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Abstract Artificial intelligence and machine learning (ML) methods are increas-
ingly applied inEarth system research, for improving data analysis, andmodel perfor-
mance, and eventually system understanding. In theDigital Earth project, severalML
approaches have been tested and applied, and are discussed in this chapter. These
include data analysis using supervised learning and classification for detection of
river levees and underwater ammunition; process estimation of methane emissions
and for environmental health; point-to-space extrapolation of varying observed quan-
tities; anomaly and event detection in spatial and temporal geoscientific datasets. We
present the approaches and results, and finally, we provide some conclusions on the
broad applications of these computational data exploration methods and approaches.
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4.1 Introduction and Challenge

Computational data exploration and analysis can help to substantially improve
modelling and understanding of Earth system processes. In this chapter, we provide
an overview of the developments in the Digital Earth project that focus on employing
such innovative techniques to improve our process understanding, to derive new
insights from a variety of existing datasets and to make the investigation of complex
processes more feasible. Diverse sub-disciplines in the Earth sciences are using
computational methods to solve some of the major issues identified for the Earth
science community. The issues for which computational applications have been
developed in Digital Earth and that are presented in this chapter are as follows:

• Extracting relevant information and features using machine learning approaches:
For various features, no labelled data collections exist, as these are too labour
intensive to develop. Labels are important for supervised learning algorithms, for
example, to classify specific observations using prior knowledge. Using sparse
datasets and machine learning methods, alternative ways can be found to broaden
data availability and derive new, crucial information from existing data. Here,
examples are provided that map river levees in Germany, for which no consis-
tent data were readily available for research before and for detecting underwater
ammunition locations.

• Approximating complex processes with machine learning: Although models are
successfully used to understand complex processes in the Earth system, for some
applications the computational cost is too high to embed this information in a
broader framework and to answer questions that are more challenging. In these
cases, approximating these same processes through machine learning algorithms
can be a means for scientists to tackle those problems. We present an approach to
estimate methane and ethane concentrations through a Neural Network and give
an example of how machine learning algorithms can be used to combine highly
heterogeneous data to answer pressing questions related to climate change and
health research.

• Point-to-space extrapolation: For many applications in the Earth sciences, single-
point observations need to be inter- and extrapolated across space to arrive at
consistent estimates of total matter fluxes. This chapter presents an example
where point observations of methane emissions are analysed and processed in
order to be consistent with global atmospheric emissions as observed/estimated
in global databases. A second application provides insights into the functionalities
of advanced approaches for point-to-space extrapolation.

• Anomaly and event detection across heterogeneous datasets: In some applications,
process understanding can be improved considerably when data from diverse
sources are combined through computational methods. Detection of events and
anomalies is important in Earth systems for scientific and for practical applica-
tions. We present an approach that combines observational and model data to
detect river plumes at sea at the end of a riverine flood event chain and tracks their
spatial and temporal extent.
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4.2 Object Recognition Using Machine Learning

4.2.1 Deep Learning Support for Identifying Uncharted
Levees in Germany

Germany has a large network of levees to manage flood events. Unfortunately, data
on the locations of these levees are not always directly available to the public or to
researchers. Due to the importance of these levees in the analysis of flood events,
approaches are needed to derive the levees’ location and height from available infor-
mation. However, such methods are not readily available, and neither are commonly
accepted nor standardized approaches. Advances in computational methods, namely
deep learning, and the release of awide range of geodata to the publicmake it possible
to find levees automatically and on a large scale.

In this research, we have started to develop such a framework and appropriate
methods to delineate levee features from such data. As data sources, we combined
aerial images and LIDAR-based digital elevation models. The raster format of this
data is comparable to image data, and as such, we apply deep learning methods,
which is providing state-of-the-art solutions for various computer vision problems.
For example, in medical image analysis, deep learning models are used for cell
classification and the tumour detection.

Our approach relies on semantic segmentation, a common task in deep learning.
Semantic segmentation refers to the classification of individual pixels to different
predefined classes. The output has the same raster shape as the input features. To train
a semantic segmentation model, a mask with a classification of the input features
is needed. In our case, these input features are the pixels from the aerial images
and digital elevation model. We choose a common architecture for our semantic
segmentationmodel, theU-Net (Ronneberger et al. 2015). AU-Net consists of blocks
of convolution layers in combination with pooling (to reduce the data size by a factor
of two) or upscaling (to increase the data size by a factor of two) layers. There is
an equal number of pooling and upscaling blocks. The pooling blocks come first,
followed by the upscaling blocks, transferring the information from input to output.
Additionally, the output of the first pooling blocks is used as an input for the last
upscaling block, and the output from the second pooling block is used as an input
for the second to last upscaling block. This schema continues for the other blocks in
the network.

To train our model, we used the publicly available data from North Rhine-
Westphalia (NRW 2021), which contains the relevant information. As features, we
use the LIDAR-based digital elevationmodel (1m resolution in two by two-kilometre
tiles) and the aerial photographs (0.1 m resolution in one by one-kilometre tiles). The
levees are available as shapefiles for the crest of the levees. Several pre-processing
steps are applied.

The first step is to rescale the aerial images to the resolution of the digital eleva-
tion model and to split the digital elevation model into one by one-kilometre tiles.
Afterwards, we rescale the pixel values for all inputs to a range of zero to one. The



32 V. Wichert et al.

processing of the labels is more complex, as we need to create a mask from the line
shapes. The lines themselves only cover a small subset of the pixels; therefore, we
use the entire width of the levees, which is not given in the dataset. To derive the
width of a levee, we take orthogonal sections to each line segment and look for the
maxima in the second derivative of the digital elevation model along the sections.We
use these maxima as the boundaries of the levees. In addition to the derived masks
for levees, we also include a mask for the bodies of water which is derived from
publicly available polygon shapes. The training itself is run on GPUs and includes
common data augmentation techniques such as rotations.

The results must be in the same format as the original input, so we have to process
the output of the neural network and extract the information. This post-processing
consists of multiple steps. The first step is to assign contiguous areas of pixels to
different groups. This is based on a threshold value as the neural network output is the
probability of a pixel to be of one class.We also apply amaximumfilter of size four to
remove some noise which can be induced by applying the threshold. For each group
of pixels, we then look for the highest points as we want to find the crest of the levee.
These points should all fall in the same height range, a criterion we use to exclude
unlikely levees. The next step is to merge groups of adjacent tiles to get the entire
levee as one object. Additionally, we analyse the length of the crests and discard short
sections. All points of the merged groups are then transferred to a line shape. The
shape is simplified using standard tools to reduce the number of points specifying
the shape. These output shapes can then be used for analyses. We additionally use
the pre-processing method to create polygons for the entire levees (c.f. Fig. 4.1).
Overall, the methodology detects a high percentage of the charted levees, where

Fig. 4.1 Exemplary output of the deep learning model after post-processing. The input data (aerial
image on top left and digital elevation model at the bottom left) together with the output, the aerial
image with the predicted shapes as overlays
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precision and recall can be balanced by adjusting the selection threshold. The next
step is to evaluate the methodology and model using data from a different state, e.g.
Saxony. In general, this approach is applicable to a wide range of problems in remote
sensing. The fusion of different data sources is still uncommon in combination with
deep learning models. Our use case highlights the benefit of such an approach.

4.2.2 Machine Learning Support for Automated Munition
Detection in the Seabed

Both the North Sea and Baltic Sea have been used as dumping grounds for munitions,
especially after the Second World War. Nowadays, various infrastructure projects
are planned and built in these waters, including offshore wind farms and pipelines.
Before construction can begin, the area must be cleared of munitions. Multi-beam
echo sounders, side-scan echo sounders, magnetometers and sub-bottom profilers are
used to explore the construction sites. It is, however, very time consuming to analyse
the data generated by the instruments. We propose the use of machine learning to
detect munitions in the data.

For our analysis, we rely on the multi-beam echo sounder. The echo sounder
dataset provides the water depth and the backscatter, giving information on the
composition of the seafloor, at a horizontal resolution of 25 cm (where depths are
below 20 m). The integration of other data sources, e.g. magnetometer data, into one
model is possible, but comes with a number of challenges. The most important one is
getting an accurate spatial alignment of the datasets. A mismatch of even one metre
can cause many objects not to overlap in the combined dataset.

The machine learning method we applied is deep learning. As with the previous
application for levee detection, we face a semantic segmentation problem. The
model class we use to approach this problem is a U-Net (Ronneberger et al. 2015).
After testing various model configurations with depth (number of layers) and width
(number of filters in a layer), we can conclude that the problem can be solved with
relatively small models (with respect to both the depth and width). These models can
be trained on the CPU within less than an hour.

To create a training dataset for our machine learning model, a few steps are
necessary. First, we need a labelled dataset to be able to train a model. The second
step is the preparation of the labels for the model type. In our case for multi-beam
echosounder data, we need to create a mask for the map, based on available point
labels. We achieved this by labelling an area around the point label as targets. This
way we sometimes falsely label data as targets, but also account for imprecisely
placed labels. To facilitate the training of a model, we scale and standardize the data
in terms of the range of values. Here, we keep track of the exact steps and parameters
used to be able to apply the model and processing steps to other datasets in the
future. Additionally, we use standard machine learning practices like train-test splits
and augmentation techniques like rotations and mirroring.
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Fig. 4.2 Prediction of the neural network on top of the backscatter. Red areas indicate a high
predicted probability for munitions, and clear areas indicate a low predicted probability. The green
dots are the original labels

The results of themodel (Fig. 4.2) look very promising aswe can detectmost of the
labelled objects (>95%). However, we get several false positives, at least according
to the labels, which might not be complete. The second important consideration is
that the labels are not validated and might be false. Therefore, the number of false
positives might be even higher.

We transferred this approach to a sub-bottom profiler. In both cases, we have
two-dimensional data. The difference is that the data in this case are not in latitude
and longitude direction but along a transect in latitude and longitude with the depth
as the second dimension. One observation is that the models must be more complex
to get good results. An important difference is in the training process where rotations
are not a viable augmentation technique because objects create a distinct bell-shaped
curve in the sub-bottom profiler images. The training can be done on a CPU as well.
Overall, the issue of false positives persists while most labelled objects are found.
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4.3 Approximating Complex Processes with Machine
Learning

4.3.1 Estimation of Methane and Ethane Concentrations
in the Atmosphere Over Europe by Means of a Neural
Network

Methane is an important atmospheric greenhouse gas that has a substantial impact
on climate and air quality (Van Dingenen et al. 2018). Chemical transport models
(CTMs) are the most widely used tools allowing us to predict its concentration in air
and its possible effects on the environment. A typical CTM accepts emissions and
meteorological data as input data and calculates the concentration changes of atmo-
spheric methane (and other gases) in time. Although CTMs have been continuously
improved, they require a significant amount of computational resources (CPU time,
RAMand disc space). Neural networksmay become a cheaper alternative toCTMs in
terms of these resources. The idea of a neural network (NN) is to fit a combination of
simple mathematical functions (neurons or activation functions) so that for a given
set of predictors and predictands, a NN, receiving predictors as inputs, estimates
outputs that have minimal difference with the corresponding observed predictands.
After training, the NN should be able to predict unknown output based on any given
input. To verify its predictive skill, the NN is tested on an independent set of known
inputs and outputs that were not employed in training.

To estimate methane concentrations, we developed two neural networks. Note
that 19% of atmospheric methane is associated with fossil fuel production, mainly
related to oil and gas mining (Van Dingenen et al. 2018); more than half of it leaks
directly from the gas or oil fields. To detect these leakages from the offshore fields,
we developed the first NN that estimates local anomalies in methane concentration
directly frommeasurements near the potential (or known) natural gas source.Webuilt
thisNNusingKeras/Tensorflowpackage (Abadi et al. 2016). It consists of three dense
layers with a hyperbolic tangent activation function, eight inputs (latitude, longitude,
the temperature at two-metre height, time, humidity, latitudinal and longitudinal
wind components at ten metres, sea surface temperature) and one output (methane).
The NN was trained on the cruise measurements POS-526 (Greinert and Schoening
2019) that took place from 07.23.2018 to 11.08.2018 on a route: Bergen (Norway)—
Dogger Bank (Netherlands)—Hirtshals (Denmark)—Tisler (Norway). The cruise
data contain all input and output variables. Note that having geographical coordinates
as inputs, the NN “learned” during the training the positions (and the corresponding
emissions) of wells and oil fields by fitting its estimates to the methane concentration
at different locations in the training data. After training, this NN, installed on a
laptop, can estimate methane concentration at the current location from the current
physical parameters of the surrounding atmosphere. If this estimate does not match
the measured concentration, one may suspect to have detected an anomaly possibly
associated with new oil or gas fields, or substantial changes in the known ones.
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Note that measured methane anomaly may originate from other sources. To
exclude the impact from other sources, we developed a second NN, which esti-
mates daily mean ethane concentration anomalies in the atmosphere. Natural gas
contains up to several per cent of ethane, giving 62% of atmospheric ethane (Franco
et al. 2016). The concentration ratio of ethane/methane is unique for each oil or gas
field and constant in time, serving as a kind of fingerprint (Visschedijk et al. 2018).
Since the methane/ethane ratios near oil or gas fields are known (Yacovitch et al.
2020), we can estimate the fraction of atmospheric methane leaking from the gas
or oil fields just from ethane. The second NN was developed on the basis of the
network described in (Vlasenko et al. 2021). We trained and tested the second NN on
the ethane anomalies estimated from the Consortium Multiscale Air Quality Model
(CMAQ) (Appel et al. 2013) in the European domain for the period 1979–2009
using the same emission data for the year 2012 (Bieser et al. 2011) for the entire 30-
year period. We define ethane anomalies as the deviation of the current value from
its climatological mean. For the second NN, we again used the Keras/Tensorflow
package (Abadi et al. 2016), choosing a NN that consists of one recurrent layer
followed by two dense layers. It accepts wind anomalies in the European domain
and estimates the corresponding ethane anomaly in the same area. All layers have
hyperbolic tangent activation functions.

To train and test the NN, we split the data for both NNs as follows. The training
set for the first NN contains 90% of samples, which is 14,400 inputs and outputs,
randomly picked up from the POS-526 cruisemeasurements (Greinert andSchoening
2019). The remaining 10% of data, i.e. 1600 samples, were used for testing. For the
second NN, we took estimated wind and ethane anomalies from 1979 to 2006 for
training and anomalies from 2007 to 2009 for testing. Developing the second NN,
we found that the inter-seasonal variability in the data resulted in errors. To minimize
these errors, we created and trained the NN for each season separately.

To evaluate the accuracy of both NNs, we used the R2 measure that shows how
much of the observed data variability is explained by the model (which is the NN in
our case). Note that for the second NN, anomalies obtained from CMAQ estimates
play the role of observations.

The estimates ofmethane and ethane obtained from the first and the secondNNare
shown in Figs. 4.3 and 4.4, respectively. Note that the estimates of the first network
(blue line) and the measured methane concentration (red line) almost coincide. As a
result, R2 for the first network equals 0.91. The R2 for the second NN equals 0.565,
0.48 and 0.57 for summer, spring and winter, respectively. Although the second NN
has lower R2 than the first NN, it reconstructs the ethane anomaly patterns’ main
features. This can be seen in comparison with the summer mean ethane anomalies
estimated by the NN (Fig. 4.4, left panel) and CMAQ (Fig. 4.4, right panel). Note that
except for small details, the NN succeeds in reconstructing the pattern of the CMAQ
simulations. Other deteriorations ofR2 are causedmainly by a slight underestimation
of the anomaly amplitude. Relying on these results, we conclude that the first and the
second neural networks predict the corresponding methane and ethane concentration
anomalies with a high degree of accuracy and can be used as a smart monitoring
tool during the researcher campaigns. Combining these neural networks into one
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Fig. 4.3 Estimated
(blue) and observed
(red) methane
concentrations,
corresponding to the
measurements in cruise
POS-526 in the North Sea

Fig. 4.4 Mean summer ethane concentration anomalies estimatedwithCMAQ(left) andNN (right)

predictive system, enabling themore accurate determination of the source ofmethane
leaks is the next step in their development.
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4.3.2 Fusing Highly Heterogeneous Data to Facilitate
Supervised Machine Learning in the Context of Health
and Climate Research

Heat waves can significantly affect human health. Examples include increased trans-
mission of vector-borne diseases as well as increased susceptibility to metabolic
conditions and higher mortality during episodes of severe heat. It is there-
fore paramount to investigate climate change in terms of potential-related health
outcomes. To that end, the focus of our research is on temperature extremes, such
as encountered during heat waves, and myocardial infarction (MI). Data from the
region of Augsburg, Germany, are used as a case study. Epidemiological studies have
shown that temperature extremes may indeed lead to an increased occurrence of MI
(e.g. Chen et al. 2019). In future, frequency, duration and intensity of heat waves
are expected to increase due to anthropogenic climate change, even at levels limited
to 1.5° or 2° global warming (Sieck et al. 2020). Therefore, assessing health risks
in the context of climate change is important for supporting more climate-resilient
societies, public planning and adaptation strategies for human health.

Machine learning (ML) is a powerful tool for investigating complex and unknown
relationships between environmental conditions and their adverse impacts and has
already been applied in other fields (e.g. Wagenaar et al. 2017). ML is a data-driven
approach, and meaningful results depend on consistent and high-quality data. To
investigate climate change and MI, not only climate and meteorological data are
required, but confounding effects of other well-known risk factors must also be
accounted for by additional environmental, demographic, behavioural and socio-
economic data. This makes this research challenging, as availability, provenance,
and detail or resolution (temporal and spatial) of the data are highly variable. Here,
we present a dedicated approach, designed to fuse such heterogeneous data into a
consistent input dataset for ML algorithms.

Themain pillar of our data-driven approach is the KORA cohort study (Holle et al.
2005) and the MI Registry in the Augsburg region of Bavaria, Germany. This dataset
comprises detailed information on MI occurrence and underlying health conditions.
Based on the registry data, a daily time series of MI incidence in Augsburg and two
adjacent districts can be derived. This provides the target values for the training data
for the ML algorithms.

To learn about the association of MI and the diverse risk factors such as expo-
sure to heat, demographic structure, confounding health factors and air quality, these
must be provided as predictors for the algorithms. Currently, weather and climate
data (temperature observations and climate projections from the EURO-CORDEX
initiative see Jacob et al. 2014); air pollution data (e.g. PM10, PM2.5, nitrogen oxides
and ozone; from regional environmental governments, such as BLFU, 2021); distri-
bution of green spaces based on NDVI; demographic characteristics (age and sex,
from regional statistical agencies, such as BLFS 2021); pre-existing illnesses (e.g.
diabetes and obesity as recorded in the MI registry data); and socio-economic data
(e.g. household income, education) are planned to be used within the project.
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The raw data for these predictors are extremely heterogeneous for many reasons.
First, the data come from different providers and is presented in various file formats,
some of which are proprietary. Second, the representation of data can differ as well.
Some data are of gridded/raster type (e.g. NDVI), some are point data (weather
observations, air quality) and some are time series data, aggregated at the district
level (e.g. demographic data). Third, the spatiotemporal scales (e.g. regional vs.
local, coverage in time) and resolutions differ substantially.

The MI registry data are given in the form of individual cases with information
on the date of the MI, the district where it happened and additional information on
patient health. In a first step, a daily time series ofMI incidence, aggregated at district
level, is derived. The procedure is designed to produce compatible time series from
the predictor data while addressing the three dimensions of heterogeneity outlined
above. Afterwards, ML algorithms can readily be used to learn the relationship
between incidence and the various predictors.

Figure 4.5 shows a schematic of the fusion procedure. Different predictors enter
the pipeline and are subjected to a number of processing steps. The result is district-
aggregated time series that can readily be used together with the MI data as input
to ML algorithms. Depending on the nature of the predictor, only a subset of the
processing steps may apply. First, the raw data are converted to a common format
(csv). In many cases, the spatial scale is much larger than the region of interest. For
instance, the NDVI data are global. The second step is therefore to reduce the data
to the region of interest (ROI), namely Augsburg and surroundings.

Point sources, such as station data, are converted to a 1 km grid using a Kriging
method. To account for the different resolutions in time interpolation to a common
target frequency is conducted. The frequency is based on the highest resolution
supported by the MI registry which is daily.

Finally, the data are aggregated to the district level to arrive at a daily time series for
each of the predictors. Together with the ground truth, it can be used with all standard
ML algorithms for time series prediction. The procedure has been implemented with
the Python programming language. Figure 4.5 lists the packages used to carry out
the processing steps.

The next step is to apply supervised ML techniques (e.g. Decision Trees, ANN)
to the fused data to regress the incidence of MI based on the prepared environmental,
socio-economic and climatic predictors. From this, we expect to gain first insights
into the importance of heat stressors relative to other risk factors (Marien et al. 2022).
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Fig. 4.5 Schematic of the
fusion process chain
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4.4 Point-To-Space Extrapolation

4.4.1 Estimation of Missing Methane Emissions
from Offshore Platforms by a Data Analysis
of the Emission Database for Global Atmospheric
Research (EDGAR)

Disused and active offshore platforms can emit methane, the amount being difficult
to quantify. In addition, explorations of the sea floor in theNorth Sea showed a release
of methane near the boreholes of both, oil and gas-producing platforms. The basis
of this study is the established Emission Database for Global Atmospheric Research
(EDGAR) (Janssens-Maenhout et al. 2019). While methane emission fluxes in the
EDGAR inventory and platform locations are matching for most of the oil platforms,
almost all of the gas platform sources are missing in the database. We develop a
method for estimating the missing sources based on the EDGAR emission inventory.

EDGAR is an inventory from the EC-JRC and Netherlands’ Environmental
Assessment Agency (Saunois et al. 2016). National reports of greenhouse gas emis-
sions are the basis for emission inventories like EDGAR which is used as emission
input for the simulations in this work. It covers sector- and country-specific time
series of the period 1970–2012 with monthly resolution and a global spatial reso-
lution of 0.1° × 0.1° providing CH4, CO2, CO, SO2, NOx, C2H6, C3H8 and many
other species. Different source sectors in EDGAR are defined using the IPCC 1996
guidelines (Janssens-Maenhout et al. 2019). When calculating the sector-specific
emissions, a differentiation of emission processes improves and refines the estimates
of EDGAR. Therefore, technology-specific emission factors, end-of-pipe abatement
measurements, a modelling based on latest scientific knowledge, available global
statistics and IPCC-recommended data are used. The emissions are then distributed
on maps via proxy datasets based on national spatial data containing information
about population density, the road network, waterways, aviation and shipping trajec-
tories (Janssens-Maenhout et al. 2012). A global 0.1° × 0.1° grid is used on which
the emissions are assigned to, either as a single-point source (e.g. oil or gas plat-
forms), distributed over a line source (e.g. shiptracks) or over an area source (e.g.
agricultural fields) always depending on the source sectors and subsectors. For this
work, methane point source emissions from EDGAR are of a high importance. These
one-dimensional sources are allocated to a single grid cell of the 0.1°× 0.1° grid with
the average of all points that fall into the same cell (Janssens-Maenhout et al. 2019).
We are aiming to replace the gridded emissions from EDGAR with point source in
our atmospheric model by extrapolating them from point to space to adjust missing
emissions within EDGAR and improve the spatial accuracy of the current dataset.

For this study, the global atmospheric model ICON (ICOsahedral Nonhydrostatic
model) was used with EDGAR data as input for emissions. ICON is a joint devel-
opment of the German Weather Service (DWD) and the Max Planck Institute for
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Meteorology (MPI-M). Due to its dynamical core, which is based on the nonhydro-
static formulation of the vertical momentum equation, simulations with a high hori-
zontal resolution up to grid spacings of a few hundreds of metres are possible. ART
(Aerosols and Reactive Trace Gases) is an online-coupledmodel extension for ICON
that includes chemical gases and aerosols. One aim of the model is the simulation of
interactions between the trace substances and the state of the atmosphere by coupling
the spatiotemporal evolution of tracers with atmospheric processes (Schröter et al.
2018). The point source module in ART takes the prescribed emission fluxes as
point sources of substances and adds them to new or existing chemical tracers by
distributing the one-dimensional fluxes to the area of the corresponding triangular
grid cell in ICON. First of all, the emission factor is calculated through the source
strength of the emissions, the area of the grid cell and the model time step as shown
in Eq. (1) (Prill et al. 2019, p. 77).

emiss_fct = source_strength

cell_area
· dtime

[
kg

m2

]
(1)

As a next step, the above-calculated emission factor is added to the actual tracer
value of the grid. Equation (2) shows how emiss_fct is multipliedwith a height factor.
Also the density of air ρ in kg/m3 and the height of the corresponding ICON layer
dz in metres come to play. In our case, all the point sources are on the lowest model
level with a height of 20 m.

tracer = tracer+ h · emiss_fct

(ρ · dz)
[
kg

kg

]
(2)

The ICON-ART sensitivity simulations of this study aimed to investigate the
differences between simulations with gridded emissions from EDGAR and point
sources of ART. Therefore, the methane emissions in the North Sea Region that
are contained in EDGAR were distributed to all 956 point sources representing the
offshore platforms in this area. Figure 4.6 displays the procedure of how EDGAR
gridded emissions are replaced and adjusted by point sources.

If we compare simulations with gridded EDGAR and simulation with point
sources, it is remarkable that both fit quite well over the whole year. This can be
seen as a proof of concept that the point source module of ART adjusts the platform
emissions of EDGAR in a satisfying way. The maximum of the absolute difference
over the year on a global scale is 4.755 ppbv and the difference of the annualmean is−
0.342 ppbv, showing that the point source module slightly overestimates the gridded
emissions with a difference of less than 0.02%. These results show that the point
source module in ICON-ART can model methane emissions as well as conventional
gridded input data with the advantage that the spatial accuracy of this point-to-space
method is significantly better.

With the point source module of ICON-ART being a successful tool for point-
to-space extrapolation, we are now able to include the missing platforms into the
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Fig. 4.6 Illustrating the procedure of how point sourceemissions adjust EDGAR gridded emission.
The methane emission fluxes of original EDGAR (upper left) are removed within the North Sea
Region (white box) (upper right). From all the locations of the platforms (lower left), the ones
inside the North Sea Region are chosen and the EDGAR emission are equally distributed to them
as point sources (lower right)

EDGAR dataset and access their influence on the methane distribution on regional
(North Sea) and global scales.

4.4.2 Point-to-Space Methods

The aim of this subproject within the Digital Earth project is to develop a data-driven
machine learning (ML) and artificial intelligence (AI) method to advance currently
available datasets and maps, improve the resolution of observational datasets and
interpolate values for locations where no observations are available, infer patterns
from simulated data and improve estimations by combining the simulations with
measurements.

Data sources at scattered sites (in situ measurements) and gridded data (satellite
data, output of numerical models) are combined to construct a higher-resolutionmap,
or predict values at ungauged sites (interpolation, “downscaling”), or to develop
simulations for unobserved scenarios—locations and instance of time.

The project is designed as a close interdisciplinary collaboration between data
science and Earth scientists. The fundamental concept of a point-to-space problem is
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to find a solution in agreement with multiple data sources and to build a geographic
dataset (or map) based on them. The outcome is a more complete dataset derived by
extrapolating into space and time that can be used for further analyses.

This method can be used especially well to extend the sparsely scattered spatial
and spatiotemporal maps by the application of ML methods instead of physical
modelling approaches (Peng Xie et al. 2020; Amato et al. 2020, Volfová et al. 2012).

To build a procedure which can use multiple covariates from point or gridded
datasets as inputs and find an estimator for the outcome variable, the following steps
are required. First, in the pre-processing step, the data homogeneity and its ubiquity
is checked.

Similar to most methods dealing with observation data, the raw data can be
extremely heterogeneous and in various file formats, and adhere to different data
standards. They can also differ in spatial and temporal resolution; hence, choosing a
proper target grid resolution can be of utmost importance. In this step, all the data are
projected into the same format and same target grid since the sources are so diverse.
Often the first major issue is to pre-process and also check the observational data
for errors and outliers. However, this problem is becoming simpler to solve with
standardization of formats and metadata specification.

Normalization as second step in the pre-processing is another important factor,
since the covariates can be of a different order, and hence, error propagation can be
relevant to their scale (Singh et al. 2020). Determining the proper way to normalize
is important, since it will have a direct effect on the algorithm as well as the results.
In this step, all the variables, including dependent and independent variables, are
normalized and hence prepared for the regression algorithms.

Given the nature of the problem, the respective Earth science expert needs to be
consulted especially for the selection of the appropriate covariates. They need to be
selected in a way that if the information is not available directly then it can be inferred
from another variable or proxy. Moreover, the original point-to-space problemmight
extend similarly to other point-to-space subproblems for the selected covariates since
they might not be available in the higher resolution of the target grid either.

A predictive ML regression model for these subsets of the problem can be
trained and used to predict each of the covariates. For each of these covariates, a
different ML method can be applied based on its characteristics and physics of the
phenomena/covariate and the required precision. Consequently, after solving these
subsets, the selected covariates are approximated on the target grid. The trainedML’s
prediction method can be applied, and this means that all the necessary requirements
for the final step are now fulfilled.

In the final step, a more sophisticated ML regression method is applied for the
target variable by combining the previously estimated covariates. Here, methods
such as co-kriging to find optimal solutions for the outcome variable and covariates
simultaneously can prove useful.

Similar to all ML methods, data splitting methods are employed and a percentage
of the data is chosen as training data, with the remaining data used for testing and
validation.
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Fig. 4.7 Process chain schematic

Shown in Fig. 4.7 is a simplistic schematic of the suggested procedure. Any
typical regressor can be easily implemented and used here, even a modified kriging
method. Examples of the implemented and evaluated regression methods are linear,
K-nearest neighbours, bagging trees, extra trees, random forest and simple ordinary
kriging. Tree methods have been shown to have the advantage of high accuracy of
the prediction for interpolations in the point-to-space problem. (Wessel et al. 2018).

To apply the same procedure to other similar problems, the following considera-
tions need to be contemplated.

As with all ML regression problems, a regressor can lead to overfitting and some
mitigation needs to be considered. One way is to employ different data splitting
schemes and to check the number of features selected.

In co-kriging, similar to the normal kriging method, a kernel function is used
based on a covariance matrix. Co-kriging is a conditional random field generator
which superposes a method based on kriging with a multivariate Gaussian method
building on a covariance matrix (Volfová et al. 2012). Determining the covariance
function for co-kriging is not easy, since the methods with dependent covariates are
so sensitive to the input and the stability of the system depends on the condition
number of the prior (Putter et al. 2001; Ababou et al. 1994). Applying a co-kriging
method enables a flexible feature advantage and makes it trivial to utilize any other
data or information on new covariates/proxies which are available later, and as a
result, the accuracy of the method can always be improved in this way.
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Finally, uncertainty in data and methods should be evaluated to ensure that the
method is based on a proper stable solution. Again, the evaluation of results using
expert knowledge requires deep understanding of the problem, since data can be
visually appealing but extremely erroneous.

This research is an example of a successful new collaboration between multiple
centres involved in Digital Earth. It has been shown that it is indispensable to bring
together knowledge from different fields and applications for developing successful
applications.

4.5 Anomaly and Event Detection

In the Digital Earth Flood Showcase, we strive to understand hydrological extreme
events across disciplines, from river basins to the sea. Comprehending the complex
and often time-delayed chain of events surrounding a flood is a compartment-
spanning task in the Earth sciences. Here, we feature an example from the showcase
that illustrates how anomaly detection and investigation can be supported by suitable
data exploration and analysis methods.

4.5.1 Computational Methods for Investigating the Impacts
of the Elbe Flood 2013 on the German Bight

At the end of a hydrological extreme event chain, river water is discharged into the
ocean, transporting matter and thereby, unusual amounts of nutrients and pollutants
into the coastal system. To investigate the impacts of riverine floods on the marine
environment, several steps need to be undertaken: the river plume needs to be detected
and its spatial extent and development in time need to be determined to identify the
study region and time interval. The procedure relies on the combination of heteroge-
neous data sources, such as in situmeasurements,matchingmodel data and additional
satellite data for a wider spatial coverage. This article features three computational
methods that are crucial for successfully identifying and investigating the processes
in and around a river plume after a riverine flood event: automatic anomaly detection,
producing customized model trajectories and generating time series of productivity.
The complete workflow will be described in more detail in Sect. 5.3.3. under “The
River Plume Workflow”.

Automatic Anomaly Detection
An enhanced feature of the River Plume Workflow is the automatic detection

of parameter anomalies in both in situ FerryBox measurements during summer
operations and year-round satellite data.

Three separate definitions of anomalies caused by a flood event originating from
a freshwater river mouth are considered. They include: increased chlorophyll levels;
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decreased salinity; and, particularly during the winter where the river water may be
cooler than the sea, a decrease in sea surface temperature.

As an alternative to manually searching for anomalies in the River Plume Work-
flow’s interactive map (see Sect. 3.2), users can select years of interest to undergo a
Gaussian regression-based statistical analysis (Pedregosa et al. 2011),which provides
the user with a list of recommended dates of interest. Gaussian processes (GPs) are
powerful and flexible models for modelling time series data, which makes them
a practical option for anomaly detection. Here, a Gaussian regression analysis is
performed to generate a posterior probability distribution based on the daily param-
eters over the selected time period. This method requires a specified prior distribu-
tion, with the prior’s covariance given by a kernel, in this case, a generalized Matern
kernel with an amplitude factor and an observation noise component. The model
uses high smoothing capabilities for more efficient anomaly detection. Also gener-
ated are posterior standard deviations that create a 95% confidence region around
the posterior distribution. Anomalies are recorded when the measured data and its
associated uncertainties fall completely outside the confidence region, either above
or below depending on which parameter is being considered. Figure 4.8 gives an
example of the outputted results for chlorophyll during 2013.

Future developmentwould involve near real-time automatization to detect anoma-
lies as they occur based on previous established annual patterns. This would involve
taking an average of the posterior distributions over a number of years and detecting
an anomaly in near real-time data if it deviates from this average.

Produce Customized Model Trajectories

Fig. 4.8 Daily chlorophyll
measurements with one
region of interest (RoI) for
in situ FerryBox (upper) and
satellite (lower) data. The
continuous line represents
the Gaussian regression
generated distribution, while
the shaded grey band is the
confidence region. The red
circles indicate detected
anomalies
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A crucial component of the River Plume Workflow is the computation of model
trajectories for observational FerryBox data to not only detect the river plume, but
also determine its spatial and temporal extent in the ocean.

FerryBox transects provide, often regular, observational data on the study region.
The data are made available in near real time via the COSYNA (Coastal Observing
System forNorthern andArctic Seas) data portal (Baschek et al. 2017;Breitbach et al.
2016). The PELETS-2D code (Callies et al. 2021) is used to compute model trajec-
tories for each FerryBox transect. These model trajectories consist of the measured
water bodies’ positions up to ten days before and after the actual measurement as
simulated by the numeric model. The simulated positions are then recombined into
synoptic maps, featuring time shifted positions of all observations at one point in
time. While the model trajectories are useful to investigate an anomaly’s origin, the
synopticmaps show the spatial and temporal extent of the river plume on its presumed
path across the ocean.

The simulations and their combination in synoptic plots are too computation-
ally expensive to be done in real time. Therefore, they are currently only produced
for specific events. However, work is currently underway to optimize the code for
operational use and make the model data available in near real time.

Generate Time Series of Productivity
Combining observational data with specifically produced model trajectories

allows users to determine the spatial and temporal extent of a river plume in the
ocean, but does not help with understanding the processes that happen inside these
waterbodies. For that reason, another method of the River Plume Workflow focuses
on blending the spatial information of the model trajectories with the parameter
information from satellite data. We use integrated satellite datasets taken from the
Copernicus Marine Environment Monitoring System (CMEMS 2021). The datasets
give daily average chlorophyll, salinity and sea surface temperature measurements
after full processing, which includes the reconstruction of cloud-covered areas. The
chlorophyll datasets have a 1 km2 tiled resolution, while salinity and sea surface
temperature have a 7 × 11.6 km2 tiled resolution.

Our method automatically extracts parameter values from satellite data for the
locations on a selectedwaterbodies’ modelled trajectory, thus producing a time series
of values along the modelled pathway of the waterbody. As an example, this method
enables researchers to produce chlorophyll time series for waterbodies associated
with the river plume and therefore to investigate chlorophyll degradation rates inside
the river plume.

The methods described here were implemented into the River Plume Workflow,
a scientific workflow prototype (see Sect. 5.3.3), and tested for the Elbe flood event
from2013.A ferry equippedwith a FerryBox regularly covers theBüsum-Heligoland
line during the period from April to October. These transects are highly relevant for
our example as they cover a region close to the Elbe outflow. Using the anomaly
detection algorithm, several instances where the Elbe river plume potentially crossed
the FerryBox transect were determined, such as on 23 June 2013, where an anomaly
in salinity and temperature was visible (see Fig. 4.9). Simulated trajectories of the
relevant water bodies across the North Sea point to the Elbe River as the anomaly’s
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Fig. 4.9 Screenshot of the River PlumeWorkflow’s interactive map. The selected region marks the
area of the suspected river plume on the FerryBox transect on 23 June 2013. Blue dots highlight
one water body’s modelled trajectory originating in the Elbe River

origin. The generated time series of chlorophyll gives an overview of productivity
changes in the region during and after the flood event. This helped identify promising
study regions in the North Sea regarding noteworthy biological events, e.g. unusual
algae blooms after a riverine flood event. In general, the River Plume Workflow
helped to give better understanding of the sequence of events of the Elbe river flood
of 2013 and its impacts on the marine environment of the North Sea.

For more information on the River Plume Workflow, please see https://digitalea
rth-hgf.de/results/workflows/flood-event-explorer/#accordion-4.

4.6 Conclusions

All examples provided in this chapter have in common that they apply advanced
computational approaches to gain new insights from existing data and help to further
our process understanding through innovative data analysis. Regardless of the scien-
tific question or exact context, the presented computational approaches address
problems that occur frequently in modern Earth and Environmental sciences.

They typically fall into one or more of the following groups:

https://digitalearth-hgf.de/results/workflows/flood-event-explorer/#accordion-4
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• There are not enough data available to solve the problem at hand. Modern compu-
tational methods can enable scientists to derive information from the combination
of related data and provide more context for the scientific question.

• In contrast, some scientific workflows face the opposite problem, namely an abun-
dance of available data. In these cases, insightful data analysis cannot be achieved
with classical approaches due to data size and distributed storage. The use of
algorithms for automatically classifying events and providing context can greatly
improve scientists’ process understanding.

• For some scientific questions, the way to a better process understanding involves
the comparison or combination of different kinds of existing data. The difficulties
here lie in the fact that different datasets of interest are usually not fully compa-
rable in terms of spatial and/or temporal resolution or method of measurement.
Computational methods such as the ones described here can take these differences
into account and therefore ensure meaningful and correct scientific results.

The applications presented in this chapter demonstrate how computational data
exploration and data analytics can help overcome these common problems. Although
there is no one-size-fits-all approach to any of the problems we face, the example
applications in this chapter show that modern computational approaches can help
handling the current paradoxical situation of having access to more data than can be
handled by classical methods, while simultaneously needing to overcome a lack of
data in other contexts. Moreover, the examples show that those approaches enable us
to create additional benefit from the available data and improve our understanding
of the complex system Earth.
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