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Abstract: This article presents an artificial drug abusers system consolidating the impact of treatment
with psychological and physiological addicts under fuzzy parameters. In the fuzzy model, all of
the parameters are considered to be triangular fuzzy numbers to represent the uncertainty that
pervaded the dynamics. To handle the arrangements while avoiding problems, the fuzzy model
is turned into a defuzzified model using the utility function method. The fuzzy model’s positivity
and boundedness are carefully explored, and an equilibrium analysis is also completed. Both the
drug-addict equilibrium and the drug-free equilibrium have established stability analyses. This
article explains fuzzy optimum control using Pontryagin’s maximum principle. Finally, it is shown
that the treatment alongside counselling and conducting awareness programs is more fruitful and
drug-related controlling is more viable in the fuzzy nature. Likewise, we plot the 3D associations
with fuzzy parameters which show the inventiveness and appropriateness of the results.

Keywords: fuzzy parameters; artificial drugs; psychological addicts; physiological addicts;
optimal control

1. Introduction

Artificial drugs such as ecstasy, ketamine, and crystal methamphetamine are more
popular in drug markets as they essentially appear in entertainment venues [1]. What is
worse is that artificial drugs are more addictive because they directly affect the central
nervous system and exhibit a higher level of psychological reliance than conventional
narcotics such as heroin, morphine, and marijuana, among others. Moreover, artificial drugs
are continually advancing and have extraordinary fluctuation. Drugs such as amphetamine
are for the most part utilized in unambiguous districts such as Goa and Ahmedabad in
India [2]. A new report shows that medication use in India continues to develop quickly,
and all the more shockingly, heroin has supplanted normal opium [3–5]. Most artificial
drugs are fabricated in an illegal laboratory, and there are no security estimates utilized in
the manufacture of artificial drugs. At the point when a dependent individual endeavors to
stop, he/she might encounter truly disagreeable withdrawal side effects which can bring
down their determination to continue with forbearance and in any case entangle early
recuperation. In this manner it is exceptionally vital for rational measures to check the
present spread of artificial drugs.

Most of the time, studying drug misuse and how it affects everyone is an impossible
task. According to a report, the number of people using artificial drugs is currently
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increasing. The global standard is that there are one to five explicit drug addicts for every
implicit one. The true drug addicts in every nation are significantly more than just those
registered at such levels. Another tendency of the spread of fake pharmaceuticals is the
rising death of young people. Many researchers [6–11] have alluded to drug use spreading
like an infectious disease. Their focus has mainly been on modelling epidemics. The
elements of smoking and alcoholic models examined the effects on general wellbeing places.
A mathematical model was created by Nyabadza [12] to show how methamphetamine
spread across a South African region. According to their findings, a relapse is inevitable in
hard drug users after a person has recovered if the fundamental reproduction number is
more than one. Subsequently, it is important to expect that backsliding can happen among
people who have history of illicit drug use. Liu [1] formed an artificial drugs transmission
model with treatment and concentrated on the stability and bifurcation investigation of
the model. Wang [13] utilized a second compound lattice hypothesis to concentrate on
worldwide asymptotically stable drug-free and drug-use equilibrium points. Samantha [5]
developed a non-independent medications model and obtained the adequate states of the
worldwide asymptotic dependability of the model.

The survey carried out has produced some graphs (From Figures 1–3) showing that
the number of artificial drug users is constantly increasing. For example, since 2019, the
number of drug users in the world has increased by 29.5%, and by the end of 2021, there
were almost 8.746 million drug users in the world, including 4.98 million artificial drug
users, representing 54.6% of all drug users. World practice shows that the ratio of overt
and hidden drug addicts is 1:5. Thus, in each country the number of registered drug
addicts is much lower than the number of real drug addicts. In addition, young people are
increasingly becoming victims, which increases the artificial transfer of drugs. Some people
may think that they will not become addicted after one use, but this is a misconception. As
the literature shows, just one use can lead to addiction. Drug treatment and psychotherapy
are the main methods of treatment for drug addicts.
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Figure 3. Global Statistics of artificial drugs, precursors, and new psychoactive substances [3].

As far as we are aware, there is no effective treatment for drug addiction anywhere in
the world. Prescription drugs are the mainstay of treatment for drug users, just like they
are for other fixation infections. When an addict comes forward to a medical organization,
they first must go through detoxification to restore their brain’s neurons and relax, and
then they can undergo psychotherapy to repeatedly practice using drugs. In any case,
from the continuing addicts, we find the impact is not great. Many organic boundaries
may vary cooperatively with an occasionally changing climate that has an indispensable
impact on psychological addicts, physiological addicts, acceleration rate, treatment rate,
relapse rate, etc. To manage the issue, a few methodologies, such as interval approach,
fuzzy methodology, stochastic methodology, and dispersion approach, have been used by
scientists to portray the loose boundaries. Researchers have utilized the interval approach,
fuzzy approach, stochastic approach, and diffusion approach to show the imprecise pa-
rameters; however, the majority of these vulnerabilities stem from both regular variables
and human elements. These uncertainties are mostly caused by natural and human factors,
including climatic change, measurement error, and equipment limits. In a previous study,
Bassanezi [14] laid out a framework by examining the stability of dynamical systems using
fuzzy differential conditions. Mizukoshi [15], by virtue of beginning circumstances under
fuzzy differential circumstances, examined the dependability of fuzzy dynamical system.
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Bede and Lady [16], in consideration of the summed up differentiability, thought about the
arrangements of fuzzy differential conditions. Guo [17] applied fuzzy impulsive functional
differential conditions to a strategic model. The model combined with ill-defined biological
characteristics can be used to study the distinctive behaviors brought on by this uniqueness.
Through fuzzy analysis, Zhang [18] examined the SVIRS illness system with a Holling
type-II functional response, saturated incidence rate, and saturated treatment. The results
are reflected to be near to the nature of the system.

In order to determine the best control approach, optimal control theory is currently
extensively used in the research of infectious disease dynamics. Numerous authors [19–23]
have recently used the infectious disease dynamics model to examine addictions to drugs,
tobacco, video games, social media, and other behaviors. In order to comprehend how the
spread of the aforementioned addictions may be controlled with optimal implementation,
they employed optimal control approaches. According to Guo [24], the best control method
calls for the simultaneous employment of three different types of measures. Alemneh [25]
looked at ways to properly manage social media addiction for a predetermined amount
of time. A delay differential equation model with optimal control that describes how HIV
interacts with the cell-mediated response was examined by Hattaf [26]. A dynamical model
of the Zika virus with optimum control analysis was put forth by Khan [27]. Similar studies
related to smoking, tumor, predator–prey, and hepatitis can be seen in [28–31]. However,
this work investigated fuzzy optimum control of artificial drug transformation.

In this study, we created an artificial drug abuser model using the control interventions
as a form of drug-induced therapy. All of the parameters have to be adjusted to deal with
uncertainties. We think about the fuzziness in terms of numbers. This fuzzy model is
more accurate in capturing the unpredictability of everyday life. Here, we examine the
fuzzy model’s positivity, boundedness, analysis of the equilibrium, stability, and ideal
control. Fuzzy artificial drug abuser model numerical simulations are run, and the results
of optimal control are graphically displayed.

Pre-Requisites of Fuzzy Model

Definition 1. Triangular Fuzzy Number
A membership function of a triangular fuzzy number is defined as follows

MF̃(w) =


w−p
q−p , p ≤ w ≤ q;
r−w
r−q , q ≤ w ≤ r;
0, otherwise.

Definition 2. η-Cut of a Fuzzy Number
η-Cut of a fuzzy number F̃ is defined as

Fη =
{

w/MF̃(w) ≥ η, w ∈W, η ∈ [0, 1]
}

,

where Fη = [FL(η), FU(η)], FL(η), FU(η) are the lower and upper limits of the fuzzy
number, respectively.

Definition 3. Utility Function Method

Utility function is defined as the weighted sum of the objectives U =
n
∑

i=1
wiai, wi ≥ 0 subject

to the condition
n
∑

i=1
wi = 1.

2. Fuzzy Formulation of Artificial Drug Transmission

In the fuzzy artificial drug transmission model, we divide the total population into
susceptible (S̃), psychological addicts (C̃), physiological addicts (P̃), and drug users under
treatment (T̃). The fuzzy parameters meanings in the drug transmission model are given



Fractal Fract. 2023, 7, 10 5 of 20

in Table 1. Based on the concept of fuzzy differential equations [15], the artificial drug
transmission model with fuzzy parameters is described in the following manner:

S̃1 = ∆̃− α̃SC− β̃SP− M̃S,
C̃1 = α̃SC + β̃SP− γ̃C− δ̃C− M̃C,
P̃1 = γ̃C + ε̃T − ψ̃P− M̃P,
T̃1 = δ̃C + ψ̃P− ε̃T − M̃T.

(1)

Table 1. Physical interpretation of the parameters.

Parameters Physical Description of
the Parameters TFN

∆̃ Fuzzy susceptible population (2, 4, 6)

α̃
Fuzzy contact rate between the susceptible

population and psychological addicts (0.5, 0.7, 0.9)

β̃
Fuzzy contact rate between the susceptible

population and physiological addicts (0.5, 0.7, 0.9)

γ̃ Fuzzy escalation rate from the psychological addicts (0.01, 0.05, 0.1)

δ̃ Fuzzy treatment rate of the physiological addicts (0.1, 0.3, 0.5)

ε̃ Fuzzy relapse rate of the drug users in treatment (0.1, 0.4, 0.8)

ψ̃ Fuzzy treatment rate of the physiological addicts (0.2, 0.4, 0.6)

M̃ Fuzzy natural mortality of all populations (2, 4, 6)

3. Analysis of the Fuzzy System

In this section, we provide the positivity, boundedness, existence, and stability analysis
of fuzzy artificial drug transmission.

3.1. Positivity and Boundedness Fuzzy Artificial Drug Model

Let the solution of system (1) be
[
x̃1]

η
=
[(

x1)η

l ,
(
x1)η

u

]
, then the deterministic system

of the fuzzy artificial drug transmission model is reduced into

(
S1)η

L = (∆L)
η − (αU)

ηSC− (βU)
ηSP− (MU)

ηS,(
S1)η

U = (∆U)
η − (αL)

ηSC− (βL)
ηSP− (ML)

ηS,(
C1)η

L = (αL)
ηSC + (βL)

ηSP− (γU)
ηC− (δU)

ηC− (MU)
ηC,(

C1)η

U = (αU)
ηSC + (βU)

ηSP− (γL)
ηC− (δL)

ηC− (ML)
ηC,(

P1)η

L = (γL)
ηC + (εL)

ηT − (ψU)
η P− (MU)

η P,(
P1)η

U = (γU)
ηC + (εU)

ηT − (ψL)
η P− (ML)

η P,(
T1)η

L = (δL)
ηC + (ψL)

η P− (εU)
ηT − (MU)

ηT,(
T1)η

U = (δU)
ηC + (ψU)

η P− (εL)
ηT − (ML)

ηT.

(2)

According to utility function method, the system (2) is reduced into

S1 = η1
(
S1)η

L + η2
(
S1)η

U ,

C1 = η1
(
C1)η

L + η2
(
C1)η

U ,

P1 = η1
(

P1)η

L + η2
(

P1)η

U ,

T1 = η1
(
T1)η

L + η2
(
T1)η

U .

(3)

where η1, η2 are the two weight functions such that η1 + η2 = 1 and η1, η2 ≥ 0, then the
system (3) can be rewritten as
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
S1 = m11 −m12SC−m13SP−m14S,
C1 = m21SC + m22SP−m23C,
P1 = m31C + m32T −m33P,
T1 = m41C + m42P−m43T.

(4)

where
m11 = η1(∆L)

η + η2(∆U)
η ; m12 = η1(αU)

η + η2(αL)
η ;

m13 = η1(βU)
η + η2(βL)

η ; m14 = η1(TU)
η + η2(TL)

η ;
m21 = η1(αL)

η + η2(αU)
η ; m22 = η1(βL)

η + η2(βU)
η ;

m23 = η1(γU)
η + η2(γL)

η ; m31 = η1(γL)
η + η2(γU)

η ;
m32 = η1(εL)

η + η2(εU)
η ; m33 = η1(ψU + TU)

η + η2(ψL + TL)
η ;

m41 = η1(δL)
η + η2(δU)

η ; m42 = η1(ψL)
η + η2(ψU)

η ;
m43 = η1(εU + TU)

η + η2(εL + TL)
η .

Theorem 1. At any given moment, all of the system (1)s in R4
+ solution trajectories

are non-negative.

Proof. From system (1), we obtain

S̃1
at S=0 = m11, C̃1

at C=0 = m22SP, P̃1
atP=0 = m31C + m32T, T̃1 = m41C + m42P.

In the boundary plane region R4
+, we observe that all rates are non-negative. As a

result, every solution trajectory for system (1) is non-negative in R4
+. �

Theorem 2. If Γ = min{m14, m33, m23 −m31 −m41, m21 −m12, m22 −m13, m32 −m43}, and
satisfy the conditions m21 > m12, m22 > m13, m32 > m43, m23 > m31 + m41, then all the solution
trajectories of the system (1) are bounded in the region R4

+.

Proof. Let us define an auxiliary function

π = S + C + P + T. (5)

Differentiating Equation (5) with respect to t on both sides, we have

dπ

dt
=

dS
dt

+
dC
dt

+
dP
dt

+
dT
dt

dπ
dt = m11 −m12SC−m13SP−m13S + m21SC + m22SP−m23C + m31C + m32T −m33P + m41C + m42P−m43T,

dπ
dt + Nπ = m11 + (N −m14)S + (N −m33)P + (L− (m23 −m31 −m41))C + (m21 −m12)SC + (m22 −m13)SP + (m32 −m43)T.

If Γ = min{m14, m33, m23 −m31 −m41, m21 −m12, m22 −m13, m32 > m43}, then dπ
dt +

Nπ ≤ m11. Solving the above, we obtain π ≤ m11
N + Le−Γt. Therefore, it can be written as

S(t) ≤ m11
N , C(t) ≤ m11

N , P(t) ≤ m11
N , T(t) ≤ m11

N .
Thus, the solution of the system (1) is bounded. �

3.2. Existence, Basic Reproduction Number and Stability Analysis of Fuzzy Artificial
Drug Transmission
3.2.1. Existence of Fuzzy Artificial Drug Transmission

The system (1) has two positive equilibrium points: (i) fuzzy artificial drug-free
equilibrium point

(
D f

0

)
=
(

m11
m14

, 0, 0, 0
)

and (ii) fuzzy artificial drug addiction equilibrium

point
(

D f
1

)
=
(

S f
D, C f

D, P f
D, T f

D

)
, where
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S f
D = m23(m33m43−m32m42)

m21m33m43+m22m31m43+m22m32m41−m21m32m42
, C f

D = m33m43−m32m42
m31m43+m32m41

P f
D = θθ1(m11m21−m14m23)+m11m22θ2

m12m23θ2
1+θθ1m13m23

, T f
D = m41m33+m31m42

m31m43+m32m41
.

θ = m31m43 + m32m41, θ1 = m33m43 −m32m42.

3.2.2. Basic Reproduction Number

The basic reproduction number
(

R f
0

)
for system (4) is determined using the next

generation matrix method [10]

R f
0 =

m12(m33m43 + m31m43 + m41m32 −m32m42)

m23(m33m43 −m32m42)
.

3.2.3. Stability Analysis

Theorem 3. The system (4) is asymptotically stable locally at artificial drug-free equilibrium point
if R f

0 < 1 and unstable if R f
0 > 1.

Theorem 4. The system (4) is asymptotically stable locally at artificial drug addiction equilibrium
point if R f

0 > 1 and unstable R f
0 < 1.

4. Optimal Control of Artificial Drug Addiction

Finding the best control measures requires the use of optimal strategies. To reduce
the number of psychological addicts and physiological addicts in drug control and cost
engaged with counselling and awareness programs, we use optimal control systems as
treatment. The total cost of the disease burden brought on by drug users is provided by

J
(

D̃(t)
)
=

t f∫
0

[
J1C(t) + J2P(t) + J3D̃2(S(t) + C(t) + P(t) + T(t))

]
dt, (6)

subject to the following model
S1 = m11 −m12SC−m13SP−m14S− Ω̃1D̃S,
C1 = m21SC + m22SP−m23C− Ω̃2D̃C,
P1 = m31C + m32T −m33P− Ω̃3D̃P,
T1 = m41C + m42P−m43T +

(
Ω̃1S + Ω̃2C + Ω̃3P

)
D̃.

(7)

with the initial conditions S0 ≥ 0, C0 ≥ 0, P0 ≥ 0 , T0 ≥ 0. The terms J1C(t), J2P(t)
represent the cost associated with psychological and physiological addicts. The term J3D̃2

represents the cost function of the drug control because control of drug addicts works in
all populations.

J
(

D̃(t)
)
= min

D∈Q

t f∫
0

[
J1C(t) + J2P(t) + J3D̃2(S(t) + C(t) + P(t) + T(t))

]
dt. (8)

4.1. Existence of Optimal Control

Now we will discuss whether there is an ideal control variable that minimizes the cost
function in a finite amount of time in this section.

Theorem 5. There exists an optimal control D̃∗ in Q such that J
(

D̃∗
)
= min

{
J
(

D̃
)}

corre-
sponding to the control system (6) and (7).

Proof. We use the following conditions to prove the theorem

I. System (7) has a set of solutions with control variable
(

D̃∗
)

in Q is non-empty.
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II. The region Q is closed and convex.

III. The integrand I is convex on Q and I
(

S, C, P, T.D̃
)
≥ Ω

(
D̃
)

, where Ω
(

D̃
)

is continu-

ous and
∣∣∣D̃∣∣∣−1

Ω
(

D̃
)
→ ∞ , whenever

∣∣∣D̃∣∣∣→ ∞ , then |•| represents the L
(

0, t f

)
norm.

I
(

S, C, P, T.D̃
)
= J1C(t) + J2P(t) + J3D̃2(S(t) + C(t) + P(t) + T(t)).

Artificial drug total population (N) = S1 + C1 + P1 + T1. �
This gives us lim

n→∞
supN ≤ m11

N . As a result, we obtain the Picard–Lindelöf theorem’s

proof that the system is bounded in the area of (7). Lipschitz’s condition is satisfied by the
right-hand side of (8). As a result, condition (i) is met. The definition satisfies the conditions
for closed and convex region. Condition (ii) is therefore verified. Now, the quadratic
character of D guarantees the convexity of the function I, where I

(
S, C, P, T.D̃

)
= J1C(t) +

J2P(t) + J3D̃2 ≥ J3D̃2. Let Θ
(

D̃
)
= J3D̃2, then I

(
S, C, P, T.D̃

)
≥ J3D̃2. Here, Θ

(
D̃
)

is

a continuous function and
∣∣∣D̃∣∣∣−1

ΩD̃ →∞ as
∣∣∣D̃∣∣∣→ ∞ . Thus, condition (iii) is verified.

Therefore, the optimal control variable D̃∗ exists. Hence, we have Ω
(

D̃∗
)
= minΩ

(
D̃
)

.

4.2. Features of the Optimal Control Function

We develop the essential conditions for system (6) and system (7) optimal control
functions in accordance with the Pontryagin’s maximal principle. The corresponding
Hamiltonian function is defined as

H
(

S, C, P, T, D̃, θ
)
= I(S, C, P, T.D) + θ1S1 + θ2C1 + θ3P1 + θ4T1,

H
(

S, C, P, T, D̃, θ
)
= J1C(t) + J2P(t) + J3D2 + θ1

(
m11 −m12SC−m13SP−m14S− Ω̃1D̃S

)
+θ2

(
m21SC + m22SP−m23C− Ω̃2D̃C

)
+ θ3

(
m31C + m32T −m33P− Ω̃3D̃P

)
+θ4

(
m41C + m42P−m43T −

(
Ω̃1S + Ω̃2C + Ω̃3P

)
D̃
)

where θ1, θ2, θ3 and θ4 are called adjoint variables.

Theorem 6. We assume that the optimal control variables D̃∗ and corresponding state variables
of control system (6) and (7) are S∗, C∗, P∗, T∗. These reduce the functional cost. Then, ∃ adjoint
variable θ1, θ2, θ3 and θ4 satisfy the following canonical equations dθ1

dt = − ∂H
∂S ; dθ2

dt = − ∂H
∂C ; dθ3

dt =

− ∂H
∂P ; dθ4

dt = − ∂H
∂T with transversality condition θw(t) = 0 for w = 1, 2, 3 then we obtain

D̃∗ = min

{
max

{
Ω̃1S(θ1 − θ4) + Ω̃2C(θ2 − θ4) + Ω̃3P(θ3 − θ4)

2J3(S + C + P + T)
, 0

}
, 1

}
.

Proof. Let D̃∗ be the optimal value of the control variables, and S∗, C∗, P∗, T∗ are the
corresponding values of the variable S(t), C(t), P(t), T(t) of the control system (7), which
reduce the cost function given in Equation (8). By Pontryagin’s maximum principle, the
adjoint variables θ1, θ2, θ3, θ4 satisfy the conditions

dθ1

dt
= −∂H

∂S
;

dθ2

dt
= −∂H

∂C
;

dθ3

dt
= −∂H

∂P
;

dθ4

dt
= −∂H

∂T

Therefore, we have

∂θ1
∂t = − ∂H

∂S = −J3D̃2 + θ1(m12C + m13P + m14)− θ2(m21C + m22P) + Ω1D̃(θ1 − θ4),
∂θ2
∂t = − ∂H

∂C = −J1 − J3D̃2 + θ1(m12S) + θ2(m23 −m21S)− θ3m31 + Ω̃2D̃(θ1 − θ4),
∂θ3
∂t = − ∂H

∂C = −J2 − J3D̃2 + θ1(m13S)− θ2(m22S) + θ3m33 − θ4m42 + Ω̃3D̃(θ3 − θ4),
∂θ4
∂t = − ∂H

∂T = −J3D̃2 − θ3m32 + θ4m43.
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From the optimality condition ∂H
∂D̃ at (S=S∗ ,C=C∗ ,P=P∗ ,T=T∗)

= 0, we obtain

D̃∗ =
Ω̃1S(θ1 − θ4) + Ω̃2C(θ2 − θ4) + Ω̃3P(θ3 − θ4)

2J3(S + C + P + T)

By definition, the highest and the lowest value of the control are 1 and 0, respectively.
That is, if D̃∗ ≤ 0 then D̃∗ = 0, and if D̃∗ ≥ 1 then D̃∗ = 1. Therefore, for D̃∗ we obtain the
fuzzy optimum value of J for the system (7). Hence, the theorem is proved. �

5. Numerical Simulations

In this section, we place a focus on numerical simulations of the artificial drug trans-
mission model using the parameter values from Table 1.

6. Numerical Observations

Figure 4 shows that the time series evaluation dynamics of populations for different
initial values. It is clear from the figure that the system exhibits steadiness for a very short
span of time and the system comes to steadiness after certain period of time. The time
varies for different initial values.
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Figure 4. The time series evolution for the population S(t), C(t), P(t), and T(t) with the values of
attributes from Table 1. (a) The phase portrait projection of S(t), C(t), and P(t) along with the values of
attributes from Table 1. (b) The phase portrait projection of C(t), P(t), and T(t) along with the values
of attributes from Table 1. (c) The phase portrait projection of T(t), P(t), and S(t) along with the values
of attributes from Table 1. (d) The phase portrait projection of S(t), C(t), and T(t) along with the values
of attributes from Table 1.



Fractal Fract. 2023, 7, 10 11 of 20

Figure 5a–d show that the time series evaluation dynamics for S(t), C(t), P(t), and T(t),
respectively, for different values of fuzzy contact rates between the susceptible population
and psychological addicts (α). Figure 5a clearly shows that the system demonstrates
steadiness over a very short length of time and that it attains steadiness after a specific
amount of time unlike the rest of Figure 5b–d. Those change over time depending on
the original initial numeric. Additionally, it is observed that the density of S(t) decreases
(Figure 5a), the density of C(t) increases (Figure 5b), the density of P(t) increases (Figure 5c),
and the density of T(t) increases (Figure 5d).

Figure 6a–d show that the time series evaluation dynamics for S(t), C(t), P(t), and T(t),
respectively for different values of fuzzy contact rates between the susceptible population
and physiological addicts of populations (β). Figure 6a clearly shows that the system
demonstrates steadiness over a very short length of time and that it attains constancy after
a short time, unlike in Figure 6b–d. They might change over time depending on the starting
values. Additionally, it is noted that when the attribute β varies from 0.1 to 0.9, the density
of S(t) decreases (Figure 6a) and the population densities of C(t), P(t), and T(t) increase
(Figure 6b–d).
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Figure 5. (a) The time series evolution for the population S(t) for various values of α and remaining
values of attributes from Table 1. (b) The time series evolution for the population C(t) for various
values of α and remaining values of attributes from Table 1. (c) The time series evolution for the
population P(t) for various values of α and remaining values of attributes from Table 1. (d) The time
series evolution for the population T(t) for various values of α and remaining values of attributes
from Table 1.

Figure 7a–d display the time series evaluation dynamics for S(t), C(t), P(t), and T(t),
respectively, for various values of the physiological addicts’ fuzzy treatment rates (δ).
Unlike Figure 7b–d, Figure 7a clearly displays that the system exhibits steadiness for a very
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short amount of time, rises up to a certain length, and then eventually achieves constancy
after a short time. The beginning values will determine whether they change over time. It
is also noted that when the attribute δ caries from 0.1 to 0.9, the density of S(t) decreases
(Figure 4a) and the population densities of C(t), P(t), and T(t) increase (Figure 7b–d).
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Figure 6. (a) The time series evolution for the population S(t) for various values of β and remaining
values of attributes from Table 1. (b) The time series evolution for the population C(t) for various
values of β and remaining values of attributes from Table 1. (c) The time series evolution for the
population P(t) for various values of β and remaining values of attributes from Table 1. (d) The time
series evolution for the population T(t) for various values of β and remaining values of attributes
from Table 1.
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Figure 7. (a) The time series evolution for the population S(t) for various values of δ and remaining
values of attributes from Table 1. (b) The time series evolution for the population C(t) for various
values of δ and remaining values of attributes from Table 1. (c) The time series evolution for the
population P(t) for various values of δ and remaining values of attributes from Table 1. (d) The time
series evolution for the population T(t) for various values of δ and remaining values of attributes
from Table 1.

Figure 8a–d illustrate the time series assessment dynamics for S(t), C(t), P(t), and T(t),
respectively, for various values of the psychological addicts’ fuzzy treatment rates (ψ).
Unlike Figure 8b–d, Figure 8a clearly reveals that the system exhibits steadiness after a very
short period of time and that it attains steadiness after a certain amount of time. Depending
on the original initial number, they evolve over time. When the attribute ψ varies from 0.1
to 0.4, the densities of populations of S(t), C(t), P(t), and T(t) increase (Figure 8a–d).
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series evolution for the population T(t) for various values of ψ and remaining values of attributes
from Table 1.

7. Conclusions and Remarks

Artificial drugs include new drugs such as k2 (spice), ecstasy (Molly), and bath salts,
which are quite acceptable among drug addicts. Some people believe that traditional drugs
have more toxicity than artificial ones, meaning that they may believe that if someone
uses an artificial drug a little, they will not become addicted. Based on this incorrect
psychological belief, many people forget to take the proper precautions and can be captured
by an addiction to artificial drugs gradually. Many people, especially the young generation,
are exposed drugs due to various reasons. These people can be considered to be susceptible
populations. The importance of health education in schools and families is to create
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awareness in youth. This education should be initiated by the government Artificial drugs
are ideal for drug addicts, who are physically and psychologically addicted to their drug of
choice. Thus, we planned an artificial drug victimizers model pertaining to the treatment
of drug clients in fuzzy form. The fuzzy model’s positivity, boundedness, and equilibrium
analysis are all thoroughly examined. We used the next generation matrix method to
determine the fundamental reproduction number for the fuzzy artificial drug abuser model.
The stability of the drug-free and drug-addicted equilibrium is a topic of discussion. To
reduce drug addiction and the expense of treatment, counselling, and awareness campaigns,
a fuzzy optimal control issue related to the drug abuse transmission model was used in
accordance with Pontryagin’s Maximum Principle. The impact of fuzzy optimal response
brought on by counselling programs can reduce both the financial burden and the number
of addicts. This strategy can also reduce the overall financial load. This will ensure that a
genuine control approach is carried out in a practical and conservative manner.
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