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Abstract 2D or 3D sensor technology can be used for data acqui-
sition to monitor the weld quality during laser welding. Com-
pared to a 2D camera image, the 3D height data contains addi-
tional relevant information for quality inspection. However, the
disadvantages are system complexity, higher costs, and longer
acquisition times. Therefore, we compare two image-based
methods with the quality assessment based on height data. The
first method uses feature vectors of coaxial acquired grayscale
images. The significant advantage is that a camera is often in-
tegrated into the laser system, so no additional hardware is re-
quired. In the second approach, we use an AI-based single-view
3D reconstruction method. The height profile is calculated from
a camera image and used for further quality assessment. Thus,
we combine the advantages of 2D data acquisition with higher
accuracy in evaluating 3D data. In this paper, we analyze a
dataset of welded hairpins with different defect types and com-
pare the quality assessment using the height data acquired with
OCT, the feature vectors from the camera images, and the recon-
structed height data.

Keywords Laser welding, hairpin, quality assurance, OCT,
stacked dilated U-Net (SDU-Net), 3D reconstruction

1 Introduction

With the substantial increase in automation of industrial production
lines, reliable and also automated quality control is essential. Laser
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welding processes are a key technology for many industrial applica-
tions and must fulfill high-quality requirements [1]. However, various
influencing factors can lead to defects in the weld seam, which can im-
pair the quality and functionality of the product and result in safety-
relevant defects [2, 3]. Therefore, the companies use strict criteria for
welding quality.

An increasingly important application with high-quality require-
ments for laser welding comes from e-mobility. E-mobility will become
more and more prevalent in individual transportation in the future.
This is why vehicles’ designs and various components are constantly
refined and optimized. For the new generation of motors, automotive
manufacturers increasingly use stators with so-called hairpin technol-
ogy. The conventional copper windings in the stator of an electric mo-
tor are replaced by thick copper rods that are welded together, which
saves space and improves the efficiency of an electric motor. Depend-
ing on the motor design, between 160 and 220 pairs of copper bars are
inserted into the sheet metal stacks of a stator, and the ends are con-
nected, usually by laser welding [4–6]. To ensure the high quality of the
entire stator, each weld must be checked for a defect [5, 7]. Different
properties and measured variables can be used to evaluate the qual-
ity of the weld seam [7, 8]. Various works show that the evaluation of
three-dimensional data provides higher accuracy than the analysis of
two-dimensional camera images [8–10]. The disadvantages are higher
hardware costs, system complexity, and longer process times.

This work presents an approach that computes the height map from
a camera image instead of acquiring it with a 3D sensor. This proce-
dure allows us to use the height data for quality assessment without
the disadvantages mentioned above. We perform the 3D reconstruc-
tion algorithm using a convolutional neural network [11]. The rest
of this paper is organized as follows: Section 2 discusses the state of
research in welding quality evaluation of hairpins and using a 3D re-
construction algorithm. Section 3 describes the experimental setup and
investigations of the generated dataset. Building on this, section 4 in-
troduces different approaches for predicting the hairpin quality from
image data, 3D data, and reconstructed 3D data. In section 5, the re-
sults are discussed before section 6 provides a summary as well as an
outlook for future research activities.

62



Quality control of laser welds

2 Related work

There are a variety of quality monitoring and control systems for laser
welding. The use of machine learning (ML) methods is evaluated in
[12] and [7]. Unlike many ML applications, the amount of data samples
in the industrial environment, especially in research, is limited, and the
computing time may not extend the production time [13].

In [14] a post-inspection of laser welds is performed based on images
using semantic segmentation. Here, a tiny network structure is used
for the reasons just mentioned. [7] uses images from 3 perspectives,
front, top and back, to evaluate the seam quality of hairpins. More
information about the seam connection can be obtained through the
different views. However, integration into a production line is more
complex because it is often difficult to attach cameras to the side. The
resulting accuracy of the network is in the range from 61% to 92%
[7]. [8] analyze and compare different Convolutional Neural Networks
(CNN) to perform post-process quality control of hairpins. In addition
to 2D grayscale images, 3D scans are used as input to the CNN. Based
on the 3D scans, the classification accuracy is higher than using the
2D images. This result supports the assumption that the height values
contain relevant information for quality assessment. In [15] and [10], a
height profile is also used to determine weld quality in laser welding.
Especially in hairpin welding, the height difference between the pair
of hairpins before and after welding provides information about the
volume of the molten material. This volume, together with the other
measured parameters of the surface profile of the weld, is crucial for
the welding quality of the hairpins [9].

Due to the cost, higher system complexity and acquisition time, it
is advantageous to calculate the height profile using a method of 3D
reconstruction. [16] use shape from shading (SFS) to perform a 3D re-
construction of a weld seam. Based on the curvature features, the weld
quality is evaluated. Especially in the classification task of complex
welds with complex structures and characteristics, the curvature fea-
ture contains limited information and cannot be applied to this task.
The SFS algorithm reconstructs a shape based on shading variation, as-
suming a single point light source and Lambertian surface reflectance,
where the brightness of an image pixel depends on the light source
direction and the surface normal. Due to the hairpins’ height and the
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Figure 1: Welding results of hairpins. (a) no weld, (b) good weld, (c) pin not in the focus
of the laser, (d) weld with too low power, (e) misaligned pin pair, (f) insulated
copper rods.

welding bead’s dome, a reconstruction from a single image with SFS
is impossible since the incidence of light can only be realized on one
side and the other side is accordingly in shadow. [17] calculates a 3D re-
construction from several images taken with different relative positions
between camera and weld during the data acquisition phase. Based on
the resulting 3D model, a quality evaluation of the weld is performed.

Deep learning-based methods for 3D reconstruction have shown
promising results in various research fields. While classical methods
deal with shape and image properties such as reflection, albedo, or
light distributions, deep learning-based methods use complex network
architectures to learn the correlations between 2D and 3D data. Many
approaches are challenging to integrate into existing industrial pro-
cesses because new cameras or illumination equipment are required.
[11] compare different single-image reconstruction methods on an in-
dustrial dataset. In their investigations, a variation of the U-Net, the
stacked dilated U-Net (SDU-Net), has prevailed with its performance.

3 Material

Laser-welded pairs of copper pins, as shown in Figure 1, are used for
data acquisition. Different welding results are recorded to obtain a
representative data set that includes error cases. Data from 953 hairpins
were acquired from a position above the pins, as this perspective allows
the integration with the existing industrial process. The 2D intensity
images of the hairpins were captured using a Baumer VCXG-15M.I
industrial camera based on CMOS technology. An optical coherence
tomography (OCT) scanner from Lessmüller Lasertechnik is used to
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Figure 2: OCT scans at different positions (left side, center, right side). Top row -
similar height values indicate a good seam. Bottom row - the different heights
indicate the fault case (misaligned pin pair).

capture the 3D data. Many line scans are performed to obtain the
height maps of the entire weld. These are then combined to create an
overall height map of the component. The exact structure of the data
acquisition and the assignment of the camera data to the height data is
explained in detail in [11]. To reflect the real situation in the industry
with low data availability, we use 10% of the data, i.e., 95 samples, for
algorithm development. The other 90%, i.e., 858 samples, are used for
testing and evaluation.

4 Detection of weld quality

To compare the result of quality assessments, we analyze various input
data for the weld inspection. We use the height data acquired by the
OCT, camera images, and reconstructed height data to create feature
vectors.

4.1 Height data acquired with OCT

The OCT sensor measures the relative height differences within the
weld seam. Good welding of a pin pair results in a round welding
bead, which has its maximum in the center. The line scans should have
a structure like the upper row in Figure 2 over the entire weld bead.
The bottom row shows the images at the same positions of a weld with
misaligned pins for comparison. As in [18] and in [19], we compare
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Figure 3: Difference of the maximum values of the line scans to the center. The max-
imum value of each line scan is determined. The difference to the center is
calculated and the values are plotted in a curve. Mathematically this means
f (li) = |hc −max li |, where li is the line scan with index i and hc is the height
value in the center. (a) Good welds result in a curve with its maximum in the
center. (b) Defective welds, such as misaligning pins or pins that are not in the
laser’s focus, can be detected in the curve.

multiple line scans with each other. For higher accuracy, we scan the
hairpin in the x- and y-directions with lines at distances of 18 µm.

For quality assessment, we use different criteria. Analogous to [18],
we consider the difference between the maximum height values of the
individual line scans to the height of the pin center. Through this
comparison, we can detect misalignment of the hairpins or misshapen
welding beads. The procedure is visualized in Figure 3. In addition to
the curve profile, we evaluate the line scans’ maximum and minimum
distance to the pin center’s height. If the distance to the pin center is
too small, the weld is not sufficiently stable. If, on the other hand, the
minimum distance is too large, this provides information about pores
or cracks in the pin surface. We also consider the width of the weld
bead in the evaluation.

4.2 Camera images

As mentioned earlier, it is not always possible to capture the height
profile due to time constraints and the increasing cost and complexity
of the system. Therefore, we develop a different approach by deriving
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Figure 4: Detection of the welded and unwelded pin surface in the camera image. The
detection of the surface of the weld, as well as the unwelded pins, is shown. In
each case, the right image shows the binary mask overlaid on the image (green
- weld, red - unwelded pin). (a) good weld, (b) misaligned pin pair, (c) pin not
in the focus of the laser, (d) insulated copper rods.

the quality-relevant properties of the weld from the grayscale image.
As with OCT scans, we can also infer the width of the weld from the
grayscale image. In addition, the size of the weld surface provides
information about the stability of the weld. We can also detect this
size in 2D images. For the detection of the seam area, threshold-based
methods reach their limits due to the low-intensity differences and con-
trasts in the images. However, CNN-based semantic segmentation can
detect the area well, even in small network architectures. Analogous
to [6], we train a small SDU-Net to detect both the welded seam and the
non-welded pin regions. The predicted masks are shown in an overlay
representation in Figure 4.

We can already detect many defect cases by evaluating the width of
the weld and the size of the two classified areas. As a further evalua-
tion, we analyze the shape of the weld. In good welds, this is approx-
imately circular and has no solid corners and edges. However, if too
little material is melted during welding, no round weld bead is formed,
and the contour is slightly angular due to the pin shape. Other defects,
such as copper pins that have not had their insulation stripped, also
result in edges in the weld shape. Since the weld surface is a closed
contour, Fourier descriptors can be used to characterize it. Analogous
to [20], we compute the Fourier descriptors of the contours. An eval-
uation of the harmonics considers the complexity of the contour. In
particular, in combination with the information about the size of the
non-welded pin region, this contains information about insufficiently
welded pin pairs. The relationship between the defined features and
the evaluation result of the seam quality based on the height profile is
shown in Figure 5.
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Figure 5: Quality-related features derived from the grayscale images. The correlation
of the features derived from the 2D image with the seam quality based on the
height profile is shown (GW -good weld, DW - defective weld).

4.3 Height data from the 3D reconstruction algorithm

In the third approach, we use an AI-based single-view reconstruction
method. Thus we combine the advantages of the two methods just
presented. This approach calculates the height profile from the cap-
tured camera image. For this purpose, only one camera image must be
taken in the production line, and the algorithm can replace the time-
consuming OCT scan. Further analyses can still be performed on the
more informative height profile. We use a modified SDU-Net architec-
ture for the reconstruction. Since the model is tiny, with only 162,423
parameters, it can also be executed efficiently on industrial hardware.
The exact implementation, the training parameters and the result anal-
ysis with deviations from ground truth are explained in detail in [11].

5 Results and discussion

The quality assessment of the 858 test samples is performed separately
with each method to evaluate the different approaches. The ground
truth is the division into good weld (GW) and defective weld (DW)
based on the features derived from the entire recorded height map
using OCT. We evaluate the quality assessment based on the criteria
visible in the camera image (Cam) and the AI-based 3D reconstruction
(3D-R) data. When height data is used for quality assessment, only a
few line scans are usually acquired due to time constraints. The scanner
made by Lessmueller Lasertechnik has a scan frequency of 70 kHz, so
a scan of the entire component takes considerable time. Therefore,
we use an approach in which only six OCT scan lines (three in the x-
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direction and three in the y-direction) are considered in the evaluation
(6L). One scan is in the center of the weld, and the other two are on each
side. In another investigation, we only consider the three scans in the
x-direction in our evaluation (3L). The feature vectors for the quality
assessment are defined based on those of the entire height map. The
results are presented in Figure 6 using a confusion matrix.

The AI-based 3D reconstruction using the camera images gives the
best results of the four methods compared. 842 of the 858 test samples
are classified in the same way as with the ground truth data, even if
only the camera image was used as input. The discrepancies are due
to borderline cases. As described in detail in [11], the model trained
on 95 images has an average deviation of 93.5 µm from the ground
truth. Due to the rule-based partitioning into GW and DW, in case of
doubt, the deviation from one pixel value may yield a different result.
One pixel value corresponds to a deviation of 46.8µm in height and
a difference of 18µm in width. The borderline cases are welds where
the width or the minimum height of the weld bead was barely reached
with one method and just missed with the other.

When evaluating the results based on the camera images, it is notice-
able that more pin pairs with height offset were detected as GW. This
wrong classification can be attributed to the fact that the height offset is
not considered in any of the used image-based classification features.
The offset cannot be identified by the shape, size of the weld bead or
the area of the unwelded pin surface. Therefore, this error case unfor-
tunately often remains undetected. On the other hand, samples that are
incorrectly classified as DW can be attributed to tiny weld beads. If less
material was melted during the process, the welds often have a rather
rectangular shape due to the pin shape. In some cases, the height of the
weld is sufficient to create a stable weld, although it still has an edged
shape. Based on the camera image, these samples are classified as DW
because they look very similar to the unstable low-power welds. GWs
with a round weld bead are reliably detected as GWs.

The evaluation with a few line scans also shows more deviating re-
sults than the evaluation with 3D reconstruction. In addition to bor-
derline cases, these methods incorrectly classify pin pairs in which one
of the pins was only partially connected or welds with spatter as GW.
Especially when evaluating with only three scans in the x-direction,
insufficiently welded pins (e.g. Figure 1(c, d)) were missed more often.
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Figure 6: Comparison of the results of the different methods. The results of the ap-
proaches: Camera image (Cam), AI-based 3D reconstruction (3D-R), six line
scans OCT (6L) and three line scans OCT (3L) are compared with ground truth
based on the features from the entire height map.

6 Conclusion

We have developed and compared different methods for quality as-
sessment in hairpin welding. In addition to analyzing the acquired
height profile, we have successfully determined the quality based on a
grayscale image. For the image-based evaluation, we used two differ-
ent approaches. First, we used features derived from the image, such
as the width and shape of the weld, to perform a quality assessment.
The most significant deficiencies were pin pairs, which have an offset
between the pins. This misalignment is not captured in the image-
based features and, thus, is not considered in the quality assessment.
With this approach, the misalignment would have to be checked and
corrected before welding, completely avoiding the faulty weld. The
significant advantage of using the image-based features is that no ad-
ditional height scanner is needed, which reduces cost, setup effort, and
acquisition time and allows quality analysis through a software up-
date. The calculation of the binary mask following the approach of [6]
only requires 16 ms on an i5-7300U CPU. It can be integrated into the
process with the subsequent algorithmic evaluation without additional
hardware requirements. In a second approach, we performed an AI-
based 3D reconstruction on a single grayscale image and then used
the computed height data for quality assessment. With this approach,
we achieved higher accuracy and could correctly assign the test sam-
ples, except for some borderline cases. The approach presented in [11]
allows reconstruction based on a single grayscale image. For this pur-
pose, a small SDU-Net architecture is used, which can be executed on
an i5-7300U CPU in only 45 ms. This method opens up a new pos-
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sibility for quality evaluation. Unlike feature-based evaluation of the
camera image, a height scanner is required to train the AI model. Af-
terward, however, only one camera image is needed in the productive
system, and the time for the height scan can be saved.

In future work, we will integrate the developed solutions into the
manufacturing process and evaluate the results on other components
than hairpins. In addition, the robustness and transferability of an AI
model for calculating the height profile between different plants will be
further investigated. Depending on the results, it might be necessary to
improve the networks or the algorithms used downstream for quality
assessment.

References
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