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Floquet–Mie Theory for Time-Varying Dispersive Spheres

Grigorii Ptitcyn,* Aristeidis Lamprianidis, Theodosios Karamanos, Viktar Asadchy,
Rasoul Alaee, Marvin Müller, Mohammad Albooyeh, Mohammad Sajjad Mirmoosa,
Shanhui Fan, Sergei Tretyakov, and Carsten Rockstuhl

Exploring the interaction of light with time-varying media is an intellectual
challenge that, in addition to fundamental aspects, provides a pathway to
multiple promising applications. Time modulation constitutes here a
fundamental handle to control light on entirely different grounds. That holds
particularly for complex systems simultaneously structured in space and time.
However, a realistic description of time-varying materials requires considering
their material dispersion. The combination thereof has barely been considered
but is crucial since dispersion accompanies materials suitable for dynamic
modulation. As a canonical scattering problem from which many general
insights can be obtained, a self-consistent analytical theory of light scattering
by a sphere made from a time-varying material exemplarily assumed to have a
Lorentzian dispersion is developed and applied. The eigensolutions of
Maxwell’s equations in the bulk are discussed and a dedicated Mie theory is
presented. The proposed theory is verified with full-wave simulations. Peculiar
effects are disclosed, such as energy transfer from the time-modulation
subsystem to the electromagnetic field, amplifying carefully structured
incident fields. Since many phenomena can be studied on analytical grounds
with the proposed formalism, it represents an indispensable tool that enables
exploration of electromagnetic phenomena in time-varying and spatially
structured finite objects of other geometries.

1. Introduction

One of the most recent extensions of electromagnetics and op-
tics is the concept of materials with time-varying properties.
A time variation unlocks an additional degree of freedom in
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electromagnetic systems that tremen-
dously increases the possibilities for
controlling light–matter interactions.[1–3]

Temporal material modulations en-
able novel approaches to exceed con-
ventional limitations[4,5] and design
efficient systems that realize uncon-
ventional functionalities.[6–10] His-
torically, time-modulated structures
were first studied when engineering
radio-frequency antennas[11–13] to ma-
nipulate their bandwidth. In electronics,
temporal modulations at twice the car-
rier frequency have been exploited in
parametric amplifiers since the 19th

century. Time-varying systems found
applications from microwaves to op-
tics. They led to discoveries of many
intriguing phenomena such as magnet-
less nonreciprocity,[5,6,14–18] frequency
conversion,[19,20] amplification,[21–23]

Doppler shift,[24,25] Fresnel drag,[26]

camouflage,[27,28] breaking an-
tenna performance limits,[29] tem-
poral birefringence,[30,31] temporal
photonic crystals,[10,32,33] temporal
discontinuities,[34] power combiners,[35]

light stopping and time reversal,[36,37] control of scattering and
radiation,[38,39] enhanced wireless power transfer,[40] control
of absorption,[41] and more. However, the vast majority of
prior contributions considered dispersionless materials. The
absence of dispersion is synonymous with the assumption
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of an instantaneous (inertialess) response. This assumption
is, generally speaking, nonphysical, approximately holds only
for systems with very small variations over the time and/or
negligible frequency dispersion. Examples of dispersionless
materials whose properties can be modulated in time include
lithium niobate (LiNBO3)

[42] and silicon[43] (in their transparency
frequency regions), but the modulation depth of such disper-
sionless materials—a parameter that determines the strength
of the effects caused by temporal modulations—is typically very
low, being of the order of 10−4 − 10−3.[44] In contrast, material
candidates that allow large modulation depths of the permittivity,
including electron plasmas[45] and aluminum-doped zinc[46] and
indium tin oxides,[34] are usually strongly dispersive at the fre-
quencies of interest (specifically, in the epsilon-near-zero region,
where the modulation depth is large). To our knowledge, only a
few recent papers tackled this problem and studied the influence
of frequency dispersion in time-modulated materials.[47–49]

One of the development routes considers time modulation as
an additional degree of freedom in spatiallymodulated structures
such as metamaterials or metasurfaces. Constituents of such de-
vices are meta-atoms with finite sizes in all three spatial dimen-
sions. To the best of our knowledge, almost all previous contri-
butions considered time-varying structures that are infinite in at
least one spatial dimension, for instance, bulkmedia,[50] slabs,[48]

and coatings of cylinders.[20] A couple of recent studies consid-
ered light scattering from finite-sized particles, a sphere and
a conductive spherical shell, with time-varying properties.[51,52]

However, accommodating dispersion in such models remains a
challenge, and, therefore, it was set aside.
The problem of light scattering by a time-invariant and dis-

persive sphere was solved a century ago by Gustav Mie.[53] An
extension of this theory toward time-varying particles represents
a solid initial step toward the design of time-varying metamateri-
als and metasurfaces. The study of light scattering from a sphere
is also very instructive since many basic phenomena can be ex-
plored with analytical or semi-analytical calculations. The gained
insights can be applied to understand and explain the behavior
of scatterers with a more complicated shape that require a full-
wave numerical approach for their full exploration. Therefore, ex-
ploring the case of canonical objects, especially spheres, can be
considered to be at the heart of scattering theory. An insight that
one can obtain, for example, concerns the ability of spheres to
support scattering resonances where either electric or magnetic
multipole moments are driven into resonance. During the last
decade, passive metasurfaces made from scatterers supporting
such Mie resonances have demonstrated a variety of novel opti-
cal phenomena,[54–56] and we envisage a substantial broadening
of possible applications when time variations are considered as
an additional degree of freedom in these systems.
This article extends the Mie theory to spheres made from a

dispersive material with a periodically time-varying permittivity.
The findings of this paper are, nevertheless, applicable to an ar-
bitrary aperiodic modulation in the limit of a very large period.
First, we show how the dispersion relation of the eigenmodes
of a homogeneous unbound dispersive medium transforms in
the presence of temporal material modulations and analyze band
structures of frequency-dispersive time crystals. Next, we intro-
duce a field Ansatz in spherical coordinates for solving the scat-

Figure 1. Illustration of the scattering of light by a sphere composed of a
time-varying and dispersive medium.

tering problem. The expressions for the T-matrix elements of dy-
namic spheres are derived, and its power balance is analyzed.
The analysis indicates a possibility to observe a negative absorp-
tion in the system, that is, transfer of energy from time-varying
matter to photons. This effect happens for an incident field care-
fully chosen in both its spatial and spectral distributions. Finally,
we perform full-wave simulations of light scattering by a disper-
sive sphere via a finite-element time-domainmethod and find ex-
cellent agreement between the simulated and theoretical results.
Based on the developed theory, one can further extend and gen-
eralize the analytical study of this paper toward structures with
lower spatial dimensions such as infinite slabs and cylinders.
Alternatively, the insights that are generated from these results
can be useful to study arbitrarily shaped objects using solely full-
wave simulations.

2. Theoretical Analysis

In this section, we perform the electromagnetic analysis of the
canonical problem of scattering by a sphere composed of a time-
varying and dispersive medium, embedded in free space. The
problem is illustrated in Figure 1. The section is organized into
four subsections. First, we study the electromagnetic wave equa-
tion that governs the electromagnetic fields inside spatially ho-
mogeneous but time-varying and dispersive bulk media. Second,
we discuss the response function of a medium modeled by a
Lorentz-type oscillator equation with a time-varying bulk electron
density. Then, we develop a generalizedMie theory that treats the
scattering problem of homogeneous spherical scatterers made of
such time-varying and dispersive media. Finally, we present ex-
pressions for observable quantities such as the total scattered and
absorbed power by such a scattering system.

2.1. Unbounded Time-Varying Media with Frequency Dispersion

We begin by studying the equations that govern electromagnetic
waves inside source-free homogeneous, isotropic, linear, non-
magnetic, with only electric dipolar polarization response, time-
varying bulk media with temporal dispersion. In such media, we
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consider that Maxwell’s equations are coupled with the following
constitutive relations where the displacement vector D and the
magnetic flux density B are given by

D(r, t) = 𝜀0E(r, t) + P(r, t) (1a)

B(r, t) = 𝜇0H(r, t) (1b)

where E and H are the electric and magnetic fields, respectively,
𝜀0 is the electric permittivity of vacuum, and 𝜇0 is the magnetic
permeability of vacuum. The polarization vector P(r, t) of the
medium is given by ref. [47, 57]

P(r, t) = 𝜀0

+∞

∫
−∞

Re(t, t − 𝜏)E(r, 𝜏) d𝜏 (2)

where Re(t, t − 𝜏) is the electric response function of the time-
varying, dispersive medium. The response function Re(t, t − 𝜏)
expresses the polarization density P at time t induced by an elec-
tric field impulse at time 𝜏. Equation (2) constitutes our Ansatz
for the electric-field-driven polarization induced inside such a
medium. It is important to note that this response function has
the property Re(t, t − 𝜏) = 0, for t ≤ 𝜏, because of causality. Also,
in the limiting case of non-time-varying media, the response
function becomes invariant with respect to its first argument
t. Moreover, in the limiting case of dispersionless media with
an instantaneous response, the dependency of Re(t, t − 𝜏) on its
second argument t − 𝜏 is that of the Dirac delta distribution,
Re(t, t − 𝜏) = R′

e(t)𝛿(t − 𝜏). This last assumption of dispersionless
media with an instantaneous response is found in several recent
publications,[7–9,51] but constitutes generally a physical assump-
tion that is valid only in limited and approximate cases.
By making use of the Fourier transforms of the quantities

involved, adopting the convention X(t) = 1√
2𝜋

∫ +∞
−∞ X(𝜔)e−i𝜔td𝜔,

we will switch from the above time-space representation of the
governing equations to the corresponding frequency-space rep-
resentation. Note that bar sign represents frequency domain
quantities in the Fourier transform. Therefore, Maxwell’s equa-
tions read[47,48,58]

∇ ⋅ E(r,𝜔) = −
+∞

∫
−∞

Re(𝜔 − 𝜔′,𝜔′)∇ ⋅ E(r,𝜔′)d𝜔′ (3a)

∇ ⋅H(r,𝜔) = 0 (3b)

∇ × E(r,𝜔) = i𝜔𝜇0H(r,𝜔) (3c)

∇ ×H(r,𝜔) = −i𝜔𝜀0E(r,𝜔) − i𝜔𝜀0

+∞

∫
−∞

Re(𝜔 − 𝜔′,𝜔′)E(r,𝜔′)d𝜔′

(3d)

The response function in frequency domain has been defined as
the double Fourier transform Re(𝜔 − 𝜔′,𝜔′) = 1

2𝜋
∬ +∞

−∞ Re(t, t −
𝜏)ei(𝜔t−𝜔′𝜏)dtd𝜏. It gives the polarization density P(𝜔) at frequency
𝜔 induced by an electric field impulse at frequency𝜔′. Let us note

that in the limiting case of non-time-varying media, the response
function in frequency domain Re(𝜔 − 𝜔′,𝜔′) is a Dirac delta dis-
tribution with respect to its first argument and takes the follow-
ing form: Re(𝜔 − 𝜔′,𝜔′) = 𝛿(𝜔 − 𝜔′)𝜒(𝜔), where it collapses into
the usual electric susceptibility tensor. Moreover, in the limiting
case of dispersionless media with instantaneous response, Re be-
comes invariant with respect to its second argument.
We move on by combining the last two equations to obtain the

wave equation for the electric field:

∇ × ∇ × E(r,𝜔) = k20(𝜔)
⎡⎢⎢⎣E(r,𝜔) +

+∞

∫
−∞

Re(𝜔 − 𝜔′,𝜔′)E(r,𝜔′)d𝜔′
⎤⎥⎥⎦
(4)

where k0(𝜔) = 𝜔
√
𝜇0𝜀0 = 𝜔∕c0 is the wavenumber of free space.

This wave equation can be simplified for dispersionless media as
reported, for example, in ref. [59].
Next, we calculate the eigenfunctions that solve this homoge-

neous integro-differential equation, whose operator is nondiag-
onal in terms of the frequency 𝜔. These eigenfunctions are the
fundamental solutions to these source-free Maxwell’s equations.
They are of paramount importance, as general solutions induced
by an arbitrary source can always be written as a superposition of
these fundamental solutions weighted with suitable amplitudes.
To find these eigenfunctions, we use the method of separation

of variables, and seek for solutions of the electric field E(r,𝜔) that
have the following form:

Ē(r,𝜔) = ∫ (𝜅)S𝜅 (𝜔)F𝜅 (r)d𝜅 (5)

where (𝜅) is a complex amplitude. In this Ansatz, the depen-
dency of the eigenfunctions on the spatial and frequency argu-
ments is separated. By introducing the separation constant 𝜅2,
we obtain the following set of coupled equations for the spatial
part of the eigenfunctions, F𝜅 (r), and for the spectral part of the
eigenfunctions, S𝜅 (𝜔):

∇ × ∇ × F𝜅 (r) = 𝜅2F𝜅 (r) (6a)

k20(𝜔)
⎡⎢⎢⎣S𝜅 (𝜔) +

+∞

∫
−∞

Re(𝜔 − 𝜔′,𝜔′)S𝜅 (𝜔
′)d𝜔′

⎤⎥⎥⎦ = 𝜅2S𝜅 (𝜔) (6b)

Both of the above equations constitute themselves eigenvalue
type of equations where 𝜅2 is the common eigenvalue. F𝜅 (r) is
the corresponding eigenfunction of the differential operator of
the first equation and S𝜅 (𝜔) is the corresponding eigenfunction
of the integral operator of the second equation. The first equa-
tion (Equation (6a)) for the spatial, vectorial profile of the eigen-
function F𝜅 (r) is an ordinary monochromatic electromagnetic
wave equation with wavenumber 𝜅. Depending on the coordi-
nate system in which the solution is sought, the eigensolutions
of the equation could be a set of plane waves, cylindrical waves, or
spherical waves. As we wish to study electromagnetic scattering
of light by a sphere, we choose spherical waves as eigensolutions,
since they allow to apply the interface conditions needed. At this
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point, we could have picked plane waves or cylindrical waves and
proceed further in a similar way, if we were to study the interac-
tion of light with a slab or an infinite cylinder, respectively.
Such spherical-coordinate solutions to Equation (6a) are

known as vector spherical harmonics (VSHs). Details on their
definition and properties can be found in Supporting Informa-
tion. The VSHs are denoted here as F(𝜄)𝛼,𝜇𝜈𝜅 (r), where the index “(𝜄)”
in the superscript takes the value “(1)” to refer to regular VSHs
finite at the origin r = 0, or the value “(3)” to refer to radiating
VSHs that comply with the radiation condition at infinity. Hence,
the former solutions describe standing waves, whereas the latter
solutions describe scattered fields. Moreover, there is a set of four
eigenvalues that characterize the VSHs. First, we have the index
𝛼 that takes the values {M,N} to refer to transverse electric (TE) or
transverse magnetic (TM) waves, that is, multipoles of magnetic
or electric type, respectively. Then, apart from the wavenumber
𝜅, we also have the eigenvalues 𝜇 and 𝜈 with 𝜇 being the angular
momentum along the z-axis and 𝜈 being the multipolar order of
the VSH.
It is important to note that the spatial eigenfunctions F𝜅 (r)

are solenoidal for 𝜅 ≠ 0, that is, ∇ × F𝜅 (r) = 0. For solutions with
𝜅 = 0, it is straightforward to show that the magnetic field be-
comes irrotational, that is, ∇ × ∇ × F0(r) = 0. We then have a
nonzero induced electric charge density distribution since the di-
vergence of F0(r) does not have to be zero. The above observation
follows fromEquations (3a), (3d), and (5)–(6b). Such implications
that arise for 𝜅 = 0 where the electric field ceases to be solenoidal
are disregarded in the remainder of our analysis. This allows ex-
panding the fields inside the time-varying scatterer only using the
TE and TM spherical waves while avoiding the third multipolar
family of longitudinal spherical waves.[60–62]

Let us now focus on the eigenvalue equation (Equation (6b)).
It is newly introduced by the time-variance of the medium and
involves the spectral eigenfunction S𝜅 (𝜔). This eigenvalue equa-
tion plays the role of a dispersion relation of time-varying sys-
tems. The important thing to notice here is that, due to the time-
variance of the medium, the system is not translationally invari-
ant in time, and we encounter a coupling among different fre-
quency components. Equation (6b) governs this spectral coupling
of electromagnetic field harmonics inside the medium. In gen-
eral, the equation has to be solved numerically by projecting it
onto a Hilbert space ℋ of finite dimensions. This leads to a fi-
nite linear system of equations whose eigenvalues 𝜅2 and cor-
responding eigenfunctions S𝜅 (𝜔) can be calculated numerically.
Two assumptions have to be applied to make the system solvable.
First, we have to truncate the infinite spectrum into a finite

spectral window. This will always numerically compromise the
results. However, the truncation effect can be made arbitrarily
small if the spectral window is sufficiently large compared to the
spectral region of interest, since, usually, the spurious truncation
effects will mainly affect the frequencies closer to the edges of the
truncated spectral window.
Second, we need to discretize the frequency 𝜔 in (6b), which

implies a time-periodic modulation of the medium. So, once
we have that Re(t, t − 𝜏) = Re(t + jTm, t − 𝜏), with Tm being the
modulation period and j ∈ ℤ, the Fourier transform of the
response function becomes discrete: Re(𝜔 − 𝜔′,𝜔′) =

∑
j 𝛿(𝜔 −

𝜔′ − j𝜔m)R
′
e(𝜔 − 𝜔′,𝜔′), with𝜔m = 2𝜋∕Tm being themodulation

frequency. Hence, for such a system with discrete translational
symmetry in time, it is instructive to introduce a new eigenvalue,
the Floquet frequency Ω. This eigenvalue takes values within the
frequency range (0,𝜔m).
Equation (6b) can now take the following discrete form:

k20(Ωj)

[
S𝜅 (Ωj) +

NΩ∑
l=1

R
′
e(Ωj − Ωl,Ωl)S𝜅 (Ωl)

]
= 𝜅2(Ω)S𝜅 (Ωj) (7a)

where

Ωj = Ω + (j + j0 − 1)𝜔m (7b)

with j = 1, 2,… , NΩ and j0 being an integer that we chose appro-
priately for the truncated spectral window of interest. NΩ is the
total number of frequencies of the discretized and truncated spec-
trum. It is chosen large enough so that numerical leakage of the
spurious truncation errors inside our spectral region of interest
is avoided.
We see that the Floquet frequencyΩ constitutes an extra eigen-

value of our system. It characterizes an infinite periodic comb
of frequencies passing through the frequency Ω. Equation (7b)
gives the frequencies of such a spectral comb within an arbitrar-
ily truncated spectral window. Due to themedium’s periodic time
modulation, only the frequencies contained in each such spectral
comb aremutually coupled, constituting an independent system.
Therefore, for each Floquet frequency Ω, Equation (7a), repeated
for all values of the index j, forms a linear system of equations that
can be written in matrix form as

K̂(Ω) ⋅ S⃗𝜅 (Ω) = 𝜅2(Ω)S⃗𝜅 (Ω) (8)

where we have defined the vector:

S⃗𝜅 (Ω) =
[
S𝜅 (Ω1)⋯S𝜅 (ΩNΩ

)
]T

(9)

and the matrices:

K̂(Ω) = k̂20(Ω) ⋅
[
Î + R̂e(Ω)

]
(10)

k̂0(Ω) = diag
[
k0(Ω1)⋯ k0(ΩNΩ

)
]

(11)

with Î being the identity matrix and with the j-th-row-, l-th-

column-element of the matrix R̂e(Ω) being equal to R
′
e(Ωj −

Ωl,Ωl).
Consequently, in the eigenvalue equation (Equation (8)), we

end up with a matrix K̂(Ω) of finite dimensions NΩ × NΩ, whose
NΩ eigenvalues 𝜅

2
i (Ω) and corresponding eigenvectors S⃗𝜅i

(Ω) can
be calculated numerically for each Floquet frequency Ω. The
eigenvalues and the corresponding eigenvectors are enumerated
by the index i = 1,… , NΩ. Let us note that at the limit ofTm → ∞,
j0 → −∞, NΩ → ∞, we get the general case of time-varying me-
dia that are not periodically modulated, where the discrete set of
eigenvalues 𝜅2i (Ω) ends up being a continuum of eigenvalues 𝜅

in the complex plane, and the corresponding eigenvectors S⃗𝜅i
(Ω)

end up being the original spectral eigenfunctions S𝜅 (𝜔).
Let us note that in the case of a static material response, the

matrix R̂e(Ω) is diagonal, and the relation between the eigenval-
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ues 𝜅i(Ω) and the wavenumbers inside the nonmodulated mate-
rial is unambiguous. The latter (squared) are contained inside the
main diagonal of the matrix K̂(Ω) for the different frequencies of
the considered truncated spectral comb. So, there is a one-to-one
relation between the two. However, in the case of temporal mod-
ulation, the response matrix R̂e(Ω) is not diagonal, and therefore,
the eigenvalue of K̂(Ω), that is, the set of the wavenumbers 𝜅i(Ω)
that corresponds to the medium for the considered Floquet fre-
quency Ω, deviates from its diagonal elements. Thus, there is no
one-to-one relation between the two anymore. For each Floquet
frequency Ω, there is a set of eigen-wavenumbers 𝜅i(Ω) and to
each such eigen-wavenumber corresponds an eigenvector S⃗𝜅i

(Ω)
whose elements characterize the spectral content of the mode as
it is distributed among each of the NΩ frequencies of the consid-
ered truncated spectral comb. In contrast, in the case of a static
material response, the eigenvectors S⃗𝜅i

(Ω) have a single nonzero,
unitary element; that is they aremonochromatic, since there is an
one-to-one relation between the wavenumber and the frequency,
according to the usual dispersion relation.
Finally, for a discretized and truncated frequency spectrum,

the expansion of the fields in Equation (5) can now take the fol-
lowing form within the Hilbert space ℋ of finite dimensions
that we constructed for the case of such a periodically modulated,
time-varying medium:

Ē(r,𝜔) =
𝜔m

∫
0

NΩ∑
i,j=1

i(Ω)𝛿(𝜔 − Ωj)S𝜅i
(Ωj)F𝜅i

(r)dΩ (12)

with i(Ω) being complex amplitudes. The above equation con-
stitutes our general Ansatz for the expansion of fields inside pe-
riodically modulated, time-varying media. Note that the integral

here over the Floquet frequency Ω is defined as lim
𝜔′
m→𝜔m

∫ 𝜔′
m

0+ dΩ,

but we keep it like this for brevity.

2.2. The Response Function of Time-Varying Media

In this subsection, we will consider a simple case of a time-
varying medium and derive its response function Re(𝜔 − 𝜔′,𝜔′).
We consider a polarizable medium in which there exist bound
polarizable electrons of a single species that live inside the po-
tential well of a Lorentzian harmonic oscillator. Let p(r, t) be the
induced dipole moment of a single bound electron driven by the
electric field. It shall obey the following differential equation of
motion:[
𝜕2

𝜕t2
+ 𝛾n

𝜕

𝜕t
+ 𝜔2

n

]
p(r, t) = e2

me
E(r, t) (13)

where 𝛾n is the damping factor of the oscillator, 𝜔n is its reso-
nance frequency, and e,me are the charge and the effective mass
of an electron, respectively. The solution to the above differential
equation is given by the following convolution integral:

p(r, t) = ∫
+∞

−∞
𝛼e(t − 𝜏)E(r, 𝜏) d𝜏 (14a)

where

𝛼e(t) =
1√

𝜔2
n −

𝛾2n

4

e2

me
H(t)e−

𝛾n
2
t sin

⎛⎜⎜⎝t
√

𝜔2
n −

𝛾2n
4

⎞⎟⎟⎠ (14b)

is the electric polarizability kernel of the Lorentzian oscillator and
H(t) is the Heaviside step function.[47]

Now, let us consider that the bulk electron density of these elec-
tron species, N(t), gets modulated in time. The polarization den-
sity of the medium shall then be given by the following equation:

P(r, t) = ∫
+∞

−∞
𝛼e(t − 𝜏)N(𝜏)E(r, 𝜏) d𝜏 (15)

This equation implies that the electric field at each moment 𝜏 ex-
cites only the available number of electrons in unit volume N(𝜏).
Moreover, the model assumes that the electrons oscillate inside a
Lorentzian potential well that remains invariant even if the bulk
electron density varies in time. However, one would expect, for
example, that the damping factor becomes larger with increasing
bulk electron density, due to a higher rate of electron collisions.
In this work we will avoid such considerations for simplicity. Let
us note that this model implies the assumption that the excited
electrons decay as time tends to infinity according to the elec-
tric polarizability kernel. Ref. [47] proposes another model for
the response function of the medium that is given by the for-
mula Re(t, t − 𝜏) = 𝛼e(t − 𝜏)N(t)∕𝜖0. We would like to highlight
that, even though there may be various ways to model the re-
sponse function of the time-varying medium depending on the
particular physical considerations that one would need to adopt,
any kind of such phenomenological model can be directly em-
bedded in an identical way inside the rest of the theoretical frame-
work that is developed in this section.
It is straightforward to show that the polarization density obeys

then the following differential equation:[
𝜕2

𝜕t2
+ 𝛾n

𝜕

𝜕t
+ 𝜔2

n

]
P(r, t) = e2

me
N(t)E(r, t) (16)

Such a model for the polarization density has already been re-
ported in refs. [49, 63].
Furthermore, comparing the above equation with the Ansatz

of Equation (2), we get that the response function of such a
medium is equal to

Re(t, t − 𝜏) =
𝛼e(t − 𝜏)N(𝜏)

𝜖0
(17)

which, in frequency domain, takes the following form:

Re(𝜔 − 𝜔′,𝜔′) = 1√
2𝜋

e2

me𝜀0

N(𝜔 − 𝜔′)
𝜔2
n − 𝜔2 − i𝛾n𝜔

(18)

A more general type of response function could be given by a
superposition of such Lorentz harmonic oscillators and an ad-
ditional Drude term in order to account for different electron
species.[64]
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In general, for a periodically modulated bulk electron density
N(t), with the modulation frequency 𝜔m, we have N(𝜔 − 𝜔′) =∑

j j𝛿(𝜔 − 𝜔′ − j𝜔m), with j ∈ ℤ and j being complex coef-
ficients. For example, for our numerical demonstration in the
next section, we will consider the particular case where the bulk
electron density is harmonically modulated in time according to
N(t) = N0[1 +Mscos(𝜔mt)], where N0 is the bulk electron den-
sity of the unmodulated medium,Ms is the modulation strength,
taking values from 0 to 1, and 𝜔m is the modulation frequency.
In such a case, we find that N(𝜔 − 𝜔′) =

√
2𝜋N0𝛿(𝜔 − 𝜔′) +

Ms

√
2𝜋N0[𝛿(𝜔 − 𝜔′ + 𝜔m) + 𝛿(𝜔 − 𝜔′ − 𝜔m)]∕2. We will use the

above formulas in the next section to numerically solve the eigen-
value problem of Equation (8).

2.3. Scattering by Time-Varying Spheres with Frequency
Dispersion

Let us move on to the particular problem of electromagnetic scat-
tering by a sphere composed of a time-varying and dispersivema-
terial. The sphere has a radius R and is embedded in free space
and centered at the origin of the coordinate system. We begin
by expanding the incident field in the following series of regular
VSHs:[65]

E
inc
(r,𝜔) =

∑
𝜈𝜇,𝛼

inc
𝛼,𝜇𝜈(𝜔)F

(1)
𝛼,𝜇𝜈k0

(r) (19)

where the free-space wavenumber k0(𝜔) is a function of fre-
quency. More details about the above expansion of the incident
field can be found in Supporting Information. Accordingly, the
scattered field can be expanded in the following series of radiat-
ing VSHs:

E
sca
(r,𝜔) =

∑
𝜈𝜇,𝛼

sca
𝛼,𝜇𝜈(𝜔)F

(3)
𝛼,𝜇𝜈k0

(r) (20)

Note that we define thewavenumber of free space as k0(𝜔) = 𝜔∕c0
instead of k0(𝜔) = |𝜔|∕c0. This ensures that we can use the VSHs
that involve the spherical Hankel functions of the 1st kind in or-
der to refer to outgoing spherical waves also for negative frequen-
cies. In the other case, when k0(𝜔) = |𝜔|∕c0, we would need to
switch to VSHs that involve the spherical Hankel functions of
the 2nd kind in order to refer to outgoing spherical waves for
negative frequencies. Such an alternative representation would
be an equivalent one, since the spherical Hankel functions of the
1st and 2nd kind have the symmetry h(1)𝜈 (−x) = (−1)𝜈h(2)𝜈 (x). Fi-
nally, according to the Ansatz of (12), the field induced inside the
sphere is expanded over the following series of regular VSHs:

E
ind
(r,𝜔) =

∫
𝜔m

0

NΩ∑
i,j=1

∑
𝜈𝜇,𝛼

ind
𝛼,𝜇𝜈i(Ω)𝛿(𝜔 − Ωj)S𝜅i

(Ωj)F
(1)
𝛼,𝜇𝜈𝜅i

(r)dΩ (21)

Let us highlight here that, in the formula above, the eigenval-
ues 𝜅i and the frequencies Ωj, are functions of the Floquet fre-
quency Ω. It should be noted that the eigenvalues that we calcu-
late numerically are 𝜅2i (Ω). For this expansion of the fields, we

select the principle branch of the square root 𝜅i(Ω) = +
√

𝜅2i (Ω).
This 𝜅i(Ω) is the wavenumber that we use in the regular VSHs
of the expansion. The choice of the branch of the square root
here does not play a role, since for regular VSHs we have the
symmetry F(1)𝛼,𝜇𝜈−𝜅i (r) = (−1)𝜈F(1)𝛼,𝜇𝜈𝜅i (r), which follows from the re-
spective symmetry of spherical Bessel functions. Therefore, pick-
ing the other branch of the square root simply leads to an equiv-
alent representation. The dependence of 𝜅i and Ωj on the Flo-
quet frequency Ω is dropped in our notation here for simplic-
ity but implicitly always assumed. In comparison to the two pre-
vious expansions of the fields in free space (Equations (19) and
(20)), one can see here how our Ansatz for the fields inside the
time-varying sphere (Equation (21)) changes according to Equa-
tion (12). Due to the time variance, there is no unique wavenum-
ber corresponding to each frequency anymore. Instead, we have a
bunch of wavenumbers corresponding to each comb of frequen-
cies characterized by the Floquet frequency Ω.
The series expansions of the respective magnetic fields can be

taken by making use of the Maxwell–Faraday equation (Equa-
tion (3c)), together with the following property of VSHs: ∇ ×
F(𝜄)𝛼,𝜇𝜈𝜅 (r) = 𝜅F(𝜄)

𝛽,𝜇𝜈𝜅 (r), where 𝛽 ≠ 𝛼.
Now, solving this electromagnetic scattering problem within

the defined finite-dimensional Hilbert space ℋ means calculat-
ing the unknown complex amplitudes sca

𝛼,𝜇𝜈(𝜔), ind
𝛼,𝜇𝜈i(Ω) given

the amplitudes inc
𝛼,𝜇𝜈(𝜔). This can be done by imposing the fol-

lowing interface conditions on the surface of the sphere:

r̂ ×
[
E
ind
(r,𝜔) − E

sca
(r,𝜔) − E

inc
(r,𝜔)

]||||r=R = 0 (22a)

r̂ ×
[
H

ind
(r,𝜔) −H

sca
(r,𝜔) −H

inc
(r,𝜔)

]||||r=R = 0 (22b)

that enforce the continuity of the tangential fields according to
Maxwell’s equations. Here, we need to make use of the following
orthogonality property of the VSHs:[66]

∮SR
[
r̂ × F(𝜄)𝛼,𝜇𝜈𝜅 (r)

]
⋅ F(𝜄

′)
𝛼′ ,−𝜇′𝜈′𝜅′ (r)ds

(−1)𝜇+𝛿𝛼NR2z(𝜄
′)

𝛼′ ,𝜈(𝜅
′R)

= 𝛿𝛼′𝛽𝛿𝜇′𝜇𝛿𝜈′𝜈z
(𝜄)
𝛼,𝜈(𝜅R) (23)

where integration is done over the spherical surface SR of radius
R, upon which we need to enforce the above interface conditions.
𝛿ij is the Kronecker delta, 𝛽 ≠ 𝛼, and z(𝜄)𝛼,𝜈(x) is the generalized
spherical Bessel function defined in Supporting Information. Fi-
nally, by substituting Equations (19)–(21) into Equations (22a)
and (22b) and by making use of Equation (23), we end up with
the following inhomogeneous system of equations to be solved:∑
i

ind
𝛼,𝜇𝜈i(Ω)S𝜅i

(Ωj)z
(1)
𝛼,𝜈(𝜅iR) = sca

𝛼,𝜇𝜈(Ωj)z
(3)
𝛼,𝜈(xj) +inc

𝛼,𝜇𝜈(Ωj)z
(1)
𝛼,𝜈(xj)

(24a)∑
i

𝜅iind
𝛼,𝜇𝜈i(Ω)S𝜅i

(Ωj)z
(1)
𝛽,𝜈(𝜅iR)

= k0(Ωj)
[sca

𝛼,𝜇𝜈(Ωj)z
(3)
𝛽,𝜈(xj) +inc

𝛼,𝜇𝜈(Ωj)z
(1)
𝛽,𝜈(xj)

]
(24b)
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where xj = k0(Ωj)R. Let us note that the last two equations are
equivalent to Equations (22) and (23) of ref. [51]. By introducing
the following definitions of column vectors

⃗inc
𝛼,𝜇𝜈(Ω) =

[inc
𝛼,𝜇𝜈(Ω1)⋯inc

𝛼,𝜇𝜈(ΩNΩ
)
]T

(25a)

⃗sca
𝛼,𝜇𝜈(Ω) =

[sca
𝛼,𝜇𝜈(Ω1)⋯sca

𝛼,𝜇𝜈(ΩNΩ
)
]T

(25b)

⃗ind
𝛼,𝜇𝜈(Ω) =

[ind
𝛼,𝜇𝜈1(Ω)⋯ind

𝛼,𝜇𝜈NΩ
(Ω)

]T
(25c)

and matrices

Ŝ(Ω) =
[
S⃗𝜅1

(Ω) … S⃗𝜅NΩ
(Ω)

]
(26a)

�̂�(Ω) = diag
[
𝜅1(Ω) … 𝜅NΩ

(Ω)
]

(26b)

Ẑ(𝜄)
𝛼,𝜈(Ω) = diag

[
z(𝜄)
𝛼,𝜈(𝜅1(Ω)R) … z(𝜄)

𝛼,𝜈(𝜅NΩ
(Ω)R)

]
(26c)

̂̊Z(𝜄)
𝛼,𝜈(Ω) = diag

[
z(𝜄)
𝛼,𝜈(k0(Ω1)R) … z(𝜄)

𝛼,𝜈(k0(ΩNΩ
)R)

]
(26d)

together with the definitions in Equations (9) and (11), we can
rewrite the above set of equations in the following matrix form:[

Ŝ ⋅ Ẑ(1)
𝛼,𝜈 − ̂̊Z(3)

𝛼,𝜈

Ŝ ⋅ �̂� ⋅ Ẑ(1)
𝛽,𝜈 −k̂0 ⋅

̂̊Z(3)
𝛽,𝜈

]
⋅

[⃗ind
𝛼,𝜇𝜈⃗sca
𝛼,𝜇𝜈

]
=

[
̂̊Z(1)
𝛼,𝜈 0̂

0̂ k̂0 ⋅
̂̊Z(1)
𝛽,𝜈

]
⋅

[⃗inc
𝛼,𝜇𝜈⃗inc
𝛼,𝜇𝜈

]
(27)

where 0̂ is amatrix with dimensionsNΩ × NΩ filled with zeros. In
the above equation, the dependencies on the Floquet frequencyΩ
were dropped for simplicity. Let us introduce now the following
T-matrix:

T̂𝛼,𝜈(Ω) =

[
T̂11
𝛼,𝜈 T̂

12
𝛼,𝜈

T̂21
𝛼,𝜈 T̂

22
𝛼,𝜈

]

=

[
Ŝ ⋅ Ẑ(1)

𝛼,𝜈 − ̂̊Z(3)
𝛼,𝜈

k̂−10 ⋅ Ŝ ⋅ �̂� ⋅ Ẑ(1)
𝛽,𝜈 − ̂̊Z(3)

𝛽,𝜈

]−1

⋅

[
̂̊Z(1)
𝛼,𝜈 0̂

0̂ ̂̊Z(1)
𝛽,𝜈

]
(28)

By introducing also the following two T-matrices with dimen-
sions NΩ × NΩ:

T̂ind
𝛼,𝜈 (Ω) = T̂11

𝛼,𝜈 + T̂12
𝛼,𝜈 (29a)

T̂sca
𝛼,𝜈(Ω) = T̂21

𝛼,𝜈 + T̂22
𝛼,𝜈 (29b)

we finally end up with the following expressions for the complex
amplitudes of the induced and scattered fields as functions of the
incident amplitudes

⃗ind
𝛼,𝜇𝜈(Ω) = T̂ind

𝛼,𝜈 (Ω) ⋅ ⃗inc
𝛼,𝜇𝜈(Ω) (30a)

⃗sca
𝛼,𝜇𝜈(Ω) = T̂sca

𝛼,𝜈(Ω) ⋅ ⃗inc
𝛼,𝜇𝜈(Ω) (30b)

The last two equations solve the scattering problem that we stud-
ied.

Finally, let us discuss some important symmetry properties of
the above T-matrices, defined by the spatiotemporal symmetries
of the corresponding scattering system that they represent. First
of all, due to the fact that our scattering system is time-varying,
we end up having a T-matrix that is nondiagonal with respect
to the frequency 𝜔. This property implies an inelastic scattering
process. In fact, for the specific case of a time-modulated sys-
tem with discrete translational symmetry over time; that is, with
a modulation period Tm, according to the Floquet theorem, we
get a T-matrix that is block diagonal over frequency 𝜔, with each
block involving a comb of frequencies characterized by the Flo-
quet frequency Ω and a period of 𝜔m = 2𝜋∕Tm. This is the sole
change that the structure of the T-matrix undergoes due to the in-
troduced time-variance of the scattering system. The spatial sym-
metries of the system of the spherical scatterer continue to be
exactly the same as in the stationary case. Since such a scatter-
ing system is rotationally invariant with respect to the z-axis, we
have a T-matrix that is diagonal with respect to the eigenvalue 𝜇,
the angular momentum along the z-axis. Actually, rotational in-
variance of the system along an arbitrary axis, due to its spherical
symmetry, implies also a T-matrix that is diagonal with respect to
the multipolar order 𝜈. Moreover, due to the point inversion in-
variance of such a scattering system, we end up having a T-matrix
that is diagonal with respect to the eigenvalue 𝛼, since the TE and
TM VSHs with a fixed multipolar order 𝜈 (mod 2) have an oppo-
site parity symmetry. Scatterers of different, nonspherical geom-
etry, would generally break those spatial symmetry properties of
their T-matrices.

2.4. Observable Scattering Quantities

In this subsection, we will provide expressions for the scattered
and absorbed energy by spherical time-modulated scatterers. Fol-
lowing Equation (5.18) of ref. [65], as well as our conventions for
the Fourier transforms of the fields and the above expressions
for the incident and scattered fields in terms of series of VSHs,
as presented in Equations (19) and (20), we can get the following
expressions for the total scattered energyWsca:

Wsca = ∫
𝜔m

0

NΩ∑
j=1

Psca(Ωj) dΩ

= ∫
𝜔m

0

NΩ∑
j=1

∑
𝜈𝜇,𝛼

|||sca
𝛼,𝜇𝜈(Ωj)

|||2
Z0k

2
0(Ωj)

dΩ (31a)

and for the total extinction energyWext:

Wext = ∫
𝜔m

0

NΩ∑
j=1

Pext(Ωj) dΩ

= −∫
𝜔m

0

NΩ∑
j=1

∑
𝜈𝜇,𝛼

ℜ
{[inc

𝛼,𝜇𝜈(Ωj)
]∗sca

𝛼,𝜇𝜈(Ωj)
}

Z0k
2
0(Ωj)

dΩ (31b)

where Psca(𝜔) and Pext(𝜔) are the total scattered and extinction
powers, respectively, and Z0 is the wave impedance of free space.
The total absorbed energy is given byWabs = Wext −Wsca.
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We can also reach alternative expressions for the total scat-
tered and absorbed energies by performing a singular value
decomposition[67] of the following matrices:

k̂−10 (Ω) ⋅ T̂sca
𝛼,𝜈(Ω) ⋅ k̂0(Ω)

= Û𝛼,𝜈(Ω) ⋅ �̂�𝛼,𝜈(Ω) ⋅ V̂†
𝛼,𝜈(Ω) (32)

where 𝚺𝛼,𝜈(Ω) are diagonal matrices that contain the singular val-
ues 𝜎𝛼,𝜈s(Ω) of the decomposition, and Û𝛼,𝜈(Ω), V̂𝛼,𝜈(Ω) are ma-
trices whose columns contain the correspondent left- and right-
singular vectors, u⃗𝛼,𝜈s(Ω), v⃗𝛼,𝜈s(Ω), respectively. The right- and left-
singular vectors contain the incident and scattered multipolar
spectra of the singular modes of the time-varying scattering sys-
tem. By expanding the following vectors on the full basis of the
right-singular vectors:

k̂−10 (Ω) ⋅ ⃗inc
𝛼,𝜇𝜈(Ω) =

NΩ∑
s=1

 inc
𝛼,𝜇𝜈s(Ω)v⃗𝛼,𝜈s(Ω) (33)

where  inc
𝛼,𝜇𝜈s(Ω) = v⃗†

𝛼,𝜈s(Ω) ⋅ ⃗inc
𝛼,𝜇𝜈(Ω) are complex coefficients, we

can arrive at the following alternative expressions for the total
scattered and absorbed energies:

Wsca = 1
Z0 ∫

𝜔m

0

∑
𝜈𝜇,𝛼

NΩ∑
s=1

𝜎2
𝛼,𝜈s

||| inc
𝛼,𝜇𝜈s

|||2dΩ (34a)

Wabs = − 1
Z0 ∫

𝜔m

0
dΩ

∑
𝜈𝜇,𝛼

NΩ∑
s=1

𝜎𝛼,𝜈s
||| inc

𝛼,𝜇𝜈s
|||2[𝜎𝛼,𝜈s +ℜ

{
v⃗†
𝛼,𝜈s ⋅ u⃗𝛼,𝜈s

}]
+

NΩ∑
s,s′=1
s′≠s

𝜎𝛼,𝜈s′ℜ
{[ inc

𝛼,𝜇𝜈s

]∗ inc
𝛼,𝜇𝜈s′ v⃗

†
𝛼,𝜈s ⋅ u⃗𝛼,𝜈s′

}
(34b)

where we dropped the dependence of the quantities on the Flo-
quet frequency Ω for simplicity. The sum in the last row of the
last equation for the absorbed energy corresponds to couplings
among the singular modes.

3. Numerical Study and Discussion

In this section, we will demonstrate and discuss numerical re-
sults based on the theoretical approach that we developed in the
previous section. The section is divided into three subsections.
In the first subsection, we present our results regarding the bulk
media dynamics of time-varying and dispersive media and dis-
cuss their main electromagnetic properties. In the second sub-
section, we study the properties of the scattering system of a ho-
mogeneous spherical scatterer composed of a time-varying and
dispersive medium. Properties of the T-matrix characterizing the
scattering system are presented. We also highlight the prototypi-
cal ability of this system to act as an active element by transferring
energy from the external modulation of the medium to the radi-
ated electromagnetic field, resulting in negative electromagnetic

absorption. In the last subsection, we numerically compare the
developed semi-analytical approach to full-wave optical simula-
tions, highlighting the accuracy and efficiency of our method.

3.1. Bulk Media Dynamics

We begin by considering a dispersive medium described by a
single Lorentz-type oscillator with natural resonance frequency
𝜔n. The medium’s electric susceptibility 𝜒(𝜔), in the non-time-
varying case, is plotted in Figure 2a. The considered bulk elec-
tron density is N0 = 11𝜔2

nme𝜀0∕e2, and the damping factor of the
oscillator is 𝛾n = 𝜔n∕8.
Then, we study the effect of the introduced time-variance on

such dispersive medium. To do that, we assume that the bulk
electron density of the Lorentz oscillator varies harmonically
in time according to N(t) = N0[1 +Ms cos(𝜔mt)] and the corre-
sponding response function of the medium is given by Equa-
tion (18) according to the analysis of Section 2.2. We use this
time modulation to study the eigenvalues, that is, the supported
wavenumbers 𝜅(Ω), and the corresponding eigenvectors S⃗𝜅 (Ω),
that is, the corresponding spectral eigenfunctions, of such a sys-
tem as described by Equation (8).
For the purpose of ease of understanding, let us discuss ini-

tially what happens in the limiting case of very small modulation
strengthsMs → 0. In analogy to periodically spatially modulated
materials, this case would correspond to an empty-lattice approx-
imation; that is, practically there is no modulation but the pe-
riodicity is still introduced. This assumption allows us to work
with the analytical dispersion relation while observing the onset
of a band structure. This approach facilitates the understanding
of the further results.
In this case, the integral operator in Equation (6b) remains pre-

dominantly diagonal, with very small off-diagonal terms. This
property indicates a weak spectral coupling among frequen-
cies. This means that the spectral eigenfunctions S𝜅 (𝜔) tend to
delta distributions. They tend to associate a unique wavenum-
ber 𝜅 to each frequency 𝜔, as is the case for the usual dis-
persion relation of non-time-varying media. Thus, we see that

𝜅(𝜔) →
√
[1 + 𝜒(𝜔)]𝜔2∕c20, as Ms → 0. We show in Figure 2b

how the band structure of such a system is formed by folding
the wavenumbers 𝜅(𝜔) into the fundamental spectral band. This
spectral band ranges from the zero frequency to the modulation
frequency of the medium 𝜔m, encompassing in this manner all
the Floquet frequencies Ω. The blue dashed lines show the band
structure formed by folding the solid blue line within the funda-
mental spectral band that corresponds to amodulation frequency
𝜔m = 𝜔n∕2. The folding takes place periodically in frequencies
denoted by the dashed purple lines.
We illustrate in Figure 2c the truncated discrete spectrum of

the response of a system periodically modulated with a frequency
𝜔m and excited, also, by a periodic excitation. 𝜔p = 𝜔m∕Np, with
Np ∈ ℕ, is the frequency that corresponds to the superperiod of
the combined periodicities of the modulation and excitation. We
can see that the spectrum can be separated into a set of Np fi-
nite combs of frequencies with a periodicity of 𝜔m. Each such
comb of frequencies, indicated by a different color, corresponds
to a different Floquet frequencyΩ, which varies between zero and
𝜔m. Due to the periodic timemodulation of the medium, there is
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Figure 2. Bulk media dynamics: a) Plot of the electric susceptibility of an unmodulated medium with dispersion corresponding to a single Lorentz
oscillator. b) Illustration of the folding of the band structure (dashed blue line) of the medium as we start modulating the bulk electron density of
the Lorentz oscillator with frequency 𝜔m, in the limit of weak modulation strength Ms. Solid lines represent the normalized dispersion relation of the
unmodulated medium. The dashed purple lines indicate the folding frequencies. c) Illustration of the truncated, discrete spectrum of the response of a
periodically modulated system excited by a periodic illumination. Spectral combs, characterized by the Floquet frequencies Ω, constitute independent
systems of coupled frequencies and are illustrated with different colors. Due to the periodic time-modulation of the system, there is coupling among
the frequencies of each such spectral comb. d) Plot of the band structure diagram of a time-modulated medium with large modulation strength. The
opening of a band gap can be observed. e) Plot of the spectral content of the eigenmodes |S𝜅i (Ωj)| that correspond to the system of a single comb of
frequencies. We can observe the spectral coupling that is introduced by the strong timemodulation of themedium. f) Plot of the normalized eigenvalues,
that is, the wavenumbers 𝜅i, that correspond to the eigenmodes presented in (e).

only coupling among the frequencies of each such spectral comb.
Spectral combs of different Floquet frequencies Ω constitute in-
dependent systems and do not couple to each other. For numeri-
cal reasons, we have to truncate the spectrum. Here, a truncated
spectral window of NΩ bands is illustrated, which corresponds,
also, to the number of frequencies of each such truncated spectral
comb. The actual distribution of power among the frequencies of
each comb can be decomposed over the full basis of eigenvectors
S⃗𝜅i

(Ω).
In general, what changes with the introduced periodic time

modulation of the medium, is that now we have a set of
wavenumbers 𝜅i(Ω) associated with each Floquet frequency Ω,
and with each wavenumber corresponding to a different, gener-
ally broadband, spectrum, given by the corresponding eigenvec-
tors S⃗𝜅i

(Ω). We solve the eigenvalue equation (Equation (8)) and
plot in Figure 2d the band structure, that is, the set of eigenval-
ues/wavenumbers that correspond to each Floquet frequency Ω,
that is, to each spectral comb. For the pertinent case, we consider
a modulation strength Ms = 0.9 and a modulation frequency
𝜔m = 𝜔n∕10. The color of the line in this figure encodes the imag-
inary part of the eigenvalues. Generally, positive and negative
imaginary values correspond to spectral eigenmodes with pre-
dominant spectral content over positive and negative frequen-

cies, respectively. Let us note that the graph focuses on the re-
gion of eigenvalues with a small real part. We can see that, due
to strong enough time modulation of the medium, we introduce
a band gap in the lower band of the band structure.[7,10,22] This
is not possible for low modulation strengths as the effect is in-
dicative of strong spectral coupling. Inside the momentum band
gap, there are two modes which have purely imaginary eigenfre-
quencies (one attenuating and one amplifying)[10]. The amplify-
ing mode is dominant and responsible for the parametric ampli-
fication effect in time-modulated materials.
In Figure 2e,f, we plot, respectively, the eigenvectors and the

corresponding eigenvalues of the subsystem with Floquet fre-
quency Ω = 𝜔m∕200. Figure 2f is a cut of the band structure
of Figure 2d at Ω∕𝜔m = 1∕200. The eigenmodes are ordered
with respect to ascending eigenmode central frequency, which
is defined as the following sum:

∑
j Ωj|S𝜅i

(Ωj)|2. We can see in
Figure 2e that each eigenmode has a different spectral content
distributed over the frequencies of the spectral comb character-
ized by the particular Floquet frequency Ω. The spectral support
becomes wider for eigenmodes that support high frequencies,
whereas for the eigenmodes that predominantly support the fre-
quencies Ωj∕𝜔n ≈ 0,±1, it becomes minimally narrow. For the
case of ±1, the resonant losses prevent further strong spectral

Laser Photonics Rev. 2022, 2100683 2100683 (9 of 15) © 2022 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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coupling. Modes 30 and 31 belong to the two lowest bands of the
band structure that form a band gap. They have a spectral con-
tent in the lower frequencies of the spectral comb. Strong cou-
pling between the smallest positive and negative frequencies of
the spectral comb at Ω∕𝜔m = 0.5 (due to the temporal modula-
tion) is responsible for the opening of the band gap there. On the
other hand, in Figure 2d, modes 1–21 and 42–60, whose eigen-
values have a large imaginary part, correspond to the points of
the blue/red lines that are almost parallel to the x-axis and inter-
fere inside the band gap region. Furthermore, as discussed previ-
ously, the matrix with the eigenvectors plotted in Figure 2e shall
approach the identity matrix in the limit of Ms → 0. The degree
of non-diagonality of the matrix Ŝ(Ω) is indicative of the strength
of the spectral coupling within the time-varying system. In Fig-
ure 2f, we plot the sorted eigenvalues, that is, the wavenumbers
associated with the corresponding eigenvectors as sorted in Fig-
ure 2e. Let us note the resemblance of Figure 2f with the unmod-
ulated case illustrated in Figure 2b. The sorted wavenumbers of
the strongly-modulated case are quite similar to those of the un-
modulated case. However, we still have quite significant devia-
tions, as it is indicated by the presence of the open band gap in
Figure 2d.

3.2. The Scattering System of a Time-Varying and Dispersive
Sphere

Next, we will study the properties of the scattering system of a
homogeneous spherical scatterer made of the time-varying and
dispersive medium that was studied in the previous subsection.
We consider the same material dispersion as the one used in
Figure 2a, and we consider that the bulk electron density of the
material is again modulated harmonically with a modulation fre-
quency of 𝜔m = 𝜔n∕10 and a modulation strength of Ms = 0.9,
as it was the case in the example illustrated in Figure 2d–f. We
consider the radius of the sphere R to be equal to the free-space
wavelength that corresponds to the resonance frequency of the
Lorentz oscillator, that is, R = 2𝜋c0∕𝜔n.
In Figure 3a, we plot the Mie coefficients (up to the quadrupo-

lar order) that correspond to such a sphere in the non-time-
varying case of Ms = 0. At very low frequencies, we observe the
Rayleigh scattering region where the Mie coefficients diminish
in amplitude. At low frequencies, away from the resonance fre-
quency of the Lorentz oscillator where the material losses are
maximized, we note the appearance of sharp and densely packed
multipolar resonances. On the other hand, at frequencies larger
than the resonance frequency of the Lorentz oscillator, we have a
material with negative dielectric permittivity (see Figure 2a) that
demonstrates modes of much lower quality factors that are spec-
trally well-separated.
Next, we introduce time modulation to the material from

which the sphere is made. We plot in Figure 3b–e the absolute
values of the elements of T-matrices of such a time-modulated
sphere given by Equation (29b). The results are plotted in a loga-
rithmic scale formultipoles up to the quadrupolar order.We com-
bine the calculated results for the T-matrices of all the Floquet
frequencies in a single plot. There, the x-axis corresponds to the
frequency 𝜔inc of the incident multipolar excitation. The y-axis
corresponds to the scattered band order of radiating multipoles.

Figure 3. The scattering system of a time-varying and dispersive sphere:
a) Plot of the absolute value of the Mie coefficients that correspond to a
sphere made of a dispersive medium without time modulation. b–e) Plots
of the T-matrix elements of a sphere with introduced strong time modula-
tion, for different multipolar orders. Time modulation leads to an inelastic
scattering process where there is spectral coupling among different input
and output frequencies given by 𝜔sca = 𝜔inc + bo𝜔m.

The output frequency𝜔sca of the radiatedmultipole at a scattering
band order bo is given by the formula 𝜔sca = 𝜔inc + bo𝜔m. A zero
scattering band order, i.e., bo = 0, means that the frequencies of
the incident and scattered multipoles are the same. Therefore,
in the limit of low modulation strengths Ms → 0, we shall have
a predominant response solely at the zero scattering band order,
bo = 0. The color of the plots encodes the amplitude of a radi-
ated multipole at frequency 𝜔sca once the sphere is excited by a
single multipole of unit amplitude at frequency 𝜔inc. The white
lines in Figure 3b–e denote an output frequency being zero, that
is, 𝜔sca = 0.
There are several interesting features to be observed in Fig-

ure 3b–e. Most importantly, we see that, due to the time modu-
lation of the sphere’s material, a monochromatic excitation gives
rise to a polychromatic response. This implies an inelastic scat-
tering process. The general condition for a resonant response is
that the sphere is at resonance simultaneously both at the input
and output frequencies 𝜔inc and 𝜔sca. This, of course, happens

Laser Photonics Rev. 2022, 2100683 2100683 (10 of 15) © 2022 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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predominantly when the input and output frequencies coincide.
However, there are several other cases where such a resonant in-
elastic scattering process takes place. For example, we can see
that there is a strong response along lines parallel to the white
ones, where we have a constant output frequency 𝜔sca that shall
be associated with a sharp multipolar resonance supported by
the sphere there. Such sharp resonances have a significant spec-
tral echo predominantly in negative scattering band orders, with
the response, though, weakening as the difference between the
input and output frequencies increases. Moreover, we also ob-
serve the appearance of sharper features with an even stronger
response along those spectral lines. We can associate these fea-
tures with the simultaneous presence of sharp multipolar reso-
nances at the respective input frequencies, leading to enhanced
double-resonant effects. Furthermore, there is a beating pattern
along those spectral lines. The periodicity thereof is related to
the modulation frequency 𝜔m and it indicates a spectral echo of
a multipolar resonance at the input frequency. Another interest-
ing feature is that even some coupling between input and output
frequencies of opposite sign can be observed. This may lead to
interesting phenomena such as nonreciprocity[6] and parametric
amplification[68,69] that can be realized in time-varying slabs[21,70]

and spheres.[71] Finally, we observe that for low-input frequen-
cies, the response of the sphere is weak, especially for larger mul-
tipolar orders, since in this case the optical size of the sphere
is small.
As we have highlighted already, there is an inelastic scattering

process when we introduce a time modulation of the scatterer.
It implies that the photons interact with the time-varying matter
and exchange energy. This makes us wonder whether it is pos-
sible to create an active element out of such a time-varying scat-
terer that extracts energy from the time-varying matter and pro-
vides it to the photons. Therefore, we search for the possibility of
using our scattering system to realize negative total absorption,
even though the dispersive model of the Lorentz oscillator that
we employ is rather lossy around the resonant frequency of the
oscillator. Such an observation has already been reported in ref.
[51] for a lossless system without material dispersion.
To this end, we perform a singular value decomposition of the

T-matrices that correspond to each spectral comb with a spe-
cific Floquet frequency. The decomposition is given by Equa-
tion (32). The total scattered and absorbed energies by our scat-
tering system are then given by Equations (34a) and (34b). Then,
we excite our scattering system with each right-singular vec-
tor of the decomposed matrices; that is, we consider excitations
with  inc

𝛼,𝜇𝜈s(Ω) = 𝛿𝛼𝛼′𝛿𝜇𝜇′𝛿𝜈𝜈′𝛿ss′𝛿(Ω − Ω′) sweeping the values of
𝛼′, s′,Ω′, with 𝜇′ being arbitrary and 𝜈′ fixed to 1 as we focus on
the dipolar response of the system. For all such excitations of our
system, we observe the sign of the absorbed power. Exciting the
system with a single right-singular vector means that we excite
only a single spectral comb of some Floquet frequency, with a
particular spectral distribution of the power over the frequencies
of the comb. Simultaneously, our excitation consists of a single
incoming multipole (dipole). Therefore, it is a quite special exci-
tation, not only spectrally but also spatially. It corresponds to an
excitation with a particular angular spectrum of plane waves that
comprise such an incoming multipole. An arbitrary excitation of
the system can be decomposed into this basis of right-singular
vectors. Exciting our system, though, with a single singularmode

enables us to ignore the inter-modal couplings due to the terms
in the third row of Equation (34b).
We consider as a scattering system the same sphere that we

studied before in this subsection, and we plot our results in Fig-
ure 4. The singular modes are ordered in a descending order
of their respective singular values, that is, in a descending or-
der of total scattered power, as it is implied by Equation (34a).
In Figure 4a,d, we observe that for many of the spectral combs
with varying Floquet frequency Ω, we can have singular modes
that demonstrate significantly negative values of absorbed power,
that is, a significant transfer of energy from the time-varyingmat-
ter to the photons of the electromagnetic field during the inelas-
tic scattering process. Such modes can be excited only with the
particular illumination of the corresponding right-singular vec-
tors. Note that in the regime of parametric oscillations, under
careful tuning of the parameters of our system, we can reach ra-
tios of Pabs∕Psca that approach the value of −1. The spectral con-
tent of the right-singular vectors, v⃗𝛼,1s0 (Ω), which correspond to
singular modes that demonstrate a maximally negative absorp-
tion (indicated with the index s0), is plotted in logarithmic scale
and for each Floquet frequency in Figure 4c,f. The black-colored
columns of the figure indicate an absence of a singularmodewith
negative absorption for that particular Floquet frequency. In Fig-
ure 4b,e, we plot the norm of the elements of the corresponding
left-singular vectors u⃗𝛼,1s0 (Ω), that is, the spectral content of the
scattered fields once the system gets excited by the correspond-
ing right-singular vectors. We observe that the input and output
spectra of the singular modes that demonstrate negative absorp-
tion are characterized by a spectral distribution of power predom-
inantly over the low frequencies where the material losses due to
dispersion are low. Due to the presence of a lossy spectral region
and the size of the considered sphere, we do not find any singu-
lar mode with negative absorption for the quadrupolar modes. It
would only become possible for larger sizes of the sphere. It is
rather remarkable that negative absorption can be achieved even
in the presence of strong material losses once we optimize the
system’s excitation. Finally, let us note that the presence of the
third row of Equation (34b), corresponding to inter-modal cou-
plings, allows for the possibility of attaining negative absorption
under other excitation schemes as well, that involve, in general,
a superposition of such singular modes.

3.3. Numerical Performance of the Developed Algorithm in
Comparison to a Full-Wave Solver

Our numerical analysis of the problem of scattering by a time-
varying and dispersive sphere was verified by full-wave simu-
lations performed in Comsol Multiphysics with the finite ele-
ment time-domainmethod. To solidify the comparison and study
the efficiency of the developed semi-analytical approach, we have
considered two different sets of simulations. We again adopt
the Lorentz oscillator model with time-modulated bulk electron
density to account for material dispersion and time modulation.
Equation (16) is embedded inside the full-wave numerical solver.
We name the first set as “slow modulation, weak dispersion”
since we consider a relatively slow but still strong modulation
of the medium of the scatterer. The scatterer is excited in a spec-
tral window characterized byweakmaterial dispersion, that is, far
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Figure 4. Singular value decomposition of the matrices of the scattering system revealing the presence of singular dipolar modes that demonstrate
negative absorption, that is, a transfer of energy from the time-varying matter to the photons in an inelastic scattering process. An optimized excitation
of the system can give birth to such modes. a,d) Plots of the ratio of the absorbed and scattered powers under the system’s excitation with its singular
modes. The presence of singular modes with negative absorption can be observed. Plots of the output (b,e) and input (c,f) discrete spectra (spectrum
appears as continuous merely due to small chosen modulation frequency) of the left- and right-singular vectors of the singular modes that demonstrate
maximally negative absorption for each Floquet frequency Ω.

away from the resonance of the Lorentz oscillator. On the other
hand, the second set of simulations also considers a strong mod-
ulation amplitude, but now with a fast modulation frequency.
Moreover, the sphere is excited in a spectral window centered
around the resonance frequency of the Lorentz oscillator, where
we encounter maximal dispersion. Hence, we name this second
set of simulations as “fast modulation, strong dispersion.” In
both cases, we compare scattered fields close to the sphere, where
contribution of high-order multipoles is significant.
For the first set of simulations, we consider a Lorentz model

with damping factor 𝛾n = 𝜔n∕8 and bulk electron density N0 =
11𝜔2

nme𝜀0∕e2. This material can be considered dispersionless
far away from its natural frequency, and therefore, we simu-
late the excitation [see Supporting Information] of the sphere
with a Gaussian pulse of unit amplitude E0 = 1 V m-1 and tem-
poral width T0 = 2.9 × 2𝜋∕𝜔n that is centered at the frequency
𝜔0 = 0.3𝜔n. The pulse is polarized along the x-axis and propa-
gates along the +z-direction. Let us note that while for our an-
alytical calculations we use an infinitely extended plane wave,
for the Comsol simulations we use a Gaussian beam with an
optically large waist to approximate the plane-wave excitation
in our numerical setup. The pulse is temporally centered at
t0 = 8T0. The material is modulated with frequency 𝜔m = 𝜔n∕15
and modulation strength Ms = 0.9. We choose a sphere radius
of R = 7.095 c0∕𝜔n to ensure a significant scattering response.
This combination of excitation, modulation parameters, and
sphere dimensions provides a rich scattering spectrum. Locating

the sphere at the origin of the coordinate system, we compare
the fields at two arbitrarily chosen spatial points: behind [point
A(0,0,1.43R)] and above [point B(1.43R,0,0)] the sphere. Since the
electric fields’ x-component is the strongest at point A and the
magnetic fields’ y-component is strong at point B, we present
them in time domain in Figure 5a. Transient signals enable one
to observe echoes of the incident pulse after the impact. The re-
spective norms of the fields are presented in frequency domain
in Figure 5b. The semianalytical results obtained from the de-
veloped theory are plotted with solid yellow lines. The numeri-
cal results from Comsol are plotted with dashed red lines. The
highlighted light-blue area denotes the temporal/spectral region
where 99% of the energy of the incident pulse resides. We ob-
serve that the results obtained by the numerical simulations al-
most ideally match the semianalytical results. Matching of signal
in frequency and time domain indicates that not only absolute
values but phases are treated correctly in the developed semian-
alytical approach.
In Figure 5c, we plot the total power scattered by the sphere

(see Equation (31a)), that is, the power that we calculate by inte-
grating the power flux of the Poynting vector of the scattered field
over a spherical shell that surrounds the scatterer. To perform
a multipolar decomposition of the scattered fields numerically,
we measure the fields over a distribution of points located over
a spherical shell of radius 1.43R. We use a surface integral (see
Equation (5.175) from ref. [65]) to extract from the Comsol sim-
ulations the multipolar amplitudes of the scattered fieldsca

𝛼,𝜇𝜈(𝜔)
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Figure 5. Comparison of analytical and numerical results from a full-wave time-domain solver, for two sets of simulations: a–d) “slow modulation,
weak dispersion” and e–h) “fast modulation, strong dispersion”. a,e) Plots of the electric (at points A and A’, respectively) and magnetic (at points B
and B’, respectively) fields in the time domain. b,f) Plots of the Fourier transform of the fields in (a,e). The highlighted light-blue regions indicate the
temporal/spectral windows where 99% of the energy of the incident Gaussian pulse resides. c,g) Plots of the normalized total scattered power together
with the individual multipolar contributions. Solid lines show the analytical results, whereas cross-markers indicate the numerical results of the full-wave
simulation. d,h) Plots of the probability distribution of the logarithmic relative error between the fields calculated analytically and numerically. These
plots involve the error statistics among a considered distribution of points over a spherical shell surrounding the scatterer and, also, over a broadband
spectral window.

and compare them with the ones that we obtain analytically. The
scattered power spectra are normalized to the spectral peak of the
total power flux of the incident field passing through the geomet-
rical cross-section of the scatterer. The values of the total scattered
power are plotted with a black solid line. The individual multipo-
lar contributions (up to the quadrupolar order) are plotted with
colored solid lines. We use cross-markers to plot the numerical
results obtained fromComsol. Again, we see a perfect agreement
between the semi-analytical and the numerical results. Finally, in
Figure 5d, we plot the probability distribution of the logarithmic
relative error between the analytically and numerically calculated
fields over the points of the previously considered spherical shell
surrounding the scatterer and over a spectral window between
the frequencies [0.1𝜔n, 0.93𝜔n], where the signals are strong. The
graph indicates a relative error distribution predominantly within
the range of 1% and 10%.
The second set of simulations considers a less lossy material

for which the Lorentz model parameters read 𝛾n = 𝜔n∕120 and
N0 = 1.12𝜔2

nme𝜀0∕e2. To study the effects of strong dispersion, we
excite the scatterer at the resonance frequency (i.e., 𝜔0 = 𝜔n). To
capture a rich frequency spectrum, we choose the pulse width
T0 = 1.934 × 2𝜋∕𝜔n and the sphere radius R = 1.824 c0∕𝜔n. The
pulse is again temporally centered at t0 = 8T0. The modulation
strength of the material is considered again to be Ms = 0.9. In

contrast, themodulation frequency is now𝜔m = 𝜔n∕2, which cor-
responds to a relatively highmodulation speed. Figure 5e–h is the
counterpart of Figure 5a–d, but now for the case of the second set
of simulations. The only difference is that in Figure 5e,f, the ob-
servation points are located at A′(0, 0, 2.432R) and B′(2.432R,0,0).
As for Figure 5g,h, we have the observation points located over a
spherical shell of radius 2.432R, and the spectral window consid-
ered for the statistics of Figure 5h being between the frequencies
[0.827𝜔n, 1.172𝜔n]. Again, we can observe that for the second set
of simulations characterized by fast modulation and strong dis-
persion, the simulation and analytical results are in almost per-
fect agreement.
In Supporting Information, we present results for a compara-

tive study between two differentmaterial models: one accounting
for temporal dispersion, as it was the case with the results pre-
sented in this subsection, and the other ignoring it. Our results
there propound the appreciation of the importance of taking into
account the temporal dispersion.
Finally, let us highlight that the numerical simulations are

computationally considerably more demanding than the pre-
sented semianalytical approach. While the Comsol simulations
for the first setup lasted for 12 days requiring 110 gigabytes of
RAM, and for the second setup they lasted for 5 days requiring 43
gigabytes of RAM, the semi-analytical algorithm uses 2 gigabytes

Laser Photonics Rev. 2022, 2100683 2100683 (13 of 15) © 2022 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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of RAM to calculate T-matrices and only needs approximately 15
s for both setups.

4. Conclusion

To summarize, we have presented an analytical model that de-
scribes light scattering on spheres made of dispersive and time-
varying media. First, we comprehensively studied the propaga-
tion of electromagnetic waves in unbounded time-varying media
with frequency dispersion. We then applied this theory to treat
the problem of light scattering by spheres composed of such me-
dia. In contrast to other approaches for theoretical investigations
of time-modulated structures, the developed route considers spa-
tially confined scatterers, incorporates frequency dispersion, and
allows an arbitrary modulation speed and amplitude. In addition
to that, we verify our findings using full-wave simulations.
This study can be considered referential since it treats such a

canonical object as a sphere. It makes an essential initial step to-
ward a general understanding of all kinds of scattering effects in
time-varying structures. It has the crucial advantage that it can be
used to study all kinds of effects considering a simple shaped ob-
ject such as a sphere in a short amount of time and with minimal
computational resources. The understanding borne from these
investigations provides the language to discuss more elaborate
systems that are no longer feasible for an analytical treatment
but require a numerical full-wave simulation to capture all the
details. In the past, the analytical solution of the canonical prob-
lem of scattering by a stationary sphere was one of the key corner-
stones in the development of the theory of light scattering, and
we hope that this extension of the theory to time-varying canoni-
cal scatterers will serve the same important purpose.
A further extension of this study can include a proper descrip-

tion of absorption with the associated dispersion. Such a study
would be crucial for providing insights into parametric amplifica-
tion for realistic systems. Alternatively, this study can be further
extended toward nonspherical geometries using, for instance, an
analytical solution for other simple structures, such as slabs or
cylinders, or employing simulations for more complicated 3D
structures. In addition to that, one can consider arrays of time-
varying particles.
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Supporting Information is available from the Wiley Online Library or from
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