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Figure 1: A sketch of the freeze out of relic mag-
netic monopoles during the early epochs of the Uni-
verse is shown. The energy density of the Universe
is indicated by a color shift from purple to yellow.
The Universe starts out in a high energy density
state, also called the GUT-phase. With the expan-
sion of the Universe, the energy density decreases
until the GUT symmetry spontaneously breaks and
magnetic monopole freeze out occurs. The remaining
monopoles maintain their internal energy density and
are diluted by the following inflation of the Universe.

1. Introduction

The IceCube Neutrino Observatory, IceCube for short, is a cubic-kilometer neutrino detector
installed in the ice at the geographic South Pole [1] between depths of 1450m and 2450m, completed
in 2010. While designed to detect neutrinos, it can also be utilized to detect any particles passing
through the ice while producing light. 5160 Digital Optical Modules, DOMs for short, record light
pulses inside the ice.

In this contribution, we utilize luminescence light for the first time at IceCube, to explore for
hypothetical magnetic monopoles in the low relativistic ( 0.1c to 0.55) regime. This complements
past searches at IceCube that have utilized Cherenkov signals from potential monopole induced
proton decay [2], and direct and indirect Cherenkov light from monopoles [3] as light production
channels. A cut and count based analysis optimized on simulated events and evaluated on seven
years of IceCube data is presented.

2. Magnetic Monopoles

While no magnetic monopoles have been observed up to now, certain properties of magnetic
monopoles can be derived independently from other assumptions. Their magnetic charge has to be
a multiple of the Dirac charge, 6� [4], defined as

6� =
ℏc
2@4

=
@4

2U
≈ 68.5@4 . (1)

Relic magnetic monopoles are assumed to have been created during the early epochs of the
Universe as depicted in fig. 1. While they would be created with negligible kinetic energy, they
undergo acceleration by cosmic magnetic fields. Depending on the rest mass and magnetic charge
of the magnetic monopole and the size and coherent length of cosmic magnetic fields, their expected
velocity differs greatly. For example, assuming acceleration within the Milky Way galaxy from
relative rest for a Dirac chargedmagnetic monopole, a shift from velocities close to the speed of light
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Figure 2: The expected velocity of a magnetic
monopole with a Dirac magnetic charge at the posi-
tion of Earth as a function of the rest mass is drawn as-
suming acceleration only inside the Milky Way [12].
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Figure 3: The number of expected photons per unit
length as a function of velocity for different light
production channels is depicted. The shaded region
around the solid luminescence line indicates the re-
gion covered by a ±40% systematic shift of the effec-
tive luminescence light yield.

to non-relativistic velocities can be observed in the mass range of <0 = 1011 GeV to 1013.5 GeV as
depicted in fig. 2.

Different light production channels exist to detect magnetic monopoles passing through ice,
each dominating at different velocities. Starting close to the speed of light, magnetic monopoles
can induce Cherenkov light just like any other highly electrically charged particle. Below the
Cherenkov threshold in ice (≈ 0.76 c), no direct Cherenkov light is produced anymore. Instead,
indirect Cherenkov light, Cherenkov light produced by secondary X-electrons induced by a passing
magnetic monopole, becomes the dominant light production mechanism down to about 0.6 c. In
contrast to direct Cherenkov light, there is no sharp cut-off. Instead, the light yield decreases until
luminescence becomes the dominant light production mechanism. Luminescence light is mostly
velocity independent but has a lower overall light yield in contrast to the two other aforementioned
light production channels. A comparison of the three described light production channels is depicted
in fig. 3.

Luminescence light is induced by the energy transferred between the passingmagneticmonopole
and the surrounding ice. In the velocity regime of 0.05 c to 0.99995 c, magnetic monopoles passing
through matter lose kinetic energy dominantly by excitation and ionization of electrons in the target
material. This is modeled by the magnetic charge adjusted Bethe-Bloch formula [5]. Parts of this
transferred energy can be turned into detectable light [6–8]. This transference is dependent on the
temperature and impurities of the ice [9, 10]. Dedicated in-situ measurements of the luminescence
of the ice utilized by IceCube has been conducted and an effective luminescence light yield in the
effective wavelength ranges detectable by IceCube of 3#W

3�
= 1photon

GeV has been measured [11]. The
product of the effective luminescence light yield and the kinetic energy loss is the aforementioned
luminescence light yield.
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3. Simulation

To allow for an unbiased selection process, all selections are based on simulated background
and signal events. Simulated background events are then compared to a statistically blinded set of
measured events to validate the background simulation. As background simulation, a combination
of CORSIKA [13] based cosmic ray induced air shower simulation weighted to a GaisserH3a [14]
flux model and atmospheric electron and muon neutrinos, weighted to a HKKM2006 [15] flux, is
used.

For signal simulation, a flat velocity spectrum between 0.1 c and 0.6 c has been chosen, as
neither a a-priori assumed spectrum of magnetic monopoles exists nor is processing time strongly
dependent on the velocity. However, two luminescence light yields are utilized: 3#W

3�
= 1photon

GeV as
the measured, most likely scenario for IceCube ice and 3#W

3�
= 0.2photon

GeV as a worst case assumption
to harden selection steps against possible systematic shifts of the effective luminescence light yield.

4. Event Selection

Magnetic monopoles in the low relativistic regime would have the form of slow, track like
particles passing through the ice utilized by IceCube. Additionally, light should be emitted homo-
geneously around the track as energy is also deposited homogeneously in the ice. Thus, a long, time-
and space-like, track with few gaps passing through the whole of the fiducial volume of IceCube is
ideal. Only downward-going events are regarded as the Earth can potentially shield IceCube from
magnetic monopoles with higher magnetic charges than the Dirac charge.

The candidate event selection is conducted in three stages. First, an event needs to pass the
standard triggers of IceCube [1] which select 30% to 50% of all simulated signal events. Next,
a set of requirements are added to reduce the candidate event rate down to 0.6Hz, while keeping
between 30% and 90% of the simulated signal depending on the velocity of the incident magnetic
monopole before the final selection step, described in the next section, is applied.

At least 25DOMs must have detected a light pulse. The time between all first light pulses at
the DOMs must be at least 4000 ns. Afterwards, a track hypothesis [16] is calculated which must
converge and reconstruct a velocity between 0.1 c and 0.6 c. For the next steps, only light pulses in a
100m radius around the track hypothesis are regarded. The position of the light pulses are projected
onto the track hypothesis. The distance of the center of gravity of the projected positions of the light
pulses of the time sorted first and last quartile of light pulses must be at least 250m. Additionally,
the maximal distance between two projected hits on the track hypothesis must be below 200m. The
event is split time-wise in two parts which are used to create individual track hypothesis. The first
track hypothesis’s velocity must be between 0.15 c and 0.65 c while the second track hypothesis’s
velocity is required to be between 0.07 c and 0.8 c. The softer requirement on the second track
hypothesis’s velocity is due to this selection step being applied after the first one as well as the
first one having a better reconstruction quality due to the usage of early, more reliable light in the
first place. As a last step, events passing through corners of the fiducial volume are removed. The
fiducial volume is modeled by a cylinder with radius and height of 750m at the center of IceCube.
The initial track hypothesis has to pass through at least 250m of this cylinder for the event to be
regarded as a possible event.
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Figure 4: The number of BDTs predicting a specific
score for a single, randomly selected event is shown.
Assuming an exemplary selection cut at about 0.979,
this event would be rejected based on the mean pre-
dicted score. Alternatively, the event can contribute
by a reduced weight, here only 43% to enhance the
statistics of projected distributions after the selection
step.

5. Final Machine Learning Based Selection

A machine learning based algorithm is applied based on the XGBoost framework [17] to
make the final selection of candidate events. For each event, 24 features are identified to separate
simulated background events from simulated signal events while disfavoring separation between
simulated background and the statistically blinded, measured data.

As background simulation is statistically limited, a bootstrap aggregating [18] based approach
is chosen. 1000 Boosted Decision Trees, BDTs for short, are trained on randomly sampled subsets
of the available training data. Each event has a 10% chance to be included in each subset. The
classification of a BDT on an event which was used to train the BDT is discarded. Thus, for each
event, there are on average 900 classifications mapping the event to score B8 ∈ [0, 1] where 1 is
signal-like and 0 is background-like.

This set of classifications can be interpreted as the probability density for the event to pass the
classification process. By allowing events to partially pass the event selection, statistically limited
distributions after the final selection step can be estimated. A sketch of the setup is depicted in
fig. 4.

To select the final cut value � so B̂ ≥ � is indicative of the final sample of candidate events,
the Model Rejection Factor, MRF for short, is defined as

MRF (2) =
`90 %
#
(2)

#( (2)
(2)

where #( is the number of expected remaining signal events and `90 %
#
(c) is the upper number

of true signal counts compatible with the observed counts and the predicted average number of
background events if the experiment was repeated an infinite amount of times in 90% of the cases.

`90 %
#
(c) is calculated based on Feldman-Cousin approach [19]. � is the value that minimizes

MRF (2). In fig. 5, the projected number of remaining events based on the simulated background
events as a function of 2 is depicted. At � = 0.9997, at most, 10 background events with a mean
value of 2 are projected to remain after applying the analysis to the full, statistically unblinded
dataset.

6. Systematics

Some modeled parameters in simulation are associated with uncertainties which can result in
systematic shifts of the models from reality. Four systematic shifts for signal simulation have been
investigated: a ±10 % shift of the DOM light detection efficiency [1], variations of the angular
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Figure 5: The number of remaining background
events as a function of the final cut value is illus-
trated. The dashed line indicates the mean value
while the contour indicates the upper and lower num-
ber of events expected. At 0.9997, a vertical line
is drawn indicating the location at which the MRF
becomes minimal.
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Figure 6: The relative abundance of signal events
due to systematic shifts as a function of the velocity
is drawn. The black solid line indicates the mean
expected shift at the final event selection stage while
the the blue solid line is the expected shift right before
the final selection step. The contours indicate the
statistical uncertainties.

acceptance of light of the DOMs [20], correlated ±5 % variations in the scattering and absorption
of the ice [21], and ±40 % variations in the effective luminescence light yield [22]. Specialised
simulation is conducted for each effect and the velocity dependent lowest signal retention for each
effect are combined for the total systematic shift depicted in fig. 6. An expected shift at low velocities
can be seen which is expected as events in this range are already dimmer and thus more susceptible
to further systematic loss of brightness. A second shift can be seen in the transition region between
luminescence light and indirect Cherenkov light at about 0.55 c which is only present for the final
event selection step.

7. Results

The analysis has been applied to 2524.6 days of measured data taken at IceCube. Two candidate
events remained which is compatible with the expected number of remaining background events.
An upper limit on the flux of magnetic monopoles has been derived superseding previous best flux
limits in the low relativistic regime by two orders of magnitude. The derived flux limit in contrast
to other searches for magnetic monopoles is illustrated in fig. 7.
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Figure 7: A chart with the flux limit presented in this contribution (IceCube 2021a) in contrast to previous
searches ranging from the low relativistic to relativistic regime as a function of velocity is shown. Previous
flux limits are taken from different experiments and collaborations, sorted in the legend by alphabetical order.
The corresponding references, in the same order, are [3, 23–27].
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