
Energy and AI 12 (2023) 100216

A
2

•

•

•

•

•

A

K
G
G
F
A
M

h
R

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Conditional Generative Adversarial Networks for modelling fuel sprays
Cihan Ates a,b,∗, Farhad Karwan a, Max Okraschevski a, Rainer Koch a, Hans-Jörg Bauer a

a Karlsruhe Institute of Technology (KIT), Institute of Thermal Turbomachinery, Germany
b Karlsruhe Institute of Technology (KIT), Machine Intelligence in Energy Systems, Germany

H I G H L I G H T S

GANs were combined with autoencoders
(AE) to conduct virtual spray simula-
tions.
AE converts variable length droplet tra-
jectories into fixed length representa-
tions.
Conditioned GANs mimic the latent rep-
resentations of the evaporating droplets.
Training data was provided from highly
resolved Eulerian-Lagrangian LES simu-
lations.
Predictive accuracy highly depends on
encoding methodology.

G R A P H I C A L A B S T R A C T

R T I C L E I N F O

eywords:
enerative Adversarial Networks
enerative learning
uel injection
ero engines
ultivariate time series

A B S T R A C T

In this study, the probabilistic, data driven nature of the generative adversarial neural networks (GANs)
was utilized to conduct virtual spray simulations for conditions relevant to aero engine combustors. The
model consists of two sub-modules: (i) an autoencoder converting the variable length droplet trajectories into
fixed length, lower dimensional representations and (ii) a Wasserstein GAN that learns to mimic the latent
representations of the evaporating droplets along their lifetime. The GAN module was also conditioned with
the injection location and the diameters of the droplets to increase the generalizability of the whole framework.
The training data was provided from highly resolved 3D, transient Eulerian–Lagrangian, large eddy simulations
conducted with OpenFOAM. Neural network models were created and trained within the open source machine
learning framework of PyTorch. Predictive capabilities of the proposed method was discussed with respect to
spray statistics and evaporation dynamics. Results show that conditioned GAN models offer a great potential
as low order model approximations with high computational efficiency. Nonetheless, the capabilities of the
autoencoder module to preserve local dependencies should be improved to realize this potential. For the current
case study, the custom model architecture was capable of conducting the simulation in the order of seconds
after a day of training, which had taken one week on HPC with the conventional CFD approach for the same
number of droplets (200,000 trajectories).
∗ Corresponding author at: Karlsruhe Institute of Technology (KIT), Institute of Thermal Turbomachinery, Germany.
E-mail address: cihan.ates@kit.edu (C. Ates).
URL: https://www.its.kit.edu (C. Ates).
vailable online 21 December 2022
666-5468/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.egyai.2022.100216
eceived 28 July 2022; Received in revised form 16 November 2022; Accepted 19
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

November 2022

https://www.elsevier.com/locate/egyai
http://www.elsevier.com/locate/egyai
mailto:cihan.ates@kit.edu
https://www.its.kit.edu
https://doi.org/10.1016/j.egyai.2022.100216
https://doi.org/10.1016/j.egyai.2022.100216
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyai.2022.100216&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Energy and AI 12 (2023) 100216C. Ates et al.
1. Introduction

In recent years, the impact of the aviation industry on the environ-
ment has become a major concern, where the legal constraints push
the industry to further improve the design of each component with
an environmentally friendly target. One key aspect here is the fuel
injection into the pressurized combustion chamber, as it determines the
rate of heat transfer, evaporation and the chemical reactions, which in
turn dictate how clean and efficient the energy conversion process is.
Therefore, spray analysis and its accurate representation is of critical
importance for new engine design studies. Accessing this information,
however is a difficult and expensive process. Conducting high fidelity
simulations is a common strategy in the community to capture spray
dynamics, typically in the Lagrangian frame by tracing every droplet
bundle in the simulation domain. The liquid phase physics are then
coupled with the Eulerian model of the gas phase for every conservation
law being solved. Herein, one critical computational bottleneck is the
Lagrangian phase calculations and its connection to the continuum,
which has to be re-computed for every case being modelled in a design
study. In a typical workflow, the costly know-how generated for droplet
dynamics is utilized only once and has to be re-learned and utilized
at every design iteration. Therefore, there is a need for low order but
accurate representations of the spray dynamics.

One of the advancing frontiers of machine learning (ML) is gener-
ative modelling, which relies on representation learning. Such models
have a probabilistic nature and rely on the discovered patterns in the
data that can later be used to create new examples indistinguishable
from the original dataset. In particular, Generative Adversarial Neural
Networks (GANs) enable an implicit representation of the probability
distributions, connecting the features present in the training dataset.
Since its introduction by Goodfellow in 2014 [1], it has become a
popular method in both academia and industry for synthetic data
generation. Common applications are image/video processing [2,3],
style transfer [4], synthetic scenery/music generation [5–7], speech
enhancement [8], reinforcement learning [9], fault detection in gear
systems [10], heterogeneous catalyst design [11], film cooling effec-
tiveness in turbine blades [12], subfilter turbulence modelling [13]
and its application in a planar turbulent jet flow [14]. A detailed
comparative review of deep generative models including GANs could
be found in [15,16].

While the capabilities of GANs have been extensively investigated,
relatively few studies exist on time series modelling. TimeGAN [17]
is one of the early examples of sequential data generator, in which
an autoencoder module and a GAN module are combined. Herein, the
autoencoder learns to create a lower-dimensional representation of the
original fixed length sequence and the GAN model learns to create fake
examples in latent (lower dimensional representation) space from white
noise of the same sequence length. In TimeGAN, both modules are
trained jointly, so that the overall model learns to encode features and
generate samples at the same time. The workframe was later extended
to handle more challenging time series problems including missing
data and variable sequence lengths [18]. Recent GAN implementations
for generating sequential data include medical time series (ICU) [19],
chaotic systems [20], data generation for smart grids [21], spot price
(S&P 500) [22], air processing system in test trucks [23], energy
consumption at state level [24], energy use in buildings [25] and load
scenario generation [26]. A detailed survey and taxonomy of GAN
variants designed for time series related applications can be found
in [27,28].

In this work, we deployed the probabilistic, data driven nature
of the GANs to mimic the statistics of fuel droplets in aero engine
combustors, by learning the underlying laws that lead to the observed
droplet trajectories. The overall objective is to create a probabilistic
model that can generate synthetic fuel sprays, while conserving the
complex transient relations between the features such as velocity, tem-
2

perature and diameter. The custom GAN architecture is based on two
particular models: (i) RTSGAN [18] that is capable of learning temporal
relationships and (ii) cGAN [29] which imposes conditional probability
distributions on the learning process, in an attempt to increase the
generalizability of the developed model. This modification allows to
generate artificial droplet trajectories with different initial droplet size
distributions at different initial positions, so that it can be deployed to
generate alternative spray scenarios. The training data was provided
from highly resolved Eulerian–Lagrangian large eddy simulations for
evaporating spray clouds conducted within the scope of this work. Data
preparation was done by post-processing the voluminous simulation
data with in-house developed scripts to filter out droplet trajectories
with several temporally resolved features such as position, velocity
components, diameter and temperature of individual droplet bundles as
function of the residence time within the combustion chamber. Learnt
representations of variable length droplet trajectories were investigated
for a variety of pattern recognition model architectures (i.e., autoen-
coders) and compared via principle component analysis. The spray
statistics of the real and generated trajectories were analysed and the
success of conditioning strategy is discussed.

2. Methods

2.1. Generating the training data for GANs

The droplet trajectories for the training of the ML models were gen-
erated by conducting Euler–Lagrangian simulations, which mimic the
conditions of an aero engine combustor. For this study, the combustion
chamber geometry was approximated by a rectangular domain (Fig. 1),
where the fuel injector is represented by a bluff body near the gas
inlet. The dimensions of the chamber were set according to the annular
combustor designs utilized in modern engines. The shape and the size
of the bluff body were determined based on an iterative procedure to
create a central recircular zone (CRZ), which on average is similar to
those generated with the real fuel injector geometry (Fig. 1).

The investigated case is non-reactive and physics of the case study,
as well as the boundary conditions for the gas and the liquid phases
are selected to reflect late relight conditions. This operating point is
selected for two reasons. (i) The main goal of the study is to investi-
gate how to create synthetic multivariate time series data of different
lengths (i.e. droplet trajectories) efficiently and accurately, which can
be still tested in a non-reactive problem. In accordance, through the
selected operating point, the combustor could be approximated as a
pseudo-inert system, where the majority of the injected fuel reaches to
combustor exit unreacted. (ii) At the selected late relight conditions,
the gas phase temperature is high enough to increase the complexity
of feature space; that is, some of the liquid fuel can still evaporate,
particularly the fine fraction of the droplet size distribution, such that
there is still a complex physical coupling between the droplet size,
temperature and the trajectory of the droplets (particularly changing
drag behaviour with changing diameter).

The gas phase is modelled as air, while the liquid fuel is represented
as n-Dodecan (C12H26), which is considered as a surrogate for the
kerosene. The inlet gas temperature is set to 515 K, entering the annular
domain at 10 m/s. Transient, two-phase flow simulations were con-
ducted via open-source CFD code OpenFOAM by using the sprayFoam
solver, which is capable of solving the governing equations required
for transient, compressible and turbulent flows in the presence of a
Lagrangian particle cloud (time scheme: Eulerian, gradient: Gauss lin-
ear, divergence: Gauss upwind, Laplacian: Gauss linear orthogonal, cell
to face interpolations: linear. Solvers; density: PCG, pressure: GAMG,
species: PBiCGStab.).

The turbulence model was selected after conducting preliminary
single phase simulations with the same setup by comparing the URANS
and LES models available in OpenFOAM environment. As the URANS
does not bring much computational efficiency compared to Wall Adapt-
ing Local Eddy-viscosity (WALE) LES while losing information on in-

stantaneous flow fluctuations, LES was utilized in the extended two

Energy and AI 12 (2023) 100216C. Ates et al.
Fig. 1. Rectangular solution domain with the evolved coherent structures and the droplet trajectories.
Table 1
Spray injection parameters. Initial droplet temperature
corresponds to the temperature after the secondary
atomization. Fuel injection temperature is considered
as 353 K.
Fuel name C12H26
Droplet temperature 415K
Injection duration 0.7 s
Fuel mass flow rate 0.06 kg s−1

Initial droplet velocity 5m s−1

Parcels per second 400,000

Table 2
Rosin–Rammler distribution for the initial droplet
sizes. Spray data was calculated via smoothed particle
hydrodynamics simulations with in-house developed
code (turboSPH) [30].
Reference Diameter 100 × 10−6 m
Width parameter 2.5
Lower diameter value 80 × 10−6 m
Upper diameter value 200 × 10−6 m

phase flow simulations. All forces acting on the fuel droplets except
the drag forces are neglected. To account for the fuel evaporation,
the Stefan–Maxwell model is applied to calculate instantaneous mass
transfer rate.

The liquid fuel droplets are injected from the edges of the square
injection patch (black lines) shown in Fig. 1. Tables 1–3 summarize
the spray injection settings, initial droplet size distributions and LES
model parameters, respectively. The droplet size distribution is based
on the SPH simulations of the atomization process (see Table 2) and
it is sampled homogeneously at the injection patch while creating the
droplet parcels. It should also be noted that these initial conditions
represent the distribution after the secondary atomization process.

Once the CFD simulations were completed, the relevant Lagrangian
phase variables (droplet ID, diameter, temperature, velocity and po-
sition) were filtered for each time step. The raw data in the binary
format was then converted into the VTK format, which can be processed
3

Table 3
LES parameters.
Subgrid scale model WALE model
Mesh size (unstructured) 3mm
Courant Number 0.1
Time step size 1 × 10−6 s
Solution writing interval 1 × 10−4 s

conveniently in Python. In the next step, min–max-scaling was applied
on the data, a common strategy in data driven, distance-based learning
methods. Finally, a numpy array was created that stored the trajectory
information of each droplet for its entire life time in the combustion
chamber by using the droplet ID, which is a unique feature for each
droplet. The size of the time dimension of the droplet trajectory arrays
typically changes in between 300–700 (i.e., time-wise depth of the 2D
array), depending on its evaporation and trajectory dynamics. In total,
200,000 trajectories were extracted, which can be downloaded via the
link given in Data Availability.

2.2. Conditional time series GANs

The objective of the current study is to learn the statistics of fuel
droplets in aero engine combustors by learning the underlying laws that
lead to the observed droplet trajectories, while conserving the transient
dependencies between the features (position, diameter, temperature,
velocity). This was achieved by combining two neural network models:
an autoencoder and a Wasserstein-GAN (WGAN). The general archi-
tecture of the model is illustrated in Fig. 2. Droplet trajectories were
used only to train the autoencoder model, independently from the
GAN model. The autoencoder consists of two sub-neural networks: an
encoder and a decoder. During the training, droplet trajectories are fed
to the encoder model. It consists of a 𝑁-layer GRU network with hidden
dimensions 𝑑𝐴𝐸 . Because of their inherent properties, GRU cells can
learn and keep the sequential dependencies of the time series in their
state function, overcoming the common memory problem of vanilla
RNN cells. The objective of the encoder is to simplify the generative

Energy and AI 12 (2023) 100216C. Ates et al.
Fig. 2. Implemented model architecture. Top: autoencoder, bottom: WGAN model.
learning process, by compressing variable length droplet trajectories
into fixed-length latent representation 𝐳𝐢. In other words, the dimension
of the latent vector is independent from the sequence length. The role of
the decoder, on the other hand, is to learn how to unroll a compressed
data into a variable length sequence. The training of the autoencoder
is done via reconstruction loss of the droplet trajectories (𝐗𝐢 − 𝐗∗

𝐢).
It should be noted that each time series instance that is fed to the
model contains two types of features: global features and dynamics
features (𝐗𝐢). Global features do not change over time and are thus
constant for a sequence sample (they are extracted from the dynamic
features). Examples for global features are class labels or properties
of the sequence itself, such as the sequence length. On the other
hand, dynamic features of the sequence (diameter, position, velocity,
temperature) change over time. A training instance is the concatenation
of the data from both feature types. The global feature of sequence
length is of particular importance, as it makes decoding the compressed
fixed length data back to its original shape possible. This is reflected
into the loss function as a linear combination of reconstruction loss for
global features and dynamics features. Cross-entropy and mean squared
error losses are used for categorical features and continuous features,
respectively. The detailed procedure of creating the latent vector 𝐳 can
be found in [18].

The generative part of the whole modelling framework is the GAN,
which tries to create realistic compressed representations (𝐳𝐢) from
random noise vectors. It is built from two competing neural networks,
referred as the generator 𝐺 and the discriminator 𝐷. The task of the
generator is to create ‘‘real-like’’ samples from a noise vector 𝑧, in an
attempt to fool the discriminator model. In contrast, the task of the dis-
criminator is to judge whether the sample is real or fake (synthetically
generated by the generator). This adversarial process can be regarded
as a min–max game between the generator and discriminator. In the
vanilla GAN, the objective function can be expressed as follows:

minmaxE [log𝐷(𝑥)] + E [1 − log𝐷(𝐺(𝑧))] (1)
4

𝐺 𝐷 𝑥∼𝑝data(𝑥) 𝑧∼𝑝z(𝑧)
where E represents the expected value or the expectancy. The discrim-
inator is trained such that it maximizes the probability of assigning the
true label to an incoming sample log(𝐷(𝑥)), whereas the generator is
trained by minimizing log(1 −𝐷(𝐺(𝑧))). The iterative updating of each
network’s weights (i.e., model parameters) is done via back propagation
algorithm. A practical interpretation here is that the discriminator acts
like a learned loss function for the generator. Since it is not possible to
define a loss function a priori how a real sample looks like, GANs aim to
learn it implicitly as a parameterized model through the discriminator
(also referred as critic in the community depending on the definition
of loss function). In the current work, the Wasserstein GAN (WGAN)
was used as the generative model for a stable training [31]. The
Wasserstein distance between the fake and the real examples in latent
space is used as the feedback for the training, with the weight clipping
implementation of [32].

In order to create droplet trajectories of variable lengths, the RTS-
GAN implementation [18] was altered. The custom implementation can
be found in Supplementary Material 1. There are two major updates in
the code. First, the original model is tuned such that variable length
sequences can be reconstructed to reflect different residence times of
droplets in the combustion chamber. For instance, the residence time
of a droplet can change drastically depending on its own velocity, initial
diameter and the injection position, as well as the transient gas phase
flow dynamics. It is important to mention that the authors of RTSGAN
published two different versions of their code. One version is suited
for complete and fixed-length sequences (C1), while the other (C2) is
applied for incomplete and variable-length sequences. In this work, the
C1 code version was modified to be able to work with variable sequence
lengths. This was done by creating a hybrid version from C1 and C2.
One key change was adding a global feature containing information
about sequence length to each training instance of the training data
set as a pre-processing step. This global feature is simply an integer
representing sequence length. In the encoder model, this information
gets embedded in the latent space representation 𝐳𝐢. Hence, it can be
decoded back to the correct sequence length via decoder model after

Energy and AI 12 (2023) 100216C. Ates et al.

d
d
i
a
c
l
w
i
t
p
t
h
G
p
(
s
f
t
t

l

Table 4
Hyperparameters tested for the autoencoder module with the lowest reconstruction loss
after their training.

RNN cell architecture Number of hidden dimensions (𝐳𝐢) Loss value

GRU 16 1e−4
GRU 24 5e−5
GRU 48 6e−4
LSTM 24 5e−5
LSTM 32 5e−5

the training. When the GAN is used to generate fake examples, it can
still generate trajectories with varying lengths as it is interpreted as a
part of the learnt latent space representation by the Generator.

In order to have a control on the initial state of the spray, a further
modification of the RTSGAN was needed. As stated in the introduc-
tion section, the goal of this work is to create a spray model, where
droplet trajectories can be conditioned on initial diameter and initial
position. The existing GAN architecture was therefore transformed
into a conditional GAN (CGAN). The CGAN is an extension of the
vanilla approach [1] and was first introduced in 2014. The purpose
of a CGAN is to control the output of the model by conditioning the
generator and discriminator with additional information 𝑐, in order
to generate samples from a prescribed class. The objective function of
CGAN becomes:

min
𝐺

max
𝐷

E𝑥∼𝑝data(𝑥)[log𝐷(𝑥|𝑐)] + E𝑧∼𝑝z(𝑧)[1 − log𝐷(𝐺(𝑧|𝑐))] (2)

This additional information can either be a class label or be data
from other modalities. It is integrated into both the discriminator and
generator via an additional input layer [29]. For the droplet trajectory
problem, we labelled each sequence with a class label indicating either
the injection location (i.e., initial position) or the droplet size. The
class label, which is implemented as an integer, serves as a conditional
information during training and inference. In the model, the class label
is fed into an embedding layer, which transforms the input into a
10-dimensional vector. The conditional vector 𝐜 is then concatenated
together with the noise vector. Finally, the resulting vector is fed into
the generator. During the training of the discriminator, the conditional
vector 𝐜 is also concatenated together with the hidden representation
of the real or fake samples. In summary, conditioning allows to ask the
Generator model not only to create a realistic droplet trajectory, but
one starts at a given position and/or a defined size.

2.3. Model experiments and training

For the training of the autoencoder and the WGAN, the trajectory
ataset (200,000 instances) were down-sampled to 20,000 via two
ifferent policies. At first, the trajectories were randomly sampled
rrespective of their initial conditions. The models are then tested with
nother randomly selected sub-set of 20,000 trajectories. Then, we first
lassify the trajectories based on their initial properties (injection patch
ocation, diameter) into 32 classes and then down-sample them in a
ay that they have the same probability distribution with the large

nitial database. The models trained with the second policy was also
ested on randomly selected test set of same size. In both cases, the
redictive accuracy of the models stays the same, irrespective of how
he training set is created. After this initial observation, a set of different
yperparameters was tested for both the autoencoder module and
AN module for a reduced training set to speedup the training times,
articularly for the autoencoder. Herein, the RNN cell architecture
LSTM/GRU) and the number of hidden dimensions were varied as
hown in Table 4. The number of training epochs was set as 1000
or each experiment and the best set of weights achieved during the
raining was saved. The best-performing Encoder variant was then used
o create training examples in latent space (𝐳𝐢) for the GAN module.

The hyperparameter testing for the GAN module was limited to the
5

earning rate. For the current case study, lower learning rates were
found to perform poorly (<1e-4) and the best training performance was
achieved with a learning rate of 1e-3. The other hyperparameters were
kept as recommended in the RTSGAN study [18].

The training of both the autoencoder and GAN modules was con-
ducted on bwUniCluster using one GPU (NVIDIA Tesla V100) and
all 14 processor nodes (Intel Xeon Gold 6230). The training of the
autoencoder and the GAN modules took 24 h and 12 h, respectively.
Once the model is trained, it took about 10 s to generate a full spray
simulation on a typical office PC.

3. Results

3.1. Autoencoder evaluation for reconstructing the droplet trajectories

The autoencoder module aims to minimize the difference between
the input tensor 𝐗𝐢 (time and feature dimensions of the trajectory) and
the output tensor 𝐗∗

𝐢 (Fig. 2). This difference is typically referred as the
reconstruction error. A small reconstruction error indicates that the au-
toencoder is capable of compressing the data into a lower-dimensional
space by maintaining most of the information. However, this loss
value is a global measure and only gives the average loss over the
whole trajectory (tensor) and does not provide any information about
the spatial and temporal dependencies of the features (or where the
error is originated from). Therefore, an additional statistical analysis
for individual properties (diameter, velocity, temperature, position) at
different locations is needed to extract more specific information about
the reconstruction of each single feature. In this work, as an additional
metric, the global statistics at four different equidistant locations are
evaluated by constructing the probability density functions (PDFs) of
each physical feature. These functions are then compared with the
original density functions at the same locations. The similarity between
the learnt and the reconstructed PDFs shows the capability of the
autoencoder model to learn and preserve the temporal and spatial
correlations in the trajectories. In order to quantify whether the autoen-
coder is capable of capturing the evaporation physics properly or not,
which is not directly visible in the features or the PDFs, a third metric
is also introduced. Herein, coupled thermal effects (rate of evaporation
and expansion) are estimated by comparing the incremental change in
droplet volumes between two relatively close evaluation planes at pre-
selected locations in the simulation domain (i.e, a differential volume
element). As a final comparison, reconstructed trajectory examples are
presented. This metric is for qualitative purposes and allows a more
practical and intuitive view on the performance of the model.

The reconstruction loss for the trajectories was determined by ap-
plying Mean-Squared-Error for a batch of samples. After the training,
the highest reconstruction error was in the order of 1e-4 in all cases in
both training and test sets, indicating that the sequence reconstruction
process is globally accurate. The worst performance was given by GRU
(48) as 6e-4 (Table 4). As highlighted before, the reconstruction loss
does not provide much insight about the performance of the autoen-
coder, as it only measures the overall success of the reconstructed 2D
array. Hence, it cannot describe how much of the temporal or pairwise
relations (e.g. diameter vs. temperature) are preserved. In other words,
we need to deploy alternative metrics to quantify the predictive accu-
racy of the data conversion process from variable length, multivariate
time series data to fixed-length, latent vector representations.

In an attempt to quantify how well the casual relations are learnt in
the autoencoder module, we first compared the global spray statistics
over 20,000 droplet trajectories for the original and reconstructed
samples. The tested trajectories were sampled randomly from the main
example pool (200,000 samples). The statistical consistency is checked
by comparing the constructed probability density functions (PDFs) for
each feature on four equidistant evaluation planes perpendicular to the
main flow direction (0.033 m, 0.103 m, 0.173 m and 0.243 m).

Fig. 3 illustrates several examples for droplet diameters, tempera-

ture, one velocity component and one position feature. PDFs for all

Energy and AI 12 (2023) 100216C. Ates et al.

a

Fig. 3. Global spray statistics for the original (blue) and reconstructed data (orange) for droplet diameters, temperature, one velocity component and one position feature. PDFs
re calculated from 20,000 trajectories at plane locations: 𝑥1 = 0.033 m, 𝑥2 = 0.103 m, 𝑥3 = 0.173 m, 𝑥4 = 0.243 m. The rest can be found in Supplementary Material 2.
tested autoencoder models at all four planes can be found in Sup-
plementary Material 2. Irrespective of the deployed RNN cell type
(GRU/LSTM) or the number of neurons of the hidden state, PDFs of
the original and the reconstructed data showed noticeable deviations
and the PDFs of the reconstructed data could only match the original
data in few planes. The reconstruction errors were typically smaller
at planes closer to the injection location and deviates more from the
original sequence at further downstream locations, corresponds to later
6

residence times.
In order to assess the similarity between the original PDFs and the
reconstructed PDFs, we used a simple, binary classification approach.
If the reconstructed and original PDFs are similar for a given feature
(e.g., diameter) at a given plane (e.g 𝑥1), the method get a score of +1.
For instance, a value of 4 indicates that the model was capable of repro-
ducing accurate PDFs for all four planes for that particular feature (see
Supplementary Material 2 for visual PDF comparisons for all features
and models). If the distribution is not captured qualitatively, we give a

score of zero. Herein, similarity means a Hellinger distance smaller than

Energy and AI 12 (2023) 100216C. Ates et al.
Fig. 4. Comparison of first two principal components for latent space vectors calculated
via different autoencoder architectures.

0.3. This grading is then repeated for all features, for each autoencoder
model. The overall score is then summed, as an indicator of the model
performance. Table 5 summarizes the accuracy of the reconstructed
spray PDFs for all features as a cumulative score. The columns and
rows represent the tested autoencoder models and trajectory features,
respectively.From Table 5, it seems that the data encoding and the
following reconstruction process does cannot preserve the temporal
evolution of the features along the combustor properly, despite the
very low global reconstruction losses (Table 4). It is seen that some are
relatively more successful, such as the LSTM (24) and GRU (24), with
respect to reconstruction of global statistics. Nonetheless, the RNN-
based autoencoder fails to capture the spatiotemporal dependencies in
the multivariate time series (how individual features change in time
and how they are correlated in time).

In an attempt to analyse the differences in alternative decoding
strategies and why we observe such deviation in local feature probabil-
ity distributions despite low reconstruction errors, Principal Component
Analysis (PCA) is used on the latent representations (𝐳𝐢) generated by
each autoencoder model. In principle, the usefulness of the encoding
strategy comes from its ability to represent a sparse, high dimensional
data with a much lower dimensional projection (𝐳𝐢 instead of 𝐗𝐢), while
maintaining as much information of the original feature space as possi-
ble. Herein, the question of interest is, whether RNN-based autoencoder
learns the overall data representation, or it is capable enough to extract
the casual dependencies within features, as well as with respect to time.
In accordance, we would like to analyse the complexity of the latent
data space as proxy, similar to the work of [25]. With linear PCA, it
was seen that the first two principal components constitute >98% of
the total variance in latent space, indicating that the compressed data in
the latent space is projected into a simple manifold. It should be noted
that PCA is performed on the latent space representation z (Fig. 2),
hence includes the whole lifetime of a droplet trajectory implicitly.
Interestingly, the latent representations of droplet trajectories of all
autoencoder modules (except GRU (48) due to its relatively higher
dimensionality) have similar distributions in the latent space (Fig. 4).
The feature embedding in latent space did not change by increasing
the latent space dimension, or the memory functions of the RNN cells.
When these encoded features are constructed back with the decoder,
the feature statistics show significant local differences with respect to
original trajectories, as seen in Fig. 3 and Table 5 and do not match
well with the original trajectory distributions.

In order to further investigate the discrepancy between the low
training errors and the loss of accuracy in capturing local feature
statistics, the changes in total droplet volumes within a differential
combustor volume were evaluated as an additional criteria. This inte-
grated value is considered as an indicator of how well the autoencoder
7

captures global variables of interest such as volume change in the
liquid phase at a given plane. For that purpose, differential com-
bustor volumes are defined by placing two plane couples with an
inter-distance of 1 mm at four axial locations. The resulting relative
percentage volume changes are given in Fig. 5 for the relatively better
performing autoencoders at the four planes PDFs are derived. It is seen
that the models yields a very high accuracy in the plane-wise integrated
quantities (maximum axis value is 1.25%). The reconstruction accuracy
of GRU (24) is relatively better than the LSTM (24) architecture, for
which the difference between the original and the reconstructed plane-
averaged volume change is less than 1%. The LSTM (24) model tends to
overestimate the volume change, which can be linked to an artificially
larger expansion with increased temperature. In particular, when the
temperature PDFs for GRU (24) and LSTM (24) are compared, it is seen
that the peak temperature is shifted towards higher temperatures for
GRU (24), while the opposite is true for LSTM (24) (see Supplementary
Material 2 for all temperature PDFs). It is also worth nothing here
that at the closest plane (𝑥1), net differential volume change was
found to be slightly positive in the original data, which is due to the
greater impact of volume expansion upon contact with the hot gas
compared to the volumetric loss due to evaporation. Such an effect
could not be preserved with either GRU or LSTM based autoencoders.
The plane-wise volume change analysis empirically shows that the
RNN-based autoencoders tend to minimize the differences in global
representations during the training, rather than extracting and learning
the spatiotemporal variations in the time series data, which is needed
for an accurate low order model substitution for detailed Lagrangian
trajectory models.

The above discussed observations reveal that alternative approaches
are needed to fully capture the temporal and spatial interactions in the
multivariate feature space. Convolutional neural networks, for instance,
could help to build a hierarchical data representations and provide an
efficient way to extract those local relationships via sets of kernels.
One practical problem here is the variable size of the input data, due
to the differences in the life times of the droplets depending on their
initial size and trajectories. Even in the simulated non-reactive engine
conditions, the life time of a droplets exhibits complex distributions
(Fig. 7(a)). In order to alleviate the variable length issue, we considered
that the distribution can be discretized into bins of finite intervals and
an ensemble of convolutional autoencoders (cAEs) can be trained by
padding the instances within the bins to the maximum size (Fig. 7(b,c)).
In order to test the above hypothesis, we trained an cAE for the
trajectory interval of 100–120 time frames (i.e., arrays of [100,10] to
[120,10]). The samples with missing values were padded with zeros.
In the preliminary training experiments, the original feature size of
120 × 10 was found be too skewed for the CNN layers to work.
Therefore, the arrays were reorganized as into a shape of 40 × 30,
while keeping the original feature space of droplet properties together
(i.e, patches of 10). Several model structures with changing number
of layers, filters and kernel sizes have been tested. Fig. 7(d) shows an
example trajectory of a droplet with the best model hyperparameters.
In the first encoding layer, 16 filters were used with a kernel size
of (10 × 1) with maximum pooling (2,1), in an attempt to learn the
inter-feature dependencies at a given time. The following encoding
layer used 8 kernels (2 × 2). For decoding, four CNN layers were
used and upsampling is done only in the third layer. The same error
function is used to train the overall model. The comparison between
the original and the reconstructed trajectory features shows that with
a proper encoding policy, it is possible to learn the temporal evolution
of the multidimensional feature space of the trajectories. Nonethe-
less, it should be noted that in these isolated CNN experiments, the
learning space is much simpler than that of the RNN-based encoder
which includes different physical regimes with a much broader droplet
diameter and residence time distributions. Furthermore, the training
of the whole ensemble cAEs would require a significant amount of
hyperparameter testing to maximize the local reconstruction accuracy,

Energy and AI 12 (2023) 100216C. Ates et al.
Fig. 5. Relative droplet volumetric changes reconstructed by GRU (24) and LSTM (24) autoencoders.
Fig. 6. Sampled droplet trajectory with the CGAN model (diameter-conditioned).
while ensuring that the overall approach does not overfit. The difficulty
in the encoding of spatially and temporally correlated data illustrated
here indicates that there is a need for further research in how to
handle variable length, multivariate time series data, while preserving
the local relationships and causality, as the high level objectives, such
as creating generative, low order model representations (i.e., digital
twins) of physical assets like fuel injectors in aeroengine combustors,
require high precision and accuracy at both local and global levels.
Herein, different binning and upsampling policies can be tested beyond
simple padding to improve the robustness of the model in the future
work.

3.2. Generating droplet sprays with CGAN

In the previous section, it has been shown that the RNN-based
encoding of the original droplet trajectory data is capable of capturing
integrated quantities such as droplet volume changes at given planes.
Nonetheless, the local probability density distributions of the features
were found to be difficult to learn irrespective of the autoencoder
complexity. Even the best models failed to capture the whole of local
statistics, particularly towards the combustor exit. In order to assess
whether the encoding methodology could be improved by alternative
8

Table 5
Global evaluation matrix for reconstructed spray statistics.

Feature GRU (16) GRU (24) LSTM (24) LSTM (32)

𝑑 0 2 1 0
𝑇 3 0 2 1
𝑈𝑥 3 2 3 3
𝑈𝑦 0 3 3 1
𝑈𝑧 0 0 1 0
𝑦 0 3 3 2
𝑧 0 0 3 3

Final score (∑) 6 10 16 9

approaches, an ensemble of convolutional autoencoders (cAE) is hy-
pothesized, which is to be trained on different fractions of the variable
length trajectory data. We tested the idea for one cAE and demon-
strated that the spatiotemporal relationships can be learnt. Nonetheless,
the model did require hyperparameter tuning even for a single cAE
unit, around 40 of which is needed to create the ensemble model. In
this section, we will focus on the second part of the problem, that
is, exploring the capabilities of implicit generative models given the
simpler latent representation of a complex input data. In particular,
the performance of the custom CGAN model will be discussed as a
generative fuel spray model, assuming that the latent space created by

Energy and AI 12 (2023) 100216C. Ates et al.
Fig. 7. Trajectory life time distributions (a), grouping idea with respect to time dimension of trajectories (b) and its integration with the ensemble convolutional autoencoders
(cAE) with paddings (c). Sample reconstructed trajectories with a single cAE for trajectory interval [100,10]–[120,10] (d).
the encoding–decoding model is meaningful enough to perform such
an assessment. This assumption is made to elaborate on the bottlenecks
whole modelling framework for the future work. For that purpose, the
trained autoencoder module GRU (24) is used in tandem with the GAN
module, since it showed the best performance among all other models
(see Section 3.1) and yields low error (<1%) in plane-wise integrated
quantities of interest. Herein, the task of the autoencoder is to compress
the variable length sequence into a fixed-length, simple representation.
The CGAN model then creates similar hidden representations with
9

the generator, which is trained by using the feedback from the Critic
(Fig. 2). The synthetic (or fake) latent representations will be then de-
coded to create the artificial droplet trajectories. It should be reminded
that the reason behind following this strategy is relax the difficulty
of learning implicit coupled probability distributions by reducing the
dimensionality of the problem, from around 5000 dimensions to 24.

Fig. 6 illustrates temporal evolution of a single droplet trajectory
generated by the CGAN model conditioned on initial droplet diameter.
In general, the generator seems to learn the trend of the features,

Energy and AI 12 (2023) 100216C. Ates et al.

a
p
f
b
c
(

Fig. 8. Global spray statistics for the reconstructed (orange) and generated (green) trajectories with the CGAN model (diameter-conditioned).
a
t

i
2

lthough the curves may look noisier for some trajectories. The 𝑥-
osition is usually predicted realistically, since this is almost a linear
unction with respect to sequence step. In some cases, the correlation
etween droplet size and temperature is represented quite well. In other
ases, however, the predicted temperatures show unnatural oscillations
10

See Supplementary Material 2 for more examples). For the lateral and g
xial velocity components, synthetic trajectories were found to mimic
he observed fluctuations in the flow field.

The global spray statistics of the GAN module conditioned on the
nitial diameter are shown in Fig. 8. PDFs are constructed by using
0,000 real and fake trajectories. It should be noted that the PDFs of the

enerated spray (fake data) are compared with the reconstructed data

Energy and AI 12 (2023) 100216C. Ates et al.

o
t
C
M
t
s

Fig. 9. Global spray statistics for the reconstructed (orange) and generated (green) trajectories with the CGAN model (position-conditioned).
f real spray trajectories in order to quantify the errors originating from
he GAN module, as the AE module already has errors in local statistics.
omparisons with the real spray data can be found in Supplementary
aterial 2. It is seen that at some planes, the PDFs of the reconstructed

rajectory features were captured quite well, while on others the
tatistics were learnt not properly. The generative model yields a lower
11
number larger droplets and a higher number of fine droplets at the
first sampling plane. The best match between both curves is found
for the second sampling plane. The overlap decreases with increasing
𝑥-coordinate (axial direction), where the generative model tends to
underestimate the number of fine droplets. The temperature distribu-
tion is captured only reasonably well up to the second plane. Going

Energy and AI 12 (2023) 100216C. Ates et al.
Fig. 10. Comparison between the 2D latent representations of original samples and fake samples for different initial diameters. Dimensionality reduction was done via PCA.
Fig. 11. Evolution of training loss functions of the GAN module (diameter conditioned).

downstream, the lower temperature peak is over-estimated, whereas
the higher temperature peak is under-estimated, compared to the
reconstructed trajectories. The performance regarding the three veloc-
ity components varies at different locations. The distribution of the
initial positions is captured quite well, however at larger 𝑥, hence at
later times, the overlap between the PDFs was found to be reduced.
In general, it was found that the discrepancy between the PDFs of the
generated trajectory and the reconstructed data decreases towards the
exit of the combustor.

When the model is conditioned on the initial position (Fig. 9),
there is not much improvement compared to the diameter-conditioned
GAN (Fig. 8). The position-conditioning did not affected the model
performance with respect to position, temperature or velocity statistics.
Interestingly, the PDFs for the droplet diameter are found to be worse
than the ones generated by the diameter-conditioned GAN in all four
planes. In other words, conditioning on diameter was a relatively more
successful strategy compared to the conditioning on the initial position.
It may be due to the fact that the fuel spray was symmetric with
respect to the azimuthal angle, therefore conditioning the position
on yz plane did not bring additional information regarding to the
trajectory dynamics, compared to the diameter information.

Similar to the autoencoder model, we looked into the
lower-dimensional representations of the generated trajectories via PCA
analysis and compared it with the real samples. Fig. 10 illustrates
how the 2D linear projections are distributed for different droplet size
ranges (i.e., first two PCs that carries more than 98% of the total
variance of the original latent feature space). Herein, three classes
of droplet sizes are selected for visualization based on their initial
diameters: small (<116 μm), medium (140 μm < 𝑑0 < 152 μm) and
large (188 μm < 𝑑0 < 200 μm) droplets. It is seen that the diameter-
conditioned GAN can generate samples that are close to the original
ones in the latent space with respect to the requested diameter labels.
Due to its probabilistic nature, the fake samples are spread around
12
the CFD-generated data (orange dots in Fig. 10), yet with acceptable
variance. An important observation here is the fact that the GAN model
does not suffer from the mode collapse problem. The generator could
provide diverse examples following the original distribution and do not
cluster into a small region of the latent space (i.e., generate samples
that are very similar/identical which are acceptable for the Critic).
Comparisons in the latent space show that conditioning a GAN with
respect to initial droplet properties can control the creativity of the
model successfully, even for a multivariate time series problem. It
should be noted that there are alternative generative learning methods
beyond the GANs that can be conditioned, such as Gaussian Mixture
Models [33] or Hidden Markov Models [34,35]. The capabilities of
such alternative approaches could be further explored in the follow-up
studies. It should be also noted that it is very difficult to interpret the
outcome of the generative models such GAN directly. At best, we can
measure the similarities between the generated and the original data,
such as the Wasserstein distance which converges towards to the end of
the training 11. Even in that case, however, the ‘‘distance’’ itself is an
abstract quantity. Therefore, particularly for scientific or engineering
oriented applications, the evaluation of the generative models should
be coupled with the physics of the problem for a better interpretation.
In the current work, we used alternative metrics such as the analysis
of the generated trajectories with respect to their statistics via PDFs
and integrated quantities such as plane-averaged volume changes. In
the future work, it may be worth to investigate the added value of
modifying error definitions to train the generative module to inject
more physics from the known statistics of the physical problem as a
regularization term.

It should be also noted that direct learning of the underlying muti-
modal probability distributions in the high dimensional feature space
(5000 dimensions even if we solve the variable sequence length prob-
lem) is an extremely challenging task, if we are particularly interested
in preserving the local inter-dependencies of the transient droplet
trajectories. This is why simplification of the data representation was
considered a crucial prerequisite before training a generative model.
Our analysis showed that this pre-processing step is still very difficult,
even if we decouple it from the generative learning process. RNN-based
models with complex memory functions were at best capable of keeping
track of integrated variables of interest such as the droplet volume
change in a differential combustor volume. When we further simplify
the preprocessing of data representation with the ensemble cAE idea
7, the encoding–decoding performance was much found to be much
better. These comparisons indicate that the bottleneck of overall the
learning process for such high dimensional data in the autoencoding
strategy and there is a need for further research to establish robust
methodologies that can preserve the local, multimodal dependencies.

4. Conclusions

In this work, a custom conditional GAN model was tested as a
statistical spray model to generate artificial droplet trajectories for aero
engine combustors. It includes two key features. First, it is capable

Energy and AI 12 (2023) 100216C. Ates et al.
of handling sequences with variable lengths. Second, the model can
be conditioned on different initial states by either defining an initial
droplet diameter or initial droplet position. The data set used for the
training was extracted from the transient Eulerian–Lagrangian CFD
simulations. Due to the high dimensionality of the input feature space
(3000–7000), generative learning task is conducted in two stages: (i)
encoding of the variable size droplet trajectory data into fixed length,
low dimensional representations via autoencoders and (ii) learning
the multimodal dependencies of transient fuel droplet features (initial
diameter, diameter, temperature, position, velocity, residence time) in
the low dimensional representations via conditional GANs.

During the training phase of the autoencoders, the reconstruction
errors were found to be very small for the whole training data, yet
the global statistics of the fuel droplets along the combustor were
not conserved and disagreed noticeably from the original distributions.
The reconstruction error was found to be typically highest for the late
stages of the droplet trajectories, indicating that a generic recurrent
autoencoder architecture may not be sufficient to capture the sequen-
tial dependencies of the multivariate auto-regression task, even with
GRU/LSTM cells. Hyperparameter tuning also failed to improve the
reconstructed local probability density functions of the fuel sprays.
The best model yielded acceptable match between the original and
reconstructed feature probability density distributions in only 16/28
of the sampled local distributions. Analysis of the integrated (differen-
tial volumes perpendicular to main flow direction) quantities such as
total change in the droplet volumes, on the other hand, showed that
the trained RNN-based autoencoders are good at capturing the global
behaviour. CNN-based autoencoders seems to be better at capturing
spatiotemporal dependencies in droplet trajectories, yet variable array
sizes originating from the physics of the evaporating spray with a
droplet size distribution makes direct utilization of a single Convolu-
tional autoencoder impractical. Herein, the potential of an ensemble
approach with a robust upsampling/downsampling policies should be
further investigated. Training of the GAN model in the latent space was
much more straightforward and successful. The model was capable to
mimic some high level features such as the initial droplet diameter of
the trajectory and mode collapse was not observed. The diameter based
conditioning was also found to improve the spray statistics generated
by the GAN model further.

Comparisons showed that how the high dimensional, variable length
feature space of the multivariate time series data is projected into a low
dimensional, fixed length representation is the key step for creating
accurate low order models of complex physical phenomena such as
fuel injection in aero engines and there is a need for further research
to establish robust methodologies that can preserve local, multimodal
dependencies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Droplet trajectory data and the custom GAN code can be found in
Supplementary Material 1.

Acknowledgements

This work was performed on the bwUniCluster supercomputer.
The authors acknowledge support by the state of Baden-Württemberg,
Germany, through bwHPC.

We acknowledge support by the KIT Publication Fund of the Karl-
sruhe Institute of Technology, Germany.
13
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.egyai.2022.100216.

References

[1] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,
Courville A, Bengio Y. Generative adversarial nets. In: Ghahramani Z,
Welling M, Cortes C, Lawrence N, Weinberger K, editors. Advances in neural
information processing systems, vol. 27. Curran Associates, Inc.; 2014, URL https:
//proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
Paper.pdf.

[2] Liu MY, Huang X, Yu J, Wang TC, Mallya A. Generative Adversarial Net-
works for Image and Video Synthesis: Algorithms and Applications. Proc IEEE
2021;109(5):839–62. http://dx.doi.org/10.1109/JPROC.2021.3049196, arXiv:
2008.02793.

[3] Tzaban R, Mokady R, Gal R, Bermano AH, Cohen-Or D. Stitch it in Time:
GAN-Based Facial Editing of Real Videos. 2022, arXiv:2201.08361.

[4] Palsson S, Agustsson E, Timofte R, Van Gool L. Generative adversarial style
transfer networks for face aging. In: 2018 IEEE/CVF Conference on computer
vision and pattern recognition workshops. CVPRW, 2018, p. 2165–21658. http:
//dx.doi.org/10.1109/CVPRW.2018.00282.

[5] Zhang H, Xu T, Li H, Zhang S, Huang X, Wang X, Metaxas DN. StackGAN: Text
to photo-realistic image synthesis with stacked generative adversarial networks.
2016, CoRR arXiv:1612.03242.

[6] Mogren O. C-RNN-GAN: Continuous recurrent neural networks with adversar-
ial training. 2016, http://dx.doi.org/10.48550/ARXIV.1611.09904, URL https:
//arxiv.org/abs/1611.09904.

[7] Donahue C, McAuley J, Puckette M. Adversarial audio synthesis. 2018, http://dx.
doi.org/10.48550/ARXIV.1802.04208, URL https://arxiv.org/abs/1802.04208.

[8] Pascual S, Bonafonte A, Serrà J. SEGAN: speech enhancement generative
adversarial network. 2017, CoRR abs/1703.09452 arXiv:1703.09452.

[9] Razavi-Far R, Ruiz-Garcia A, Palade V, Schmidhuber J. Generative adversarial
learning: architectures and applications. Springer; 2022.

[10] Zhou K, Diehl E, Tang J. Deep convolutional generative adversarial net-
work with semi-supervised learning enabled physics elucidation for extended
gear fault diagnosis under data limitations. Mech Syst Signal Process
2023;185:109772. http://dx.doi.org/10.1016/j.ymssp.2022.109772, URL https:
//www.sciencedirect.com/science/article/pii/S0888327022008408.

[11] Ishikawa A. Heterogeneous catalyst design by generative adversarial network
and first-principles based microkinetics. Sci Rep 2022;12(1):1–9. http://dx.doi.
org/10.1038/s41598-022-15586-9.

[12] Wang Y, Wang Z, Wang W, Tao G, Shen W, Cui J. Two-dimensional prediction
of the superposition film cooling with trench based on conditional generative
adversarial network. Int J Therm Sci 2023;184:107976. http://dx.doi.org/10.
1016/j.ijthermalsci.2022.107976, URL https://www.sciencedirect.com/science/
article/pii/S129007292200504X.

[13] Bode M, Gauding M, Lian Z, Denker D, Davidovic M, Kleinheinz K, Jitsev J,
Pitsch H. Using physics-informed enhanced super-resolution generative adversar-
ial networks for subfilter modeling in turbulent reactive flows. Proc Combust Inst
2021;38(2):2617–25. http://dx.doi.org/10.1016/j.proci.2020.06.022, URL https:
//www.sciencedirect.com/science/article/pii/S1540748920300481.

[14] Gauding M, Bode M. Using physics-informed enhanced super-resolution genera-
tive adversarial networks to reconstruct mixture fraction statistics of turbulent
jet flows. In: Jagode H, Anzt H, Ltaief H, Luszczek P, editors. High performance
computing. Cham: Springer International Publishing; 2021, p. 138–53.

[15] Jabbar A, Li X, Omar B. A survey on generative adversarial networks: Variants,
applications, and training. ACM Comput Surv 2021;54(8). http://dx.doi.org/10.
1145/3463475.

[16] Bond-Taylor S, Leach A, Long Y, Willcocks CG. Deep generative modelling: A
comparative review of VAEs, GANs, normalizing flows, energy-based and au-
toregressive models. IEEE Trans Pattern Anal Mach Intell 2022;44(11):7327–47.
http://dx.doi.org/10.1109/TPAMI.2021.3116668.

[17] Yoon J, Jarrett D, van der Schaar M. Time-series generative adversarial networks.
Adv Neural Inf Process Syst 2019;32(NeurIPS):1–11.

[18] Pei H, Ren K, Yang Y, Liu C, Qin T, Li D. Towards Generating Real-World Time
Series Data. 2021, arXiv:2111.08386v1.

[19] Esteban C, Hyland SL, Rätsch G. Real-valued (medical) time series generation
with recurrent conditional GANs. 2017, http://dx.doi.org/10.48550/ARXIV.1706.
02633, URL https://arxiv.org/abs/1706.02633.

[20] Naruse M, Matsubara T, Chauvet N, Kanno K, Yang T, Uchida A. Generative
adversarial network based on chaotic time series. Sci Rep 2019;9(1):12963.
http://dx.doi.org/10.1038/s41598-019-49397-2.

[21] Zhang C, Kuppannagari SR, Kannan R, Prasanna VK. Generative Adversarial
Network for Synthetic Time Series Data Generation in Smart Grids. In: 2018
IEEE International conference on communications, control, and computing tech-
nologies for smart grids, SmartGridComm 2018. IEEE; 2018, p. 1–6. http://dx.
doi.org/10.1109/SmartGridComm.2018.8587464.

https://doi.org/10.1016/j.egyai.2022.100216
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://dx.doi.org/10.1109/JPROC.2021.3049196
http://arxiv.org/abs/2008.02793
http://arxiv.org/abs/2008.02793
http://arxiv.org/abs/2008.02793
http://arxiv.org/abs/2201.08361
http://dx.doi.org/10.1109/CVPRW.2018.00282
http://dx.doi.org/10.1109/CVPRW.2018.00282
http://dx.doi.org/10.1109/CVPRW.2018.00282
http://arxiv.org/abs/1612.03242
http://dx.doi.org/10.48550/ARXIV.1611.09904
https://arxiv.org/abs/1611.09904
https://arxiv.org/abs/1611.09904
https://arxiv.org/abs/1611.09904
http://dx.doi.org/10.48550/ARXIV.1802.04208
http://dx.doi.org/10.48550/ARXIV.1802.04208
http://dx.doi.org/10.48550/ARXIV.1802.04208
https://arxiv.org/abs/1802.04208
http://arxiv.org/abs/1703.09452
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb9
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb9
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb9
http://dx.doi.org/10.1016/j.ymssp.2022.109772
https://www.sciencedirect.com/science/article/pii/S0888327022008408
https://www.sciencedirect.com/science/article/pii/S0888327022008408
https://www.sciencedirect.com/science/article/pii/S0888327022008408
http://dx.doi.org/10.1038/s41598-022-15586-9
http://dx.doi.org/10.1038/s41598-022-15586-9
http://dx.doi.org/10.1038/s41598-022-15586-9
http://dx.doi.org/10.1016/j.ijthermalsci.2022.107976
http://dx.doi.org/10.1016/j.ijthermalsci.2022.107976
http://dx.doi.org/10.1016/j.ijthermalsci.2022.107976
https://www.sciencedirect.com/science/article/pii/S129007292200504X
https://www.sciencedirect.com/science/article/pii/S129007292200504X
https://www.sciencedirect.com/science/article/pii/S129007292200504X
http://dx.doi.org/10.1016/j.proci.2020.06.022
https://www.sciencedirect.com/science/article/pii/S1540748920300481
https://www.sciencedirect.com/science/article/pii/S1540748920300481
https://www.sciencedirect.com/science/article/pii/S1540748920300481
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb14
http://dx.doi.org/10.1145/3463475
http://dx.doi.org/10.1145/3463475
http://dx.doi.org/10.1145/3463475
http://dx.doi.org/10.1109/TPAMI.2021.3116668
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb17
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb17
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb17
http://arxiv.org/abs/2111.08386v1
http://dx.doi.org/10.48550/ARXIV.1706.02633
http://dx.doi.org/10.48550/ARXIV.1706.02633
http://dx.doi.org/10.48550/ARXIV.1706.02633
https://arxiv.org/abs/1706.02633
http://dx.doi.org/10.1038/s41598-019-49397-2
http://dx.doi.org/10.1109/SmartGridComm.2018.8587464
http://dx.doi.org/10.1109/SmartGridComm.2018.8587464
http://dx.doi.org/10.1109/SmartGridComm.2018.8587464

Energy and AI 12 (2023) 100216C. Ates et al.
[22] Wiese M, Knobloch R, Korn R, Kretschmer P. Quant GANs: deep generation of
financial time series. Quant Finance 2020;20(9):1419–40. http://dx.doi.org/10.
1080/14697688.2020.1730426, arXiv:1907.06673.

[23] Nord S. Multivariate Time Series Data Generation using Generative Adversarial
Networks : Generating Realistic Sensor Time Series Data of Vehicles with an
Abnormal Behaviour using TimeGAN. 2021, URL http://urn.kb.se/resolve?urn=
urn:nbn:se:kth:diva-302644.

[24] Asre S, Anwar A. Synthetic Energy Data Generation Using Time Variant Gener-
ative Adversarial Network. Electronics (Switzerland) 2022;11(3). http://dx.doi.
org/10.3390/electronics11030355.

[25] Baasch G, Rousseau G, Evins R. A Conditional Generative adversarial Network
for energy use in multiple buildings using scarce data. Energy AI 2021;5:100087.
http://dx.doi.org/10.1016/j.egyai.2021.100087.

[26] Yilmaz B, Korn R. Synthetic demand data generation for individual elec-
tricity consumers: Generative Adversarial Networks (GANs). Energy AI
2022;9(February):100161. http://dx.doi.org/10.1016/j.egyai.2022.100161.

[27] Brophy E, Wang Z, She Q, Ward T. Generative adversarial networks in time
series: A survey and taxonomy. 2021, arXiv:2107.11098.

[28] Festag S, Denzler J, Spreckelsen C. Generative adversarial networks for biomed-
ical time series forecasting and imputation. J Biomed Inform 2022;129:104058.
http://dx.doi.org/10.1016/j.jbi.2022.104058, URL https://www.sciencedirect.
com/science/article/pii/S1532046422000740.

[29] Mirza M, Osindero S. Conditional generative adversarial nets. 2014, arXiv
preprint arXiv:1411.1784.
14
[30] Chaussonnet G, Dauch T, Keller M, Okraschevski M, Ates C, Schwitzke C, Koch R,
Bauer HJ. Progress in the Smoothed Particle Hydrodynamics Method to Simulate
and Post-process Numerical Simulations of Annular Airblast Atomizers. Flow
Turbul Combust 2020;105(4):1119–47. http://dx.doi.org/10.1007/s10494-020-
00174-6.

[31] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks.
In: International conference on machine learning. PMLR; 2017, p. 214–23.

[32] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A. Improved training
of wasserstein GANs. In: Proceedings of the 31st International conference on
neural information processing systems. Red Hook, NY, USA: Curran Associates
Inc.; 2017, p. 5769–79.

[33] Manduchi L, Chin-Cheong K, Michel H, Wellmann S, Vogt JE. Deep conditional
Gaussian mixture model for constrained clustering. 2021, http://dx.doi.org/10.
48550/ARXIV.2106.06385, URL https://arxiv.org/abs/2106.06385.

[34] Li Y, Song L, Zhang C. Sparse conditional hidden Markov model for weakly
supervised named entity recognition. In: Proceedings of the 28th ACM SIGKDD
Conference on knowledge discovery and data mining. ACM; 2022, http://dx.doi.
org/10.1145/3534678.3539247.

[35] Panousis KP, Chatzis S, Theodoridis S. Variational conditional dependence hidden
Markov models for skeleton-based action recognition. 2020, http://dx.doi.org/10.
48550/ARXIV.2002.05809, URL https://arxiv.org/abs/2002.05809.

http://dx.doi.org/10.1080/14697688.2020.1730426
http://dx.doi.org/10.1080/14697688.2020.1730426
http://dx.doi.org/10.1080/14697688.2020.1730426
http://arxiv.org/abs/1907.06673
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302644
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302644
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302644
http://dx.doi.org/10.3390/electronics11030355
http://dx.doi.org/10.3390/electronics11030355
http://dx.doi.org/10.3390/electronics11030355
http://dx.doi.org/10.1016/j.egyai.2021.100087
http://dx.doi.org/10.1016/j.egyai.2022.100161
http://arxiv.org/abs/2107.11098
http://dx.doi.org/10.1016/j.jbi.2022.104058
https://www.sciencedirect.com/science/article/pii/S1532046422000740
https://www.sciencedirect.com/science/article/pii/S1532046422000740
https://www.sciencedirect.com/science/article/pii/S1532046422000740
http://arxiv.org/abs/1411.1784
http://dx.doi.org/10.1007/s10494-020-00174-6
http://dx.doi.org/10.1007/s10494-020-00174-6
http://dx.doi.org/10.1007/s10494-020-00174-6
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb31
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb31
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb31
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://refhub.elsevier.com/S2666-5468(22)00062-3/sb32
http://dx.doi.org/10.48550/ARXIV.2106.06385
http://dx.doi.org/10.48550/ARXIV.2106.06385
http://dx.doi.org/10.48550/ARXIV.2106.06385
https://arxiv.org/abs/2106.06385
http://dx.doi.org/10.1145/3534678.3539247
http://dx.doi.org/10.1145/3534678.3539247
http://dx.doi.org/10.1145/3534678.3539247
http://dx.doi.org/10.48550/ARXIV.2002.05809
http://dx.doi.org/10.48550/ARXIV.2002.05809
http://dx.doi.org/10.48550/ARXIV.2002.05809
https://arxiv.org/abs/2002.05809

	Conditional Generative Adversarial Networks for modelling fuel sprays
	Introduction
	Methods
	Generating the Training Data for GANs
	Conditional Time Series GANs
	Model Experiments and Training

	Results
	Autoencoder Evaluation for Reconstructing the Droplet Trajectories
	Generating Droplet Sprays with CGAN

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References

