏 to
tighten the arrival intervals and reduce the number of buckets to look up. When evaluating
the potential of a vertex 𝑣 at instant 𝜏 , we still obtain the arrival interval [𝜏min, 𝜏max] using the
AILR. Typically, 𝜏 will be greater than 𝜏min. Therefore, we can avoid looking up unnecessary
bucket entries by only evaluating [max(𝜏min, 𝜏), 𝜏max]. We track the respective bucket of 𝜏 in
B[𝑣]. When the potential is evaluated again with a possibly smaller 𝜏 , we check if the respective
bucket is smaller than B[𝑣] to determine if the memoized distance can be reused. If not, we
reevaluate outgoing edges with the additional buckets and update B[𝑣] accordingly. We pass
the 𝜏 parameter unmodified to recursive invocations.

9.3.4 Compression

Both of our time-dependent potentials use many weight functions. This can lead to problematic
memory consumption. However, since we only need lower bounds, we can merge weight
functions. Consider two MMP intervals with weight functions 𝑙1 and 𝑙2. A combined function
𝑙1∪2(𝑢𝑣) = min(𝑙1(𝑢𝑣), 𝑙2(𝑢𝑣)) is valid for both intervals, albeit less tight. We can merge IMP
buckets analogously. Thus, we can reduce memory consumption by trading tightness. Both
potentials can handle merged lower bound functions with a layer of indirection: Buckets and
intervals are mapped to a weight function ID. The weight of an edge in a merged weight function
is the minimum weight of this edge in all included functions.
We now discuss an efficient and well-parallelizable algorithm to iteratively merge weight

functions until only 𝑘 functions remain. In each step, we merge the pair of weight functions
with the minimal sum of squared differences of all edge weights. Since comparing all pairs of
weight functions is expensive, we track the minimum difference sum Δmin we have found so
far and stop any comparison where the sum exceeds Δmin. However, even when stopping a
comparison, we store the preliminary sum and the edge ID up to which we have summed up

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

134

the differences. Then, we do not need to start from scratch should we continue to compare this
particular pair of weight functions. Finally, we maintain all pairs of weights along with the
(possibly preliminary) difference sums in a priority queue ordered by the difference sums. When
merging two weight functions, all other associated queue entries are removed from the queue
and new entries for comparisons between the new weight function and all other functions are
inserted. To determine the next weight function pair to merge, unfinished weight function pairs
are popped from the queue and processed in parallel. The minimum difference is tracked in an
atomic variable.

9.4 Evaluation

Environment. Our benchmark machine runs openSUSE Leap 15.3 (kernel 5.3.18), and has
192GiB of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which has 8 cores
clocked at 3.5 GHz and 8 × 64KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3 cache.
Hyperthreading was disabled and parallel experiments use 16 threads. We implemented our
algorithms in Rust1 and compiled them with rustc 1.61.0-nightly (c84f39e6c 2022-03-20)

in the release profile with the target-cpu=native option.

Inputs. We evaluate our time-dependent potentials on OSM Germany/Ger19 and Eur20 as
these are the networks where we have real-world live traffic snapshots. See Section 4.2.2 and
Section 4.2.3 for a discussion of these data sets. For completeness, we also evaluate our time-
dependent potentials for only predicted traffic on all other time-dependent instances and report
the results in Appendix D.

Methodology. We evaluate our algorithms by sequentially solving batches of 100 k shortest
path queries with three different query sets: First, there are random queries where source and
target are drawn from all vertices uniformly at random. These are mostly long-range queries.
Second are 1h queries where we draw a source vertex uniformly at random, run Dijkstra’s
algorithm from it and pick the first node with a distance greater than one hour as the target.
Third, we generate queries following the Dijkstra rank methodology [SS05] to investigate the
performance with respect to query distance. For these rank queries, we pick a source uniformly
at random and run Dijkstra’s algorithm from it. We use every 2𝑖-th settled vertex as the target
for a query of Dijkstra rank 2𝑖 . For queries with only predicted traffic, we pick 𝜏dep uniformly
at random. When using live traffic, we set 𝜏dep = 𝜏now. To evaluate the performance of the
preprocessing and update phases, we run them 10 and 100 times, respectively. Preprocessing
and update phases utilize all cores using 16 threads.
We compare our time-dependent potentials MMP and IMP against time-independent CH-

Potentials algorithm realized on CCH. Therefore, we denote this approach as CCH-Potentials.
All three potentials use the same CCH vertex order and augmented graph. CCH-Potentials
1Our code and experiment scripts are available at https://github.com/kit-algo/tdpot

https://github.com/kit-algo/tdpot

Evaluation Section 9.4

135

Table 9.1: Query and preprocessing performance results of different potential functions on different
graphs and live traffic scenarios. We report average running times, number of queue pops, relative
increases of the result distance over the initial distance estimate and speedups over Dijkstra’s algorithm
for 100 k random queries. Additionally, we report preprocessing and update times and the memory
consumption of precomputed auxiliary data.

Live Running Queue Length Speedup Prepro. Update Space
Graph traffic time [ms] [·103] incr. [%] [s] [s] [GB]

CC
H
Po

t. Ger
– 137.5 92.3 12.2 24.8 – 0.8

10:21 236.5 158.3 18.9 14.7 165.2 – 0.8
15:41 128.0 89.6 19.1 27.0 – 0.8

Eur – 102.6 65.2 4.2 58.0 249.7 – 1.0
07:47 152.2 102.2 8.4 39.3 – 1.0

M
M
P Ger

– 117.7 74.6 9.9 29.0 – 33.7
10:21 170.0 110.0 13.0 20.4 382.6 15.2 34.0
15:41 119.0 79.5 15.8 29.0 15.3 34.0

Eur – 95.3 58.6 3.5 62.5 581.5 – 56.2
07:47 131.2 84.5 5.8 45.6 22.7 57.2

IM
P

Ger
– 22.2 5.1 1.8 154.1 – 30.7

10:21 29.1 7.6 2.6 119.2 13 687.0 13.5 31.2
15:41 37.7 11.3 4.2 91.5 13.6 31.2

Eur – 11.5 1.8 0.4 518.0 1 799.9 – 52.1
07:47 25.4 7.4 1.7 235.5 20.1 53.1

provide heuristic estimates based on a lower bound without any real-time or predicted traffic.
Thus, no update phase is necessary to integrate real-time traffic updates. It is the only other
speedup technique we are aware of that supports exact queries for our problemmodel. Dijkstra’s
algorithm without any acceleration is our baseline.

Experiments. In Table 9.1, we report performance results for our time-dependent potentials
on random queries. We observe that IMP is the fastest approach by a significant margin, up to
an order of magnitude faster than time-independent CCH-Potentials and roughly two orders of
magnitude faster than Dijkstra’s algorithm. The search space reduction is even greater, but this
does not fully translate to running times due to the higher potential evaluation overhead of
IMP. With only predicted traffic, IMP is only two to three times slower than CATCHUp. This
shows that using A* to gain algorithmic flexibility comes at a cost, but the overhead compared
to purely hierarchical techniques is manageable. In contrast, MMP is only slightly faster than
CCH-Potentials. This is expected since random queries are mostly long-range for which MMP
is not particularly well suited.

Preprocessing times are within a couple of minutes for CCH-Potentials and MMP. IMP prepro-

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

136

0:00 6:00 12:00 18:00 24:00
Departure

0

50

100

150

200

R
un

ni
ng

 ti
m

e
[m

s]
Uniform Queries

CCH Potentials
MMP
IMP

0:00 6:00 12:00 18:00 24:00
Departure

1

2

3

4

5

R
un

ni
ng

 ti
m

e
[m

s]

1h Queries

Figure 9.2: Average running time of 100 k uniform and 1h queries on OSM Germany with only predicted
traffic. Each query has a departure time drawn uniformly at random. The resulting running times are
grouped by the departure time hour.

cessing is significantly more expensive because of the time-dependent CATCHUp preprocessing.
This is especially pronounced on OSMGermany where the time-dependent travel time functions
fluctuate strongly. Still, running preprocessing algorithms on a daily basis is quite possible.
This also underlines that frequently running a CATCHUp customization to include live traffic
is not feasible. For both our approaches, real-time traffic updates are possible within a fraction
of a minute. MMP is slightly slower because it uses a few more weight functions. Both our
approaches are quite expensive in terms of memory consumption, but this can be mitigated
through the use of compression (see Figure 9.4).

Introducing live traffic decreases the quality of the estimates and thus increases search space
sizes and running times. For IMP, this increases running times by roughly a factor of two. Even
with heavy rush hour traffic, IMP is still more than 90 times faster than Dijkstra’s algorithm.
Surprisingly, for CCH-Potentials and MMP, this scenario seems easier to handle than light
midday traffic. This actually is an effect of the predicted traffic. It also has a strong influence on
the performance of CCH-Potentials and MMP depending on the departure time.

We investigate this behavior with Figure 9.2 which depicts query performance by departure
time over the course of the day. Clearly, the departure time has a significant influence both for
short-range and long-range queries. For long-range queries, the peaks are shifted and smeared
because of the travel time (4–5 hours on average on OSM Germany) covered by the query. This
is the reason why the heavy afternoon traffic appears to be easier than the light midday traffic
for MMP and CCH-Potentials. For IMP, the influence of the departure time is much smaller,
which makes it consistently the fastest approach on long-range queries. For short-range queries,
the overhead of IMP make it the slowest during the night. Moreover, MMP is roughly as fast as
IMP for 1h queries during the daytime. Therefore, MMP may actually be a simple and effective
approach for practical applications where short-range queries are more prominent.

Evaluation Section 9.4

137

Figure 9.3 depicts the performance by query distance. For short-range queries, IMP is slower
than the other approaches because the potential is expensive to evaluate, but it scales much
better to long-range queries because of its estimates are tighter. Also, the variance in running
times is significantly smaller. Even for rank 224, most queries can be answered within a few tens
of milliseconds. Nevertheless, MMP is actually faster on most ranks. Only at rank 224, MMP
running times become as slow as the CCH-Potentials baseline. A jump in MMP running times
can be observed from rank 223 to 224. This is because the mean query distance jumps from
five to six hours on rank 223 to over eight hours on rank 224, which is longer than the longest
covered interval. Thus, on rank 224, MMP fall back to classical CCH-Potentials on many queries.
We also observe a few strong outliers. This happens because of blocked streets in the live traffic
data. When the target vertex of a query is only reachable through a blocked road segment, A*
will traverse large parts of the networks until the blocked road opens up. This affects all three
potentials in the same way and demonstrates an inherent weakness of A*-based approaches: the
performance always depends on the quality of the estimates. However, on realistic instances, the
time-dependent preprocessing algorithms of purely hierarchical approaches are too expensive
for frequent rerunning. This makes our approach the first to enable interactive query times
across all distances in a setting with combined live and predicted traffic.
Finally, Figure 9.4 showcases the effects of reducing the number of weight functions. MMP

appears to be very robust against compression. We can reduce the number of weight func-
tions to 16 (a memory usage reduction of about a factor of 6) before the slowdowns become
noticeable in the mean running time. However, MMP only achieves relatively small speedups

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Rank

0.1

1

10

100

1000

R
un

ni
ng

 T
im

e
[m

s]

CCH Potentials
MMP
IMP

Figure 9.3: Box plot of running times for 1 000 queries per Dijkstra-rank on PTV Europe with live traffic
and fixed departure at 07:47. The boxes cover the range between the first and third quartile. The band in
the box indicates the median; the whiskers cover 1.5 times the interquartile range. All other running
times are indicated as outliers.

Chapter 9 Combining Predicted and Live Traffic with Time-Dependent A* Potentials

138

0 10 20 30 40 50 60
Weight Functions

10

100

R
un

ni
ng

 ti
m

e
[m

s] Potential
MMP
IMP

Queries
Random
1h

2 4 8 16 32 64
Weight Functions

1

10

Sl
ow

do
w

n
ov

er
 U

nc
om

pr
es

se
d

MMP
IMP

Figure 9.4: Left: Mean running times of 100 k queries on OSM Germany with only predicted traffic by
number of remaining weight functions. Right: Boxplot of the per-query relative slowdown over the
running time of the respective query with all weight functions.

compared to CCH-Potentials, i.e. rarely more than a factor of three. Therefore, its robustness
is not particularly surprising. IMP, which achieves stronger speedups, is less robust against
compression. Nevertheless, we can reduce the memory consumption by a factor of about three
to 32 functions and still achieve very decent query times. With 32 functions, the absolute
memory consumption decreases to less than 20GB, which is at least manageable. Surprisingly,
even with only four weight functions, IMP is still faster than MMP on long-range queries. This
clearly shows the superiority of IMP for long-range queries. The compression algorithm itself
takes less than a minute, depending on the final number of weight functions. Thus, its running
time is dominated by the regular preprocessing. However, this is only the case because of the
efficient parallelization.
Figure 9.5 depicts running times and parallel efficiency of the compression algorithm with

a varying number of threads on PTV Europe when merging 96 buckets until only 16 buckets
remain. Without parallelization, the compression takes 6 to 7 minutes. This is almost as long as
the full MMP preprocessing. Luckily, with 16 threads, the running time can be reduced to 50
seconds which is a speedup of about 8. With fewer threads, the efficiency is even higher. Even
though the parallelization does not scale perfectly, running times are still reduced significantly.
As a result, compression times only make up a small fraction of the total preprocessing times.

Modelling Assumptions. Our approach of using time-dependent A* potentials for combined
traffic is based on the assumption that live traffic will always be worse than predicted traffic. We
analyze our traffic data to validate this assumption. With the PTV data, 58% of the live traffic
speeds are in the range of the predicted speeds, and 36% are strictly worse than the predictions.
Only 6% of the reported live traffic is better than the predictions. This appears to confirm
our assumption. However, the Mapbox traffic behaves differently. Only 5% of the observed

Conclusion Section 9.5

139

1 2 4 8 16
Threads

0

50

100

150

200

250

300

350

400

R
un

ni
ng

 ti
m

e
[s

]

1 2 4 8 16
Threads

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Figure 9.5: Left: Mean running times of compression of IMP buckets for PTV Europe from 96 to 16. The
black lines (barely visible) indicates the standard deviation. Right: Parallel efficiency, i.e. speedup over
single threaded running time divided by number of threads.

live speeds are strictly worse than the predictions, while up to 23% are strictly better. The
remaining observations are within the predicted speed range. This result appears to contradict
our assumption. The reason for this substantial difference between the data sets is that the
Mapbox live traffic speeds are derived from raw GPS traces, while the PTV data is a traffic
incident database. Therefore, whether our model can be applied depends on the type of traffic
data one has to work with.

9.5 Conclusion
In this chapter, we proposed time-dependent A* potentials for efficient and exact routing
in time-dependent road networks with both predicted and live traffic. We presented two
realizations of time-dependent potentials with different trade-offs. Both allow fast live traffic
updates within a fraction of a minute. IMP achieves query times two orders of magnitude
faster than Dijkstra’s algorithm and up to an order of magnitude faster than state-of-the-art
time-independent potentials. To the best of our knowledge, this makes our approach the first to
achieve interactive query performance while allowing fast updates in this setting. For future
work, we would like to apply our time-dependent potentials to other extended scenarios in
time-dependent routing. Further, studying ways to relax our modelling assumptions could be
fruitful. For example, one could derive time-dependent potentials from a lower bound of the
traffic predictions with some additional slack for live traffic faster than the predictions. Also, it
would be very interesting to develop other time-dependent potential functions.

Part III

Extended Problem Settings

143

10
Fast Computation of Shortest Smooth
Paths and Uniformly Bounded Stretch
with Lazy RPHAST

So far, we have assumed that the data we use for our routing is an accurate representation of
the reality and that a shortest path in our graph yields a “good” practical route. Unfortunately,
this is not always the case. As traffic feeds are derived from live data, they are inherently noisy
and incomplete. Simply exchanging free-flow for traffic-aware travel times and then solving the
shortest path problem may, in fact, lead to problematic routes. For example, such routes may
include undesired detours such as briefly using a parking area to bypass a jammed highway. In
other cases, the shortest route may traverse a residential area while there is an alternative route
around the area which is just a few seconds faster. It appears that the shortest path does not
always correspond to the practically best route.
Therefore, in this chapter, we study an extended problem model, the shortest smooth path

problem (SSPP) [DSS18]. To avoid undesired detours, a second weight function is taken into
account. The first volatile weight function models the current traffic situation. The second
smooth weight function models the free flow travel times and may include additional penalties,
for example to avoid residential areas. The goal is to find the shortest path with respect to the
volatile weights without too severe detours with respect to the smooth weights.

Related Work. The SSPP was initially introduced by Delling et al. in [DSS18]. The authors
discuss the complexity of the problem and show some relations between SSPP and Knapsack but
no definitive conclusions could be drawn in their work. The paper also includes two CRP-based
algorithms for the SSPP. Iterative Path Blocking (IPB) is presented as an exact algorithm for the
SSPP. However, it has two issues: First, it takes several seconds even on short-range queries.
This makes it unsuitable for practical applications. Second, as we show in this chapter, it is, in
fact, not exact. The authors also present a heuristic algorithm based on the via-node paradigm,

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

144

i.e. it finds solutions which are concatenations of two shortest paths. It is much faster but may
miss promising paths because only via-paths are considered and the path quality is checked
heuristically. We are not aware of any other works studying the SSPP.

In the SSPP, limiting the relative length of detours is formalized with the uniformly bounded

stretch (UBS). The UBS is a path quality measure and quantifies how much longer detours on
a path are than their respective fastest alternative. So far, it has been primarily studied in the
context of alternative routes [ADGW13]. While quite useful, it is expensive to compute and
requires evaluating all subpaths of a path. The authors of [ADGW13] state that it would be
ideal to check the UBS in time proportional to the length of the path and a few shortest path
queries, though they are not aware of any way to do that. To the best of our knowledge, this
goal has not been achieved to this day.

Attribution. This chapter is based on a paper published at SEA 2022 [Zei22a]. A preliminary
evaluation of the algorithms can be found in the Bachelor’s thesis of Jakob Bussas [Bus21].

Contribution and Outline. In Section 10.2, we settle the complexity of the SSPP by proving
that it is stronglyNP-complete. Section 10.3 contains algorithmic results. First, we show that IPB
as described in [DSS18] may not find optimal results. Second, we describe necessary adjustments
to make it exact. Third, we present an alternative realization based on A* and CCH-Potentials.
Fourth, we present an efficient algorithm to compute exact UBS values, typically with only a few
shortest path queries and in time proportional to the path length as the authors of [ADGW13]
had hoped for. Fifth, we present Iterative Path Fixing, a new SSPP heuristic. All our algorithms
utilize Lazy RPHAST as a crucial ingredient to achieve fast running times. Section 10.4 contains
a thorough evaluation of our algorithms. It clearly shows the effectiveness of our UBS algorithm
and our CH-Potentials-based IPB realization, outperforming the state of the art by up to two
orders of magnitude.

10.1 Smooth Paths

The stretch of a path is defined as stretchℓ (𝑃) = ℓ (𝑃)
distℓ (𝑣1,𝑣𝑘) , i.e. the ratio between the path length

and the shortest distance between its endpoints. The uniformly bounded stretch UBSℓ (𝑃) =
max1≤𝑖< 𝑗≤𝑘 stretchℓ (𝑃𝑖, 𝑗) indicates the maximum stretch over all subpaths. Let opt(𝑠, 𝑡) denote
some shortest path between 𝑠 and 𝑡 . We observe the following useful property of UBS:

Observation 10.1. The UBS of a path 𝑃 = (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 . . . , 𝑣𝑘) where 𝑃1,𝑖 = opt(𝑣1, 𝑣𝑖) and
𝑃 𝑗,𝑘 = opt(𝑣 𝑗 , 𝑣𝑘) is equal to UBS(𝑃𝑖, 𝑗).

This is because the stretch of any subpath only decreases when appending optimal segments
to the beginning or end.
In [DSS18], Delling et al. introduce the shortest smooth path problem (SSPP). A path 𝑃 is

𝜖-smooth with respect to a weight function ℓ when UBSℓ (𝑃) < 1 + 𝜖 . Given a graph 𝐺 , vertices

Complexity Section 10.2

145

𝑤

𝑣

𝑢

𝑠

𝑢1

𝑣1

𝑤1

𝑢2

𝑣2

𝑤2

𝑢3

𝑣3

𝑤3

𝑠

1,1

1,1

1,1

1,1

1,1

1,1

1,2

1,2

1,2

1,2

1,2

1,2

1 +
𝜖 ,1

1 +
𝜖 ,1

1 + 𝜖 ,1

1 + 𝜖
,1

1 + 𝜖 ,1

1 + 𝜖
,1

Figure 10.1: Illustration of our transformation from HamiltonPath to ShortestSmoothPath.
The first edge weight is the smooth weight, the second the volatile weight. The thick edges indicate a
Hamiltonian path and the corresponding shortest 𝜖-smooth path.

𝑠 and 𝑠 , a smooth weight function ℓ and a volatile weight function ℓv and a parameter 𝜖 > 0, the
shortest smooth path problem asks for the shortest path with respect to ℓv that is 𝜖-smooth in ℓ .

Note that we consider the problem in a three-phase setup as we also did for Chapters 7 and 9.
However, the algorithms discussed in this chapter only touch the query phase.

10.2 Complexity

In this section, we prove that SSPP is strongly NP-complete for any 𝜖 ∈ ℚ>0. We define the
decision variant of the problem as follows: An instance (𝐺, ℓ, ℓv, 𝑠, 𝑡, 𝑘) is a satisfiable instance
of 𝜖-ShortestSmoothPath-Dec if and only if there exists a path 𝑃 = (𝑠, . . . , 𝑡) in 𝐺 with
ℓv(𝑃) ≤ 𝑘 and UBSℓ (𝑃) < 1 + 𝜖 .

Theorem 10.2. 𝜖-ShortestSmoothPath-Dec is strongly NP-complete for any 𝜖 ∈ ℚ>0
.

Proof. A solution can be verified in polynomial time. Determining the path weight in ℓv takes
running time linear in O(|𝑃 |). To check the UBS, shortest distances have to be computed for all
O(|𝑃 |2) subpaths. This shows that ShortestSmoothPath-Dec ∈ NP.
To prove the hardness, we give a reduction from the strongly NP-complete HamiltonPath

problem [GJ79]. The goal is to find a Hamiltonian path, i.e. a simple path which traverses every
vertex exactly once. Let𝐺 = (V, E) be the HamiltonPath instance. To distinguish them from
the vertices in the SSPP instance, we will denote the vertices in the HamiltonPath instance
as nodes. We construct the vertices of our SSPP instance by copying each node 𝑛 times (forming
𝑛 layers) and creating two additional vertices 𝑠 and 𝑠 . Edges only connect successive layers.
There are edges between vertices corresponding to the same node and edges corresponding to
edges from the HamiltonPath instance. Any (𝑠, . . . , 𝑡) path has exactly 𝑛 + 1 edges and has
to traverse all layers. We will choose the edge weights in such a way that the shortest 𝜖-smooth
path between 𝑠 and 𝑠 has to use a different node in each layer. Paths using the same node in
different layers will always be non-𝜖-smooth in ℓ or too long in ℓv.

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

146

Formally, we construct the graph 𝐺 ′ = (V ′, E ′) for our SSPP instance as follows: We set
the vertices V ′ = {𝑣𝑖 | 𝑣 ∈ V, 𝑖 ∈ [1, 𝑛]} ∪ {𝑠, 𝑡}. The edge set E ′ is the union of three groups
of edges Eorig, E self and E terminal where Eorig = {(𝑢𝑖 , 𝑣𝑖+1) | 𝑢𝑣 ∈ E, 1 ≤ 𝑖 < 𝑛} are the edges
between the layers corresponding to edges in the HamiltonPath instance, E self = {(𝑣𝑖 , 𝑣𝑖+1) |
𝑣 ∈ V, 1 ≤ 𝑖 < 𝑛} are the additional edges between the same nodes in successive layers and
E terminal = {(𝑠, 𝑣1) | 𝑣 ∈ V} ∪ {(𝑣𝑛, 𝑡) | 𝑣 ∈ V} are the edges connecting the terminals with
the first and last layer. In both weight functions, all edges 𝑒 term ∈ E terminal get the weight
ℓ (𝑒 term) = ℓv(𝑒 term) = 1. The edges in 𝑒self ∈ E self get a smooth weight ℓ (𝑒self) = 1 and a volatile
weight ℓv(𝑒self) = 2. The edges in 𝑒orig ∈ Eorig get a smooth weight ℓ (𝑒orig) = 1 + 𝜖 and a volatile
weight ℓv(𝑒orig) = 1. Setting 𝑘 = 𝑛 + 1 completes our ShortestSmoothPath-Dec instance.
This transformation has quadratic running time. See Figure 10.1 for an illustrated example of
the construction. For the sake of readability, we use non-integer weights of 1 + 𝜖 in this proof.
The weights can be turned into integers by multiplying them with the denominator of 𝜖 .

Now, assume that the HamiltonPath instance admits a Hamiltonian path 𝑃 = (𝑣1, . . . , 𝑣𝑛).
Then, 𝑃 ′ = (𝑠, 𝑣11, . . . , 𝑣𝑛𝑛, 𝑡) is a solution to the SSPP problem. The path uses two edges from
E terminal and 𝑛 − 1 edges from Eorig. Thus, ℓv(𝑃 ′) = 𝑛 + 1 = 𝑘 . Also, its UBSℓ (𝑃 ′) must be smaller
than 1 + 𝜖 . Due to Observation 10.1, it is sufficient to show that the UBS is small enough for
𝑃 ′′ = (𝑣11, . . . , 𝑣𝑛𝑛). For any subpath 𝑃 ′′𝑖, 𝑗 = (𝑢𝑖 , . . . 𝑣 𝑗) for 𝑖 < 𝑗 , 𝑢 must not be equal to 𝑣 because
𝑃 is a Hamiltonian path. As all edges are from Eorig, ℓ (𝑃 ′′𝑖, 𝑗) = (𝑗 − 𝑖) · (1 + 𝜖). The shortest path
(with respect to ℓ) between 𝑢𝑖 and 𝑣 𝑗 has to use at least one Eorig edge because 𝑢 ≠ 𝑣 . Thus,
distℓ (𝑃 ′′𝑖, 𝑗) ≥ (𝑗 − 𝑖 − 1) + (1 + 𝜖). This yields

UBSℓ (𝑃 ′′𝑖, 𝑗) =
ℓ (𝑃 ′′𝑖, 𝑗)

distℓ (𝑃 ′′𝑖, 𝑗)
≤ (𝑗 − 𝑖) · (1 + 𝜖)

𝑗 − 𝑖 + 𝜖 <
(𝑗 − 𝑖) · (1 + 𝜖)

𝑗 − 𝑖 = 1 + 𝜖

which proves that 𝑃 ′ is a valid solution for the SSPP instance.
Conversely, suppose that our SSPP instance has an 𝜖-smooth path 𝑃 ′ = (𝑠, 𝑣11, . . . , 𝑣𝑛𝑛, 𝑡) of

weight ℓv(𝑃 ′) = 𝑛 + 1. Such a path cannot contain edges from E self because their volatile weight
is 2. We now show that no two vertices in the path can correspond to the same node and
thus that 𝑃 = (𝑣1, . . . , 𝑣𝑛) is indeed a Hamiltonian path in 𝐺 . Suppose for contradiction that
𝑃 ′𝑖, 𝑗 = (𝑣𝑖 , . . . , 𝑣 𝑗) was a subpath of 𝑃 ′. The length ℓ (𝑃 ′𝑖, 𝑗) is (𝑖 − 𝑗) · (1 + 𝜖). Since start and end
vertex correspond to the same node, the shortest ℓ path between these vertices is made up of
edges from E self and has distance distℓ (𝑣𝑖 , 𝑣 𝑗) = 𝑖 − 𝑗 . Thus, UBSℓ (𝑃 ′𝑖, 𝑗) = (1 + 𝜖) which means
that this subpath must not be part of a solution for the SSPP instance. This is a contradiction.
Thus, the SSPP solution induces a valid solution for the HamiltonPath instance. □

10.3 Algorithms
In [DSS18], the Iterative Path Blocking (IPB) algorithm is proposed to solve the SSPP optimally.
The algorithm repeats two steps until a valid path is found. It maintains a set of forbidden paths
F , which is initially empty. In the first step, a shortest path with respect to ℓv is computed while

Algorithms Section 10.3

147

𝑠 𝑢 𝑣 𝑡
3 2

1

6

1, 10

Figure 10.2: Example graph where for 𝜖 = 1 the shortest 𝜖-smooth path (𝑠, 𝑣, 𝑡) is not prefix-optimal.
For all edges except 𝑢𝑡 , the smooth and the volatile weight function are equal. For 𝑢𝑡 , the smooth weight
is 1 and the volatile weight 10.

avoiding any forbidden paths. In the second step, the obtained path is checked for subpaths
violating the UBS constraint. Any violating subpaths are blocked, i.e. added to the list of
forbidden paths. Then, the algorithm continues with the next iteration. If no violating subpath
is found, the final path is returned.
This framework can be implemented with different concrete algorithms for both steps. The

implementation described in [DSS18] is based on CRP [DGPW17]. Here, we propose optimized
implementations for both steps based on Lazy RPHAST and CCH-Potentials.

10.3.1 Avoiding Blocked Paths

The authors of [DSS18] describe their approach to the first phase as a variant of Dijkstra’s
algorithm. When relaxing an edge𝑢𝑣 where 𝑣 is the endpoint of a forbidden path, they backtrack
the parent pointers of 𝑣 , comparing the reconstructed path to the forbidden path. Should
the paths match, the search is pruned at 𝑣 . This algorithm correctly avoids forbidden paths.
However, it also avoids some additional paths because Dijkstra’s algorithm by construction
only finds prefix-optimal paths. But optimal shortest smooth paths may not be prefix-optimal
with respect to the volatile weight function ℓv. See Figure 10.2 for an example. To the best
of our understanding, IPB as described in [DSS18] will not find the shortest smooth path in
this example. The algorithm will find the path (𝑠,𝑢, 𝑣, 𝑡) in the first iteration. This path is not
1-smooth because (𝑢, 𝑣, 𝑡) has stretch 3 and (𝑢, 𝑣, 𝑡) will be added to the forbidden path set.
With (𝑢, 𝑣, 𝑡) forbidden, the algorithm will find the path (𝑠,𝑢, 𝑡) in the next iteration and return
it as the final result. However, the shortest 1-smooth path is (𝑠, 𝑣, 𝑡). It was missed because
the prefix (𝑠, 𝑣) is not optimal in ℓv and was therefore pruned at 𝑣 by (𝑠,𝑢, 𝑣). We will refer to
this variant from now on by heuristic iterative path blocking (IPB-H). IPB-H will still find an
𝜖-smooth path though it may not necessarily be the shortest. In the following, we describe
necessary adjustments to turn IPB into an exact algorithm. We will denote this variant as exact
iterative path blocking (IPB-E).
To find shortest smooth path with Dijkstra’s algorithm, we need to adjust the notion of

optimality used to compare labels. It might be necessary to keep a label with suboptimal
distance from the start as in the example from Figure 10.2 where the label for (𝑠, 𝑣) needs to be

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

148

kept at 𝑣 despite being longer than (𝑠,𝑢, 𝑣). This leads to a label-correcting variation of Dijkstra’s
algorithm with possibly multiple labels per vertex. A label 𝑙 at a vertex 𝑣 consists of a distance
𝑑 (𝑙) from the source, a set of active forbidden paths A(𝑙), and a pointer to the parent vertex
and label for efficient reconstruction of the labels’ path 𝑃 (𝑙) = (𝑠, . . . , 𝑣). The active forbidden
path set A(𝑙) contains all forbidden paths which have a prefix which is a suffix of 𝑃 (𝑙). A label
𝑙 can be discarded when 𝑣 has another label 𝑙 ′ with 𝑑 (𝑙 ′) ≤ 𝑑 (𝑙) and A(𝑙 ′) ⊆ A(𝑙).

The search is initialized with a single label at 𝑠 with distance zero and an empty set of active
forbidden paths. When a vertex 𝑢 with a label 𝑙𝑢 is popped from the queue and an edge 𝑢𝑣 is
relaxed, we create a new label 𝑙𝑣 as follows: We set the distance 𝑑 (𝑙𝑣) = 𝑑 (𝑙𝑢) + ℓv(𝑢𝑣) and the
parent label to 𝑙𝑢 . We also need to keep track of traversed forbidden paths. If 𝑢𝑣 is the first
edge of a forbidden path 𝐹 = (𝑢, 𝑣, . . .), the path 𝐹 needs to be added to A(𝑙𝑣). For any active
forbidden path 𝐹 = (. . . , 𝑢,𝑤, . . .) ∈ A(𝑙𝑢), we need to check if𝑤 = 𝑣 , i.e. 𝑢𝑣 lies on 𝐹 . If this is
the case, 𝐹 is contained in A(𝑙𝑣), or, if 𝑢𝑣 is the last edge of 𝐹 , the label 𝑙𝑣 must be dropped. If
𝑢𝑣 is not on 𝐹 , the forbidden path is not in A(𝑙𝑣).

An efficient implementation of this algorithm requires careful engineering. For each edge, we
keep track of the forbidden paths it lies on. Labels use a bitset to store the active forbidden paths.
This allows for efficient subset checks with bit-wise operations. The bitset size is determined
individually for each vertex by the number of blocked paths the respective vertex lies on. In
our implementation, we use at least one 128-bit integer which suffices for most queries. Should
the number of blocked paths for a vertex exceed 128, we switch to using a dynamically sized
array of integers for that vertex. Additionally, each vertex maintains its own queue of labels
ordered by distance from 𝑠 . When the vertex is popped from the queue, it pops the next label
from its queue and propagates only this label. If there are any remaining labels in the queue,
the vertex is reinserted into the global queue. Finally, we utilize A* with CCH-Potentials on
the volatile weight function to guide the search towards the target. As our experiments show,
disallowing non-𝜖-smooth paths increases distances only very slightly. Thus, the heuristic is
close to perfect and A* very effective for this problem.

Time-Dependent Volatile Weights

So far, we have described our smooth path algorithms for dynamic real-time traffic. However,
time-dependent traffic predictions are also a critical aspect of traffic data. The authors of [DSS18]
also mention time-dependent smooth paths as possible future work. Fortunately, our A*-based
algorithms can be easily adapted to time-dependent and even combined dynamic and time-
dependent smooth paths. We utilize IMP from the previous chapter (see Section 9.3.2). There
is only one necessary adjustment. Recall that IMP use Lazy RPHAST on ℓ

+
comb (and ℓ+pred) to

obtain an arrival time interval at each vertex for the evaluation of the time-dependent lower
bounds. When searching for smooth paths, the distance in ℓcomb may not necessarily be a valid
upper bound anymore. The shortest path for that length function may not be smooth and thus
forbidden. Fortunately, we can obtain a valid upper bound differently. The shortest path for
the smooth weight function ℓ will always be sufficiently smooth. Thus, if we take this path

Algorithms Section 10.3

149

𝑣1 𝑣2
𝑣3

𝑣4

𝑣5

𝑣6

𝑣7
𝑣8 𝑣9

Figure 10.3: Example path (solid, black) with shortest path tree from 𝑣1 to all vertices on the path
(dashed, blue) and reverse shortest path tree from all vertices on the path to 𝑣9 (dashed, red).

and evaluate its length in terms of ℓcomb, we get a valid upper bound on the volatile travel time.
Therefore, for the upper bound, we slightly modify CCH and Lazy RPHAST to work on two

weight functions. The first one, derived from ℓ , is used to decide which path/triangle/edge is
the better way, and the second one, derived from ℓcomb, is used to output the final path length.
This is everything necessary to adjust IMP to IPB.

10.3.2 Efficient UBS Computation

According to Delling et al. [DSS18], the UBS computation is one of the bottlenecks of the IPB
approach. They employ a many-to-many algorithm. Here, we introduce an algorithm which
can compute exact UBS values of typical paths with only a few shortest path queries. We also
present a worst-case example where each subpath has a distinct stretch value. This suggests
that achieving subquadratic worst-case running time may not be possible.
Consider a path 𝑃 = (𝑠 = 𝑣1, . . . , 𝑡 = 𝑣𝑘) as depicted in Figure 10.3. Our algorithm works

iteratively. We start with the full path and successively remove prefixes and suffixes until the
path is empty or only a shortest path remains. First, we compute shortest distances from 𝑠 to
all vertices on the path. This can be done with a single run of Dijkstra’s algorithm which can
terminate once all 𝑣𝑖 have been settled. Beside the shortest distances, this yields a shortest path
tree. We also run Dijkstra’s algorithm from 𝑠 on the reversed graph which yields a backward
shortest path tree to 𝑠 . Now we find the greatest index 𝑖 such that 𝑃1,𝑖 is a prefix of all shortest
paths opt(𝑠, 𝑣𝑙) where 𝑖 < 𝑙 ≤ 𝑘 , i.e. the first branching vertex in the forward shortest path tree.
In the worst case this may be 𝑠 . In the example in Figure 10.3 this is 𝑣3. We analogously obtain
the first branching vertex in the reverse shortest path tree to 𝑣𝑘 (𝑣8 in our example). Stated
formally, this is the smallest index 𝑗 such that 𝑃 𝑗,𝑘 is a suffix of all shortest paths opt(𝑣𝑙 , 𝑡)
where 1 ≤ 𝑙 ≤ 𝑗 . By Observation 10.1, subpaths starting from vertices in the segment 𝑃1,𝑖−1 and
subpaths ending at vertices from 𝑃 𝑗+1,𝑘 are not relevant to the UBS computation. We exploit
this and only check paths starting from 𝑣𝑖 or ending at 𝑣 𝑗 in the current iteration.
We check the stretch of all subpaths 𝑃𝑖,𝑙 where 𝑖 < 𝑙 ≤ 𝑗 with a linear sweep over the 𝑣𝑙 .

Since 𝑃1,𝑖 is a prefix of all shortest paths from 𝑠 , we can compute the distance dist(𝑣𝑖 , 𝑣𝑙) as

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

150

dist(𝑠, 𝑣𝑙) − dist(𝑠, 𝑣𝑖). Thus, each stretch can be checked in constant time with the distances
computed by Dijkstra’s algorithm. When we are only interested in violating subpaths (rather
than computing the exact UBS value of 𝑃), the sweep can be stopped after the first (i.e. shortest)
violating segment has been found. Forbidding the shortest violating segment starting at 𝑣𝑖 is
sufficient because it is contained in all longer segments. Checking the stretches of the subpaths
𝑃𝑙, 𝑗 where 𝑖 ≤ 𝑙 < 𝑗 works analogously.

Having checked all these stretches, we continue with the next iteration by applying the whole
algorithm to the subpath 𝑃𝑖+1, 𝑗−1. We can stop when 𝑖 + 1 ≥ 𝑗 − 1 or when the entire considered
path is a shortest path between its endpoints.

This algorithm can be adopted to efficiently compute other path quality measures such as the
local optimality [ADGW13].

Worst-Case Running Time

This algorithm performs great when long segments are shortest paths, which will often be the
case when searching shortest smooth paths. But in the worst case, it still has to check Θ(𝑛2)
subpath stretches. Consider a complete graph with unit weights and the path 𝑃 = (𝑣1, . . . , 𝑣𝑛).
In this graph, the shortest path between any two vertices is always the direct edge and the
distance is exactly one. Thus, the shortest path tree from any vertex is a star with the direct
edges and our algorithm can only advance by a single vertex in each iteration. This results in a
worst case running time of 𝑛 runs of Dijkstra’s algorithm.

We suspect that it is not possible to compute the UBS asymptotically faster. Consider the
same graph as before but with weights of unique powers of two for the edges of the path.
Now any subpath has a unique length. As all subpaths of three or more vertices still have a
shortest distance of one between their endpoints, there are Θ(𝑛2) unique stretch values. Thus,
computing the UBS of the whole path without checking all Θ(𝑛2) stretch values should be
difficult if not impossible.

Lazy RPHAST with Path Unpacking

While this algorithm typically needs few stretch checks, running Dijkstra’s algorithm a couple of
times is still prohibitively slow on large road networks. Luckily, we can speed these computations
up drastically by employing Lazy RPHAST, which we already used as an A* heuristic in the
shortest path search phase. Recall that Lazy RPHAST allows us to select one target vertex and
then to compute shortest distances quickly from many vertices to this target. For the efficient
UBS computation, we use two instantiations of this algorithm. In each iteration, we select
both endpoints of the considered path and compute distances from and to the endpoints for all
vertices on the path. However, we also need the shortest path trees. We therefore extend Lazy
RPHAST to also compute shortest path trees.
Dijkstra’s algorithm on 𝐺↓ yields initial parent pointers. We adjust Algorithm 7.3 to con-

tinue to maintain these parent pointers during edge relaxation. Thus, after having called

Algorithms Section 10.4

151

Algorithm 10.1: Path unpacking for Lazy RPHAST.
Data: P[𝑢]: parent vertex on the shortest path from 𝑢 to 𝑠 , as computed by Dijkstra’s

algorithm on 𝐺↓ and an extended Algorithm 7.3.
Data: U[𝑢]: whether the path from 𝑢 to 𝑠 has been fully unpacked.

1 Function Unpack(𝑢):
2 if ¬U[𝑢] ∧ 𝑢 ≠ 𝑡 then
3 ComputeAndMemoizeDist(𝑢)
4 Unpack(P[𝑢])
5 if (𝑢, P[𝑢]) is a shortcut for (𝑢, 𝑣, P[𝑢]) then
6 P[𝑣] ← P[𝑢]
7 Unpack(𝑣)
8 P[𝑢] ← 𝑣

9 Unpack(𝑢)
10 U[𝑢] ← true

ComputeAndMemoizeDist, we have the shortest path through the CH search space in 𝐺+. Algo-
rithm 10.1 depicts the routine to efficiently unpack shortcuts on this path and retrieve shortest
path trees in the original graph. We use a bitvector U (using a clearlist for fast reinitialization)
to mark vertices for which the shortest path has already been fully unpacked which is checked
before any actual work is performed. Then, we have to call ComputeAndMemoizeDist to ensure
that the path through the CH search space has been obtained for 𝑢. For vertices encountered
through recursive shortcut unpacking this might have not happened before. In the next step,
we can now recursively unpack the full path up to the parent P[𝑢] of our current vertex 𝑢. Now,
all that remains is to unpack the edge (𝑢, P[𝑢]) if it is a shortcut. If so, the middle vertex 𝑣 is
set in P as the vertex between 𝑢 and P[𝑢] and Unpack is invoked recursively first for 𝑣 and then
again for 𝑢 to unpack the edges (𝑣, P[𝑣]) and (𝑢, 𝑣).

10.3.3 Iterative Path Fixing

With an efficient algorithm to find UBS-violating segments we can introduce another natural
heuristic to find short smooth paths: Find the shortest path with respect to ℓv and replace each
UBS violating subpath (𝑣𝑖 , . . . , 𝑣 𝑗) with optℓ (𝑣𝑖 , 𝑣 𝑗). The result may still contain UBS violating
subpaths. In this case, we iteratively continue to replace violating segments. When a path
contains overlapping violating subpaths, we replace the first, ignore following overlapping
subpaths and continue with the next non-overlapping segment. We denote this algorithm as
iterative path fixing (IPF).

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

152

10.4 Evaluation

Environment. Our benchmark machine runs openSUSE Leap 15.3 (kernel 5.3.18), and has
192GiB of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which has eight
cores clocked at 3.5 GHz and 8 × 64KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3
cache. All running times are sequential. We implement our algorithms in Rust1 and compile
them with rustc 1.58.0-nightly (b426445c6 2021-11-24) in the release profile with the
target-cpu=native option.

Inputs. We use our main benchmark instances for time-independent route planning: DIMACS
Europe and OSM Germany. See Section 4.2.1 for a discussion of these networks. For comparison,
we also include an OSM Europe graph with 173.8 million vertices and 348 million edges. This
graph was used in the evaluation of [DSS18]. For our OSM Germany instance, we use the
real-world traffic data from Mapbox discussed in Section 4.2.3. For both Europe instances, we
do not have any real world traffic data. Thus, we resort to the approach suggested in [DSS18]
and generate synthetic live traffic: For each road where the average speed is greater than
30 kph, we reduce the speed to 5 kph with a probability of 0.5%. To evaluate our algorithms for
time-dependent and combined dynamic and time-dependent smooth paths, we also use OSM
Germany with the Mapbox predictions and real-time traffic and the Eur20 instance from PTV.

Methodology. We evaluate our algorithms by performing batches of point-to-point shortest
𝜖-smooth path queries. As the distance between source and target has a significant influence
on the performance, we generate different query batches. For each batch, we pick 1000 source
vertices uniformly at random. We then run Dijkstra’s algorithm from each source vertex on the
graph with the smooth weight function. Following the Dijkstra rank methodology, we store
every 2𝑖 th settled vertex [SS05]. This allows evaluating the performance development against
varying path lengths. In [DSS18], 1-hour queries were performed. For comparison, we also
generate an 1h batch by picking the first settled vertex with a distance greater than one hour.
In addition, we generate a 4h batch for medium-range queries with the same method and a
random batch for long range queries where the target is picked uniformly at random.

Preliminary experiments showed that some queries take prohibitively long to answer. Since
we are solving anNP-hard problem, this is not very surprising. We abort queries if the algorithm
has not found a path with UBS < (1 + 𝜖) after 10 seconds. We report these queries as failed but,
nevertheless, do include their running times in our measurements.

Experiments. We start by evaluating different UBS algorithms in isolation. The paths checked
by the UBS algorithms are the paths we find while using IPB-H to find shortest smooth paths
with 𝜖 = 0.2 on the rank queries. We limit the time per rank and UBS algorithm to one hour. Thus,
1The code for this chapter, all implemented algorithms, scripts to perform experiments and to aggregate the results
is available at https://github.com/kit-algo/traffic_aware

https://github.com/kit-algo/traffic_aware

Evaluation Section 10.4

153

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

Rank

0.01ms

0.1ms

1ms

10ms

100ms

1s

10s

100s

1000s

R
un

ni
ng

 T
im

e

SSE RPHAST
Lazy RPHAST Naive
UBS Trees Dijkstra
UBS Trees Lazy RPHAST

Figure 10.4: Running times of different UBS checking algorithms for paths encountered by IPB-H when
answering queries of different ranks with 𝜖 = 0.2 on OSM Europe. The boxes cover the range between
the first and third quartile. The band in the box indicates the median, the whiskers cover 1.5 times the
interquartile range. All other running times are indicated as outliers.

slow algorithms may not get to check all paths. Our baseline is computing all distances between
pairs of path vertices at once with SSE RPHAST [DGW11], which to the best of our knowledge
is the fastest known many-to-many algorithm. The second algorithm, denoted as Lazy RPHAST

Naive, uses Lazy RPHAST to compute distances between all pairs of path vertices. The third one
is UBS Trees Dijkstra which is the non-accelerated, i.e. Dijkstra-based, implementation of the
UBS algorithm introduced in Section 10.3.2. UBS Trees Lazy RPHAST denotes the accelerated
variant of this algorithm utilizing Lazy RPHAST as described in Section 10.3.2.

Figure 10.4 depicts the results of this experiment. We observe that SSE RPHAST is consistently
faster than the naive Lazy RPHAST variant by a roughly constant factor. SSE RPHAST was
designed as a many-to-many algorithm and is thus more efficient than naively applying a many-
to-one algorithm |𝑃 | times. The non-accelerated UBS Trees algorithm is very fast for short
paths but quickly becomes prohibitively slow for longer paths. Running Dijkstra’s algorithm
will traverse a large part of the network if source and target are sufficiently far apart from each
other. Doing this multiple times is not feasible. However, the accelerated variant beats SSE
RPHAST by about two orders of magnitude across all path lengths.
UBS Trees running times have significantly greater variance than the many-to-many algo-

rithms. This is because the amount of work which UBS Trees can avoid varies strongly between
different paths. In contrast, the many-to-many-based algorithms will always check Θ(|𝑃 |2)
subpath distances. Note that the UBS Trees Dijkstra outliers disappear because we limit the
time per rank and algorithm. If we checked all paths, the outliers would be present too, but the
experiment would take prohibitively long.

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

154

Table 10.1: Average performance of our implementations of IPB-E, IPB-H and IPF for different query
sets on all time-independent instances with 𝜖 = 0.2. The Increase column denotes the length increase
with respect to ℓv of the obtained path over optℓv and includes only successful queries. We also include
the length increase of the shortest path in the smooth weight function optℓ as a trivial upper bound on
the length increase. The running time also includes the time of queries aborted after 10 seconds.

Increase [%] Running time [ms] Failed [%]
Instance IPB-E IPB-H IPF optℓ IPB-E IPB-H IPF IPB-E IPB-H IPF

1h

DIMACS Eur Syn 0.8 2.5 4.1 6.3 718.0 168.4 1.5 6.4 1.6 0.0
OSM Eur Syn 0.2 0.3 0.3 0.8 59.8 22.4 2.7 0.4 0.2 0.0
OSM Ger 10:21 0.1 0.3 0.4 0.7 261.5 9.2 1.8 2.2 0.0 0.0
OSM Ger 15:41 0.2 1.5 2.2 3.7 1 373.7 219.1 4.7 12.7 1.2 0.0

4h

DIMACS Eur Syn 0.8 3.4 5.1 6.5 3 513.6 435.4 6.1 33.1 3.1 0.0
OSM Eur Syn 0.2 0.3 0.3 0.7 331.4 73.2 8.4 2.1 0.6 0.0
OSM Ger 10:21 0.1 0.4 0.5 1.6 1 449.3 93.1 9.8 13.1 0.0 0.0
OSM Ger 15:41 0.2 2.1 4.2 10.1 6 597.1 2 568.1 89.2 63.4 15.8 0.0

Ra
nd

om

DIMACS Eur Syn 0.8 2.8 5.3 7.4 6 700.6 2 436.7 30.6 64.2 17.1 0.0
OSM Eur Syn 0.2 0.4 0.4 0.8 4 758.3 654.2 140.3 38.9 3.1 0.0
OSM Ger 10:21 0.1 0.4 0.5 1.5 1 366.0 111.6 9.6 12.0 0.0 0.0
OSM Ger 15:41 0.2 2.1 4.1 8.8 5 771.1 2 419.8 84.5 56.0 16.3 0.0

Next, we evaluate the performance of our query algorithms for the dynamic case on realistic
queries and instances. Table 10.1 depicts the results. Both the query set and the instance have
a strong influence on the running time. Note that random queries on OSM Germany are on
average shorter than four hours which is the reason why the running times on OSM Germany
for random queries are faster than for 4h queries. The length increase of the solutions primarily
depends on the instance and less on the query set. The synthetic traffic affects DIMACS Europe
more strongly thanOSMEurope. We suspect that this is because OSM ismodeled inmuch greater
detail and contains more shorter edges. In terms of running time, IPB-H is significantly faster
than IPB-E and IPF is significantly faster still, which is roughly what we expected. Conversely,
the heuristics find somewhat longer paths than the exact IPB-E algorithm and IPF appears to
find worse paths than IPB-H. However, one has to be careful interpreting these numbers as a
non-negligible amount of queries did not terminate with IPB-E and IPB-H. Because the length
increase numbers are averages over different sets, it is not immediately clear if the differences
appear because the heuristics find worse paths or because the heuristics find long solutions
where the exact algorithm did not finish within 10 seconds. For running times, the averages
are also difficult to interpret. They are heavily skewed by outliers and there is no reason to
assume a normal distribution. In fact, median running times for 1h queries of all algorithms
on all instances are all below 2ms. Clearly, drawing statistically sound conclusions from this

Evaluation Section 10.4

155

1 10 100 1000
Slowdown over fastest

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

1.0 1.5 2.0 2.5 3.0
Length increase factor over best found

Algorithm
IPB-E
IPB-H
IPF
opt

Figure 10.5: Relative performance profiles of our algorithms on all queries from Table 10.1.

experiment requires a closer look.
Figure 10.5 depicts performance profiles [DM02] for running times and obtained path lengths

on all queries from Table 10.1 combined. Investigating queries across all instances combined is
reasonable becausewe study the relative performance of the different algorithms per query. LetA
be the set of algorithms, Q the set of queries and obj(𝑎, 𝑞) denote the considered measurement
from the computation of 𝑎 ∈ A to answer 𝑞 ∈ Q. In our case, this is either the running
time or the length with respect to ℓv of the computed path. The performance ratio 𝑟 (𝑎, 𝑞) =

obj(𝑎,𝑞)
min {obj(𝑎′,𝑞) |𝑎′∈A} indicates bywhat factor𝑎 deviates from the best solution or the fastest running
time for the query 𝑞. The performance profile 𝜌𝑎 : [1,∞) → [0, 1], 𝑘 ↦→ | {𝑞∈Q |𝑟 (𝑎,𝑞)≤𝑘 } |

|Q | of
𝑎 is the fraction of queries for which 𝑎 is within a factor of 𝑘 of the best measurement. For
computations that were aborted after 10 seconds, obj(𝑎, 𝑞) = ∞. We also include the same
performance profiles separated per instance and query set in Appendix E. However, discussing
the results in such detail is beyond the scope of this chapter.

The running time performance profile in Figure 10.5 allows for some more nuanced observa-
tions: IPF is the fastest algorithm on about 60% of the queries and almost never more than 10
times slower than the fastest one. Surprisingly, IPB-H is also sometimes the fastest to answer a
query (in 43% of the queries) but it may also be up to 300 times slower than the fastest algorithm.
However, for 83% of all queries it stays within a factor of 10. The exact algorithm is never the
fastest but still within a factor of 10 for 61% of the queries. However, it may be several thousand
times slower than the fastest algorithm, even with the running time limited to 10 seconds.
The path length performance profile also yields useful insights. Since IPB-E is an exact

algorithm, its performance profile contains only a single data point, i.e. for all queries which
terminated successfully IPB-E finds the shortest path. The line for IPB-H is almost constant.
This means, there are only few queries where it does not find the best solution. Even when
it does not find the best solution, it is close to the best one, i.e. the maximum length increase
factor over the best solution is 1.36 and all other values are below 1.1. It is quite possible that

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

156

Table 10.2: Average performance of our implementations of IPB-E, IPB-H and IPF for different query
sets on main time-dependent instances with 𝜖 = 0.2. The Increase column denotes the length increase
with respect to ℓv of the obtained path over optℓv and includes only successful queries. We also include
the length increase of the shortest path in the smooth weight function optℓ as a trivial upper bound on
the length increase. The running time also includes the time of queries aborted after 10 seconds.

Live Increase [%] Running time [ms] Failed [%]
Traffic IPB-E IPB-H IPF optℓ IPB-E IPB-H IPF IPB-E IPB-H IPF

1h

Ger
– 0.01 0.13 114.03 233.81 86.4 36.5 5.9 0.00 0.00 0.0

10:21 0.01 0.18 0.23 1.18 106.1 18.6 8.3 0.00 0.00 0.0
15:41 0.02 0.78 1.13 2.88 1 032.1 166.1 14.4 0.08 0.01 0.0

Eur – 0.00 0.05 0.06 0.64 6.3 2.8 2.9 0.00 0.00 0.0
07:47 0.03 4.42 26.35 48.88 433.3 248.5 19.6 0.03 0.02 0.0

4h

Ger
– 0.01 0.05 0.06 0.57 480.1 53.7 43.9 0.02 0.00 0.0

10:21 0.01 0.07 0.08 0.72 594.9 68.5 49.1 0.02 0.00 0.0
15:41 0.02 0.28 0.34 1.26 2 158.8 297.3 78.7 0.17 0.01 0.0

Eur – 0.01 0.03 0.03 0.46 44.6 9.0 8.6 0.00 0.00 0.0
07:47 0.03 0.75 9.55 16.62 901.8 420.8 47.8 0.08 0.03 0.0

Ra
nd

om Ger
– 0.01 0.06 0.08 0.59 727.6 105.9 55.5 0.04 0.00 0.0

10:21 0.01 0.10 0.12 0.90 980.6 132.9 87.7 0.06 0.00 0.0
15:41 0.02 0.34 0.43 1.53 2 363.5 406.9 105.4 0.17 0.01 0.0

Eur – 0.01 0.03 0.03 0.40 191.9 39.6 27.3 0.01 0.00 0.0
07:47 0.02 0.14 3.82 8.45 1 282.7 480.2 172.3 0.08 0.03 0.0

IPB-H found the optimal solution even for some queries where IPB-E did not terminate. The
qualitative performance of IPF varies more strongly. It also finds the best solution on 81% of the
queries. More than 99% of the obtained solutions are within a factor of 1.2 to the best found. In
the worst case IPF found a path 1.96 times the length of the best one found by another algorithm.

In combination with the averages reported in Table 10.1 we can now draw solid conclusions
on the performance of the algorithms. IPF is the algorithm with the most stable running time.
Even though it is not always the fastest, it is never much slower than any other algorithm. It is
the only algorithm able to answer all queries in less than 10 seconds. In fact, it usually needs
only a few milliseconds and only up to several hundreds of milliseconds for extreme cases. It
sometimes pays for this with worse solution quality but is still very close to the best found
for the vast majority of queries. This makes it an algorithm suitable for practical applications.
IPB-H is also a very effective heuristic. It is drastically faster than the exact algorithm and
sometimes even faster than IPF. Its performance in terms of quality is much more stable than
IPF and often IPB-H will find the best path or something very close to it. The difference in
average length increase between IPB-E and IPB-H was not because IPB-H finds much worse

Evaluation Section 10.4

157

Table 10.3: Average performance of our implementations of IPB-E, IPB-H and IPF for different values of
𝜖 with 1h queries on OSM Europe with synthetic live traffic. The Increase column denotes the length
increase with respect to ℓv of the shortest smooth path over the shortest ℓv path. It includes only values
from successful queries. All other columns indicate average values over all queries, including the ones
terminated after 10 seconds.

Increase Iterations Blocked Running time [ms] Failed
𝜖 [%] paths A* UBS Total [%]

0.01
IPB-E 0.43 137.90 676.2 307.6 22.7 335.9 2.4
IPB-H 0.56 22.38 24.9 52.8 21.0 74.0 0.6
IPF 0.61 1.73 – – – 2.3 0.0

0.05
IPB-E 0.34 68.10 351.7 132.5 14.8 150.3 0.9
IPB-H 0.39 32.78 39.8 19.6 38.7 58.6 0.5
IPF 0.41 1.54 – – – 2.3 0.0

0.10
IPB-E 0.27 47.35 256.4 103.3 12.7 118.3 0.8
IPB-H 0.33 27.10 27.1 3.5 28.9 32.7 0.3
IPF 0.34 1.45 – – – 2.7 0.0

0.20
IPB-E 0.23 24.92 141.7 51.1 7.5 59.7 0.4
IPB-H 0.26 19.33 19.0 2.6 19.6 22.4 0.2
IPF 0.28 1.36 – – – 2.1 0.0

0.50
IPB-E 0.16 13.64 80.0 41.1 3.8 45.6 0.1
IPB-H 0.17 19.54 18.9 2.5 19.4 22.1 0.2
IPF 0.19 1.26 – – – 2.0 0.0

1.00
IPB-E 0.11 10.51 55.5 28.1 4.4 33.4 0.2
IPB-H 0.12 15.13 14.3 2.4 9.6 12.2 0.1
IPF 0.14 1.19 – – – 2.5 0.0

paths but because it is able to answer queries which IPB-E cannot answer. However, it still fails
to answer about 5% of all queries in less than 10 seconds. The running time of IPB-E varies even
more strongly. On the one hand, many easy queries can be answered in a few milliseconds, but
on the other hand, 25% of all queries cannot be answered in less than 10 seconds. The feasibility
of solving the problem to exactness with IPB-E strongly depends on the distance of queries and
on the smoothness of ℓv.
In Table 10.2, we report results for instances with time-dependent and combined dynamic

time-dependent volatile weights. The general trends are similar to the ones we observed in
Table 10.1 and Figure 10.5. IPB-E finds the shortest paths but is the slowest algorithm. IPF is
the fastest algorithm and can answer most queries even in interactive running time. However,
there are a few examples where the heuristic makes bad decisions and finds paths which are
significantly too long. IPB-H represents good trade-off in between. In contrast to the purely

Chapter 10 Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST

158

dynamic case, we observe that length increases generally smaller except for a few outliers with
IPF. This coincides with fewer failed queries and sometimes even faster average running times.
Apparently, the time-dependent weight functions are smoother which makes the problem easier.
We report the performance profiles for this experiment in Appendix E.

For our final experiment, we evaluate the performance of our algorithms with different
choices for 𝜖 with 1000 time-independent queries of 1h range on OSM Europe. Table 10.3 depicts
the results. This experiment was also performed in [DSS18] but with only 100 queries. Given
the observation from the previous experiment, it should be clear that reported averages allow
only for very rough comparisons. However, it is the only data available to compare against
related work. Also note that due to the presence of heavy outliers, performing too few queries
can distort the numbers drastically. For example, when we ran the same experiment with only
100 queries, the average running times of IPB-H were an order of magnitude faster.

We observe similar trends as the authors of [DSS18]. The smaller the choice of 𝜖 , the harder
the problem becomes. Consequently, the length increase, the number of iterations, the number
of blocked paths and the running time increase. However, for our implementation of IPB-H,
we measure slightly bigger path increases and slightly more iterations. Our implementation
of IPB-H achieves running times two orders of magnitude faster than the CRP-based IPB-H
implementation in [DSS18]. One reason for this is our UBS algorithm which only needs a
couple of milliseconds for all values of 𝜖 . In [DSS18], the UBS checking phase takes between
1.3 and 1.9 seconds. The CH-Potentials-based shortest path phase is also very efficient across
the entire range of 𝜖 values. Even with many blocked paths, the path lengths increase only
little and the CH-Potentials heuristic remains tight and yields good speedups. Our exact IPB-E
implementation is still an order of magnitude faster than the IPB-H implementation in [DSS18].

10.5 Conclusion
In this chapter, we studied the shortest smooth path problem and proved its NP-completeness.
We introduced a new algorithm for practically efficient UBS computation. This algorithm can
compute the exact UBS of typically occurring paths with very few shortest path computations.
It outperforms state-of-the-art exact UBS algorithms by around two orders of magnitude and
makes computing exact UBS values feasible in practice. Also, it can be used for other path
quality measures such as local optimality.

We adapted the existing IPB-H algorithm and realized it with our new UBS algorithm and A*
with CH-Potentials. This realization of IPB-H outperforms the original implementation by two
orders of magnitude. Also, we present necessary modifications to make the algorithm exact.
IPB-E is still about an order of magnitude faster than the CRP-based heuristic implementation.
As IPB-H and IPB-E are not always able to find solutions in reasonable time, we introduce
another heuristic, IPF. It can consistently find smooth paths even for random queries on massive
continental-sized instances in a few tenths of milliseconds. Finally, we demonstrated that with
IMP, smooth paths can even be computed efficiently in a time-dependent or combined dynamic
time-dependent scenario.

159

11
Efficient Route Planning with Tempo-
rary Driving Bans, Road Closures, and
Rated Parking Areas

Many European countries impose temporary driving bans for heavy vehicles. Driving may be
restricted during the night, on weekends, and on public holidays. Such bans may apply to the
whole road network of a country or parts of it. When routing a heavy vehicle from a source
to a destination, it is crucial to take these temporary driving bans into account. But it is not
only about heavy vehicles. Temporary closures of bridges, tunnels, border crossings, mountain
pass roads, or certain inner-city areas as well as closures due to roadworks may affect all road
users alike. In case of road space rationing in cities, the driving restriction may depend on the
license plate number. To sum up, temporary driving restrictions exist in different forms, and
the closing and re-opening times of a road segment must be considered in the route planning.
As a consequence of temporary driving restrictions, waiting times may be inevitable and

even last for hours. During such waiting hours, the vehicle must be parked properly, and thus
a suitable parking area has to be found. The driving time of the detour from and to such a
parking area should also be incorporated in the route planning. Unfortunately, the underlying
shortest (here: quickest) path problem becomes NP-hard if waiting is only allowed at dedicated
locations as we showed in Section 3.2.1. This is because in this case, the FIFO property is not
satisfied, that is, the property that a driver cannot arrive earlier by departing later. Thus, our
first research question for this chapter is how we can consider dedicated waiting locations
without making the underlying problem NP-hard. It is our aim to obtain a feasible running time
even for long-distance routes.

In practice, we often find that small parking areas without any facilities like public toilets or
restaurants cause the least detour. So an algorithm that looks for the shortest route, that is, a
route with the shortest driving time, would select small parking areas in these cases, provided
that waiting is necessary. But the longer the waiting time is, the more vital a secure and pleasant

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

160

place for waiting becomes. So it may be important for the driver that nearby facilities of the
parking area and their quality are somehow taken into account as well. How to do this is our
second research question.
In our setting, a single-criterion objective is not practical. A driver may not always be in

favor of the shortest route if that means to spend a very long time waiting and to arrive at
the destination considerably later than on the quickest route, that is, a route with the earliest
arrival at the destination. Conversely, a driver may not always be interested in a quickest route
if that route means to take an unjustified long detour around temporarily closed road segments
that could be avoided by waiting in a comfortable place. In other words, an early arrival at the
destination (and thus low opportunity costs), little driving time (and thus low fuel costs), and
pleasant waiting conditions (and thus high driver satisfaction) are competing criteria. Solutions
can differ significantly with regards to these criteria. How to deal with this and find reasonable
routes is the third research question.

In this chapter, we answer these questions as follows:

1. We present a model in which waiting is allowed at any vertex and any edge at any time in
the road graph but waiting on edges and waiting on those vertices that do not correspond
to parking areas is penalized. This is done by assigning a cost to time spent waiting there.
Since driving comes at a price, too, we also assign a cost per time unit spent driving.
As we will show, we can find a route with least costs in polynomial time if both cost
parameters are set to the same value.

2. We assume that the nearby facilities of a parking area and their quality can be expressed
by some single rating number. To take account of this, we assign a waiting cost to every
corresponding vertex as well. This cost is lower than the cost of waiting anywhere else
in the road graph, and it is even lower the higher the rating of the parking area is.

3. We return routes that are Pareto-optimal with regards to arrival time at the destination
on the one hand and total costs on the other. Despite the potentially larger output, our
algorithm still runs in polynomial time under the same condition as before.

RelatedWork. Variants of our problem have been studied before. In [DV00], a related problem
is discussed where vertices (not edges) have time windows and waiting is associated with a
cost. In [PG13], an overview over exact approaches to solving shortest path problems with
resource constraints is given. Time windows on vertices are a specific kind of constraint in
this framework. More specialized models for truck routing have been proposed. The authors
of [TWB18] study the problem of planning a single break, considering driving restrictions and
provisions on driver breaks. They aim to find only the route with the earliest arrival.

Attribution. This chapter is based on joint work with Alexander Kleff, Frank Schulz and Jakob
Wagenblatt. The results have been published at SEA 2020 [KSWZ20]. A preliminary study on
the topic can be found in the Bachelor’s thesis of Jakob Wagenblatt [Wag19].

Problem Section 11.1

161

Contribution. We present a novel model that helps answer our three research questions in
the context of temporary driving restrictions and dedicated waiting locations. To the best of our
knowledge, this is the first unifying approach that gives answers to all three research questions.
Our theoretical analysis reveals that our model can be solved to optimality in polynomial
time, given certain restrictions on the parameterization. The experimental evaluation of our
implementation demonstrates a practical running time. Many queries within continental-sized
road networks can be answered within milliseconds. Except some pathological cases, even
complex queries with four or more Pareto-optimal solutions are solved in less than a second.

Outline. In Section 11.1, we give a formal definition of the routing problem at hand. In
Section 11.2, we present an exact algorithm for this problem. In Section 11.3, we analyze the
complexity of the problem and show that our algorithm runs in polynomial time if the costs
for driving are the same as for waiting anywhere else than at a dedicated waiting location. In
Section 11.4, we describe techniques to speed up the computation. In Section 11.5, we present
the main results of our experiments. Finally, we conclude in Section 11.6.

11.1 Problem
A problem instance comprises a road graph with ban intervals on edges, driving costs and location-
dependent waiting costs (or road graph with ban intervals and costs for short) as well as a set
of queries. We consider this problem in a two-phase setup where the graph is given during
preprocessing and the queries are provided online in the query phase. The road graph is
characterized by the following attributes:

• A set V of 𝑛 vertices and a set E of𝑚 directed edges.

• A mapping B that maps each edge 𝑒 ∈ E to a set of disjoint time intervals, where the
edge is considered to be closed during each interval. Precisely, for any ban interval

[𝜏closed, 𝜏open) ∈ B(𝑒) of an edge 𝑒 , 𝜏open denotes the first point in time after 𝜏closed where
the edge is open again. Here and in the following, all points in time are integers and the
length of an interval is denoted by | [𝜏closed, 𝜏open) | and equals 𝜏open − 𝜏closed > 0. During
such a time span, a vehicle on the corresponding road segment must not move, i.e. it
cannot enter the edge or when already on it, it must remain at its current location even if
that would be dangerous or illegal. We denote the total number of ban intervals as 𝑏.

• An edge length function ℓ : E → ℕ that maps each edge 𝑢𝑣 ∈ E to the time ℓ (𝑢𝑣) that it
takes to drive from 𝑢 to 𝑣 , provided the edge is open.

• A mapping 𝑝 that maps each vertex to a rating in {0, 1, . . . , 𝑟 } with 𝑟 ≤ 𝑛. Rating 0 means
unrated, that is, it is assumed that it is highly difficult, dangerous, and not allowed to park
the vehicle there. In contrast to an unrated location, we call a vertex 𝑣 with 𝑝 (𝑣) > 0 a
parking location.

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

162

• A parameter set of abstract costs, consisting of 𝛿 ∈ ℚ≥0, the cost per unit of driving
time, and 𝜔𝑖 ∈ ℚ≥0 for all 𝑖 from 0 to 𝑟 , the cost per time unit of waiting on a vertex
with rating 𝑖 . Edges are always unrated so waiting there costs 𝜔0 per time unit. W.l.o.g.
𝜔𝑖 < 𝜔𝑖−1 holds for all 𝑖 between 1 and 𝑟 , that is, we assume that waiting on vertices with
a higher rating costs less than waiting on those with a lower rating.

A 𝑢𝑣-route is a triple (𝑃,𝐴, 𝐷) of three sequences of the same length 𝑘 = |𝑃 | = |𝐴| = |𝐷 |.
Here, 𝑃 is the sequence of vertices along the route. It describes a (not necessarily simple) path
in the graph that starts at 𝑢 and ends in 𝑣 , that is, 𝑒𝑖 = (𝑃 [𝑖], 𝑃 [𝑖 + 1]) ∈ E for all 1 ≤ 𝑖 < 𝑘

and 𝑃 [1] = 𝑢 and 𝑃 [𝑘] = 𝑣 . The other two sequences 𝐴 and 𝐷 denote the arrival times and
the departure times from the respective vertices, where 𝐴[𝑖] ≤ 𝐷 [𝑖] for all 1 ≤ 𝑖 ≤ 𝑘 and
𝐴[𝑖 + 1] − 𝐷 [𝑖] ≥ ℓ (𝑒𝑖) for all 1 ≤ 𝑖 < 𝑘 holds.

A query comprises a source 𝑠 ∈ V and a destination 𝑡 ∈ V as well as a planning horizon 𝐻 . The
latter is defined as the time interval between an earliest departure time 𝜏dep from 𝑠 and a latest
arrival time 𝜏max at 𝑡 . Waiting costs arise as soon as the planning horizon opens. For a given
query, we look for feasible 𝑠𝑡-routes. A route is feasible with respect to the planning horizon
if 𝐴[1] = 𝜏dep and 𝐷 [𝑘] ≤ 𝜏max. In addition, ban intervals must be taken account of. Let 𝐼𝑖 =
[𝐷 [𝑖], 𝐴[𝑖 + 1]) be the time interval in which the edge 𝑒𝑖 = (𝑃 [𝑖], 𝑃 [𝑖 + 1]) of the route’s path is
traversed. A route is feasible with respect to the ban intervals if

∑
𝐵∈B (𝑒𝑖) |𝐼𝑖 ∩ 𝐵 | ≤ |𝐼𝑖 | − ℓ (𝑒𝑖)

for all 1 ≤ 𝑖 < 𝑘 . Here,
∑

𝐵∈B (𝑒𝑖) |𝐼𝑖 ∩ 𝐵 | is the time during which the edge between 𝑃 [𝑖] and
𝑃 [𝑖 + 1] is closed while the edge is being traversed. Thus, the time spent on each edge must be
greater or equal than the driving time plus the time where moving on the edge was not allowed.

Let travel time include driving time and waiting time. The travel time costs of a route are the
sum of the waiting time costs and the driving time costs. So given a route of length 𝑘 , the travel
time costs are

𝑘∑︁
𝑖=1

𝜔𝑝 (𝑃 [𝑖]) · (𝐷 [𝑖] −𝐴[𝑖]) +
𝑘−1∑︁
𝑖=1
(𝜔0 · (𝐴[𝑖 + 1] − 𝐷 [𝑖] − ℓ (𝑒𝑖)) + 𝛿 · ℓ (𝑒𝑖)) ,

where we use 𝑒𝑖 = (𝑃 [𝑖], 𝑃 [𝑖 + 1]). We say an 𝑠𝑡-route is Pareto-optimal (or simply optimal) if it
is feasible and if its travel time costs are less or its arrival time at 𝑡 is earlier or equality holds
in both cases compared to any other feasible 𝑠𝑡-route. For a query, the objective is to find a
maximal set of (Pareto-)optimal 𝑠𝑡-routes such that no two routes in the set have both the same
arrival time at 𝑡 and the same travel time costs.

11.2 Algorithm

The algorithm maintains a priority queue. Each entry of the queue consists of a vertex and a
point in time within the planning horizon as key. We say a vertex is visited at a certain point in
time whenever we remove the top entry from the queue, that is, an entry with the earliest time
among the entries in the queue. At every vertex 𝑣 ∈ V , we store a time-dependent function

Algorithm Section 11.2

163

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4
5
6
7

Planning horizon

Tr
av
el
tim

e

(a) Travel time function 𝑓 tt𝑒 of edge 𝑒 with ban intervals
(grey) and driving time ℓ (𝑒) = 3. The latest departure to
be at 𝑣 at time 𝜏 is 𝜏 − 𝑓 tt𝑒 (𝜏).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
6
7
8
9
10
11
12

Planning horizon

Tr
av
el
tim

e
co
st

(b) Cost profile of vertex 𝑣 after linking, that is, after
considering travel time (dashed) and waiting time at 𝑣
(solid).

Figure 11.1: Computing the cost profile of a vertex 𝑣 . Let 𝑣 be adjacent to the source 𝑠 via an edge 𝑒 = 𝑠𝑣

with three ban intervals and a driving time ℓ (𝑒) of 3. The corresponding travel time function is given in
Figure 11.1a. It is infinite between 0 = 𝜏dep and 3 = ℓ (𝑒). In Figure 11.1b, we see the cost profile 𝑓 c𝑣 after
considering the travel time along the edge (dashed) and after considering waiting at 𝑣 (solid). Here, the
assumed cost parameters are 𝜔𝑝 (𝑠) = 0, 𝜔𝑝 (𝑣) = 0.5, and 𝛿 = 𝜔0 = 2, where 𝜔𝑝 (𝑠) = 0 implies that the
cost profile 𝑓 c𝑠 at the source is 0 over the whole planning horizon.

𝑓 c𝑣 : 𝐻 → ℚ≥0 ∪ {∞}. It maps a point in time 𝜏 within the planning horizon 𝐻 to an upper
bound on the minimum travel time cost over all 𝑠𝑣-routes that end in 𝑣 at time 𝜏 . We call this
function cost profile of 𝑣 or, more general, label of 𝑣 . The algorithm works in a label correcting
manner in the sense that a vertex may be visited multiple times, albeit at different times within
the planning horizon.
Before we describe the phases of the algorithm in greater detail, we introduce an auxiliary

time-dependent function 𝑓 tt𝑒 for every edge 𝑒 ∈ E . It maps a time 𝜏 at the head 𝑣 of an edge
𝑒 = 𝑢𝑣 to the shortest travel time that it takes to traverse the edge from 𝑢 to 𝑣 completely and be
at 𝑣 at time 𝜏 , possibly including waiting time. That is, for a time 𝜏 at 𝑣 , 𝑓 tt𝑒 (𝜏) is the minimum
duration 𝑑 such that 𝑑 −∑𝐵∈B (𝑒) | [𝜏 −𝑑, 𝜏) ∩𝐵 | ≥ ℓ (𝑒) holds if such a 𝑑 exists, and∞ otherwise.
In other words, 𝜏 − 𝑓 tt𝑒 (𝜏) is the latest departure time from 𝑢 in order not to arrive at 𝑣 later
than at time 𝜏 . An example is given in Figure 11.1a.

In the initialization phase of the algorithm, we set 𝑓 c𝑠 (𝜏) = 𝜔𝑝 (𝑠) · (𝜏 − 𝜏dep) for all 𝜏 ∈ 𝐻 . For
every other 𝑣 ∈ V \ {𝑠}, we set 𝑓 c𝑣 (𝜏) = ∞ for all 𝜏 ∈ 𝐻 . Furthermore, we insert the source 𝑠
with key 𝜏dep into the priority queue.

As long as the queue is not empty, we are in the main loop of the algorithm. In every iteration
of the main loop, we remove the top entry from the queue. Let us suppose we visit a vertex 𝑢 at
time 𝜏visit ≥ 𝜏dep. Then, we check for every edge 𝑒 = 𝑢𝑣 going out of 𝑢 whether we can improve
the cost profile 𝑓 c𝑣 of 𝑣 . We do so in three steps. In the first step, we consider the travel time
along the edge and set

𝑓 c𝑣 (𝜏) = 𝑓 c𝑢 (𝜏 − 𝑓 tt𝑢𝑣 (𝜏)) + 𝛿 · ℓ (𝑢𝑣) + 𝜔0 · (𝑓 tt𝑢𝑣 (𝜏) − ℓ (𝑢𝑣)) (11.1)

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

164

for all 𝜏 with 𝜏visit + 𝑓 tt𝑢𝑣 (𝜏) ≤ 𝜏 ≤ 𝜏max. For all other 𝜏 ∈ 𝐻 we set 𝑓 c𝑣 (𝜏) = ∞. In the second step,
we consider waiting at 𝑣 at cost 𝜔𝑝 (𝑣) per time unit and set

𝑓 c𝑣 (𝜏) = min{𝑓 c𝑣 (𝜏 ′) + 𝜔𝑝 (𝑣) · (𝜏 − 𝜏 ′) | 𝜏dep ≤ 𝜏 ′ ≤ 𝜏} (11.2)

for all 𝜏 ∈ 𝐻 . An example of the first two steps is illustrated in Figure 11.1b. Finally, in the third
step, we compare 𝑓 c𝑣 and 𝑓 c𝑣 . Let 𝜏∗ be the earliest point in time such that 𝑓 c𝑣 (𝜏∗) is less than
𝑓 c𝑣 (𝜏∗) if such a time 𝜏∗ exists. Only if it exists, we set 𝑓 c𝑣 (𝜏) to the minimum of 𝑓 c𝑣 (𝜏) and 𝑓 c𝑣 (𝜏)
for all 𝜏∗ ≤ 𝜏 ≤ 𝜏max. Furthermore, we insert vertex 𝑣 with key 𝜏∗ into the priority queue or
decrease the key if 𝑣 is already contained.
When the priority queue is empty, we enter the finalization phase of the algorithm. We say

a time-cost-pair (𝜏, 𝑓 c𝑡 (𝜏)) with 𝜏 ∈ 𝐻 and 𝑓 c𝑡 (𝜏) < ∞ is Pareto-optimal if there is no time 𝜏 ′
with 𝜏dep ≤ 𝜏 ′ < 𝜏 and 𝑓 c𝑡 (𝜏 ′) ≤ 𝑓 c𝑡 (𝜏). In the finalization phase, we extract an 𝑠𝑡-route for
every Pareto-optimal time-cost-pair. So let such a time-cost-pair (𝜏, 𝑓 c𝑡 (𝜏)) be given. In order to
find a corresponding route (𝑃,𝐴, 𝐷), we initially push 𝑡 and 𝜏 and 𝜏 to the front of the (empty)
sequences 𝑃 and 𝐴 and 𝐷 , respectively. The following is done iteratively until we reach the
source, that is, 𝑃 [1] = 𝑠 holds. First, we look for an incoming edge 𝑒 = (𝑢, 𝑃 [1]) of 𝑃 [1] and a
departure time 𝜏 from 𝑢 with

𝑓 c𝑢 (𝜏) + 𝛿 · ℓ (𝑒) + 𝜔0 · (𝑓 tt𝑒 (𝐴[1]) − ℓ (𝑒)) = 𝑓 c
𝑃 [1] (𝐴[1])

which must exist. We push 𝑢 and 𝜏 to the front of 𝑃 and 𝐷 , respectively. Then, we push the
earliest time 𝑡 ≤ 𝐷 [1] such that

𝑓 c
𝑃 [1] (𝜏) + 𝜔𝑝 (𝑃 [1]) · (𝐷 [1] − 𝜏) = 𝑓 c

𝑃 [1] (𝐷 [1])

holds to the front of the arrival time sequence 𝐴, and continue with the next iteration. This
concludes the description of the finalization phase and thus the whole algorithm.
For the correctness of the algorithm it is important that the upper bound 𝑓 c𝑣 (𝜏) on the

minimum travel time cost is tight for all 𝜏 ≤ 𝜏visit and all 𝑣 ∈ V whenever we visit a vertex
at time 𝜏visit. After the main loop, it is tight for every 𝜏 ∈ 𝐻 and all 𝑣 ∈ V , especially for 𝑡 .
This can be proven by induction on the time of visit. The time of visiting a vertex increases
monotonically because whenever a vertex is inserted into the queue or its key is decreased, the
(new) value of that key can only be later than the current time of visit.

11.3 Analysis

In this section, we first show the intractability of the general problem. Then, we restrict the
problem by requiring the driving cost 𝛿 to be equal to the unrated waiting cost 𝜔0, and prove
that our algorithm solves the restricted problem in polynomial time.

Analysis Section 11.3

165

𝑣1 𝑣2 𝑣3 𝑣𝑛 𝑣𝑛+1 𝑡

2𝑥1

0

2𝑥2

0

2𝑥𝑛

0
1
[0, 𝑥)

Figure 11.2: Transformation of a Partition instance consisting of 𝑛 numbers 𝑥𝑖 into a road graph
with temporary driving bans. The last edge is closed before 𝑥 =

∑𝑛
𝑖=1 𝑥𝑖 . All vertices have rating 0. The

graph has parallel edges and edges with driving time 0 for the sake of convenience. This can be avoided
by replacing each lower blue edge by two edges with driving time 1, adding 2 to the driving time of each
upper red edge, and adding 2𝑛 to 𝑥 .

11.3.1 Intractability of the General Problem

The first two theorems show the intractability of the general problem if 𝛿 ≠ 𝜔0. Parking
locations are not used in the proofs, so already the simplified problem without parking locations
is intractable if 𝛿 ≠ 𝜔0.

Theorem 11.1. If 𝛿 < 𝜔0 then it is NP-complete to decide whether there is a feasible route with

travel time costs less than or equal to a given threshold 𝑘 .

Proof. It can be verified in polynomial time if a route is feasible and has travel time costs less
than or equal to 𝑘 , so the problem is in NP. To show the NP-completeness we reduce from the
weakly NP-complete [GJ79] Partition problem: Given a set of 𝑛 numbers 𝑥𝑖 , we construct
in polynomial time a road graph with time windows and driving times as shown in Figure 11.2.
The only time window is on the last edge which is closed up to time 𝑥 =

∑𝑛
𝑖=1 𝑥𝑖 . Let 𝛿 < 𝜔0

and set the threshold for the travel time cost to 𝑘 = 𝛿 (𝑥 + 1).
If there is a partition of the 𝑥𝑖 into two subsets S1 and S2 with the same sum 𝑥/2 then there

is a route with travel time costs 𝑘 : For 𝑣𝑖𝑣𝑖+1 select the upper red edge with driving time 2𝑥𝑖
if 𝑥𝑖 ∈ S1, and the lower blue edge with driving time 0 if 𝑥𝑖 ∈ S2. Without waiting this route
arrives exactly at 𝑣𝑛+1 at time 𝑥 and hence arrives at time 𝑥 + 1 at the destination 𝑡 with travel
time cost 𝛿 (𝑥 + 1) = 𝑘 .

On the other hand, if there is a route with travel time cost 𝑐 ≤ 𝑘 , there is a valid partition of
the 𝑥𝑖 : Since the last edge is traversable not earlier than time 𝑥 and 𝛿 < 𝜔0, any waiting time
on the route implies 𝑐 > 𝛿 (𝑥 + 1) = 𝑘 , so there can be no waiting time included in the route,
𝑐 = 𝛿 (𝑥 + 1), and the driving time of the route is 𝑥 + 1. Set S1 to the 𝑥𝑖 of all upper red edges of
the route and S2 to the remaining 𝑥𝑖 . The last edge has driving time 1, so the driving time from
𝑣1 to 𝑣𝑛+1 equals 𝑥 and consists solely of the driving times of the upper red edges in the route.
We conclude that

∑
S1 2𝑥𝑖 = 𝑥 , which implies

∑
S1 𝑥𝑖 = (

∑𝑛
𝑖=1 𝑥𝑖)/2 =

∑
S2 𝑥𝑖 . □

Theorem 11.2. If 𝛿 > 𝜔0 then the number of Pareto-optimal routes can be exponential in the

number of vertices.

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

166

𝑣1 𝑣2 𝑣3 𝑣4 𝑣𝑖 𝑣𝑖+1 𝑣𝑛+1

2
[1, 1 + 𝑥)

𝑥

4

[3 + 𝑥 ,
3 + 3𝑥)

2𝑥

8

[7 + 3𝑥 ,
7 + 7𝑥)

4𝑥

2𝑖
[𝑏𝑖 , 𝑏𝑖 + 2𝑖−1𝑥)

2𝑖−1𝑥

Figure 11.3: A graph with exponentially many Pareto-optimal routes if 𝛿 > 𝜔0. The ban interval of an
upper red edge (𝑣𝑖 , 𝑣𝑖+1) begins at 𝜏closed𝑖 = (2𝑖 − 1) + (2𝑖−1 − 1)𝑥 . There is no parking location in this
graph, so all vertices have rating 0. The graph has parallel edges for the sake of convenience, they can be
avoided by replacing each lower blue edge by two edges and splitting the driving time.

Proof. Given 𝛿 > 𝜔0, let 𝑥 =

⌈
2𝛿

𝛿−𝜔0

⌉
+ 1 be a possibly large constant. Consider the graph shown

in Figure 11.3 with 𝑛 + 1 vertices and 2𝑛 edges. The graph has no parking locations, so waiting
costs are independent of the location. Given a path, a route with that path which arrives as
soon as possible has also minimal travel time cost.

In order to calculate the earliest possible arrival time of a route with a given path we assign
every 𝑣1𝑣𝑘+1-path a number 𝑦 ∈ ℤ≥0 with 0 ≤ 𝑦 < 2𝑘 : In the binary representation of 𝑦
beginning with the least significant digit the 𝑖-th digit is 1 if and only if in the path the vertices
𝑣𝑖 and 𝑣𝑖+1 are connected by the upper red edge. Let 𝑦 be the ones’ complement of 𝑦 , so
𝑦 + 𝑦 = 2𝑘 − 1. With this representation of 𝑦 and assuming that for upper red edges always a
waiting time for the whole duration of the ban interval is required, the earliest possible arrival
time at 𝑣𝑘+1 is

arrival(𝑦) = 𝑦𝑥 + 𝑦 (2 + 𝑥) = (𝑦 + 𝑦)𝑥 + 2𝑦 = (2𝑘 − 1)𝑥 + 2𝑦 (11.3)

By induction we show that whenever an upper red edge is used in the path, waiting the whole
ban interval is required: For 𝑘 = 1 the path consists of one edge and the departure from 𝑣1 is at
time 0. If 𝑦 = 0 the edge is the lower blue edge with driving time 𝑥 and the arrival at 𝑣2 is at
time 𝑥 . If 𝑦 = 1 the edge is the upper red edge with driving time 2, and the ban interval starts at
time 1 during traversal of the edge. A waiting time of 𝑥 is required, and the arrival at 𝑣2 is at
time 2 + 𝑥 . Assume now that the proposition holds for 𝑣1𝑣𝑘+1-paths with 𝑘 edges and consider a
𝑣1𝑣𝑘+2-path with 𝑘 + 1 edges. If the last edge is the lower blue edge there is nothing to show,
so further assume the last edge connecting 𝑣𝑘+1 and 𝑣𝑘+2 is the upper red edge. According to
Equation 11.3 the arrival at 𝑣𝑘+1 is between (2𝑘 − 1)𝑥 and (2𝑘 − 1)𝑥 + 2𝑘+1 − 2. The driving time
for (𝑣𝑘+1, 𝑣𝑘+2) is 2𝑘+1 and the ban interval begins at 𝜏closed𝑘+1 = (2𝑘+1 − 1) + (2𝑘 − 1)𝑥 . Hence,
in all cases during the traversal of the edge the ban interval begins.
The travel time cost of the route can be calculated as follows. A lower blue edge 𝑣𝑖𝑣𝑖+1 has

only driving cost of 2𝑖𝛿𝑥 . An upper red edge 𝑣𝑖𝑣𝑖+1 has driving cost 2𝑖+1𝛿 and waiting cost
2𝑖𝜔0𝑥 :

Analysis Section 11.3

167

cost(𝑦) = 𝑦𝛿𝑥 + 2𝑦𝛿 + 𝑦𝜔0𝑥

= (2𝑘 − 1 − 𝑦)𝛿𝑥 + 2𝑦𝛿 + 𝑦𝜔0𝑥

= (2𝑘 − 1)𝛿𝑥 − 𝑦𝛿𝑥 + 2𝑦𝛿 + 𝑦𝜔0𝑥

= (2𝑘 − 1)𝛿𝑥 + 𝑦 (2𝛿 − 𝑥 (𝛿 − 𝜔0))

(11.4)

Let 𝑦1 and 𝑦2 with 𝑦1 < 𝑦2 be the assigned numbers of two arbitrary 𝑣1𝑣𝑛+1-paths and
consider corresponding routes with the earliest possible arrival time and travel time costs as
calculated above. From Equation 11.3 it follows directly that arrival(𝑦1) < arrival(𝑦2). By
definition of 𝑥 , we have 2𝛿 − 𝑥 (𝛿 − 𝜔0) < 0 and together with Equation 11.4 it follows that
cost(𝑦1) > cost(𝑦2). This means that each of the 2𝑛 routes is Pareto-optimal because compared
to any other route either the arrival time is earlier or the travel time cost is lower. □

11.3.2 Tractable Problem Variant

For the remaining analysis we assume 𝛿 = 𝜔0. In the setting without parking locations, there is
only one optimal solution, since the quickest solution has also the least cost. Hence, this setting
is a single-criterion shortest path problem with time-dependent edge weights that fulfill the
FIFO property and can be solved in polynomial time with a time-dependent variant of Dijkstra’s
algorithm [Dre69], and also our algorithm reduces to such a time-dependent Dijkstra variant
and has polynomial running time. Now we turn to the setting 𝛿 = 𝜔0 with parking locations
and show that it is still tractable.

Cost profiles are piecewise linear functions. An important aspect of our polynomial time proof
is to count the non-differentiable points of the profiles. The running time of each profile opera-
tion of our algorithm is linear in the number of non-differentiable points of the involved profiles.
These points are either convex, concave, or discontinuous, meaning an environment around such
a point exists in which the profile is convex or concave or discontinuous, respectively. In a
discontinuous point, a profile is always jumping down.

The non-differentiable points in the cost profiles are induced by the travel time functions. In
our example of Figure 11.1a, the convex points are {4, 8, 11}, the concave points are {6, 9, 12},
and the discontinuous points are {10, 13, 15}. For a travel time function 𝑓 tt𝑒 of an edge 𝑒 , we can
assign a convex point 𝜏 to the beginning of a ban interval in 𝜏 , a concave point 𝜏 to the end of a
ban interval in 𝜏 , and a discontinuous point 𝜏 to the end of a ban interval in 𝜏 − 𝑓 tt𝑒 (𝜏). From
this initial assignment, we can derive a ban interval assignment of the convex or discontinuous
points of cost profiles. We omit to count the number of concave points of a cost profile because
every gradient of a piece must be in {𝜔0, . . . , 𝜔𝑟 }, so the number of consecutive concave points
in a cost profile is limited by 𝑟 .
Initially, a profile 𝑓 c𝑣 of a vertex 𝑣 has no convex or discontinuous points. Such points may

be introduced in the third step of an iteration of the algorithm when the auxiliary profile 𝑓 c𝑣 is
merged into 𝑓 c𝑣 . In the second step of an iteration, no new convex or discontinuous points can

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

168

arise in 𝑓 c𝑣 , so all such points must be created in 𝑓 c𝑣 in the first step. Since 𝛿 = 𝜔0, 𝑓 c𝑣 (𝜏) is set
to 𝑓 c𝑢 (𝜏 − 𝑓 tt𝑒 (𝜏)) + 𝛿 · 𝑓 tt𝑒 (𝜏) (compare Equation 11.1) for some edge 𝑒 = 𝑢𝑣 in this step. If 𝜏𝑣 is
a convex or discontinuous point of 𝑓 c𝑣 , then 𝑓 tt𝑒 must be convex or discontinuous in the same
point in time, or 𝑓 c𝑢 must be convex or discontinuous in 𝜏𝑢 = 𝜏𝑣 − 𝑓 tt𝑒 (𝜏𝑣). In the former case, 𝜏𝑣
inherits the assignment of the same point in time in 𝑓 tt𝑒 , whereas in the latter case, 𝜏𝑣 inherits
the assignment of 𝜏𝑢 in 𝑓 c𝑢 . Since the cost profiles change during the algorithm, we do not only
assign a ban interval to every convex or discontinuous point but also an iteration. Again, in
the former case, 𝜏𝑣 is assigned the current iteration, whereas in the latter case, 𝜏𝑣 inherits the
iteration assignment of 𝜏𝑢 in 𝑓 c𝑢 .

Lemma 11.3. If 𝛿 = 𝜔0 then a cost profile after iteration 𝑖 has at most 𝑖𝑏 convex and at most 𝑖𝑏

discontinuous points.

Proof. In the following, we denote the state of the profile 𝑓 c𝑣 after iteration 𝑖 by 𝑓 c𝑖,𝑣 . Let 𝜏𝑣 be a
convex or discontinuous point of 𝑓 c𝑖,𝑣 that is assigned both to an iteration 𝑘 and to a ban interval
of some edge with head 𝑥 . We can follow the inheritance relation until we finally reach a convex
or discontinuous point 𝜏𝑥 in 𝑓 c

𝑘,𝑥
. By induction, we have 𝑓 c𝑖,𝑣 (𝜏𝑣) = 𝑓 c

𝑘,𝑥
(𝜏𝑥) + 𝛿 · (𝜏𝑣 − 𝜏𝑥). Now

suppose there are two convex or two discontinuous points 𝜏1𝑣 < 𝜏2𝑣 in the profile 𝑓 c𝑖,𝑣 that are
assigned to the same ban interval and the same iteration 𝑘 , so they can be traced back to the
same point 𝜏𝑥 in 𝑓 c

𝑘,𝑥
. Then the previous observation implies that 𝑓 c𝑖,𝑣 (𝜏2𝑣) − 𝑓 c𝑖,𝑣 (𝜏1𝑣) = 𝛿 · (𝜏2𝑣 −𝜏1𝑣)

holds, that is, the profile 𝑓 c𝑖,𝑣 must contain a piece with gradient 𝑑 that contains both 𝜏1𝑣 and 𝜏2𝑣 .
But then 𝜏2𝑣 can neither be convex nor discontinuous. Hence, two convex or two discontinuous
points must differ in their assigned ban interval or their assigned iteration and there can only
be 𝑖𝑏 discontinuous and convex points, respectively. □

Lemma 11.4. If 𝛿 = 𝜔0 then the total number of iterations is at most 2𝑛(𝑏 (𝑟 + 1) + 1).

Proof. Similarly to the proof of Lemma 11.3, we show that every vertex is visited at most O(𝑟𝑏)
times. For this, we uniquely assign the elements of the priority queue to the start or end of a
ban interval. When a vertex is inserted into the priority queue the key 𝜏∗ is the earliest point in
time such that 𝑓 c𝑣 (𝜏∗) < 𝑓 c𝑣 (𝜏∗). Such a 𝜏∗ always coincides with a non-differentiable point of a
cost profile, though this point may not necessarily be included in the final cost profile. As the
number of concave points between two convex or discontinuous points is at most 𝑟 , we only
track priority queue elements induced by convex or discontinuous points. Additionally, there is
one first point of each profile without an assignment to a ban interval.
To assign the points, we distinguish several cases depending on the time 𝜏∗ − 1:

• If 𝑓 c𝑣 is∞ at 𝜏∗ − 1 then (𝜏∗, 𝑓 c𝑣 (𝜏∗)) is the new first point of the resulting profile at 𝑣 . Due
to the correctness of the algorithm, the queue element for the previous first point is still
in the queue. It will be updated and its key decreased.

• Otherwise, if 𝑓 c𝑣 (𝜏∗ − 1) > 𝑓 c𝑣 (𝜏∗) and there is a jump discontinuity in 𝑓 c𝑣 (𝜏∗) then there
is a corresponding ban interval. We assign 𝜏∗ to the end of that corresponding ban

Analysis Section 11.4

169

interval. This also covers that case that 𝑓 c𝑣 (𝜏∗ − 1) = ∞. In this case a corresponding ban
interval has to exist, too. For contradiction, assume that no such ban interval exists. Thus,
waiting is never beneficial and the entire time was spent driving and 𝑓 c𝑣 (𝜏∗) = 𝛿 (𝜏∗−𝜏dep).
However, by definition 𝑓 c𝑣 (𝜏∗) < 𝑓 c𝑣 (𝜏∗) which is a contradiction since 𝛿 (𝜏∗ − 𝜏dep) is the
maximum possible cost value at 𝜏∗. Thus, a ban interval has to exist and can be used for
the assignment.

• Otherwise, if 𝑓 c𝑣 (𝜏∗ − 1) > 𝑓 c𝑣 (𝜏∗ − 1) then there is a concave point between 𝜏∗ − 1 and 𝜏∗.

• Otherwise, if 𝑓 c𝑣 (𝜏∗− 1) = 𝑓 c𝑣 (𝜏∗− 1) then 𝜏∗− 1 is either a concave point of 𝑓 c𝑣 or a convex
point of 𝑓 c𝑣 . In the case of a convex point, we assign 𝜏∗ to the start of the corresponding
ban interval. Note that the first piece of the resulting profile from 𝜏∗ − 1 to 𝜏∗ has an
incline less than 𝑑 .

We show by contradiction that a vertex at time 𝜏visit which is assigned to a specific start or
end of a ban interval is visited only once: Assume a vertex is visited again at 𝜏2 with the same
assignment as a previous visit at 𝜏1. Due to the correctness of the algorithm all cost profiles
up to 𝜏2 are correct. If the points are assigned to the same start of a ban interval, we have
𝑓 c𝑣 (𝜏2 − 1) = 𝑓 c𝑣 (𝜏1 − 1) + 𝑑 (𝜏2 − 𝜏1). This is a contradiction to the remark above that the
incline at 𝜏1 − 1 is less than 𝑑 . If the points are assigned to the same end of a ban interval, we
have 𝐶𝑣 (𝜏2) = 𝑓 c𝑣 (𝜏1) + 𝑑 (𝜏2 − 𝜏1). If the incline at 𝜏1 was less than 𝑑 , this leads to the same
contradiction as in the previous case. If the incline at 𝜏1 was 𝑑 , we distinguish two cases: Either
𝜏1 was inserted into the queue before 𝜏2. This is a contradiction because the cost at 𝜏2 was not
improved and 𝜏2 would not have been inserted. If 𝜏2 was inserted before 𝜏1, 𝜏2 would have been
removed from the queue when 𝜏1 was inserted.
We conclude that for one vertex, due to the assignment there are at most 𝑏 visits assigned

to the start of a ban interval and 𝑏 visits assigned to the end of a ban interval. Additionally,
there is one visit for the first point of the profile and up to (𝑟 + 1) visits due to concave points
between two consecutive visits assigned to ban intervals. In total, we have at most 2𝑏 (𝑟 + 1) + 1
visits of a vertex. □

Theorem 11.5. If 𝛿 = 𝜔0 then the running time of the algorithm is polynomial.

Proof. From Lemma 11.3 with the bound from Lemma 11.4 it follows that the number of pieces
of any profile that is constructed during the algorithm is polynomial.
We now estimate the overall running time of our algorithm: Lemma 11.4 states that the total

number of iterations is polynomial. In every iteration of the algorithm one vertex is considered
and for its outgoing edges the profiles are updated with a running time linear in the number of
pieces of the profiles. The adjacent vertices are inserted into the priority queue or their keys
are decreased. Since the size of the priority queue is at most the total number of vertices also
the running time of the priority queue operations is polynomial. □

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

170

11.4 Implementation
This section describes the speedup techniques we employ in our implementation and some
implementation details.
We store cost profiles as a sorted list of pieces. Each piece is represented as a triple: a point

in time from which this piece is valid, the costs it takes to reach the vertex at the beginning of
the piece and the incline of the piece. For each piece we also store a parent vertex. This allows
us to efficiently reconstruct routes by traversing the parent pointers.

We employ A* to guide the search toward the destination vertex. The queue is ordered by the
original key plus an estimate of the remaining distance (here: driving time) to the destination.
The estimate for vertex 𝑢 is denoted by 𝜋𝑡 (𝑢). We use the exact shortest driving time to 𝑡

without driving restrictions as the potential. This is the best possible potential in our case. We
efficiently extract these exact distances from a Contraction Hierarchies using Lazy RPHAST
as described in Chapter 6. Since our algorithm has to run until the queue is empty, we cannot
immediately terminate when we reach the destination. However, we get a tentative cost profile
at the destination. This allows for effective pruning. Additionally, we do not need to insert a
vertex 𝑢 into the queue when 𝜏visit +𝜋𝑡 (𝑢) > 𝜏max holds, that is, we cannot reach the destination
from 𝑢 within the planning horizon.

We employ pruning to avoid linking and merging when possible using the following rules:

• Consider a vertex 𝑢 that is visited at 𝜏visit. Before relaxing any outgoing edges, we
first check if 𝑢 can actually contribute to any optimal route to 𝑡 . If 𝑓 c𝑢 (𝜏) + 𝜋𝑡 (𝑢) · 𝛿 >

𝑓 c𝑡 (𝜏 + 𝜋𝑡 (𝑢)) for all 𝜏 with 𝜏visit ≤ 𝜏 < 𝜏max, 𝑢 can not contribute to an optimal route to 𝑡
and can thus be skipped.

• Let c𝑢 = min{𝜏 | 𝑓 c𝑢 (𝜏) < ∞} be the first point in time such that 𝑢 can be reached with
finite costs and∞ if no such point exists. For each vertex 𝑢, we maintain a lower bound
b[𝑢] = min𝜏 {𝑓 c𝑢 (𝜏)} and an upper bound b[𝑢] = max𝜏>c𝑢 {𝑓 c𝑢 (𝜏)} or ∞, if there are no
finite costs. They can be updated efficiently during the merge operation. An edge 𝑢𝑣 only
needs to be relaxed if b[𝑢] + ℓ (𝑢𝑣) · 𝛿 ≤ b[𝑣] or c𝑢 + ℓ (𝑢𝑣) < c𝑣 .

• When all of the pieces of the cost profile of a vertex 𝑢 share the same parent vertex 𝑣 and
𝑝 (𝑢) = 0, the edge 𝑢𝑣 back to the parent does not need to be relaxed as loops can never
be part of an optimal route unless they include waiting at a parking location.

11.5 Evaluation
Environment. Our algorithm is implemented in C++14 and compiled with Visual C++. For
the CH-potentials, we build upon the Contraction Hierarchy implementation of RoutingKit.1
All experiments were conducted on a Windows 10 Pro machine with an Intel i7-7600 CPU with
a base frequency of 3.4 GHz and 32GB of DDR4 RAM. The implementation is single-threaded.
1https://github.com/RoutingKit/RoutingKit

https://github.com/RoutingKit/RoutingKit

Evaluation Section 11.5

171

Table 11.1: Rating and default waiting cost by capacity of parking locations. The driving cost is the
same as the cost for waiting at unrated vertices.

Capacity of parking locations ≥ 80 ≥ 40 ≥ 15 ≥ 5 ≥ 1 –

Rating 5 4 3 2 1 0
Default waiting costs 3 4 5 6 7 14
Number of parking locations 448 997 2 664 5 418 5 748 21.9M

Inputs. Our experimental setup is taken from [Brä18]. We perform experiments on a road
network used in production by PTV2. The network is adapted from data by TomTom3. It covers
Austria, France, Germany, Italy, Liechtenstein, Luxembourg, and Switzerland. It has 21.9 million
vertices and 47.6 million edges. We use travel times, driving bans, and road closures for a
truck with a gross combined weight of 40 tons. Driving bans were derived from the current
legislation of the respective countries. This includes Sunday driving bans in all countries, a late
Saturday driving ban in Austria and night driving bans in Austria, Liechtenstein and Switzerland.
Additionally, there is a Saturday driving ban in Italy during the summer holidays. The data set
also includes several local road closures in city centers.

Parking locations were taken from data by Truck Parking Europe4. There is a total of 15 317
vertices classified as parking locations in our data set. The data set also contains the capacity of
each parking location. We assign each parking location a rating between 1 and 5 depending on
its capacity. Table 11.1 shows the number of parking locations for each rating and our default
waiting costs. We also evaluate different parameterizations. The waiting costs are calculated
such that for an hour of waiting a detour of up to four minutes will be taken to get to a parking
location rated better by one. For waiting at the source vertex of a query, we assign zero waiting
costs regardless of the rating.

Methodology. We generate two sets of source-destination pairs and combine them with
different planning horizons. The first set is used to evaluate the practicality of our model. It is
designed to make the algorithm cope with the night driving ban in Austria and Switzerland.
We select 100 pairs of vertices. One vertex is randomly selected from the area around southern
Germany. The other vertex is selected from the area around northern Italy. See Appendix F for
exact coordinates and a visualization. We store each pair in both directions. Hence, we have
200 vertex pairs in this set. The planning horizon starts at Monday 2018/7/2, 18:00 with length
one day (query set A1) and two days (A2). Figure 11.4 depicts an example query from A1.
The second set is generated by selecting 100 source vertices uniformly at random. From

each source vertex, we run Dijkstra’s algorithm without a specific target ignoring any driving

2https://ptvgroup.com
3https://tomtom.com
4https://truckparkingeurope.com

https://ptvgroup.com
https://tomtom.com
https://truckparkingeurope.com

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

172

Figure 11.4: Optimal paths of an example query from northwestern Austria to northern Italy, slightly
south of Milano. The source is indicated by a red, the destination by a yellow marker. The other markers
indicate the parking locations along the respective routes. The blue route in the east has the shortest
driving time, around 10.5 hours, but the latest arrival. It schedules a waiting time of seven hours during
the night driving ban at a parking location of rating 4 and afterwards takes the fastest route to the
destination. The green route in the middle arrives an hour earlier at the destination but the driving time
is over two hours longer. This route includes three hours of waiting at a parking location of rating 5.
The black route in the west takes 16 hours to drive, includes only a few minutes of waiting and arrives
six minutes before the green one.

restrictions. Dijkstra’s algorithm explores the graph by traversing vertices in increasing distance
of the source vertex. We use the order in which vertices are settled to select destination vertices
with different distances from the source. Every 2𝑖 th settled vertex with 𝑖 ∈ [12, 24] is stored.
We denote 𝑖 as the rank of the query. This results in 1 300 source-destination pairs. We combine
these vertex pairs with four planning horizons: starting at Friday 2018/7/6, 06:00 for one day
(denoted as query set B1), for two days (B2) and starting later that day at 18:00 for one day (B3)
and for two days (B4).

Experiments. Wefirst investigate whether allowingwaiting everywhere (albeit penalized) may
lead to unwanted results in practice. On the one hand, routes with many stops are impractical.
Our experiments indicate that this is not the case: Accross all routes for A1, there is at most
one additional stop scheduled (0.2 on average). On the other hand, let us call a route precarious
if waiting is scheduled at an unrated location (other than the source vertex). For 187 of the 200
queries of A1, there is no precarious route in the Pareto set. For the other 13 queries, the Pareto

Evaluation Section 11.5

173

Table 11.2: Query statistics for different waiting cost parameters for query set A1. The first six columns
show the waiting cost parameters. Waiting costs at the source are always set to zero. The waiting time
columns depict the share of the time spent waiting at vertices with the respective rating summed up
over all routes. The routes column gives the average number of optimal routes per query. The arrival
time deviation column contains the average of the difference between earliest and latest arrival time
among all optimal routes for all queries. Running times are also averaged.

Optimal Arrival time Running
Waiting time by rating [%] Routes deviation time

𝜔5 𝜔4 𝜔3 𝜔2 𝜔1 𝜔0 = 𝛿 𝑠 5 4 3 2 1 0 [#] [h:mm] [ms]

1 10 50 100 1000 10000 59.4 2.5 5.8 23.3 3.1 2.8 3.1 3.02 2:21 364.1
1 2 4 8 16 128 62.2 3.5 6.5 19.8 2.1 2.8 3.1 3.02 2:20 412.3
1 2 4 8 16 32 70.8 6.0 5.1 12.1 1.0 1.9 3.1 2.96 2:20 435.4
3 4 5 6 7 14 79.3 6.2 3.1 4.6 1.5 2.0 3.3 2.86 2:17 529.4
16 24 28 30 31 32 85.2 4.6 1.1 3.3 1.1 1.1 3.6 2.71 2:14 742.2

set always contains more than one route, and it is always only the quickest route in the Pareto
set that is precarious. So filtering out such routes in a postprocessing step does not make a
query infeasible. On average, the second quickest route in the Pareto set arrives 422 s later than
the quickest but precarious route (minimum 38 s, maximum 877 s).

We also evaluate the influence of different waiting cost parameterizations on the performance
and the results of our algorithm. Table 11.2 depicts the results. We observe that the parametriza-
tion has only limited influence on the results of the algorithm. The average number of optimal
routes and the arrival time deviation change only very little even between the two most extreme
configurations. Since waiting at the source vertex costs nothing, the majority of the waiting in
all configurations is scheduled there. When waiting at parking locations is much cheaper than
driving, less waiting time will be scheduled at the source and more waiting at parking locations.
Also, clear differences between the costs lead to a better running time, because cost profiles
become less complex.
We next investigate the algorithm’s performance for each of the different query sets. We

report the same numbers limited to non-trivial queries. A query is denoted as trivial if there is
exactly one optimal route which is also optimal when ignoring all driving restrictions. Table 11.3
depicts the results. Clearly, the query set has a strong influence on the running time of the
algorithm. Average running times range from ten milliseconds to one second when looking
at all queries. However, median query times are significantly smaller. The reason for this is
that our algorithm can answer trivial queries in a few milliseconds or less. Due to the perfect
potentials, the algorithm only traverses the optimal path. Once the destination is reached,
because of the target pruning, all other vertices in the queue are skipped and the algorithm
terminates. Excluding trivial queries, we get a clearer picture of the algorithm’s performance
when solving the harder part of the problem.

Chapter 11 Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas

174

Table 11.3: Query statistics for all six query sets. First, for all queries. Second, only for non-trivial
queries. A query is denoted as trivial if there is exactly one optimal route which is also optimal when
ignoring all driving restrictions. All numbers are averages unless reported otherwise. The arrival time
deviation column contains the average of the difference between earliest and latest arrival time among
all optimal routes for all queries. The routes column contains the number of optimal routes.

Query Optimal Arrival time Running time
share Routes deviation Avg. Median

Set Planning horizon [%] [#] [h:mm] [ms] [ms]

A1 Mon. 18:00, 1 day 100.0 2.86 2:17 529.4 266.3
A2 Mon. 18:00, 2 days 100.0 3.54 3:19 648.1 405.6
B1 Fri. 06:00, 1 day 100.0 1.04 0:10 10.0 0.6
B2 Fri. 06:00, 2 days 100.0 1.08 0:16 79.5 0.7
B3 Fri. 18:00, 1 day 100.0 1.13 0:08 205.8 0.6
B4 Fri. 18:00, 2 days 100.0 1.32 0:20 1 028.1 0.7

O
nl
y
no

n-
tri
vi
al A1 Mon. 18:00, 1 day 67.5 3.82 3:13 764.1 560.6

A2 Mon. 18:00, 2 days 72.0 4.53 4:37 899.2 655.0
B1 Fri. 06:00, 1 day 4.1 2.19 4:10 42.5 6.6
B2 Fri. 06:00, 2 days 4.8 2.76 5:43 1 105.6 35.8
B3 Fri. 18:00, 1 day 9.2 2.73 1:25 1 359.0 475.2
B4 Fri. 18:00, 2 days 11.6 3.79 2:51 5 819.4 1 947.2

For the query sets B1 and B2, only 4% to 5% of the queries have to deal with driving restrictions.
This is mostly due to closures for individual roads in certain cities and not country-wide driving
bans. When the planning horizon begins later at 18:00 (B3 and B4), we get around twice as
many non-trivial queries. These are primarily caused by the night driving bans in Austria and
Switzerland. Road closures and country-wide driving bans lead to different optimal routes.
When there is a road closure on the shortest path ignoring any driving restrictions, we often
have two optimal routes. One which takes a (small) detour around the closure, and one waiting
at the source until the closed road opens and then taking that slightly shorter path. Thus, we
have two routes with very similar driving times but (often vastly) diverging arrival times. When
dealing with night driving bans, we get more optimal results with different trade-offs as in the
example of Figure 11.4.

Increasing the length of the planning horizon to two days leads to more non-trivial queries,
more optimal routes per query, and a greater deviation in arrival time. The reason are routes
with a travel time longer than 24 hours which were not valid for the shorter planning horizon.

Even when we restrict ourselves to queries with non-trivial results, running times still vary
depending on the query set. Average and median deviate not as strong as when considering
all queries, but the distribution of running times is still skewed by a few long running queries,

Conclusion Section 11.6

175

especially on set B4. The reason for this is that the running time heavily depends on the types
and lengths of driving restrictions in the search space. The Saturday driving ban in Italy causes
heavy outliers in B4 (but also B2 and B3), when the destination lies in an area blocked for most
of the planning horizon. This causes the algorithm to explore large parts of the graph, until the
driving ban is over. The worst of these queries took 49 seconds to answer. Nevertheless, when
looking at query sets A1 and A2, we clearly see that the algorithm can answer queries affected
by country-wide night driving bans in less than a second.

11.6 Conclusion
We have introduced a variant of the shortest path problem where driving on edges may be
forbidden at times, both driving and waiting entail costs, and the cost for waiting depends
on the rating of the respective location. The objective is to find a Pareto set of both quickest
paths and minimum cost paths in a road graph. We have presented an exact algorithm for this
problem and shown that it runs in polynomial time if the cost for driving is the same as for
waiting in an unrated location. With this algorithm, we can solve routing problems that arise in
practice in the context of temporary driving bans for trucks as well as temporary closures of
roads or even larger parts of the road network.
Our experiments demonstrate that our implementation can answer queries with realistic

driving restrictions in less than a second on average. We exploit CH-Potentials to achieve
practical running times. Thus, the algorithm can also be used in a dynamic scenario when
combined with CCH-Potentials. There are a few slow outlier queries when the destination
vertex lies in a blocked area. Bidirectional variants of our algorithm might help avoiding these
outliers. A natural extension of our problem at hand is to consider time-dependent driving
times or rules for truck drivers that enforce a break after a certain accumulated driving time.

177

12 Conclusion

In this thesis, we studied efficient algorithms for dynamic and time-dependent route planning
problems. We revisited the A* algorithm and introduced CH-Potentials, a new potential function
based on CH which can compute optimal distance estimates with respect to lower bound
weights derived at preprocessing time. CH-Potentials can be applied to any routing problem
where reasonable lower bounds can be obtained during the preprocessing. We proposed several
refinements to the CCH framework and showed that CCH is now competitive with CH and
CRP both in terms of supported features and running times. Further, we presented CATCHUp,
the first space-efficient fast and exact speedup technique for time-dependent routing. We also
introduced time-dependent A* potentials. This allowed us to design the first approach for
routing with combined live and predicted traffic, which achieves interactive running times for
exact queries while allowing live traffic updates in a fraction of a minute. Moreover, we studied
extended problem models for routing with imperfect data and routing for truck drivers and also
presented efficient algorithms for these variants. Finally, we also presented various complexity
results for non-FIFO time-dependent routing and the extended problem models.
We already discussed conclusions and future work opportunities in the respective chapters

for each result. However, there is a recurring theme in this work worth highlighting here. One
idea proven effective and fruitful throughout this thesis is the CH-Potentials framework. This
effectiveness was a surprise because the approach is so simple. The entire algorithmic idea
of CH-Potentials can be stated in a single sentence: use DFS on CH as an A* potential. After
almost two decades of active research on practical route planning algorithms, one could expect
that all the simple ideas already have been tried. The research works published in the past
few years even appear to confirm this expectation. After the initial burst of results sparked
by the DIMACS implementation challenge [GH05, GW05, SS05, Del+06, SS07, GSSD08, BD09,

Chapter 12 Conclusion

178

Bau+10, ADGW12], only few results [HS19, BFMP22] on speedup techniques for the classical
shortest path problem have been published in recent years. The results published recently
mainly studied extended problems [Bat14, Kob15, DSW16, DGPW17, Bau18, BSW21, BW21].

We believe such a simple approach was not found earlier because most works prioritize fast
running times over everything else. Therefore, the spectrum of trade-offs between preprocessing
effort and query times has been thoroughly explored [Bas+16]. In contrast, we know few works
focused on flexible and extensible algorithms [DGPW17]. As CH-Potentials show, flexibility
and extensibility come at the cost of some query performance. However, our work also shows
that paying this cost presents many new promising opportunities. While CH-Potentials did not
consistently achieve the fastest running times, we were able to derive a multitude of practical
algorithms. We conclude that it might be beneficial for future work to shift the focus from
highly competitive running times toward simpler and more extensible algorithms. We are not
the first to make this observation. In their work on CRP [DGPW17], one of the prime examples
of a technique heavily engineered for practicality, the authors stress that competitive query
running times with the fastest known techniques are not their goal. In a practical setting, it is
entirely sufficient if the shortest path computations are not the bottleneck of the application.
Other factors, such as an extensible algorithmic framework and manageable implementation
complexity, are much more critical. Designing extensible and simple algorithms is, of course,
a challenge. Scientifically evaluating these attributes is even more challenging as they are
difficult to quantify. Often, simple techniques will only be discovered after the complicated
ones, as illustrated by the development from Highway Hierarchies [SS05] over Highway Node
Routing [SS07] to CH [GSSV12]. However, we argue that the algorithm engineeringmethodology
is uniquely qualified to tackle these issues. Our work underlines that the continuous and
incremental refinement of problem models, algorithms and implementations complemented
with rigorous theoretical and experimental analysis are crucial elements of practical algorithm
design. Algorithm engineering helps us to turn deepened understanding of the problem structure
not only into faster but also into simpler algorithms. Therefore, it is a critical ingredient of
algorithm design for the emerging mobility applications of the future.

179

Bibliography

[ADGW13] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
Alternative routes in road networks. In ACM Journal of Experimental Algo-

rithmics volume 18, 2013. doi: 10.1145/2444016.2444019.
Cited on pages 4, 64, 79, 144, 150.

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Wer-
neck. Hierarchical Hub Labelings for Shortest Paths. In Algorithms - ESA

2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012.

Proceedings. Ed. by Leah Epstein and Paolo Ferragina. Volume 7501 of Lecture
Notes in Computer Science, pages 24–35. Springer, 2012. doi: 10.1007/978-3-
642-33090-2_4.
Cited on pages 5, 178.

[ALPR12] Javed A. Aslam, Sejoon Lim, Xinghao Pan, and Daniela Rus. City-scale traffic
estimation from a roving sensor network. In The 10th ACM Conference on

Embedded Network Sensor Systems, SenSys ’12, Toronto, ON, Canada, November

6-9, 2012. Ed. by M. Rasit Eskicioglu, Andrew Campbell, and Koen Langendoen,
pages 141–154. ACM, 2012. doi: 10.1145/2426656.2426671.
Cited on page 32.

https://doi.org/10.1145/2444016.2444019
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1145/2426656.2426671

Bibliography

180

[BDGS11] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative
Route Graphs in Road Networks. In Theory and Practice of Algorithms in

(Computer) Systems - First International ICST Conference, TAPAS 2011, Rome, Italy,

April 18-20, 2011. Proceedings. Ed. by Alberto Marchetti-Spaccamela and Michael
Segal. Volume 6595 of Lecture Notes in Computer Science, pages 21–32. Springer,
2011. doi: 10.1007/978-3-642-19754-3_5.
Cited on pages 64, 79.

[BFMP22] Daniel Bahrdt, Stefan Funke, Sokol Makolli, and Claudius Proissl. Distance Clo-
sures: Unifying Search- and Lookup-based Shortest Path Speedup Tech-
niques. In Proceedings of the Symposium on Algorithm Engineering and Experi-

ments, ALENEX 2022, Alexandria, VA, USA, January 9-10, 2022. Ed. by Cynthia
A. Phillips and Bettina Speckmann, pages 1–12. SIAM, 2022. doi: 10.1137/1.
9781611977042.1.
Cited on page 178.

[Bas+16] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route
Planning in Transportation Networks. In Algorithm Engineering - Selected

Results and Surveys. Ed. by Lasse Kliemann and Peter Sanders. Volume 9220.
Lecture Notes in Computer Science. 2016, pages 19–80. doi: 10.1007/978-3-
319-49487-6_2.
Cited on pages 3, 15, 29, 45, 56, 83, 97, 178, 242, 243.

[BGSV13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter.Mini-
mum time-dependent travel times with contraction hierarchies. In ACM

Journal of Experimental Algorithmics volume 18, 2013. doi: 10.1145/2444016.
2444020.
Cited on pages 7, 18, 20, 30, 34, 45, 53, 63, 85, 97, 98, 106, 110, 122, 242.

[Bat14] Gernot Veit Eberhard Batz. Time-Dependent Route Planning with Contrac-
tion Hierarchies. PhD thesis. Karlsruhe Institute of Technology, 2014. Url:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000047759.
Cited on pages 7, 19, 44, 45, 178.

[BCRW16] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-
space size in contraction hierarchies. In Theoretical Computer Science vol-
ume 645, pages 112–127, 2016. doi: 10.1016/j.tcs.2016.07.003.
Cited on pages 67, 75, 76.

[BD09] Reinhard Bauer and Daniel Delling. SHARC: Fast and robust unidirectional
routing. In ACM Journal of Experimental Algorithmics volume 14, 2009. doi:
10.1145/1498698.1537599.
Cited on pages 5, 6, 97, 177.

https://doi.org/10.1007/978-3-642-19754-3_5
https://doi.org/10.1137/1.9781611977042.1
https://doi.org/10.1137/1.9781611977042.1
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1145/2444016.2444020
https://doi.org/10.1145/2444016.2444020
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000047759
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1145/1498698.1537599

Bibliography

181

[Bau+10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining hierarchical and goal-directed
speed-up techniques for dijkstra’s algorithm. In ACM Journal of Experimental

Algorithmics volume 15, 2010. doi: 10.1145/1671970.1671976.
Cited on pages 5, 97, 178.

[Bau18] Moritz Baum. Engineering Route Planning Algorithms for Battery Electric
Vehicles. PhD thesis. Karlsruhe Institute of Technology, 2018. 317 pp. doi: 10.
5445/IR/1000082225.
Cited on pages 8, 45, 178.

[Bau+19a] Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zün-
dorf. UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient
Solution. In 27th Annual European Symposium on Algorithms, ESA 2019, September

9-11, 2019, Munich/Garching, Germany. Ed. by Michael A. Bender, Ola Svensson,
and Grzegorz Herman. Volume 144 of LIPIcs, pages 14:1–14:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.ESA.2019.14.
Cited on page 8.

[Bau+19b] Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias
Zündorf. Shortest Feasible Paths with Charging Stops for Battery Electric
Vehicles. In Transportation Science volume 53:6, pages 1627–1655, 2019. doi:
10.1287/trsc.2018.0889.
Cited on page 8.

[Bau+20] Moritz Baum, Julian Dibbelt, Thomas Pajor, Jonas Sauer, Dorothea Wagner, and
Tobias Zündorf. Energy-Optimal Routes for Battery Electric Vehicles. In
Algorithmica volume 82:5, pages 1490–1546, 2020. doi: 10.1007/s00453-019-
00655-9.
Cited on page 8.

[BDPW16] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic
Time-Dependent Route Planning in Road Networks with User Prefer-
ences. In Experimental Algorithms - 15th International Symposium, SEA 2016,

St. Petersburg, Russia, June 5-8, 2016, Proceedings. Ed. by Andrew V. Goldberg
and Alexander S. Kulikov. Volume 9685 of Lecture Notes in Computer Science,
pages 33–49. Springer, 2016. doi: 10.1007/978-3-319-38851-9_3.
Cited on pages 6, 7, 20, 45, 53, 97, 106, 122.

[Bel58] Richard Bellman. On a Routing Problem. In Quarterly of Applied Mathemat-

ics volume 16:1, pages 87–90, 1958. doi: 10.1090/qam/102435.
Cited on pages 15, 23.

https://doi.org/10.1145/1671970.1671976
https://doi.org/10.5445/IR/1000082225
https://doi.org/10.5445/IR/1000082225
https://doi.org/10.4230/LIPIcs.ESA.2019.14
https://doi.org/10.1287/trsc.2018.0889
https://doi.org/10.1007/s00453-019-00655-9
https://doi.org/10.1007/s00453-019-00655-9
https://doi.org/10.1007/978-3-319-38851-9_3
https://doi.org/10.1090/qam/102435

Bibliography

182

[BGHS19] Massimo Bono, Alfonso Emilio Gerevini, Daniel Damir Harabor, and Peter J.
Stuckey. Path Planning with CPD Heuristics. In Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,

China, August 10-16, 2019. Ed. by Sarit Kraus, pages 1199–1205. ijcai.org, 2019.
doi: 10.24963/ijcai.2019/167.
Cited on page 3.

[Brä18] Christian Bräuer. Route Planning with Temporary Road Closures. Master
Thesis. Karlsruhe Institute of Technology, 2018. Url: https://i11www.iti.kit.
edu/_media/teaching/theses/ma-braeuer-18.pdf.
Cited on pages 171, 239.

[BSW19] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time Traffic
Assignment Using Engineered Customizable Contraction Hierarchies. In
ACM Journal of Experimental Algorithmics volume 24:1, pages 2.4:1–2.4:28, 2019.
doi: 10.1145/3362693.
Cited on pages 6, 63, 66, 71, 74, 75, 76, 83, 85, 86, 88, 105, 108.

[BSW21] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Fast, Exact and Scal-
able Dynamic Ridesharing. In Proceedings of the Symposium on Algorithm

Engineering and Experiments, ALENEX 2021, Virtual Conference, January 10-11,

2021. Ed. by Martin Farach-Colton and Sabine Storandt, pages 98–112. SIAM, 2021.
doi: 10.1137/1.9781611976472.8.
Cited on page 178.

[BW21] Valentin Buchhold and Dorothea Wagner. Nearest-Neighbor Queries in Cus-
tomizable Contraction Hierarchies and Applications. In 19th International

Symposium on Experimental Algorithms, SEA 2021, June 7-9, 2021, Nice, France. Ed.
by David Coudert and Emanuele Natale. Volume 190 of LIPIcs, pages 18:1–18:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.
SEA.2021.18.
Cited on pages 6, 64, 66, 78, 79, 91, 178, 214, 215, 216, 217.

[BWZZ20] Valentin Buchhold, DorotheaWagner, Tim Zeitz, andMichael Zündorf.Customiz-
able ContractionHierarchieswith TurnCosts. In 20th Symposium on Algorith-

mic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS

2020, September 7-8, 2020, Pisa, Italy (Virtual Conference). Ed. by Dennis Huisman
and Christos D. Zaroliagis. Volume 85 of OASIcs, pages 9:1–9:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/OASIcs.ATMOS.2020.9.
Cited on pages 45, 66, 81, 84, 94, 217.

[Bus21] Jakob Bussas. Applying Customizable Contraction Hierarchy Potentials
to the Shortest Epsilon-Smooth Path Problem. Bachelor Thesis. Karlsruhe
Institute of Technology, 2021.
Cited on page 144.

https://doi.org/10.24963/ijcai.2019/167
https://i11www.iti.kit.edu/_media/teaching/theses/ma-braeuer-18.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ma-braeuer-18.pdf
https://doi.org/10.1145/3362693
https://doi.org/10.1137/1.9781611976472.8
https://doi.org/10.4230/LIPIcs.SEA.2021.18
https://doi.org/10.4230/LIPIcs.SEA.2021.18
https://doi.org/10.4230/OASIcs.ATMOS.2020.9

Bibliography

183

[Cal61] TomCaldwell.Onfindingminimumroutes in a networkwith turn penalties.
In Communications of the ACM volume 4:2, pages 107–108, 1961. doi: 10.1145/
366105.366184.
Cited on pages 53, 80.

[CZL12] Pablo Samuel Castro, Daqing Zhang, and Shijian Li. Urban Traffic Modelling
and Prediction Using Large Scale Taxi GPS Traces. In Pervasive Computing

- 10th International Conference, Pervasive 2012, Newcastle, UK, June 18-22, 2012.

Proceedings. Ed. by Judy Kay, Paul Lukowicz, Hideyuki Tokuda, Patrick Olivier, and
Antonio Krüger. Volume 7319 of Lecture Notes in Computer Science, pages 57–72.
Springer, 2012. doi: 10.1007/978-3-642-31205-2_4.
Cited on page 32.

[Coh+18] Liron Cohen, Tansel Uras, Shiva Jahangiri, Aliyah Arunasalam, Sven Koenig, and
T. K. Satish Kumar. The FastMap Algorithm for Shortest Path Computations.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. Ed. by Jérôme Lang,
pages 1427–1433. ijcai.org, 2018. doi: 10.24963/ijcai.2018/198.
Cited on page 3.

[Jon14] Kyle Jones. Is the subset product problemNP-complete?Accessed: 2022-02-24.
2014. Url: https://cs.stackexchange.com/a/27973.
Cited on page 24.

[Del09] Daniel Delling. Engineering and Augmenting Route Planning Algorithms.
PhD thesis. Karlsruhe Institute of Technology, 2009. Url: http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000011046.
Cited on page 45.

[Del11] Daniel Delling. Time-Dependent SHARC-Routing. In Algorithmica vol-
ume 60:1, pages 60–94, 2011. doi: 10.1007/s00453-009-9341-0.
Cited on pages 6, 34, 122.

[DGNW13] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck.
PHAST: Hardware-accelerated shortest path trees. In Journal of Parallel and

Distributed Computing volume 73:7, pages 940–952, 2013. doi: 10.1016/j.jpdc.
2012.02.007.
Cited on pages 4, 42.

[DGPW17] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Cus-
tomizable Route Planning in Road Networks. In Transportation Science vol-
ume 51:2, pages 566–591, 2017. doi: 10.1287/trsc.2014.0579.
Cited on pages 1, 2, 4, 5, 6, 45, 53, 64, 65, 81, 83, 84, 86, 88, 92, 94, 95, 97, 147, 178, 241, 242, 243.

https://doi.org/10.1145/366105.366184
https://doi.org/10.1145/366105.366184
https://doi.org/10.1007/978-3-642-31205-2_4
https://doi.org/10.24963/ijcai.2018/198
https://cs.stackexchange.com/a/27973
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011046
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011046
https://doi.org/10.1007/s00453-009-9341-0
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1287/trsc.2014.0579

Bibliography

184

[DGPW11] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato Fonseca F. Wer-
neck. Customizable Route Planning. In Experimental Algorithms - 10th Interna-

tional Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Pro-

ceedings. Ed. by Panos M. Pardalos and Steffen Rebennack. Volume 6630 of Lecture
Notes in Computer Science, pages 376–387. Springer, 2011. doi: 10.1007/978-3-
642-20662-7_32.
Cited on page 5.

[DGRW11] Daniel Delling, Andrew V. Goldberg, Ilya P. Razenshteyn, and Renato Fonseca F.
Werneck. Graph Partitioning with Natural Cuts. In 25th IEEE International

Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage, Alaska,

USA, 16-20 May, 2011 - Conference Proceedings, pages 1135–1146. IEEE, 2011. doi:
10.1109/IPDPS.2011.108.
Cited on page 68.

[DGW13] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hub Label Com-
pression. In Experimental Algorithms, 12th International Symposium, SEA 2013,

Rome, Italy, June 5-7, 2013. Proceedings. Ed. by Vincenzo Bonifaci, Camil Deme-
trescu, and Alberto Marchetti-Spaccamela. Volume 7933 of Lecture Notes in Com-
puter Science, pages 18–29. Springer, 2013. doi: 10.1007/978-3-642-38527-8_4.
Cited on pages 5, 63.

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Werneck. Faster
Batched Shortest Paths in Road Networks. In ATMOS 2011 - 11th Workshop on

Algorithmic Approaches for Transportation Modeling, Optimization, and Systems,

Saarbrücken, Germany, September 8, 2011. Ed. by Alberto Caprara and Spyros C.
Kontogiannis. Volume 20 of OASIcs, pages 52–63. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2011. doi: 10.4230/OASIcs.ATMOS.2011.52.
Cited on pages 4, 43, 55, 56, 153, 220.

[Del+06] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea Wagner.
High-PerformanceMulti-Level Routing. In The Shortest Path Problem, Proceed-

ings of a DIMACS Workshop, Piscataway, New Jersey, USA, November 13-14, 2006.
Ed. by Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. Volume 74
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 73–91. DIMACS/AMS, 2006. doi: 10.1090/dimacs/074/04.
Cited on pages 4, 177.

[DN12] Daniel Delling and Giacomo Nannicini. Core Routing on Dynamic Time-
Dependent Road Networks. In INFORMS Journal on Computing volume 24:2,
pages 187–201, 2012. doi: 10.1287/ijoc.1110.0448.
Cited on pages 5, 6, 7, 53, 122.

https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1109/IPDPS.2011.108
https://doi.org/10.1007/978-3-642-38527-8_4
https://doi.org/10.4230/OASIcs.ATMOS.2011.52
https://doi.org/10.1090/dimacs/074/04
https://doi.org/10.1287/ijoc.1110.0448

Bibliography

185

[DPW15] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public
Transit Routing. In Transportation Science volume 49:3, pages 591–604, 2015.
doi: 10.1287/trsc.2014.0534.
Cited on page 8.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engi-
neering Route Planning Algorithms. In Algorithmics of Large and Complex

Networks - Design, Analysis, and Simulation [DFG priority program 1126]. Ed. by Jür-
gen Lerner, DorotheaWagner, and Katharina Anna Zweig. Volume 5515 of Lecture
Notes in Computer Science, pages 117–139. Springer, 2009. doi: 10.1007/978-3-
642-02094-0_7.
Cited on pages 1, 242.

[DSS18] Daniel Delling, Dennis Schieferdecker, and Christian Sommer. Traffic-Aware
Routing in Road Networks. In 34th IEEE International Conference on Data

Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pages 1543–1548. IEEE
Computer Society, 2018. doi: 10.1109/ICDE.2018.00172.
Cited on pages 8, 64, 92, 143, 144, 146, 147, 148, 149, 152, 158.

[DW07] Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dynamic
Graphs. In Experimental Algorithms, 6th International Workshop, WEA 2007, Rome,

Italy, June 6-8, 2007, Proceedings. Ed. by Camil Demetrescu. Volume 4525 of Lecture
Notes in Computer Science, pages 52–65. Springer, 2007. doi: 10.1007/978-3-
540-72845-0_5.
Cited on pages 5, 7, 53.

[DW09] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In
Robust and Online Large-Scale Optimization: Models and Techniques for Trans-

portation Systems. Ed. by Ravindra K. Ahuja, Rolf H. Möhring, and Christos D.
Zaroliagis. Volume 5868. Lecture Notes in Computer Science. Springer, 2009,
pages 207–230. doi: 10.1007/978-3-642-05465-5_8.
Cited on pages 19, 20.

[DW13] Daniel Delling and Renato F. Werneck. Faster Customization of Road Net-
works. In Experimental Algorithms, 12th International Symposium, SEA 2013, Rome,

Italy, June 5-7, 2013. Proceedings. Ed. by Vincenzo Bonifaci, Camil Demetrescu,
and Alberto Marchetti-Spaccamela. Volume 7933 of Lecture Notes in Computer
Science, pages 30–42. Springer, 2013. doi: 10.1007/978-3-642-38527-8_5.
Cited on pages 5, 94.

[DW15] Daniel Delling and Renato F. Werneck. Customizable Point-of-Interest
Queries in Road Networks. In IEEE Transactions on Knowledge and Data Engi-

neering volume 27:3, pages 686–698, 2015. doi: 10.1109/TKDE.2014.2345386.
Cited on pages 6, 65, 215.

https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1109/ICDE.2018.00172
https://doi.org/10.1007/978-3-540-72845-0_5
https://doi.org/10.1007/978-3-540-72845-0_5
https://doi.org/10.1007/978-3-642-05465-5_8
https://doi.org/10.1007/978-3-642-38527-8_5
https://doi.org/10.1109/TKDE.2014.2345386

Bibliography

186

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson (editors). The
Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway,
New Jersey, USA,November 13-14, 2006. Volume 74. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. DIMACS/AMS, 2009. isbn: 978-
0-8218-4383-3. doi: 10.1090/dimacs/074.
Cited on page 29.

[DV00] Guy Desaulniers and Daniel Villeneuve. The Shortest Path Problemwith Time
Windows and Linear Waiting Costs. In Transportation Science volume 34:3,
pages 312–319, 2000. doi: 10.1287/trsc.34.3.312.12298.
Cited on page 160.

[DPSW13] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly
Simple and Fast Transit Routing. In Experimental Algorithms, 12th International

Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings. Ed. by Vincenzo
Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela. Volume 7933 of
Lecture Notes in Computer Science, pages 43–54. Springer, 2013. doi: 10.1007/
978-3-642-38527-8_6.
Cited on page 8.

[DSW15] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Fast exact shortest path
and distance queries on road networks with parametrized costs. In Pro-

ceedings of the 23rd SIGSPATIAL International Conference on Advances in Geo-

graphic Information Systems, Bellevue, WA, USA, November 3-6, 2015. Ed. by Jie
Bao, Christian Sengstock, Mohammed Eunus Ali, Yan Huang, Michael Gertz,
Matthias Renz, and Jagan Sankaranarayanan, pages 66:1–66:4. ACM, 2015. doi:
10.1145/2820783.2820856.
Cited on page 48.

[DSW16] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contrac-
tion Hierarchies. In ACM Journal of Experimental Algorithmics volume 21:1,
pages 1.5:1–1.5:49, 2016. doi: 10.1145/2886843.
Cited on pages 2, 6, 45, 65, 69, 71, 74, 75, 76, 83, 85, 86, 87, 94, 97, 98, 105, 106, 178, 242.

[Dij59] EdsgerW. Dijkstra.Anote on two problems in connexion with graphs. In Nu-
merische Mathematik volume 1, pages 269–271, 1959. doi: 10.1007/BF01386390.
Cited on pages 2, 15, 39.

[DM02] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization soft-
ware with performance profiles. In Mathematical Programming volume 91:2,
pages 201–213, 2002. doi: 10.1007/s101070100263.
Cited on page 155.

https://doi.org/10.1090/dimacs/074
https://doi.org/10.1287/trsc.34.3.312.12298
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1145/2820783.2820856
https://doi.org/10.1145/2886843
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/s101070100263

Bibliography

187

[DP73] David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction
of the Number of Points Required to Represent a Digitized Line or its
Caricature. InCartographica: The International Journal for Geographic Information

and Geovisualization volume 10, pages 112–122, 1973. doi: 10.3138/FM57-6770-
U75U-7727.
Cited on page 106.

[Dre69] Stuart E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. In Oper-

ations Research volume 17:3, pages 395–412, 1969. doi: 10.1287/opre.17.3.395.
Cited on pages 19, 39, 167.

[EFS11] Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning
for Electric Vehicles in Large Networks. In Proceedings of the Twenty-Fifth

AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,

USA, August 7-11, 2011. Ed. by Wolfram Burgard and Dan Roth. AAAI Press, 2011.
Url: http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3637.
Cited on page 8.

[FHS14] Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity of
Time-Dependent Shortest Paths. In Algorithmica volume 68:4, pages 1075–
1097, 2014. doi: 10.1007/s00453-012-9714-7.
Cited on pages 19, 20.

[FNS16] Stefan Funke, André Nusser, and Sabine Storandt. On k-Path Covers and their
applications. In The VLDB Journal volume 25:1, pages 103–123, 2016. doi:
10.1007/s00778-015-0392-3.
Cited on page 8.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7.
Cited on pages 22, 24, 25, 145, 165.

[GJS76] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified
NP-Complete Graph Problems. In Theoretical Computer Science volume 1:3,
pages 237–267, 1976. doi: 10.1016/0304-3975(76)90059-1.
Cited on page 67.

[Gei15] Robert Geisberger. Route planning. US Patent 9,175,972. 2015.
Cited on page 8.

[GKS10] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with
Flexible Objective Functions. In Proceedings of the Twelfth Workshop on Algo-

rithm Engineering and Experiments, ALENEX 2010, Austin, Texas, USA, January 16,

2010. Ed. by Guy E. Blelloch and Dan Halperin, pages 124–137. SIAM, 2010. doi:
10.1137/1.9781611972900.12.
Cited on page 8.

https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1287/opre.17.3.395
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3637
https://doi.org/10.1007/s00453-012-9714-7
https://doi.org/10.1007/s00778-015-0392-3
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1137/1.9781611972900.12

Bibliography

188

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In Experimental Algorithms, 7th International Workshop, WEA 2008,

Provincetown, MA, USA, May 30-June 1, 2008, Proceedings. Ed. by Catherine C.
McGeoch. Volume 5038 of Lecture Notes in Computer Science, pages 319–333.
Springer, 2008. doi: 10.1007/978-3-540-68552-4_24.
Cited on pages 2, 177.

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact
Routing in Large Road Networks Using Contraction Hierarchies. In Trans-

portation Science volume 46:3, pages 388–404, 2012. doi: 10.1287/trsc.1110.
0401.
Cited on pages 2, 4, 7, 41, 43, 47, 55, 84, 88, 97, 178, 242.

[GV11] Robert Geisberger and Christian Vetter. Efficient Routing in Road Networks
with TurnCosts. In Experimental Algorithms - 10th International Symposium, SEA

2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings. Ed. by Panos M.
Pardalos and Steffen Rebennack. Volume 6630 of Lecture Notes in Computer
Science, pages 100–111. Springer, 2011. doi: 10.1007/978-3-642-20662-7_9.
Cited on pages 4, 45, 53, 64, 81.

[GGG15] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. Time-dependent
routing problems: A review. In Computers & Operations Research volume 64,
pages 189–197, 2015. doi: 10.1016/j.cor.2015.06.001.
Cited on pages 8, 19.

[Geo73] Alan George. Nested Dissection of a Regular Finite Element Mesh. In SIAM

Journal on Numerical Analysis volume 10:2, pages 345–363, SIAM, 1973. doi:
10.1137/0710032.
Cited on page 67.

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A
search meets graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,

Canada, January 23-25, 2005, pages 156–165. SIAM, 2005. Url: http : / / dl .
acm.org/citation.cfm?id=1070432.1070455.
Cited on pages 2, 3, 6, 49, 50, 177.

[GKW07] Andrew V. Goldberg, Haim Kaplan, and Renato Fonseca F. Werneck. Better Land-
marks Within Reach. In Experimental Algorithms, 6th International Workshop,

WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings. Ed. by Camil Demetrescu.
Volume 4525 of Lecture Notes in Computer Science, pages 38–51. Springer, 2007.
doi: 10.1007/978-3-540-72845-0_4.
Cited on page 5.

https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1007/978-3-642-20662-7_9
https://doi.org/10.1016/j.cor.2015.06.001
https://doi.org/10.1137/0710032
http://dl.acm.org/citation.cfm?id=1070432.1070455
http://dl.acm.org/citation.cfm?id=1070432.1070455
https://doi.org/10.1007/978-3-540-72845-0_4

Bibliography

189

[GW05] Andrew V. Goldberg and Renato Fonseca F. Werneck. Computing Point-to-
Point Shortest Paths from External Memory. In Proceedings of the Seventh

Workshop on Algorithm Engineering and Experiments and the Second Workshop

on Analytic Algorithmics and Combinatorics, ALENEX /ANALCO 2005, Vancouver,

BC, Canada, 22 January 2005. Ed. by Camil Demetrescu, Robert Sedgewick, and
Roberto Tamassia, pages 26–40. SIAM, 2005. Url: http : / / www . siam . org /
meetings/alenex05/papers/03agoldberg.pdf.
Cited on pages 3, 58, 177.

[GHUW19] Lars Gottesbüren,Michael Hamann, TimNiklas Uhl, and DorotheaWagner. Faster
and Better Nested Dissection Orders for Customizable Contraction Hier-
archies. In Algorithms volume 12:9, page 196, 2019. doi: 10.3390/a12090196.
Cited on pages 66, 68, 81, 84, 85, 86.

[HMPV00] Michel Habib, Ross M. McConnell, Christophe Paul, and Laurent Viennot. Lex-
BFS and partition refinement, with applications to transitive orientation,
interval graph recognition and consecutive ones testing. In Theoretical

Computer Science volume 234:1-2, pages 59–84, 2000. doi: 10 . 1016 / S0304 -
3975(97)00241-7.
Cited on page 69.

[HS18] Michael Hamann and Ben Strasser.Graph Bisectionwith Pareto Optimization.
In ACM Journal of Experimental Algorithmics volume 23, 2018. doi: 10.1145/
3173045.
Cited on page 68.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. In IEEE Transactions on

Systems Science and Cybernetics volume 4:2, pages 100–107, 1968. doi: 10.1109/
TSSC.1968.300136.
Cited on pages 3, 41.

[Heg06] Pinar Heggernes. Minimal triangulations of graphs: A survey. In Discrete

Mathematics volume 306:3, pages 297–317, 2006. doi: 10.1016/j.disc.2005.12.
003.
Cited on page 67.

[HS19] Demian Hespe and Peter Sanders. More Hierarchy in Route Planning Using
Edge Hierarchies. In 19th Symposium on Algorithmic Approaches for Transporta-

tion Modelling, Optimization, and Systems, ATMOS 2019, September 12-13, 2019,

Munich, Germany. Ed. by Valentina Cacchiani and Alberto Marchetti-Spaccamela.
Volume 75 of OASIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi: 10.4230/OASIcs.ATMOS.2019.10.
Cited on page 178.

http://www.siam.org/meetings/alenex05/papers/03agoldberg.pdf
http://www.siam.org/meetings/alenex05/papers/03agoldberg.pdf
https://doi.org/10.3390/a12090196
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1145/3173045
https://doi.org/10.1145/3173045
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.disc.2005.12.003
https://doi.org/10.1016/j.disc.2005.12.003
https://doi.org/10.4230/OASIcs.ATMOS.2019.10

Bibliography

190

[HB15] Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel com-
puting systems: twelve ways to tell the masses when reporting perfor-
mance results. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November

15-20, 2015. Ed. by Jackie Kern and Jeffrey S. Vetter, pages 73:1–73:12. ACM, 2015.
doi: 10.1145/2807591.2807644.
Cited on page 35.

[HSW08] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering multilevel
overlay graphs for shortest-path queries. In ACM Journal of Experimental

Algorithmics volume 13, 2008. doi: 10.1145/1412228.1412239.
Cited on page 4.

[HZVG17] Yixiao Huang, Lei Zhao, Tom Van Woensel, and Jean-Philippe Gross. Time-
dependent vehicle routing problem with path flexibility. In Transportation

Research Part B: Methodological volume 95, pages 169–195, Elsevier, 2017.
Cited on page 8.

[II87] H. Imai and Masao Iri. An optimal algorithm for approximating a piecewise
linear function. In Journal of Information Processing volume 9:3, pages 159–162,
1987.
Cited on page 106.

[IOAI91] Kunihiro Ishikawa, Michima Ogawa, Shigetoshi Azuma, and Tooru Ito. Map
navigation software of the electro-multivision of the ’91 Toyoto Soarer.
In Vehicle Navigation and Information Systems Conference, 1991. Volume 2 of,
pages 463–473. IEEE, 1991. doi: 10.1109/VNIS.1991.205793.
Cited on page 2.

[JWHT13] Gareth James, DanielaWitten, Trevor Hastie, and Robert Tibshirani.An Introduc-
tion to Statistical Learning. Volume 112 of. Springer, 2013. doi: 10.1007/978-
1-4614-7138-7.
Cited on page 32.

[JK13] Erik Jenelius and Haris N Koutsopoulos. Travel time estimation for urban
road networks using low frequency probe vehicle data. In Transportation

Research Part B: Methodological volume 53, pages 64–81, Elsevier, 2013. doi:
10.1016/j.trb.2013.03.008.
Cited on page 32.

[Joh81] David S. Johnson.TheNP-completeness column: an ongoing guide. In Journal
of Algorithms volume 2:4, pages 393–405, Elsevier, 1981.
Cited on page 24.

https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/1412228.1412239
https://doi.org/10.1109/VNIS.1991.205793
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1016/j.trb.2013.03.008

Bibliography

191

[KSWZ20] Alexander Kleff, Frank Schulz, Jakob Wagenblatt, and Tim Zeitz. Efficient Route
Planning with Temporary Driving Bans, Road Closures, and Rated Park-
ing Areas. In 18th International Symposium on Experimental Algorithms, SEA

2020, June 16-18, 2020, Catania, Italy. Ed. by Simone Faro and Domenico Cantone.
Volume 160 of LIPIcs, pages 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi: 10.4230/LIPIcs.SEA.2020.17.
Cited on page 160.

[Kno+07] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea
Wagner. Computing Many-to-Many Shortest Paths Using Highway Hi-
erarchies. In Proceedings of the Nine Workshop on Algorithm Engineering and

Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM,
2007. doi: 10.1137/1.9781611972870.4.
Cited on pages 43, 90.

[Kob15] Moritz Kobitzsch. Alternative Route Techniques and their Applications to
the Stochastics on-time Arrival Problem. PhD thesis. Karlsruhe Institute of
Technology, 2015. doi: 10.5445/IR/1000050750.
Cited on pages 6, 8, 64, 79, 92, 178.

[Kob21] Moritz Kobitzsch. Personal communication. July 2021.
Cited on page 79.

[KRS13] Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker. Evolution
and Evaluation of the Penalty Method for Alternative Graphs. In 13th

Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,

and Systems, ATMOS 2013, September 5, 2013, Sophia Antipolis, France. Ed. by
Daniele Frigioni and Sebastian Stiller. Volume 33 of OASIcs, pages 94–107. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi: 10.4230/OASIcs.ATMOS.
2013.94.
Cited on page 79.

[KMPZ22] Spyros Kontogiannis, Paraskevi-Maria-Malevi Machaira, Andreas Paraskevopou-
los, and Christos Zaroliagis. REX: A Realistic Time-Dependent Model for
Multimodal Public Transport. In 22nd Symposium on Algorithmic Approaches

for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Ed. by
Mattia D’Emidio and Niels Lindner. Volume 106 of Open Access Series in In-
formatics (OASIcs), pages 12:1–12:16. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. isbn: 978-3-95977-259-4. doi: 10.4230/
OASIcs.ATMOS.2022.12.
Cited on page 8.

https://doi.org/10.4230/LIPIcs.SEA.2020.17
https://doi.org/10.1137/1.9781611972870.4
https://doi.org/10.5445/IR/1000050750
https://doi.org/10.4230/OASIcs.ATMOS.2013.94
https://doi.org/10.4230/OASIcs.ATMOS.2013.94
https://doi.org/10.4230/OASIcs.ATMOS.2022.12
https://doi.org/10.4230/OASIcs.ATMOS.2022.12

Bibliography

192

[Kon+16] Spyros C. Kontogiannis, George Michalopoulos, Georgia Papastavrou, Andreas
Paraskevopoulos, Dorothea Wagner, and Christos D. Zaroliagis. Engineering
Oracles for Time-Dependent Road Networks. In Proceedings of the Eighteenth

Workshop on Algorithm Engineering and Experiments, ALENEX 2016, Arlington,

Virginia, USA, January 10, 2016. Ed. by Michael T. Goodrich and Michael Mitzen-
macher, pages 1–14. SIAM, 2016. doi: 10.1137/1.9781611974317.1.
Cited on page 7.

[Kon+17] Spyros C. Kontogiannis, Georgia Papastavrou, Andreas Paraskevopoulos, Dorothea
Wagner, and Christos D. Zaroliagis. Improved Oracles for Time-Dependent
Road Networks. In 17th Workshop on Algorithmic Approaches for Transportation

Modelling, Optimization, and Systems, ATMOS 2017, September 7-8, 2017, Vienna,

Austria. Ed. by Gianlorenzo D’Angelo and Twan Dollevoet. Volume 59 of OASIcs,
pages 4:1–4:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/OASIcs.ATMOS.2017.4.
Cited on pages 7, 121, 122.

[Lau04] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest
Paths in Static Networks with Geographical Background. In Geoinformation

und Mobilität - von der Forschung zur praktischen Anwendung. Volume 22. IfGI
prints, 2004, pages 219–230.
Cited on pages 2, 3.

[Lau06] Ulrich Lauther. An Experimental Evaluation of Point-To-Point Shortest
Path Calculation on Road Networks with Precalculated Edge-Flags. In The

Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey,

USA, November 13-14, 2006. Ed. by Camil Demetrescu, Andrew V. Goldberg, and
David S. Johnson. Volume 74 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 19–39. DIMACS/AMS, 2006. doi: 10.1090/
dimacs/074/02.
Cited on page 3.

[LGT03] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. ARA*: Anytime
A* with Provable Bounds on Sub-Optimality. In Advances in Neural Infor-

mation Processing Systems 16 [Neural Information Processing Systems, NIPS 2003,

December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. Ed. by
Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf, pages 767–774.
MIT Press, 2003. Url: https://proceedings.neurips.cc/paper/2003/hash/
ee8fe9093fbbb687bef15a38facc44d2-Abstract.html.
Cited on page 64.

[CP12] CP. Bing Maps New Routing Engine. Accessed: 2020-01-25. 2012. Url: https:
//blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/.
Cited on pages 6, 242.

https://doi.org/10.1137/1.9781611974317.1
https://doi.org/10.4230/OASIcs.ATMOS.2017.4
https://doi.org/10.1090/dimacs/074/02
https://doi.org/10.1090/dimacs/074/02
https://proceedings.neurips.cc/paper/2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html
https://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/
https://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/

Bibliography

193

[MS10] Matthias Müller-Hannemann and Stefan Schirra (editors). Algorithm Engineer-
ing: Bridging the Gap between Algorithm Theory and Practice [outcome
of a Dagstuhl Seminar]. Volume 5971. Lecture Notes in Computer Science.
Springer, 2010. isbn: 978-3-642-14865-1. doi: 10.1007/978-3-642-14866-8.
Cited on pages 2, 241.

[NDSL12] Giacomo Nannicini, Daniel Delling, Dominik Schultes, and Leo Liberti. Bidirec-
tional A* search on time-dependent road networks. In Networks volume 59:2,
pages 240–251, 2012. doi: 10.1002/net.20438.
Cited on pages 6, 19, 20, 30, 53, 223.

[OR89] Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent
networks is NP-hard. In tech. rep., 1989.
Cited on page 19.

[OR90] Ariel Orda and Raphael Rom. Shortest-Path andMinimum-Delay Algorithms
in Networks with Time-Dependent Edge-Length. In Journal of the ACM vol-
ume 37:3, pages 607–625, 1990. doi: 10.1145/79147.214078.
Cited on pages 19, 20.

[OR91] Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent
networks. In Networks volume 21:3, pages 295–319, 1991. doi: 10.1002/net.
3230210304.
Cited on page 19.

[PZWS13] Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. Crowd sensing of traffic
anomalies based on human mobility and social media. In 21st SIGSPATIAL

International Conference on Advances in Geographic Information Systems, SIGSPA-

TIAL 2013, Orlando, FL, USA, November 5-8, 2013. Ed. by Craig A. Knoblock, Markus
Schneider, Peer Kröger, John Krumm, and Peter Widmayer, pages 334–343. ACM,
2013. doi: 10.1145/2525314.2525343.
Cited on page 32.

[Pan+13] Gang Pan, Guande Qi, Wangsheng Zhang, Shijian Li, Zhaohui Wu, and Laurence
Tianruo Yang. Trace analysis and mining for smart cities: issues, methods,
and applications. In IEEE Communications Magazine volume 51:6, 2013. doi:
10.1109/MCOM.2013.6525604.
Cited on page 32.

[PZ13] Andreas Paraskevopoulos and Christos Zaroliagis. Improved Alternative Route
Planning. In 13th Workshop on Algorithmic Approaches for Transportation Mod-

elling, Optimization, and Systems. Ed. by Daniele Frigioni and Sebastian Stiller.
Volume 33 of OpenAccess Series in Informatics (OASIcs), pages 108–122. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013. isbn: 978-3-
939897-58-3. doi: 10.4230/OASIcs.ATMOS.2013.108.
Cited on page 79.

https://doi.org/10.1007/978-3-642-14866-8
https://doi.org/10.1002/net.20438
https://doi.org/10.1145/79147.214078
https://doi.org/10.1002/net.3230210304
https://doi.org/10.1002/net.3230210304
https://doi.org/10.1145/2525314.2525343
https://doi.org/10.1109/MCOM.2013.6525604
https://doi.org/10.4230/OASIcs.ATMOS.2013.108

Bibliography

194

[Par61] Seymour Parter. The use of linear graphs in Gauss elimination. In SIAM

review volume 3:2, pages 119–130, SIAM, 1961. doi: 10.1137/1003021.
Cited on page 67.

[PYJ20] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. Fast stochastic
routing under time-varying uncertainty. In VLDB J. volume 29:4, pages 819–
839, 2020. doi: 10.1007/s00778-019-00585-6.
Cited on page 8.

[PG13] Luigi Di Puglia Pugliese and Francesca Guerriero. A survey of resource con-
strained shortest path problems: Exact solution approaches. InNetworks vol-
ume 62:3, pages 183–200, 2013. doi: 10.1002/net.21511.
Cited on page 160.

[PSWZ07] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Effi-
cient models for timetable information in public transportation systems.
In ACM Journal of Experimental Algorithmics volume 12, pages 2.4:1–2.4:39, 2007.
doi: 10.1145/1227161.1227166.
Cited on page 8.

[RT78] Donald J Rose and Robert Endre Tarjan.Algorithmic aspects of vertex elimina-
tion on directed graphs. In SIAM Journal on Applied Mathematics volume 34:1,
pages 176–197, SIAM, 1978. doi: 10.1137/0134014.
Cited on page 67.

[San09] Peter Sanders. Algorithm Engineering - An Attempt at a Definition. In
Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th

Birthday. Ed. by Susanne Albers, Helmut Alt, and Stefan Näher. Volume 5760
of Lecture Notes in Computer Science, pages 321–340. Springer, 2009. doi: 10.
1007/978-3-642-03456-5_22.
Cited on pages 2, 241.

[SS05] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact
Shortest Path Queries. In Algorithms - ESA 2005, 13th Annual European Sym-

posium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings. Ed. by Gerth
Stølting Brodal and Stefano Leonardi. Volume 3669 of Lecture Notes in Computer
Science, pages 568–579. Springer, 2005. doi: 10.1007/11561071_51.
Cited on pages 2, 4, 119, 134, 152, 177, 178.

[SS12] Peter Sanders and Christian Schulz. Distributed Evolutionary Graph Parti-
tioning. In Proceedings of the 14th Meeting on Algorithm Engineering & Experi-

ments, ALENEX 2012, The Westin Miyako, Kyoto, Japan, January 16, 2012. Ed. by
David A. Bader and Petra Mutzel, pages 16–29. SIAM / Omnipress, 2012. doi:
10.1137/1.9781611972924.2.
Cited on page 68.

https://doi.org/10.1137/1003021
https://doi.org/10.1007/s00778-019-00585-6
https://doi.org/10.1002/net.21511
https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1137/0134014
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/11561071_51
https://doi.org/10.1137/1.9781611972924.2

Bibliography

195

[SS13] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly
Balanced Graph Partitioning. In Experimental Algorithms, 12th International

Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings. Ed. by Vincenzo
Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela. Volume 7933
of Lecture Notes in Computer Science, pages 164–175. Springer, 2013. doi: 10.
1007/978-3-642-38527-8_16.
Cited on page 68.

[SS15] Aaron Schild and Christian Sommer. On Balanced Separators in Road Net-
works. In Experimental Algorithms - 14th International Symposium, SEA 2015,

Paris, France, June 29 - July 1, 2015, Proceedings. Ed. by Evripidis Bampis. Vol-
ume 9125 of Lecture Notes in Computer Science, pages 286–297. Springer, 2015.
doi: 10.1007/978-3-319-20086-6_22.
Cited on pages 67, 68, 81, 84.

[SS07] Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing. In
Experimental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June

6-8, 2007, Proceedings. Ed. by Camil Demetrescu. Volume 4525 of Lecture Notes
in Computer Science, pages 66–79. Springer, 2007. doi: 10.1007/978-3-540-
72845-0_6.
Cited on pages 4, 5, 177, 178.

[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s Algorithm On-
Line: An Empirical Case Study from Public Railroad Transport. In ACM

Journal of Experimental Algorithmics volume 5, page 12, 2000. doi: 10.1145/
351827.384254.
Cited on pages 2, 4.

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Using Multi-level
Graphs for Timetable Information in Railway Systems. In Algorithm Engi-

neering and Experiments, 4th International Workshop, ALENEX 2002, San Francisco,

CA, USA, January 4-5, 2002, Revised Papers. Ed. by David M. Mount and Clifford
Stein. Volume 2409 of Lecture Notes in Computer Science, pages 43–59. Springer,
2002. doi: 10.1007/3-540-45643-0_4.
Cited on page 4.

[GL78] Alan George and Joseph W. Liu. A Quotient Graph Model for Symmetric
Factorization. In Sparse Matrix Proceedings, pages 154–175. SIAM, 1978.
Cited on page 69.

https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-540-72845-0_6
https://doi.org/10.1007/978-3-540-72845-0_6
https://doi.org/10.1145/351827.384254
https://doi.org/10.1145/351827.384254
https://doi.org/10.1007/3-540-45643-0_4

Bibliography

196

[Str17] Ben Strasser. Dynamic Time-Dependent Routing in Road Networks
Through Sampling. In 17th Workshop on Algorithmic Approaches for Trans-

portation Modelling, Optimization, and Systems, ATMOS 2017, September 7-8, 2017,

Vienna, Austria. Ed. by Gianlorenzo D’Angelo and Twan Dollevoet. Volume 59 of
OASIcs, pages 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi: 10.4230/OASIcs.ATMOS.2017.3.
Cited on page 7.

[SHB14] Ben Strasser, Daniel Harabor, and Adi Botea. Fast First-Move Queries through
Run-Length Encoding. In Proceedings of the Seventh Annual Symposium on

Combinatorial Search, SOCS 2014, Prague, Czech Republic, 15-17 August 2014. Ed.
by Stefan Edelkamp and Roman Barták. AAAI Press, 2014. Url: http://www.
aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8906.
Cited on page 3.

[SWZ20] Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-Efficient, Fast and Exact
Routing in Time-Dependent Road Networks. In 28th Annual European Sympo-

sium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference).
Ed. by Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders. Volume 173 of
LIPIcs, pages 81:1–81:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi: 10.4230/LIPIcs.ESA.2020.81.
Cited on page 98.

[SWZ21] Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-Efficient, Fast and Exact
Routing in Time-Dependent Road Networks. In Algorithms volume 14:3,
page 90, 2021. doi: 10.3390/a14030090.
Cited on page 98.

[SZ21] Ben Strasser and Tim Zeitz. A Fast and Tight Heuristic for A* in Road Net-
works. In 19th International Symposium on Experimental Algorithms, SEA 2021,

June 7-9, 2021, Nice, France. Ed. by David Coudert and Emanuele Natale. Vol-
ume 190 of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021. doi: 10.4230/LIPIcs.SEA.2021.6.
Cited on page 45.

[SZ22] Ben Strasser and Tim Zeitz. Using Incremental Many-to-One Queries to
Build a Fast and Tight Heuristic for A* in Road Networks. In ACM Journal

of Experimental Algorithmics, 2022. issn: 1084-6654. doi: 10.1145/3571282.
Cited on page 45.

https://doi.org/10.4230/OASIcs.ATMOS.2017.3
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8906
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8906
https://doi.org/10.4230/LIPIcs.ESA.2020.81
https://doi.org/10.3390/a14030090
https://doi.org/10.4230/LIPIcs.SEA.2021.6
https://doi.org/10.1145/3571282

Bibliography

197

[Stu+15] Nathan R. Sturtevant, Jason M. Traish, James R. Tulip, Tansel Uras, Sven Koenig,
Ben Strasser, Adi Botea, Daniel Harabor, and Steve Rabin. The Grid-Based Path
Planning Competition: 2014 Entries and Results. In Proceedings of the Eighth

Annual Symposium on Combinatorial Search, SOCS 2015, 11-13 June 2015, Ein Gedi,

the Dead Sea, Israel. Ed. by Levi Lelis and Roni Stern, page 241. AAAI Press, 2015.
Url: http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11290.
Cited on page 64.

[Tar72] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. In
SIAM Journal on Computing volume 1:2, pages 146–160, 1972. doi: 10.1137/
0201010.
Cited on page 49.

[Tho04] Mikkel Thorup. Integer priority queues with decrease key in constant time
and the single source shortest paths problem. In Journal of Computer and

System Sciences volume 69:3, pages 330–353, 2004. doi: 10.1016/j.jcss.2004.
04.003.
Cited on page 3.

[TWB18] Marieke S. van der Tuin, Mathijs de Weerdt, and G. Veit Batz. Route Planning
with Breaks and Truck Driving Bans Using Time-Dependent Contraction
Hierarchies. In Proceedings of the Twenty-Eighth International Conference on

Automated Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, June

24-29, 2018. Ed. by Mathijs de Weerdt, Sven Koenig, Gabriele Röger, and Matthijs
T. J. Spaan, pages 356–365. AAAI Press, 2018. Url: https://aaai.org/ocs/
index.php/ICAPS/ICAPS18/paper/view/17745.
Cited on pages 8, 160.

[UK14] Tansel Uras and Sven Koenig. Identifying Hierarchies for Fast Optimal
Search. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial In-

telligence, July 27 -31, 2014, Québec City, Québec, Canada. Ed. by Carla E. Brodley
and Peter Stone, pages 878–884. AAAI Press, 2014. Url: http://www.aaai.org/
ocs/index.php/AAAI/AAAI14/paper/view/8497.
Cited on page 64.

[Vet09] Christian Vetter. Parallel time-dependent contraction hierarchies. Student
Research Project. Karlsruhe Institute of Technology, 2009. Url: https://http:
//algo2.iti.kit.edu/download/vetter_sa.pdf.
Cited on page 84.

[Wag19] Jakob Wagenblatt. Route Planning with Temporary Road Closures. Bachelor
Thesis. Karlsruhe Institute of Technology, 2019. Url: https://i11www.iti.kit.
edu/_media/teaching/theses/ba-wagenblatt-19.pdf.
Cited on page 160.

http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11290
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/10.1016/j.jcss.2004.04.003
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17745
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17745
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8497
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8497
https://http://algo2.iti.kit.edu/download/vetter_sa.pdf
https://http://algo2.iti.kit.edu/download/vetter_sa.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba-wagenblatt-19.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba-wagenblatt-19.pdf

Bibliography

198

[Wei97] Karsten Weihe. Reuse of Algorithms: Still a Challenge to Object-Oriented
Programming. In Proceedings of the 1997 ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages & Applications, OOPSLA 1997, Atlanta,

Georgia, October 5-9, 1997. Ed. by Mary E. S. Loomis, Toby Bloom, and A. Michael
Berman, pages 34–48. ACM, 1997. doi: 10.1145/263698.263704.
Cited on page 44.

[WZ22] Nils Werner and Tim Zeitz. Combining Predicted and Live Traffic with Time-
Dependent A* Potentials. In 30th Annual European Symposium on Algorithms,

ESA 2022. Ed. by Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz
Herman. Volume 244 of LIPIcs, pages 89:1–89:15. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. isbn: 978-3-95977-247-1. doi:
10.4230/LIPIcs.ESA.2022.89.
Cited on page 125.

[Win02] Stephan Winter. Modeling Costs of Turns in Route Planning. In GeoInfor-

matica volume 6:4, pages 363–380, 2002. doi: 10.1023/A:1020853410145.
Cited on pages 53, 80.

[Wit15] SaschaWitt.Trip-Based Public Transit Routing. InAlgorithms - ESA 2015 - 23rd

Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings. Ed.
by Nikhil Bansal and Irene Finocchi. Volume 9294 of Lecture Notes in Computer
Science, pages 1025–1036. Springer, 2015. doi: 10.1007/978-3-662-48350-3_85.
Cited on page 8.

[Woj18] Dominik Wojtczak. On Strong NP-Completeness of Rational Problems. In
Computer Science - Theory and Applications - 13th International Computer Science

Symposium in Russia, CSR 2018, Moscow, Russia, June 6-10, 2018, Proceedings. Ed.
by Fedor V. Fomin and Vladimir V. Podolskii. Volume 10846 of Lecture Notes in
Computer Science, pages 308–320. Springer, 2018. doi: 10.1007/978-3-319-
90530-3_26.
Cited on pages 23, 25.

[Zei13] Tim Zeitz. Weak Contraction Hierarchies Work! Bachelor Thesis. Karlsruhe
Institute of Technology, 2013. Url: https://i11www.iti.kit.edu/_media/
teaching/theses/weak_ch_work-1.pdf.
Cited on page 67.

[Zei22a] Tim Zeitz. Fast Computation of Shortest Smooth Paths and Uniformly
Bounded Stretch with Lazy RPHAST. In 20th International Symposium on

Experimental Algorithms, SEA 2022, July 25-27, 2022, Heidelberg, Germany. Ed. by
Christian Schulz and Bora Uçar. Volume 233 of LIPIcs, pages 3:1–3:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.SEA.
2022.3.
Cited on page 144.

https://doi.org/10.1145/263698.263704
https://doi.org/10.4230/LIPIcs.ESA.2022.89
https://doi.org/10.1023/A:1020853410145
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.1007/978-3-319-90530-3_26
https://doi.org/10.1007/978-3-319-90530-3_26
https://i11www.iti.kit.edu/_media/teaching/theses/weak_ch_work-1.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/weak_ch_work-1.pdf
https://doi.org/10.4230/LIPIcs.SEA.2022.3
https://doi.org/10.4230/LIPIcs.SEA.2022.3

Bibliography

199

[Zei22b] Tim Zeitz. NP-Hardness of Shortest Path Problems in Networks with Non-
FIFO Time-Dependent Travel Times . In Information Processing Letters, May
2022. doi: 10.1016/j.ipl.2022.106287.
Cited on pages 15, 22.

[ZH02] Rong Zhou and Eric A. Hansen.Multiple SequenceAlignment UsingAnytime
A*. In Proceedings of the Eighteenth National Conference on Artificial Intelligence

and Fourteenth Conference on Innovative Applications of Artificial Intelligence, July

28 - August 1, 2002, Edmonton, Alberta, Canada. Ed. by Rina Dechter, Michael J.
Kearns, and Richard S. Sutton, pages 975–977. AAAI Press / The MIT Press, 2002.
Url: http://www.aaai.org/Library/AAAI/2002/aaai02-155.php.
Cited on page 64.

[Zün19] Michael Zündorf. Customizable Contraction Hierarchies with Turn Costs.
Bachelor Thesis. Karlsruhe Institute of Technology, 2019. Url: https://i11www.
iti.kit.edu/_media/teaching/theses/ba-zuendorf-19.pdf.
Cited on pages 66, 69.

[Zün22] Tobias Zündorf.Multimodal Journey Planning and Assignment in Public
Transportation Networks. PhD thesis. Karlsruhe Institute of Technology, 2022.
204 pp. doi: 10.5445/IR/1000145076.
Cited on pages 2, 8.

https://doi.org/10.1016/j.ipl.2022.106287
http://www.aaai.org/Library/AAAI/2002/aaai02-155.php
https://i11www.iti.kit.edu/_media/teaching/theses/ba-zuendorf-19.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba-zuendorf-19.pdf
https://doi.org/10.5445/IR/1000145076

201

List of Acronyms

ALT A*, Landmarks, and Triangle Inequality
Used on pages 3, 5–7, 53, 58–61

ATCH Approximated Time-Dependent Contraction Hierarchies
Used on pages 7, 121, 123, 124

BCCH Bucket CCH
Used on pages 90, 91

BFS Breadth-First Search
Used on page 68

CALT Core ALT
Used on pages 6, 121

CATCHUp Customizable Approximated Time-Dependent Contraction Hierarchies through Unpacking
Used on pages 9, 98–101, 104, 105, 121–125, 131, 132, 135, 136, 177

CCH Customizable Contraction Hierarchies
Used on pages iii, 6, 9, 63, 65–67, 69–71, 74–81, 86, 88–95, 99, 102–104, 106, 107, 125, 130–132,
134–138, 144, 147–149, 175, 177, 213, 214, 217, 219, 227, 229, 242

CH Contraction Hierarchies
Used on pages iii, 4–9, 41–44, 46, 47, 51–55, 57–67, 69, 74–76, 79, 81, 83–85, 88–90, 94, 95, 105, 107,
108, 121, 123–126, 129, 132–134, 170, 175, 177, 178, 213, 214, 219, 227, 228, 242

CRP Customizable Route Planning
Used on pages 5–7, 9, 65, 66, 83, 86, 88, 92, 94, 95, 121, 122, 124, 143, 147, 158, 177, 178, 215

List of Acronyms

202

DAG Directed Acyclic Graph
Used on pages 47, 48

DFS Depth-First Search
Used on pages 48, 68, 76, 85, 89, 90, 131–133, 177, 213

FIFO First-in, first-out
Used on pages iii, 19, 20, 23, 26, 98, 126, 128, 129, 131–133, 177, 242

HL Hub Labeling
Used on page 5

IFC InertialFlowCutter
Used on pages 68, 84–86

IMP Interval-Minimum Potentials
Used on pages 131–139, 148, 149, 158, 227, 231

IPB Iterative Path Blocking
Used on pages 143, 144, 146, 147, 149

IPB-E Exact Iterative Path Blocking
Used on pages 147, 154–158

IPB-H Heuristic Iterative Path Blocking
Used on pages 147, 152–158

IPF Iterative Path Fixing
Used on pages 151, 154–158

MLD Multilevel Dijkstra
Used on pages 4–6

MMP Multi-Metric Potentials
Used on pages 130–138, 227, 230

OSM Open Street Map
Used on pages 31, 33, 35, 36, 54, 56, 58–62, 84, 87, 114, 134, 136, 138, 152–154, 157, 158

POI Point of Interest
Used on pages 77, 90, 91, 215

PPLF Periodic Piecewise Linear Function
Used on pages 12, 17, 18

SPP Shortest Path Problem
Used on pages 15, 16

SSPP Shortest Smooth Path Problem
Used on pages 143–146

List of Acronyms

203

TCH Time-Dependent Contraction Hierarchies
Used on pages 7, 8, 63, 64, 98, 110, 121, 123, 124

TD-S Time-Dependent Sampling
Used on pages 7, 8, 121, 122, 124

TD-SPP Time-Dependent Shortest Path Problem
Used on pages 17–19, 22, 39, 98

UBS Uniformly Bounded Stretch
Used on pages 144–147, 149–153, 158

205

List of Symbols

Fields

ℕ The set of all natural numbers.
Used on page 161

ℤ The set of all integer numbers.
Used on pages 15, 18, 22–24, 26, 53, 166

ℚ The set of all rational numbers.
Used on pages 18, 24, 26, 145, 162, 163

ℝ The set of all real numbers.
Used on pages 12, 18, 98

Basic Variables

𝑏 Total number of driving ban intervals in a graph.
Used on pages 161, 168, 169

𝑐 Number of cores of the benchmark machine.
Used on pages 74, 75

𝑒 An edge in a graph (𝑒 ∈ E).
Used on pages 12, 17, 21, 23, 26, 27, 34, 35, 41, 51, 53, 80, 81, 99, 126, 127, 130, 146, 161–164, 167, 168

Y An infinitesimal small positive number.
Used on pages 11, 19, 127, 128

List of Symbols

206

𝑚 Number of edges in a graph.
Used on pages 11, 23, 39, 75, 161

` Tentative distance found by a bidirectional search.
Used on pages 40, 42, 50, 51

𝑛 Number of vertices in a graph.
Used on pages 11, 23, 39, 41, 44, 69, 72, 74, 79, 145, 146, 150, 161, 165–168

𝑞 Distance of the closest remaining element in a queue Q.
Used on pages 39, 40, 50

𝑟 Number of different parking area ratings.
Used on pages 161, 162, 167–169

𝑠 The source vertex.
Used on pages 12, 15–17, 20–24, 26, 27, 39–43, 46, 47, 49–52, 76–80, 106–112, 127–131, 144–151, 162–164,
173

𝑡 The target vertex.
Used on pages 12, 15–17, 20–24, 26, 27, 39–43, 46–52, 55, 76–80, 106–112, 127–130, 132, 144–147, 149, 151,
162, 164, 165, 170

𝑢 A vertex (𝑢 ∈ V).
Used on pages 11, 12, 18, 23, 24, 39–41, 43, 47–50, 52, 53, 66, 69–74, 77, 78, 80, 99–105, 107–110, 112, 113,
127–129, 131–133, 145–148, 151, 161–164, 168, 170

𝑣 A vertex (𝑣 ∈ V).
Used on pages 11, 12, 18, 20, 22–24, 26, 39–41, 43, 47–53, 58, 66, 67, 69–74, 76–78, 80, 81, 99–105, 107–110,
112, 113, 127–133, 144–151, 161–170

𝑤 A vertex (𝑤 ∈ V).
Used on pages 12, 18, 41, 48, 49, 51, 53, 70–74, 77, 81, 99–104, 109, 110, 112, 113, 129, 145, 148

𝑥 A CATCHUp shortcut expansion.
Used on pages 99–102, 113

Times

𝜏 An instant in time.
Used on pages 12, 18–24, 26, 27, 40, 44, 53, 99–102, 104, 105, 109, 113, 126–133, 163, 164, 167–170

𝜏dep Earliest time of departure at the source vertex in a time-dependent shortest path query.
Used on pages 12, 17, 20–24, 26, 27, 39, 40, 107, 109, 110, 127, 129–131, 133, 134, 162–164, 169

𝜏max Latest arrival at 𝑡 such that an 𝑠𝑡-path in the time-dependent shortest path problem is
considered feasible.
Used on pages 22–24, 26, 27, 130, 133, 162, 164, 170

𝜏now Time of the current live traffic snapshot.
Used on pages 21, 126, 130, 134

List of Symbols

207

𝜏end Instant when the real-time traffic travel time of an edge is considered outdated and
the predicted travel times can be considered again as more accurate
Used on pages 21, 126, 127

𝜏closed Beginning of a temporary driving ban interval.
Used on pages 161, 166

𝜏open End of a temporary driving ban interval.
Used on page 161

𝜏visit Time when a vertex is visited.
Used on pages 163, 164, 169, 170

Length Functions

ℓ A general constant or time-dependent edge length function.
Used on pages 12, 15–18, 20–24, 26, 27, 34, 35, 40, 41, 50, 53, 70, 77, 78, 80, 81, 100–102, 104, 105, 109, 110,
113, 120, 127–132, 144–146, 148, 149, 151, 154, 156, 161–164, 170, 226←−

ℓ Length function for reversed edges when ℓ has only constant lengths.
Used on page 12

ℓ+ Length function for a CH augmented graph.
Used on pages 41, 43, 47, 70, 71, 77, 99, 100, 102, 104–106, 131

ℓ+lb Approximated time-dependent lower bound for shortcuts during CATCHUp cus-
tomization.
Used on pages 106, 131

ℓ+ub Approximated time-dependent upper bound for shortcuts during CATCHUp cus-
tomization.
Used on page 106

ℓ+pclb Piecewise constant lower bounds for the augmented graph for Interval-Minimum
Potentials.
Used on pages 131, 132

ℓfree Scalar free-flow travel times.
Used on pages 17, 54, 77

ℓpred Time-dependent travel time functions for predicted traffic.
Used on pages 12, 21, 54, 126, 127, 130, 131

ℓlive Scalar travel times considering the current traffic situation.
Used on pages 12, 21, 126, 127

ℓcomb Time-dependent travel time functions for combined predicted traffic and real-time
traffic information.
Used on pages 21, 54, 126, 127, 130

ℓpre A preprocessing-time edge length function.
Used on pages 51–54, 57–63, 219–221

List of Symbols

208

ℓq A query-time edge length function.
Used on pages 17, 51–54, 57–63, 219–221

ℓpen A length function with penalties for alternative routes.
Used on page 80

ℓt A weight function for turn costs.
Used on pages 53, 81

ℓe A weight function for the turn-expanded graph.
Used on page 53

ℓv The volatile length function in the shortest smooth path problem.
Used on pages 145–148, 151, 154–157

Time-Dependent Functions

𝑓 A time-dependent travel time function.
Used on pages 12, 19, 20, 40, 44, 97, 98, 100, 102, 104, 110, 127, 226

𝑓 Arrival time function of travel time function 𝑓 (𝜏) = 𝑓 (𝜏) + 𝜏 .
Used on page 12

𝑔 A time-dependent travel time function.
Used on pages 44, 97, 98, 102, 110, 127

ℎ A time-dependent travel time function.
Used on pages 98, 102

𝑓 c A time-dependent cost function.
Used on pages 163, 164, 167–170

𝑓 tt A time-dependent travel time function derived from ban intervals.
Used on pages 163, 164, 167, 168

Sequences, Tuples, and Intervals

𝐴 A sequence of arrivals for vertices of a path.
Used on pages 162, 164

𝐷 A sequence of departures for vertices of a path.
Used on pages 162, 164

𝐺 A graph (𝐺 = (V, E)).
Used on pages 11, 15–17, 20–22, 24, 39, 41, 42, 49, 53, 67, 69, 74, 77, 78, 81–83, 104, 128, 144–146

←−
𝐺 A reversed graph (←−𝐺 = (V,←−E)).

Used on pages 11, 40

𝐺+ A CH augmented graph (𝐺 = (V, E+)).
Used on pages 41, 42, 47, 52, 67, 68, 70, 75, 78, 87, 88, 90, 94, 95, 99, 104, 105, 130–132, 151

List of Symbols

209

𝐺↑ CH augmented graph with only upward edges (𝐺↑ = (V, E↑)).
Used on pages 41–43, 47, 48, 68, 69, 71, 73–76, 78, 107, 131

𝐺↓ CH augmented graph with only downward edges (𝐺↓ = (V, E↓)).
Used on pages 41–43, 47, 48, 68, 71, 73–77, 107, 131, 132, 150, 151

𝐺∗ A CH augmented graph (𝐺 = (V, E∗)).
Used on pages 70, 71, 78, 83, 87, 88, 94, 95

𝐺e A turn expanded graph (𝐺e = (Ve = E, Ee)).
Used on pages 53, 81–83

𝐺pre A preprocessing-time graph in the CH-Potentials framework.
Used on pages 51–53

𝐺q A query-time graph in the CH-Potentials framework.
Used on pages 51–53

𝐻 Definition interval of periodic travel time functions, typically a day.
Used on pages 12, 44, 98, 104, 110, 126, 162–164

𝑃 A path in a graph, represented as sequence of vertices (𝑃 = (𝑣0, . . . , 𝑣𝑘)).
Used on pages 11, 12, 21–23, 26, 27, 41, 80, 101, 109, 110, 113, 128, 144–146, 148–150, 153, 162, 164

𝑇 A timespan or time domain considered in an algorithm or problem.
Used on pages 12, 17–20, 22, 102, 110, 113, 127

𝑉 Validity interval for a CATCHUp expansion.
Used on pages 99–102, 113

Sets

B A subset of vertices used for experimental evaluation with terminals drawn from
regions of specific sizes.
Used on pages 55–57, 88–90, 214, 219

B Set of time intervals where driving is not allowed on an edge.
Used on pages 161–163

C A set of vertices in a cell C ⊆ V .
Used on pages 78, 83

E The edges of a graph (E ⊆ V × V).
Used on pages 11, 12, 15–17, 20–22, 24, 34, 35, 39, 40, 48, 51–53, 66, 77, 81, 99–102, 104, 109, 113, 127, 145,
146, 161–163←−

E Set containing every edge of E in reverse direction.
Used on page 11

E+ Edges of a CH augmented graph.
Used on pages 41, 68, 70, 75, 78, 99, 102, 104, 105, 131

List of Symbols

210

E↑ Upward edges, i.e. edges where the head has higher rank than the tail, of a CH
augmented graph.
Used on pages 41, 43, 47, 69, 71–73, 77, 104, 132

E↓ Downward edges, i.e. edges where the head has lower rank than the tail, of a CH
augmented graph.
Used on pages 41, 71–73, 104, 132

E∗ Edges of a CCH minimal augmented graph.
Used on page 75

N The neighborhood of a vertex.
Used on page 11

←→
N The undirected neighborhood of a vertex.

Used on page 11

P The perimeter of cell P (C) contains vertices directly adjacent but not part of the cell.
Used on page 78

S A set of source vertices S ⊆ V .
Used on pages 43, 55–57, 214, 219

T A set of target vertices T ⊆ V .
Used on pages 77–79

V The vertices of a graph.
Used on pages 11, 15–17, 20–22, 24, 39–41, 43, 47, 51–53, 55, 68, 71–74, 77, 78, 81, 99, 104, 109, 127, 128,
145, 146, 161–164

X Time-dependent expansions of CATCHUp augmented graph edges.
Used on pages 99–102, 104, 105, 111, 113, 120, 226

Implementation

b Scalar lower bound maintained for CATCHUp shortcuts.
Used on pages 99, 104, 105, 108–110, 131

b Scalar upper bound maintained for CATCHUp shortcuts.
Used on pages 99, 104, 105, 108

D An array of length 𝑛 containing distances for each vertex.
Used on pages 11, 39–41, 43, 44, 47–50, 76, 77, 108, 132, 133

ET An array of length 𝑛 containing parents in the CCH elimination tree.
Used on pages 69, 70, 76, 77

P An array of length 𝑛 containing parents in the shortest path tree.
Used on pages 40, 151

Q A priority queue (min-heap) for Dijkstra’s algorithm.
Used on pages 39, 40

List of Symbols

211

S A stack.
Used on pages 76, 77

Other Functions

𝜋𝑡 An A* potential/heuristic function estimating distances to the target 𝑡 .
Used on pages 41, 48–50, 52, 58, 109, 110, 127–129, 131, 170

𝜙 A function in the CH-potentials framework mapping query to preprocessing vertices.
Used on pages 52, 53

𝑝 A function mapping vertices to their parking area rating.
Used on pages 161–164, 170

deg The degree of a vertex, i.e. the number of directly reachable neighbors.
Used on pages 11, 71, 73, 74

←→
deg The undirected degree of a vertex, i.e. the number of adjacent vertices in either

direction.
Used on pages 11, 48, 49

dist A minimal travel time or distance.
Used on pages 12, 15, 17, 20, 39, 41, 43, 46, 49, 50, 52, 53, 70, 71, 76, 78, 80, 105, 109, 110, 127, 129, 130, 132,
144, 146, 149, 150

dist≺ Shortest distance using only lower-ranked vertices.
Used on pages 41, 70, 71, 105, 132

exp Function to expand a CATCHUp expansion.
Used on pages 99–102, 113

opt A path of minimal travel time or distance.
Used on pages 144, 149, 151, 154, 156

UBS Uniformly Bounded Stretch of a path.
Used on pages 144–146, 152

Parameters

𝛼 A scaling factor for evaluating A* potentials.
Used on pages 57, 58

𝛽 Parameter for maximum number of breakpoints for CATCHUp approximation. Set to
1000 by default.
Used on pages 106, 111, 116, 117

𝛿 Driving cost parameter for truck driver routing.
Used on pages 162–170, 173

𝜖 Maximum error parameter for CATCHUp approximation. Set to 1 s by default.
Used on pages 106, 116, 117

List of Symbols

212

𝜖 A stretch or UBS limit parameter.
Used on pages 80, 144–148, 152–154, 156–158

[A tuning parameter for the parallelization of the CCH customization. Set to 32.
Used on page 74

^ A tuning parameter for the parallelization of the CCH customization. Set to 4.
Used on page 75

𝛾 Duration of Interval-Minimum Potentials buckets. Set 15 minutes.
Used on page 131

_ Duration of the live window for Multi-Metric Potentials. Set to 59 minutes.
Used on page 130

𝜔𝑖 Waiting cost parameter at vertex of rating 𝑖 for truck driver routing.
Used on pages 162–169, 173

𝜓 The multiplicative penalization factor for edges on the shortest path in the penalty
method. Set to 1.1.
Used on page 80

𝜓r The additive penalization factor for edges adjacent to the shortest path in the penalty
method. Set to 0.01.
Used on page 80

213

A
The Customizable Contraction
Hierarchies Framework: Additional
Experimental Results

A.1 Customization
Table A.1 depicts customization times on the Germany instance. We observe similar scaling
behavior as with Europe and overall decent running times.

Table A.1: Running times by number of threads of different steps of the customization phase on Germany
The experiment was conducted on our main benchmark machine for Chapter 7.

Germany [s]
Threads Basic Perfect Construct Total

1 3.22 3.59 1.52 8.32
2 1.76 1.81 0.76 4.33
4 1.05 0.96 0.41 2.42
8 0.75 0.54 0.27 1.56
16 0.55 0.29 0.24 1.08

A.2 Lazy RPHAST
Figure A.1 depicts Lazy RPHAST incremental query performance on the Germany instance.
We observe marginal differences in absolute running times and otherwise only one significant
difference: On small ball sizes, Lazy RPHAST on CCH is in both the elimination tree and the
DFS variant faster than the CH variant.

Appendix A The Customizable Contraction Hierarchies Framework: Additional Experimental Results

214

0

10

20

30

40

R
un

ni
ng

 T
im

e
[m

s]
Ball Size |B|

214

217

221

224

Algorithm
CH DFS
CCH DFS
CCH ET

0 2500 5000 7500 10000 12500 15000
Number of Computed Distances

0.1

1

10

100

Av
er

ag
e

R
un

ni
ng

 T
im

e
pe

r D
is

ta
nc

e
[

s]

Figure A.1: Average running times of Lazy RPHAST on CH and CCH while incrementally querying
|S | = 214 sources from a ball of varying size |B | on Germany excluding selection times. The experiment
was conducted on our main benchmark machine for Chapter 7. The upper figure contains the total
elapsed running time. The lower figure contains the averaged running time per source, i.e. 𝑦/𝑥 from the
upper figure. Note the different y-axis scales and units.

A.3 Nearest-Neighbor
Figure A.2 depicts nearest-neighbor query performance on the Germany instance. We observe
no significant differences other than absolute running times. Table A.2, Figure A.3 and Figure A.3
depict the results of our reproduction of the experiments in [BW21]. We evaluated both our own
implementation and the open-source implementation from [BW21]. We could fully reproduce
the results observed in [BW21]. The direct comparison also clearly shows the impact of our
optimizations.

Nearest-Neighbor Section A.3

215

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

Number of POIs

0.001

0.01

0.1

1

10

100

1000

10000

100000

R
un

ni
ng

 T
im

e
[m

s]

Dijkstra query
Dijkstra select

BCCH query
BCCH select

CCH query
CCH select

Lazy RPHAST

Figure A.2: Average running times for different nearest-neighbor algorithms on Germany to find the
𝑘 = 4 closest targets from a POI set of varying size on our benchmark machine for Chapter 7.

Table A.2: Overview over the performance of various 𝑘-nearest-neighbor algorithms for different target
distributions. We report the time to index a set of POIs (selection time), the space consumed by the index
(selection space), and the time to find the 𝑘 = 1, 4, 8 closest POIs (query time). The entire experiment was
conducted on the same benchmark machine used in [BW21]. For CRP we list unscaled results as reported
in [DW15]. LR is Lazy RPHAST. The [orig] row contains results for the CCH separator-based approach
with the open-source implementation from [BW21] and [ours] is our own improved implementation.

|𝑃 | = 212, |𝐵 | = 220 |𝑃 | = 214, |𝐵 | = |𝑉 |
selection query time [`s] Selection Query time [`s]

Space Time POIs to be reported Space Time POIs to be reported
[MB] [ms] 𝑘 = 1 𝑘 = 4 𝑘 = 8 [MB] [ms] 𝑘 = 1 𝑘 = 4 𝑘 = 8

Dijk. 2.2 0.1 712 763.1 723 458.3 730 865.8 2.2 0.2 165.6 665.7 1 346.0
CRP – – – – – 0.0 8.0 – 640.0 –
[orig] 72.0 12.5 3 150.7 4 704.7 6 230.4 72.0 13.8 363.6 594.2 852.7
[ours] 0.0 0.1 278.6 311.7 338.4 0.0 0.6 359.0 445.0 532.5
LR 0.0 0.0 3 157.3 3 157.6 3 158.8 0.0 0.0 44 441.2 44 442.1 44 451.0
BCCH 89.7 324.6 25.8 27.8 29.5 141.5 1 327.3 7.4 12.5 16.6

Appendix A The Customizable Contraction Hierarchies Framework: Additional Experimental Results

216

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

Number of POIs

0.001

0.01

0.1

1

10

100

1000

10000

100000

R
un

ni
ng

 T
im

e
[m

s]
Dijkstra query
Dijkstra select

BCCH query
BCCH select

CCH query
CCH select

CCH [orig] select
CCH [orig] query

Lazy RPHAST

Figure A.3: Average running times for different nearest-neighbor algorithms on Europe to find the 𝑘 = 4
closest targets from a POI set of varying size. The [orig] results were obtained with the open-source
implementation form [BW21]. Also, the experiment was conducted on the same benchmark machine
used in [BW21].

214 215 216 217 218 219 220 221 222 223 224

Ball Size |B|

0.01

0.1

1

10

100

1000

10000

R
un

ni
ng

 T
im

e
[m

s]

Dijkstra query
Dijkstra select

BCCH query
BCCH select

CCH query
CCH select

CCH [orig] select
CCH [orig] query

Lazy RPHAST

Figure A.4: Average running times for different nearest-neighbor algorithms on Europe to find the 𝑘 = 4
closest targets from a POI set with 214 targets picked from a ball of varying size. The [orig] results were
obtained with the open-source implementation form [BW21]. Also, the experiment was conducted on
the same benchmark machine used in [BW21].

Turn Costs Section A.4

217

A.4 Turn Costs
Table A.3 depicts characteristics of the full instance set used for the evaluation of our turn-aware
CCH implementation. Europe Turns is the Europe subgraph induced by the largest strongly
connected component in the turn-expanded graph which we used in [BWZZ20]. Tables A.4
and A.5 show running times for all phases and optimizations for the full instance set and confirm
the observations presented in the main part of this work.

Table A.3: Additional road networks used for the evaluation of our turn cost optimizations.

Source Vertices Edges Turns Turn
[·103] [·103] [·103] data

Chicago Transp. Networks 13.0 39.0 135.3 100 s U-Turns
London PTV 37.0 85.5 137.2 Costs, Restrictions
Stuttgart PTV 109.5 252.1 394.2 Costs, Restrictions
Germany OSM 16 169.0 35 442.2 54 800.3 Restrictions
Europe Turns DIMACS 17 350.0 39 936.5 106 371.3 100 s U-Turns
Europe DIMACS 18 010.2 42 188.7 113 953.6 100 s U-Turns

Table A.4: Performance of different CCH variants and optimizations to support turn costs. We report
the number of directed edges in the augmented graph and running times for each phase. Directed
hierarchies imply the removal of infinite shortcuts and reordering separator vertices builds on directed
hierarchies and the removal of infinite shortcuts and all three variants used a cut order. The experiment
was conducted on the same benchmark machine used in [BW21].

CCH Edges Prepro. Customization [ms] Query [`s]
[·103] [s] Basic Perfect Basic Perfect

Threads 1 16 1 16

Ch
ic
ag
o

No turns 235.7 0.9 7.4 3.9 13.3 3.0 20.6 11.1
CCH-Pot. 235.7 0.9 7.4 3.9 13.3 3.0 – 485.0
Naive exp. 1 637.2 1.3 64.7 21.9 133.2 15.5 72.0 27.1
Cut order 1 703.9 1.5 65.6 23.1 134.9 15.7 71.6 29.2
Infinity 1 571.9 1.5 70.3 19.2 104.9 14.6 70.9 29.3
Directed 873.5 1.5 38.4 11.6 103.3 16.4 40.4 40.4
Reorder 737.0 1.5 27.8 7.2 66.0 8.5 29.6 35.6

Appendix A The Customizable Contraction Hierarchies Framework: Additional Experimental Results

218

Table A.5: Continuation of Table A.4.

CCH Edges Prepro. Customization [ms] Query [`s]
[·103] [s] Basic Perfect Basic Perfect

Threads 1 16 1 16

Lo
nd

on

No turns 363.7 0.6 9.9 3.5 16.6 3.0 20.9 11.8
CCH-Pot. 363.7 0.6 9.9 3.5 16.6 3.0 – 720.5
Naive exp. 1 534.2 1.1 48.0 15.2 108.2 12.3 58.9 22.3
Cut order 1 680.5 1.5 53.7 16.5 114.8 13.0 61.1 26.0
Infinity 1 447.7 1.5 51.8 13.9 82.5 11.3 60.3 26.0
Directed 785.2 1.5 33.1 8.8 75.1 10.7 37.0 33.5
Reorder 697.6 1.5 26.3 6.2 53.0 7.0 26.1 31.4

St
ut
tg
ar
t

No turns 724.2 0.9 15.9 3.9 24.5 3.8 17.5 10.2
CCH-Pot. 724.2 0.9 15.9 3.9 24.5 3.8 – 321.1
Naive exp. 3 214.9 2.4 72.8 14.0 158.4 16.6 44.2 18.0
Cut order 3 359.7 1.1 74.9 13.8 159.9 17.3 42.7 18.1
Infinity 2 874.6 1.2 69.4 11.7 121.3 13.8 42.2 18.2
Directed 1 550.5 1.2 52.8 9.1 104.0 12.0 26.8 22.3
Reorder 1 440.8 1.2 47.2 7.5 82.8 9.2 19.3 21.3

Ge
rm

an
y

No turns 93 443.1 165.6 2 883.3 937.9 4 696.1 628.3 330.8 104.6
CCH-Pot. 93 443.1 165.6 2 883.3 937.9 4 696.1 628.3 – 1 359.3
Naive exp. 440 812.8 1 584.6 14 425.8 3 238.3 31 005.2 3 194.1 953.9 192.0
Cut order 467 191.1 299.0 15 097.5 3 747.9 32 568.6 3 521.3 1 103.3 234.4
Infinity 388 201.7 318.5 15 174.2 3 339.2 24 890.1 2 975.8 1 104.3 234.5
Directed 206 970.0 319.6 9 754.1 2 403.7 23 459.0 2 573.2 586.0 337.6
Reorder 190 597.1 319.8 8 273.4 2 050.3 17 331.0 2 018.6 408.2 347.9

Eu
ro
pe

Tu
rn
s

No turns 107 042.6 202.3 3 095.6 1 092.0 5 479.4 763.1 246.8 102.3
CCH-Pot. 107 042.6 202.3 3 095.6 1 092.0 5 479.4 763.1 – 3 783.6
Naive exp. 622 426.7 2 474.0 17 759.1 4 041.4 38 486.3 4 070.2 712.3 170.4
Cut order 663 587.3 300.3 18 112.5 3 983.6 38 566.7 4 126.7 786.8 190.9
Infinity 585 062.3 319.3 18 424.2 3 590.4 32 506.1 3 686.3 781.7 190.5
Directed 326 627.9 322.7 12 693.0 2 747.8 29 559.5 3 137.0 419.8 273.5
Reorder 302 307.5 323.1 10 620.0 2 331.7 22 436.9 2 588.7 301.8 304.5

Eu
ro
pe

No turns 117 727.5 263.5 3 366.5 982.4 6 070.5 767.8 189.3 89.1
CCH-Pot. 117 727.5 263.5 3 366.5 982.4 6 070.5 767.8 – 2 311.1
Naive exp. 692 995.8 2 873.9 19 670.2 3 590.2 43 816.2 4 523.2 575.6 159.3
Cut order 737 433.4 327.2 20 082.1 3 567.5 44 365.9 4 597.9 584.4 167.9
Infinity 651 921.7 355.1 20 145.2 3 721.1 36 436.2 3 918.9 582.7 167.2
Directed 363 663.3 359.7 13 797.5 2 808.6 33 040.0 3 495.1 645.8 260.9
Reorder 334 755.9 357.0 11 686.7 2 450.2 25 097.4 2 889.0 469.0 299.2

219

B CH-Potentials and CCH-Potentials in
Comparison

Figure B.1 and Tables B.1 to B.4 depict experimental results on CH-Potentials from Chapter 6.
However, they also include running times for CCH-Potentials realized with the elimination
tree-based Lazy RPHAST. Generally, CH and CCH-Potentials perform similarly. Usually, CCH-
Potentials are slightly slower. Only in the bidirectional ℓq = 1.05 · ℓpre case, the CCH variant is
marginally faster. This is caused by the varying performance characteristics of Lazy RPHAST
depending on the number of queried distances; compare Figure A.1

214 215 216 217 218 219 220 221 222 223 224

Ball Size |B|

1

10

R
un

ni
ng

 T
im

e
[m

s]

OSM Germany
DIMACS Europe
Lazy RPHAST CH
Lazy RPHAST CCH
RPHAST CH

Figure B.1: Running times of (C)CH-based Lazy RPHAST and CH-based RPHAST for many-to-one
queries with |S | = 214 sources picked from a ball of varying size |B | including both the selection and the
time to compute all distances. The experiment was conducted on our benchmark machine for Chapter 6.

Appendix B CH-Potentials and CCH-Potentials in Comparison

220

Figure B.1 also includes running times of our own implementation of RPHAST [DGW11] for a
more accurate comparison. These confirm our statements on the relative performance difference
between Lazy RPHAST and RPHAST and also roughly reproduce the results from [DGW11].

Table B.1: Average query running times and number of queue pushes with different heuristics and
optimizations on Germany with ℓq = 1.05 · ℓpre. The experiment was conducted on our main benchmark
machine for Chapter 6.

BCC Deg2 Deg3 Zero ALT CH CCH Oracle

Ru
nn

in
g

tim
e
[m

s] ◦ ◦ ◦ 2 133.0 317.9 47.9 54.4 34.3
• ◦ ◦ 1 355.3 233.9 36.3 38.5 24.8
• • ◦ 753.4 122.6 19.5 22.1 12.7
• • • 580.7 90.8 15.9 18.1 10.1

Q
ue
ue

[·1
03
]

◦ ◦ ◦ 8 087.1 863.1 137.1 137.1 137.1
• ◦ ◦ 6 298.2 685.7 112.7 112.7 112.7
• • ◦ 2 901.4 303.4 43.3 43.3 43.3
• • • 1 681.4 179.7 26.8 26.8 26.8

Table B.2: Performance of different variants of bidirectional A* on OSM Ger with ℓq = 1.05 · ℓpre. All
variants alternate between the forward and the backward search. The experiment was conducted on our
main benchmark machine for Chapter 6.

Running time [ms] Queue pushes [·103]
Low Deg. Bidir. New Zero ALT CH CCH Oracle Zero ALT (C)CH/

Opt. Pot. Pruning Oracle

◦ Avg. ◦ 1 441.41 126.46 62.61 53.91 37.29 4 493.97 292.01 125.16
◦ Avg. • 1 451.96 128.20 62.48 54.28 38.89 4 491.56 290.92 125.08
◦ Sym. ◦ 5 779.64 795.56 122.70 111.78 88.66 16 042.82 1 688.60 259.78
◦ Sym. • 1 453.58 261.80 59.22 51.97 37.37 4 491.56 624.25 116.71

• Avg. ◦ 365.82 33.22 19.34 18.66 9.96 916.15 57.27 23.60
• Avg. • 369.51 33.37 19.54 18.88 9.98 908.55 56.09 23.25
• Sym. ◦ 1 512.48 241.27 40.98 38.99 26.36 3 317.81 334.90 44.67
• Sym. • 368.94 72.67 21.54 20.39 11.22 908.55 123.77 20.72

CH-Potentials and CCH-Potentials in Comparison Appendix B

221

Table B.3: Performance of different direction selection criteria of bidirectional A* on OSM Ger with
different query weights. The symmetric variant uses the improved pruning, the average variant does not.
All variants use all low degree optimizations. The experiment was conducted on our main benchmark
machine for Chapter 6.

Running time [ms] Queue pushes [·103]

ℓq
Bidir. Choose Zero ALT CH CCH Oracle Zero ALT (C)CH/
Pot. Direction Oracle

ℓpre

Avg. Alternating 373.18 12.83 0.79 1.13 0.18 916.15 23.08 0.60
Avg. Min. Key 406.35 13.68 1.44 1.75 0.56 986.40 26.39 1.15
Sym. Alternating 376.72 40.19 0.69 0.92 0.19 908.55 76.61 0.57
Sym. Min. Key 427.51 50.46 1.77 1.99 0.83 978.62 99.62 1.44

ℓpre · 1.05

Avg. Alternating 365.82 33.22 19.34 18.66 9.96 916.15 57.27 23.60
Avg. Min. Key 391.70 38.06 21.76 20.44 11.30 986.41 67.65 26.42
Sym. Alternating 368.94 72.67 21.54 20.39 11.22 908.55 123.77 20.72
Sym. Min. Key 394.38 84.84 27.28 24.64 14.53 978.63 145.28 24.82

ℓpre · 1.5 if
speed
< 80kph

Avg. Alternating 361.83 19.50 10.92 10.94 5.34 845.06 34.03 13.25
Avg. Min. Key 391.47 31.65 21.05 20.10 11.00 917.13 52.23 23.78
Sym. Alternating 364.55 37.33 11.89 11.75 6.00 836.44 57.93 11.53
Sym. Min. Key 395.04 54.90 23.36 22.48 12.54 908.12 84.33 22.01

Table B.4: Performance of bidirectional and unidirectional A* on OSM Ger with different query weights.
The symmetric variant uses the improved pruning, the average variant does not. All variants use all low
degree optimizations. The experiment was conducted on our main benchmark machine for Chapter 6.

Running time [ms] Queue pushes [·103]

ℓq Zero ALT CH CCH Oracle Zero ALT (C)CH/
Oracle

ℓpre

Unidirectional 584.87 43.02 0.47 0.64 0.16 1 674.35 96.21 0.66
Average 373.18 12.83 0.79 1.13 0.18 916.15 23.08 0.60

Symmetric 376.72 40.19 0.69 0.92 0.19 908.55 76.61 0.57

ℓpre · 1.05
Unidirectional 580.66 90.79 15.91 18.09 10.06 1 681.39 179.66 26.78

Average 365.82 33.22 19.34 18.66 9.96 916.15 57.27 23.60
Symmetric 368.94 72.67 21.54 20.39 11.22 908.55 123.77 20.72

ℓpre · 1.5 if
speed
< 80kph

Unidirectional 637.24 96.62 21.78 21.37 14.62 1 674.26 171.02 36.54
Average 361.83 19.50 10.92 10.94 5.34 845.06 34.03 13.25

Symmetric 364.55 37.33 11.89 11.75 6.00 836.44 57.93 11.53

223

C CATCHUp: Additional
Experimental Results

Table C.1 contains preprocessing results for all graphs. The other days for Ger06 and Ber
behave roughly as expected. The weekend instances feature less time-dependent edges and
preprocessing accordingly runs faster. SynEur with medium and high traffic produces some
surprising results regarding the unpacking data. Even the medium traffic instance has a higher
average number of expansions than Eur17. With high traffic, the number is even greater than
on Eur20. The number of edges with only a single expansion is correspondingly small. We
suspect that the reason for this are the extreme relative delays of the predicted travel times.
These extreme fluctuations lead to many shortest path changes despite the little amount of
time-dependent information. The instances derived from raw traffic observation (Mun and
Ger19) have the largest averages of expansions per edge. But even for the Mun instance, the
number of edges with only one expansion is still 90%. This suggests that our approach is robust.
The results for query experiments on all instances reported in Table C.2 also confirm our

observations from the main part of this article. Each optimization yields similar accelerations.
Again, SynEur exhibits surprising behavior. On the one hand, unoptimized queries are surpris-
ingly fast, i.e., up to four times faster than on Eur17. On the other hand, with all optimizations,
SynEur with high traffic has the slowest query times among all instances. Again, the reason is
the combination of few time-dependent edges with high relative delays. Because there is little
time-dependent information in the instance, the basic query algorithm is not as slow as one
could expect. However, because of the high delays, the corridor search and the A* optimizations
are not as effective. In [NDSL12] it is stated that unimportant edges (with respect to a Highway
Hierarchy) will never get a non-constant travel time function. In combination with the high
relative delays, detours through unimportant parts of the network can often become the shortest
paths. This also decreases the effectiveness of our A* optimization.

Appendix C CATCHUp: Additional Experimental Results

224

Table C.1: Preprocessing statistics. Running times are for parallel execution on 16 cores.

CCH edges Expansions per edge Data Running time [s]
[·103] Avg. Max. = 1 [%] [GB] Prepr. Custom.

Mun Tuesday 125 2.087 129 89.9 0.01 0.6 1.3
Ber Monday 1 977 1.040 25 98.6 0.09 1.5 6.2

Tuesday 1 977 1.039 31 98.6 0.09 1.5 6.2
Wednesday 1 976 1.038 19 98.6 0.09 1.5 6.2
Thursday 1 977 1.039 23 98.6 0.09 1.6 6.2
Friday 1 975 1.037 28 98.7 0.09 1.5 5.8
Saturday 1 961 1.023 21 99.1 0.09 1.5 3.8
Sunday 1 957 1.021 27 99.2 0.09 1.6 3.3

Ger06 Monday 22 499 1.073 42 98.4 1.06 30.0 20.9
midweek 22 519 1.075 44 98.4 1.06 30.1 21.6
Friday 22 445 1.064 43 98.6 1.05 30.2 17.2
Saturday 22 229 1.031 37 99.2 1.03 30.2 6.0
Sunday 22 128 1.019 39 99.5 1.02 29.8 3.6

SynEur Low 88 884 1.036 23 99.2 4.14 238.3 82.7
Medium 90 514 1.109 24 97.6 4.31 231.5 224.8
High 94 302 1.264 31 94.6 4.71 233.3 523.0

Ger17 Tuesday 31 488 1.090 107 98.5 1.50 35.0 107.4
Eur17 Tuesday 114 857 1.099 115 98.4 5.47 189.6 557.0
Ger19 Tuesday 75 800 1.668 369 96.1 4.30 135.7 11 581.1
Eur20 Tuesday 128 921 1.191 109 96.9 6.32 209.6 1 039.5

Table C.3 contains profile query results. The results mostly conform to the already reported
observations, Mun behaves like Ger19 but smaller, and SynEur deviates. Here, the SynEur
results are particularly surprising. While the travel time profiles are comparatively simple
because of the low complexity of the input functions, the number of path switches is so high
that we suspected bugs as the cause. In addition, it decreases as the amount of traffic increases.
Nevertheless, we claim that the numbers are correct and that the reason lies in the combination
of high relative delays with few time-dependent edges. When there are few time-dependent
edges and the slowdown due to a predicted traffic jam on an edge is very high, there will always
be a faster detour using less important arcs without travel time predictions. This leads to the
extremely high number of switches and distinct paths. As the amount of time-dependent edges
is increased, the spatial consistency increases and an increasing amount of detours will now
also have an increased travel time. Thus, the number of path switches decreases.

C
ATC

H
U
p:A

dditionalExperim
entalR

esults
A
ppendix

C

225

Table C.2: Query performance with different optimizations. We report the number of nodes popped from the queue, the number of
evaluated travel time functions and the running time. All values are arithmetic means over 100 000 queries executed in bulk with source,
target and departure time drawn uniformly at random.

Queue pops Evaluated travel time functions Running time [ms]
Basic + Cor. + Lazy + A* Basic + Cor. + Lazy + A* Basic + Cor. + Lazy + A*

Mun Tue. 77.5 58.8 1 314.7 209.3 11 241.9 5 517.5 1 677.3 321.0 0.6 0.3 0.3 0.1

Ber Mon. 167.4 38.2 1 605.0 618.6 99 629.0 5 480.3 1 762.4 674.9 8.6 0.6 0.6 0.3
Tue. 167.4 38.1 1 603.6 635.2 100 820.5 5 224.1 1 747.4 691.5 8.8 0.6 0.6 0.3
Wed. 167.4 38.6 1 640.4 643.7 101 938.1 5 405.3 1 786.6 702.0 8.9 0.6 0.7 0.3
Thu. 167.4 38.9 1 647.9 642.5 101 584.1 5 498.9 1 799.8 701.8 8.8 0.6 0.7 0.3
Fri. 167.4 37.8 1 591.1 619.6 99 142.5 5 061.0 1 722.9 674.0 8.5 0.5 0.6 0.3
Sat. 167.1 26.1 926.5 491.5 86 470.8 2 124.5 967.4 514.1 6.4 0.3 0.3 0.2
Sun. 167.1 24.7 864.1 476.3 84 796.6 1 865.9 895.3 495.1 6.1 0.2 0.3 0.2

Ger06 Mon. 492.3 68.6 2 649.0 727.0 751 679.3 22 542.0 3 029.0 853.0 42.8 1.8 1.4 0.5
midw. 492.3 79.7 3 323.2 831.0 818 721.3 31 740.8 3 838.0 995.1 46.4 2.3 1.7 0.6
Fri. 491.9 62.9 2 349.2 731.3 780 031.8 21 423.2 2 665.4 848.3 42.6 1.6 1.2 0.5
Sat. 490.7 24.1 339.4 211.1 541 331.4 2 457.5 360.0 223.6 26.8 0.4 0.3 0.2
Sun. 490.0 20.2 219.2 163.5 503 009.4 1 599.4 226.8 169.1 24.2 0.3 0.2 0.2

SynEur Low 742.8 341.3 6 626.2 1 704.8 4 871 967.5 997 409.9 16 521.1 4 730.7 201.8 39.9 5.1 2.0
Med. 746.8 461.8 17 209.3 3 796.9 5 742 442.6 1 596 401.3 35 066.3 9 389.8 253.0 69.4 13.1 4.0
High 749.7 554.1 33 572.2 7 018.4 6 142 257.3 2 031 399.6 60 234.2 15 685.2 289.2 96.4 25.5 6.9

Ger17 Tue. 510.3 143.4 18 450.0 3 099.2 2 100 731.8 164 372.5 19 910.5 3 495.5 169.7 13.7 9.1 1.7

Eur17 Tue. 861.6 229.3 39 714.8 6 876.5 9 951 623.1 806 727.8 43 581.1 7 911.0 808.6 62.3 20.8 4.1

Ger19 Tue. 894.2 618.1 193 779.2 23 218.1 40 675 596.0 11 563 911.1 220 416.1 29 816.5 4 329.0 1 166.1 151.2 16.5

Eur20 Tue. 871.0 335.6 62 677.7 7 231.9 10 527 072.7 1 222 655.6 70 145.4 8 844.7 813.2 92.9 33.7 4.7

A
ppendix

C
C
ATC

H
U
p:A

dditionalExperim
entalR

esults

226

Table C.3: Running times of profile queries and characteristics of the obtained profiles. We report total running times and running times
of each phase (Corridor, Reconstruction, Contraction, Extraction) of the query. The total running time is slightly larger than the sum of all
phases as it includes some additional initialization and cleanup work. We report the number of breakpoints in the obtained travel time
profile (Column |𝑓 |). Column |X | contains the number of times the shortest path changes during the day. Since the same path may be the
fastest for several times, we also report the number of distinct paths. All values are averages over 1000 random queries.

Running time [ms] Distinct
Corridor Reconstruct Contract Profile Paths Total |ℓ | |X | paths

Mun Tuesday 0.0 189.6 106.9 0.6 1.7 301.1 5 702.7 82.2 19.4
Ber Monday 0.1 39.7 14.9 2.6 0.4 58.4 29 090.5 2.7 2.3

Tuesday 0.1 37.8 13.9 2.8 0.4 55.6 30 974.9 2.7 2.3
Wednesday 0.1 38.4 14.1 2.8 0.4 56.5 31 126.2 2.6 2.2
Thursday 0.1 40.1 14.8 2.8 0.4 58.8 30 662.1 2.7 2.3
Friday 0.1 34.2 12.5 2.4 0.3 50.2 27 671.5 2.6 2.2
Saturday 0.1 11.2 3.4 1.5 0.2 16.6 17 892.8 1.6 1.8
Sunday 0.1 8.9 2.5 1.4 0.2 13.2 16 768.7 1.6 1.8

Ger06 Monday 0.3 42.2 17.3 0.6 0.8 62.9 9 036.7 7.0 3.1
midweek 0.4 56.5 23.0 0.7 0.8 83.6 9 359.6 6.9 3.3
Friday 0.3 32.4 14.0 0.5 0.7 49.3 7 896.2 6.0 3.0
Saturday 0.2 1.7 0.9 0.1 0.4 3.6 2 047.2 2.8 2.0
Sunday 0.2 0.9 0.4 0.1 0.3 2.1 1 386.3 2.2 1.8

SynEur Low 2.1 591.3 501.7 0.2 7.3 1 128.2 3 379.4 151.4 144.9
Medium 3.1 1 664.3 962.7 0.4 6.1 2 694.1 5 226.1 99.0 90.1
High 3.2 3 521.5 1 484.9 0.5 5.3 5 102.2 5 939.1 78.0 69.2

Ger17 Tuesday 0.8 452.2 189.0 6.1 2.4 660.1 66 146.0 9.7 3.7
Eur17 Tuesday 1.7 1 135.8 732.9 13.0 7.8 1 913.2 122 192.1 16.5 6.8
Ger19 Tuesday 2.3 34 345.4 230 643.8 79.3 51.8 265 453.7 525 196.4 91.4 34.3
Eur20 Tuesday 2.8 3 166.6 1 507.7 12.3 10.3 4 747.5 107 690.7 24.4 11.6

227

D Time-Dependent A* Potentials:
Additional Experimental Results

Here, we report the performance of all our time-dependent A* potentials functions on all
time-dependent problem instances: Table D.1 contains results for CH-Potentials, Table D.2 for
CCH-Potentials, Table D.3 for MMP, and Table D.4 for IMP. The experiments were conducted
on the benchmark machine of Chapter 9. The results confirm our observations from Chapter 9.
Further we note, that our potentials work best on graphs with traffic predictions derived from
traffic models such as the PTV instances. Instances using raw trace speeds (Mun and Ger19) are
harder but still manageable. The SynEur instance with its short simulated traffic jams in the
predictions has a completely different structure than what our potentials are tuned to. This is
the reason why we do not achieve good speedups on SynEur.

Appendix D Time-Dependent A* Potentials: Additional Experimental Results

228

Table D.1: Query and preprocessing performance results of CH-Potentials on different graphs and traffic
predictions. We report average running times, number of queue pops, relative increases of the result
distance over the initial distance estimate and speedups over Dijkstra’s algorithm for 10 k random queries.
Additionally, we report the total preprocessing time and the memory consumption of precomputed
auxiliary data.

Running Queue Length Speedup Prepro. Space
time [ms] [·103] incr. [%] [s] [GB]

Mun Tuesday 0.10 0.16 8.66 18.31 0.14 0.00

Ber Monday 0.68 0.67 3.47 80.20 2.97 0.02
Tuesday 0.77 0.77 3.75 69.45 2.95 0.02
Wednesday 0.83 0.83 3.91 65.10 2.96 0.02
Thursday 0.80 0.81 3.83 70.42 2.98 0.02
Friday 0.73 0.72 3.51 75.60 2.97 0.02
Saturday 0.38 0.37 1.97 129.57 2.90 0.02
Sunday 0.34 0.32 1.77 140.53 2.92 0.02

Ger06 Monday 3.59 4.00 2.71 147.97 56.76 0.21
midweek 4.58 5.37 3.07 115.50 56.85 0.21
Friday 4.38 5.18 2.90 115.72 56.53 0.21
Saturday 0.87 0.65 0.90 588.31 56.57 0.21
Sunday 0.65 0.41 0.59 768.09 56.06 0.21

SynEur Low 219.37 342.42 8.11 10.07 295.09 0.78
Medium 267.13 416.38 10.58 8.13 297.55 0.78
High 306.97 455.24 12.36 7.43 295.19 0.78

Ger17 Tuesday 16.68 15.83 5.28 62.98 63.71 0.30

Eur17 Tuesday 87.23 77.50 3.84 48.01 333.61 1.08

Ger19 Tuesday 134.93 92.79 12.21 24.20 289.97 0.68

Eur20 Tuesday 97.45 66.40 4.16 61.77 361.79 1.19

Time-Dependent A* Potentials: Additional Experimental Results Appendix D

229

Table D.2: Query and preprocessing performance results of CCH-Potentials on different graphs and
traffic predictions. We report average running times, number of queue pops, relative increases of the result
distance over the initial distance estimate and speedups over Dijkstra’s algorithm for 10 k random queries.
Additionally, we report the total preprocessing time and the memory consumption of precomputed
auxiliary data.

Running Queue Length Speedup Prepro. Space
time [ms] [·103] incr. [%] [s] [GB]

Mun Tuesday 0.09 0.16 8.66 20.18 0.19 0.00

Ber Monday 0.64 0.67 3.47 84.88 1.68 0.03
Tuesday 0.73 0.77 3.75 73.59 1.71 0.03
Wednesday 0.78 0.83 3.91 68.91 1.71 0.03
Thursday 0.76 0.81 3.83 74.45 1.60 0.03
Friday 0.68 0.72 3.51 80.70 1.70 0.03
Saturday 0.34 0.37 1.97 144.44 1.84 0.03
Sunday 0.30 0.32 1.77 156.67 1.73 0.03

Ger06 Monday 3.06 4.00 2.71 173.65 35.59 0.32
midweek 3.98 5.37 3.07 132.81 35.81 0.32
Friday 3.73 5.18 2.90 135.60 35.01 0.32
Saturday 0.68 0.65 0.90 743.67 35.06 0.32
Sunday 0.50 0.41 0.59 988.45 34.16 0.32

SynEur Low 213.98 342.42 8.11 10.32 261.82 1.27
Medium 258.08 416.38 10.58 8.41 252.94 1.27
High 300.48 455.24 12.36 7.59 257.44 1.27

Ger17 Tuesday 16.37 15.83 5.28 64.15 40.50 0.45

Eur17 Tuesday 84.96 77.50 3.84 49.29 226.04 1.65

Ger19 Tuesday 126.03 92.79 12.21 25.91 156.13 1.06

Eur20 Tuesday 94.96 66.40 4.16 63.39 244.63 1.80

Appendix D Time-Dependent A* Potentials: Additional Experimental Results

230

Table D.3: Query and preprocessing performance results of MMP on different graphs and traffic predic-
tions. We report average running times, number of queue pops, relative increases of the result distance
over the initial distance estimate and speedups over Dijkstra’s algorithm for 100 k random queries.
Additionally, we report the total preprocessing time and the memory consumption of precomputed
auxiliary data.

Running Queue Length Speedup Prepro. Space
time [ms] [·103] incr. [%] [s] [GB]

Mun Tuesday 0.11 0.15 7.88 17.78 0.44 0.06

Ber Monday 0.44 0.34 1.99 125.50 3.99 0.87
Tuesday 0.48 0.38 2.12 112.61 4.07 0.87
Wednesday 0.50 0.41 2.18 108.74 4.03 0.87
Thursday 0.49 0.40 2.16 116.17 3.94 0.87
Friday 0.46 0.36 1.96 120.70 4.03 0.87
Saturday 0.30 0.23 1.17 163.65 4.12 0.87
Sunday 0.28 0.21 1.05 167.64 3.99 0.87

Ger06 Monday 1.84 1.80 1.55 289.72 61.39 9.86
midweek 2.14 2.26 1.69 247.60 63.81 9.87
Friday 2.00 2.12 1.66 253.30 60.17 9.83
Saturday 0.65 0.37 0.48 783.30 59.88 9.72
Sunday 0.56 0.28 0.30 886.24 59.25 9.66

SynEur Low 224.76 333.02 8.00 9.83 398.73 38.95
Medium 295.18 416.91 10.41 7.36 367.32 39.73
High 319.64 453.30 12.16 7.14 392.41 41.49

Ger17 Tuesday 9.56 8.51 3.26 109.88 76.43 13.84

Eur17 Tuesday 79.35 69.24 3.27 52.78 383.28 50.64

Ger19 Tuesday 107.87 74.17 9.97 30.27 271.56 33.71

Eur20 Tuesday 89.04 58.84 3.48 67.61 426.18 56.62

Time-Dependent A* Potentials: Additional Experimental Results Appendix D

231

TableD.4:Query and preprocessing performance results of IMP on different graphs and traffic predictions.
We report average running times, number of queue pops, relative increases of the result distance over the
initial distance estimate and speedups over Dijkstra’s algorithm for 10 k random queries. Additionally,
we report the total preprocessing time and the memory consumption of precomputed auxiliary data.

Running Queue Length Speedup Prepro. Space
time [ms] [·103] incr. [%] [s] [GB]

Mun Tuesday 0.12 0.07 2.57 15.54 1.89 0.05

Ber Monday 0.42 0.12 0.29 130.15 12.33 0.80
Tuesday 0.43 0.12 0.31 125.95 11.99 0.80
Wednesday 0.43 0.12 0.31 126.99 14.03 0.80
Thursday 0.43 0.12 0.31 132.67 14.19 0.80
Friday 0.42 0.12 0.29 130.65 13.27 0.80
Saturday 0.36 0.11 0.16 134.72 9.65 0.79
Sunday 0.36 0.11 0.15 131.52 10.83 0.79

Ger06 Monday 1.60 0.25 0.20 332.61 92.05 9.08
midweek 1.68 0.26 0.21 315.61 94.98 9.08
Friday 1.55 0.23 0.17 326.73 88.71 9.05
Saturday 1.17 0.18 0.05 434.81 94.84 8.97
Sunday 1.11 0.18 0.03 446.56 85.88 8.93

SynEur Low 115.35 88.18 1.29 19.15 590.04 35.84
Medium 219.97 158.70 2.03 9.87 656.60 36.50
High 285.18 193.17 2.67 8.00 1 042.24 36.50

Ger17 Tuesday 2.39 0.32 0.31 439.72 230.84 12.72

Eur17 Tuesday 8.50 1.28 0.27 492.69 1 097.59 46.43

Ger19 Tuesday 20.89 5.08 1.76 156.29 13 111.69 30.66

Eur20 Tuesday 10.91 1.73 0.36 551.95 1 610.65 52.09

233

E Smooth Path Performance Profiles

Here, we show performance profiles broken down by instance and query set. Figure E.1 contains
the running time profile for dynamic smooth paths and Figure E.2 the quality profile. Figure E.3
contains the running time profile for time-dependent smooth paths and Figure E.4 the quality
profile. Finally, Figure E.5 shows the aggregated profile for time-dependent smooth paths.

A
ppendix

E
Sm

ooth
Path

Perform
ance

Profiles

234

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

DIMACS Eur Syn OSM Eur Syn OSM Ger Fri

1h

OSM Ger Tue

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 q
ue

rie
s

4h

1 10 100 1000
Slowdown over fastest

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

Random

Algorithm
IPB-E
IPB-H
IPF

Figure E.1: Relative performance profile for the running time of our algorithms for dynamic smooth paths on all queries from Table 10.1
split by graph and query set.

Sm
ooth

Path
Perform

ance
Profiles

A
ppendix

E

235

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

DIMACS Eur Syn OSM Eur Syn OSM Ger Fri

1h

OSM Ger Tue

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

4h

1 2 3
Length increase factor over best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

1 2 3
Length increase factor over best

1 2 3
Length increase factor over best

1 2 3
Length increase factor over best

RandomAlgorithm
IPB-E
IPB-H
IPF
opt

Figure E.2: Relative performance profile for solution quality of our algorithms for dynamic smooth paths on all queries from Table 10.1
split by graph and query set.

A
ppendix

E
Sm

ooth
Path

Perform
ance

Profiles

236

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

Ger Pred Ger Pred + Tue Ger Pred + Fri Eur Pred
1h

Eur Pred + Tue

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

4h

1 10 100 1000
Slowdown over fastest

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

R
andom

Algorithm
IPB-E
IPB-H
IPF

Figure E.3: Relative performance profile for the running time of our algorithms for time-dependent and combined dynamic and time-
dependent smooth paths on all queries from Table 10.2 split by graph and query set.

Sm
ooth

Path
Perform

ance
Profiles

A
ppendix

E

237

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

Ger Pred Ger Pred + Tue Ger Pred + Fri Eur Pred

1h

Eur Pred + Tue

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 q
ue

rie
s

4h

1 10 100 1000
Length increase factor over best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 q

ue
rie

s

1 10 100 1000
Length increase factor over best

1 10 100 1000
Length increase factor over best

1 10 100 1000
Length increase factor over best

1 10 100 1000
Length increase factor over best

R
andomAlgorithm

IPB-E
IPB-H
IPF
opt

Figure E.4: Relative performance profile for solution quality of our algorithms for time-dependent and combined dynamic and time-
dependent smooth paths on all queries from Table 10.2 split by graph and query set.

Appendix E Smooth Path Performance Profiles

238

1 10 100 1000
Slowdown over fastest

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 q
ue

rie
s

1 10 100 1000
Length increase factor over best found

Algorithm
IPB-E
IPB-H
IPF
opt

Figure E.5: Aggregated relative performance profiles of our algorithms for time-dependent smooth
paths on all queries from Table 10.2.

239

F Temporary Road Closures: Visualization
ofQuery Sets A1 and A2

The source and destination vertices for the query sets A1 and A2 are drawn from the regions 𝐴
and 𝐵 as shown in Figure F.1. Region 𝐴 is the area southeast of 49°N 4°E and northwest of 47°N
18°E. Region 𝐵 is the area southeast of 46°N 4°E and northwest of 42°N 18°E. From each region a
vertex is drawn. Queries are generated in both directions. This setup is taken from [Brä18].

𝐴

𝐵

Figure F.1: Source and destination areas of query sets A1 and A2.

241

Deutsche Zusammenfassung

Die Nutzung mobiler Navigationsanwendung hat über die vergangen Jahre stark zugenommen.
Wurden früher Reisen noch mit Straßenatlas geplant und über Verkehrsfunk gemeldete Staus
ad-hoc mehr oder weniger erfolgreich umfahren, so lässt man sich heute von einer passenden
Navigationsapplikation im Handumdrehen eine passende Route vorschlagen. Dank Integration
aktueller Verkehrsdaten bleibt einem sogar die Entscheidung erspart, ob es sich wirklich lohnt
den nächsten Stau zu umfahren. In Kombination mit passenden Navigations-/Fahranweisungen
ergibt sich ein erheblicher Komfortgewinn.

Die Integration von Verkehrsdaten ist essenziell um “gute” Routen zu berechnen [DGPW17]
und sicherlich auch ein wichtiger Grund, warum viele Nutzer mittlerweile eine Navigationsan-
wendung benutzen, selbst wenn sie die Strecke eigentlich kennen. Verkehrsdaten existieren
dabei in zwei Varianten: Das sind zum einen Daten zur aktuellen Verkehrssituation. Diese
sind dynamisch und hängen vom aktuellen Zeitpunkt ab. Zum anderen gibt es aber auch
Verkehrsvorhersagen zu regelmäßigen Verkehrsströmen beispielsweise durch Pendler. Um
diese in das Routing zu integrieren, wird die erwartete Fahrtzeit auf einem Straßensegment
als abhängig von der Tageszeit angenommen, zu der es befahren wird. Solche zeitabhängigen
Daten ändern sich deutlich seltener, sind also in der Regel nicht dynamisch. Dynamische
Daten hingegen haben auch eine zeitabhängige Komponente. Aktuelle Staus können sich in der
Zukunft wieder auflösen. Eine Umfahrung für einen 400 Kilometer entfernten Stau einzuplanen,
ist nicht unbedingt sinnvoll.
Die (Weiter-)Entwicklung von praktikablen Algorithmen zur Routenplanung unter Ein-

beziehung solcher dynamischer und zeitabhängiger Daten ist Gegenstand dieser Dissertation.
Dabei folgen wir der Algorithm-Engineering-Methodik [San09, MS10]. Diese hat sich im
Bereich von Routenplanungsproblemen bereits in der Vergangenheit als extrem produktiv er-

Deutsche Zusammenfassung

242

wiesen [DSSW09]. Eine Reihe von Beschleunigungstechniken wurde entwickelt [Bas+16]. Viele
davonwerden in der Praxis eingesetzt [DGPW17, CP12]. ContractionHierarchies (CH) [GSSV12]
ist eine solche Technik, die eine gewisse Popularität erreicht hat. Mit CH können Kürzeste-
Wege-Anfragen auf Straßennetzwerken mit Millionen von Knoten und Kanten nach einigen
Minuten Vorberechnungszeit innerhalb von weniger als einer Millisekunde optimal beantwortet
werden. Das ist ca. vier Größenordnungen schneller als mit dem Algorithmus von Dijkstra. Die
in dieser Arbeit vorgestellten Algorithmen bauen auf CH auf. CH wurde bereits in der Ver-
gangenheit für dynamische [Bas+16] und zeitabhängige [BGSV13] Problemvarianten erweitert.
Diese Erweiterungen bringen aber ihre eigenen Probleme mit sich. Beispielsweise benötigt die
zeitabhängige CH-Variante auf aktuellen Netzwerken mit detaillierten Verkehrsvorhersagen
hunderte von Gigabytes an Hauptspeicher, was nicht praktikabel ist. Im Verlauf der Arbeit
entwickeln wir daher vielfältige Verbesserungen und Erweiterungen.

Resultate. Die Arbeit beinhaltet die folgenden Hauptresultate: Erstens präsentieren wir
CH-Potentiale, ein A*-basiertes Routing-Framework. Dieses Framework kann für alle Prob-
lemvarianten verwendet werden, für die sinnvolle untere Schranken der Kantengewichte zur
Vorberechnungszeit zur Verfügung stehen. Mittels einer CH-Anfragevariante kann unser Al-
gorithmus bezüglich der unteren Schranke perfekte Distanzabschätzungen berechnen und
als A*-Potential verwenden. Die so erzielte Beschleunigung liegt zwischen einer und drei
Größenordnungen gegenüber dem Algorithmus von Dijkstra, abhängig davon, wie akkurat
die unteren Schranken sind. Zweitens stellen wir einige Verbesserungen und Erweiterungen
von Customizable Contraction Hierarchies (CCH) [DSW16], der CH-Variante für dynamis-
ches Routing, vor. Unsere Verbesserungen erzielen Laufzeitbeschleunigungen um bis zu einer
Größenordnung. Mit unseren Erweiterungen unterstützt CCH praktisch wichtige erweiterte
Problemszenarien wie Abbiegekosten, Alternativroutenberechnung sowie sogenannte Point-
of-Interest-Anfragen. Drittens stellen wir die erste Beschleunigungstechnik für zeitabhängige
Routenplanung vor, die speichereffizient ist und Kürzeste-Wege-Anfragen schnell und exakt
beantworten kann. Im Vergleich zur bisherigen Realisierung von CH im zeitabhängigen Szenario
hat unsere Technik einen um bis zu 40-fach reduzierten Speicherverbrauch, benötigt maximal
ein Drittel der Vorberechnungszeit und beantwortet Anfragen nur unwesentlich langsamer.
Viertens präsentieren wir eine Generalisierung von A* mit zeitabhängigen Potentialen. Darauf
aufbauend entwerfen wir einen Ansatz für Routing mit einer Kombination aus Verkehrsvorher-
sage und aktueller Verkehrssituation. Updates zur Verkehrssituation können innerhalb eines
Bruchteils einer Minute eingepflegt werden; die Laufzeiten zur optimalen Beantwortung von
Routinganfragen sind interaktiv. Fünftens untersuchen wir erweiterte Problemstellungen zu
Routing mit unvollständigen und verrauschten Verkehrsdaten sowie Routing für LKW unter
Einbeziehung zeitabhängiger Sperrungen und Fahrverbote. Für beide Varianten stellen wir
effiziente Algorithmen vor. Sechstens beinhaltet die Arbeit einige Komplexitätsresultate für
zeitabhängiges Routing ohne die FIFO-Eigenschaft und für die erweiterten Problemstellungen.

Deutsche Zusammenfassung

243

Schlussfolgerungen. Ein Ansatz, der sich im Verlauf der Arbeit als extrem flexibel und
fruchtbar erwiesen hat, ist das CH-Potentiale-Framework. Der Grund dafür ist, dass wir
für CH-Potentiale Flexibilität über schnellstmögliche Anfragelaufzeit priorisiert haben. Wir
beobachten, dass es eine Vielzahl an Forschungsresultate über Algorithmen gibt, die zuallererst
auf schnellstmögliche Anfragelaufzeiten fokussiert sind [Bas+16]. Flexible und erweiterbare
Routingalgorithmen wurden jedoch bisher deutlich weniger erforscht. Dabei ist diese Dimen-
sion für die praktische Anwendbarkeit von Routingalgorithmen teilweise sogar wichtiger als
die Anfragelaufzeiten [DGPW17]. Die Entwicklung von solch flexiblen Algorithmen ist je-
doch eine Herausforderung. Flexibilität ist keine einfach zu evaluierende, quantifizierbare
Dimension. Oft lassen sich wirklich einfachen Ansätze erst nach Umwegen über komplizierte
Herangehensweisen finden. Nichtsdestoweniger zeigt unsere Arbeit, dass auch nach 20 Jahren
aktiver Routenplanungsforschung noch einfache Techniken zu entdecken sind. Die einzige
algorithmische Neuerung bei CH-Potentialen ist die Anwendung einer Tiefensuche auf CH.
Den Fokus weniger stark auf Anfragelaufzeiten zu legen und dafür mehr auf einfache und
erweiterbare Algorithmen abzuzielen, halten wir daher für einen vielversprechenden Ansatz
für zukünftige Arbeiten im Gebiet Routenplanung. Die inkrementelle Herangehensweise des
Algorithm Engineering ist dabei essenziell, um praxistaugliche Algorithmen für zukünftige
Mobilitätsanwendungen zu entwickeln.

	Abstract
	Table of Contents
	Introduction
	Related Work
	Route Planning in Static Road Networks
	Dynamic Route Planning
	Time-Dependent Route Planning
	Dynamic and Time-Dependent Route Planning
	Other Extended Route Planning Problems

	Contribution and Outline

	Preliminaries and Notation
	I Modelling
	Formalizing Routing Problems
	Dynamic Route Planning
	Time-Dependent Route Planning
	Complexity
	Shortest Travel Time Profiles
	Accelerating Time-Dependent Route Planning

	Dynamic and Time-Dependent Route Planning
	NP-Hardness of Shortest Path Problems in Networks with Non-FIFO Time-Dependent Travel Times

	Route Planning Data
	Data Sources and Instance Extraction
	9th DIMACS Implementation Challenge
	PTV
	TomTom
	OpenStreetMap
	Mapbox
	BMW and Here

	Benchmark Instances
	Static Road Networks
	Networks with Traffic Predictions
	Real-Time Traffic Snapshots

	II Speedup Techniques
	Fundamental Algorithms and Data Structures
	Representing Graphs
	Dijkstra's Algorithm
	A*
	Contraction Hierarchies
	(R)PHAST
	Bucket Query

	Timestamp Arrays
	Periodic Piecewise Linear Functions

	A Fast and Tight Heuristic for A* in Road Networks
	The Incremental Many-to-One Problem
	Lazy RPHAST

	Optimizations for A* in Road Networks
	Low-Degree A* Improvements
	Bidirectional A*

	The CH-Potentials Framework
	Formal Problem Setup: Inputs, Outputs, and Phases
	CH-Potentials
	Applications

	Evaluation
	Lazy RPHAST
	CH-Potentials Heuristic
	Bidirectional A*
	Applications

	Conclusion

	The Customizable Contraction Hierarchies Framework
	Metric-Independent Preprocessing
	Ordering
	Contraction
	Elimination Tree
	Reconstructing Separator Decompositions

	Customization
	Batched Triangle Relaxation
	Parallelization

	Queries
	Extended Queries
	Lazy RPHAST on CCH
	Nearest Neighbor Queries
	Alternative Routes
	Turn Costs and Restrictions

	Evaluation
	CCH Performance
	Lazy RPHAST
	Point-of-Interest Queries
	Alternative Routes
	Turn Costs

	Conclusion

	Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks
	Shortcut Unpacking Data
	Preprocessing
	Pruning
	Perfect Customization
	Parallelization
	Approximation

	Queries
	Earliest Arrival Queries
	Profile Queries

	Evaluation
	Preprocessing
	Queries
	Comparison with Related Work

	Conclusion

	Combining Predicted and Live Traffic with Time-Dependent A* Potentials
	Model Refinement
	Time-Dependent A* Potentials
	Lazy RPHAST-based Time-Dependent Potentials
	Multi-Metric Potentials
	Interval-Minimum Potentials
	Optimizations
	Compression

	Evaluation
	Conclusion

	III Extended Problem Settings
	Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST
	Smooth Paths
	Complexity
	Algorithms
	Avoiding Blocked Paths
	Efficient UBS Computation
	Iterative Path Fixing

	Evaluation
	Conclusion

	Efficient Route Planning with Temporary Driving Bans, Road Closures, and Rated Parking Areas
	Problem
	Algorithm
	Analysis
	Intractability of the General Problem
	Tractable Problem Variant

	Implementation
	Evaluation
	Conclusion

	Conclusion
	Bibliography
	List of Acronyms
	List of Symbols
	The Customizable Contraction Hierarchies Framework: Additional Experimental Results
	Customization
	Lazy RPHAST
	Nearest-Neighbor
	Turn Costs

	CH-Potentials and CCH-Potentials in Comparison
	CATCHUp: Additional Experimental Results
	Time-Dependent A* Potentials: Additional Experimental Results
	Smooth Path Performance Profiles
	Temporary Road Closures: Visualization of Query Sets A1 and A2
	Deutsche Zusammenfassung

