
B A S I C R E S E A R CH

Efficient time splitting schemes for the monodomain
equation in cardiac electrophysiology

Laura P. Lindner1 | Tobias Gerach2 | Tobias Jahnke1 | Axel Loewe2 |

Daniel Weiss1 | Christian Wieners1

1Institute of Applied and Numerical
Mathematics, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany
2Institute of Biomedical Engineering,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

Correspondence
Christian Wieners, Institute of Applied
and Numerical Mathematics, Karlsruhe
Institute of Technology (KIT), Karlsruhe,
Germany.
Email: christian.wieners@kit.edu

Funding information
Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation),
Grant/Award Numbers: SPP 2311,
465189069, SFB 1173, 258734477; Ministry
of Science, Research and the Arts Baden-
Württemberg; Federal Ministry of
Education and Research

Abstract

Approximating the fast dynamics of depolarization waves in the human heart

described by the monodomain model is numerically challenging. Splitting

methods for the PDE-ODE coupling enable the computation with very fine

space and time discretizations. Here, we compare different splitting

approaches regarding convergence, accuracy, and efficiency. Simulations were

performed for a benchmark problem with the Beeler–Reuter cell model on a

truncated ellipsoid approximating the left ventricle including a localized stimu-

lation. For this configuration, we provide a reference solution for the trans-

membrane potential. We found a semi-implicit approach with state variable

interpolation to be the most efficient scheme. The results are transferred to a

more physiological setup using a bi-ventricular domain with a complex

external stimulation pattern to evaluate the accuracy of the activation time

for different resolutions in space and time.
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1 | INTRODUCTION

To replicate the human heart's function numerically, the efficient approximation of the electrophysiology plays a key
role, since the overall cardiac mechanisms are controlled by the propagation of the depolarization waves and the chem-
ical reactions, which are initiated by the electric stimulus. This process is described by the physiology-based bidomain
equations consisting of two partial differential equations (PDEs) for modeling the intra- and extracellular potentials.
The PDEs are coupled with a system of ordinary differential equations (ODEs) for the cellular model describing the ion
currents across the membrane. A detailed derivation of the bidomain model is given by Franzone and Savaré.1 Under
the assumption that the anisotropic intra- and extracellular conductivities are proportional to each, the bidomain model
can be reduced to the monodomain model. This model is simpler because it involves only one parabolic PDE describing
the transmembrane voltage v, that is, the difference of the intra- and extracellular potentials. The monodomain model
is computationally less demanding but still reproduces the main phenomena of wave propagation in the heart, see, for
example, Bourgault and Pierre.2
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A major computational challenge for the monodomain model is the large range of time scales varying from about a
second for the heart beat to dozens of transitions per milliseconds for the fast gates of the ion channels. Since for realis-
tic cell models a fully implicit scheme in time is prohibitively expensive due to the large number of unknowns, the stan-
dard approach is to use a splitting method for the time integration of the coupled PDE-ODE system. This means that in
each time step, the ODEs describing the gating mechanisms, the ODEs for the evolution of the intracellular ion concen-
trations and the parabolic PDE for the transmembrane voltage are propagated successively. We denote this approach as
component-wise splitting. Commonly, an additional operator splitting of the PDE into the reaction and the diffusion
part is used. Schemes based on the reaction–diffusion splitting are for example the first-order Godunov method3 or the
second-order Strang splitting.4 Because of the very fast dynamics of the gating mechanisms, the operator splitting
approach is often combined with the observation of Rush and Larsen5 that the (linear) ODEs describing the gating vari-
ables can be solved exactly as long as the transmembrane voltage is kept fixed. This idea can also be used in the
component-wise splitting approach.

As there is no analytical solution of the monodomain problem, the accuracy of time integration approaches has to
be studied numerically. Niederer et al.6 defined a benchmark problem on a 3d cuboid and studied the approximations
of the activation time on 11 different simulation codes for cardiac simulations. However, no systematic comparison of
different numerical schemes was performed. Sundnes et al.3 confirmed the convergence behavior of several operator
splitting methods combined with the simple FitzHugh–Nagumo model for a 1d domain. We extend these results to
more complex membrane models and geometrical domains. The dependency of the conduction velocity on the spatial
resolution was reported in several studies.7,8 We study the effect of both space and time discretization on this phenome-
non in an unstructured anatomically motivated mesh. More recently, the convergence and accuracy of time integrators
were studied on 1d and 2d regular rectangular domains with simplified external stimuli, for example by Roy et al.9 and
Woodworth et al.10 However, as Krishnamoorthi et al.11 already observed, the irregularity of the mesh has an immense
impact on physiological properties and will thus be considered in the present study. As realistic heart simulations are
performed on non-uniform meshes, it is essential to test the behavior of commonly used time integration approaches
systematically for more complex and anatomically more relevant scenarios.

Here, we define a new anatomically more realistic and numerically more challenging electrophysiology benchmark
problem on a truncated ellipsoid approximating the left ventricle, similar to the elasticity benchmark of Land et al.12

For this more realistic configuration, we investigate splitting schemes in time systematically by comparing different
approaches in terms of stability and accuracy. The latter is done by means of a reference solution computed on a very
fine mesh and with a very small time step. Furthermore, we evaluate computational efficiency. This extends results for
the Godunov splitting as well as implicit methods discretizing the parabolic PDE for the transmembrane voltage.13,14

For the numerical computation, we use the parallel finite element system M++,15 which allows for very fine resolu-
tions in space and time in order to obtain a reliable reference solution; this is required for the evaluation of the accuracy
of the different time stepping schemes.

This work is a first comprehensive comparison of splitting approaches for the cardiac monodomain model regarding
convergence in time and space, accuracy and efficiency. The test problems are anatomically more realistic and numeri-
cally more challenging than in previous works.

Nonlinear coupled PDE-ODE systems arise in many other physical applications, for example, porous-media model-
ing coupled to chemical processes or fractional diffusion realized with memory variables. But then a corresponding
comparison of splitting approaches may yield different results, since the efficiency of the methods strongly depend on
the application parameters, the nonlinearity, and the stiffness of the ODE components.

The paper is organized as follows: First, we introduce the monodomain equation and the Beeler–Reuter model,
which we use in our investigation in detail. Different numerical approximation schemes of the coupled PDE-ODE sys-
tem in space and in time are described in the third section. In Section 4, we define a benchmark problem on a truncated
ellipsoid, provide a reference solution and study the convergence behavior and accuracy of different splitting
approaches. In addition, we extend the investigation to a more realistic bi-ventricular domain. Finally, we conclude
with a summary and an outlook on possible extensions of our results.

2 | THE MONODOMAIN EQUATION IN ELECTROPHYSIOLOGY

Modeling the electrophysiology in the human heart by the bidomain equation comprises the evolution of the extra-
cellular and intra-cellular electric potentials, the concentration of several ions as well as the switching of gating
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variables which control the transport of ions across the membranes, compare, Vigmond et al.16 In our convergence
study of time integration schemes, we consider a model, which combines the monodomain equation for the transmem-
brane voltage (the difference of the extra-cellular and intra-cellular electric potentials) with a representative cell model
introduced by Beeler and Reuter.17

Let Ω�ℝ3 be a bounded Lipschitz domain and let 0, T½ � be a time interval. The model describes the evolution of
the transmembrane voltage v, the intra-cellular calcium ion concentration c, and the vector of six gating variables w ,
solving the coupled PDE-ODE system

χCm∂ tv�r� Drvð Þþ χI ion v, c, wð Þ¼ χIext, ð1aÞ

∂ tc�Gc v, c, wð Þ¼ 0, ð1bÞ

∂ tw�Gw v, wð Þ¼ 0 ð1cÞ

in 0, T½ ��Ω subject to the initial values at t¼ 0

v 0, xð Þ¼ v0 xð Þ, c 0, xð Þ¼ c0 xð Þ, w 0, xð Þ¼w0 xð Þ, x�Ω¼Ω[ ∂Ω ð1dÞ

and homogeneous Neumann boundary conditions

D rv �n¼ 0 on 0, Tð Þ� ∂Ω: ð1eÞ

Parameters of the monodomain model are the surface-to-volume ratio χ �ℝþ, the membrane capacitance Cm �ℝþ,
and the conductivity tensor D :Ω!ℝ3�3 depending on the anisotropic cell structure, where we assume that the con-
ductivity tensor D is symmetric, bounded and uniformly positive definite. For the Beeler–Reuter cell model, the total
ionic current in (1a) is of the form

I ion v, c, wð Þ¼ Is v, c, w1, w2ð Þþ INa v, w3, w4, w5ð Þþ Ix1 v, w6ð Þþ IK vð Þ, ð2Þ

depending polynomially on the gating variables w , continuously on the electric voltage v, and logarithmically on the
concentration c. The evolution is driven by the pacing from the cardiac conduction system comprising among other the
sinus node in the atria and the Purkinje fibers in the ventricles. This is modeled by an external stimulus

Iext : 0, T½ ��Ω!ℝ, Iext t, xð Þ¼ ai t, xð Þ fort� tbeg,i, tbeg,iþ τi
� �

, x�Ωstim,i,

0 else

(
ð3Þ

in the stimulation area Ωstim ¼ [
i¼1,…,nstim

Ωstim,i �Ω. Here, Ωstim,i are disjoint sets, ai are amplitude functions,
tbeg,i � 0, T� τi½ � is the starting time of the i-th stimulus and τi >0 is its duration (i¼ 1,…,nstim). In many applications
the amplitude functions of the external stimulus Iext are chosen to be constant functions, that is, ai t, xð Þ¼ ai >0 in (3);
compare 8,10,14. In this case, however, the function Iext is discontinuous both in time and space, and the missing regular-
ity has the effect that convergence of the numerical methods can only be observed for very fine discretizations. This is not
appropriate for the numerical convergence study of the different time stepping schemes in Section 4. In our simulations,
therefore, we use amplitudes for the external current Iext of the form ai t, xð Þ¼ at,i tð Þax,i xð Þai, i¼ 1,…,nstim, with ai >0 and

at,i tð Þ¼ 1
π

arctan sext t� tbeg,i
� �� ��arctan sext t� tbeg,iþ τi

� �Þ� ��� �
, ax,i xð Þ¼ 1�min 1,

dist x, Ωstim,i
� �
lexc

� �
, ð4Þ

where sext �ℝ is a constant scaling factor and where the stimulus area is extended by Ωstim,i �Ωexc,i �Ω in all directions
approximately by the length lexc (see Figure B1 in the Appendix). With this choice, the external stimulus Iext defined in
(3) is smooth in time and both continuous and weakly differentiable in space. Alternatively, for simulations of a single
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heartbeat, the external stimulus can be replaced by suitable initial data v0 of the transmembrane voltage, see, for exam-
ple references 3,13.

The gating mechanisms at the membrane are described by the dimensionless vector w¼ w1, …, w6ð Þ. Depending on
non-negative opening and closing rates αk vð Þ and βk vð Þ, the evolution is determined by

Gw v, wð Þ¼ Gk v, wkð Þð Þk¼1,…,6 with Gk v, wkð Þ¼ αk vð Þ� αk vð Þþβk vð Þð Þwk, k¼ 1,…,6: ð5Þ

Starting with wk 0, xð Þ� 0, 1½ �, we obtain wk t, xð Þ� 0, 1½ � by construction from Gk v, 0ð Þ≥ 0 and Gk v, 1ð Þ≤ 0.
The evolution of the calcium concentration depends on the ionic current Is and is of the form

Gc v, c, wð Þ¼�αcIs v, c, w1, w2ð Þþwc αc� cð Þ: ð6Þ

All parameters, the explicit equations for the ionic currents, and the opening and closing rates for the Beeler–Reuter
model are summarized in the Appendix A. For the extension to more complex ionic models, the corresponding function
Gc has to be adapted, see, for example, (18, Supplement) for the O'Hara and Rudy model.

3 | NUMERICAL APPROXIMATION OF THE MONODOMAIN EQUATION

The PDE-ODE system (1) is discretized in space by conforming finite elements for the voltage v and nodal values for
c, wð Þ. For the time discretization we discuss and compare different splitting methods. All methods described in
Section 3.2 are based on the component-wise splitting. The difference is the way how the PDE for the transmembrane
voltage is treated.

3.1 | Discretization in space

Let Ωh ¼ [K � KhK be a decomposition into open tetrahedra, and let Vh ¼ ϕh �C0 Ω
� �

:ϕh

� jK �P1 Kð ÞforallK �Khg be
the approximation space of lowest order conforming finite elements. All functions ϕh �Vh are uniquely defined by their
nodal values ϕh xð Þð Þx �N h

at the corner points N h �Ω of the triangulation. Let Πh :C0 Ω
� �!Vh be the corresponding

nodal interpolation defined by Πh ϕð Þ xð Þ¼ϕ xð Þ for x�N h. Let V 0
h be the dual space of Vh, and let � , �h i denote the

dual pairing.
We define Mh,Ah �ℒ Vh, V 0

h

� �
by

Mhϕh, ψhh i¼
Z
Ω

ϕhψhdx, Ahϕh, ψhh i¼ χ�1
Z
Ω

Drϕhð Þ �rψhdx, ϕh,ψh �Vh:

The discrete operators Mh and Ah are represented as (parallel distributed) matrices and are assembled only once. The
extension of the operator Mh to M �ℒ L2 Ωð Þ, V 0

h

� �
defined by

Mϕ, ψhh i¼
Z
Ω
ϕψhdx, ϕ�L2 Ωð Þ,ψh �Vh

can be realized only approximately. For continuous functions ϕ, Mϕ can be approximated by MhΠhϕ. Alternatively, it
can be approximated by the numerical integration operator ℳh �ℒ C0 Ω

� �
, V 0

h

� �
defined by a quadrature rule

ℳhϕ, ψhh i¼
X

K � Kh

Xnquad
q¼1

ωK ,qϕ xK,q
� �

ψh xK ,q
� �

, ϕ�C0 Ω
� �

,ψh �Vh

with weights ωK ,q >0 and integration points xK ,q �K for q¼ 1,…,nquad, so that ℳhϕh ¼Mhϕh for ϕh �Vh. We will show
in our evaluation of different schemes that using numerical quadrature ℳhϕh instead of interpolation MhΠhϕ improves
the stability in case that ϕ is not smooth enough. In the terminology introduced by Pathmanathan et al.19 the
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evaluation by the approximative L2 integral corresponds to the state variable interpolation (SVI), and the Lagrange
interpolation is the ionic current interpolation (ICI).

The semi-discrete equation in space determines vh, ch, whð Þ : 0, T½ �!V8
h by

CmMh∂ tvhþAhvhþℳhI ion vh, ch, whð Þ¼ℳhIext inV 0
h, ð7aÞ

∂ tch�Gc vh, ch, whð Þ¼ 0 forallx�N h, ð7bÞ

∂ twh�Gw vh, whð Þ¼ 0 forallx�N h ð7cÞ

subject to the initial values at t¼ 0

vh 0, xð Þ¼ v0 xð Þ, ch 0, xð Þ¼ c0 xð Þ, wh 0, xð Þ¼w0 xð Þ, x�N h ð7dÞ

obtained by nodal interpolation of (1d), where we assume that the initial data v0, c0, w0ð Þ are continuous. For the
numerical experiments in Section 4 the initial conditions are constant in space. Note, that for the ODE evolution in
(7b) and (7c) the evaluation at the nodal points N h is sufficient, but in general the application of ℳh in (7a) requires
the evaluation of ch, whð Þ at the integration points in every cell K �Kh.

3.2 | Discretization in time

Let N �ℕ be the number of time steps, let Δt¼T=N be the step-size of the time discretization, and set tn ¼nΔt. Starting
with v0h, c

0
h, w

0
h

� �
given by (7d), we now present different methods for computing the next iterate vnh, c

n
h, w

n
h

� �
from the

approximations vn�1
h , cn�1

h , wn�1
h

� �
in the previous time step.

It is well-known that the space discretization of the PDE (1a) leads to a stiff ODE system. If an explicit Runge–Kutta
or multi-step method is applied to this ODE, then an extremely small step-size has to be used in order to ensure stabil-
ity. Such a severe step-size restriction can be avoided by using an A-stable or A αð Þ-stable time integrator instead, but
such methods are implicit. This means that in every time step a nonlinear system of equations has to be solved. Apply-
ing such a method to the full system (1) is thus computationally very expensive. Another numerical challenge is the fast
switching of the gating variables. If the solution of (1c) is approximated, say, with a Runge–Kutta method, then again a
very small step-size has to be chosen to obtain an acceptable accuracy.

For these reasons the component-wise splitting is very popular and widely used.13,14 In this approach every time
step for propagating the system (7) consists of three sub-steps. In each of these sub-steps, only some of the unknowns
are updated, while the others are kept fixed: first, the gating variables are updated, then the calcium concentration, and
finally the transmembrane voltage. Interchanging the order of these three sub-steps is possible and yields a different
but similar method with nearly the same accuracy.

3.2.1 | Exact propagation of the gating variables

For fixed transmembrane voltage vn�1
h the ODE (1c) for the gating variables is linear in w and decoupled in all compo-

nents (see (5)). In (7c) the ODE for given vn�1
h , wn�1

h

� �
takes the form

∂ twh,k ¼ αk vn�1
h

� �� αk vn�1
h

� �þβk vn�1
h

� �� �
wh,k for t� tn�1, tnð Þ with wh,k tn�1ð Þ¼wn�1

h,k ,k¼ 1,…,6:

As suggested by Rush and Larsen,5 this ODE can be solved exactly, so that we get wh,k tnð Þ¼φΔt
k vn�1

h , wn�1
h,k

� �
with

φΔt
k vh, wh,kð Þ¼wk,∞ vhð Þþ wh,k�wk,∞ vhð Þð Þexp �Δt αk vhð Þþβk vhð Þð Þð Þ, wk,∞ vð Þ¼ αk vhð Þ

αk vhð Þþβk vhð Þ : ð8Þ

This defines wn
h ¼ φΔt vn�1

h , wn�1
h

� �
with φΔt ¼ φΔt

k

� �
k¼1,…,6.

LINDNER ET AL. 5 of 23
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3.2.2 | Explicit Euler method for the calcium concentration

The ODE (7b) for the calcium concentration is not stiff. Hence, for given vn�1
h , cn�1

h , wn
h

� �
, we can simply update cn�1

h

with one step of the explicit Euler method

cnh ¼ cn�1
h þΔtGc vn�1

h , cn�1
h , wn

h

� �
: ð9Þ

Combining the exact solution (8) with the explicit Euler approximation (9) plus an explicit Euler approximation of the
nonlinear part of (10) is called Rush-Larsen method; compare, references 5,20,21.

3.2.3 | Time stepping for the transmembrane voltage

In the third sub-step the solution of the semi-linear parabolic equation

CmMh∂ tvhþAhvhþF t, vh, cnh, w
n
h

� �¼ 0 for t � tn�1, tnð Þ with vh tn�1ð Þ¼ vn�1
h ð10Þ

with F t, vh, ch, whð Þ¼ℳh I ion vh, ch, whð Þ� Iext t, �ð Þð Þ has to be approximated for given vn�1
h , cnh, w

n
h

� �
.

We compare several options:
(GS) A standard approach for the monodomain problem is the Godunov splitting: with ∂ tvh ≈ Δtð Þ�1 vnh� vn�1

h

� �
and

F t, vh, ch, whð Þ≈MhΠh Iion vh, ch, whð Þ� Iext tð , � Þð Þ, we can introduce an intermediate update vn�1=2
h and define

vn�1=2
h ¼ vn�1

h �ΔtC�1
m I ion vn�1

h , cnh, wn
h

� �� Iext tnð , � Þ� �
, ð11aÞ

CmMhþΔtAhð Þvnh ¼CmMhv
n�1=2
h : ð11bÞ

This corresponds to one step of the Godunov splitting (which is rather called Lie–Trotter splitting in numerical analysis)
applied to (10). In this form it is realized, for example, in openCARP.22 For our tests we improve the approximation of
the external current Iext by numerical integration, that is,

vn�1=2
h ¼ vn�1

h �ΔtC�1
m I ion vn�1

h , cnh, w
n
h

� �
, ð12aÞ

CmMhþΔtAhð Þvnh ¼CmMhv
n�1=2
h þΔtℳhIext tn, �ð Þ: ð12bÞ

In comparison with other splitting schemes, we use (12) to exclude the error from the difference MhΠh�ℳhð ÞIext in
the evaluation of the external current.

As an alternative to (GS) the following implicit methods are considered:
(IE-SVI) The implicit Euler method computes the approximation vnh by solving the nonlinear equation

CmMhþΔtAhð Þvnh�CmMhv
n�1
h þΔtF tn, vnh, c

n
h, w

n
h

� �¼ 0 ð13Þ

with several Newton steps.
(LI-SVI) If only one single Newton step is used, then this yields the linearly implicit scheme

CmMhþΔtAhþΔt ∂vF tn, vn�1
h , cnh, wn

h

� �� �
vnh ¼CmMhv

n�1
h þΔt ∂vF tn, vn�1

h , cnh, wn
h

� �
vn�1
h �F tnð , vn�1

h , cnh, w
n
hÞ

� �
ð14Þ

6 of 23 LINDNER ET AL.
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with ∂vF tn, vh, ch, whð Þ¼ℳh∂vIion vh, ch, whð Þ.
(SI-SVI) If only the linear part of (10) is treated with the implicit Euler method, whereas the nonlinear part is

updated with the explicit Euler method, then this leads to the semi-implicit method

CmMhþΔtAhð Þvnh ¼CmMhv
n�1
h �ΔtF tn, v

n�1
h , cnh, w

n
h

� �
: ð15Þ

The SI-SVI differs from (12) only in evaluation of total ionic current, where MhΠhI ion vh, ch, whð Þ is replaced
by ℳhI ion vh, ch, whð Þ.

The finite element matrix CmMhþΔtAh is identical for all time steps and has to be assembled only once if the Godu-
nov splitting (GS) or the semi-implicit method (SI-SVI) are used in the third sub-step (3). For the linearly implicit
scheme (LI-SVI) we have to assemble and add the derivative of F in every time step. The implicit Euler method (IE-
SVI) is even more demanding, because here this has to be done in each iteration of Newton's method. For the SVI
method, the right-hand side F t, vh, ch, whð Þ¼ℳh I ion vh, ch, whð Þ� Iext t, �ð Þð Þ has to be assembled in every time step.
This can be simplified by the approximation F t, vh, ch, whð Þ≈MhΠh I ion vh, ch, whð Þ� Iext t, �ð Þð Þ using nodal interpo-
lation (ICI) and then multiplication with the sparse mass matrix Mh; this is realized by the Godunov splitting (11).

The ODEs (7b) and (7c) are solved in parallel at all nodal points x�N h. The only global interaction is the solution
of the PDE (7a) in every time step. In case of the Godunov splitting, (12a) is solved in parallel for all nodal points and
only for the diffusion part (12b) a global interaction is present.

In the component-wise splitting described above, the three sub-problems (1), (2), (3) are propagated one after
another with the same step-size Δt. This yields a first-order method, that is, the global error of the time integration is
O Δtð Þ under certain regularity assumptions on the exact solution. A second-order method with error O Δt2ð Þ could, in
principle, be obtained if the three sub-steps were arranged in a symmetric way, and if the numerical schemes in each of
the sub-steps were replaced by second-order schemes. However, each time step of a second-order method is more costly
than a step with a first-order method. Typically, one expects that the higher costs per time step are compensated by a
higher accuracy, such that a much larger step-size and thus a smaller number of time steps can be chosen. However,
this is only true if the problem is sufficiently regular, and such a degree of regularity cannot be expected for the problem
(1). This is the reason why we consider only first-order time integration in this work. Since the component-wise split-
ting is a first-order method, it does not give much of an improvement to replace the explicit Euler method in step (2) by
a higher-order Runge–Kutta method; this is confirmed by numerical tests (this can be reproduced with our code in the
git repository23 by changing the calcium update in the staggered scheme). On the other hand, higher order time
stepping schemes for the ODE system are successfully applied to cardiac electrophysiology24 without PDE coupling.

4 | NUMERICAL EVALUATION OF TIME-STEPPING SCHEMES

In our numerical investigations, we propose, in a first step, a benchmark configuration in form of a truncated ellipsoid,
where the excitation is initiated at the bottom by an external current, which is smooth in space and time. The accuracy
and efficiency of the different schemes are measured by the evolution of the transmembrane voltage at several test
points. In a second step, we perform a convergence test in space and time by evaluating the activation time on a realistic
bi-ventricular domain. This requires to include a physiological stimulation model representing the effect of the His-
Purkinje system.

We start with a precise definition of the test configuration. Then, we provide a reference solution, which is used for
the evaluation of the different approaches. Finally, we test numerically the convergence in space and time of the activa-
tion time for a full bi-ventricular geometry.

4.1 | A benchmark configuration for the monodomain model

In the computational domain Ω we prescribe fiber directions f :Ω!ℝ3 which define the conductivity tensor in (1a)

D xð Þ¼Dl f xð Þ
O

f xð ÞþDt I� f xð Þ
O

f xð Þ
	 


�ℝ3�3
sym, x�Ω, ð16Þ
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depending on the conductivities Dl and Dt in longitudinal and transversal direction (see Appendix B.1 for all parameters
and mesh data). To avoid a reduction of the regularity, we use only the space and time continuous version of Iext
defined in (4) in our simulations.

For the convergence tests, we consider the transmembrane voltage v t, zkð Þ in 0, Tð Þ at selected points zk �Ω. Fur-
thermore, we determine the activation time at these points zk, which is a frequently used quantity in the comparison of
different cell models. In our benchmark scenario, we use an ellipsoid approximating the human ventricle, where the
geometry is truncated and the final time T¼ 30 ms is chosen so that all evaluation points are activated in 0, Tð Þ. The
evaluation points zk for the truncated ellipsoid are illustrated in Figure 1 (yellow dots) as well as the stimulus area Ωexc

for the discrete external current on the coarse grid. In this test, we use only one stimulation area, that is, nstim ¼ 1. The
position of the evaluation points zk are described in detail in Table B1.

As a first test geometry, we used an idealized left ventricle based on the truncated ellipsoid defined in reference 12
with a fiber orientation ranging from �60� at the epicardial surface to þ60� at the endocardial surface. Furthermore,
the geometry was truncated closer to the apex to reduce the computational load and discretized with a tetrahe-
dral mesh.

Let h0 > 0 be the mesh size of the coarse mesh, and let Δt0 be the largest time step-size. The convergence is investi-
gated by refining in space with mesh size hℓ ¼ 2�ℓh0 on space level ℓ�ℕ0 and in time with Δtj ¼ 2�jΔt0 on time level
j�ℕ0, see Table 1, where we also include the mesh data for ℓ¼ 0,…,6. Note that the coarse mesh (ℓ¼ 0) is only used to
represent the geometry. At least three uniform mesh refinements are required for a sufficient approximation of the evo-
lution of the system. The corresponding discrete solution is denoted by vj,ℓ. The distribution of the edge length Δx of
the tetrahedral elements of the truncated ellipsoid is plotted for ℓ¼ 0. For the higher levels, the distribution will be the
same, only the absolute values of Δx is halved with every refinement.

All numerical experiments are performed on the high performance computing system HoreKa at KIT using the par-
tition cpuonly. The problem is solved with the open source parallel finite element system M++.23 The number of paral-
lel processes was between 64 and 8192 depending on the problem size and memory requirements. The scalability of the

FIGURE 1 Geometry and coarse mesh on level ℓ¼ 0 for the truncated ellipsoid (left and middle), activation area Ωexc,1 and evaluation

points zk (right).

TABLE 1 Mesh data for the space levels ℓ for the truncated ellipsoid configuration and time discretization on time levels j. Here, Δx is

the length between two nodes of the mesh in mm. The figure on the right shows the relative frequency of different edge lengths in the mesh

for ℓ¼ 0.

ℓ minΔx maxΔx # cells # vertices j Nj Δtj (ms)

0 0.22682 1.26099 18,136 3954 0 300 0:1

0 0.5 1 1.5 2
0

10

20

30

40

edge length ▵ (mm)

nu
m
be
ro
fe
dg
es
(%
)1 0.11341 0.63049 145,088 27,851 1 600 0:05

2 0.05670 0.31524 1,160,704 208,021 2 1200 0:025

3 0.02835 0.15762 9,285,632 1,605,673 3 2400 0:0125

4 0.01417 0.07881 74,285,056 12,612,689 4 4800 0:00625

5 0.00708 0.03940 594,280,448 99,973,281 5 9600 0:003125

6 0.00354 0.01970 4,754,243,584 796,078,401 6 19200 0:0015625
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results regarding the CPU time is ensured, see, for example, Table 2 for a test with fixed levels in space and time,
respectively.

4.2 | The reference solution

In the first step, we compute an asymptotic reference solution for the ellipsoidal configuration with different mesh
sizes and time step-sizes. We investigate in detail LI-SVI and SI-SVI by comparing the approximations of the trans-
membrane voltage computed with very fine discretizations in space and time for both time integration methods. By
extrapolation in space and time, we estimate the accuracy of the evolution of the transmembrane voltage at selected
points.

In Figure 2, the evolution of the transmembrane voltage at z4,z5,z6,z7 �Ω and the convergence in space and in time
at z6 is shown for LI-SVI. The excitation wave arrives in the expected sequence depending on the fiber directions and
the distances to the stimulus located in Ωstim.

The computation of the error for the finest approximations of LI-SVI and SI-SVI is based on the estimate of the con-
vergence order in space and time. From the differences of the solutions in space vj,ℓ � , zkð Þ� vj,ℓ�1 � , zkð Þ and in time
vj,ℓ � , zkð Þ� vj�1,ℓ � , zkð Þ, compare, Table 3, the asymptotic convergence rate can be estimated from the factors f j,ℓ and
gj,ℓ defined by

f j,ℓ ¼
k vj,ℓ�1� vj,ℓ�2kL2 0, Tð Þ
k vj,ℓ� vj,ℓ�1kL2 0, Tð Þ

≈ 2sspace , gj,ℓ ¼
k vj�1,ℓ� vj�2,ℓkL2 0, Tð Þ
k vj,ℓ� vj�1,ℓkL2 0, Tð Þ

≈ 2stime , ð17Þ

that is, sspace ≈ log2f j,ℓ is the estimated convergence rate in space and stime ≈ log2gj,ℓ in time. Using extrapolation (see,
e.g., ref. 25 Chapter 4.2.8), the limit approximations in space vj,∞ and time v∞,ℓ for j¼ 0,…,J and ℓ¼ 0,…,L are computed
from the finest computation on ℓ¼L and j¼ J by

vj,∞ ¼ f j,L
f j,L�1

vj,L� 1
f j,L�1

vj,L�1, v∞,ℓ ¼ gJ,ℓ
gJ,ℓ�1

vJ,ℓ� 1
gJ,ℓ�1

vJ�1,ℓ: ð18Þ

TABLE 2 CPU time for different number of processes for the semi-implicit (SI-SVI) approach, fixed space level ℓ¼ 3 and fixed time

level j¼ 3 with the benchmark configuration.

Procs 64 128 256 512 1024

CPU time (hours:minutes:seconds) 1:10:49 31:54 15:54 8:33 5:11

0 5 10 15 20 25 30

−50
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50

time (ms)
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FIGURE 2 Evolution of the transmembrane voltage v at the different evaluation points zk �Ω of our benchmark configuration

(cf. Figure 1) computed with the LI-SVI, and convergence of the LI-SVI scheme to the reference solution in space with fixed j¼ 3 and in time

with fixed ℓ¼ 5 evaluated for vj,ℓLI t, z6ð Þ, t � 10, 15½ � ms.
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For both schemes, we observe quadratic convergence in space, compare, Table 3. For LI-SVI, we observe linear conver-
gence in time. This is not as good for the SI-SVI scheme, where nearly linear convergence in time is observed only for
sufficiently small time steps.

Quadratic convergence in space and linear convergence in time is now used to estimate the accuracy of the finest
solutions by extrapolation first in space and in time, and then in both. This yields

v5,∞ ¼ 4
3
v5,5�1

3
v5,4, v∞,5 ¼ 2v5,5� v4,5, v∞,∞ ¼ 2v5,∞� v4,∞:

Now the reference solutions vrefLI ¼ v4,6LI and vrefSI ¼ v5,6SI are compared in Table 4 with the extrapolations.
We observe that the relative error estimated by extrapolation in space (left) and in time (middle) is nearly equili-

brated, and extrapolating in space and time (right) shows that the relative error of vrefSI is below 0.5% in both tests points.
Since vrefLI is computed with larger time steps, the estimated error is larger. However, the difference of the two solutions

k vrefLI � , z6ð Þ� vrefSI � , z6ð ÞkL2 0, Tð Þ
k v∞,∞

LI � , z6ð ÞkL2 0, Tð Þ
¼ 0:0089494

is below 1%, so that for both reference solutions the estimated error is of the same magnitude.
In summary, we observe that the errors in space and time for the linearly implicit scheme (LI-SVI) are balanced

even for coarse space discretizations, and we can obtain the expected convergence orders in space and time. Neverthe-
less, the semi-implicit scheme (SI-SVI) is more accurate for the same discretizations, even if the space error is dominant
and the time convergence cannot be observed for larger step-sizes.

4.3 | Comparison of different approximation schemes for the total ionic current

In general, we use the L2-projection (SVI) for the evaluation of cnh, w
n
h

� �
in (7a). Since the ODEs in (7b) and (7c) are

solved on the nodal points only, simply using Lagrange interpolation (ICI) in (7a) is numerically cheaper, but also less
accurate as reported by Pathmanathan et al.19 for the semi-implicit case (SI). Here, this is confirmed for the linearly
implicit scheme on our ellipsoidal benchmark configuration, compare, Table 5: the Lagrange interpolation takes ≈ 25%
less CPU time than the SVI approach. However, to achieve the same accuracy, one more space refinement is needed,
which results in an approximately 12 times longer CPU time compared to the SVI on the lower level. In comparison
with the reference solution the convergence of vj,ℓ � , z6ð Þ to the reference solution in space and in time is monotone for
SVI but not for ICI, where the error is smaller for ℓ¼ j. This effect was also observed in reference 19 for different space
discretizations. In summary, we conclude that the SVI approach is more efficient than ICI.

4.4 | Convergence of the conduction velocity

The spatial convergence behavior of the conduction velocity (CV) is investigated for the benchmark setup using the
semi-implicit scheme (SI-SVI). The CV between two points x,y �Ωact is defined by

TABLE 4 Estimates for the relative error for the reference solutions.

kv5,∞ � , zkð Þ�vref � , zkð ÞkL2 0, Tð Þ
kv5,∞ � , zkð ÞkL2 0, Tð Þ

kv∞,5 � , zkð Þ�vref � , zkð ÞkL2 0, Tð Þ
kv∞,5 � , zkð ÞkL2 0, Tð Þ

kv∞,∞ � , zkð Þ�vref � , zkð ÞkL2 0, Tð Þ
kv∞,∞ � , zkð ÞkL2 0, Tð Þ

vrefLI � , z6ð Þ 0:0055 0:0068 0:0089

vrefLI � , z7ð Þ 0:0114 0:0050 0:0164

vrefSI � , z6ð Þ 0:0018 0:0026 0:0013

vrefSI � , z7ð Þ 0:0059 0:0070 0:0046
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cvel v, x, yð Þ¼ k x�y k
j tact v, xð Þ� tact v, yð Þ j with Ωact vð Þ¼ x�Ω : v t, zð Þ≥ vact for some t� 0, T½ �f g�Ω ð19Þ

depending on the activation time tact

tact v, zð Þ¼ min t � 0, T½ � : v t, zð Þ≥ vactf g, z�Ωact ð20Þ

indicating for a point z the time t� 0, T½ � when the transmembrane voltage v is larger than vact > v0 for the first time.
We use vact ¼�40 mV (see Refs. 8,10) and a spatially constant initial voltage v0 xð Þ¼ v0 ¼�84:57 mV.

Figure 3 shows the activation patterns in the truncated ellipsoid for two different mesh resolutions. To measure the
distance between the two points in the definition of (19), we use the geodesic distance in the truncated ellipsoid. To
investigate the space convergence of the CV, we choose two pairs of points x,y �Ω: one pair in the center of the myo-
cardial wall and one on the inner surface (details in Table B1). Fixing the step-size at j¼ 4, the conduction velocity con-
verges linearly in space in the center of the myocardial wall and nearly linear at the inner surface points, compare,
Table 6.

We observe, that the CV does not change significantly for space discretizations larger than ℓ¼ 3. Again, the activa-
tion pattern confirms the convergence of the scheme and shows smaller activation times tact for the finer space
discretizations.

4.5 | Comparison of the time integration approaches for the transmembrane voltage

Next, we compare the performance of the different splitting approaches defined in Section 3.2. Recall that the gating
variables and the calcium concentrations are approximated in exactly the same way in all methods, whereas different
approaches are used for the approximation of the transmembrane voltage: the Godunov splitting GS scheme, which is
used in most applications, and the three implicit schemes IE-SVI, LI-SVI, and SI-SVI. For the evaluation, we compare
the parallel computing time to solve the benchmark problem and the estimated error with respect to the reference solu-
tion vrefSI

TABLE 5 Accuracy of the transmembrane potential at z6 for the L2-projection (SVI) and the Lagrange interpolation (ICI) compared to

vrefLI (left) and the required parallel CPU time (given in hours:minutes:seconds) (right) to solve the full system of the benchmark

configuration with the linearly implicit scheme (LI).

k vj,ℓ � , z6ð Þ�vrefLI � , z6ð ÞkL2 0, Tð Þ SVI ICI

ℓ¼ 3 j¼ 3 0:2794 0:4142

j¼ 4 0:2330 0:6917

j¼ 5 0:2134 0:8328

ℓ¼ 4 j¼ 3 0:1140 0:2211

j¼ 4 0:0622 0:1053

j¼ 5 0:0485 0:2526

Discretization

SVI ICI

Procs CPU time Procs CPU time

ℓ¼ 3 j¼ 3 512 11:43 512 10:11

j¼ 4 512 22:02 512 16:13

j¼ 5 512 42:07 512 30:36

ℓ¼ 4 j¼ 3 1024 1:06:44 1024 56:10

j¼ 4 1024 2:06:18 1024 1:34:51

j¼ 5 1024 3:39:28 1024 2:50:35
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ηSI zkð Þ¼ k vj,ℓ � , zkð Þ� vrefSI � , zkð ÞkL2 0, Tð Þ
k vrefSI � , zkð ÞkL2 0, Tð Þ

: ð21Þ

Figure 4 shows the relation between ηSI z6ð Þ and CPU time. The number of parallel processes differs for the experi-
ments; thus, to compare the CPU times in Figure 4, they are scaled to 256 processes by multiplying the CPU time
with #used procs=256.

For a fixed step-size with j¼ 4 (cf. left panel of Figure 4), we observe that SI-SVI is the most efficient scheme,
followed by LI-SVI. The accuracy of the implicit Euler method IE-SVI and the linearly implicit scheme LI-SVI are iden-
tical, because in our numerical tests it turned out that for the implicit Euler method one single Newton step was suffi-
cient to fulfill the stopping criterion. In this case, IE-SVI and LI-SVI yield exactly the same approximation. The reason
why the run-time of IE-SVI is slightly longer is that for the LI-SVI scheme a more efficient assembling routine is real-
ized: the semi-implicit part BΔt

h ¼CmMhþΔtAh of the linearization is assembled only once, and in every time step only
the nonlinear part of the linearization Δt ∂vF tn, vn�1

h , cnh, w
n
h

� �
is computed in addition. This is considerably faster than

assembling the full linearization in every Newton step.
For the fixed mesh level ℓ¼ 4 (cf. right panel of Figure 4), we also observe that SI-SVI is the most efficient scheme.

For the test point z6, the error ηSI z6ð Þ with respect to the reference solution is not improving for finer time steps with
j>2, which indicates that the error of the space discretization dominates. The computing time of the Godunov splitting
GS scheme is nearly the same as for the SI-SVI scheme, but the accuracy is considerably worse. The numerical realiza-
tion of the additional splitting (21) in GS is simpler than the assembling of the right-hand side SI-SVI. On the other
hand, the error is larger, for example, the error of v4,4SI�SVI is smaller than the error of v4,5GS on the next finer mesh level.
The main difference of the schemes is the approximation of the total ionic current as explained in Section 3.2. In sum-
mary, for our benchmark scenario the semi-implicit method SI-SVI is the most efficient scheme.

FIGURE 3 Activation pattern for ℓ¼ 0 (left, including the evaluation points, compare, Table B1) and for ℓ¼ 3 (right, both computed

with fixed time level j¼ 4).

TABLE 6 Conduction velocities in m/s computed with the semi-implicit (SI-SVI) scheme on the truncated ellipsoidal mesh (left) and

the convergence of the conduction velocities in space (right) both for fixed time j¼ 4.

cvel vj,ℓ, xk , yk
� ��cvel vj,ℓ�1, xk , yk

� �
ℓ¼ 1 ℓ¼ 2 ℓ¼ 3 ℓ¼ 4

0 1 2 3 4

0.2

0.25

0.3

space level

CV
(m
/s)

myocardial wall
inner surface

myocardial wall k¼ 1ð Þ 0.0530 0.0311 0.0165 0.0068

inner surface k¼ 2ð Þ 0.0355 0.0242 0.0144 0.0063
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4.6 | Accuracy of the activation time on a bi-ventricular domain

For the truncated ellipsoid, we observe that SI-SVI is the most efficient scheme. Now we show that this transfers to a
full bi-ventricular configuration, compare, Figure 5. The geometric model used in this study is based on magnetic reso-
nance imaging (MRI) data of a 32-year-old healthy volunteer. The interested reader is referred to reference 18 for a
detailed description of the model. Here, we use only the ventricular part of the publicly available mesh.26

The convergence is tested by the convergence of the activation times tact v, xð Þ at all nodal points x�N h0 . This is
evaluated for a physiological stimulation scenario at the Purkinje muscle junctions in the ventricles.

The computational domain Ω includes both ventricles. The fiber orientation is defined by a rule-based method27,28

with angles ranging from �41� at the epicardium to þ66� at the endocardium in agreement with human data from dif-
fusion tensor magnetic resonance imaging.29 The complex stimulation of the ventricles via the His-Purkinje system is
represented by the Purkinje muscle junction model as described in reference 30,-Chapter 5.3]). Every stimulation area
Ωstim,i, i¼ 1,…,669, models a leaf of the Purkinje tree, that is, a Purkinje muscle junction, defining tbeg,i � 0:0,0:027½ � in
seconds while the amplitude a¼ 30mV and the duration τ¼ 0:003 s are fixed for all i. For the following numerical
experiments, we use the smooth version of the external current Iext in space and time as described in Section 4.1. We
set T¼ 0:16 s, so that in our model the full domain is activated, that is, Ω¼Ωact. The discretization data in space are
given in Table 7, and in time we use Δtj ¼ 2�jΔt0 with Δt0 ¼ 0:4ms. The distribution of the edge length Δx is displayed
for the bi-ventricular mesh at ℓ¼ 0.

21 23 25 27 29 211 213
2−10

2−8

2−6

2−4

2−2

CPU time in min (256 parallel processes)

SI
(
6)

IE-SVI
LI-SVI
SI-SVI
GS

27 28 29 210

2−7

2−6

2−5

CPU time in min (256 parallel processes)

SI
(
6)

IE-SVI
LI-SVI
SI-SVI
GS

FIGURE 4 Work-precision diagram comparing the different time stepping schemes with fixed time step size with j¼ 4 for mesh levels ℓ

� {2, 3, 4, 5} (left) and with fixed mesh ℓ¼ 4 for j � {2, 3, 4, 5} (right), where the work load is the required CPU time to solve the benchmark

problem, and where the precision is estimated by ηSI z6ð Þ.

FIGURE 5 Geometry and coarse mesh on level ℓ¼ 0 for the ventricles (left and middle), activation areas Ωstim,i and starting times tbeg,i,

i¼ 1,…,669 modeling the His-Purkinje system (right). The mesh features holes in the right ventricular outflow tract where the pulmonary

artery connects (left) and at the atrio-ventricular valves (middle and right). The entire domain is electrically active.

14 of 23 LINDNER ET AL.

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3666 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



For fixed j¼ 4, the distribution of the activation time tact x, vj,ℓ
� �

, x�Ω, is displayed in Figure 6 for ℓ¼ 0 and ℓ¼ 2.
We observe that the depolarization wave propagates faster on the finer discretization so that the points x�ΩnΩexc are
earlier activated. As expected, ℓ¼ 0 is not fine enough to reproduce the activation time (and thus also the conduction
velocity) sufficiently accurate, and for ℓ¼ 0 and j¼ 0 the domain is not fully activated (n.f.a.) in 0, Tð Þ

To investigate the accuracy and convergence of the activation pattern, we compute

tact vð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
j N h0 j

X
x �N h0

tact v, xð Þ2
vuut , η v, wð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j N h0 j
X

x �N h0

tact v, xð Þ� tact w, xð Þð Þ2
vuut ð22Þ

for different discretizations, compare, Table 8. We observe in the limit at least linear convergence in space, and the
results show clearly that the error in space is dominant, so that in time the resolution for j¼ 2 is sufficient. With larger
time steps the activation pattern prescribed by Iext cannot be resolved, so that a minimal resolution of Δt0 ¼ 0:4ms is
required. By extrapolation, we can estimate that for the reference solution v4,4 the error of tact v4,4ð Þ is below 1%.

The reference solution v4,4 is computed on 4096 processor kernels in 5:18 h.

4.7 | A case study with heterogeneous conductivity

Finally we show that our method yields reliable results also in scenarios with spatially heterogeneous conductivity. As
an example, we study the case that the conductivity tensor D is scaled by a factor 1/9 within a ball of 20mm radius

TABLE 7 Mesh data for the space levels ℓ for the bi-ventricular domain and time discretization on time levels j. Here Δx is the length

between two nodes of the mesh, the length scale is mm. The edge length and relative frequency for the mesh is shown for ℓ¼ 0 (for the

refined meshes the edge length and relative frequency is nearly identical).

ℓ minΔx maxΔx # cells j Nj Δtj (ms)

0 0:365865 6:189215 102625 0 400 0:400

0 2 4 6
0

10

20

30

edge length ▵ (mm)

nu
m
be
ro
fe
dg
es
(%
)1 0:182933 3:216390 821000 1 800 0:200

2 0:091466 1:608195 6568000 2 1600 0:100

3 0:045733 0:804098 52544000 3 3200 0:050

4 0:022867 0:402049 420352000 4 6400 0:025

FIGURE 6 Activation pattern for the ventricles with fixed j¼ 4 with Δtj ¼ 0:00625ms for ℓ¼ 0 (left) and ℓ¼ 2 (right).
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around the apex, which reduces the conduction velocity approximately by a factor 3. This scenario can be considered as
a simplistic representation of a slow conducting myocardial infarction scar. In this case, we observe that the activation
time pattern near the apex is qualitatively very well identified already for the coarsest levels in space and time
(Figure 7). This coarsest representation can be computed within less than 1min on node with 64 parallel cores. On
levels ℓ¼ j¼ 1 and ℓ¼ j¼ 2 (computed within 1 h on 64 cores), the results on the surface are already quite close. From
the convergence test for homogeneous conductivity, we expect also for this application that the overall error is in the
range of a few percent.

5 | CONCLUSION

Splitting (and other) methods for advection–diffusion–reaction equations are widely used and have been reviewed in
reference 31. A mathematically rigorous error analysis of different splitting methods for various types of nonlinear para-
bolic PDEs can be found, for example, in references 32–39. A corresponding analysis for the setting considered in this
work has, to the best of our knowledge, not been carried out so far.

In this study, we defined a benchmark problem on a truncated ellipsoid approximating the left ventricle. This extends
the convergence tests for the conduction velocity in Woodworth et al.10 for a rectangular domain to unstructured 3d
meshes. Moreover, it also extends the results of Pathmanathan et al.19 to the truncated ellipsoid with the linearly implicit
scheme instead of the semi-implicit component-wise splitting scheme and shows that the SVI approach is more efficient
than the Lagrange interpolation of the total ionic current ICI. Additionally, we compared the convergence behavior, the
accuracy, and the efficiency of different time splitting schemes evaluating the transmembrane voltage. Krishnamoorthi
et al. evaluated different lumping variants and the effect of the mesh size on physiological properties such as the conduc-
tion velocity of the depolarization wave.11 We confirmed the difference of the approximations by ICI and SVI on the ana-
tomically relevant electrophysiology benchmark problem, and we extended the investigation to a full time and space
convergence study. We showed that the reaction–diffusion splitting has the same numerical behavior as the ICI ansatz as
it was supposed in reference 19. Furthermore, we showed that a component-wise splitting method with SVI is more

= = 0 = = 1 = = 2

= = 0 = = 1 = = 2

FIGURE 7 Activation time pattern (in ms) in the ventricles for a pathological case with reduced conductivity at the apex.
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efficient than the reaction–diffusion splitting or component-wise splitting combined with ICI. A main observation is that
the stability of component-wise splitting is considerably improved by replacing the Lagrange interpolation in the PDE-
ODE coupling by the L2 projection. The smoothness of the external current in space and time has a strong influence on
the convergence properties for solutions of the transmembrane voltage, thus the stimulus current requires suitable reg-
ularization. The depolarization changes the transmembrane voltage from approximately �90 to 20mV within millisec-
onds, so that time step-sizes Δt<0:1ms are required to capture the fast dynamics. Thus, the time step is so small within
the implicit Euler scheme IE-SVI that one Newton step is sufficient to achieve convergence, that is, the linearly implicit
method LI-SVI and IE-SVI compute the same approximations. Additionally, we observed that an explicit evaluation of
the total ionic current in the semi-implicit scheme SI-SVI does neither deteriorate the accuracy nor causes stability
problems although the convergence region is shifted to smaller step-sizes.

The main difference of the Godunov splitting GS and the semi-implicit scheme is the approximation of the total
ionic current Iion in space, so that the better performance of SI is mainly due to the better approximation of I ion.

In space, we used linear conforming approximations, which is the standard approach. Nevertheless, a multitude of
space discretizations has been studied, for example higher order elements,40,41 isoparametric finite elements,11,42 adap-
tive methods43,44 and non-conforming elements.45 Our results complement these contributions by a comparison of time
discretizations. For the monodomain system, also further finite methods including discontinuous Galerkin approxima-
tions were proposed.44,46 since our finite element system M++ also includes nonconforming and discontinuous Gal-
erkin approximations, future studies will investigate the synergy between modern discretization in space and optimal
time stepping.

For this study, we restricted ourselves to the monodomain equation coupled with the Beeler–Reuter cell model17

describing the evolution of the calcium ion concentration and six gating variables. This cell model is well established
and includes the characteristic properties (including fast gating kinetics) which make the design of efficient and stable
schemes challenging. The advantages of SI-SVI or LI-SVI will likely transfer to more complex cell models, as the model
by ten Tusscher and Panfilov,47 O'Hara and Rudy48 or Courtemanche.49

The results from the benchmark problem were extended to a realistic bi-ventricular setting, where we investigated
the convergence in space and time as well as the accuracy of the activation times using the semi-implicit scheme pro-
posed in reference 14. We showed that the results for the benchmark problem of the truncated ellipsoid transfer to an
anatomically even more realistic setup of a bi-ventricular mesh with a complex stimulation model by a convergence
study for the activation time. The activation pattern converges at least linear in space using the SI-SVI and the domi-
nance of the space error on the coarse meshes is confirmed. In particular, we demonstrated that state-of-the-art high-
performance computing facilities and the efficient realization of parallel numerical methods can approximate complex
models very accurately within reasonable computing time.

We showed that using the semi-implicit SI-SVI or the linearly implicit LI-SVI scheme will increase stability and
accuracy on irregular complex coarse meshes. The proposed time integration schemes can be adapted by established
cardiac electrophysiology simulation packages,22 can be incorporated in full heart electro-mechanical simulations18 and
potentially also in other application domains like modeling of gastrointestinal electrophysiology.50
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APPENDIX A: The Beeler–Reuter cell model

The Beeler–Reuter cell model17 is defined by the transmembrane voltage v, the intracellular ion concentration of cal-
cium c, and six gating mechanisms w¼ w1, …, w6ð Þ¼ d, f , m, h, j, x1ð Þ. The total ionic current I ion v, c, wð Þ is the sum
of the two inward currents

Is v, c, d, fð Þ¼ gsdf v�Es cð Þð Þ, INa v, m, h, jð Þ¼ gNam
3hjþ gNaC

� �
v�ENað Þ,

and the two outward currents

Ix1 v, x1ð Þ¼ x1
0:8 exp 0:04 vþ77ð Þð Þ�1ð Þ

exp 0:04 vþ35ð Þð Þ , IK vð Þ¼ 1:4 exp 0:04 vþ85ð Þð Þ�1ð Þ
exp 0:08 vþ53ð Þð Þþ exp 0:04 vþ53ð Þð Þþ

0:07 vþ23ð Þ
1� exp �0:04 vþ23ð Þð Þ ,

with the reversal potential Es cð Þ¼�82:3�13:0287log cð Þ and ENa ¼ 50 mV. Corresponding to reference 17 the con-
stants are set to

gNa ¼ 4mS=cm2, gNaC ¼ 0:003mS=cm2, gs ¼ 0:09mS=cm2:

The opening and closing rates αk vð Þ and βk vð Þ in (5) are defined by

αk vð Þ¼C1,k exp C2,k vþC3,kð Þð ÞþC4,k vþC5,kð Þ
exp C6,k vþC3,kð Þð ÞþC7,k

, βk vð Þ¼C1,k exp C2,k vþC3,kð Þð ÞþC4,k vþC5,kð Þ
exp C6,k vþC3,kð Þð ÞþC7,k

depending on different parameters C1,k,…,C7,k ≥ 0 for k¼ 1,…,6, compare, Table A1.
The potentials are given in mV, the calcium concentration in mol/l and the gating variables are dimensionless. The

initial values at t¼ 0 are constant in space and set to.

v0 ¼�84:57mV, Ca0 ¼ 0:0000002
mol
l

, w0 ¼ 0:002980, 1:0, 0:9877, 0:975, 0:011, 0:00565ð Þ:

In Gc from (6) the constants are defined as wc ¼ 0:07 and αc ¼ 10�7. As the gating variables model the status of a gate
they switch very fast between zero and one and adopt only values in 0, 1½ �. As c models the calcium concentration in a

TABLE A1 Constants to define αy and βy for every gate with Equation (9).

C1,k C2,k C3,k C4,k C5,k C6,k C7,k

αm � α3 0 0 47 �1 47 �0.1 �1

βm � β3 40 �0.056 72 0 0 0 0

αh � α4 0.126 �0.25 77 0 0 0 0

βh � β4 1.7 0 22.5 0 0 �0.082 1

αj � α5 0.055 �0.25 78 0 0 �0.2 1

βj � β5 0.3 0 32 0 0 �0.1 1

αd � α1 0.095 �0.01 �5 0 0 �0.072 1

βd � β1 0.07 �0.017 44 0 0 0.05 1

αf � α2 0.012 �0.008 28 0 0 0.15 1

βf � β2 0.0065 �0.02 30 0 0 �0.2 1

αx1 � α6 0.0005 0.083 50 0 0 0.057 1

βx1 � β6 0.0013 �0.06 20 0 0 �0.04 1

1
ms

1
ms

1
mV

mV 1
mV �ms

mV 1
mV

—
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cardiac cell it is always positive and during one action potential it has values between 2 �10�7, 6 �10�6½ � mol/l. The phys-
iological range of the transmembrane voltage v is in �90, 20½ � mV.

APPENDIX B: Numerical setup

B.1 | Parameters and constants for the numerical simulations
The domain Ω is measured in mm. The surface-to-volume-ratio is given by χ¼ 140 mm�1, the membrane capacitance
is set to Cm ¼ 0:01 �10�6 F/mm2, and the anisotropic conductivity in (16) is defined by the parameters

0 1 2 3 4
0

5

10

15

20
ext = 4
ext = 10
ext = 50

Ω
Ωstim

Ωexc

excΩstimΩΩΩΩstimm

FIGURE B1 Smoothed external stimulus for different sext with fixed a¼ 20, tbeg ¼ 0, τ¼ 2 and example to illustrate Ωexc (left) and

visualization of the full ellipsoid and fiber orientation in the truncated ellipsoid (right).

TABLE B1 Evaluation points in the truncated ellipsoid, compare, Figures 1 and 3.

z1 = (0.0, 0.0, �17.0) Grid point at apex endocardial excited

z2 = (0.0, 0.0, �20.0) Grid point at apex epicardial

z3 = (0.88, 3.28, �16.95) Grid point inner wall middle of ellipsoid

z4 = (0.2, 0.2, �17.4) Besides grid next to z1

z5 = (0.1, 0.1, �19.8) Besides grid next to z2

z6 = (�0.98, �3.3, �16.2) Besides grid next to z3

z7 = (�1.6, 4.5, �15.8) Besides grid in wall,

Opposite(y-direction) of z6

x1 ¼ �2:571,0:0, �15:811ð Þ y1 ¼ �5:617,0:0, �10:105ð Þ Myocardial wall

x2 ¼ 0:0,5:166, �14:656ð Þ y2 ¼ 0:0,6:971, �10:556ð Þ Inner surface
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Dl ¼ 0:0001334177215 Smm�1, Dt ¼ 0:00001760617761 Smm�1:

The mesh data and the fiber orientation are available in the data file data/monodomain/Orientation.vtu within our git
repository.23 A standard choice for the constants of the external current is the amplitude a xð Þ¼ 20μA=cm2 for all
x�Ωstim, the scaling factor sext ¼ 4, the start time tbeg,i ¼ 0:0 and τj ¼ 0:002 s for all i¼ 1,…,nstim. In Figure B1 the depen-
dence of the time-continuous version of Iext on the scaling factor sext is plotted at one stimulation point for fixed ampli-
tude and duration (Table B1).
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