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Recently, several experiments reported a muon deficit in air shower simulations with respect to the
data. This problem can be studied using an estimator that quantifies the relative muon content of
the data with respect to those of proton and iron Monte Carlo air shower simulations. We analyze
two estimators. The first one, based on the logarithm of the mean of the muon content, is built
from experimental considerations. It is ideal for comparing results from different experiments as
it is independent of the detector resolution. The second estimator is based on the mean of the
logarithm of the muon content, which implies that it depends on shower-to-shower fluctuations.
It is linked to the mean-logarithmic mass 〈ln 𝐴〉 through the Heitler-Matthews model. We study
the properties of the estimators and their biases considering the knowns and unknowns of typical
experiments. Furthermore, we study these effects in measurements of the muon density at 1000 m
from the shower axis obtained by the Akeno Giant Air Shower Array (AGASA). Finally, we report
the estimates of the relative muon content of the AGASA data, which support a muon deficit in
simulations. These estimates constitute valuable additional information of the muon content of
air showers at the highest energies.
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Muon scale and its application to AGASA data Flavia Gesualdi

1. Introduction

Cosmic rays with energies above 1015 eV can only be efficiently studied through their extensive
air showers. Such primary energies are inaccessible to the Large Hadron Collider. Therefore,
high-energy hadronic interaction models can only be tested in the ultra-high energy range through
measurements of air showers. Models are usually tested by analyzing the consistency of the
predictions of mean logarithmic mass 〈ln 𝐴〉 derived from two observables: the depth of the shower
maximum 𝑋max and the muon content 𝑁𝜇. By studying this, such models can be improved, which
in exchange can improve the precision of the inferred 〈ln 𝐴〉 [1, 2].

Different experiments reported a muon deficit in air shower simulations with respect to data
at different energies. The Working group on Hadronic Interactions and Shower Physics (WHISP)
analyzed this problem, regarded as “the muon puzzle”, by combining the measurements of leading air
shower experiments. Data from HiRes-MIA, NEVOD-DECOR, SUGAR array, AMIGA (the muon
detectors from the Pierre Auger Observatory), the Pierre Auger Observatory, and Telescope Array,
are consistent with said muon deficit. On the other hand, data from EAS-MSU, KASCADE-Grande,
the IceCube Neutrino Observatory, and Yakutsk array are consistent with no muon deficit. The
combined analysis based on post-LHC hadronic-interaction models finds a muon deficit increasing
with energy, with a non-vanishing slope at 8𝜎 significance [3, 4]. This analysis did not yet include
the measurements of the Akeno Giant Air Shower Array (AGASA). These can add a valuable piece
to the puzzle, especially considering the high energies that these data reach. A recent re-analysis
finds AGASA data consistent with a muon deficit in simulations [5].

The AGASA experiment was comprised of an array of 111 scintillation counters spread across
∼ 100 km2. It was able to detect air showers with energies above ∼ 3 × 1018 eV and with zenith
angles 𝜃 ≤ 45◦. AGASA also had 27 muon detectors which covered ∼ 30 km2. These consisted
of proportional counters shielded with 30 cm of iron or 1 m of concrete; the vertical muon energy
threshold was 0.5 GeV [6]. The detectors were decommissioned in 2004.

In this work we analyze the biases of two estimators of the relative muon content of data with
respect to simulations, and estimate their values from AGASA measurements.

2. Definition of the muon scale and muon deficit scale

The Heitler-Matthews model predicts that the muon content 𝑁𝜇 of an air shower grows with
the mass 𝐴 and with the primary energy 𝐸 according to

ln 𝑁𝜇 = (1 − 𝛽) ln 𝐴 + 𝛽 ln(𝐸/𝜉𝑐), (1)

where 𝛽 is the power-law index (𝛽 ≈ 0.9) and 𝜉𝑐 is a critical energy constant [7].
We want to define a muon scale independent of experimental details of the measurement,

such as the radial distance to shower axis, the zenith angle of the shower, the shower age, and so
forth, so that measurements under different conditions can be compared. Air shower simulations
approximately describe these aspects, which means that ratios of measured and simulated muon
numbers (or equivalent: differences in their logarithms) are approximately independent of these
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experimental details. With this guiding idea in mind, the muon scale was defined in Ref. [3] as

𝑧 B
ln 𝑁det

𝜇, data − ln 𝑁det
𝜇, p

ln 𝑁det
𝜇, Fe − ln 𝑁det

𝜇, p
, (2)

where the suffix “det” indicates that the proton and iron muon contents derive from full-detector
simulations. This is useful to cancel first order detector effects. The muon scale defined in Eq. (2)
has desirable properties: In the first place, it is independent of the energy to first order (the remaning
energy dependence is only through the composition). In the second place, it should range between
0 and 1 for proton-like and iron-like data respectively, given that simulations correctly reproduce
the muon content of real showers. Finally, if the mass number 𝐴 is known event-by-event, the
Heitler-Matthews model predicts a value of 𝑧 of ln 𝐴/ln 56.

To build an estimator of the muon scale 𝑧, it is necessary to introduce the mean within a
given energy bin. We define the first estimator of the muon scale by taking the logarithm of
the mean of the muon number, 𝑧ln〈·〉 = (ln〈𝑁det

𝜇, data〉 − ln〈𝑁det
𝜇, p〉)/(ln〈𝑁det

𝜇, Fe〉 − ln〈𝑁det
𝜇, p〉). The

second estimator is defined by taking the mean of the logarithm of the muon number, 𝑧 〈ln ·〉 =

(〈ln 𝑁det
𝜇, data〉 − 〈ln 𝑁det

𝜇, p〉)/(〈ln 𝑁det
𝜇, Fe〉 − 〈ln 𝑁det

𝜇, p〉). It is important to stress that the logarithm of
the mean or the mean of the logarithm should be used consistently. Any “mixed” estimator would
suffer from undesired biases.

These two estimators are in principle different, since the logarithm of the mean and the mean
of the logarithm of the muon content are not the same. One can be expressed as a function of the
other by using that 𝑁𝜇 = 〈𝑁𝜇〉(1 + 𝜖), with 𝜖 = (𝑁𝜇 − 〈𝑁𝜇〉)/〈𝑁𝜇〉. Then

〈ln 𝑁𝜇〉 = ln〈𝑁𝜇〉 + 〈ln (1 + 𝜖)〉 = ln〈𝑁𝜇〉 +
〈
𝜖 − 1

2𝜖
2 + O(𝜖3)

〉
, (3)

≈ ln〈𝑁𝜇〉 − 1
2
(
RSDtot [𝑁𝜇]

)2
, (4)

where
〈
𝜖2〉 =

(
𝜎tot(𝑁𝜇)/

〈
𝑁𝜇

〉)2
=
(
RSDtot [𝑁𝜇]

)2 is the square of the relative standard deviation
of 𝑁𝜇 [8]. The suffix “tot” marks that all sources of fluctuations have to be considered.

Furthermore, to evaluate the muon deficit, we need to consider a reference 𝑧-value. Its expected
value is 𝑧mass B (ln 𝑁det

𝜇, mass − ln 𝑁det
𝜇, p)/(ln 𝑁det

𝜇, Fe − ln 𝑁det
𝜇, p), where 𝑁det

𝜇, mass represents the muon
content from detector simulations, evaluated using the mass fractions of the composition model. If
the measured 𝑧-values follow 𝑧mass, then simulations have no muon deficit. Therefore, a scale of
the muon deficit in simulations, Δ𝑧, is defined as Δ𝑧 B 𝑧 − 𝑧mass.

In this work we take as a reference 𝑧HM
〈ln ·〉 mass = 〈ln 𝐴〉/ln 56. This expression can be obtained

by superposition of the Heitler-Matthews model. For this, shower-to-shower fluctuations are intro-
duced through variations in 𝛽, and a mixed composition through different values of 𝐴. After the
superposition, 〈ln 𝑁𝜇〉 keeps a linear relation to 〈ln 𝐴〉. This is also supported by simulations [8].

3. Biases of the muon scale and muon deficit estimators

The estimators of the muon scale, 𝑧ln〈·〉 and 𝑧 〈ln ·〉, can be biased if the detector simulations
mismodel the real detector effects in 〈𝑁det

𝜇, {p,Fe}〉, or if there is a composition bias that affects
〈𝑁det

𝜇,data〉. These impact on both estimators approximately to the same degree. These sources of
bias are contemplated in the systematic uncertainties.
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𝑧ln〈·〉 is a better estimator of the muon scale defined in Eq. (2) because it does not explicitly
depend on the detector resolution. In other words, 𝑧ln〈·〉 can be compared among experiments.

In contrast, 𝑧 〈ln ·〉 suffers from systematics from a possibly mis-modeled (“mm”) detector res-
olution. To understand this effect, we assume that

〈
𝑁mm

𝜇,p
〉
≈

〈
𝑁𝜇,p

〉
, since this source of bias is

already accounted for in the systematic uncertainties. The total detector resolution depends on the
muon number detector resolution RSDdet [𝑁𝜇], and on the energy resolution RSDdet [𝐸]. Both affect
the measured 𝑁𝜇 (𝐸). We can use Eq. (1) to propagate the energy resolution and obtain an approxi-
mation of the total muon number resolution RSDdet⊕ [𝑁𝜇] ≈

√︃
(RSDdet [𝑁𝜇])2 + (𝛽 · RSDdet [𝐸])2,

where 𝛽 ≈ 0.9. If the detector simulations mismodel the total detector resolution, the esti-
mate of 𝑧 〈ln ·〉 is also mismodeled: 𝑧mm

〈ln ·〉 =
〈ln 𝑁𝜇,data〉−〈ln 𝑁mm

𝜇,p 〉〈
ln 𝑁mm

𝜇,Fe

〉
−〈ln 𝑁mm

𝜇,p 〉
. Using Eq. (4) to give ap-

proximate expressions of
〈
ln 𝑁mm

𝜇, {p,Fe}

〉
and

〈
ln 𝑁𝜇, {p,Fe}

〉
, and using Eq. (1) to approximate

〈ln(𝑁𝜇,Fe)〉 − 〈ln(𝑁𝜇,p)〉 ≈ (1 − 𝛽) ln(56), 𝑧mm
〈ln ·〉 − 𝑧 〈ln ·〉 can be expressed as

𝑧mm
〈ln ·〉−𝑧 〈ln ·〉 ≈

RSDdet⊕ [𝑁𝜇]
(
RSDmm

det⊕ [𝑁𝜇] − RSDdet⊕ [𝑁𝜇]
)
+ 1

2
(
RSDmm

det⊕ [𝑁𝜇] − RSDdet⊕ [𝑁𝜇]
)2

(1 − 𝛽) ln(56) .

(5)
In Fig. 1 we plot 𝑧mm

〈ln ·〉 − 𝑧 〈ln ·〉 (color scale) as a function of the true total detector resolution
RSDdet⊕ [𝑁𝜇] (x-axis) and the difference between the mismodeled and true total detector resolutions
RSDmm

det⊕ [𝑁𝜇]−RSDdet⊕ [𝑁𝜇] (y-axis). 𝑧mm
〈ln ·〉−𝑧 〈ln ·〉 equals zero when the modelled resolution equals

the true one, as expected. A gray triangle shades the unphysical region where RSDmm
det⊕ [𝑁𝜇] ≤ 0.

The thick contours correspond to a systematic in 𝑧 〈ln ·〉 of ±0.07. For example, for a true detector
resolution of 30 %, a systematic of ±0.07 in 𝑧 〈ln ·〉 is attained when the modelled resolution is 8 %
larger or 12 % smaller than the true one. Ref. [2] is a recent example in which the mismodelling of
detector fluctuations was investigated.
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Figure 1: 𝑧mm
〈ln ·〉 − 𝑧 〈ln ·〉 (color scale and contours) as a function of the true total detector resolution (x-axis),

and of the difference between the mismodeled and true total detector resolutions (y-axis). The region where
RSDmm

det⊕ [𝑁𝜇] ≤ 0 is shaded in gray. The thick countours correspond to |𝑧mm
〈ln ·〉 − 𝑧 〈ln ·〉 | = 0.07.

Having analyzed the estimators of the muon scale 𝑧, we continue to assess the quality of Δ𝑧ln〈·〉
and Δ𝑧 〈ln ·〉 as estimators of the muon deficit, when using 𝑧HM

〈ln ·〉 mass as a reference.
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The systematic error in Δ𝑧 〈ln ·〉 propagates from 𝑧 〈ln ·〉, which is already understood, and from
𝑧HM
〈ln ·〉 mass. The latter suffers from a systematic error propagated from that of the composition (like

any estimator of 𝑧mass). It also has an additional (smaller) systematic error due to the Heitler-
Matthews model not reproducing simulations perfectly.

In the case of Δ𝑧ln〈·〉, 𝑧HM
〈ln ·〉 mass introduces an additional systematic error, because it is the

predicted value of 𝑧 〈ln ·〉 mass = (〈ln 𝑁det
𝜇, mass〉 − 〈ln 𝑁det

𝜇, p〉)/(〈ln 𝑁det
𝜇, Fe〉 − 〈ln 𝑁det

𝜇, p〉) instead of
𝑧ln〈·〉 mass = (ln〈𝑁det

𝜇, mass〉 − ln〈𝑁det
𝜇, p〉)/(ln〈𝑁det

𝜇, Fe〉 − ln〈𝑁det
𝜇, p〉). The difference between these two

can be understood by using Eq. (4) to approximate each term in 𝑧 〈ln ·〉 mass as

𝑧 〈ln ·〉 mass ≈
ln〈𝑁det

𝜇, mass〉 − ln〈𝑁det
𝜇, p〉 − 1

2

[ (
RSDsh-sh [𝑁𝜇, mass]

)2 − (
RSDsh-sh [𝑁𝜇, p]

)2]
ln〈𝑁det

𝜇, Fe〉 − ln〈𝑁det
𝜇, p〉 − 1

2

[ (
RSDsh-sh [𝑁𝜇, Fe]

)2 − (
RSDsh-sh [𝑁𝜇, p]

)2] , (6)

where we used that only shower-to-shower fluctuations depend on the primary, and all other sources
of fluctuations cancel out. Comparing 𝑧ln〈·〉 mass to Eq. (6) we see that 𝑧 〈ln ·〉 mass depends on how
the muon content fluctuates shower-to-shower, while 𝑧ln〈·〉 mass does not. These fluctuations affect
𝑧HM
〈ln ·〉 mass, and therefore Δ𝑧ln〈·〉, introducing a bias. This source of bias in Δ𝑧ln〈·〉 is largest when(
RSDsh-sh [𝑁𝜇, mass]

)2 is maximum, which happens approximately at a 50 % proton - 50 % iron
mixture. It was reported to be of 0.07 in the worst case scenario [8]. This bias is in general smaller
than the possible systematic errors in Δ𝑧 〈ln ·〉, considering the unknowns of typical experiments.
Furthermore, this bias can be corrected if shower-to-shower flucutations for single primaries are
known (a parameterization can be found in Ref. [8]), as well as 𝜎(ln 𝐴). The latter are predicted
by the Global Spline Fit (GSF) [9] and the Pierre Auger [10] composition models.

4. The muon scale from AGASA data

The muon density at 1000 m from the shower axis, measured on the shower plane, in air showers
detected by AGASA are extracted from Fig. 7 of Ref. [11] (see table in appendix B of Ref. [5]),
and are grouped into three reconstructed energy bins of width Δ log10(𝐸𝑅/eV) = 0.2. The energy
associated to each muon density measurement is brought to the reference energy scale defined by
the Spectrum Working Group [12] by multiplying it by a factor of 0.68 [5]. Most of the difference
between the energy scales originates from the muon deficit in the simulations used to calibrate
the AGASA energy scale (especially the older-generation ones). The selected events have rescaled
reconstructed energies in 18.83 ≤ log10(𝐸𝑅/eV) ≤ 19.46) and zenith angles 𝜃 ≤ 36◦.

Furthermore, we use a library of proton, helium, nitrogen, and iron initiated air showers, sim-
ulated using the models QGSJetII-04, EPOS-LHC, and Sibyll2.3c with CORSIKA. This library is
described in Ref. [5]. For every primary and interaction model, the mean muon density as a function
of the energy is fitted with a power-law. We mimic the effects of the energy reconstruction and
energy binning analytically. The mean simulated muon density, calculated in the 𝑖-th reconstructed
energy bin 𝐸𝑅𝑖 , can be expressed as

〈
𝜌𝜇 (𝐸𝑅𝑖)

〉
=

∫ 𝐸+
𝑅𝑖

𝐸−
𝑅𝑖

𝑑𝐸𝑅

∫ ∞

0
𝑑𝐸 〈𝜌̃𝜇 (𝐸)〉 · 𝐽 (𝐸) · 𝐺 (𝐸𝑅 |𝐸)∫ 𝐸+

𝑅𝑖

𝐸−
𝑅𝑖

𝑑𝐸𝑅

∫ ∞

0
𝑑𝐸 𝐽 (𝐸) · 𝐺 (𝐸𝑅 |𝐸)

, (7)
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where 𝐸𝑅𝑖 is the center the reconstructed energy bin, 𝐸−
𝑅𝑖

and 𝐸+
𝑅𝑖

are the lower and upper limits
of that bin. Here, 〈𝜌̃𝜇 (𝐸)〉 is the mean muon density as a function of the true or input energy
of the simulation (the power-law fits); 𝐽 (𝐸) is the cosmic ray flux, which is obtained from a fit
to the Pierre Auger Observatory measurements [13]; and 𝐺 (𝐸𝑅 |𝐸) is the conditional probability
distribution of 𝐸𝑅 conditioned to 𝐸 , which is reported to be a log-normal distribution [14] with a
standard deviation that decreases with energy [15]. A more extensive explanation of the rationale
behind Eq.(7) can be found in Ref. [5]. Evaluated at a specific numerical value 𝐸∗,

〈
𝜌𝜇 (𝐸𝑅𝑖 = 𝐸∗)

〉
can be 8 % to 15 % smaller than 〈𝜌̃𝜇 (𝐸 = 𝐸∗)〉 within the analyzed energy range.

Having the muon density from data and from the simulations through Eq. (7), we can estimate
𝑧ln〈·〉 directly as defined in Sec. 2; Note that all equations of Secs. (2,3) hold true when replacing
𝑁𝜇 with 𝜌𝜇. In contrast, the computation of 𝑧 〈ln ·〉 cannot be done directly as defined in Sec. 2.
This is because the values of

〈
ln[𝜌𝜇 {p,Fe} (𝐸𝑅𝑖)]

〉
cannot be analytically computed (like in Eq. (7))

without a very detailed knowledge of the detector resolution.
However, we can use Eq. (4) to give an estimate of 𝑧 〈ln ·〉. The idea is to separate the sources of

fluctuations into primary-dependent (shower-to-shower fluctuations), and primary-independent (all
other sources approximately). Therefore, using the approximation from Eq. (4) for

〈
ln 𝜌𝜇 {p,Fe}

〉
in

the definition of 𝑧 〈ln ·〉 we obtain

𝑧 〈ln ·〉 ≈

〈
ln 𝜌det

𝜇,data

〉
− ln

〈
𝜌𝜇,p

〉
+ 1

2

[ (
RSDsh-sh [𝜌𝜇, p]

)2 + (
RSDnot sh-sh [𝜌𝜇]

)2]
ln
〈
𝜌𝜇,Fe

〉
− ln

〈
𝜌𝜇,p

〉
+ 1

2

[ (
RSDsh-sh [𝜌𝜇, p]

)2 − (
RSDsh-sh [𝜌𝜇, Fe]

)2] , (8)

where we use in the denominator that all sources of fluctuations except shower-to-shower can-
cel out. In the numerator, we also split the total relative variance of proton air showers into
shower-to-shower and other fluctuations. The second is computed as

(
RSDnot sh-sh [𝜌𝜇]

)2
=(

RSDtot [𝜌𝜇, data]
)2 − (

RSDsh-sh [𝜌𝜇, mass]
)2
, where RSDtot [𝜌𝜇, data] is computed from the data scat-

ter within each reconstructed energy bin, while RSDsh-sh [𝜌𝜇, mass] is computed from simulations
assuming a mixed composition. The latter is obtained by fitting a normal distribution to the weighted
sum of the single-primary distributions of the simulated muon densities, where the weights are the
mass fractions given by the GSF model. The dependence of this approximation of 𝑧 〈ln ·〉 with a
composition model is an evident disadvantage and source of uncertainties.

Statistical uncertainties are propagated into both estimates of 𝑧 from those of the muon density
of data and simulations. Systematic uncertainties have several sources. The choice of a specific
flux parameterization in Eq. (7) introduces a systematic uncertainty of ∼ 1 % in the muon density
itself [5], which is negligible against other sources. The systematics in the reconstructed energy
are computed as the sum in quadrature of three contributions. The first one amounts to a ±7 %
systematic in energy [16], and arise from a possible bias in the lateral distribution of muons (from the
used empirical function, the exclusion of zero-density data, and the absence of non-hit detectors).
The second contribution, which amounts for a 17 % to 20 % systematic in energy (estimated from
Fig. 17 of Ref. [16]), arises from the constant intensity cut method in the zenith angle range of
this data set (0◦ ≤ 𝜃 ≤ 36◦). The third contribution, ranging between 8 % and 10 %, comes from
the exponent in the energy scale formula. This exponent is taken from simulations, and different
interaction models predict different values for the exponent [14]. Finally, there is also a ∼ 10 %

6
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uncertainty associated with the reference energy scale, which we treat separately as it is the same for
any experiment in this scale. The energy systematics are added in quadrature with a factor 𝛽 = 0.9
(see Sec. 3) to the intrinsic systematics of the muon density, to obtain the total systematics of the
muon density (18 % to 21 %). Then these are propagated into each estimate of 𝑧.

In Fig. 2 we show the comparison between the estimates of 𝑧ln〈·〉 (as defined in Sec. 2) and 𝑧 〈ln ·〉
(as in Eq. (8)). The relative difference of 𝑧 〈ln ·〉 to 𝑧ln〈·〉 (see labels) ranges from −9 % to +10 %.
The values of 𝑧HM

mass from the GSF and Pierre Auger 𝑋max composition models are also shown. By
substracting the first one from 𝑧ln〈·〉 and 𝑧 〈ln ·〉, we obtain the values of Δ𝑧ln〈·〉 and Δ𝑧 〈ln ·〉.
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Figure 2: 𝑧ln〈·〉 (circles) and 𝑧 〈ln ·〉 (squares), for EPOS-LHC (left), QGSJetII-04 (center), and Sibyll2.3c
(right) as a function of the logarithmic energy. A horizontal displacement between the two sets is introduced
for clarity. The labels show the relative difference of 𝑧 〈ln ·〉 to 𝑧ln〈·〉 . We also show 𝑧HM

mass from the GSF model
(dashed line) and from the Pierre Auger 𝑋max (shaded area).

The difference between the estimators can be understood from Sec. (3). We know 𝑧 〈ln ·〉 suffers
from a systematic error if the detector resolution is mismodeled. The estimated total detector
resolution is part of

(
RSDnot sh-sh [𝜌𝜇]

)
in Eq. (8), where it is grouped with all primary-independent

sources of fluctuations, such as the different energies contributing to a same bin. By normalizing
muon densities to the center of the reconstructed energy bin and substracting

(
RSDsh-sh [𝜌𝜇, mass]

)2,
we obtain an estimated total detector resolution ranging between 50 % to 84 % (depending on the
energy). From Fig. 1 we can see that a total detector resolution of 50 % mismodeled in as little
as ∼±6 % translates into a systematic in 𝑧 〈ln ·〉 and Δ𝑧 〈ln ·〉 of already ±0.07. Our estimate of the
the total detector resolution is not more precise than ±6 %. In conclusion, for the AGASA data
analyzed in this work, 𝑧ln〈·〉 and Δ𝑧ln〈·〉 are better estimators of the muon scale and muon deficit,
compared to 𝑧 〈ln ·〉 and Δ𝑧 〈ln ·〉.

The 𝑧ln〈·〉 and Δ𝑧ln〈·〉 values computed from AGASA data are compared to those of other
experiments in Ref. [17]. The agreement with the Pierre Auger findings is remarkable. The values
are larger than those of Yakutsk Array but are compatible within total uncertainties. The Δ𝑧ln〈·〉
values from AGASA data support a muon deficit in simulations at the highest energies.

5. Conclusions

The objective of this work is to study two estimators of the muon scale and compute their values
from the muon density measurements at high energies from AGASA data. The first estimator,
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𝑧ln〈·〉, is computed from the logarithm of the mean of the muon number/density in data and
simulations. The second estimator, 𝑧 〈ln ·〉, is computed from the mean of the logarithm of the muon
number/density. To estimate the muon deficit, both are referenced to 𝑧HM

mass = 〈ln 𝐴〉/ln 56.
For comparing the muon scale of different experiments, 𝑧ln〈·〉 is better, because its value is

independent of the detector resolution. In contrast, 𝑧 〈ln ·〉 is subject to systematics from a mismodeled
detector resolution. This systematic error depends on the total detector resolution and the degree
to which it is mismodeled. It also translates directly into an error in Δ𝑧 〈ln ·〉. Moreover, Δ𝑧ln〈·〉 is
biased from the shower-to-shower fluctuations in 𝑧HM

mass, at most in ∼ 0.07. Typically, this bias is
smaller than the systematic error in Δ𝑧 〈ln ·〉, and can be corrected for if 𝜎(ln 𝐴) is known. Therefore,
Δ𝑧ln〈·〉 proves a better estimator of the muon deficit. This applies to the analyzed AGASA data.

Finally, we compute the values of 𝑧ln〈·〉 and Δ𝑧ln〈·〉 from the AGASA data. We obtain that
𝑧ln〈·〉 ∈ [0.9, 1.4] and Δ𝑧ln〈·〉 ∈ [0.6, 1.1]. The AGASA data are in very good agreement with
the Pierre Auger data, and are larger than the Yakutsk array values, but compatible within total
uncertainties. The AGASA data support a muon deficit in simulations. These estimates add a
valuable quantification of the muon scale, and constitute evidence of a muon deficit in simulations
at the highest energies.
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