
TriP: A Python package for the kinematic modeling of
serial-parallel hybrid robots
Jan Baumgärtner∗1 and Torben Miller†2

1 Heidelberg University 2 Independent Researcher
DOI: 10.21105/joss.03967

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @seungback
• @bmagyar

Submitted: 30 October 2021
Published: 16 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Robots can be classified according to their mechanical structure. Serial mechanisms like robotic
arms are mechanisms where each moving part (called a link) is connected to only the one
before and the one after it. They are often used when a large workspace is required, meaning
the robot needs a long reach. In parallel mechanisms, the links of the robot form loops causing
them to be structurally stronger and stiffer.

If both a large workspace and structural strength are required, hybrids that contain both serial
and parallel mechanisms are used. While hybrid mechanisms combine the mechanical advantages
of both parallel and serial mechanisms, they also combine their modeling disadvantages:

• Finding an explicit solution for either forward or inverse kinematics is often impossible.
Using numerical approaches instead leads to complicated constrained optimization
problems for both forward and inverse kinematics.

• While serial mechanisms are very well supported by current robotic frameworks, parallel
mechanisms and hybrid mechanisms especially are often not supported at all. A great
overview of the supported robot types for different robotic frameworks was compiled by
Kumar (2019).

TriP is a python package designed to close this gap using a modular modeling framework
akin to the one described by Kumar et al. (2020). It allows the modeling of arbitrary hybrid
mechanisms and is capable of calculating forward and inverse kinematics.

The calculations are performed using a symbolic framework. This makes it easy for users to
implement custom case-dependent mathematical solvers.

Statement of Need
While a huge number of researchers, such as Pisla et al. (2013), Kanaan et al. (2009), and
Zoss et al. (2006), use hybrid serial parallel systems, most modern kinematics frameworks
still lack support for such systems. Examples include OpenRAVE (Diankov & Kuffner, 2008),
used in the MoveIt! stack (Chitta et al., 2012), the MATLAB robotics toolbox (Corke, 2017),
Klampt (Hauser, 2021), and the inverse kinematics Python library (Manceron, 2021). While
all these frameworks and libraries offer fast computation of forward and inverse kinematics,
they only support branching serial mechanisms. This lack of support often leaves developers
with essentially two choices:

Either shoehorn their hybrid robots into a framework not designed to handle them or be left to
implement their own kinematic solvers.

∗co-first author
†co-first author

Baumgärtner, & Miller. (2022). TriP: A Python package for the kinematic modeling of serial-parallel hybrid robots. Journal of Open Source
Software, 7(71), 3967. https://doi.org/10.21105/joss.03967.

1

https://doi.org/10.21105/joss.03967
https://github.com/openjournals/joss-reviews/issues/3967
https://github.com/TriPed-Robot/TriP
https://doi.org/10.5281/zenodo.6360087
http://danielskatz.org/
https://github.com/seungback
https://github.com/bmagyar
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03967


TriP is a lightweight and easy-to-use package for directly modeling hybrid mechanisms and
calculating their kinematics. Although TriP is fast for a Python package, it is not built for
robust hard-real time control applications. Instead, it is aimed at researchers and engineers who
quickly want to build kinematic models to test their mechanical designs. For this reason it also
exposes a interface to the nonlinear optimization and algorithmic differentiation tool CasADi
(Andersson et al., 2019). This allows researchers to investigate the kinematic properties of
their robots, for example, by using CasADi to find singular configurations or to compute
manipulability ellipsoides. Similar to MoveIt!, TriP also enables researchers to build their own
inverse kinematic solvers.

Overview
TriP models robots using its Robot class. A Robot object is made up of Transformation and
KinematicGroup objects. The KinematicGroup objects are used to model parallel mechanisms
while the Transformation objects model serial mechanisms. See Figure 1 for reference, where
the links of each robot are colored according to the KinematicGroup or Transformation it
belongs to, while joints are either light green or orange, depending on whether they are actuated
or not.

Figure 1: Different Hybrid Robot types and their object structure

Both KinematicGroups and Transformations can be connected to form branching mechanisms
as indicated in Figure 1.

Transformation objects implement homogeneous coordinate transformations between coordinate
frames. These can be either dynamic or static with dynamic transformations implementing
joints. A few example joints can be seen in Figure 2.

Baumgärtner, & Miller. (2022). TriP: A Python package for the kinematic modeling of serial-parallel hybrid robots. Journal of Open Source
Software, 7(71), 3967. https://doi.org/10.21105/joss.03967.

2

https://doi.org/10.21105/joss.03967


Figure 2: Sample Joints using the Transformation class

While all example joints use Euler angles in roll pitch yaw convention to describe rotation,
quaternions are also supported.

KinematicGroups model parallel mechanisms using the abstraction approach described by
Kumar et al. (2020). This approach models a parallel manipulator as a virtual serial manipulator
and a mapping that maps the virtual joint state to the true actuated joint state of the parallel
manipulator.

An illustrative example of this model is an excavator with two hydraulic cylinders. Each cylinder
is part of a parallel mechanism resulting in two KinematicGroups. Both can be seen in Figure
3, where one is green and the other one is blue.

Baumgärtner, & Miller. (2022). TriP: A Python package for the kinematic modeling of serial-parallel hybrid robots. Journal of Open Source
Software, 7(71), 3967. https://doi.org/10.21105/joss.03967.

3

https://doi.org/10.21105/joss.03967


Figure 3: Excavator Arm build from two Groups (green and blue)

The abstraction approach models the excavator as a serial manipulator where the joints are
directly actuated. Using two mappings to convert the state of the hydraulic cylinders to the
state of the joints and vice versa, it is possible to calculate both forward and inverse kinematics.
In this example, the mapping between cylinders and joints can be expressed using trigonometry.
Since an explicit formulation of the mappings might not always be possible, TriP can also
compute the mapping by solving the closure equation of the parallel manipulator.

TriP can generate symbolic representations of robots using CasADi (Andersson et al., 2019).
This symbolic representation can be used to set up a solver object that then solves the inverse
kinematics. While the library already implements a simple inverse kinematics solver, the
symbolic representation makes it easy to implement custom solvers.

All features of TriP are thoroughly documented with tutorials and examples to help people get
started.

References
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi

– A software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36. https://doi.org/10.1007/s12532-018-0139-4

Chitta, S., Sucan, I., & Cousins, S. (2012). Moveit! [ROS topics]. IEEE Robotics &
Automation Magazine, 19(1), 18–19. https://doi.org/10.1109/MRA.2011.2181749

Corke, P. I. (2017). Robotics, vision & control: Fundamental algorithms in MATLAB (Second).
Springer.

Diankov, R., & Kuffner, J. J. (2008). OpenRAVE: A planning architecture for autonomous
robotics.

Baumgärtner, & Miller. (2022). TriP: A Python package for the kinematic modeling of serial-parallel hybrid robots. Journal of Open Source
Software, 7(71), 3967. https://doi.org/10.21105/joss.03967.

4

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/MRA.2011.2181749
https://doi.org/10.21105/joss.03967


Hauser, K. (2021). Kris’ locomotion and manipulation planning toolbox - Klamp’t. https:
//github.com/krishauser/Klampt

Kanaan, D., Wenger, P., & Chablat, D. (2009). Kinematic analysis of a serial–parallel
machine tool: The VERNE machine. Mechanism and Machine Theory, 44(2), 487–498.
https://doi.org/10.1016/j.mechmachtheory.2008.03.002

Kumar, S. (2019). Modular and analytical methods for solving kinematics and dynamics of
series-parallel hybrid robots [PhD thesis]. Universität Bremen.

Kumar, S., Woehrle, H., Fernández, J., Mueller, A., & Kirchner, F. (2020). A survey on
modularity and distributivity in series-parallel hybrid robots. Mechatronics, 68. https:
//doi.org/10.1016/j.mechatronics.2020.102367

Manceron, P. (2021). IKPy - an inverse kinematics library aiming performance and modularity.
https://github.com/Phylliade/ikpy

Pisla, D., Szilaghyi, A., Vaida, C., & Plitea, N. (2013). Kinematics and workspace modeling of
a new hybrid robot used in minimally invasive surgery. Robotics and Computer-Integrated
Manufacturing, 29(2), 463–474. https://doi.org/10.1016/j.rcim.2012.09.016

Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower
extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11, 128–138.
https://doi.org/10.1109/TMECH.2006.871087

Baumgärtner, & Miller. (2022). TriP: A Python package for the kinematic modeling of serial-parallel hybrid robots. Journal of Open Source
Software, 7(71), 3967. https://doi.org/10.21105/joss.03967.

5

https://github.com/krishauser/Klampt
https://github.com/krishauser/Klampt
https://doi.org/10.1016/j.mechmachtheory.2008.03.002
https://doi.org/10.1016/j.mechatronics.2020.102367
https://doi.org/10.1016/j.mechatronics.2020.102367
https://github.com/Phylliade/ikpy
https://doi.org/10.1016/j.rcim.2012.09.016
https://doi.org/10.1109/TMECH.2006.871087
https://doi.org/10.21105/joss.03967

	Summary
	Statement of Need
	Overview
	References

