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Abstract In this contribution we show our approach for a fea-
ture rich and high speed BLOB analysis on FPGAs. For the
Hybrid-BLOB concept we use a combination of a single-pass
BLOB analysis and a double-pass labeling algorithm. We use
Basler’s VisualApplets for the implementation of the concept on
their microEnable 5 frame grabbers. We achieve the extraction
of the gray value data of the BLOBs at factor 14 higher frame
rates compared to the naive labeling of the complete image. This
is achieved by limiting the maximum BLOB size to 128× 128 px,
which speeds up the double-pass labeling algorithm. Our con-
cept is targeted at low latency and high throughput demanding
applications where BLOBs are small, like sensor based sorting or
surface inspection.
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1 Introduction

In image processing the term Binary Large Object (BLOB) analysis
refers to the extraction of connected components of a binary image with
posterior calculation of the component’s features like area, circumfer-
ence, etc. The features are often used to classify these components.
They are often called objects, as in many applications single objects are
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segmented and analyzed. In inspection tasks these algorithms may be
used for the classification of single objects, e.g. into “accept” or “reject”
classes or to divide the defects even further, for example into “dent”,
“scratch”, etc.

In image processing Field Programmable Gate Arrays (FPGAs) are
used if high throughput, low latency or energy efficiency is demanded.
For example FPGAs are used directly in cameras for post processing of
the sensor data. They are also used in special applications like sensor
based sorting or surface inspection.

MSTVision developed an FPGA based sensor based sorting plat-
form, which aims at minimum latencies [1]. Its logic is completely
implemented with VisualApplets (VA). VA is a proprietary develop-
ment platform by Basler (formerly Silicon Software) for FPGA image
processing logic development, tailored for their frame grabbers and
devices with embedded VA support [2]. The platform proved its low
latencies of around 200 µs in [3]. Currently the system’s image pro-
cessing capabilities are limited by the feature limits of the VA BLOB
analysis operator.

To run the mentioned tasks on FPGAs, implementations of the BLOB
analysis are required. The research field in FPGA based BLOB analysis
algorithms is still active. To extract BLOB features, first the connected
components need to be extracted. This process is named labeling, its
output is an intermediate image, with unique pixel values for each
connected component in the image. There are many algorithms, but
the algorithms may be divided in four categories [4, p. 352-359]:

1. Single-pass algorithms, where the data only needs to pass the
computing pipeline once.

2. Double-pass algorithms, where the data needs to pass the com-
puting pipeline twice.

3. Multi-pass algorithms, where the data needs to pass the comput-
ing pipeline multiple times, depending on the image content.

4. Random-access algorithms, where the data needs to be accessed
randomly.

Each algorithm category poses its own pros and cons. Most of the
current research focuses on single-pass algorithms, as they provide the
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lowest possible latencies and demand only small FPGA resource quan-
tities. The BLOB labeling is done only implicit. The downside is the
limited amount of extractable features, which we will explain in the
next paragraph. We will focus on single- and double-pass algorithms,
as they are used in this contribution.

1.1 Labeling problem in detail

The main problem for image stream labeling algorithms are “U”
shaped components, for example see fig. 1. While processing the bi-
nary image stream, the first object pixel is observed at (1,4). A new
label is created for a unique representation of the object. In the next
image line at (2,1) another object pixel is observed, but based on the
processed data, it’s not connected with the ones in the line before. A
new label is created. While scanning the line, both labels coexist. In
line 3 both labels turn out to be connected at (3,3) or (3,4), depending
whether the 4-connected or 8-connected neighborhood is used. This
results in a problem: the previously assigned labels need to be merged
into one. The way the algorithms overcome that problem is their fun-
damental difference.

Double-pass algorithms like [5, p. 4] use equivalence tables to record
these conflicts. One object may consist of many intermediate labels.
After the first labeling pass, a conflict resolving algorithm is used to
convert the labels to a unique final label lookup table (LUT). With the
LUT and the result image of the first pass, the final label image is cre-
ated. The advantage over single-pass algorithms is the ability to extract
the component pixel accurately. This enables the calculation of all ob-
ject features after labeling. The disadvantages are their higher memory
demands for buffering the intermediate label image and the equiva-
lence table. Resolving the label conflicts and calculation of the features
after the labeling adds computing time. For FPGA implementations the
often required random memory accessibility for the equivalence table
is a limitation, too.

Single-pass algorithms like [6] don’t provide a label image output,
instead they calculate the object features directly. The labeling is only
carried out internally. A single-pass algorithm performing the extrac-
tion of the object area would work on the example in fig. 1 as follows:
the first object pixel is observed at (1,4), a new temporary label and ac-
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cumulator is created. For each connected pixel the area is incremented
by 1. In the next image line at (2,1) another object pixel is observed,
another temporary label and accumulator is created. When both labels
collide, one label is deleted and its area accumulator is added to the
other accumulator. The output of the algorithm is a list of component
features, in this example only the area. There is no ability to extract
the object pixels to compute other features. The features which may be
extracted are limited to those which may be merged out of the values
of sub component features on label collision. Their advantages are the
small memory requirements, which is limited to the feature and label
table, and the smaller computing time.

With single-pass algorithms features like the oriented bounding box
or minimum/maximum Feret diameters can’t be calculated. These fea-
tures are usually calculated with the object’s convex hull and the rotat-
ing calipers algorithm. [7]
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Figure 1: A simple “U” shaped object to demonstrate the main challenge of streaming
labeling algorithms. Modified version from [8, Fig. 3]

2 Method

To fill the gap between single- and double-pass algorithms, we devel-
oped the Hybrid-BLOB concept. The method consists of two BLOB
analysis/labeling algorithms, a single-pass algorithm and a double-
pass algorithm. The single-pass algorithm is the one used in the VA
BLOB analysis operators [9]. The double-pass algorithm is our imple-
mentation of the algorithm described in [8].

The double-pass algorithm is expensive with respect to computing
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time and memory if applied to a big image. For big images, the con-
flict resolve table won’t fit into the FPGA’s on-chip memory of current
Basler frame grabbers, requiring utilizing the off chip DRAM. Resolv-
ing the conflicts is an algorithm of quadratic order. The single-pass
algorithm in comparison does only provide a few features.

To overcome the limitations, both algorithms are combined, as de-
scribed in the next subsection. This allows smaller input image sizes
for the double-pass algorithm, thus the conflict resolve table fits into
the FPGA’s on-chip memory and the conflict resolve algorithm may
run faster.

2.1 Architecture overview

In fig. 2 the concept is shown. The image input is preprocessed and
segmented. The single-pass BLOB analysis of VA is applied to the
segmented image. In parallel, the segmented image and the prepro-
cessed gray image are stored into dynamic random access memory
(DRAM). A pre-classification is applied to the output of the single-pass
BLOB analysis. The remaining objects of interest are retrieved from
the DRAM buffer via their bounding box information. The extracted
object images may contain pixels of other objects, as shown in the ex-
ample BLOBs in fig. 2. The double-pass algorithm is then used to label
the small images. With the bounding box information of the previ-
ous BLOB analysis and the label image, the corresponding object may
be extracted from the binary and gray image. Afterwards we extract
various object features which then may be used for object classification.

2.2 Implementation

The implementation is done in VA with only VA operators except one
VHDL custom operator. The target hardware platform are the mi-
croEnable 5 marathon frame grabbers, [11]. As the implementation
of most of the single architecture elements is straightforward, we fo-
cus on the double-pass labeling algorithm and the feature extraction.
For comparison we use an implementation of the labeling algorithm
for the labeling of a whole 1024× 1024 px image. The maximum con-
figurable bounding box size for labeling in Hybrid-BLOB is limited to
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Figure 2: Hybrid-BLOB architecture overview. Modified version from [10, Fig. 4.1]
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Table 1: Comparison of memory requirements of the implementations. The maximum
code length was empirical determined. id is the label id, eq is the equivalent
label id in case of a conflict, r is the run element’s row, s and e are start and end
column of the run. BRAM is for Block Random Access Memory, the FPGA’s
on-chip memory. [10, Tab. 4.1]

Parameter Labeling Reduced Labeling
id, eq 16 Bit 8 Bit
r, s, e 13 Bit 7 Bit
Memory per element 10 Byte 5 Byte
Max. label count 65535 255
Max. code length 65535 4095
Maximum memory 5.24 MBit 163.8 kBit
BRAM-Elements (18 kiB per element) 291.3 9.1

128× 128 px. The labeling stage uses fixed frame size inputs of the con-
figured maximum bounding box size. The design transfers the input
image and an image with the BLOB features over Direct Memory Acess
(DMA) channels.

Labeling The labeling algorithm is an implementation of [8]. The
algorithm is a run length encoding (RLE) based, 4 connected neigh-
bourhood type. Depending on the design, other bit depths are used for
the labels and the run length code. Labeling smaller images results in
smaller coordinate bits and fewer possible labels. In tab. 1 the resource
occupation for both variants are shown. By reducing the image size
which has to be labeled, the required memory drops, which practically
enables the storage of the run length data in the FPGA’s on-chip mem-
ory. For the labeling of the whole image, the data is stored in the frame
grabber’s DRAM. The whole image labeling design does not contain
the calculation of features.

Feature extraction With the extracted object’s image data, the fea-
ture extraction takes place. The extraction is completely integrated
into the FPGA. The orientated bounding box and Feret features are
not calculated with the convex hull and rotating calipers. They are ap-
proximated by discrete object rotations in angle steps of 0.703 ◦. To save
FPGA resources, the calculation of unneeded features may be removed.
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The extracted features are:

• VA-Operator: bounding box, area, center of gravity (output of single-
pass analysis stage).

• Gray Value: min, max, mean, std, median, upper and lower quartile,
difference to a reference histogram (rel/abs).

• Other binary image features: Euler’s number, circumference, com-
pactness, circularity, circle equivalent diameter.

• Binary image moments: 2nd and 3rd order.

• Ellipse features: main axis angle, main and minor axis radius, eccen-
tricity.

• Gray image moments: 2nd and 3rd order.

• Oriented bounding box: area, angle, width, height.

• Feret diameter: minumum, maximum, min. angle, max. angle.

For further information about the features, we suggest [12], [13], [14],
[15] and [16].

3 Results

Both test designs have been built with VisualApplets 3.3.1 for the mi-
croEnable 5 Marathon VCLx frame grabber, running at a frequency
of 125 MHz [17] [18]. The used frame grabber runtime is version 5.7.
In fig. 3 our test image is shown. It contains 1161 BLOBs and has a
resolution of 1024× 1024 px. The amount of objects is not representa-
tive for real applications. The image is uploaded to the FPGA DRAM
and repeatedly processed for our tests. We use the shown frame rate
of microDisplay, the runtime application used to configure the frame
grabber. The frame rates are validated against debug registers on the
FPGA. The BLOB frequency is measured with a debug register. For
our measurements, we don’t filter the output of the single-pass stage.

The BLOB count varied from 1143 to 1161 while testing. The reason
of these variations is currently unknown, their origin is the single-pass
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Table 2: Measurement results for processing the image shown in fig. 3.

Parameter Full Labeling Hybrid-BLOB
Frame rate 1.25 Hz 17.0± 0.5 Hz
Mean BLOB frequency 1.5 kHz 19.8± 0.010 kHz
Mean time per BLOB 689 µs 51 µs
Labeling throughput 1.3 Mpx/s 324.4 Mpx/s

stage. We use 1161 as BLOB count for calculating the mean time of the
labeling design and the period of the BLOB frequency for the Hybrid-
BLOB design. In tab. 2 our results are shown. Our Hybrid-BLOB con-
cept runs at 14 times higher frame rates even with the 250 times higher
data throughput in the double-pass stage. Due to the fixed frame size
for bounding box extraction, the labeling overhead increases if many
small objects are present.

Figure 3: Test image used. It contains 1161 objects at a resolution of 1024× 1024 px.

135



S. Wezstein, M. Stelzl, and M. Heizmann

4 Conclusion

We have shown an approach to speed up a feature rich BLOB analysis
on FPGAs. The implementation with VisualApplets enables the usage
on Basler frame grabbers of the current portfolio and possible future
platforms supporting VisualApplets. Hybrid-BLOB processes in our
test scenario 19.800 BLOBs per second, which allows its usage in the
field of granule sorting. To increase the throughput further, the label-
ing and feature extraction stage may be implemented multiple times
in parallel. Our concept may be used in traditional PC based image
processing, too.

The throughput and latency may be further improved if the double-
pass labeling algorithm is extended to support variable image input
sizes for overhead reduction. If variable input sizes are used, the run
length encoding stage runs faster and the count of runs to label de-
creases. We expect big improvements if small BLOBs are processed, as
the measured overhead is 250 times compared to the image input.
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