
Representation Learning and
Applications in Local Differential

Privacy

Alexander Mansbridge

Department of Computer Science

University College London

This dissertation is submitted for the degree of

Doctor of Philosophy

Declaration

I, Alexander Mansbridge, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the thesis.

Abstract

Latent variable models (LVMs) provide an elegant, efficient, and interpretable

approach to learning the generation process of observed data. Latent variables can

capture salient features within often highly-correlated data, forming powerful tools

in machine learning.

For high-dimensional data, LVMs are typically parameterised by deep neural

networks, and trained by maximising a variational lower bound on the data log

likelihood. These models often suffer from poor use of their latent variable, with

ad-hoc annealing factors used to encourage retention of information in the latent

variable. In this work, we first introduce a novel approach to latent variable modelling,

based on an objective that encourages both data reconstruction and generation. This

ensures by design that the latent representations capture information about the data.

Second, we consider a novel approach to inducing local differential privacy (LDP)

in high dimensions with a specifically-designed LVM. LDP offers a rigorous approach

to preserving one’s privacy against both adversaries and the database administrator.

Existing LDP mechanisms struggle to retain data utility in high dimensions owing

to prohibitive noise requirements. We circumvent this by inducing LDP on the low-

dimensional manifold underlying the data. Further, we introduce a novel approach

for downstream model learning using LDP training data, enabling the training of

performant machine learning models. We achieve significant performance gains over

current state-of-the-art LDP mechanisms, demonstrating far-reaching implications

for the widespread practice of data collection and sharing.

Finally, we scale up this approach, adapting current state-of-the-art representation

learning models to induce LDP in even higher-dimensions, further widening the scope

of LDP mechanisms for high-dimensional data collection.

Impact statement

The research in this thesis presents potential benefits both inside and outside of

academia. Notably, Chapters 4 and 5 highlight the benefits of using representation

learning for privatising high-dimensional data under local differential privacy (LDP).

Not only do we significantly outperform current state-of-the-art LDP mechanisms,

but we also present a number of avenues of future academic research that could

further improve the performance of such LDP mechanisms. Indeed, we see this work

as a significant first step for LDP representation learning.

These mechanisms could also have far-reaching implications outside academia,

where data collection practices have become ubiquitous, and often pervasive. The

framework we introduce is intuitive, general, and straightforward to implement.

Existing LDP mechanisms are limited in application since they significantly degrade

data utility in high-dimensions. However, having demonstrated that high-dimensional

privatisation with our mechanisms is not only feasible, but can lead to compelling

downstream model performance, we hope that this should encourage data-collecting

organisations to consider collecting under LDP guarantees.

The work in Chapter 3 has contributed to our understanding of latent variable

models (LVMs). We introduce a novel LVM that encodes more information into the

latent than the standard variational autoencoder (VAE), and provides a principled

interpretation for the use of ad-hoc pre-factors in VAE objective functions, common

in existing academic work. This has potential implications both in academia and in

industry, where interest in LVMs has grown steadily in recent years, owing to the

widespread availability of unlabelled training data.

The work presented in this thesis has been published in a major machine learning

conference [Mansbridge et al., 2019].

Acknowledgements

I would like to express my gratitude to Prof. David Barber and Dr. Ilya Feige for

their invaluable supervision and feedback throughout this work, and to the Alan

Turing Institute for their academic, financial and pastoral support. Thanks to my

examiners Dr. Tingting Mu and Dr. Brooks Paige for a thorough, enjoyable viva and

outstanding feedback. Finally, a special thank you to my family for their unwavering

love and support, without whom I would undoubtedly never have had the privilege

of embarking on the research in this thesis to begin with.

Contents

1 Introduction 14

Introduction 14

2 Background 19

2.1 Probabilistic Generative models . 19

2.1.1 Latent Variable Models . 20

2.2 Neural Network Architectures . 24

2.2.1 Feedforward neural networks 24

2.2.2 Recurrent neural networks . 25

2.3 Differential Privacy . 29

2.3.1 Central Differential Privacy 30

2.3.2 Local Differential Privacy . 33

2.3.3 Central vs. Local Differential Privacy 34

2.3.4 Interpretation of ϵ . 36

3 Powerful Latent Representations for High-Dimensional Data 38

3.1 Introduction . 38

3.2 Posterior Collapse . 39

3.3 High-Fidelity Latent Variable Modelling with AutoGen 41

3.3.1 Multiple Reconstructions . 43

3.4 Experiments . 44

3.4.1 Optimisation Results . 45

3.4.2 Sentence Reconstruction . 46

3.4.3 Sentence Generation . 48

CONTENTS 7

3.4.4 Latent Manifold Structure . 50

3.5 Discussion . 51

3.6 Conclusions . 53

4 Latent Variable Modelling under LDP 54

4.1 Introduction . 55

4.2 Proposed Method . 59

4.2.1 Variational Laplace Mechanism (VLM) 62

4.2.2 Collecting LDP labels . 64

4.2.3 Downstream Model Training on LDP Data 65

4.2.4 Hyperparameter Tuning Under LDP 67

4.3 Applications and Experiments . 67

4.3.1 Data Collection . 68

4.3.2 Novel-Class Classification . 75

4.3.3 Data Joining . 76

4.4 Classifying Private Datapoints . 78

4.4.1 General Upper Bound on Classification Accuracy 78

4.4.2 Simplified Setting . 81

4.4.3 Experimental Results . 84

4.5 Conclusion . 85

5 High-Dimensional Representation Learning under LDP 86

5.1 Introduction . 87

5.2 Representation Learning Laplace Mechanism 90

5.2.1 SimCLR . 93

5.2.2 Contrastive Laplace Mechanism 94

5.3 Applications and Experiments . 97

5.3.1 Data Collection . 97

5.3.2 Novel-Class Classification . 98

5.4 Classifying Private Datapoints . 100

5.5 Conclusion . 101

CONTENTS 8

6 Conclusion 102

Appendices 107

A VLM Experimental Details 107

A.1 Data Pre-Processing . 107

A.2 Data Splits . 108

A.3 Benchmarks . 109

A.4 Hyperparameter Choices . 110

A.5 Mechanism Architectures and Transformations 112

B CLM Experimental Details 113

B.1 Data Pre-Processing . 113

B.2 Benchmarks . 114

B.3 Hyperparameter Choices . 114

Bibliography 116

List of Figures

2.1 A graphical model representing the dependency structure for a latent

variable model. 21

2.2 Schematic diagram comparing the RNN training without teacher

forcing (top) and RNN training with teacher forcing (bottom). 28

2.3 Schematic diagram comparing the central model of differential privacy

(top) with the local model (bottom). 35

3.1 (a) Standard generative model. (b) Stochastic autoencoder with

tied observations. (c) Equivalent tied stochastic autoencoder with

AutoGen parameterisation. 41

3.2 Negative DKL

[
q(z|xn)||p(z)

]
term as a % of overall objective for the

four models throughout training. 45

3.3 ELBO (log likelihood lower bound, Equation 3.1) for the four models

throughout training. 46

4.1 Schematic diagram of VLM training (top) and local data privatisation

and collection (bottom), as outlined in Section 4.2. Green shading

indicates parameters satisfying CDP with respect to the training set. 59

4.2 Graphical model representing the dependency structure between data-

points z, labels y and their corresponding LDP versions z̃ and ỹ. The

blue shading indicates that the random variable is observed. 65

LIST OF FIGURES 10

4.3 (a) Red shaded areas and lines represent the regions of R2 in which

all points are equal L1 distance from c(1) and c(2). (b) The red line

represents a decision boundary that separates c(1) and c(2) equally in L1

distance. Regions in which points are equidistant from representations

c(1) and c(2) are divided based on the closest representation in L2

distance. 81

4.4 The decision boundary for a classifier that equally separates (in ℓ1-

distance) vertices c(i) for i ∈ {1, 2, 3, 4} in 2-dimensional space. The

blue region denotes the taxicab sphere T 82

5.1 Schematic diagram of mechanism training (left), local data privatisa-

tion (centre) and collection (right), as outlined in Section 5.2. Red

boxes indicate operations performed on the administrator/ data col-

lector’s infrastructure and blue boxes indicate operations performed

locally by the data owner. Crucially, unprivatised data never leaves

the data owner’s device. 92

5.2 Graphical representation of the SimCLR model [Chen et al., 2020].

The blue shading indicates that the random variable is observed. . . . 94

5.3 Graphical representation of the contrastive Laplace mechanism. The

blue shading indicates that the random variable is observed. The red

box shows the training procedure, performed on the administrator/

data collector’s infrastructure; the blue box depicts the privatisation

procedure, performed locally by the data owner. 95

List of Tables

3.1 Reconstructed sentences from the VAE (top) and AutoGen (bottom).

Sentences are not ‘cherry picked’: these are the first four sentences

reconstructed from a grammatically correct input sentence, between 4

and 20 words in length (for aesthetics), and with none of the sentences

containing an unknown token (for readability). All punctuation is

generated by the models. 47

3.2 Results from a blind survey comparing reconstruction quality. Re-

spondents were told to “choose the best reconstruction”, and where

ambiguous, could discard sentence pairs. 48

3.3 Sentences generated from the prior, z ∼ N (0, I), for the VAE (top)

and AutoGen (bottom). Sentences are not ‘cherry picked’: they are

chosen in the same way as those in Table 3.1. All punctuation is

generated by the models. 49

3.4 Results from a blind survey testing generation quality. Respondents

were asked “does this sentence make sense” for a randomised list of

sentences evenly sampled from the four models. Results are split into

two sentence lengths L in order to mitigate the bias of the VAE models

to generate short sentences. 50

LIST OF TABLES 12

3.5 Latent variable interpolation. Two sentences (first and last sentences

shown) are randomly selected from the test dataset and encoded into

z1 and z2. Sentences are then generated along 10 evenly spaced steps

from z1 to z2. This interpolation was not ‘cherry picked’: it was our

first generated interpolation using the same filters as in previous tables.

All punctuation is generated by the models. 51

4.1 Accuracy of classifiers trained on data collected using different LDP

mechanisms. Each row shows the ϵ-LDP guarantee for the collected

training set. Error bars represent ±1 standard deviation from the

mean over 3 trials. 69

4.2 Accuracy of classifiers trained on either feature-level data or representation-

level data collected with the VLM. Each row shows the ϵ-LDP guar-

antee for the collected training set. Error bars represent ±1 standard

deviation from the mean over 3 trials. 71

4.3 Accuracy of classifiers trained on data collected using different LDP

mechanisms. η represents the proportion of the MNIST training set

used for VLM training. Each row shows the ϵ-LDP guarantee for the

collected training set. Error bars represent ±1 standard deviation

from the mean over 3 trials. 73

4.4 Accuracy of classifiers trained on LDP data, collected using either

a PCA-based LDP mechanism or a VLM (with either linear or non-

linear encoder-decoder network architectures). Each row shows the

ϵ-LDP guarantee for the collected training set. Error bars represent

±1 standard deviation from the mean over 3 trials. 74

4.5 Accuracy of classifiers for novel class classification, trained on data

collected using different LDP mechanisms. Each row shows the ϵ-

LDP guarantee for the collected training set. Error bars represent ±1

standard deviation from the mean over 3 trials. 75

LIST OF TABLES 13

4.6 Accuracy of classifiers trained on the join of clean and ϵ-LDP features

of the Lending Club dataset. Each row shows the ϵ-LDP guarantee for

the collected training set. The baseline refers to the accuracy when

classifying clean features only. 77

4.7 Private Accuracy of classifiers trained on ϵtrain-LDP (image, label)

tuples collected using different LDP mechanisms. ϵtest refers to the

LDP guarantee of the images classified at inference time. Error bars

represent ±1 standard deviation from the mean over 3 trials. 84

5.1 Accuracy of classifiers trained on data collected using different LDP

mechanisms. Each row shows the ϵ-LDP guarantee for the collected

training set. Error bars represent ±1 standard deviation from the

mean over 3 trials. 98

5.2 Accuracy of classifiers for novel class classification, trained on data

collected using different LDP mechanisms. Each row shows the ϵ-

LDP guarantee for the collected training set. Error bars represent ±1

standard deviation from the mean over 3 trials. 99

5.3 Private Accuracy of classifiers trained on ϵtrain-LDP (image, label)

tuples collected using different LDP mechanisms. ϵtest refers to the

LDP guarantee of the images classified at inference time. Error bars

represent ±1 standard deviation from the mean over 3 trials. 100

A.1 VLM hyperparameters used for data join experiments on the Lending

Club dataset. 110

A.2 DP-Adam hyperparameters used for the VLM data collection experi-

ments under CDP. 111

A.3 VLM hyperparameters used for the data collection and novel-class

classification experiments. 112

B.1 CLM hyperparameters used for the data collection and novel-class

classification experiments. 114

Chapter 1

Introduction

In machine learning, and indeed science more broadly, a common goal is to build

models of the world. In probabilistic learning we typically consider the world,

which we observe through data, as being described by a set of variables. Modelling

the distributions over these variables provides us with a powerful framework for

dealing with uncertainty in this world. It allows us to make informed predictions;

to do inference, answering pertinent questions about unobserved variables; and to

understand the underlying structure of the data-generating process.

Probabilistic generative models have been used in statistics for decades, aiming

to simulate the process by which data is generated. Over the last few years however,

rapid advancements in machine learning research have given rise to a new generation

of extremely powerful generative models. These models are the product of myriad

advancements in the field, notably benefitting from the use of deep neural network

architectures to parameterise distributions, wider access to powerful compute re-

sources, greater availability of large scale datasets, and ever-improving algorithm

design. A key advantage of generative models is that they are often trained in an

unsupervised manner, presenting a powerful way to leverage vast quantities of freely

available, unlabelled data. This has facilitated the training of large models that act

on high-dimensional data with compelling results.

Generative models can be broadly classified into two categories: fully observed

models and latent variable models.

Fully observed models, such as Salimans et al. [2017], often utilise powerful,

Introduction 15

auto-regressive architectures to achieve state-of-the-art likelihood performance, mak-

ing them excellent candidates for generating realistic data samples, as well as in

applications like data compression.

Latent variable models on the other hand assume our observed data is generated

by some random unobserved stochastic variable(s). They provide an interpretable,

efficient approach to modelling the data generation process.

State-of-the-art latent variable models are typically based on the variational

autoencoder (VAE) framework, trained by maximising a variational lower bound

on the data log likelihood [Kingma and Welling, 2014, Rezende et al., 2014]. VAEs

learn a generative distribution, and fit an approximate posterior to the intractable

posterior distribution concurrently, utilising deep neural networks to parameterise

complex, non-linear distributions. The approximate posterior parameterisation is

chosen such that we can perform approximate maximum likelihood estimation using

Stochastic Gradient Variational Bayes (SGVB).

Models based on VAEs have been used extensively in machine learning, demon-

strating compelling results in data generation for images [Gulrajani et al., 2017, Child,

2021], text [Yang et al., 2017, Shah et al., 2018], and speech [van den Oord et al.,

2017, Lee et al., 2021], as well as in widespread applications such as semi-supervised

learning [Kingma et al., 2014, Habib et al., 2020], data compression [Townsend et al.,

2019, Kingma et al., 2019] and explainable AI [Frye et al., 2021]. However, it is often

the case that, while the model is able to maximise a lower bound on the data log

likelihood, further modifications are needed to ensure the model utilises the latent

variable [Bowman et al., 2016, Higgins et al., 2017, He et al., 2019]. In this work,

we study latent variable models with a particular focus on encoding meaningful

information into the latent.

A widespread practice in machine learning is to use bigger neural networks as

the data dimension grows, or the data distribution becomes more complex. However,

when training VAEs with more expressive generative distributions parameterised

by larger neural networks, a phenomenon known as posterior collapse often occurs.

In this scenario, little to no information is encoded into the latent variable, and

the generative model learns to ignore it. Several workarounds have been proposed,

Introduction 16

perhaps most commonly the use of ad-hoc annealing factors in the objective function

(see, for example Bowman et al. [2016]). However, this raises a compelling argument

that there may exist better objective functions for training latent variable models

that necessitate the encoding of information in the latent variable.

In Chapter 3, we introduce an alternative and general approach to latent variable

modelling, based on an objective that encourages both data generation and recon-

struction. This ensures by design that the latent variable captures information about

the observations, whilst retaining the ability to generate well. Interestingly, although

our model is fundamentally different to a VAE, the lower bound attained is identical

to the standard VAE bound but with a simple pre-factor, thus providing a formal

interpretation of the ad-hoc pre-factors commonly used when training VAEs. We

demonstrate the effectiveness of our approach with language modelling. Language

represents a complex, high-dimensional, and highly sparse data type. Given the

powerful network architectures typically used to model such data, optimisation

challenges associated with utilisation of the latent variable in standard VAEs are

well documented [Bowman et al., 2016, Yang et al., 2017].

In Chapter 4, we develop a latent variable model designed specifically for data

collection under local differential privacy (LDP). In recent years, the collection of

personal data has become ubiquitous, with collection practices often considered

invasive, or even a violation of human rights [Amnesty International, 2019]. As

awareness of these often contentious practices has grown, both companies’ desire to

surveil individuals, and individuals’ desire for data privacy have firmly entered into

the modern zeitgeist.

LDP is a rigorous privacy guarantee that protects an individuals’ data against

both the database administrator and adversarial third parties, providing a natural

framework for privacy protection in the context of data collection. While mechanisms

that privatise data under the guarantees of LDP were first introduced decades ago

[Warner, 1965], research into LDP mechanisms for the high-dimensional data coveted

by many modern organisations remains limited. Indeed, research shows that the

quantity of noise required to induce privacy in higher dimensions typically destroys

data utility in what is commonly dubbed the ‘curse of dimensionality’ [Zhang et al.,

Introduction 17

2017, Duchi et al., 2018].

A common motivating assumption in latent variable modelling is that our high-

dimensional data lies on a low-dimensional manifold. Our model defines a LDP

mechanism via a learnt distribution over this manifold. This distribution has a

constrained mean, such that adding carefully calibrated noise guarantees both

the latent encoding and reconstructed data satisfy LDP. Passing data through

this latent variable model therefore provides a powerful LDP mechanism for the

private collection of sensitive, high-dimensional data. Through privatisation on

this constrained, low-dimensional manifold, we circumvent the LDP-inducing noise

requirements in high-dimensional data space. We train our latent variable model such

that the latent variables are well-suited for downstream tasks, suitably constrained

for privatisation, and robust to the additive noise that induces LDP.

While Chapter 4 introduces a powerful framework for learning LDP latent repre-

sentations of data, we note that the performance of this mechanism is fundamentally

limited by the quantity of information encoded into the latent. As discussed in

Chapter 3, when modelling very high-dimensional data, there are challenges asso-

ciated with training latent variable models such that information is encoded into

the latent. The performance of the LDP mechanism from Chapter 4 will thus likely

be impacted. We also note that if we are solely interested in representation quality,

learning the mapping from representation space to feature space is unnecessary,

making optimisation more difficult and adding computational cost. In Chapter 5, we

propose a solution to tackle these challenges, building on ideas from the much wider

field of representation learning in order to privatise even higher-dimensional data.

Modern representation learning methods can be broadly split into generative

approaches, such as those discussed in Chapters 3 and 4, and non-generative ap-

proaches. Non-generative approaches typically learn only the mapping from data

space to representation space, with unsupervised, and more recently self-supervised

approaches achieving state-of-the-art results across high-dimensional domains like

large images [Chen et al., 2020, He et al., 2020] and text [Devlin et al., 2019, Yang

et al., 2021]. Chapter 5 introduces a clear framework for adapting existing state-

of-the-art non-generative representation learning models to the application of LDP

Introduction 18

data collection. We demonstrate this approach empirically by adapting the self-

supervised approach introduced by Chen et al. [2020] to learn powerful, noise-robust

representations of colour images.

Throughout Chapters 4 and 5, we use our privatised datapoints as training data

for learning downstream machine learning algorithms. This is not only a key goal of

data collecting organisations in the real world, but downstream model performance

provides a powerful proxy for measuring the utility of our privatised datapoints. To

accomplish this, we introduce a downstream model in which our observed data is

privatised, whilst the true underlying data and targets are treated as latent variables.

We aim to learn the mapping between these latents. We demonstrate empirically

that models trained on data privatised with our mechanism significantly outperform

models trained on data privatised with existing state-of-the-art LDP mechanisms.

Finally, in Chapter 6, we discuss some general conclusions of the research in

this thesis and discuss several potential directions for future work. However, before

introducing the main research contributions of this thesis, we begin with a background

chapter, outlining the fundamental concepts considered prerequisite to this thesis.

This includes an overview of probabilistic generative models, an introduction to

recurrent neural networks and related concepts, and an introduction to key definitions

and concepts in differential privacy.

Chapter 2

Background

This chapter introduces background material required to understand the thesis. We

include both a concise overview of the overarching concepts, as well as definitions

which we refer to throughout the following chapters. We begin with an overview

of probabilistic generative models in Section 2.1, with a particular focus on latent

variable models. We discuss training such models with both the EM algorithm and

stochastic gradient variational Bayes. In Section 2.2, we give an overview of neural

networks and some related concepts discussed in Chapter 3. In Section 2.3, we

motivate the need for data privacy, and introduce the concepts of central differential

privacy and local differential privacy, as well as the fundamental differences between

these two privacy models.

2.1 Probabilistic Generative models

Generative models are a class of statistical model that aim to simulate the process

by which observed datapoints are generated. We can think of these datapoints as

being observed samples from some unknown distribution pdata(·). Naturally, we

would like to learn a generative model that closely matches this distribution. In

this work, we consider the parametric setting – we assume this process is defined by

some distribution pθ(·) with (deterministic) parameters θ. In order to learn these

parameters, we must minimise some measure of distance between the unknown data

generating distribution pdata(·) and the model pθ(·). Throughout this work, we learn

2.1. Probabilistic Generative models 20

these parameters with maximum likelihood estimation. That is, we want to find the

parameters θ̂ such that

θ̂ = argmax
θ

Ex∼pdata(x)
[
log pθ(x)

]
(2.1)

We note that this is equivalent to minimising the Kullback–Leibler (KL) divergence

between the data generating distribution pdata(·) and the model pθ(·):

θ̂ = argmin
θ

DKL

[
pdata(x)||pθ(x)

]
(2.2)

where for continuous distributions p1(·) and p2(·) over X , the KL divergence is defined

as follows:

DKL

[
p1(x)||p2(x)

]
=

∫
X
p1(x) log

p1(x)

p2(x)
dx (2.3)

2.1.1 Latent Variable Models

It is often good to assume that the data we observe lies on some lower-dimensional

manifold. Latent variable models (LVMs) are a class of generative model that assume

the data is generated by the transformation of some underlying latent variable(s).

This dependency structure can lead to richer, more expressive models where often

complex correlations in the observed data x are modelled through dependencies on

the latent z. Furthermore, the low-dimensional latent can reveal properties of our

data that are more interpretable and more suitable for downstream applications than

the observed data.

If the latent variable were observed, learning would be straightforward since we

could just maximise the joint likelihood. However, since this is not the case, we

instead maximise the log likelihood of our generative model by marginalising out z:

pθ(x) =

∫
pθ(x|z) pθ(z) dz (2.4)

where pθ(z) describes our prior belief over the latent space, and pθ(x|z) describes the
generative model we wish to learn. In many instances pθ(z) and pθ(x|z) may be from

exponential family distributions, but pθ(x) is able to model far richer distributions

2.1. Probabilistic Generative models 21

z x

Figure 2.1: A graphical model representing the dependency structure for a latent
variable model.

than a simple exponential family model.

Figure 2.1 shows a directed graphical model for the latent variable model described

in Equation 2.4. Graphical models provide a simple yet powerful way to illustrate

the dependency structure between variables in probabilistic models. Each node

represents a random variable, and directed edges between nodes indicate statistical

dependency between the corresponding variables. The blue shading indicates that

the random variable is observed.

Often direct maximum likelihood optimisation of Equation 2.4 is not straightfor-

ward. Instead, we can derive a lower bound on the integral using Jensen’s inequality:

log pθ(x) = log

∫
pθ(x|z)pθ(z) dz (2.5)

= log

∫
q(z)

q(z)
pθ(x|z)pθ(z) dz (2.6)

≥
∫
q(z) log

pθ(x|z)pθ(z)
q(z)

dz (2.7)

=

∫
q(z) log pθ(x|z)dz −

∫
q(z) log

q(z)

pθ(z)
dz (2.8)

= Eq(z)
[
log pθ(x|z)

]
−DKL

[
q(z)||pθ(z)

]
(2.9)

=: L(x; q, θ) (2.10)

where we have introduced a variational distribution q(z). This lower bound L(x; q, θ)
is commonly referred to in the literature as the Evidence Lower Bound (ELBO).

It will be useful in the next section to note the following property of this lower

bound:

L(x; q, θ) =
∫
q(z) log

pθ(x)pθ(z|x)
q(z)

dz (2.11)

= log pθ(x) +

∫
q(z) log

pθ(z|x)
q(z)

dz (2.12)

2.1. Probabilistic Generative models 22

= log pθ(x)−DKL

[
q(z)||pθ(z|x)

]
(2.13)

This states that the difference between the ELBO and the true log likelihood is equal

to DKL

[
q(z)||pθ(z|x)

]
. Since the (non-negative) KL is minimised if and only if the

two distributions are identical, it follows that the ELBO is equal to the log likelihood

only when q(z) is equal to the posterior pθ(z|x).

2.1.1.1 The EM Algorithm

The EM algorithm [Dempster et al., 1977] provides a powerful, iterative algorithm

for optimising the log likelihood of a latent variable model using this lower bound.

Starting from some arbitrary choice of q(z) and θ, we iterate over the following two

steps:

• E step: Fix the parameters θ of the generative model and update the variational

distribution

q(z) := argmax
q

L(x; q, θ) (2.14)

• M step: Fix the variational distribution q(z) and update the parameters θ of

the generative distribution

θ := argmax
θ

L(x; q, θ) (2.15)

Examining Equation 2.13, we see that we can maximise the E-step by setting

q(z) := pθ(z|x) (assuming the true posterior can be explicitly calculated).

2.1.1.2 Variational Autoencoders

In order to increase the representational power of the latent variable model, a deep

neural network may be used to parameterise pθ(x|z). This non-linear conditional

dependency on the latent means the integral in Equation 2.4 is generally intractable;

we must therefore optimise the ELBO rather than directly optimising the likelihood.

However, we cannot use the EM algorithm as described above since the true posterior

will not generally have a known closed-form solution.

2.1. Probabilistic Generative models 23

Instead, much like the generative distribution pθ(x|z), we parameterise the varia-

tional distribution qϕ(z|x) with a neural network. This amortises the cost of inference

by sharing the network parameterising the variational distribution across datapoints.

Both the variational and generative distributions can be trained by maximising a

lower bound on the log likelihood:

log pθ(x) = log

∫
pθ(x|z)p(z) dz (2.16)

≥ Eqϕ(z|x)
[
log pθ(x|z)

]
−DKL

[
qϕ(z|x)||p(z)

]
(2.17)

=: L(x; θ, ϕ) (2.18)

Taking gradients of L(x; θ, ϕ) with respect to ϕ can be challenging. The following

Monte Carlo estimate of the first term can be used:

∇ϕEqϕ(z|x)
[
log pθ(x|z)

]
=

∫
∇ϕqϕ(z|x) log pθ(x|z) dz (2.19)

=

∫ [
qϕ(z|x)∇ϕ log qϕ(z|x)

]
log pθ(x|z) dz (2.20)

≃ 1

S

S∑
s=1

(
∇ϕ log qϕ(z

(s)|x)
)
log pθ(x|z(s)) (2.21)

where z(s) ∼ qϕ(z|x).

However, the variance of this Monte Carlo estimate can be extremely high, as

discussed in Paisley et al. [2012]. To circumvent this, Kingma and Welling [2014]

and Rezende et al. [2014] introduced an unbiased estimator of the ELBO, known

as the Stochastic Gradient Variational Bayes (SGVB) estimator. This places some

restrictions on our choice of variational distribution: namely that the random variable

z ∼ qϕ(z|x) must be a reparameterisation of some other variable ϵ ∼ p(ϵ), via some

differentiable transformation z = gϕ(ϵ, x). Then we see that Ez∼q(z|x)
[
f(z)

]
=

Eϵ∼p(ϵ)
[
f(gϕ(ϵ, x))

]
and gradients can be estimated as follows

∇ϕEz∼qϕ(z|x)
[
f(z)

]
= ∇ϕEϵ∼p(ϵ)

[
f(gϕ(ϵ, x))

]
(2.22)

= Eϵ∼p(ϵ)
[
∇ϕf(gϕ(ϵ, x))

]
(2.23)

2.2. Neural Network Architectures 24

≃ 1

S

S∑
s=1

∇ϕf(gϕ(ϵ
(s), x)) (2.24)

where ϵ(s) ∼ p(ϵ).

This is commonly referred to as the ‘reparameterisation trick’. We note that this

property holds for both Gaussian and Laplace distributions, which we use in this

work. For example, if can sample ϵ ∼ N(0, I) then z = µϕ(x)+σϕ(x)⊙ϵ is distributed

according to N(µϕ(x), σϕ(x)). For further details on the reparameterisation trick,

and a (non-exhaustive) list of distributions for which this property holds we refer

the reader to Kingma and Welling [2014].

2.2 Neural Network Architectures

Deep learning is a subfield of machine learning in which algorithms based on neural

networks are trained to act as powerful function approximators; it can be shown that

under certain conditions neural networks are universal approximators [Hornik, 1991],

making them powerful tools in machine learning.

A neural network is an interconnected collection of neurons – a computational

unit that performs non-linear transformations on input vectors. Each neuron is

associated with an n-dimensional weight vector w, scalar bias term b, and a non-linear

activation function σ(·). Given an n-dimensional input vector x, the neuron outputs

the transformation σ(wTx+ b). Common choices of activation function include the

sigmoid, hyperbolic tangent, and rectified linear unit (ReLU) functions [Jarrett et al.,

2009, Glorot et al., 2011]. To ease notation, we drop b in the following, observing

that it can be absorbed into the dot product as σ(wTx+ b) = σ([w b]T [x 1]).

2.2.1 Feedforward neural networks

Collections of neurons, referred to as layers, form the building blocks of neural

networks. These act on vector-valued inputs x to obtain activations h as follows:

h = σ(W · x) (2.25)

2.2. Neural Network Architectures 25

where W represents a matrix of parameters.

In deep learning, multiple neural network layers are used to learn powerful

function approximators. The simplest example of this is the feedforward neural

network, which maps some input datapoint x, to some output hD:

h0 = x (2.26)

hd = σd(Wd · hd−1), for d ∈ {1, 2, · · · , D} (2.27)

Each hidden layer hd provides some representation of the input data. Typically,

the final layer would be used to solve the task of interest. For example, to train a

classifier, σD could be a softmax layer such that hD defines a probability distribution

over class labels y. Given an appropriate choice of loss function (such as cross-entropy

loss for a classifier), one can take gradients with respect to the parameters Wd, and

train the network using a gradient based optimisation algorithm [Nesterov, 1983,

Duchi et al., 2011, Kingma and Ba, 2015].

2.2.2 Recurrent neural networks

While feedforward networks provide a powerful model for many datatypes, they

are not naturally suited to handling sequential data {x1, . . . , xT}. Recurrent neural
networks (RNNs) [Rumelhart et al., 1986] parameterise a time-invariant function

f(·) designed to model sequences of variable length. This function maintains and

updates a hidden state vector ht over time

ht = f(ht−1, xt) (2.28)

A simple choice of f(·) may be f(ht−1, xt) = σ(W · ht−1 + W ′ · xt), where the

parameters in the matrices W and W ′ are shared across timesteps.

In theory, RNNs should be able to capture long term dependencies between

datapoints. For example, in language modelling, the task is next word prediction;

this prediction may depend not only on the previous word, but on certain words

mentioned earlier in the sentence or document. Simple RNNs struggle to learn these

2.2. Neural Network Architectures 26

long-term dependencies, and more complex RNN architectures have been introduced

to tackle this issue.

Long Short-Term Memory Networks Long Short-term Memory Networks

(LSTMs) [Hochreiter and Schmidhuber, 1997] are a powerful class of RNN designed

to handle long term dependencies. This is achieved via a memory cell state, which is

maintained and controlled over time via three gating functions. There are several

variations of the LSTM architecture, but in this thesis, we use the model defined in

Graves [2013], performing the following operations at each time step:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2.29)

ft = σ(Wxfxt +Whfht−1Wcfct−1 + bf) (2.30)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (2.31)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (2.32)

ht = ottanh(ct) (2.33)

where ct is the cell state at time t; the input gate it controls how much new information

we encode into ct; the forget gate ft controls the extent to which we retain information

from ct−1; and the output gate ot determines the information output to the hidden

state ht at time t.

LSTMs have demonstrated a greater ability to retain longer term dependencies

than simple RNNs, with compelling results for language modelling [Graves, 2013,

Bowman et al., 2016], machine translation [Sutskever et al., 2014], speech recognition

[Graves and Jaitly, 2014], and image captioning [Donahue et al., 2015].

2.2.2.1 Decoding strategies for Recurrent Models

A generative model parameterised by a recurrent network typically factorises the

joint likelihood as

p(x1, . . . , xT) = p(x0)
T∏
t=1

p(xt|x0, . . . , xt−1) (2.34)

2.2. Neural Network Architectures 27

where at each timestep, the model outputs the distribution p(xt|x0, . . . , xt−1) over

the current datapoint conditioned on all previous datapoints. Given a trained model

of this form, we are often interested in finding the model outputs that maximise the

joint density i.e. we want (x∗1, . . . , x
∗
T) = argmaxx1:T p(x1, . . . , xT).

One simple method would be to use a greedy approach, sequentially choosing the

output that maximises the probability at the given time step, conditioned on our

choices at previous time steps:

x̂0 = argmax
x0

p(x0) (2.35)

x̂t = argmax
xt

p(xt|x̂0, . . . , x̂t−1) for t ∈ {1, . . . , T} (2.36)

While this approach is computationally efficient, the sequence (x̂0, . . . , x̂T) is not

guaranteed to be optimal.

Instead we could conduct an exhaustive search, explicitly calculating the proba-

bility for every output sequence. Although this is guaranteed to find the optimal

sequence, this approach is often too computationally expensive. Suppose we want to

find the optimal sentences of length T = 20 from a language model with a vocabulary

of size 20,000. This would involve searching an output space of size 20, 00020.

The beam search algorithm [Reddy, 1977] presents a powerful alternative. A

parameter β, known as the beam width, is chosen such that at each time step only

the top β outputs are stored, and all others ignored. On the first time step, we

consider the β outputs with the highest probability. For the following time steps, we

calculate the joint probability of the preceding stored sequences and the outputs at

the current timestep, deleting all but the β most probable sequences.

Beam search provides a good compromise between the approaches above. It

generally outputs sequences with a much higher probability density than those

produced by the greedy approach, which corresponds to a beam search of width

β = 1. Although the exhaustive approach will provide the optimal result, the

computation cost of beam search is far lower.

2.2. Neural Network Architectures 28

someatecatThe

a

RNN RNNRNN RNNRNN

The

The

<start> boy

boy

ran

ran

a

mile

some

RNN RNNRNN RNNRNN

The

<start>

satboy fishW
ith

 te
ac

he
r f

or
ci

ng
W

ith
ou

t t
ea

ch
er

 fo
rc

in
g

Ground truth sentence: “The cat ate some fish”

Figure 2.2: Schematic diagram comparing the RNN training without teacher forcing
(top) and RNN training with teacher forcing (bottom).

2.2.2.2 Teacher Forcing

At test time, recurrent models condition the output at the current time step on

model outputs from previous time steps as discussed in Section 2.2.2.1. The same

approach can also be used during model training, feeding the model predictions from

previous time steps back into the model before generating the next output, as shown

in Figure 2.2 (top).

An alternative technique, known as teacher forcing [Williams and Zipser, 1989],

feeds ground truth data points (rather than model predictions) from previous time

steps into the model during training, as shown in Figure 2.2 (bottom). This prevents

the RNN from deviating too far from the true sequence during training, which makes

training significantly easier. We also note that if the model doesn’t contain hidden

to hidden connections, teacher forcing avoids the need to back propagate through

time, although we consider only models that do contain such connections in this

2.3. Differential Privacy 29

work. While teacher forcing greatly improves training stability, some have reported

an adverse effect when sampling from the model at test time, when model outputs

(rather than ground truth data) must be fed back into the model. Further extensions

have been proposed to mitigate this issue – see for example Goyal et al. [2016].

2.3 Differential Privacy

The primary goal of machine learning is to build models of observed data; training

such models thus clearly necessitates access to such data. In many cases however,

this data will be sensitive or confidential, and the data owner may be concerned

about adversaries gaining sensitive information from their data. In a world where

organisations are collecting personal data from billions of individuals every day, data

privacy has never been more relevant.

The notion of data privacy refers to an individual’s or organisation’s ability

to control the extent to which their data is used or observed by third parties. In

many jurisdictions, data privacy is considered a fundamental human right, and

violations can be considered criminal offences. Failure to protect data privacy

can have countless negative repercussions. For example, it may enable fraudulent

practices by adversaries, such as identity theft or phishing scams; it could expose

sensitive or incriminating information about an individual (an example especially

relevant to those living under repressive governments); or it could lead to unwanted

algorithmic bias against an individual.

In order to protect data privacy, it is useful to first define a measure of privacy.

A number of different measures have been proposed. A (concerningly) common

approach is to ‘anonymise’ the data by removing identifiable information such as

names or national identity numbers. However this approach can have catastrophic

consequences, notably exposing dataset members to potential linkage attacks. These

attacks aim to identify members by comparing data entries against members of

other datasets. Famously, the medical records of the governor of Massachusetts were

identified by comparing features from a publicly released (anonymised) insurance

database with voting record data, as described in Sweeney [2002]. Similarly, the

2.3. Differential Privacy 30

identity of Netflix users were revealed by comparing members of the Netflix prize

dataset with the Internet Movie Database (IMDb) [Narayanan and Shmatikov, 2007].

More rigorous, formal privacy definitions have been introduced offering stronger

guarantees to individuals, including k-anonymity [Sweeney, 2002], ℓ-diversity [Machanava-

jjhala et al., 2006], differential privacy [Dwork et al., 2006], and metric privacy

[Chatzikokolakis et al., 2013]. Throughout this work we focus on differential privacy,

which is perhaps the most widely-adopted, and considered by many to be the gold

standard of privacy guarantees.

Differential privacy defines a mathematically provable and quantifiable guarantee

to the data owner, providing assurance that their sensitive information is not revealed

to adversarial parties. Much of the research in differential privacy can be split into

one of two models: the central model and the local model. Both provide powerful

privacy guarantees to data owners, but each apply in different contexts. We outline

these two models in the following sections.

2.3.1 Central Differential Privacy

The central model of differential privacy, commonly referred to as central differential

privacy (CDP) is a framework for preventing adversaries from detecting the presence

of an individual in a dataset. This guarantee is achieved via the careful addition of

calibrated noise to the output of statistical queries on a dataset.

Definition 2.3.1. ((ϵ, δ)-central differential privacy) Let M(central) : D → Z be

a randomised algorithm, that takes as input datasets from the dataset domain D.

We say M(central) is (ϵ, δ)-central differentially private if for ϵ, δ ≥ 0, for all subsets

S ⊆ Z, and for all neighbouring datasets D,D′ ∈ D, we have

p(M(central)(D) ∈ S) ≤ eϵ p(M(central)(D′) ∈ S) + δ (2.37)

where for D and D′ to be neighbouring means that they are identical in all but one

datapoint. When δ = 0, we say that M(central) is ϵ-central differentially private.

Intuitively, this states that one cannot tell (up to a level of certainty determined

by ϵ and δ) whether an individual is present in a database or not, after observing the

2.3. Differential Privacy 31

output of such a query on the database. A more detailed discussion of this definition

is given in Section 2.3.4.

Queries on datasets can take many forms – perhaps the simplest is a counting

query, which outputs the number of members in a database that satisfy a given

property. Consider a study attempting to find out how many people with a history

of substance abuse suffer from long term health issues. Members of this substance

abuse database may want to keep their presence in the database private to avoid,

for example, potential adverse effects on their employment opportunities, or health

insurance premiums, amongst other issues. CDP mechanisms can be used to privatise

such queries.

Before introducing an appropriate CDP mechanism, we must first introduce the

notion of sensitivity:

Definition 2.3.2. (ℓ1 sensitivity): The ℓ1 sensitivity of a function f : D → Z is

defined as

∆f = max
adjacent(D,D′)

||f(D)− f(D′)||1 (2.38)

where adjacent(D,D′) implies D,D′ ∈ D are neighbouring datasets.

Clearly, for a counting query, each database member contributes 1 to the output

of the query if they satisfy the given property, or 0 otherwise. Thus if two datasets are

identical in all but one entry, the overall count can differ by at most 1, i.e. ∆f = 1.

The Laplace mechanism can be used to privatise such a query:

Definition 2.3.3. (Laplace mechanism): The Laplace mechanismM(central) : D →
Rk is a randomised algorithm defined as

M(central) (D, f(·), ϵ) = f(D) + (s1, . . . , sk) (2.39)

for D ∈ D, si ∼ Laplace(0,∆f/ϵ), and some transformation function f : D → Rk.

Theorem 2.3.4. The Laplace mechanism satisfies ϵ-central differential privacy.

Proof. See Dwork and Roth [2014].

2.3. Differential Privacy 32

To privatise our counting query under ϵ-CDP, we must therefore add Laplace(0, 1/ϵ)

noise to the final count.

In addition to providing a quantifiable measure of privacy, CDP also has some

key properties. Notably, the post-processing theorem states that (data-independent)

transformations to the output of a CDP mechanism cannot degrade the privacy

guarantee. The composition theorem states how sequential querying of a dataset

affects the privacy guarantees: specifically, the composition of an (ϵ1, δ1)-CDP query

and an (ϵ2, δ2)-CDP query is at least (ϵ1 + ϵ2, δ1 + δ2)-CDP i.e. “the ϵ’s and δ’s

add up”. We also note that CDP provides protection against the aforementioned

linkage attacks. We refer to Dwork and Roth [2014] for proofs of these results and a

thorough overview of the central model.

While CDP has been in use for several decades, more recently this model has

been applied to deep learning models. Most notably, with the introduction of CDP

optimisation algorithms.

2.3.1.1 CDP Optimisation Algorithms

Neural networks have become the de facto standard for building powerful models of the

underlying structure of data. Such models are generally trained with gradient-based

optimisation methods. By construction, information about training set members will

be ‘leaked’ into the model through gradient updates [Zhu et al., 2019], and ultimately

contained within the parameters of the trained model. Model inversion attacks allow

adversaries to access information about training set members from the trained model.

Fredrikson et al. [2015] for example demonstrate how one can obtain recognisable

images of training set member’s faces given only their name and access to a facial

recognition model.

The introduction of CDP optimisation algorithms such as Differentially Private

Stochastic Gradient Descent (DP-SGD) [Abadi et al., 2016] and Differentially Private

Adam (DP-Adam) [Gylberth et al., 2017], have allowed the training of deep neural

networks under CDP. These techniques note that the calculation of gradients are a

specific example of a query on the training dataset, and use a CDP mechanism to

privatise each gradient update such that the final model satisfies CDP with respect

2.3. Differential Privacy 33

to the training set.

2.3.2 Local Differential Privacy

The local model of differential privacy, commonly referred to as local differential

privacy (LDP), is related to the central model, but gives a much stricter guarantee.

Rather than privatising queries on a (non-private) dataset, the local model is con-

cerned with privatising individual datapoints. By allowing individuals to privatise

their own data locally, they no longer need to rely on the trustworthiness of the

database administrator. The trade-off is that, under this stricter guarantee, data

utility is typically much lower than with approaches that use the central model (for

the same value of ϵ).

To formalise the concept of LDP, we first introduce some definitions and notation.

Definition 2.3.5. (ϵ-local differential privacy) A local randomised algorithm

M : X → Z, that takes as input a datapoint from the data domain X , satisfies

ϵ-local differential privacy if for ϵ ≥ 0, for any S ⊆ Z, and for all inputs x, x′ ∈ X ,

p(M(x) ∈ S) ≤ eϵ p(M(x′) ∈ S) (2.40)

This states that one cannot tell (with a level of certainty determined by ϵ) whether

the output of a local randomised algorithm M is the privatised version of a datapoint

x ∈ X , or the privatised version of any other input x′ ∈ X .

In order to give a concrete example of how such a mechanism might work, we

first introduce the notion of local sensitivity:

Definition 2.3.6. (Local ℓ1 sensitivity) The local ℓ1 sensitivity of a function

f : X → Z, where Z ⊆ Rk, is defined as

∆f = max
x,x′∈X

||f(x)− f(x′)||1 (2.41)

Given this, we introduce perhaps the best-known LDP mechanism, the local

Laplace mechanism:

2.3. Differential Privacy 34

Definition 2.3.7. (Local Laplace mechanism) The local Laplace mechanism

M : X → Rk is a randomised algorithm defined as

M (x, f(·), ϵ) = f(x) + (s1, . . . , sk) (2.42)

for x ∈ X , si ∼ Laplace(0,∆f/ϵ), and some transformation function f : X → Z
with local ℓ1 sensitivity ∆f .

Theorem 2.3.8. The local Laplace mechanism satisfies ϵ-local differential privacy.

Proof. We follow an approach similar to the proof in Dwork and Roth [2014] that the

central Laplace Mechanism satisfies CDP. Assume x ∈ X and x′ ∈ X are two arbitrary

datapoints. Denote M(x) = f(x) + (s1, . . . , sk) where si ∼ Laplace(0,∆f/ϵ). Then

for some arbitrary c we know that

p(M(x) = c)

p(M(x′) = c)
=

k∏
i=1

p(Mi(x) = ci)

p(Mi(x′) = ci)
(2.43)

=
k∏
i=1

e−
ϵ|fi(x)−ci|

∆f

e−
ϵ|fi(x′)−ci|

∆f

(2.44)

=
k∏
i=1

e
ϵ(|fi(x

′)−ci|−|fi(x)−ci|)
∆f (2.45)

≤
k∏
i=1

e
ϵ|fi(x

′)−fi(x)|
∆f (2.46)

= e
ϵ||f(x′)−f(x)||1

∆f (2.47)

≤ eϵ (2.48)

where the first inequality comes from the triangle inequality, and the second comes

from the definition of ∆f .

2.3.3 Central vs. Local Differential Privacy

While both central and local differential privacy provide powerful privacy guarantees

to individuals, it is important to distinguish between the two. The key distinction is

that the central model assumes a database administrator has access to unprivatised,

2.3. Differential Privacy 35

3[RIV���HEXE

3[RIV���HEXE

3[RIV�2�HEXE

$GG�/'3�LQGXFLQJ�
QRLVH

$GG�/'3�LQGXFLQJ�
QRLVH

$GG�/'3�LQGXFLQJ�
QRLVH

%HQMRMWXVEXSV�
'SQTMPIW�4VMZEXI�

(EXE
4VMZEXMWIH�
3YXTYX

2S�4VMZEG] 4VMZEG]�TVIWIVZIH�YRHIV�0(4

8L
I�
0S

GE
P�1

SH
IP

3[RIV���HEXE

3[RIV���HEXE

3[RIV�2�HEXE

%HQMRMWXVEXSV�
'SQTMPIW�2SR��
4VMZEXI�(EXE

4VMZEXMWIH�
3YXTYX

2S�4VMZEG] 4VMZEG]�TVIWIVZIH�YRHIV�'(4
8L

I�
'I

RX
VE
P�1

SH
IP

$GG�&'3�LQGXFLQJ�
QRLVH

Figure 2.3: Schematic diagram comparing the central model of differential privacy
(top) with the local model (bottom).

sensitive data. The administrator applies the privatisation mechanism to transforma-

tions of this sensitive data. The central model is therefore only applicable when the

data owner considers the administrator both trustworthy, and sufficiently protected

from failures such as hacking.

The local model does not make any such assumptions. Rather, this model puts

total control in the hands of individual data owners. Each data owner privatises

their data locally before sharing with the database administrator. Since nobody but

the individual has access to their own sensitive features, this model is applicable in

the absence of trustworthy third parties.

It is clear that, in many real-life scenarios where companies and organisations

are collecting sensitive user data, the local model provides a much greater level of

protection to the individual than the local model. Figure 2.3 shows a schematic

2.3. Differential Privacy 36

diagram of the privatisation procedure for the central model (top) and the local

model (bottom).

2.3.4 Interpretation of ϵ

It is clear from Definitions 2.3.1 and 2.3.5 that ϵ controls the trade-off between data

privacy and data utility: lower ϵ values correspond to stronger guarantees but suffer

from poor data utility; higher ϵ values allow improved utility but at the expense of

weaker privacy guarantees.

Noting the symmetry in the definition of CDP (with δ = 0), Equation 2.37 can

be re-written as

e−ϵ p(M(central)(D′) ∈ S) ≤ p(M(central)(D) ∈ S) (2.49)

and thus combining Equations 2.37 and 2.49, we can write

| log p(M(central)(D) ∈ S)− log p(M(central)(D′) ∈ S)| ≤ ϵ (2.50)

which gives us a somewhat more interpretable meaning of ϵ. The presence of any

given individual in the database can change the log probability of observing any

query output S ⊆ Z by at most ϵ.

Similarly for LDP, Equation 2.40 can be re-written as

| log p(M(x) ∈ S)− log p(M(x′) ∈ S))| ≤ ϵ (2.51)

implying that the distributions over outputs S ⊆ Z are similar (indeed the log

probabilities do not differ by more than ϵ) regardless of which true underlying

datapoint was passed into the mechanism.

Determining a suitable value of ϵ has mostly been discussed in the context of

CDP: Lee and Clifton [2011] note how the guarantee enforced by a given level of ϵ

will vary between data domain and query type. They discuss the guarantee imposed

by ϵ in terms of its relation to the privacy risk (i.e. the probability of an individual

being identified as present or absent in a dataset) – a model further generalised by

2.3. Differential Privacy 37

Mehner et al. [2021]. Alternative approaches have been proposed by Hsu et al. [2014]

and Krehbiel [2019], although in general, a method of determining a suitable value

of ϵ remains an open question in the literature.

Table 1 in Hsu et al. [2014] gives an overview of ϵ values used by CDP mechanisms

in the literature, ranging from 0.01 to 10, though some work considers values up to

100 [Yu et al., 2014]. A rule of thumb widely used in the CDP literature is to use

‘single digit ϵ’ (i.e. ϵ ≤ 10).

LDP provides much stricter guarantees than CDP, and higher ϵ values are

generally accepted in practical applications, due to the otherwise poor data utility in

low ϵ settings. Little work has been done on suitable values of ϵ specifically for LDP,

though single digit ϵ values are again considered the de facto standard in the literature

[Duchi et al., 2018, Wang et al., 2019]. Bhowmick et al. [2019] assume that the

adversary does not have access to all data but are ‘curious onlookers’ who have little

prior information on individuals; they argue that at least in their federated learning

setting, much higher values of ϵ are then acceptable, and experiments consider ϵ ≥ 50.

In this thesis, we introduce several LDP mechanisms and study their performance at

a broad range of ϵ values, whilst adhering to the commonly used single digit ϵ rule

of thumb (i.e. ϵ ≤ 10).

Chapter 3

Powerful Latent Representations

for High-Dimensional Data

The work presented in this chapter was published in [Mansbridge et al., 2019].

In the previous chapter, we gave a concise overview of the background material

required for the remaining chapters in this thesis.

In this chapter, we introduce a novel latent variable model designed to encourage

richer representations in the latent space. Powerful generative models, particularly

in natural language modelling, are commonly trained by maximising a variational

lower bound on the data log likelihood. These models often suffer from poor use

of their latent variable, with ad-hoc annealing factors used to encourage retention

of information in the latent variable. Instead, we propose encoding powerful latent

representations through an objective that encourages both generation and recon-

struction of the input data – this objective is reliant on information being contained

within the latent.

3.1 Introduction

Language modelling has remained a challenging problem in the research community

for several decades: learning from unlabelled data is a difficult problem, and language

data is inherently sparse and high dimensional. Latent variable models, particularly

in the form of Variational Autoencoders (VAEs) [Kingma and Welling, 2014, Rezende

3.2. Posterior Collapse 39

et al., 2014], have been employed in natural language modelling tasks using varied

architectures for both the encoder and the decoder [Bowman et al., 2016, Dieng

et al., 2017, Semeniuta et al., 2017, Yang et al., 2017, Shah et al., 2018]. However, a

model utilising powerful architectures that is able to effectively capture meaningful

semantic information in its latent variables is yet to be discovered.

A VAE approach to language modelling was given by Bowman et al. [2016], the

graphical model for which is shown in Figure 3.1a. This forms a generative model of

a sentence x, conditioned on a latent variable z. As discussed in Section 2.1.1.2, the

integral pθ(x) =
∫
pθ(x|z)p(z)dz is typically intractable, and so the Evidence Lower

Bound (ELBO) on the log likelihood is maximised:

log p(x) ≥ Eqϕ(z|x)
[
log pθ(x|z)

]
−DKL

[
qϕ(z|x)||p(z)

]
(3.1)

where summing over all datapoints x gives a lower bound on the likelihood of the

full dataset.

3.2 Posterior Collapse

In language modelling, typically both the generative model pθ(x|z) and approximate

posterior distribution qϕ(z|x), are parameterised using an LSTM recurrent neural

network – see for example Bowman et al. [2016]. This autoregressive generative

model is so powerful that the optimum of Equation 3.1 is typically achieved without

making appreciable use of the latent variable in the model – a phenomenon referred

to as posterior collapse.

Examining Equation 3.1 it becomes clear why this occurs. Maximising the lower

bound is equivalent to jointly maximising the reconstruction term Eqϕ(z|x)
[
log pθ(x|z)

]
,

and minimising the KL divergence term DKL

[
qϕ(z|x)||p(z)

]
. By definition, the KL

divergence is lower bounded by zero, and this zero value occurs when the approximate

posterior qϕ(z|x) learns to match the prior p(z). If a small generative network is

used, the generative model will be reliant on information encoded in the latent in

order to maximise the reconstruction term. Therefore, qϕ(z|x) is discouraged from

3.2. Posterior Collapse 40

matching the prior and the KL term will be non-zero. However, powerful generative

models are able to sample meaningful datapoints (maximising the reconstruction

term) without use of the latent. In this scenario, the model would typically converge

to an optimum where qϕ(z|x) ‘collapses’ to the prior, minimising the KL divergence.

When this happens, a fully observed model has essentially been learnt, and any

advantages that motivated the use of a latent variable model have been lost.

The dependency between what is represented by latent variables, and the capacity

of the decoding distribution (i.e., its ability to model the data without using the

latent) has been studied in the literature. For example, Yang et al. [2017] use a lower

capacity dilated convolutional decoder to generate sentences in an effort to avoid

posterior collapse, and Gulrajani et al. [2017] discuss these effects in the context of

image processing.

In the experiments in Section 3.4.2 we will see evidence of this phenomenon in

practice: we demonstrate that the VAE is incapable of reconstructing data since the

latent variable, which forms a bottleneck, contains little information on the input

data fed into the approximate posterior distribution.

Most commonly, a training procedure called ‘KL annealing’ is used to avoid

posterior collapse, in which the KL divergence term in the objective is slowly turned

on during training [Bowman et al., 2016, Sønderby et al., 2016]. KL annealing allows

the model to use its latent variable to some degree by forcing the model into a local

maximum of its objective function. An alternative approach to encourage use of

the latent is to aggressively optimise the inference network, performing multiple

updates of the posterior network parameters ϕ between every update of the generative

parameters θ [He et al., 2019].

If one must reduce model capacity or modify the training procedure in this

way to preferentially obtain local maxima, this suggests that the objective function

in Equation 3.1 may not be well-suited to learning latent representations of high-

dimensional data.

3.3. High-Fidelity Latent Variable Modelling with AutoGen 41

z

x

(a)

x

z

x′

(b)

z

x x′

(c)

Figure 3.1: (a) Standard generative model. (b) Stochastic autoencoder with tied
observations. (c) Equivalent tied stochastic autoencoder with AutoGen parameteri-
sation.

3.3 High-Fidelity Latent Variable Modelling with

AutoGen

We propose a new generative latent variable model, motivated by the autoencoder

framework [Hinton and Zemel, 1994, Hinton and Salakhutdinov, 2006], designed to

encourage powerful latent encodings. Autoencoders are trained to reconstruct data

through a low-dimensional bottleneck layer, and as a result, construct a dimensionally-

reduced representation from which the data can be reconstructed. By encouraging

reconstructions in our model, we force the latent variable to represent the input data,

overcoming the issues faced by VAEs [Bowman et al., 2016] where the latent variable

is ignored, as discussed in Section 3.1.

To autoencode in a probabilistic model, we start by considering a ‘stochastic

autoencoder’ (SAE) in which we maximise the likelihood of a reconstruction:

pSAE(x
′ = xn|x = xn) =

∫
pSAE(x

′ = xn|z) pSAE(z|x = xn) dz (3.2)

where x′ represents the reconstruction and the training data is denoted by {xn}.
Maximising this likelihood would encourage high-fidelity reconstruction from the

stochastic embedding z by tying the input data x and the output x′, much like an

autoencoder. The associated graphical model is shown in Figure 3.1b.

However, it is not immediately clear how to train such a model – constructing

3.3. High-Fidelity Latent Variable Modelling with AutoGen 42

a lower bound on the likelihood using variational methods common in the VAE

literature will give rise to an intractable p(x) term. This SAE would also not allow

generation from a prior distribution, as in the case of VAEs. In order to leverage both

prior generation and high-fidelity reconstruction from the latent variable, we propose

jointly maximisng the likelihood of a SAE and a VAE under a set of assumptions

that tie the two models together:

LAutoGen =
∑
n

log pVAE(x = xn)︸ ︷︷ ︸
generation

+ log pSAE(x
′ = xn|x = xn)︸ ︷︷ ︸

reconstruction

(3.3)

The reconstruction term is given in Equation 3.2, and we can write the generation

term as

pVAE(x = xn) =

∫
pVAE(x = xn|z) pVAE(z) dz (3.4)

Crucially, maximising LAutoGen does not correspond to maximising the log like-

lihood of the data as in the case of a VAE, nor would a lower bound on LAutoGen

correspond to the VAE ELBO (Equation 3.1). Instead, we will see that LAutoGen

represents the log likelihood of a different model that combines both VAEs and SAEs.

As yet, we have not specified the relationship between the two terms in LAutoGen,

given by Equations 3.2 and 3.4. First, we assume that the generative model pVAE(x =

xn|z) in the VAE is the same as the reconstruction model pSAE(x
′ = xn|z) in the

SAE, and that the two models share a prior: pSAE(z) = pVAE(z). Under this equality

assumption, it makes sense to denote these distributions identically as p(x = xn|z) and
p(z), respectively. Second, we assume that the encoding and decoding distributions

in the stochastic autoencoder are symmetric. Using Bayes’ rule, we write these

assumptions as

pSAE(z|x = xn)
sym. assump.

=
pSAE(x

′ = xn|z) pSAE(z)

pSAE(x = xn)
(3.5)

eq. assump.
=

p(x = xn|z) p(z)
p(x = xn)

(3.6)

These assumptions constrain the two otherwise-independent models, allowing

AutoGen to demand both generation from the prior (like VAEs) and high-fidelity

3.3. High-Fidelity Latent Variable Modelling with AutoGen 43

reconstructions from the latent (like autoencoders), all while specifying a single

generative model, p(x = xn|z).

Indeed, using this equality assumption allows us to write pSAE(x = xn) =

pVAE(x = xn) =: p(x = xn). Thus, we can write Equation 3.3 as:

LAutoGen =
∑
n

[
log p(x = xn) + log

∫
dz p(x = xn|z)pSAE(z|x = xn)

]
(3.7)

Now applying Equation 3.6 and combining the two logarithms, we find

LAutoGen =
∑
n

log

∫
dz p(x = xn|z)2p(z) (3.8)

In other words, AutoGen can be interpreted as the tying of two separate generations

from the same model p(x = xn|z). The graphical representation of this interpretation

is shown in Figure 3.1c, where the dashed line corresponds to the tying (equality) of

the two generations.

With the AutoGen assumptions, a simple lower bound for LAutoGen can be derived

from Equation 3.8, following the standard variational lower bound arguments:

LAutoGen ≥
∑
n

2Eq(z|xn)
[
log p(x = xn|z)

]
− DKL

[
q(z|xn)||p(z)

]
(3.9)

3.3.1 Multiple Reconstructions

We see that the variational lower bound derived for AutoGen in Equation 3.9 is

the same as that of the VAE [Kingma and Welling, 2014, Rezende et al., 2014], but

with a factor of 2 in front of the reconstruction term. It is important to emphasise,

however, that the AutoGen objective is not a lower bound on the data log likelihood.

Equation 3.9 is a lower bound on the sum of the log likelihoods in Equation 3.3, and

represents a criterion for training a generative model p(x|z) that evenly balances

both good spontaneous generation of the data p(x = xn) as well as high-fidelity

reconstruction p(x′ = xn|x = xn).

Of course, AutoGen does not force the latent variable to encode information in a

particular way, but it is a necessary condition that the latent represents the data

3.4. Experiments 44

well in order to reconstruct it. We discuss the relation between AutoGen and other

efforts to influence the latent representation of VAEs in Section 3.5.

A natural generalisation of the AutoGen objective and assumptions is to maximise

the log likelihood of m independent-but-tied reconstructions, instead of just one.

The arguments above then lead to a lower bound with a factor of 1 +m in front of

the generative term:

LAutoGen(m) ≥
∑
n

(1 +m)Eq(z|xn)
[
log p(xn|z)

]
−DKL

[
q(z|xn)||p(z)

]
(3.10)

Larger m encourages better reconstructions at the expense of poorer generation. We

discuss the impact of the choice of m in Section 3.4.

3.4 Experiments

We train four separate language models, each with the posterior and generative

distributions parameterised by LSTM networks as in Bowman et al. [2016]. Two of

these models are VAEs – one such variant uses KL annealing, and the other does not.

We then train our baseline AutoGen model, which uses the objective in Equation 3.9,

and train an AutoGen variant using the objective in Equation 3.10 with m = 2.

All of the models were trained using the BookCorpus dataset [Zhu et al., 2015],

which contains sentences from a collection of 11,038 books. We restrict our data

to contain only sentences with length between 5 and 30 words, and restrict our

vocabulary to the most common 20,000 words. We use 90% of the data for training

and 10% for testing. After pre-processing, this equates to 58.8 million training

sentences and 6.5 million test sentences. All models in this section are trained using

word drop as in Bowman et al. [2016].

Neither AutoGen models are trained using KL annealing. We consider KL anneal-

ing to be unprincipled, as it destroys the relevant lower bound during training. In

contrast, AutoGen provides an unfettered lower bound throughout training. Despite

not using KL annealing, we show that AutoGen improves latent-variable descriptive-

ness compared to VAEs both with and without KL annealing for completeness.

3.4. Experiments 45

0.0K 200.0K 400.0K 600.0K 800.0K 1000.0K
Training Iterations

 0%

20%

40%

60%

80%

100%
N

eg
at

iv
e

K
L

as
 p

er
ce

nt
ag

e
of

 o
bj

ec
tiv

e
VAE, annealing
VAE
AutoGen (m=1)
AutoGen (m=2)

Figure 3.2: Negative DKL

[
q(z|xn)||p(z)

]
term as a % of overall objective for the four

models throughout training.

3.4.1 Optimisation Results

We train all models for 1 million iterations using mini-batches of 200 sentences. We

use 500 hidden states for the LSTM cells in our encoder and decoder networks,

and dimension 50 for our latent variable z. The objective functions differ between

the four models, and so it is not meaningful to directly compare them. Instead, in

Figure 3.2, we show the % of the objective function that is accounted for by the

(negative) KL term. Despite the fact that AutoGen has a larger pre-factor in front

of the reconstruction term, the KL term becomes more and more significant with

respect to the overall objective function for AutoGen with m = 1 and m = 2, as

compared to the VAE. This suggests that the latent in AutoGen is putting less

emphasis on matching the prior p(z), emphasising instead the representation of the

data.

To understand the impact of AutoGen on the log likelihood of the training data

(the generation term in Equation 3.3), we compare the VAE ELBO in Equation 3.1

of the four models during training. Since the ELBO is the objective function for

the VAE, we expect it to be a relatively tight lower bound on the log likelihood.

However, this only applies to the VAE. Indeed, if the VAE ELBO calculated with

the AutoGen model is similar to that of the VAE, we can conclude that the AutoGen

3.4. Experiments 46

0.0K 200.0K 400.0K 600.0K 800.0K 1000.0K
Training Iterations

90

80

70

60

50
E

LB
O

VAE, annealing
VAE
AutoGen (m=1)
AutoGen (m=2)

Figure 3.3: ELBO (log likelihood lower bound, Equation 3.1) for the four models
throughout training.

model is approximately concurrently maximising the log likelihood as well as its

reconstruction-specific objective.

In Figure 3.3 we show the ELBO for all four models. We see that, though the

baseline AutoGen (m = 1) ELBO is below that of the VAE, it tracks the VAE ELBO

well and is non-decreasing. On the other hand, for the more aggressive AutoGen

with m = 2, the ELBO starts decreasing early on in training and continues to do so

as its objective function is maximised. Thus, for the baseline AutoGen with objective

function corresponding to maximising Equation 3.3, we expect decent reconstructions

without significantly compromising generation from the prior. However, we will likely

see some degradation in the ability of AutoGen (m = 2) to generate meaningful

samples. In Sections 3.4.2 and 3.4.3 we corroborate this expectation qualitatively by

studying samples from the models.

3.4.2 Sentence Reconstruction

Indications that AutoGen should more powerfully encode information into its latent

variable were given theoretically in the construction of AutoGen in Section 3.3, and

from the optimisation results in Section 3.4.1. To see what this means for explicit

samples, we perform a study of the sentences reconstructed by the VAE compared

3.4. Experiments 47

Table 3.1: Reconstructed sentences from the VAE (top) and AutoGen (bottom).
Sentences are not ‘cherry picked’: these are the first four sentences reconstructed
from a grammatically correct input sentence, between 4 and 20 words in length
(for aesthetics), and with none of the sentences containing an unknown token (for
readability). All punctuation is generated by the models.

Input Sentence VAE Reconstruction VAE Reconstruction (an-
nealing)

“more or less?” “oh yeah.” “ “what about you?”
why would you need to talk
when they can do it for you?

how couldn’t i? why do you want to know if
i can find out of here?

she had no idea how beauti-
ful she truly was.

she hadn’t. she had no idea what she was
talking about.

“i guess some people never
learn.”

“i love you. “you know what you’re
thinking.”

Input Sentence AutoGen Reconstruction
(m = 1)

AutoGen Reconstruction
(m = 2)

“more or less?” “more or less?” “more or less?”
why would you need to talk
when they can do it for you?

why would you need to
know if you can do it for
you?

why would you need to talk
when they can do it for you?

she had no idea how beauti-
ful she truly was.

she had no idea how beauti-
ful she was to.

she had no idea how beauti-
ful she truly was.

“i guess some people never
learn.”

“i guess our parents never
exist.

“i guess some people never
learn.”

to those reconstructed by AutoGen.

Table 3.1 shows reconstructions of input sentences x from the test set; each

reconstruction is obtained via the maximisation of p(x|z), as determined using beam

search with beam width 15 (for details, see Section 2.2.2.1). We sample z ∼ q(z|x)
in this process, meaning we find different reconstructions every time from the same

input sentence, despite the beam search procedure in the reconstruction.

AutoGen is qualitatively better at reconstructing sentences than the VAE. For

AutoGen with m = 2 we see that all sentences are reconstructed verbatim. For

AutoGen with m = 1, even when the input sentence is not reconstructed verbatim,

the model is able to generate a coherent sentence with a similar meaning by using

semantically similar words. For example in the last sentence, by replacing “some

people” with “our parents”, and “never learn” with “never exist”. On the other

hand, the VAE reconstructions regularly produce sentences that have little relation

to the input. Note that without annealing, the VAE regularly ignores the latent,

3.4. Experiments 48

Table 3.2: Results from a blind survey comparing reconstruction quality. Respondents
were told to “choose the best reconstruction”, and where ambiguous, could discard
sentence pairs.

Model 1 vs. Model 2
% responses with Model 1
as winner

VAE (annealing) vs. VAE 66%
AutoGen (m = 1) vs. VAE (annealing) 88%
AutoGen (m = 2) vs. AutoGen (m = 1) 88%

producing short, high-probability sentences reconstructed from the prior.

To make these results more quantitative, we ran three versions of a survey in

which respondents were asked to judge the best reconstructions from two models.

In the first survey, we received responses from 6 people who compared 120 pairs

of reconstructions from the VAE and the VAE with annealing. The second survey

received responses from 13 people over 260 sentences and compared reconstructions

from the VAE with annealing to AutoGen (m = 1). The third compared AutoGen

(m = 1) to AutoGen (m = 2) and received 23 responses over 575 sentences. None

of the respondents in these surveys were authors of this work. The surveys were

designed in this way to provide an easy binary question for the respondents. They

provide a suitable test of the models due to the transitive nature of the comparisons.

Our survey results are shown in Table 3.2. We can clearly see that AutoGen

with m = 2 outperforms AutoGen with m = 1, as expected. Similarly, AutoGen

with m = 1 outperforms the VAE with annealing, and this in turn outperforms the

standard VAE. All results have greater than 99% confidence.

3.4.3 Sentence Generation

The objective function of AutoGen encourages the generation of higher-fidelity

reconstructions from its approximate posterior. The fundamental trade-off is that it

may be less capable of generating sentences from its prior.

To investigate the qualitative impact of this trade-off, we now generate samples

from the prior z ∼ N (0, I) of the VAE and AutoGen. For a given latent z, we obtain

sentences via beam search as in Section 3.4.2. Results are shown in Table 3.3, where

3.4. Experiments 49

Table 3.3: Sentences generated from the prior, z ∼ N (0, I), for the VAE (top) and
AutoGen (bottom). Sentences are not ‘cherry picked’: they are chosen in the same
way as those in Table 3.1. All punctuation is generated by the models.

VAE Generation VAE Generation (annealing)

the only thing that mattered. she just looked up.
he gave her go. she felt her lips together.
“good morning,” i thought. my hands began to fill the void of what was

happening to me.
she turned to herself. at first i knew he would have to.

AutoGen Generation (m = 1) AutoGen Generation (m = 2)

they don’t show themselves in mind, or some-
thing to hide.

jack was moving with slow, jerky as
strained to keep pace.

her eyes widen, frowning. “i know that over something i don’t an-
swer.”

the lights lit up around me. the car jerked and splashed out the fuel
fire hole.

i just feel like fun. i turned disbelieving.

we see that there appears to be no obvious qualitative difference between the VAE

with annealing and AutoGen at m = 1, with both models able to generate similarly

coherent sentences. We note however that the generation quality seems to deteriorate

for AutoGen at m = 2.

To be more quantitative, we ran a survey of 23 people – none of which were

the authors – considering 392 sentences generated from the priors of all four of the

models under consideration. We applied the same sentence filters to these generated

sentences as we did to those generated in Table 3.3. We then asked the respondents

whether or not a given sentence “made sense”, maintaining the binary nature of

the question, but allowing the respondent to interpret the meaning of a sentence

“making sense”. To minimise systematic effects, each respondent saw a maximum

of 20 questions, evenly distributed between the four models. All sentences in the

surveys were randomly shuffled with the model information obfuscated.

The results of our survey are shown in Table 3.4. Since the VAE generates

systematically shorter sentences than the training data, which are inherently more

likely to be meaningful, we divide our survey into short and long sentences (with

length ≤ 10 and > 10 tokens, respectively). We conclude that the VAE with annealing

is better at generating short sentences than AutoGen (m = 1). However, both models

3.4. Experiments 50

Table 3.4: Results from a blind survey testing generation quality. Respondents were
asked “does this sentence make sense” for a randomised list of sentences evenly
sampled from the four models. Results are split into two sentence lengths L in order
to mitigate the bias of the VAE models to generate short sentences.

Model % meaningful (L ≤ 10) % meaningful (L > 10)

VAE 75% N/A
VAE (annealing) 76% 32%
AutoGen (m = 1) 50% 32%
AutoGen (m = 2) 29% 5%

achieve equal results on generation quality for longer sentences. AutoGen is likely

able to effectively generate longer sentences as a result of its more informative latent

representation, which reduces the burden on the generative model of modelling

long-term dependencies.

We see that AutoGen (m = 2) generates less meaningful sentences than other

models. This is as expected since the training objective places less emphasis on

generation quality. Finally, we emphasise that the baseline VAE could not generate

any long sentences, bringing into question its merits as a generative language model.

All results that differ by more than 1 percentage point in the table are statistically

significant with confidence greater than 99%.

3.4.4 Latent Manifold Structure

Finally, with high-fidelity reconstructions from the latent, one would expect to be

able to witness the smoothness of the latent space well. This seems to be the case, as

can be seen in Table 3.5, where we show the reconstructions of a linear interpolation

between two encoded sentences for VAE with annealing and for AutoGen (m = 1).

The AutoGen interpolation seems to be qualitatively smoother: while neighbouring

sentences are more similar, there are fewer instances of reconstructing the same

sentences at subsequent interpolation steps.

The reconstructions from the VAE without annealing have little dependence

on the latent, and AutoGen (m = 2) struggles to generate from the prior. As a

consequence, both of these models show highly non-smooth interpolations with little

similarity between subsequent sentences. The results for these models have therefore

3.5. Discussion 51

Table 3.5: Latent variable interpolation. Two sentences (first and last sentences
shown) are randomly selected from the test dataset and encoded into z1 and z2.
Sentences are then generated along 10 evenly spaced steps from z1 to z2. This
interpolation was not ‘cherry picked’: it was our first generated interpolation using
the same filters as in previous tables. All punctuation is generated by the models.

VAE (annealing) AutoGen (m = 1)

“i’ll do anything, blake.” “i’ll do anything, blake.”
“i’ll be right back then.” “i’ll do it, though.”
“i’ll tell me like that.” “i’ll say it, sir.”
i dont know what to say. “i’ve done it once.”
i dont know what to say. i dont think that was it.
i dont think about that way. i wish so, though.
i’ll be right now. i bet it’s okay.
i was so much. i know how dad.
i looked at him. i laughed at jack.
i looked at him. i looked at sam.
i looked at adam. i looked at adam.

been omitted.

We have provided only a single sample interpolation, and though it was not

cherry picked, we do not attempt to make a statistically significant statement on the

smoothness of the latent space. Given the theoretical construction of AutoGen, and

the robust results shown in previous sections, we consider smoothness to be expected.

The sample shown is consistent with our expectations, though we do not consider it

a definite empirical result.

3.5 Discussion

We have introduced AutoGen, a novel latent variable model trained through the

optimisation of an objective function specifically designed to encode information into

the latent variable. AutoGen, by design, overcomes a widely observed shortcoming

of VAEs whereby they can learn to generate data without encoding any information

into the latent. AutoGen does so in a principled way, by explicitly modelling both

the generation, and high-fidelity reconstruction, of the data. This is especially useful

when the generative model is powerful – for example, when parameterised by an

3.5. Discussion 52

autoregressive LSTM.

Other work towards enabling a VAE’s latent variable to learn meaningful rep-

resentations has focused on managing the structure of the representation, such as

ensuring disentanglement. A detailed discussion of disentanglement in the context

of VAEs is given by Higgins et al. [2017] and its references. Gulrajani et al. [2017]

present an approach for controlling what is encoded into the latent in the context of

image generation – the authors restrict the decoding network such that it models

only local information in the image (e.g., texture, shading), allowing their latents to

describe global information (e.g., object geometry, overall colour).

Demanding high-fidelity reconstructions from latent variables in a model, as in

our approach, is in tension with demanding specific information to be stored in the

latent variables (e.g. disentanglement). This can be seen very clearly by comparing

our work to Higgins et al. [2017], where the authors introduce an ad-hoc factor of β

in front of the KL divergence term in the VAE objective function. They find that

β > 1 is required to improve the disentanglement of their latent representations.

Interestingly, β > 1 corresponds analytically to −1 < m < 0 in Equation 3.10.

Equivalently, since the overall normalisation of the objective function does not impact

the location of its extrema, Equation 3.10 is equivalent to the β-VAE objective

function with β = (1 +m)−1.

Since m in AutoGen represents the number of times a high-fidelity reconstruction

is demanded (in addition to a single generation from the prior), β-VAE with β > 1 is

analytically equivalent to demanding a ‘negative number of reconstructions’. As an

analytic function of m, with larger m corresponding to higher-fidelity reconstructions,

negative m would correspond to a deprecation of the reconstruction quality. This

is indeed what the authors in Higgins et al. [2017] find and discuss. They view

β-VAE as a technique to trade off more disentangled representations at the cost of

lower-fidelity reconstructions, in contrast to our view of AutoGen as a technique

to trade off higher-fidelity reconstructions at the cost of slightly inferior generation

from the prior.

In connecting to β-VAE, we have considered AutoGen with m as a real number.

Practically, m could take positive real values, and can be seen as a hyperparameter

3.6. Conclusions 53

that requires task-specific tuning. From our results, we expect m ≈ 1 to be a useful

ballpark value, with smaller m improving generation from the prior, and larger m

improving reconstruction fidelity. The advantage of tuning m as described is that it

has a principled interpretation at integer values; namely that of demanding m exact

reconstructions from the latent, as derived in Section 3.3.

In this light, KL annealing amounts to starting with m = ∞ at the beginning, and

smoothly reducing m down to 0 during training. Thus, it is equivalent to optimising

the AutoGen lower bound given in Equation 3.10 with varying m during training.

However, AutoGen should never require KL annealing.

Scaling of the ELBO is common in multimodal generation, where the reconstruc-

tion terms are typically of different orders of magnitude [Vedantam et al., 2018, Wu

and Goodman, 2018]. AutoGen can be adapted to provide a bound on a meaningful

objective function in multimodal generation with well-scaled terms, by requiring a

larger number of reconstructions for one data modality than the other. Autogen thus

has broader applications in generative modelling, which we leave to future work.

3.6 Conclusions

In this chapter, we introduced AutoGen: a novel modelling approach to improve

the descriptiveness of latent variables in generative models, by combining the log

likelihood of a VAE, with the log likelihood of m high-fidelity reconstructions via a

stochastic autoencoder. This approach is theoretically principled in that it retains a

bound on a meaningful objective, and computationally amounts to a simple factor

of (1 +m) in front of the reconstruction term in the standard ELBO. We find that

the most natural version of AutoGen (with m = 1) provides significantly better

reconstructions than the VAE approach to language modelling, and only minimally

deprecates generation from the prior.

Chapter 4

Latent Variable Modelling under

LDP

The work presented in this chapter was published in Mansbridge et al. [2022].

In the previous chapter, we introduced a new class of latent variable model that

facilitated the learning of powerful latent encodings in the presence of a high-capacity

generative network.

In this chapter, we consider a novel latent variable model for data privatisation

under local differential privacy (LDP). We constrain the approximate posterior

distribution such that the addition of carefully calibrated noise induces LDP on

the latent manifold. The choice to privatise on the low-dimensional latent manifold

allows us to circumvent the ‘curse of dimensionality’ for LDP, which has plagued the

performance of existing privatisation mechanisms when applied to high-dimensional

data. The applications of this approach are far reaching; for our empirical experiments

we consider the model in the context of data collection methods that protect the

privacy of the data owner. We use the collected LDP data to train performant

downstream machine learning algorithms. Not only is this a common goal of data

collectors, but the performance metrics of these downstream models forms a powerful

proxy for measuring the data utility of our privatised training data.

4.1. Introduction 55

4.1 Introduction

The collection of personal data is ubiquitous, and unavoidable for many in everyday

life. The use of such data for training machine learning algorithms has become

instrumental in improving the quality and user experience of many products and

services.

However, research from Amnesty International [2019] claims that some data

collection tactics from large companies constitute a human rights violation. In some

instances, the individual may feel the organisation with whom they share their data

is trustworthy but despite this, they may still be vulnerable to adversarial third

parties. For example, breaches of the health insurance companies Premera and

Anthem put at risk the healthcare data of an estimated 11 million and 79 million

American citizens respectively [Institute for Critical Infrastructure Technology, 2016],

and a recent study suggests that only half of healthcare providers feel capable of

defending themselves against cyber-attacks [Martin et al., 2017]. Similarly, the

Financial Conduct Authority have revealed accidentally releasing personal details of

1,600 consumers [Jolly, 2020].

Incidents such as these have brought the concept of data privacy into sharp focus,

fuelling regulatory changes, as well as a shift in the personal preferences of data

owners. There is thus a growing need for data collection methods that preserve

individuals’ privacy, whilst retaining sufficient data utility for product and service

improvement.

Privatising data under local differential privacy (LDP) [Kasiviswanathan et al.,

2008, Duchi et al., 2013] naturally lends itself to data collection (see Section 2.3.2 for

a formal introduction to LDP). As depicted in Figure 2.3, LDP mechanisms allow

individuals to privatise their data before sharing it, thus providing a mathematically-

provable privacy guarantee for the individual against both a potential adversary and

the database administrator.

LDP has its roots in randomised response [Warner, 1965], which preserves the

privacy of survey respondents by only having them answer a sensitive binary question

truthfully based on the outcome of some binary random variable. For example, a

4.1. Introduction 56

teacher may be wondering how many students are cheating on a test, but is conscious

that students will be unwilling to divulge this incriminating information. Instead,

the teacher gives each student a coin to (secretly) flip. If the coin returns tails, the

students answer truthfully, and if it returns heads they flip again, answering ‘yes’ for

heads, and ‘no’ for tails. This mechanism grants a level of plausible deniability to

the students – even if they answer ‘yes’, the teacher knows there is a 1 in 4 chance

they didn’t cheat. Despite this, the teacher can still use these responses to calculate

an estimate of the true rate of cheating. Privatisation is relatively straightforward

for this binary problem, but is challenging for more complex data distributions,

especially in higher dimensions.

Limited research has gone into developing LDP mechanisms for high-dimensional

data, especially those that generalise to different data types. Often dubbed the ‘curse

of dimensionality’, this is a challenging problem in LDP [Zhang et al., 2017, Duchi

et al., 2018, Bhowmick et al., 2019].

The local Laplace mechanism (see Definition 2.3.5) is the de facto standard

for continuous attributes. Duchi et al. [2018] and Wang et al. [2019] have more

recently introduced lower variance continuous mechanisms, though Duchi et al. [2018]

emphasise the pessimistic nature of their results in high dimensions. Meanwhile,

Wang et al. [2019]’s mechanism induces LDP by collecting k ≪ d perturbed attributes

per d-dimensional datapoint – experiments in this thesis act on data of dimension

d > 3000, but Wang et al. [2019]’s mechanism would perturb only k ≤ 4 attributes –

clearly too few to retain sufficient utility in our context. The PrivUnit2 mechanism

[Bhowmick et al., 2019] privatises high-dimensional continuous gradient data for

federated learning; however, the authors consider only very high local-ϵ (i.e. low

privacy) guarantees, aiming to protect only against accurate data reconstruction

rather than arbitrary inferences.

There also exist a number of LDP techniques for specific tasks or data types.

Notably, Ding et al. [2017] study the repeated collection of one-dimensional telemetry

data for mean and histogram estimation. Erlingsson et al. [2014] develop a technique

for collecting aggregate statistics on categorical attributes, with Fanti et al. [2016]

extending this to model correlations between dimensions, but neither produce rep-

4.1. Introduction 57

resentations suitable for downstream learning on high-dimensional data. Ren et al.

[2018] discuss the poor performance of the models of Erlingsson et al. [2014] and

Fanti et al. [2016] on high dimensional data, and instead estimate the distribution of

collected data, from which they sample a synthetic dataset. The range of applications

here is limited (see next paragraph), and the approach incurs a high communication

cost between the data collector and individuals. In summary, developing a general

method for inducing LDP in high dimensions, while preserving data utility, is an

open research question.

Central differential privacy (CDP) [Dwork et al., 2006] is a related framework

offering protection in an altogether different context. Rather than facilitating the

private collection of individual datapoints, CDP mechanisms stop an adversary

determining, up to a quantifiable level of certainty, the presence of an individual

in a dataset. This is achieved via the calibrated addition of noise to the output of

statistical queries on that dataset. However, to achieve this requires the database

administrator have access to the full unprivatised dataset. CDP has been used

effectively in the related field of private data release. For example, Xie et al. [2018],

Triastcyn and Faltings [2019], Acs et al. [2019], Takagi et al. [2021] propose sharing a

synthetic dataset composed of samples from generative models trained with a CDP

optimisation algorithm [Abadi et al., 2016, Gylberth et al., 2017, Papernot et al.,

2017]. While powerful in some scenarios, this approach is not suited to data collection,

where we are trying to protect individuals from all external parties, including the

database administrator. Furthermore, the synthetic data provides no information

about the features of specific individuals, and the distribution of the synthetic dataset

is static after training the generative model.

In this chapter, we introduce an entirely novel LDP mechanism for private, high-

dimensional data collection based on a latent variable model. We motivate this

approach based on two observations. First, we note that it is often a good approxi-

mation to assume high-dimensional data lives on a much lower-dimensional manifold.

Second, the vast majority of organisations collecting personal data already have

access to auxiliary data; this may be previously collected internal data [Competition

and Markets Authority, 2020, Schmidt, 2018], public datasets [Deng et al., 2009, Irvin

4.1. Introduction 58

et al., 2019, Thomee et al., 2016], or data scraped from the internet, as is commonly

used to train unsupervised models [Devlin et al., 2019, Mahajan et al., 2018, Ramesh

et al., 2021]. Such auxiliary data can be used to learn this lower-dimensional manifold

underlying the data distribution. Thus, to circumvent the pessimistic nature of

results for provably optimal LDP mechanisms in high-dimensions [Duchi et al., 2018],

we instead propose privatising data on the lower-dimensional manifold, where the

negative impact of such results is far smaller.

In this way, we use our auxiliary data to train a latent-variable model [Kingma

and Welling, 2014, Rezende et al., 2014] where sampling in latent space adds LDP-

inducing, Laplace-distributed noise to the low-dimensional latent. Furthermore,

reconstructing a datapoint (i.e. passing it through both the encoder and decoder

networks) is equivalent to efficiently adding complex, non-linear noise to the raw

features to induce LDP. The addition of this LDP-inducing noise during training

ensures that the learnt latents are robust to noise at data privatisation time. We

refer to this novel technique as the variational Laplace mechanism (VLM).

In addition, we introduce a novel de-noising approach for downstream model

training on data privatised with our mechanisms, enabling the training of performant

machine learning models. The training of machine learning models is not only a

common goal of data collectors, but downstream model performance forms a powerful

proxy for measuring the utility of our LDP training data.

Owing to a wealth of latent variable modelling research on a broad range of

data types, including images [Gulrajani et al., 2017], audio [van den Oord et al.,

2017], video [Denton and Fergus, 2018], and text [Bowman et al., 2016], the VLM

can be easily adapted to many data domains. Finally, the generalisation ability of

such models (a) reduces the extent to which auxiliary data must follow the same

distribution as the data being collected and (b) allows the collected LDP data to

be used for an array of downstream tasks. In particular, we demonstrate that our

approach learns powerful LDP data representations, significantly outperforming

state-of-the-art LDP benchmark mechanisms on three major applications:

• Privatised data collected with the VLM is used to train downstream machine

learning models, demonstrating state-of-the-art utility preservation on high

4.2. Proposed Method 59

Administrator
compiles data

Train VLM: stage 1

encoder decoder

Data distributed
between owners

Send encoder
to data owners

Each data owner
privatizes locally

LDP data available for downstream
tasks (cf. Section 3.2)

Train variational Laplace mechanism (VLM):

Locally privatize and compile data:

CDP enc. decoder

encoder CDP dec.

encoder decoder

encoder

decoder

Train VLM: stage 2 (if CDP is required)Training data for VLM

● if sharing feature-level
data, train CDP decoder

● if sharing encoder,
train CDP encoder

● if CDP not required,
skip stage 2 training

● if feature-
level task

● if latent-
level task

Figure 4.1: Schematic diagram of VLM training (top) and local data privatisation and
collection (bottom), as outlined in Section 4.2. Green shading indicates parameters
satisfying CDP with respect to the training set.

dimensional data under LDP.

• The VLM can be used, without re-training, to collect distributionally-shifted

data for model training. In particular, we train a classifier on privatised data

for novel class classification.

• As a mechanism for LDP, the VLM can track the IDs of real individuals whilst

privatising their sensitive features. We use this to augment internal data with

privatised features from an external source to improve a classifier’s performance

on the combined feature set.

4.2 Proposed Method

Many existing LDP mechanisms noise each feature independently; by the composition

theorem [Dwork and Roth, 2014], the ith feature contributes towards the overall

LDP guarantee of the d-dimensional datapoint as ϵ =
∑d

i=1 ϵi. For fixed ϵ, as d

4.2. Proposed Method 60

increases, ϵi decreases for each feature i and so the additive noise required to induce

ϵ-LDP grows. Equivalently, we can re-frame this concept in terms of sensitivity.

Suppose we want to privatise a d-dimensional image x ∈ [0, 1]d with an additive noise

mechanism such as the Laplace mechanism. We clearly see that sensitivity scales

with dimension (the ℓ1 sensitivity is equal to d in this case, c.f. Definition 2.3.6), and

thus the additive noise scales with dimension too. In low dimensions, this may not

be a cause for concern, but in modern machine learning we often consider datapoints

such as images with many thousands of dimensions, resulting in near-total erosion of

any information contained within the datapoint.

Furthermore, high-dimensional datapoints like images and large tables often

contain highly correlated features. Consequently, noising features independently is

wasteful towards privatising the information content.

Even if one does not noise features independently, data utility decreases as

dimensionality increases, resulting in poor performance in high dimensions [Duchi

et al., 2018]. Instead, we propose a more effective approach: learning an application-

agnostic mechanism that privatises a range of data types through the addition of

complex, non-linear noise on a learnt, low-dimensional manifold.

To this end, we train a generative latent-variable model to learn a low-dimensional

latent representation of our data. The learnt mapping from data space to latent space,

under certain constraints, forms our function f(·) in Definition 2.3.7. Crucially, we

constrain this manifold such that the sensitivity is fixed and finite, regardless of both

the input data dimension and the latent dimension. Under these constraints, the

addition of Laplace noise will therefore induce LDP on our latent data representations,

giving us a powerful LDP mechanism. Finally, we train the mapping f(·) from data

space to the latent manifold such that the induced representations are robust to this

LDP-inducing noise, significantly improving utility-retention after privatisation.

In practice, the data collector would share this learnt LDP mechanism with

individuals. These individuals would then privatise their data, before sending it to

the data collector. In this way, the collector forms a LDP dataset composed of data

collected from multiple individuals. This setup is agnostic to choice of downstream-

task so can be applied broadly. We consider training downstream machine learning

4.2. Proposed Method 61

algorithms as the evaluative task for measuring the utility of these LDP datapoints.

Specifically, we use the LDP training data, along with information on the type of

noise added, and prior beliefs regarding the distribution of our representation space,

to train a classifier network that predicts a label given an input datapoint. This

classifier can be trained to act on either clean or privatised datapoints at inference

time, depending on the application.

Mechanism Training with Auxiliary Data

Training f(·) requires separate, unlabelled, auxiliary data D1 with similar distribution

to the data D2 we hope to collect. As discussed in Section 4.1, this is a highly realistic

assumption in the current climate.

Access to auxiliary data is widely assumed in many fields of machine learning

research. Indeed, the field of transfer learning is largely centred on the idea that

knowledge gained from solving one problem (through model training on a given

“auxiliary” dataset) can be used to aid learning in another problem. Notably, vast

bodies of research in fields like computer vision and natural language processing have

utilised auxiliary data through the use of pre-trained embeddings [Devlin et al., 2019,

Krizhevsky, 2009] to solve entirely separate tasks [Lee et al., 2019, Chen et al., 2020].

For experiments in this chapter, we simulate a scenario in which we have access

to auxiliary data by splitting our raw training data into two sets: the auxiliary data

D1 used for mechanism training and a dataset D2 that we wish to privatise and

collect under LDP. We then use the privatised version of D2 to train downstream

models. In some experiments, we choose this data split such that D1 and D2 follow

the same distribution, while in other experiments we split the data such that D1 and

D2 follow significantly different distributions. Crucially, in neither scenario is the

data to be privatised contained in the mechanism training data.

In some instances, the auxiliary data is assumed to be sensitive and thus we

train the encoder f(·) of our mechanism under CDP. This protects the privacy of

the members of D1, since we share f(·) with members of D2 during collection.

4.2. Proposed Method 62

4.2.1 Variational Laplace Mechanism (VLM)

We assume each datapoint x is generated by a random process involving a latent

variable z of dimension d. We then optimise a lower bound on the log likelihood

[Kingma and Welling, 2014]

log p(x) ≥ Eqϕ(z|x) [log pθ(x|z)]−DKL

[
qϕ(z|x)||p(z)

]
(4.1)

where p(z) is the prior and qϕ(z|x) is the approximate posterior over the latent repre-

sentation. The generative distribution pθ(x|z) and approximate inference distribution

qϕ(z|x) are parameterised by neural networks, with learnable parameters θ and ϕ

respectively. Since we aim to learn a local Laplace mechanism, we choose

p(z) =
d∏
i=1

p(zi) and qϕ(z|x) =
d∏
i=1

qϕ(zi|x) (4.2)

where p(zi) = Laplace(0, 1/
√
2) and qϕ(zi|x) = Laplace(fϕ(x)i, b).

We parameterise fϕ(·) with a neural network and restrict its output via a carefully

chosen activation function ν(·) acting on the final layer fϕ(·) = ν(hϕ(·)), where

ν(h) = h ∗min{1, l/||h||1} (4.3)

for some l > 0. This ensures all outputs of fϕ(·) lie within an ℓ1-norm l of the origin,

and so ∆fϕ = 2l. We fix the scale of the Laplace distribution to b = 2l/ϵx,

Proposition 4.2.1. A sample z̃ drawn from the encoder distribution qϕ(z|x) forms

a representation of x that satisfies ϵx-LDP.

Proof. Drawing a sample from qϕ(z|x) is equivalent to passing a point x through

the mapping fϕ(·), before adding Laplace(0, 2l/ϵx) noise to each dimension. Since

the sensitivity of fϕ(·) is ∆fϕ = 2l, this is equivalent to passing x through the local

Laplace mechanism M (x, fϕ(·), ϵx) from Definition 2.3.7. Thus, z̃ is a representation

of x that satisfies ϵx-LDP.

While b is fixed at data privatisation time, we experiment with different values of

b during mechanism training. Experiments conducted in Section 4.3.1.3, in which we

4.2. Proposed Method 63

privatise data using other dimensionality reduction techniques, strongly suggest that

this addition of noise during training is important to learning a latent representation

that is robust to the ϵx-LDP noise requirements at privatisation time.

We note also that the post-processing property of LDP applies to these privatised

latent representations:

Proposition 4.2.2. If a point in latent space satisfies ϵ-LDP, then this point still

satisfies ϵ-LDP after being passed through a deterministic function, such as the

function that parameterises the mean of the decoder network.

Proof. We follow an approach similar to the proof that central differential privacy is

immune to post-processing [Dwork and Roth, 2014]. LetM : X → Z be a randomised

algorithm that satisfies ϵ-LDP and g : Z → Z ′ be an arbitrary deterministic mapping.

Let S ⊆ Z ′ and T = {z ∈ Z : g(z) ∈ S}. Then

p
(
g(M(x)) ∈ S

)
= p

(
M(x) ∈ T

)
(4.4)

≤ eϵ p
(
M(x′) ∈ T

)
(4.5)

= eϵ p
(
g(M(x′)) ∈ S

)
(4.6)

This means that a reconstruction x̃ obtained by passing z̃ through the decoder

network pθ(·|z) also satisfies ϵx-LDP. This facilitates the collection of privatised

datapoints on either representation level z̃, or original-feature level x̃, depending on

the data collector’s preference. We refer to this method as the Variational Laplace

Mechanism (VLM).

In order to collect data we must share the VLM encoder fϕ(·) with the (potentially

untrusted) data owner. The parameters of fϕ(·) may contain information about

members of the auxiliary dataset D1, as discussed in Section 2.3.1.1. Therefore,

in the scenario that D1 is a sensitive or non-public dataset, the parameters of the

encoder may need to satisfy CDP with respect to D1. To achieve this CDP guarantee,

we found the following two-stage training approach to be effective:

4.2. Proposed Method 64

• Stage 1: Train a VLM with encoding distribution qϕ(z|x) and decoding

distribution pθ(x|z) using a non-CDP optimisation algorithm. In this work, we

use Adam [Kingma and Ba, 2015].

• Stage 2: Fix θ and re-initialise the encoder with a new distribution qϕprivate(z|x).
Optimise ϕprivate using a CDP optimisation algorithm. In this work, we use

DP-Adam [Gylberth et al., 2017]. See Section 2.3.1.1 for an overview of CDP

optimisation algorithms.

Choice of latent LDP mechanism: The only restriction on our choice of pri-

vatisation mechanism is that the noise distribution must be reparameterisable (see

Section 2.1.1.2). Consequently, mechanisms such as the Gaussian mechanism could

be used by changing the activation ν(·), and the choice of distribution over latent

space. We focus on the Laplace mechanism since it is well-studied in the LDP

literature and has stronger guarantees than the Gaussian mechanism which satisfies

only (ϵ, δ > 0)-LDP (see e.g. Wang et al. [2021]). While work has been done on

constructing minimax-optimal mechanisms (see e.g. Duchi et al. [2018], Bhowmick

et al. [2019]), we emphasise that the compelling performance of the VLM is largely

afforded by the mapping of data, via fϕ(·), to powerful, low-dimensional representa-

tions of our high-dimensional data, which are easier to privatise than the raw data.

Furthermore, the minimax-optimality guarantees are generally given in the context

of simpler tasks such as mean estimation. We do not restrict our representations to

these limited downstream tasks; notably, in this work we learn the parameters of

(non-linear) neural network classifiers.

4.2.2 Collecting LDP labels

A key requirement for the supervised training of downstream machine learning models

is access to labelled training datapoints. Having introduced a powerful approach

for collecting high-dimensional data under LDP, we now introduce an approach for

collecting corresponding labels under LDP. We demonstrate the capabilities of the

VLM empirically in the context of training classifiers, and so we collect and privatise

4.2. Proposed Method 65

z

z̃

y

ỹ

Figure 4.2: Graphical model representing the dependency structure between data-
points z, labels y and their corresponding LDP versions z̃ and ỹ. The blue shading
indicates that the random variable is observed.

a discrete scalar class label y ∈ {1, . . . , K} alongside our privatised representation z̃

(or x̃). To obtain a privatised label ỹ, we flip y with probability

p(ỹ = i|y = j) =
eϵyI(i = j)

eϵy +K − 1
+

I(i ̸= j)

eϵy +K − 1
(4.7)

which induces ϵy-LDP (see Wang et al. [2014] for proof). If y ∈ R (e.g. for regression)

one could instead privatise this with, say, a local Laplace Mechanism. By the

composition theorem [Dwork and Roth, 2014], the tuples (z̃, ỹ) or (x̃, ỹ) satisfy

ϵ-LDP, where ϵ = ϵx + ϵy. Downstream models may be more robust to label noise

than feature noise, or vice versa, so for fixed ϵ we set ϵx = λϵ and ϵy = (1− λ)ϵ, with

λ chosen to optimise downstream model performance.

4.2.3 Downstream Model Training on LDP Data

We introduce a procedure for training machine learning models given access only to the

collected ϵ-LDP labelled training dataset privatised with the VLM. This is a primary

motive for data collectors, and furthermore, downstream model performance provides

a powerful proxy for measuring the utility in our collected LDP data. Specifically,

we learn a classifier that predicts the underlying clean target variable given either a

clean datapoint or a privatised datapoint, depending on the application. We treat

the unobserved underlying clean features as latent variables that we marginalise out

in our training objective. Figure 4.2 outlines the dependency structure between the

privatised features z̃, privatised labels ỹ, and the underlying clean features z and

clean labels y.

First, we assume the VLM training data D1 := {x̂m}Mm=1 (which we do have

access to) follows a similar distribution to data D2 being collected, and place an

4.2. Proposed Method 66

empirical prior p(z|D1) =
1
M

∑M
m=1 δ(z − ẑm) over the (clean) representation space z

of our collected data D2, where ẑm = fϕ(x̂m). We then marginalise out both label

and representation noise, and maximise

p(ỹ, z̃|D1) =

∫
p(ỹ|z)p(z̃|z)p(z|D1) dz (4.8)

=
1

M

M∑
m=1

∫
p(ỹ|z)p(z̃|z)δ(z − ẑm) dz (4.9)

=
1

M

M∑
m=1

p(ỹ|ẑm)p(z̃|ẑm) (4.10)

=
1

M

M∑
m=1

∑
y

p(ỹ|y)pψ(y|ẑm)p(z̃|ẑm) (4.11)

We can use pψ(y|z) to classify clean (i.e. non-privatised) latents at inference time.

To classify privatised latents, we only marginalise label noise and train pξ(y|z̃) by
maximising:

p(ỹ|z̃) =
∑
y

p(ỹ|y)pξ(y|z̃) (4.12)

We find experimentally that pξ(y|z̃) can also achieve a high accuracy classifying

clean latents. Though it is generally outperformed by pψ(y|z) for this task, it can
achieve better performance in scenarios where we don’t have access to a good prior

p(z|D1). This is particularly evident in the novel class classification task, where D1

and D2 come from significantly different distributions, as we discover experimentally

in Sections 4.3.2 and 5.3.2.

The classification of both clean and private data are challenging problems with

a multitude of applications. To our knowledge, no existing work has achieved

compelling results on either problem in the high-dimensional setting. Figure 4.1

outlines a schematic of mechanism training, data privatisation, collection, and

classifier training.

4.3. Applications and Experiments 67

4.2.4 Hyperparameter Tuning Under LDP

Typically for model validation and testing, one needs access to clean labels y (and

clean data x when validating a classifier acting on clean data at inference time). The

data collector does not have access to this when collecting under LDP. However we

note they need only collect privatised model performance metrics on validation/ test

sets, rather than directly accessing clean datapoints.

To do this, the trained classifier is sent to members of a validation/ test group,

who would determine whether the classifier was correct c ∈ {0, 1} on their data.

Validation set members then return an ϵc-LDP version of c which we denote c̃ ∈
{0, 1}, flipped with probability p = 1/(eϵc + 1). The true validation set accuracy

A = 1
Nval

∑Nval

n=1 cn can be estimated from the privatised accuracy Ã = 1
Nval

∑Nval

n=1 c̃n

using A = (Ã− p)/(1− 2p) [Warner, 1965]. We use this method when conducting

a grid search over hyperparameters of our model, and to determine when to stop

training.

4.3 Applications and Experiments

The fundamental goal of a LDP mechanism is to maximise the retention of data

utility while guaranteeing ϵ-LDP. There are many ways to measure utility; we train

downstream models on our LDP data, and use downstream model performance

metrics as a proxy to measure the utility retained in our LDP training data. We

further demonstrate the versatility of our method by outlining a non-exhaustive list

of real-world-inspired applications, with corresponding experiments carried out on

MNIST [LeCun et al., 1998] and Lending Club1 – a tabular, binary classification

task. These tasks represent a step up in difficulty relative to those previously studied

in the LDP data collection literature. Full details of the experimental setup for these

tasks can be found in Appendix A.

In Sections 4.3.1 and 4.3.2, we investigate the task of training a classifier on

LDP data in order to classify clean (i.e. non-privatised) datapoints at inference time.

In Section 4.4, we train a classifier on LDP data that classifies LDP datapoints

1https://www.kaggle.com/wordsforthewise/lending-club (License CC0: Public Domain)

4.3. Applications and Experiments 68

at inference time, and refer to the performance metric of this separate use case as

private classification accuracy. Unless otherwise stated, we collect and train the

classifier using privatised data z̃ on representation level, rather than privatised data

x̃ on feature level (obtained by passing z̃ through the decoder as in Proposition 4.2.2).

We optimise hyperparameters under LDP using a private grid search, as outlined in

Section 4.2.4. Final hyperparameter values are given in Appendix A.4.

Benchmarks: We benchmark results against the Laplace mechanism, Duchi’s

mechanism [Duchi et al., 2018] and the PrivUnit2/ ScalarDP mechanism [Bhowmick

et al., 2019]. To our knowledge, the latter two represent current state-of-the-art. See

Appendix A.3 for implementation details. We stress that classifiers trained with

DP-SGD [Abadi et al., 2016] do not constitute meaningful benchmarks since they

provide no mechanism for LDP data collection, and require access to a labelled,

non-LDP classifier training set. While we assume access to non-LDP auxiliary data,

this does not need to be labelled, nor from the same distribution as our collected

training data, as we demonstrate in Section 4.3.2.

4.3.1 Data Collection

A fundamental objective of this work is for organisations to utilise clean auxiliary

data to significantly improve the future, private collection of user data. Vast numbers

of organisations collecting data have access to existing datasets already. For example,

public health bodies have access to medical images, tech companies have access to

user data, and multinationals may have access to certain data from users in some

regions but not others. In addition, there exists a broad array of public datasets

designed specifically for training machine learning models, whilst scraping data from

the internet has also become commonplace for training unsupervised models. This

existing ‘auxiliary’ data can be used to train mechanisms that facilitate future private

data collection by organisations; this may be data from a group of patients in a

particular study, e-commerce data from a broader group of users, or multinational

data from a region where legislation is stricter, and so only private collection is

acceptable.

4.3. Applications and Experiments 69

Table 4.1: Accuracy of classifiers trained on data collected using different LDP
mechanisms. Each row shows the ϵ-LDP guarantee for the collected training set.
Error bars represent ±1 standard deviation from the mean over 3 trials.

Privacy
Level

VLM VLM
(ϵcdp = 5)

VLM
(ϵcdp = 1)

PrivUnit Duchi Laplace

ϵldp = 10 86.1±1.0 78.6±1.2 72.6±1.4 38.2±4.6 13.9±4.5 9.2±1.4
ϵldp = 8 82.1±1.6 75.9±0.9 70.3±1.9 15.1±4.2 14.3±5.0 9.8±2.8

M
N
IS

T ϵldp = 6 72.8±3.2 66.2±2.4 60.3±2.6 12.4±1.6 13.3±3.8 10.6±0.3
ϵldp = 4 61.3±2.8 50.7±2.5 46.9±3.3 9.2±2.6 14.1±4.9 10.0±0.6
ϵldp = 2 35.3±9.7 16.8±4.4 17.1±3.2 9.5±2.9 14.0±5.6 9.0±1.1
ϵldp = 1 16.9±1.3 17.2±1.3 14.4±4.3 11.3±4.5 10.0±1.1 10.0±0.8
No Pri-
vacy

94.9±0.2 87.2±0.4 83.7±0.5 96.0±0.4 96.0±0.4 96.0±0.4

Privacy
Level

VLM VLM
(ϵcdp = 5)

VLM
(ϵcdp = 1)

Duchi Laplace

L
e
n
d
in
g

C
l
u
b ϵldp = 10 63.7±0.6 63.7±0.4 63.2±0.5 56.0±5.5 50.1±0.6

ϵldp = 8 63.2±0.3 63.4±0.2 63.1±0.4 53.0±4.2 50.3±0.8
ϵldp = 6 62.6±0.5 62.6±0.5 62.6±0.6 52.7±2.9 49.6±1.1
ϵldp = 4 61.1±1.2 61.3±1.4 61.5±1.5 50.1±1.4 49.7±1.2
ϵldp = 2 53.9±4.3 53.6±4.1 53.9±2.4 50.1±0.9 49.9±0.7
ϵldp = 1 55.1±4.5 54.9±4.5 54.6±4.1 49.3±2.5 49.5±0.9
No Privacy 65.0±0.3 65.1±0.3 64.6±0.2 65.7±0.2 65.7±0.2

In this section, we run experiments on MNIST and Lending Club. As outlined in

Appendix A.2, we split the data such that 75% forms the ‘auxiliary’ dataset D1 used

to train the VLM, and 25% forms an external dataset D2 that we privatise under

ϵ-LDP. We split the dataset in this manner to simulate a real-world scenario but

emphasise that in practice, the size of D1 and D2 would be pre-determined by the

amount of auxiliary data the organisation has access to, and the amount of data

they are able to collect, respectively.

Since a key motivation for organisations collecting data is to train machine learning

models, we test the utility of the privatised D2 by using it to train a classifier. We

compare the performance of the classifiers trained on data D2 privatised using

the VLM, against classifiers trained on data D2 privatised with benchmark LDP

mechanisms. We train three VLM mechanisms for each task. The first assumes D1 is

4.3. Applications and Experiments 70

a non-sensitive dataset and so does not train the encoder to satisfy (ϵCDP, δCDP)-CDP

guarantees. The remaining mechanisms guarantee privacy for individuals from D1

at the ϵCDP = {1, 5} level, and this is done using the two-stage approach discussed

in Section 4.2.1. For all stated (ϵCDP, δCDP)-CDP guarantees we use δCDP = 10−5.

Results are shown in Table 4.1.

The results conclusively demonstrate that classifiers trained on ϵ-LDP data priva-

tised with the VLM significantly outperform classifiers trained on the benchmarks at

every local ϵ tested, indicating our methods facilitate much greater retention of utility.

At lower local ϵ values, we are reducing the data utility of our classifier training set

in exchange for stronger privacy guarantees, and the classifier performance drops

as expected. However, even at local ϵ = 1, we are achieving roughly the same

performance as PrivUnit, the top performing benchmark, at local ϵ = 8.

For MNIST, we see that classifier accuracy deteriorates slightly when data is

collected using mechanisms trained with lower ϵCDP guarantees. This suggests

that slightly less information is contained in representations privatised with LDP

mechanisms satisfying the stricter CDP guarantees. This is to be expected, since

in order to train the VLM encoder under CDP we must add noise to our gradients,

hindering our ability to find a good optimum. Despite this, even the VLM satisfying

the most stringent CDP guarantee significantly outperforms all benchmarks at all

ϵLDP values.

For Lending Club, we see virtually no deterioration in classification accuracy when

collecting data using a CDP encoder. We attribute this to the larger training set D1.

A larger training set means that, for a fixed number of training iterations and fixed

batch size, a single datapoint in D1 contributes fewer times to gradient updates and

so less noise needs to be added to each gradient to guarantee the (ϵCDP, δCDP)-CDP

requirement with respect to D1.

The “no privacy” column indicates performance when no noise is added; for the

benchmarks, this means training the classifier directly on non-private data D2, whilst

for the VLM, it means training it on (un-noised) latent representations of datapoints

in D2.

4.3. Applications and Experiments 71

Table 4.2: Accuracy of classifiers trained on either feature-level data or representation-
level data collected with the VLM. Each row shows the ϵ-LDP guarantee for the
collected training set. Error bars represent ±1 standard deviation from the mean
over 3 trials.

Privacy
Level

VLM (represen-
tation level)

VLM (fea-
ture level)

PrivUnit Duchi Laplace

ϵldp = 10 86.1±1.0 70.2±3.8 38.2±4.6 13.9±4.5 9.2±1.4
ϵldp = 8 82.1±1.6 64.4±4.9 15.1±4.2 14.3±5.0 9.8±2.8

M
N
IS

T ϵldp = 6 72.8±3.2 50.5±3.4 12.4±1.6 13.3±3.8 10.6±0.3
ϵldp = 4 61.3±2.8 45.6±0.9 9.2±2.6 14.1±4.9 10.0±0.6
ϵldp = 2 35.3±9.7 25.7±6.9 9.5±2.9 14.0±5.6 9.0±1.1
ϵldp = 1 16.9±1.3 19.5±9.1 11.3±4.5 10.0±1.1 10.0±0.8
No Pri-
vacy

94.9±0.2 90.4±0.7 96.0±0.4 96.0±0.4 96.0±0.4

Privacy
Level

VLM (representa-
tion level)

VLM (feature
level)

Duchi Laplace

L
e
n
d
in
g

C
l
u
b ϵldp = 10 63.7±0.6 63.4±0.2 56.0±5.5 50.1±0.6

ϵldp = 8 63.2±0.3 63.3±1.0 53.0±4.2 50.3±0.8
ϵldp = 6 62.6±0.5 63.4±0.4 52.7±2.9 49.6±1.1
ϵldp = 4 61.1±1.2 62.1±0.4 50.1±1.4 49.7±1.2
ϵldp = 2 53.9±4.3 56.3±2.0 50.1±0.9 49.9±0.7
ϵldp = 1 55.1±4.5 52.7±3.3 49.3±2.5 49.5±0.9
No Privacy 65.0±0.3 65.0±0.2 65.7±0.2 65.7±0.2

4.3.1.1 Feature level collection

In the previous experiments, the classifiers were trained on LDP data collected on

latent representation level. In other words, data owners passed their data x through

the VLM to obtain privatised latent representations z̃, and their labels through a

flip mechanism to obtain private labels ỹ. In certain scenarios, the data collector

may wish to collect data on original feature level. The data collector can achieve

this by passing the privatised latent representations z̃ through the decoder network;

the resulting feature-level datapoints x̃ still satisfy the LDP guarantees, as proved in

Proposition 4.2.2. This might be particularly relevant to tabular data, where the

collector may wish to run different queries on individual features, or simply store the

privatised data in the same format as the underlying non-private data.

4.3. Applications and Experiments 72

When the LDP classifier training set (x̃, ỹ) is on feature level, we can no longer use

the classifier objective in Equation 4.11. This would entail replacing the zero-mean

Laplace noise p(z̃|z) with the feature-level noise distribution p(x̃|x), which has no

closed-form solution. Instead, we optimise our classifier with the objective from

Equation 4.12.

Results, given in Table 4.2, show the MNIST classifier performs better when

trained on representation-level data than feature-level data. We attribute this to

both the simpler classifier, and the performance of the decoder, which has to learn

to reconstruct high-dimensional datapoints from low-dimensional latents that have

been subject to large quantities of Laplace noise. This is an extremely challenging

problem. Despite this, the feature-level classifier still significantly outperforms all

benchmarks. For Lending Club, we see little change between the feature-level and

representation-level classifiers. We hypothesise that the lower-dimensional datapoints

are easier for the VLM to reconstruct than MNIST images, and so we do not see the

same drop in performance.

4.3.1.2 Effects of Reducing Auxiliary Dataset Size

As previously discussed, it is realistic to assume most data collectors have access

to auxiliary data. However, the volume of data they have access to may vary

significantly depending on the data type, data collector, and data owner. For the

previous experiments, we used η = 75% of the training data for the VLM training

set D1, and privatise the remaining 25%, to form the classifier training set D2. In

this ablation study we re-run these experiments, but train the VLM on smaller

proportions η = {50%, 25%, 10%} of the MNIST training set, corresponding to

30,000, 15,000, and 6,000 unlabelled training images respectively.

For the benchmark mechanisms, we experiment with varying the proportion of the

MNIST training set assigned to D2, to determine whether a large classifier training

set could allow the benchmarks to compete with the VLM. Since the benchmark

mechanisms do not require a pre-training set D1, we consider the most favourable

scenario in which 100% of the data (60,000 labelled images) is assigned to the

privatised classifier training set D2.

4.3. Applications and Experiments 73

Table 4.3: Accuracy of classifiers trained on data collected using different LDP
mechanisms. η represents the proportion of the MNIST training set used for VLM
training. Each row shows the ϵ-LDP guarantee for the collected training set. Error
bars represent ±1 standard deviation from the mean over 3 trials.

Privacy
Level

VLM
(η = .75)

VLM
(η = .50)

VLM
(η = .25)

VLM
(η = .10)

PrivUnit Duchi

ϵldp = 10 86.1±1.0 86.4±0.2 85.1±0.2 81.1±1.8 47.3±2.3 26.3±3.0
ϵldp = 8 82.1±1.6 84.0±1.0 81.9±0.5 77.4±1.7 29.2±5.5 20.5±0.8
ϵldp = 6 72.8±3.2 78.0±3.1 75.4±2.7 67.9±1.4 16.2±2.7 20.4±2.9
ϵldp = 4 61.3±2.8 61.6±2.3 60.5±3.5 57.6±3.5 12.0±3.7 17.0±2.7
ϵldp = 2 35.3±9.7 35.2±1.7 44.8±4.0 37.9±1.4 10.7±0.7 14.0±2.7
ϵldp = 1 16.9±1.3 14.1±1.9 16.3±0.8 18.0±2.7 14.3±0.4 13.9±1.0

Results, shown in Table 4.3, show the accuracy of classifiers trained on data

collected with each mechanism at a range of ϵ-LDP guarantees and a range of data

splits. We see that the increased size of D2 has improved benchmark performance

(benchmark results for classifiers trained using only 25% of the MNIST training

set are given in Table 4.1). Despite this, all of the VLMs significantly outperform

each benchmark mechanism at every ϵ-LDP guarantee tested. We omit the Laplace

mechanism results due to space constraints, but note that it underperforms both

PrivUnit and Duchi’s mechanism at every ϵ value tested. We note that these VLM

mechanisms use hyperparameters optimised for experiments in Section 4.3 where

the VLM used η = 75% of the training data, and so performance on smaller VLM

training sets could potentially be improved with further hyperparameter tuning.

The goal of this ablation study was to see how the performance of the mechanisms

is affected by significant changes in the number of training points. We emphasise

that in real-world scenarios, the size of D1 is limited by the quantity of auxiliary

data the collector has access to, and the size of D2 is limited by the quantity they

are willing or able to collect. Crucially, throughout these experiments, we always

maintain D2 ∩ D2 = ∅, as is reflective of real-world applications.

4.3. Applications and Experiments 74

Table 4.4: Accuracy of classifiers trained on LDP data, collected using either a PCA-
based LDP mechanism or a VLM (with either linear or non-linear encoder-decoder
network architectures). Each row shows the ϵ-LDP guarantee for the collected
training set. Error bars represent ±1 standard deviation from the mean over 3 trials.

Privacy Level VLM Linear VLM PCA

ϵldp = 10 86.1±1.0 54.1±3.2 17.3±8.1
ϵldp = 8 82.1±1.6 31.3±2.2 15.1±4.9

M
N
IS

T ϵldp = 6 72.8±3.2 25.1±1.8 15.0±5.4
ϵldp = 4 61.3±2.8 22.5±3.2 14.8±4.9
ϵldp = 2 35.3±9.7 10.5±1.7 15.1±5.6
ϵldp = 1 16.9±1.3 10.3±1.7 15.7±6.6
No Privacy 94.9±0.2 85.9±0.2 86.4±0.3

4.3.1.3 Comparison with Simpler Dimensionality-Reduction Approaches

In this section, we aim to determine whether a comparable level of data utility

can be achieved for points privatised with Laplace mechanisms based on simpler

dimensionality-reduction techniques than the VLM. Specifically, we compare the

standard VLM against a VLM parameterised with linear encoder and decoder

networks, and to a PCA-based local Laplace mechanism.

The experimental set-up for PCA is the same as in the data collection experiment:

we use the dataset D1 to learn the principal components, and use these to reduce our

dataset D2 to dimension 8, as in the MNIST experiments for the VLM. We then add

Laplace noise to privatise D2, and this privatised dataset is used to train a classifier.

There are 2 fundamental differences between these models. Firstly, both the

PCA mechanism and the linear VLM use linear mappings fϕ(·) from data space to

representation space, while the standard VLM uses a non-linear mapping parame-

terised by a deep neural network. Secondly, both the standard VLM and linear VLM

add Laplace noise during training, and so we expect the representations to be more

robust to privatisation noise than the data reduced with PCA.

Results are shown in Table 4.4. Firstly, we see that when no noise is added to the

representations (i.e. no privacy is induced), the PCA and linear-VLM mechanisms

are outperformed by the VLM, suggesting the clean ‘linear’ representations contain

less information than the VLM representations for downstream model training.

4.3. Applications and Experiments 75

Table 4.5: Accuracy of classifiers for novel class classification, trained on data
collected using different LDP mechanisms. Each row shows the ϵ-LDP guarantee
for the collected training set. Error bars represent ±1 standard deviation from the
mean over 3 trials.

Privacy Level VLM PrivUnit Duchi Laplace

ϵldp = 10 84.0±0.3 77.6±8.1 69.7±1.6 47.0±4.4
ϵldp = 8 80.9±1.8 71.0±2.6 68.7±3.1 47.3±4.0

M
N
IS

T ϵldp = 6 82.5±0.5 75.3±4.2 70.5±2.5 48.5±2.1
ϵldp = 4 80.7±0.3 54.5±3.9 66.5±6.5 48.7±2.0
ϵldp = 2 72.4±0.5 54.4±8.3 58.9±8.6 49.6±1.0
ϵldp = 1 55.8±8.7 54.6±10.1 50.4±0.2 48.5±2.2
No Privacy 94.0±0.4 97.8±0.3 97.8±0.3 97.8±0.3

Secondly, we see that performance drops significantly when any privacy-inducing

noise is added to the PCA representations, whilst for both linear and non-linear

VLMs, the addition of noise has less impact on classifier accuracy. Indeed at ϵ = 10,

PCA is outperformed by the PrivUnit benchmark – a technique that does not use

dimensionality reduction (for benchmark results, see Table 4.1). This suggests

that the strong results for the VLM are not simply attributable to dimensionality

reduction, but to the VLM’s ability to learn powerful low-dimensional representations

that are robust to privacy-inducing noise, and well-suited to downstream model

training.

All experiments so far have assumed D1 and D2 come from similar distributions,

though in practice the distributions may differ. For example, D2 could be sales data

collected in a different time period to D1, or user data collected in a different region.

In Section 4.3.2, we study the extreme scenario of distributional shift, in which D2

contains classes unseen in D1.

4.3.2 Novel-Class Classification

As discussed in Section 4.3.1, the auxiliary data D1 and the data to be collected D2

may follow different data distributions. In one extreme case, the desired task on D2

may be to predict membership in a class that is not even present in dataset D1. For

example, in a medical application there may be a large existing dataset of chest scans

4.3. Applications and Experiments 76

D1, but a public health body may want to collect data D2 from patients with a novel

disease in order to train a novel-disease classifier to distribute to hospitals. Similarly,

a software developer may have access to an existing dataset D1, but want to predict

software usage data for D2, whose label is specific to the UI of a new release.

We run this experiment on MNIST, where the auxiliary D1 contains training

images from classes 0 to 8, (with a small number of images held out for classifier

training), and D2 contains all training images from class 9. Full implementation

details are given in Appendix A.2. As in Section 4.2, we first train the VLM on D1,

then privatise all images in D2 (we do not collect labels since all collected images

have the same label). We then train a binary classifier on the dataset formed of the

private 9’s and the held out auxiliary images from classes 0-8 (which we privatise and

label ‘not 9’s’). Since D1 contains no datapoints from class 9, the prior from Equation

4.11 is no longer as accurate. Consequently, as discussed in Section 4.2.3, we found

training our classifier by maximising log p(y|z̃) directly led to better performance.

Results are shown in Table 4.5. We see that PrivUnit and Duchi’s mechanism

both perform significantly better on this simpler binary classification task than in

the 10-class classification problem of Section 4.3.1. Despite this, the VLM still

outperforms the benchmarks at all ϵ values tested, once again indicating a much

greater retention of data utility than is achieved by the benchmark mechanisms.

4.3.3 Data Joining

An organisation training a classifier on some labelled dataset D1 could potentially

improve performance by augmenting their dataset with other informative features,

and so may want to join D1 with features from another dataset D2. We assume

the owner of D2 may only be willing to share a privatised version of their dataset.

For example, two organisations with mutual interests, such as the tax authorities

and a private bank, or a fitness tracking company and a hospital, may want to join

datasets to improve the performance of their algorithms. Similarly, it may be against

regulations for multinational organisations to share and join non-privatised client

data between departments in different regions, but permitted when the shared data

satisfies LDP.

4.3. Applications and Experiments 77

Table 4.6: Accuracy of classifiers trained on the join of clean and ϵ-LDP features of
the Lending Club dataset. Each row shows the ϵ-LDP guarantee for the collected
training set. The baseline refers to the accuracy when classifying clean features only.

Privacy Level VLM Duchi Laplace

ϵldp = 10 61.2±0.8 56.5±0.2 56.8±0.5

L
e
n
d
in
g

C
l
u
b ϵldp = 8 60.5±0.4 56.4±0.3 56.7±0.6

ϵldp = 6 59.4±0.4 56.2±0.3 56.7±0.2
ϵldp = 4 57.9±0.7 56.0±0.2 56.0±0.6
ϵldp = 2 56.5±0.1 55.9±0.2 55.8±0.3
ϵldp = 1 56.1±0.1 55.6±0.6 55.7±0.1
No Privacy 64.8±0.2 65.8±0.6 65.8±0.6
Baseline 56.1±0.5 56.1±0.5 56.1±0.5

We run this experiment on Lending Club. We split the datasets such that both

D1 and D2 contain all rows, but D1 contains a subset of (clean) features, along

with the clean label, and D2 contains the remaining features (to be privatised), as

described in Appendix A.2.

We follow a privatisation procedure similar to that of the previous sections, with

the distinction that the mechanism should be both trained on D2, and used to

privatise D2. For the classification problem, instead of Equation 4.11 or 4.12, we

optimise log pψ(y1|x1, z̃2) where (x1, y1) ∈ D1 and z̃2 is the privatised representation

of some features x2 ∈ D2. We have access to all raw data needed for validation,

eliminating the need to conduct a private grid as in previous experiments. Unlike the

previous experiments where we trained classifiers to act on clean data at inference

time, here we train the classifier on a combination of both clean and privatised

features, and classify this same combination of clean and privatised features at

inference time.

Results are shown in Table 4.6. The baseline of 56.1% is the classification accuracy

when using features from D1 only. Meanwhile, classifying on all (clean) features

gives a 65.8% accuracy. Neither benchmark achieves more than a 0.4 percentage

point accuracy increase over the baseline, whereas the VLM achieves a significant

improvement for local ϵ ∈ [4, 10].

We note that, unlike in previous experiments, we do not require auxiliary data to

4.4. Classifying Private Datapoints 78

train the VLM here. Given a dataset D that we want to privatise and share, we can

both train a mechanism using D, and use that mechanism to privatise D. This can

be viewed as a specific case of the more general problem of private data publishing.

However, unlike CDP synthetic data generation approaches [Acs et al., 2019, Takagi

et al., 2021, Triastcyn and Faltings, 2019, Xie et al., 2018], each datapoint refers to

a specific individual.

4.4 Classifying Private Datapoints

In Sections 4.3.1 and 4.3.2, we investigated the use of LDP data to train algorithms

that classify clean datapoints at inference time. In some scenarios however, we may

want to train algorithms that act directly on LDP datapoints at inference time. Most

notably, in the data collection framework, the organisation may want to do inference

on individuals whose data they have privately collected.

However it is clear from Definition 2.3.5 that privatising a data point under LDP

will cause a considerable amount of information loss, limiting classification accuracy.

To quantify this information loss, it would be useful to calculate the maximum

achievable accuracy of a K-class classifier C acting on ϵ-LDP datapoints privatised

with the local Laplace mechanism. In Section 4.4.1, we discuss an upper bound for

the maximum achievable accuracy, before introducing a tractable approximation to

this maximum in Section 4.4.2.

4.4.1 General Upper Bound on Classification Accuracy

Recall we have some function f(·) : X → T that maps data x to representations

z = f(x) inside a d-dimensional taxicab sphere T of diameter ∆f . We pass x

through a randomised algorithm M = f(·) + (s1, . . . , sd) to induce LDP, where

si ∼ Laplace(0, b) and b = ∆f/ϵ. We denote the LDP point z̃.

We make the simplifying assumption that we have equal class balance, which is

the case for all experiments in this work.

The classifier C will partition Rd into {S(1), . . . , S(K)} such that z̃ ∈ S(k) will be

4.4. Classifying Private Datapoints 79

classified into class k. The accuracy of C is then given by

A = E(x,y)∼p(x,y),z̃∼M(z̃|x)

[
I
(
z̃ ∈ S(y)

)]
(4.13)

= E(x,y)∼p(x,y)

[∫
z̃∈Rd

I
(
z̃ ∈ S(y)

) 1

(2b)d
e−

||f(x)−z̃||1
b dz̃

]
(4.14)

= E(x,y)∼p(x,y)

[∫
z̃∈S(y)

1

(2b)d
e−

||f(x)−z̃||1
b dz̃

]
(4.15)

where p(x, y) is the true underlying data distribution. We observe that it is

always possible to achieve a greater (or equal) classification accuracy if f(·) maps all

data from a given class k to a single point on the taxicab sphere, rather than some

region Γk ⊆ T containing more than one point.

To justify this, suppose f(·) maps all points from class k to some region Γk. The

classifier defines a decision region S(k) such that any point inside S(k) gets classified

as class k. There exists (at least one) point c(k) ∈ Γ(k) such that ∀g(k) ∈ Γ(k):

∫
z̃∈S(k)

1

(2b)d
e−

||c(k)−z̃||1
b dz̃ ≥

∫
z̃∈S(k)

1

(2b)d
e−

||gk−z̃||1
b dz̃ (4.16)

This says that c(k) ∈ Γ(k) is the point such that the Laplace(c(k), b) distribution con-

tains more probability mass inside our decision region S(k) than any other distribution

of the form Laplace(g(k), b) with g(k) ∈ Γ(k). In other words, c(k) is the representation

inside Γ(k) most likely to still be classified as class k after privatisation. So if we

modify f(·) such that all points from class k are mapped to a single representation

c(k) ∈ Γ(k), we will achieve higher (or equal) accuracy than with the original f(·).
In light of this, we assume f(·) maps all data from class k to a single representation

c(k) and write Equation 4.15 as

A = Ey∼p(y)
[∫

x

∫
z̃∈S(y)

1

(2b)d
e−

||f(x)−z̃||1
b dz̃ p(x|y)dx

]
(4.17)

= Ey∼p(y)
[∫

z̃∈S(y)

1

(2b)d
e−

||c(y)−z̃||1
b dz̃

]
(4.18)

=
1

K

K∑
y=1

∫
z̃∈S(y)

1

(2b)d
e−

||c(y)−z̃||1
b dz̃ (4.19)

where the last inequality follows from the assumption of equal class balance, and the

4.4. Classifying Private Datapoints 80

integral inside the sum

A(y) :=

∫
z̃∈S(y)

1

(2b)d
e−

||c(y)−z̃||1
b dz̃ (4.20)

represents the probability of correctly classifying a noised representation from class

y, and is equal to the total probability mass of Laplace(c(y), bI) inside S(y).

We know that the A will be maximised when the decision boundaries are such that

a noised representation z̃ is classified as coming from class y if c(y) is the closest of

the K representations {c(1), . . . , c(K)} in ℓ1-distance. This is because the probability

mass at z̃ will be highest under a distribution with mean closest to z̃, and so z̃

will contribute more mass to A(y) than it would any other A(ŷ) for ŷ ≠ y. Thus

A = 1
K

∑K
y=1A

(y) will be higher.

In ℓ1 geometry there exist subsets of Rd where all points in the subset lie

equidistant from multiple class representations, as shown in Figure 4.3a. In this

scenario, the choice of decision boundary through such subsets will not affect accuracy:

assigning a region to class y rather than some equidistant class ỹ ≠ y will increase

A(y) and reduce A(ŷ) by the same amount, leaving A unchanged. We can therefore

arbitrarily assign noised representations on such hyperplanes to any of the closest

(in ℓ1-norm) classes – a simple approach is to assign them to the class representation

closest in L2-norm, as shown in Figure 4.3b.

In order to find the maximum achievable accuracy, we must find the represen-

tations {c(1), . . . , c(K)} within T that maximise Equation 4.19, where our decision

regions S(y) are defined as described above.

We note that S(y) correspond to Voronoi cells with generators c(y). Thus our

problem is equivalent to finding the optimal positions of generators such that the

probability mass inside each cell (under the distribution centred at that cell’s gen-

erator) is maximised. Finding the optimal generator locations is an active field of

research spanning fields such as computational geometry [Bhattacharya, 2010] and

operations research [Riol et al., 2011]. Studies of probability density in Voronoi cells

have appeared in fields such as Astrophysics [Jamieson and Loverde, 2021]. However,

our task of finding the locations of the K optimal generators inside the d-dimensional

4.4. Classifying Private Datapoints 81

x1

x2

c(2)

c(1)

(a)

x1

x2

D
ec
is
io
n
bo
un
da
ry

c(2)

c(1)

(b)

Figure 4.3: (a) Red shaded areas and lines represent the regions of R2 in which all
points are equal L1 distance from c(1) and c(2). (b) The red line represents a decision
boundary that separates c(1) and c(2) equally in L1 distance. Regions in which points
are equidistant from representations c(1) and c(2) are divided based on the closest
representation in L2 distance.

taxicab sphere is challenging. We leave a detailed analysis to future work and instead

study a simplified setting which we hypothesise to be a good approximation to the

optimal solution, for the setting defined in our experiments.

4.4.2 Simplified Setting

It seems reasonable to assume that when the taxicab sphere T has at least as many

vertices as there are classes (i.e. d ≥ K/2, as in all experiments in this work),

the representations {c(1), . . . , c(K)} that lead to the highest accuracy will lie on the

vertices of T . Furthermore, when d > K/2, we hypothesise it is favourable to place

representations opposite one another (i.e. c(i) · c(j) = −∆f 2/4)) rather than on

different axes (i.e. c(i) · c(j) = 0), where possible.

Supporting this assumption, when d = K = 2 it is straightforward to show

that the accuracy is highest when c(1) and c(2) lie on opposite vertices rather than

elsewhere on the boundary of T . Furthermore, we ran numerical simulations of

this problem which similarly concluded that for d ∈ {2, 3} and K ∈ {2, . . . , 6}, the

4.4. Classifying Private Datapoints 82

optimal setting is to place the representations on vertices of the sphere (and indeed

opposite vertices when d > K/2). We found higher dimensional problems to be too

computationally expensive to simulate numerically.

In light of this, we construct a setting that places representations on (opposite)

vertices of T , which we expect to be a good approximation of the true maximum

achievable accuracy when d ≥ K/2. We define our representations {c(1), . . . , c(K)} as

c(k) =

1
2
∆f · e k

2
, for k odd

−1
2
∆f · e k+1

2
, for k even

(4.21)

where ei is the i
th standard basis vector. This places representations on opposite

vertices of the taxicab sphere, for each axis in turn, until all representations have been

assigned. Corresponding decision regions are defined as in Section 4.4.1. Figure 4.4

shows these representations and corresponding decision boundaries for d = 2 and

K = 4.

x1

x2

D
ec
is
io
n
bo
un
da
ryc(2)

c(1)

c(4)

c(3)
T

Figure 4.4: The decision boundary for a classifier that equally separates (in ℓ1-
distance) vertices c(i) for i ∈ {1, 2, 3, 4} in 2-dimensional space. The blue region
denotes the taxicab sphere T .

Given these representations, and the inferred decision regions, we can calculate

the accuracy of the optimal classifier given by Equation 4.19. We first consider the

case of K = 2d, meaning we have the same number of vertices as classes. To ease

notation we assume without loss of generality that ∆f = 2, and so c(1) = (1, 0, . . . , 0).

4.4. Classifying Private Datapoints 83

We also denote z̃ = (z̃1, . . . , z̃d).

First, by symmetry, it is clear that A(1) = A(2) = . . . = A(K), and so A = A(1).

The decision boundary S(1) is defined as

S(1) = {(z̃1, . . . z̃d) : z̃1 > 0, and z̃i < |z̃1|, ∀i ∈ {2, . . . , K/2}} (4.22)

We can then calculate the accuracy A as follows:

A =

∫
z̃∈S(1)

1

(2b)d
e−

||c(1)−z̃||1
b dz̃ (4.23)

=

∫
z̃1>0,
z̃i<|z̃1|,∀i ̸=1

1

(2b)d
e−

||c(1)−z̃||1
b dz̃1:d (4.24)

=

∫ ∞

0

1

2b
e−

|1−z̃1|
b

(d∏
i=2

∫ z̃1

−z̃1

1

2b
e−

|z̃i|
b dz̃i

)
dz̃1 (4.25)

=

∫ ∞

0

1

2b
e−

|1−z̃1|
b

(
1− e−z̃1/b

)d−1

dz̃1 (4.26)

=

∫ ∞

0

1

2b
e−

|1−z̃1|
b

d−1∑
j=0

(
d− 1

j

)
(−1)je−

jz̃1
b dz̃1 (4.27)

=
d−1∑
j=0

(
d− 1

j

)
(−1)j

∫ ∞

0

1

2b
e−

|1−z̃1|
b e−

jz̃1
b dz̃1 (4.28)

=
d−1∑
j=0

(
d− 1

j

)
(−1)j

[∫ 1

0

1

2b
e−

z̃1(j−1)+1
b dz̃1 +

∫ ∞

1

1

2b
e−

z̃1(j+1)−1
b dz̃1

]
(4.29)

=
1− d

2b

(
1 +

b

2

)
e−1/b +

d−1∑
j=0,j ̸=1

(
d− 1

j

)
(−1)j

[
e−j/b

1− j2
− e−1/b

2(1− j)

]
(4.30)

= (1− d)
ϵ+ 1

4
e−ϵ/2 +

d−1∑
j=0,j ̸=1

(
d− 1

j

)
(−1)j

[
e−jϵ/2

1− j2
− e−ϵ/2

2(1− j)

]
(4.31)

=

K/2−1∑
j=0,j ̸=1

((
K/2− 1

j

)
(−1)j

1− j

[
e−jϵ/2

1 + j
− e−ϵ/2

2

])
− ϵ+ 1

8
(K − 2) e−ϵ/2 (4.32)

where in the penultimate step we used the fact that for ϵ-LDP we have b = 2/ϵ, and

in the final equality we substitute d = K/2.

We now consider the case where K ≤ 2d and K is even. In this case, the decision

4.4. Classifying Private Datapoints 84

Table 4.7: Private Accuracy of classifiers trained on ϵtrain-LDP (image, label) tuples
collected using different LDP mechanisms. ϵtest refers to the LDP guarantee of the
images classified at inference time. Error bars represent ±1 standard deviation from
the mean over 3 trials.

Privacy Level VLM PrivUnit Duchi Laplace Upper
Bound

ϵtrain = 10, ϵtest = 7 42.3±0.5 9.6±0.3 10.1±0.4 10.1±0.3 80.7
ϵtrain = 8, ϵtest = 5.6 37.7±0.5 10.0±1.3 10.1±0.3 10.7±0.8 69.3

M
N
IS

T ϵtrain = 6, ϵtest = 4.2 31.7±1.2 10.3±0.4 10.4±0.1 11.0±0.5 53.8
ϵtrain = 4, ϵtest = 2.8 20.1±0.6 11.0±0.7 10.1±0.9 9.8±0.9 36.0
ϵtrain = 2, ϵtest = 1.4 10.5±0.6 10.3±0.2 9.7±0.9 9.9±0.3 20.0
ϵtrain = 1, ϵtest = 0.7 10.2±0.5 10.8±1.2 10.2±0.7 10.6±1.3 14.2

No Privacy 94.9±0.2 96.0±0.4 96.0±0.4 96.0±0.4 100.0

boundary S(1) is defined as

S(1) = {(z̃1, . . . z̃d) : z̃1 > 0,

z̃i < |z̃1|, ∀i ∈ {2, . . . , K/2},

z̃j ∈ (−∞,∞), ∀j ∈ {K/2 + 1, . . . , d}} (4.33)

where the unbounded dimensions integrate to 1, leaving accuracy unchanged. Equa-

tion 4.32 therefore defines the maximum achievable accuracy in this simplified setting,

and a proxy for the maximum achievable accuracy of the private classifiers studied

in this work. We omit the case when K is odd, since K is even in all experiments.

4.4.3 Experimental Results

In Table 4.7, we show the accuracy of classifiers when applied to privatised datapoints

at inference time. Unlike in previous experiments, two epsilon values are given. The

first, ϵtrain, indicates the privacy guarantee of the classifier training set made up

of (data, label) pairs collected with the VLM and flip mechanism respectively; in

these experiments we assign λ = 70% of the privacy budget to the datapoint and the

remaining 30% to the label (see Section 4.2.2 for details). The second, ϵtest, indicates

the privacy value of the privatised test points on which we test our classifier (since

4.5. Conclusion 85

no label is collected, these values are 70% of ϵtrain. We compare our empirical results

to the upper bound in Equation 4.32.

Running experiments on MNIST, we see a considerable drop in performance when

classifying privatised datapoints, compared with results from Section 4.3.1. While we

are clearly not achieving the accuracy from Equation 4.32 (denoted ‘Upper Bound’

in the table), we note that our method aims to build a downstream-task-agnostic,

privatised representation of the data. Thus the representation must contain more

information than just the class label. Meanwhile, the upper bound is derived from

the extreme setting in which the representation encodes only class information, and

would be unable to solve any other downstream task.

4.5 Conclusion

In this chapter, we have taken an important first step in the privatisation of high-

dimensional data under LDP, clearly demonstrating that dimensionality-reduction

is a compelling approach to overcoming the significant hurdles of privatisation in

high-dimensions. Our work represents the first use of latent variable modelling for

LDP data collection, and can be easily adapted to any data type for which latent

variable modelling is possible. We demonstrate a range of applications, spanning

important issues such as medical diagnosis, financial crime detection, and customer

experience improvement, significantly outperforming existing baselines throughout.

We note however, that while the data studied in this chapter is considered high-

dimensional in the context of LDP, it is no longer considered high-dimensional in the

broader machine learning context. For maximum impact, we must therefore consider

higher-dimensional problems. We explore this in next chapter.

Chapter 5

High-Dimensional Representation

Learning under LDP

The work presented in this chapter was published in Mansbridge et al. [2022].

In the previous chapter, we developed a generative latent variable model to privatise

high-dimensional data through the addition of carefully calibrated noise to the

constrained latent representations. By privatising in low-dimensional latent space we

circumvent many of the problems associated with inducing LDP in high-dimensions.

Furthermore, we introduced a novel, ‘denoising’ approach for classifier training that

models the relationship between (unobserved) clean datapoints and labels, given

access only to privatised datapoints and labels at training time.

In this chapter, our goal is to privatise even higher-dimensional data by scaling

up the ideas introduced in Chapter 4. As before, our evaluative task is to use the

privatised data to train downstream machine learning models, but these models now

solve tasks that are considered difficult even in a non-private setting. To achieve

this, our mechanisms are based on current state-of-the-art representation learning

approaches, demonstrating that the ideas introduced in the previous chapter can be

applied not only to generative latent variable models, but more broadly across the

field of representation learning.

5.1. Introduction 87

5.1 Introduction

Advancements in machine learning research, stemming in part from more powerful

compute resources, easy access to vast quantities of data, and significant developments

in algorithm design have meant that both the complexity of data on which we do

inference, and the breadth of applications for such models, have increased dramatically.

As such, while the tabular data and small images discussed in Chapter 4 are considered

high-dimensional in the context of mechanisms for local differential privacy (LDP),

they are no longer considered high-dimensional in the broader context of (non-

private) machine learning research. In line with this, there exists a growing need

for mechanisms which facilitate the collection of even higher-dimensional user data

under LDP – an area of research that is severely limited at present.

Naively, one could use a VLM to privatise this complex, high-dimensional data,

perhaps adopting more powerful architectures in the encoder and decoder networks.

However, as discussed in Chapter 3, this may not necessarily lead to meaningful

latent representations. Instead, we develop LDP mechanisms through the adoption

of state-of-the-art techniques from the broader field of representation learning, which

has witnessed significant progress on high-dimensional tasks in recent years.

The way in which we represent information can heavily influence the difficulty

of tasks. If you were to ask someone what they were doing yesterday at midday,

they would likely be able to answer easily. However, if you replace “yesterday at

midday” with the date in UNIX time (that is, the number of seconds elapsed since

00:00:00 UTC on 1 January 1970), the question becomes more difficult for a human

to understand. On the other hand, if you were to ask somebody to calculate their age

in seconds, the somewhat cumbersome calculation is reduced to a simple subtraction

if you provide the respondent with both the current time and their time of birth in

UNIX time.

Data representations affect the difficulty of information processing for computers,

just as they do for humans. The goal of representation learning is to take complex,

real-world data and map it to some expressive, meaningful representation that is useful

for downstream tasks. Whilst domain specific knowledge can be used to construct

5.1. Introduction 88

such representations, a primary goal is to learn these explanatory factors in the data.

Learning such representations has significant implications across machine learning.

For example, it can improve data efficiency, increase the robustness of algorithms,

and improve generalisation. The exact nature of this mapping, and what we define as

‘useful’ can vary considerably with application. One may want to learn disentangled

or interpretable representations [Locatello et al., 2019], representations suitable for

specific tasks [Ballé et al., 2018, Frye et al., 2021], or indeed representations that

generalise well, making them suitable for downstream learning [Devlin et al., 2019,

Chen et al., 2020]. In this chapter, we are interested in learning representations that

are both useful for downstream learning, and robust to the noise requirements of

LDP.

Representations can be learnt in a supervised or unsupervised manner. Supervised

representation learning can be as simple as training a neural network classifier;

each layer of the network can be seen as learning some sort of representation of

the input data. If a softmax activation is applied to the final hidden layer of a

network, one might hope this layer learns some linearly separable representation,

whilst previous layers may exhibit other valuable properties. Machine learning

scientists frequently make use of representations obtained from powerful pre-trained

convolutional networks like ResNets [He et al., 2016] or Inception networks [Szegedy

et al., 2016] to solve a range of computer vision tasks.

In recent years, both the number of parameters in state-of-the-art networks,

and the quantity of training data required to train these networks has increased

significantly. Collecting labelled data can be expensive, time consuming, and when

a third party is hired to label the data, a potential privacy risk. Unsupervised

approaches have been utilised extensively for learning in recent years to eliminate

this need for labelled data. These models can be broadly categorised as either

generative, or non-generative models.

Latent variable models (LVMs), such as the variational autoencoder (VAE),

constitute unsupervised, generative representation learning models. While VAEs have

shown compelling results on a broad range of data types, for very high-dimensional

data they typically rely on deep hierarchies of latents to generate realistic data

5.1. Introduction 89

samples, with the total number of latent dimensions often exceeding the original

data dimension [Maaløe et al., 2019, Child, 2021]. Despite these models achieving

state-of-the-art performance in terms of log likelihood, it is not immediately obvious

how one would efficiently privatise such latent hierarchies, whether these latents

provide meaningful representations, or indeed whether they would be useful as tools

for downstream model training.

One compelling feature of VAE-based LDP mechanisms is that they facilitate

the private collection of data on original feature level, by passing the privatised data

representation through the decoder network, as discussed in Section 4.3.1.1. However,

the joint training of both a generative distribution p(x|z) and inference distribution

q(z|x) presents optimisation challenges, since the two networks are highly entangled.

In the extreme (and not uncommon) case, the model may exhibit ‘posterior collapse’,

whereby no information is encoded, as discussed in Section 3.2. In many applications

of private data collection, it is sufficient to collect privatised data on representation

level. In this scenario, the generative distribution is not used at privatisation time,

rendering the added complexity, optimisation challenges, and computational expense

of training it unnecessary.

Non-generative models do not generally learn the mapping from representation

space back to latent space and so circumvent many of these issues. Self-supervised

learning has led to some of the most significant developments in representation

learning in recent years, providing a framework for training models in a ‘supervised’

manner with unlabelled data by constructing synthesised labels. This has been

used extensively to train large natural language processing models with impressive

empirical performance. Devlin et al. [2019] learn powerful representations by randomly

masking words in sentences, and using them as labels for missing word prediction.

They also train the model on next sentence prediction, feeding in contiguous sentences

from large corpora as positive examples and non-contiguous sentences as negative

examples. Variants on these techniques have also been used to learn sentence-

level representations [Yang et al., 2021]. In computer vision, state-of-the-art image

representations have also been achieved with self-supervised methods. Chen et al.

[2020] and He et al. [2020] randomly augment each image in the batch twice, labelling

5.2. Representation Learning Laplace Mechanism 90

augmentations of the same image as positive pairs, and augmentations of different

images as negative pairs. The model is then trained to minimise cosine similarity

between representations of positive pairs and maximise cosine similarity between

negative pairs. In doing so, image representations are encouraged to be invariant to

transformations such as flipping or blurring, whilst dissimilar images should have

dissimilar representations.

In Section 5.2, we build on ideas described in Chapter 4 and introduce a sys-

tematic and straightforward procedure for adapting existing representation learning

algorithms, such that the learnt representations are robust to LDP-inducing noise.

We then use this approach to develop an LDP mechanism for colour image data in

Section 5.2.2, adapting a contrastive representation learning model. Contrastive mod-

els [van den Oord et al., 2018, Chen et al., 2020, He et al., 2020] are naturally suited

here, having achieved state-of-the-art performance in representation learning for

high-dimensional images. In Section 5.3, we test this mechanism empirically on the

CIFAR-10 colour image dataset [Krizhevsky, 2009], achieving significant performance

gains over current state-of-the-art mechanisms. As with the VLM, we measure the

utility of our privatised representations by using them to train downstream machine

learning models, which is a common goal for many data collectors. We dub this

mechanism the contrastive Laplace mechanism (CLM).

5.2 Representation Learning Laplace Mechanism

As in Chapter 4, we assume access to an unlabelled, auxiliary dataset from a similar

distribution to the data we hope to collect. We use this auxiliary dataset to train

the LDP mechanism used to collect new data.

We outline a straightforward procedure for training an LDP mechanism through

the modification of an arbitrary representation learning model. We assume this

model learns a representation of a datapoint x:

z = fϕ(x) (5.1)

5.2. Representation Learning Laplace Mechanism 91

where fϕ is a function that maps from data space to (non-private) representation

space, and is parameterised by a neural network with parameters ϕ.

Our LDP mechanism maps data through the modified fϕ(·) before inducing

privacy on the inferred representation. The performance of this mechanism is heavily

dependent on the quality of the learnt mapping fϕ(·), which must satisfy three crucial

properties:

1. The output of fϕ(·) must be constrained such that the addition of calibrated

noise guarantees LDP.

2. The inferred representations must contain as much information as possible for

downstream model learning.

3. We need the representations to retain as much of this information as possible

after privatisation.

As in Chapter 4, the first property can be easily achieved by applying a suitable

activation function ν(·) to the final layer of the neural network i.e. fϕ(·) = ν(hϕ(·)).
With the VLM, we were restricted to LDP mechanisms based on reparameterisable

noise distributions but, in general, we have greater flexibility over our choice of

mechanism.

Several LDP mechanisms, like the local Gaussian mechanism [Wang et al., 2021]

and the local Laplace mechanism, require finite ℓp-sensitivity. One can restrict the

sensitivity to ∆fϕ = 2l (for some l > 0) with the following activation:

νp(h) = h ∗min{1, l/||h||p} (5.2)

Different activations can be used for mechanisms with different requirements. In

this chapter, the goal is to demonstrate the efficacy of representation learning for

LDP, rather than to compare existing mechanisms in representation space. Thus we

focus on the Laplace mechanism as before, inducing ϵ-LDP with the mechanism:

M (x, fϕ(x), ϵ) = fϕ(x) + (s1, . . . , sk) (5.3)

where fϕ(x) := ν1(hϕ(x)) and si ∼ Laplace(0, 2l/ϵx).

5.2. Representation Learning Laplace Mechanism 92

(EXE�S[RIV��HIZMGI�WMHI

%HQMRMWXVEXSV�
GSQTMPIW�HEXE

8VEMR�
QIGLERMWQ

(EXE�HMWXVMFYXIH�
FIX[IIR�S[RIVW

7IRH�IRGSHIV�
XS�HEXE�S[RIVW

)EGL�HEXE�S[RIV�
TVMZEXM^IW�PSGEPP]

0(4�HEXE�JSV�
HS[RWXVIEQ�XEWOW

8VEMRMRK�HEXE�JSV�
1IGLERMWQ

%HQMRMWXVEXSV��WIVZIV�WMHI %HQMRMWXVEXSV��WIVZIV�WMHI

7IRH�0(4�HEXE�
XS�EHQMRMWXVEXSV

3[RIV���HEXE

I�K��XVEMR�GPEWWMƻIV%Y\MPMEV]�
HEXE

4VMZEXMWIH�
HEXE�JSV�

3[RIVW���2

3[RIV���HIZMGI

3[RIV�2�HIZMGI

3[RIV���HIZMGI

Figure 5.1: Schematic diagram of mechanism training (left), local data privatisation
(centre) and collection (right), as outlined in Section 5.2. Red boxes indicate
operations performed on the administrator/ data collector’s infrastructure and blue
boxes indicate operations performed locally by the data owner. Crucially, unprivatised
data never leaves the data owner’s device.

The second property can be achieved by our choice of representation learning

algorithm. Downstream model learning is a key task within non-LDP representation

learning, and so by adapting a non-LDP model that achieves state-of-the-art perfor-

mance on downstream learning for the datatype at hand, we can be confident that

our mechanism will learn powerful representations. For example, in Section 5.2.2, we

privatise high-dimensional colour images, using a modified version of SimCLR [Chen

et al., 2018], which achieved accuracy on downstream tasks comparable to that of

direct supervised learning in the non-private setting.

To satisfy the final property, we must ensure the learnt representations are

maximally-robust to LDP-inducing noise. We found a straightforward and effective

approach to be the addition of noise to the representations during mechanism training.

This additive noise should be from the same distribution as in the LDP mechanism,

though not necessarily as high variance. Suppose the original representation learning

algorithm defines some loss function

Loriginal ≡ L
(
{zn}Nn=1

)
, where zn = fϕ(xn) (5.4)

over the training set {xn}Nn=1. Then to learn say, a Laplace mechanism, we instead

optimise

Lrobust ≡ L
(
{z̃n}Nn=1

)
, where z̃n ∼ Laplace(ν1(hϕ(xn)), bI) (5.5)

5.2. Representation Learning Laplace Mechanism 93

where b is treated as a hyperparameter found using a private grid search, as in

Section 4.2.4. We note that other model-specific techniques for encouraging noise

robustness could be used instead, as we discuss in Section 5.2.2.

At privatisation time, a sample z̃ ∼ Laplace(ν1(hϕ(x)),
2l
ϵx
I) forms an ϵx-LDP

representation of x.

Downstream model training Our goal is to use our collected data for supervised

downstream model training, and so we also privatise and collect corresponding

labels alongside the LDP representations. We use the same flip mechanism as in

Section 4.2.2 to collect labels y under ϵy-LDP so that, by the composition theorem,

our labelled privatised data tuples (z̃, ỹ) satisfy ϵ-LDP, where ϵ = ϵx + ϵy.

We then use the classifiers introduced in Section 4.2.3 to train downstream models.

Figure 5.1 shows a schematic diagram of mechanism training, data collection, and

downstream model training.

Using the approach outlined in Section 5.2, we introduce a mechanism designed

specifically for the privatisation of high-dimensional colour image data. We adapt

SimCLR [Chen et al., 2020] to learn powerful, LDP representations that are highly

effective for downstream model training.

5.2.1 SimCLR

SimCLR is a contrastive learning model for learning representations of large colour

images. To train the model, each image in the minibatch {xb}Bb=1 is augmented twice

via randomly sampled transforms t ∼ T. These transformations involve:

• Random cropping and resizing to 224x224,

• Random flipping with probability 0.5,

• Colour jitter applied with probability 0.8,

• Conversion to grayscale with probability 0.2.

These augmentations {x̄b′}2Bb′=1 are mapped through a ResNet fϕ(·) giving 2B

representations {zb′}2Bb′=1, where for each positive pair (representations of augmen-

5.2. Representation Learning Laplace Mechanism 94

x

x̄1 x̄2

z1 z2

v1 v2

t1 ∼ T t2 ∼ T
Input Image:

Augmentations:

Representations:

Projections:

Maximise similarity

gψ(·)

fϕ(·)

gψ(·)

fϕ(·)

Figure 5.2: Graphical representation of the SimCLR model [Chen et al., 2020]. The
blue shading indicates that the random variable is observed.

tations of the same image) we have 2(B − 1) negative pairs (representations of

augmentations of different images). The representations are passed through a MLP

gψ(·), known as a projection head, to give vb′ = gψ(zb′) = W (2)σ(W (1)(zb′)). The

model then encourages these projected representations to be similar for positive pairs

and dissimilar for negative pairs. This is achieved through the maximisation of a

softmax over cosine similarities sim(v, w) = vTw/||v|| ||w|| between positive pairs

(i, j):

ℓij = − log
exp

(
sim(vi, vj)

)∑2B
k=1,k ̸=i sim(vi, vk)

(5.6)

A graphical representation of this training process is shown in Figure 5.2.

5.2.2 Contrastive Laplace Mechanism

We construct an LDP mechanism trained with contrastive learning, by adapting

SimCLR as described in Section 5.2. We use a ResNet-18 model for fϕ(·), followed
by a final hidden layer of size 32, and the activation ν1(·) defined in Equation 5.2.

We induce LDP by adding Laplace(0, 2lI
ϵx
) noise to the representations z = fϕ(x). In

doing so, we obtain ϵx-LDP representations z̃. This privatisation procedure is given

5.2. Representation Learning Laplace Mechanism 95

x

x̄1 x̄2

z1 z2

z̃1 z̃2

ṽ1 ṽ2

t1 ∼ T t2 ∼ T
Input Image:

Augmentations:

Clean Repre-
sentations:

Noised Repre-
sentations:

Projections:

Maximise similarity

gψ(·)

+Lap(0, bI)

fϕ(·)

gψ(·)

+Lap(0, bI)

fϕ(·)

x

z

z̃

fϕ(·)

+Lap(0, ∆fI
ϵ
)

Figure 5.3: Graphical representation of the contrastive Laplace mechanism. The
blue shading indicates that the random variable is observed. The red box shows the
training procedure, performed on the administrator/ data collector’s infrastructure;
the blue box depicts the privatisation procedure, performed locally by the data
owner.

in Figure 5.3 (right).

The training process is shown in Figure 5.3 (left). During training, we augment

each image twice, as before, passing each noised augmentation representation through

a MLP projection head as in SimCLR, to give

ṽi = gψ(zi + si) ≡ W (2)σ(W (1)(zi + si)) (5.7)

where si ∼ Laplace(0, bI) and b is a model hyperparameter. We then maximise a

softmax over cosine similarities between positive pairs (i, j):

ℓij = − log
exp

(
sim(ṽi, ṽj)

)∑2B
k=1 sim(ṽi, ṽk)

(5.8)

with respect to ϕ and ψ.

5.2. Representation Learning Laplace Mechanism 96

This approach assumes representations of images should be invariant to trans-

formations like cropping, flipping or colour alterations, whilst representations of

different images should be well separated (in terms of cosine similarity). This is

well aligned with our goal of LDP representation learning: not only do we want

representations that are well-suited to downstream model training, but we also want

images that are different (for example, images from different classes) to be well

separated in representation space so that they are robust to LDP-inducing noise.

Since robustness to Laplace noise equates to large separation in ℓ1 distance,

we also experimented with ℓ1-based similarity metrics. Empirically however, we

found a significant decrease in representation quality (in the absence of noise)

compared with cosine similarity. The best trade-off between representation quality

and noise-robustness was achieved using cosine similarity with additive Laplace noise

in representation space during training, as with the VLM. We refer to this method

as the contrastive Laplace mechanism (CLM).

We conduct a LDP grid search over mechanism hyperparameters as described in

Section 4.2.4. After training the CLM, we use the privatised labelled ϵ-LDP represen-

tations (z̃, ỹ), to train a classifier, using the approach introduced in Section 4.2.3. In

doing so we are able to use classifier performance as a proxy for the utility retention

in our LDP training set, as before.

5.2.2.1 VLM vs. CLM

We do not consider the CLM to be a replacement for the VLM. Rather, we recommend

the data collector choose a mechanism appropriate for the data type and task at hand.

For large images, the CLM is a natural choice of model. For smaller images or tabular

data, where data dimension is smaller and the CLM’s colour image augmentations are

not applicable, the VLM is a more appropriate (and less computationally expensive)

choice. Indeed, there exist a plethora of performant representation learning algorithms

for a broad range of data modalities that one could adapt for privatisation. For

example, large transformer models have recently shown success in representation

learning for language data [Devlin et al., 2019, Yang et al., 2021], and so these are

likely a good choice for learning LDP mechanisms for language data.

5.3. Applications and Experiments 97

5.3 Applications and Experiments

We conduct experiments on the CIFAR-10 dataset [Krizhevsky, 2009] – a dataset

containing colour images of size 32× 32× 3. In Sections 5.3.1 and 5.3.2 we follow the

experimental setup from the data collection and novel class classification experiments

of Sections 4.3.1 and 4.3.2 respectively. In these experiments we train the CLM

with the aim of using the collected, LDP data to train downstream models that act

on clean (i.e. unprivatised) data at inference time. In Section 5.4, we follow the

experimental setup from Section 4.4, training the CLM with the aim of training

downstream models that act on LDP data at inference time.

Full experimental details can be found in Appendix B.1, and details of the private

grid search over model hyperparameters found in Appendix B.3.

Benchmarks: We benchmark results against the Laplace mechanism, Duchi’s

mechanism [Duchi et al., 2018] and the PrivUnit2/ScalarDP mechanism [Bhowmick

et al., 2019], of which the latter two represent current state-of-the-art. Appendix

B.2 covers implementation details for benchmark mechanisms. As in Chapter 4, we

emphasise that classifiers trained with DP-SGD [Abadi et al., 2016] do not constitute

meaningful benchmarks – we are interested in mechanisms for LDP data collection

that maximise utility retention. Amongst other things, the collected LDP data

can facilitate the training of classifiers, but the privacy of training set members is

crucially never violated.

5.3.1 Data Collection

In this section, we follow the experimental setup of Section 4.3.1. We split the

CIFAR-10 dataset such that 75% forms the auxiliary dataset D1 for training the

CLM and the remaining 25% forms the dataset D2 that we privatise, collect, and use

to train our classifier. We optimise Equation 4.11 when training a classifier on our

LDP representations. Motivations and applications for this experiment are discussed

in Section 4.3.1.

Table 5.1 outlines the performance of classifiers trained on LDP data collected

5.3. Applications and Experiments 98

Table 5.1: Accuracy of classifiers trained on data collected using different LDP
mechanisms. Each row shows the ϵ-LDP guarantee for the collected training set.
Error bars represent ±1 standard deviation from the mean over 3 trials.

Privacy Level CLM PrivUnit Duchi Laplace

ϵldp = 10 75.9±3.8 18.9±1.1 12.8±1.1 10.2±0.4

C
IF

A
R
-1
0 ϵldp = 8 75.3±1.5 13.2±2.9 11.1±0.7 9.9±0.4

ϵldp = 6 73.9±3.4 11.0±2.0 10.6±0.7 9.9±0.1
ϵldp = 4 43.4±11.8 9.6±0.4 10.9±0.9 9.6±0.5
ϵldp = 2 17.6±3.9 10.1±0.1 10.4±0.8 10.0±0.1
ϵldp = 1 15.0±4.0 9.5±0.5 9.9±0.1 9.8±0.1
No Privacy 86.3±0.0 76.1±0.7 76.1±0.7 76.1±0.7

under different mechanisms, at various ϵ-LDP privacy guarantees. We clearly see that

classifiers trained on data privatised with the CLM outperform those trained on data

privatised with benchmark mechanisms at every ϵ value tested. Indeed, the CLM

consistently achieves more than 50 percentage points higher than the benchmarks for

ϵ ≥ 6, and achieves above random accuracy at all ϵ values. All benchmarks perform

at, or close to, random accuracy for all ϵ ≤ 8. This indicates a far greater retention

of utility when privatising with the CLM than with any of the benchmarks.

The ‘no privacy’ row demonstrates the advantages of using a representation

learning approach: for the benchmarks, we simply train a classifier directly on

the clean images, whilst for the CLM we train a classifier on learnt (non-LDP)

representations. Since the LDP classifier training set D2 contains only 25% of the

original CIFAR-10 training set (12,500 images), the benchmarks only achieve 76.1%

accuracy, whilst the CLM approach, which only has to learn the simpler mapping

from representation to label, achieves 86.3% accuracy. Indeed, even at ϵ = 10, the

CLM is still outperforming the non-private benchmark classifier.

5.3.2 Novel-Class Classification

In this section, we follow the experimental setup in Section 4.3.2, testing the perfor-

mance of the CLM when the distribution of the auxiliary dataset D1 differs from the

data D2 we wish to collect. Specifically, the downstream task is to predict member-

5.3. Applications and Experiments 99

Table 5.2: Accuracy of classifiers for novel class classification, trained on data
collected using different LDP mechanisms. Each row shows the ϵ-LDP guarantee
for the collected training set. Error bars represent ±1 standard deviation from the
mean over 3 trials.

Privacy Level CLM PrivUnit Duchi Laplace

ϵldp = 10 89.3±0.5 68.3±1.0 58.4±9.7 50.4±0.9

C
IF

A
R
-1
0 ϵldp = 8 89.5±0.5 66.7±2.0 57.8±9.4 50.2±0.6

ϵldp = 6 89.7±0.6 55.5±1.2 57.2±9.3 51.0±2.7
ϵldp = 4 89.4±0.4 52.1±0.6 56.9±8.9 49.1±0.6
ϵldp = 2 87.2±1.4 50.3±1.2 56.5±6.6 50.2±0.3
ϵldp = 1 82.8±2.1 50.3±2.0 52.6±2.8 49.8±0.4
No Privacy 94.3±0.1 92.2±0.4 92.2±0.4 92.2±0.4

ship of a class not present in D1. We split the CIFAR-10 dataset in the same way

as in Section 4.3.2, such that D1 contains data from classes 0 to 8 and D2 contains

an equal split of 9’s and ‘not 9’s’. As before, we found classifier performance was

best when trained by maximising log p(y|z̃) directly, rather than with the objective

that marginalises out the representation noise as in Equation 4.11. This is likely

because in this experiment, the prior assumption – that D1 and D2 follow the same

distribution – is poor, as discussed in Section 4.2.2.

Classification accuracy results are given in Table 5.2. The classifier trained

on CLM datapoints performs at 89.3% accuracy at ϵ = 10, and notably we see

performance is well maintained as we increase the privacy guarantee on the training

data, performing at 82.8% accuracy at ϵ = 1. This indicates that sufficient utility is

retained in our training set for the purposes of solving this downstream task, at every

ϵ tested. As before, the CLM significantly outperforms the benchmark mechanisms.

The accuracy of the classifier trained on data privatised with PrivUnit (the best

performing benchmark) is 20 percentage points lower accuracy than the CLM at

ϵ = 10, and only marginally above random accuracy at ϵ = 6, performing at 55.5%.

5.4. Classifying Private Datapoints 100

Table 5.3: Private Accuracy of classifiers trained on ϵtrain-LDP (image, label) tuples
collected using different LDP mechanisms. ϵtest refers to the LDP guarantee of the
images classified at inference time. Error bars represent ±1 standard deviation from
the mean over 3 trials.

Privacy Level CLM PrivUnit Duchi Laplace Upper
Bound

ϵtrain = 10, ϵtest = 7 45.0±0.3 9.6±0.5 10.5±1.2 10.1±0.5 80.7

C
IF

A
R
-1
0 ϵtrain = 8, ϵtest = 5.6 37.8±0.2 10.0±0.4 10.0±0.7 10.2±1.3 69.3

ϵtrain = 6, ϵtest = 4.2 27.8±0.5 9.5±0.6 9.8±0.6 9.7±0.3 53.8
ϵtrain = 4, ϵtest = 2.8 15.9±0.9 10.1±0.7 9.9±0.7 10.4±0.8 36.0
ϵtrain = 2, ϵtest = 1.4 10.3±0.5 9.8±0.9 9.6±0.5 10.6±0.6 20.0
ϵtrain = 1, ϵtest = 0.7 10.5±0.5 10.4±0.8 10.3±0.5 9.8±0.3 14.2
No Privacy 86.3±0.0 76.1±0.7 76.1±0.7 76.1±0.7 100.0

5.4 Classifying Private Datapoints

Finally, in an experiment that mirrors those conducted in Section 4.4, we test the

performance of a classifier that is both trained on LDP datapoints, and aims to

classify LDP datapoints at inference time. Acknowledging that a considerable amount

of information is lost during privatisation, we compare our results to Equation 4.32,

which outlines a proxy to the maximum achievable accuracy of our Laplace mechanism

(see Section 4.4.2 for details). This is denoted ‘Upper Bound’ in the results (Table 5.3).

As in Section 4.4.3, ϵtrain indicates the privacy guarantee of the (data, label) pairs

in the classifier training set, and ϵtest indicates the privacy value of the privatised

(unlabelled) test points on which we test our classifier (λ = 70% of ϵtrain).

Results show a significant drop in performance when the classifier acts on LDP

data. We see that we don’t saturate the bound, but again note that the bound

assumes we only encode class information into the representation. In addition, the

bound assumes we can construct a perfect classifier in the non-private scenario, but

our model achieves only 86.3% in practice on CIFAR-10 at ϵ = ∞ (in the VLM

this had far less effect since one can achieve very high classification accuracy on

MNIST). Despite this, the bound presents a pessimistic result, and we question

whether even a mechanism that could saturate the bound would be useful in many

practical applications.

5.5. Conclusion 101

5.5 Conclusion

The VLM displayed significant improvements over state-of-the-art LDP mechanisms

when applied to data considered high-dimensional in the context of LDP. However,

the question still remained as to whether this approach could be scaled up to

datasets commonly used in modern machine learning applications. In this chapter,

we demonstrated that the fundamental ideas introduced in Chapter 4 can be scaled

up to high-dimensional data privatisation under the guarantees of LDP. Furthermore,

by introducing simple modifications to arbitrary, existing representation learning

algorithms, we have presented a straightforward method for the training of LDP

mechanisms that privatise any data modality for which representation learning is

possible. This has opened up our approach to real-world applications at scale, with

clear implications for the way in which organisations collect sensitive data.

Chapter 6

Conclusion

The first goal of this thesis was to develop a latent variable model that naturally

encodes information into the latent variable, irrespective of the choice of generative

network. In Chapter 3, we introduced a novel latent variable model to tackle

this problem. Rather than maximising a lower bound on the data log likelihood,

we instead optimise an objective that encourages both data generation, as in the

standard variational autoencoder, and data reconstruction, much like a probabilistic

version of the deterministic autoencoder. As with the deterministic autoencoder,

learning to reconstruct the input data necessitates that information be encoded

into the latent variable. Thus, our model circumvents the phenomenon of ‘posterior

collapse’ that plagues variational autoencoders when a powerful generative model

is used. In addition, the objective function of our generative model provides a

principled interpretation for the use of ad-hoc annealing factors frequently used in

the variational autoencoder objective.

We conducted a series of experiments applied to language modelling, demonstrat-

ing the strong performance of our approach with powerful LSTM architectures in the

generative model. When applied to such tasks, variational autoencoders typically

rely on KL annealing factors in the standard ELBO [Bowman et al., 2016], weakened

generative networks [Yang et al., 2017], or aggressive updates to the posterior network

[He et al., 2019].

Since the work in Chapter 3 was originally published, large transformer-based

models have become the de facto standard for many language modelling tasks [Devlin

103

et al., 2019, Radford et al., 2019], typically outperforming variational autoencoders

on such applications. Despite this, variational autoencoders are still frequently used

in applications that necessitate powerful generative distributions, and our approach

provides a valuable alternative here.

The second goal of this thesis was to develop machine learning models to act

as powerful mechanisms for the privatisation of high-dimensional data, under the

strict guarantees of local differential privacy (LDP). While existing work typically

utilises fixed LDP mechanisms, we propose using auxiliary data (i.e. data that an

organisation has access to either internally or publicly) to learn a LDP mechanism.

This provides increased control over specific attributes of the mechanism, allowing

one to add privacy-inducing noise on a low dimensional manifold, circumventing the

so-called ‘curse of dimensionality’ that plagues existing mechanisms.

As a consequence of this, the dimension of data we are able to privatise, whilst

both retaining data utility and maintaining strict privacy guarantees, is orders

of magnitude higher than that privatised by existing LDP mechanisms. To our

knowledge, Bhowmick et al. [2019] present the only other mechanism designed to

privatise data in such high dimensions. However, where they enforce only relatively

weak privacy guarantees (testing ϵ ≥ 50 experimentally), the research we introduce

induces LDP for single-digit ϵ (i.e. ϵ ≤ 10). Consequently, our approach provides

the best solution yet for organisations looking to collect large scale data without

violating data owners’ privacy.

We use the collected LDP data as a training set for downstream model training,

demonstrating empirically that the utility of our LDP training data surpasses that

of training data privatised with state-of-the-art benchmark LDP mechanisms. The

training of performant downstream models is a common real-world application for

data collectors that was previously thought infeasible when the training data satisfies

the guarantees of LDP.

We introduce two different representation learning approaches to learning LDP

mechanisms.

In Chapter 4, we develop a novel latent variable model for LDP privatisation. We

induce LDP in latent space by constraining the mean of the inference distribution

104

before adding carefully calibrated noise to the inferred representations. Furthermore,

a data reconstruction, obtained by passing the LDP latent representation through

the decoder, is equivalent to adding complex non-linear, LDP-inducing noise in the

original feature space.

To train the VLM, we optimise a variational lower bound on the log likelihood –

the same objective used to train a VAE. In Chapter 3, we discussed how models with

powerful generative networks can learn to ignore the latent variable when trained

under this objective. In all experiments in Chapter 4, we found the capacity of

generative network required to model MNIST and Lending Club was sufficiently

small that this was not an issue. However, if we were to privatise data that required

a more powerful generative network, such as the language data from Chapter 3,

we would advocate using the same constrained, LDP-inducing Laplace inference

distribution, but trained with the AutoGen objective (Equation 3.10) rather than

the standard lower bound (Equation 4.1). Indeed, if the VLM were to suffer from

posterior collapse, our privatised representations would contain little information for

downstream learning.

In Chapter 5, we provide a clear and concise framework for the adaptation

of a broad array of representation learning models, enabling the privatisation of

much higher-dimensional data. To demonstrate this, we develop a mechanism for

privatising colour image data by adapting a state-of-the-art contrastive representation

learning model. In presenting an approach that adapts existing algorithms, rather

than designing LDP mechanisms form the ground up, we are able to capitalise on

the myriad advancements over the past few years in the much more mature field

of representation learning. All results in Chapter 4 and 5 significantly outperform

current state-of-the-art benchmark mechanisms.

We believe such mechanisms could have clear and immediate implications for

the practice of data collection. Previously, organisations collecting data for the

training of machine learning models attempted to justify privacy violations as a

necessary evil, in the absence of practical, high-utility LDP-inducing approaches.

However our work demonstrates that it is possible to conduct high-dimensional data

collection, obtaining LDP representations suitable for downstream model training,

105

whilst protecting the privacy of individuals.

The performance of our mechanisms is hinged upon two distinct attributes: the

utility of the learnt representation (specifically the representation’s effectiveness for

downstream learning); and the extent to which inducing LDP noise destroys this

utility. Noting this, we highlight several avenues for future research. These include:

• Choice of LDP mechanism: The work in Chapters 4 and 5 exclusively uses

the local Laplace mechanism to induce LDP. However, extensive work has gone

into developing mechanisms that are optimal under certain conditions [Duchi

et al., 2018, Bhowmick et al., 2019]. We hypothesise that the use of alternative

mechanisms to induce LDP on the low dimensional manifold, or indeed the

creation of new mechanisms tailored for privatisation in representation space,

may lead to further improvements. For the VLM, we are constrained to

mechanisms that induce LDP via reparameterisable noise distributions, but for

the CLM we have no such constraints.

• Encouraging noise robustness: Though we present an effective approach for

encouraging the noise robustness of our learnt, low-dimensional representations,

an exploration of alternative techniques to encourage noise-robustness could lead

to significant improvements in the retention of data utility after privatisation.

For example, there may exist similarity metrics in Equation 5.8 that lead

to better noise-robust representations than cosine similarity. Extending this

further, one may consider developing a representation learning approach from

the ground up designed specifically for LDP privatisation, rather than adapting

existing representation learning methods.

• Privatising other data modalities: Our mechanisms overcome significant

hurdles for high-dimensional data privatisation, and we demonstrated this

empirically on tabular and image data. However, there exist a wide range of

data modalities for which LDP mechanisms would be valuable. For example,

we hypothesise that our mechanism could have particularly strong implications

in natural language processing, where large transformer models [Devlin et al.,

2019, Yang et al., 2021] have demonstrated not just an ability to learn powerful

106

representations, but strong performance on transfer learning tasks. A pre-

trained LDP mechanism for language could be trained on data scraped from the

internet (as in Radford et al. [2019], for example) and released publicly. Such

public mechanisms would allow organisations to collect data privately, without

requiring access to auxiliary data or the need to train LDP mechanisms.

Appendix A

VLM Experimental Details

A.1 Data Pre-Processing

For every experiment in Chapter 4, we conduct three trials, and calculate the mean

and standard deviation of accuracy for each set of trials. The error bars represent

one standard deviation above and below the mean.

We use the MNIST and Lending Club datasets. MNIST is a dataset containing

70,000 labelled grayscale images of handwritten digits from 10 classes, corresponding

to digits 0-9; the dataset is split into 60,000 training points and 10,000 test points.

We convert the images to values between 0 and 1 by dividing each pixel value by 255

and treating them as continuous.

Lending Club is a tabular, financial dataset made up of around 540,000 entries

with 23 continuous and categorical features (after pre-processing, before one-hot

encoding); the task is binary classification, to determine whether a loan will be re-

paid. It is split into train, validation and test sets according to the issue date of the

loans. The oldest 85% of data forms the training data, with the remaining forming

the validation and test data. We perform a number of standard pre-processing steps

on this dataset, including:

• Dropping features that contain too many missing values, and those that would

not normally be available to a loan company.

• Mean imputation to fill remaining missing values.

A.2. Data Splits 108

• Standard scaling of continuous features. Extreme outliers (those with features

more than 10 standard deviations from the mean) are removed here.

• Balancing the target classes by dropping the excess class 0 entries.

• One-hot encoding categorical variables.

A.2 Data Splits

In practice, a data collector would construct a VLM training set from clean auxiliary

data that they have access to, either internally or publicly. They would then use

this trained VLM to collect further data under LDP guarantees. This collected

private data can then be used for downstream tasks. In our experiments, we split

the data into two smaller sets to simulate this real-world implementation. The first

dataset is used as auxiliary VLM training data D1; the second dataset simulates

data D2 held by the data owner that is privatised and collected using the VLM, and

ultimately used for classifier training. The way in which we split our data differs

between experiments in Chapter 4, and we outline each method in the following

sections.

Data Collection

Data collection experiments are conducted on both MNIST and Lending Club.

For all results in Sections 4.3.1 and 4.4 (except those of the data split ablation in

Section 4.3.1.2) we split the data using 75% for VLM training and the remainder

for the classifier. The mechanism test set is used for validation since no test set is

required here. The classifier training points are split randomly in a 9:1 ratio to form

training and validation sets. We report classifier performance on the classifier test

set. In Section 4.3.1.2 we conduct an ablation study that explores the extent to

which this choice of data split affects classifier performance, and outline data splits

in Table 4.3.

A.3. Benchmarks 109

Novel-Class Classification

This experiment was conducted on MNIST only. We use a similar approach to the

above, but split the data between the mechanism and the classifier such that the

mechanism train/validation sets contain 8
9
ths of (unlabelled) training images from

classes 0 to 8. The remaining 1
9
th of 0 to 8 images, and all 9s, are used for classifier

train, test and validation sets. Our mechanism datasets then contain equal class

balance for the classes 0 to 8, and the classifier datasets contain equal class balance

for 9s and ‘not 9s’.

Data Join

This experiment was conducted on Lending Club only. The dataset is split column-

wise between the 23 features, such that 8 features remain non-privatised (month

of earliest credit line, number of open credit lines, initial listing status of loan,

application type, address (US state), home ownership status, employment length,

public record bankruptcies) and the remaining 15 features are privatised. This feature

split was chosen such that the 8 non-private features contain some information to

solve the classification task, while the remaining 15 features contain information

which, at least before privatisation, further improves classifier performance.

A.3 Benchmarks

We study the local Laplace mechanism, the mechanism introduced in Duchi et al.

[2018] (which we refer to as “Duchi’s mechanism”), the Hybrid mechanism [Wang

et al., 2019], and the PrivUnit2 mechanism [Bhowmick et al., 2019].

For the Laplace mechanism, we privatise each feature independently, choosing

the noise level for each of the d features such that ϵi = ϵ/d. We do this since we have

no prior knowledge about which features are most important. We then assume ∆fi

is equal to the difference between the maximum and minimum value of the feature

i within the training and validation sets used to train the mechanism in the main

experiments, after pre-processing. We then have to clip any values that lie outside

A.4. Hyperparameter Choices 110

Table A.1: VLM hyperparameters used for data join experiments on the Lending
Club dataset.

ϵ d l ϵpre-training

∞ 8 5 20
10 8 5 10
8 5 5 15
6 5 5 15
4 5 5 10
2 5 5 15
1 5 5 10

this interval in the collected dataset at privatisation time. For tabular experiments,

we privatise categorical features using a flip mechanism.

We omit the hybrid mechanism (Algorithm 4 of Wang et al. [2019]) since it entails

collecting only k ≤ 4 of the d features for our experiments, but implement Duchi’s

mechanism as in Algorithm 3 of Wang et al. [2019]. Again, we privatise categorical

features using a flip mechanism.

For PrivUnit2, we treat each image as a d-dimensional vector and privatise both

its direction and magnitude, as outlined in the PrivUnit2 and ScalarDP algorithms

in Bhowmick et al. [2019]. We omit Lending Club experiments, since PrivUnit2 is

not designed for mixed-type data.

For all tasks, we used feedforward architectures for our benchmark classifiers.

More powerful convolutional architectures were not found to improve performance.

A.4 Hyperparameter Choices

In order to find the optimal experimental setup, we conduct a private grid search

over a number of the hyperparameters in our model, as outlined in Section 4.2.4. We

searched over the following model hyperparameters:

• The proportion λ of our privacy budget assigned to the representation vs. the

label i.e. λ = ϵx/(ϵx + ϵy).

• The ℓ1 clipping distance l of our inference network mean i.e. l = ∆fϕ/2.

A.4. Hyperparameter Choices 111

Table A.2: DP-Adam hyperparameters used for the VLM data collection experiments
under CDP.

Task ϵCDP Learning Rate Batch Size Noise Multiplier

MNIST 5 5e-4 64 0.7
1 5e-4 64 1.1

Lending 5 1e-4 128 0.56
Club 1 1e-4 128 1.1

• The Laplace distribution scale b of our approximate posterior distribution

during VLM training. We report this in terms of the ϵpre-training-LDP value

induced by this Laplace noise i.e. ϵpre-training = 2l/b. This is fixed throughout

training, unless ‘learnt’ is specified in Table A.3, which indicates the parameter

b is a learnt scalar in the VLM.

• The representation dimension d. We fixed d = 8 for MNIST. For Lending Club,

we fixed d = 8 for the data collection experiments but searched over d ∈ {5, 8}
for the data join experiments due to the smaller number of features.

For VLM training, we use a learning rate of 10−4 and batch size of 128 for Lending

Club experiments, and we use a learning rate of 5× 10−4 and batch size of 64 for

MNIST. For CDP training experiments in Section 4.3.1, we also did a private grid

search over values for the noise multiplier, batch size, and DP learning rate for central

ϵ ∈ {1, 5}. The DP-Adam [Gylberth et al., 2017] hyperparameter max gradient norm

was fixed to 1 throughout. The number of training epochs needed to reach the target

central ϵ value follows from the choice of hyperparameters, combined with the VLM

training set size (45,000 for MNIST, and 341,000 for Lending Club). Note that we

fixed δ = 10−5 for the CDP guarantee in all experiments.

The results from these grid searches are given in Tables A.1, A.2, and A.3.

A.5. Mechanism Architectures and Transformations 112

Table A.3: VLM hyperparameters used for the data collection and novel-class
classification experiments.

Experiment Task ϵ λ d l ϵpre-training

Classifying MNIST ∞ N/A 8 10 Learnt
clean datapoints 10 0.7 8 10 33
(Section 4.3 8 0.7 8 5 32
experiments) 6 0.7 8 5 19

4 0.7 8 7.5 13
2 0.7 8 7.5 7
1 0.7 8 5 7

Lending Club ∞ N/A 8 10 Learnt
10 0.7 8 5 15
8 0.7 8 5 29
6 0.7 8 5 29
4 0.7 8 5 15
2 0.95 8 5 15
1 0.95 8 10 21

Classifying LDP MNIST ∞ N/A 8 10 Learnt
datapoints 10 0.7 8 10 5
(Section 4.4 8 0.7 8 7.5 5
experiments) 6 0.7 8 7.5 5

4 0.7 8 5 5
2 0.7 8 5 15
1 0.7 8 7.5 15

A.5 Mechanism Architectures and Transforma-

tions

For MNIST, we use a VLM encoder network with 3 hidden layers of size {400, 150,
50}, and a decoder network with 3 hidden layers of size {50, 150, 400}. For Lending
Club, we use a VLM encoder and decoder network with 2 hidden layers of size {500,
500}. For the classifier, we used a a network with 1 hidden layer of size 50.

Appendix B

CLM Experimental Details

B.1 Data Pre-Processing

As in Chapter 4, we conduct three trials for each experiment and calculate the mean

and standard deviation of accuracy for each set of trials. The error bars represent

one standard deviation above and below the mean.

We use the CIFAR-10 dataset: a colour image dataset containing 60,000 images

from 10 classes. We convert the images to values between 0 and 1 by dividing each

pixel value by 255 and treating them as continuous.

As before, for data collection experiments, we split both sets using 75% for

mechanism training and the remainder for classifier training. The mechanism test

set is used for validation since no test set is required here. The classifier training

points are split randomly in a 9:1 ratio to form training and validation sets. We

report classifier performance on the classifier test set.

For novel class classification we split the data between the mechanism and the

classifier such that the mechanism train/validation sets contain (unlabelled) training

images from classes 0 to 8, and the classifier datasets contain equal class balance for

9s and ‘not 9s’, and described in Section A.2.

We emphasise that these data splits are designed to simulate real world scenarios.

In reality, the data split would be pre-determined, with the mechanism training set

comprised of clean data the data collector has access to, either internally or publicly.

The data collector would use this trained mechanism to collect data under LDP.

B.2. Benchmarks 114

Table B.1: CLM hyperparameters used for the data collection and novel-class
classification experiments.

Experiment Task ϵ λ l ϵpre-training

Classifying clean CIFAR-10 ∞ N/A 5 No noise
datapoints 10 0.7 5 No noise
(Section 5.3 8 0.7 5 No noise
experiments) 6 0.7 5 70

4 0.7 5 30
2 0.7 5 20
1 0.7 5 20

Classifying LDP CIFAR-10 ∞ N/A 5 No noise
datapoints 10 0.7 5 27
(Section 5.4 8 0.7 5 24
experiments) 6 0.7 5 20

4 0.7 5 15
2 0.7 5 8
1 0.7 5 8

B.2 Benchmarks

We study the same set of benchmarks as in Chapter 4: the local Laplace mechanism,

Duchi’s mechanism [Duchi et al., 2018], the Hybrid mechanism [Wang et al., 2019], and

the PrivUnit2/ ScalarDP mechanism [Bhowmick et al., 2019]. The implementation

of these benchmarks is the same as that discussed in Section A.3, with the exception

that we experiment with using both a pre-trained and a randomly initialised ResNet-

18 for classification, as is used in the CLM encoder. Ultimately however, we found a

feedforward architecture with hidden layers of dimension {400, 150, 50} achieved

better accuracy than either ResNet-18 model at all local-ϵ values (except local-ϵ = ∞,

where instead a pre-trained ResNet-18 architecture was used).

B.3 Hyperparameter Choices

For the CLM training we use a learning rate of 3× 10−4 and a batch size of 128 (the

largest our GPU would allow). We fixed the representation dimension d to 32. As in

Chapter 4, we searched over the following model hyperparameters:

• The division λ of our privacy budget between the representation and the label

B.3. Hyperparameter Choices 115

i.e. λ = ϵx/(ϵx + ϵy).

• The ℓ1 clipping distance l the encoder fϕ(·) i.e. l = ∆fϕ/2.

• The scale b of the zero mean Laplace noise added during pre-training of the

CLM. This is reported in terms of the ϵpre-training-LDP value induced by this

Laplace noise i.e. ϵpre-training = 2l/b. ‘No privacy’ in Table B.1 indicates we set

b = 0.

The results from this grid search are given in Table B.1.

Bibliography

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, 2016.

G. Acs, L. Melis, C. Castelluccia, and E. De Cristofaro. Differentially private

mixture of generative neural networks. IEEE Transactions on Knowledge and

Data Engineering, 2019.

Amnesty International. Surveillance giants: How the business model of Google and

Facebook threatens human rights, 2019.

J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston. Variational image

compression with a scale hyperprior. In International Conference on Learning

Representations, 2018.

B. B. Bhattacharya. Maximizing Voronoi regions of a set of points enclosed in a

circle with applications to facility location. Journal of Mathematical Modelling

and Algorithms, 2010.

A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers. Protection

against reconstruction and its applications in private federated learning. CoRR,

abs/1812.00984, 2019.

S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. Generating

sentences from a continuous space. In Conference on Computational Natural

Language Learning, 2016.

BIBLIOGRAPHY 117

K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi. Broadening

the scope of differential privacy using metrics. In Privacy Enhancing Technologies

Symposium, 2013.

Q. Chen, C. Xiang, M. Xue, B. Li, N. Borisov, D. Kaafar, and H. Zhu. Differentially

private data generative models. CoRR, abs/1812.02274, 2018.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for con-

trastive learning of visual representations. In International Conference on Machine

Learning, 2020.

R. Child. Very deep VAEs generalize autoregressive models and can outperform

them on images. In International Conference on Learning Representations, 2021.

Competition and Markets Authority. Online platforms and digital advertising market

study, Appendix F: the role of data in digital advertising, 2020.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society: Series B

(Methodological), 1977.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale

hierarchical image database. In IEEE Conference on Computer Vision and Pattern

Recognition, 2009.

E. Denton and R. Fergus. Stochastic video generation with a learned prior. In

International Conference on Machine Learning, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics, 2019.

A. B. Dieng, C. Wang, J. Gao, and J. Paisley. TopicRNN: A recurrent neural network

with long-range semantic dependency. In International Conference on Learning

Representations, 2017.

BIBLIOGRAPHY 118

B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. In

Advances in Neural Information Processing Systems, 2017.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual

recognition and description. In IEEE Conference on Computer Vision and Pattern

Recognition, 2015.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 2011.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical

minimax rates. In IEEE Annual Symposium on Foundations of Computer Science,

2013.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal procedures

for locally private estimation. In Journal of the American Statistical Association,

2018.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. In

Foundations and Trends in Theoretical Computer Science, 2014.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in

private data analysis. In Theory of Cryptography, 2006.

Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable

privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, 2014.

G. Fanti, V. Pihur, and Ú. Erlingsson. Building a RAPPOR with the unknown:

Privacy-preserving learning of associations and data dictionaries. Proceedings on

Privacy Enhancing Technologies, 2016.

M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit

confidence information and basic countermeasures. In ACM SIGSAC Conference

on Computer and Communications Security, 2015.

BIBLIOGRAPHY 119

C. Frye, D. de Mijolla, T. Begley, L. Cowton, M. Stanley, and I. Feige. Shapley

explainability on the data manifold. In International Conference on Learning

Representations, 2021.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

International Conference on Artificial Intelligence and Statistics, 2011.

A. Goyal, A. Lamb, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio. Professor

forcing: A new algorithm for training recurrent networks. In Advances in Neural

Information Processing Systems, 2016.

A. Graves. Generating sequences with recurrent neural networks. CoRR,

abs/1308.0850, 2013.

A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent

neural networks. In International Conference on Machine Learning, 2014.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and

A. Courville. PixelVAE: A latent variable model for natural images. In In-

ternational Conference on Learning Representations, 2017.

R. Gylberth, R. Adnan, S. Yazid, and T. Basaruddin. Differentially private opti-

mization algorithms for deep neural networks. In International Conference on

Advanced Computer Science and Information Systems, 2017.

R. Habib, S. Mariooryad, M. Shannon, E. Battenberg, R. Skerry-Ryan, D. Stanton,

D. Kao, and T. Bagby. Semi-supervised generative modeling for controllable speech

synthesis. In International Conference on Learning Representations, 2020.

J. He, D. Spokoyny, G. Neubig, and T. Berg-Kirkpatrick. Lagging inference networks

and posterior collapse in variational autoencoders. International Conference on

Learning Representations, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

BIBLIOGRAPHY 120

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised

visual representation learning. In IEEE Conference on Computer Vision and

Pattern Recognition, 2020.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,

and A. Lerchner. beta-VAE: Learning Basic Visual Concepts with a Constrained

Variational Framework. In International Conference on Learning Representations,

2017.

G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with

Neural Networks. Science, 313(5786):504–507, 2006.

G. E. Hinton and R. S. Zemel. Autoencoders, Minimum Description Length and

Helmholtz Free Energy. In Advances in Neural Information Processing Systems,

1994.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9

(8):1735–1780, 1997.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural

Networks, 1991.

J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. Pierce, and A. Roth.

Differential privacy: an economic method for choosing epsilon. In IEEE Computer

Security Foundations Symposium, 2014.

Institute for Critical Infrastructure Technology. Hacking healthcare in 2016: Lessons

the healthcare industry can learn from the OPM breach, 2016.

J. A. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund,

B. Haghgoo, R. L. Ball, K. Shpanskaya, J. Seekins, D. Mong, S. Halabi, J. Sandberg,

R. Jones, D. Larson, C. Langlotz, B. Patel, M. Lungren, and A. Ng. CheXpert: A

large chest radiograph dataset with uncertainty labels and expert comparison. In

Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

D. Jamieson and M. Loverde. Position-dependent Voronoi probability distribution

functions for matter and halos. Physics Review D, 2021.

BIBLIOGRAPHY 121

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-

stage architecture for object recognition? In IEEE International Conference on

Computer Vision, 2009.

J. Jolly. FCA admits revealing confidential details of 1,600 consumers. In The

Guardian, 2020.

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What

can we learn privately? In IEEE Symposium on Foundations of Computer Science,

2008.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Interna-

tional Conference on Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International

Conference on Learning Representations, 2014.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning

with deep generative models. In Advances in Neural Information Processing

Systems, 2014.

F. H. Kingma, P. Abbeel, and J. Ho. Bit-swap: Recursive bits-back coding for

lossless compression with hierarchical latent variables. In International Conference

on Machine Learning, 2019.

S. Krehbiel. Choosing epsilon for privacy as a service. Proceedings on Privacy

Enhancing Technologies, 2019.

A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 1998.

J. Lee and C. Clifton. How much is enough? choosing ϵ for differential privacy. In

Information Security, 2011.

BIBLIOGRAPHY 122

J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. BioBERT: a

pre-trained biomedical language representation model for biomedical text mining.

Bioinformatics, 2019.

Y. Lee, J. Shin, and K. Jung. Bidirectional variational inference for non-autoregressive

text-to-speech. In International Conference on Learning Representations, 2021.

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Scholkopf, and O. Bachem.

Challenging common assumptions in the unsupervised learning of disentangled

representations. In International Conference on Machine Learning, 2019.

L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther. BIVA: A very deep hierarchy

of latent variables for generative modeling. In Advances in Neural Information

Processing Systems, 2019.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. L-diversity:

privacy beyond k-anonymity. In International Conference on Data Engineering,

2006.

D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe,

and L. van der Maaten. Exploring the limits of weakly supervised pretraining. In

Proceedings of the European Conference on Computer Vision, 2018.

A. Mansbridge, R. Fierimonte, I. Feige, and D. Barber. Improving latent variable

descriptiveness by modelling rather than ad-hoc factors. Machine Learning (ECML

PKDD Journal Track), 2019.

A. Mansbridge, G. Barbour, D. Piras, M. Murray, C. Frye, I. Feige, and D. Barber.

Representation learning for high-dimensional data collection under local differential

privacy. CoRR, abs/2010.12464, 2022.

G. Martin, P. Martin, C. Hankin, A. Darzi, and J. Kinross. Cybersecurity and

healthcare: how safe are we? British Medical Journal, 2017.

L. Mehner, S. Nuñez von Voigt, and F. Tschorsch. Towards explaining epsilon: A

worst-case study of differential privacy risks. In IEEE European Symposium on

Security and Privacy Workshops, 2021.

BIBLIOGRAPHY 123

A. Narayanan and V. Shmatikov. How to break anonymity of the netflix prize dataset.

CoRR, abs/cs/0610105, 2007.

Y. Nesterov. A method for solving the convex programming problem with convergence

rate O(1/k2). Dokl. akad. nauk Sssr 269, 269:543–547, 1983.

J. Paisley, D. Blei, and M. Jordan. Variational bayesian inference with stochastic

search. In International Conference on Machine Learning, 2012.

N. Papernot, N. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar. Semi-supervised

knowledge transfer for deep learning from private training data. In International

Conference on Learning Representations, 2017.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language

models are unsupervised multitask learners, 2019.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and

I. Sutskever. Zero-shot text-to-image generation. CoRR, abs/2102.12092, 2021.

R. Reddy. Speech understanding systems: summary of results of the five-year

research effort at Carnegie-Mellon University. In Technical Report, Carnegie-

Mellon University, 1977.

X. Ren, C. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and P. S. Yu. LoPub:

High-dimensional crowdsourced data publication with local differential privacy. In

IEEE Transactions on Information Forensics and Security, 2018.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and

approximate inference in deep generative models. In International Conference on

Machine Learning, 2014.

E. Riol, J. C. Puche, F. J. Delgado, J. Finat, and R. Martinez. Weighted Voronoi

diagrams for optimal location of goods and services in planar maps. In International

Symposium on Voronoi Diagrams in Science and Engineering, 2011.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986.

BIBLIOGRAPHY 124

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. PixelCNN++: A PixelCNN

implementation with discretized logistic mixture likelihood and other modifications.

In International Conference on Learning Representations, 2017.

D. Schmidt. Google data collection, 2018.

S. Semeniuta, A. Severyn, and E. Barth. A Hybrid Convolutional Variational

Autoencoder for Text Generation. In Conference on Empirical Methods in Natural

Language Processing, 2017.

H. Shah, B. Zheng, and D. Barber. Generating sentences using a dynamic canvas.

In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder

variational autoencoders. In Advances in Neural Information Processing Systems,

2016.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems, 2014.

L. Sweeney. K-anonymity: A model for protecting privacy. International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, 2002.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception

architecture for computer vision. In IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

S. Takagi, T. Takahashi, Y. Cao, and M. Yoshikawa. P3GM: Private high-dimensional

data release via privacy preserving phased generative model. In IEEE International

Conference on Data Engineering, 2021.

B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth,

and L.-J. Li. YFCC100M: The new data in multimedia research. In Association

for Computing Machinery, 2016.

BIBLIOGRAPHY 125

J. Townsend, T. Bird, and D. Barber. Practical Lossless Compression with Latent

Variables using Bits Back Coding. In International Conference on Learning

Representations, 2019.

A. Triastcyn and B. Faltings. Generating artificial data for private deep learning. In

Proceedings of the PAL: Privacy-Enhancing Artificial Intelligence and Language

Technologies, AAAI Spring Symposium Series, 2019.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation

learning. In Advances in Neural Information Processing Systems, 2017.

A. van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive

predictive coding. CoRR, abs/1807.03748, 2018.

R. Vedantam, I. Fischer, J. Huang, and K. Murphy. Generative Models of Visually

Grounded Imagination. In International Conference on Learning Representations,

2018.

N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and G. Yu.

Collecting and analyzing multidimensional data with local differential privacy. In

IEEE International Conference on Data Engineering, 2019.

T. Wang, J. Zhao, Z. Hu, X. Yang, X. Ren, and K.-Y. Lam. Local differential privacy

for data collection and analysis. Neurocomputing, 2021.

Y. Wang, X. Wu, and D. Hu. Using randomized response for differential privacy

preserving data collection. In Technical Report, DPL-2014-003, University of

Arkansas, 2014.

S. L. Warner. Randomized response: A survey technique for eliminating evasive

answer bias. Journal of the American Statistical Association, 1965.

R. J. Williams and D. Zipser. A Learning Algorithm for Continually Running Fully

Recurrent Neural Networks. Neural Computation, 1989.

M. Wu and N. Goodman. Multimodal Generative Models for Scalable Weakly-

Supervised Learning. CoRR, abs/1802.05335, 2018.

BIBLIOGRAPHY 126

L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou. Differentially private generative

adversarial network. CoRR, abs/1802.06739, 2018.

Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick. Improved Variational

Autoencoders for Text Modeling using Dilated Convolutions. In International

Conference on Machine Learning, 2017.

Z. Yang, Y. Yang, D. Cer, J. Law, and E. Darve. Universal sentence representation

learning with conditional masked language model. In Conference on Empirical

Methods in Natural Language Processing, 2021.

F. Yu, S. E. Fienberg, A. B. Slavkovic, and C. Uhler. Scalable privacy-preserving data

sharing methodology for genome-wide association studies. Journal of Biomedical

Informatics, 2014.

J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. PrivBayes:

Private data release via Bayesian networks. ACM Transactions on Database

Systems, 2017.

L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In Advances in Neural

Information Processing Systems, 2019.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.

Aligning Books and Movies: Towards Story-like Visual Explanations by Watching

Movies and Reading Books. In International Conference on Computer Vision,

2015.

