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Abstract

Advances in computing have enabled us to develop increasingly complex statistical models.

However, their complexity poses challenges in their evaluation. The central theme of the thesis

is addressing intractability and interpretability in model evaluations. The key tools considered in

the thesis are kernel and Stein’s methods: Kernel methods provide flexible means of specifying

features for comparing models, and Stein’s method further allows us to incorporate model

structures in evaluation.

The first part of the thesis addresses the question of intractability. The focus is on latent

variable models, a large class of models used in practice, including factor models, topic models

for text, and hidden Markov models. The kernel Stein discrepancy (KSD), a kernel-based

discrepancy, is extended to deal with this model class. Based on this extension, a statistical

hypothesis test of relative goodness of fit is developed, enabling us to compare competing latent

variable models that are known up to normalization.

The second part of the thesis concerns the question of interpretability with two contributed

works. First, interpretable relative goodness-of-fit tests are developed using kernel-based

discrepancies developed in Chwialkowski et al. [2015], Jitkrittum et al. [2016, 2017b]. These

tests allow the user to choose features for comparison and discover aspects distinguishing two

models. Second, a convergence property of the KSD is established. Specifically, the KSD is

shown to control an integral probability metric defined by a class of polynomially growing

continuous functions. In particular, this development allows us to evaluate both unnormalized

statistical models and sample approximations to posterior distributions in terms of moments.
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Chapter 1

Introduction

Statistical models describe processes underlying data generation and express uncertainty associ-

ated with observations. These models are used to extract meaningful information and patterns

from the data. Model assessment is therefore a critical operation, as the quality of our subsequent

inference depends on the accuracy of the models.

This thesis addresses the problem of evaluating statistical models. Mathematically, a

statistical model is a probability distribution over the space in which data lie – the language

of probability allows us to characterize uncertainty stemming from our incomplete knowledge

of the data-generating process. We therefore take a probabilistic approach, where we compare

probability distributions using some metric that quantifies closeness of distributions. We

emphasize, however, that there is no single canonical way of evaluating statistical models, since

what makes a model preferable depends on the purpose. Some application domains might

have specific metrics; for example, visual fidelity might be preferred in image synthesis, where

probabilistic models are fitted to datasets of images to generate new content. Our goal is not

to address specific applications, but to provide general tools that apply to a broad range of

statistical applications. Statistical models are also called probabilistic (generative) models, and

we use these terms interchangeably in what follows.

1.1 Challenges with modern statistical models

A standard approach to specify a statistical model is using a probability density function.

A model may be designed by imposing such assumptions on the data generating process,

such as unobserved variables causing the observed variables [Bishop, 2006] or conditional

independence relations among variables (e.g., Bayes networks and Markov random fields)

[Koller and Friedman, 2009]. Discrepancy measures such as the Kullback-Leibler divergence

(or likelihood evaluation) allow us to quantify the mismatch of a model using a density function,

and those are standard approaches when the density of a model is available and tractable. A

challenge of modern statistical models is that their densities are typically intractable, especially

those describing high-dimensional complex phenomena. For example, models with latent

variables have density functions defined by intractable integrals; normalization constants are

intractable to compute for models that only specify dependence among variables (e.g., Markov

13



14 CHAPTER 1. INTRODUCTION

random fields); some models are specified only by sampling procedures and do not admit

explicit densities (e.g., the generative adversarial networks [Goodfellow et al., 2014], simulation-

based models [Lintusaari et al., 2017, Cranmer et al., 2020]). Intractability precludes the

direct application of density-based evaluation techniques, and it is vital to develop alternative

approaches that accommodate such complex models.

An alternative strategy is to inspect the expectations of test functions under distributions.

These test functions may be interpreted as some features of interest; differences in expected

features (e.g., coordinate functions yield expected locations) reveal disagreements between two

distributions. Although the represented discrepancy can be enriched using many test functions,

the number of test functions must be finite for numerical implementation. Their specification

also requires knowledge of the distributions in question; without prior knowledge, such manual

specification could be sub-optimal and does not generally come with guarantees, therefore

calling for a principled procedure.

One viable solution is the maximum mean discrepancy (MMD) [Gretton et al., 2006, 2012a].

The MMD is a powerful approach emerging from the machine learning literature that allows us

to use infinitely many test functions; the MMD takes the maximum difference over a class of

functions called a reproducing kernel Hilbert space (RKHS) [Aronszajn, 1950]. An RKHS is

determined by a reproducing kernel, a function that measures similarity between two points.

Thus, one can specify a discrepancy measure by choosing an appropriate kernel. Indeed, the

reproducing kernel theory has established theoretical properties guiding kernel choice: e.g.,

the MMD is a metric over probability distributions for characteristic kernels [Fukumizu et al.,

2004, Sriperumbudur et al., 2010] and metrizes weak convergence under certain topological

and kernel conditions [Sriperumbudur et al., 2010, Simon-Gabriel et al., 2020]. Moreover, a

practically appealing property of the MMD is that we can estimate it straightforwardly from

samples; the estimation only requires sample evaluations of the kernel function, resulting in

tractable estimators such as two-sample U-statistics [Hoeffding, 1948, Kowalski and Tu, 2007]

or V-statistics [von Mises, 1947]. Consequently, the numerical tractability of the MMD allows

us to treat a wide range of statistical models.

Despite its practical and theoretical advantages, the MMD’s performance critically depends

on the choice of the kernel function and its ability to represent features relevant to the problem

at hand. There have been extensive studies on tuning kernel parameters in the context of two-

sample testing [Gretton et al., 2012b, Sutherland et al., 2016, Jitkrittum et al., 2016, 2017b,

Liu et al., 2020]. An alternative emerged from the studies of goodness-of-fit testing based

on Stein’s method, which creates a bespoke kernel for a given model. Stein’s method was

originally developed to obtain explicit rates of convergence to normality [Stein, 1972]. The key

construction in Stein’s method is a Stein operator, which characterizes a distribution so that a

function if modified by the operator, has zero expectation under the target. The combination of

a reproducing kernel and a Stein operator induces a model-dependent kernel function that may

be considered as representing tailored features for model criticism; the resulting discrepancy

is called the kernel Stein discrepancy (KSD). The utility of the KSD has been vindicated

by the KSD goodness-of-fit tests [Chwialkowski et al., 2016, Liu et al., 2016, Yang et al.,

2018, Fernandez et al., 2020], where a model structure in the kernel boosts power in some
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situations. Remarkably, we can obtain a tractable Stein operator for density models having

unknown normalization constants; this feature eliminates the need for sampling from models, a

demanding requirement for such intractable models. The KSD has therefore resulted in diverse

applications in recent years, including parameter inference for intractable models [Barp et al.,

2019, Matsubara et al., 2021], sampling [Liu and Lee, 2017, Chen et al., 2018, 2019, Riabiz

et al., 2021], and sample quality checks for Monte Carlo integration [Gorham and Mackey,

2017, Huggins and Mackey, 2018].

Objectives and contributions. The primary objective of this thesis is to improve model

evaluation practices, emphasizing kernel-based methods. In this regard, the contribution of this

thesis is twofold.

The first is to extend the KSD’s reach, addressing the question of intractability. The KSD

is limited to a class of models with explicit density functions up to normalization constants.

While this is a larger class than previously treated, it still excludes a great majority of models

used in practice – even relatively simple models such as topic models [Blei et al., 2003] for

text or hidden Markov models [Rabiner, 1989]. This thesis deals with this challenge for the

class of latent variable models and proposes a hypothesis test. We consider a test for model

comparison (i.e., relative goodness-of-fit) rather than absolute evaluation as in the previous KSD

tests [Chwialkowski et al., 2016, Liu et al., 2016, Yang et al., 2018]. Relative goodness-of-fit is

more relevant to models of complex phenomena, where all models are imperfect; by contrast,

absolute goodness-of-fit tests are preferred for simple phenomena (e.g., testing normality).

The second contribution concerns interpretability in model evaluation. We treat the following

two problems:

1. The MMD and the KSD do not yield indications of how models disagree with the data.

2. It is challenging to interpret the features corresponding to a KSD due to the modification

by a Stein operator; hence, it is unclear what to conclude when the KSD is small or decays

to zero.

Jitkrittum et al. [2016] and Jitkrittum et al. [2017a] studied the first question in the context of

two-sample and goodness-of-fit testing, respectively. Their approach is to construct explicit

(kernel-based) feature dictionaries and maximize the test power to obtain interpretable features

that distinguish the model from the data. In this thesis, this approach is extended to model

comparison, which enables modelers to investigate what makes two competing models differ in

terms of the fit to the data. The second question has been in part addressed using Stein’s method.

Gorham and Mackey [2017] showed that the KSD controls the bounded-Lipschitz metric; a KSD

decay may be interpreted as diminishing expected differences of bounded Lipschitz functions.

In this thesis, we extend this result to functions of polynomial growth. This development enables

us to interpret the KSD in terms of moments, which are fundamental quantities in data analysis

(e.g., mean and variance). In particular, besides statistical model evaluation, this work also

contributes to Bayesian inference, as it enables assessing the quality of sample approximations

to target posterior distributions in respect of moments.
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1.2 Structure of the Thesis

We start in Chapter 2 with some brief background on kernel methods and Stein’s method. The

next three chapters concern statistical hypothesis tests for comparing statistical models: Chapter

3 presents a test for comparing latent variable models using the KSD; Chapter 4 treats the same

problem but presents a simple alternative to the one taken in Chapter 3 – we explain why this

approach fails; Chapter 5 addresses the lack of interpretability with discrepancy-based model

comparison approaches and presents a new hypothesis test. Finally, in Chapter 6, we address

the interpretability of the KSD by investigating its implication for moment convergence.

The four main chapters are based on the works completed over the course of this thesis.

Chapter 3 and 4 are based on a submitted paper

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., & Gretton, A. (Revision

under review by the Journal of the Royal Statistical Society: Series B, 2019, July).

A Kernel Stein Test for Comparing Latent Variable Models. arXiv: 1907.00586

Chapter 5 is adapted from the publication

Jitkrittum, W., Kanagawa, H., Sangkloy, P., Hays, J., Schölkopf, B., & Gretton,

A. (2018). Informative Features for Model Comparison. In Advances in Neural

Information Processing Systems, 31 (pp. 816–827).

Chapter 6 builds largely on an unpublished ongoing work and in small part the following

workshop contribution

Wenliang, L. K. & Kanagawa, H. (2021, December). Blindness of score-based

methods to isolated components and mixing proportions. In NeurIPS Workshop

"Your Model is Wrong: Robustness and misspecification in probabilistic modeling".

Other contributions. The following published works are not included in this thesis:

1. Wenliang, L. K., Moskovitz, T., Kanagawa, H., & Sahani, M. (2020, February). Amor-

tised Learning by Wake-Sleep. In Proceedings of the 37th international conference on

machine learning, ICML 2020.

2. Jitkrittum, W., Kanagawa, H., & Schölkopf, B. (2020, June). Testing Goodness of Fit of

Conditional Density Models with Kernels. In Proceedings of the Thirty-Sixth Conference

on Uncertainty in Artificial Intelligence, UAI 2020.

3. Xu, L., Kanagawa, H., & Gretton, A. (2021). Deep Proxy Causal Learning and its

Application to Confounded Bandit Policy Evaluation. In Advances in Neural Information

Processing Systems 35.



Chapter 2

Background

This chapter presents a brief overview of the theory of reproducing kernel Hilbert space (RKHS),

integral probability metrics, and Stein’s method. The material presented in this chapter will

be the basis of the following chapters and assumed throughout the thesis. In the process, we

introduce our notation.

2.1 Reproducing kernel Hilbert space

We briefly recall the definition and key properties of an reproducing kernel Hilbert space (RKHS).

We refer the reader to Berlinet and Thomas-Agnan [2004] and Steinwart and Christmann [2008]

for comprehensive treatment of the subject.

Definition 2.1 (Reproducing kernel Hilbert spaces). Let X be a non-empty set. A reproducing

kernel Hilbert space H ⊂ RX is a real Hilbert space of functions on X equipped with inner

product 〈·, ·〉H satisfying the following condition: for any x ∈ X , there exists an element

ϕx ∈ H such that for any f ∈ H,

f(x) = 〈f, ϕx〉H. (2.1)

The property (2.1) is called the reproducing property, as the function value f(x) is repro-

duced by the inner product with ϕx. The map x 7→ ϕx transforms the input x into a vector

ϕx in H; in the context of machine learning, this process is interpreted as extracting features

relevant to the problem. Thus, the map and the RKHS are called a feature map and a feature

space, respectively. The reproducing property (2.1) indicates that an RKHS function is simply a

linear function of the feature vector ϕx with weight f ∈ H.
Given an RKHS, we can define a function k : X × X → R by

k(x, y) := ϕx(y) = 〈ϕx, ϕy〉H.

The function k is called the reproducing kernel of the RKHSH. From this definition, it follows

that a reproducing kernel k satisfies the following conditions: (a) k(x, y) = k(y, x) for any

17
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x, y ∈ X , and (b) for any n ≥ 1 and {a1, . . . , an} ⊂ R,

n∑
i=1

aiajk(xi, xj) ≥ 0.

When a real-valued function on X × X satisfies these conditions, it is called a positive semi-

definite kernel. In what follows, following the literature, a positive semi-definite kernel is

simply called positive definite. We have seen that an RKHS H defines a positive definite

kernel. Conversely, the Moore–Aronszajn theorem states that any positive definite kernel

k : X × X → R admits a unique RKHS [Aronszajn, 1950] – we may therefore specify an

RKHS by choosing a positive definite kernel k. Because of this correspondence, we denote the

RKHS of a positive definite kernel k byHk when we emphasize the dependency on the kernel.

From the above feature viewpoint, this implies that we can specify a feature map x 7→ ϕx using

a positive definite kernel k(x, ·); this feature map is called the canonical feature map [Steinwart

and Christmann, 2008, Lemma 4.19]. Although the explicit computation of 〈ϕx, ϕy〉H seems

intractable if H is high-dimensional, we can perform this operation simply by computing a

positive kernel. Thus, a positive definite kernel allows us to consider rich, nonlinear features

ϕx, while their similarities can be measured tractably. This view proved very useful in machine

learning, where flexible, nonlinear algorithms were created by considering classical linear

counterparts (e.g., principal component analysis, and linear regression) in RKHSs [see, e.g.,

Hofmann et al., 2008, for a review].

To illustrate the concepts introduced above, let us consider a homogeneous polynomial

kernel on RD × RD

k(x, y) = 〈x, y〉p

=
∑

(i1,...,ip)∈{1,...,D}p
xi1xi2 · · ·xip · yi1yi2 · · · yip

with xi denoting the i-th entry of x, 〈x, y〉 = x>y :=
∑D

i=1 xiyi, and integer p ≥ 1. In this

case, the corresponding feature map ϕx maps x to the concatenation of all ordered products

of the entries of x [Poggio, 1975, Hoffman et al., 2010]. The feature represents interactions

between coordinates, which is absent in the linear case (p = 1). The explicit computation of

the feature map is prohibitive in higher dimensions, while the complexity of the kernel remains

linear in the dimension D. This example shows that a reproducing kernel allow us to obtain rich

features while their similarity can be measured tractably.

A hallmark of RKHSs is that we can construct a function space with desired properties by

designing an appropriate kernel. This point may be informally described as follows: since a

function in an RKHS is a linear function of the canonical feature map k(x, ·), it inherits the

properties (preserved under linear transformations) of the kernel. In the following, we review

kernel properties and their implications for RKHS functions.

Growth. We begin with conditions to characterize the growth rate of functions in an RKHS

Hk. Any function f ∈ Hk satisfies, by the reproducing property and the Cauchy-Schwarz
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inequality, the following relation:

|f(x)| ≤ ‖f‖Hk‖k(x, ·)‖Hk
= ‖f‖Hk

√
k(x, x),

where ‖f‖Hk =
√
〈f, f〉Hk . The inequality above shows that any function in a closed ball

BR(Hk) := {f ∈ Hk : ‖f‖Hk ≤ R} grows at the rate at most of R
√
k(x, x).

Differentiability. Next, we look at the differentiability of RKHS functions. Let X be an open

subset of RD (D ≥ 1) and k be a kernel on X × X . Before we present the characterization,

we set up our notation. Let ∂d denote the partial derivative operator with respect to the d-th

coordinate. Let α = (α1, . . . , αD) be a multi-index where each element is a non-negative

integer, and |α| :=
∑D

d=1 αd = α ≥ 0. We write ∂α = ∂α1
1 · · · ∂αDD ; analogously, we de-

fine an differential operator ∂α,αacting on a kernel function k : RD × RD → R on to be

∂α1
1 · · · ∂αDD ∂α1

1+D · · · ∂
αD
2D by regarding k as a function on R2D, For m ≥ 0, we define a kernel

k to be m-times continuously differentiable if ∂α,αk exists and continuous for all multi-indices

α with |α| ≤ m [Steinwart and Christmann, 2008, Definition 4.35]. We denote by C(m,m) the

set of m-times continuously differentiable kernels. With these definitions, the differentiability

of RKHS functions is summarized as follows:

Lemma 2.2 (Corollary 4.36 of Steinwart and Christmann [2008]). Let X ⊂ RD be an open

set, m ≥ 0, and k be m-times continuously differentiable kernel on X with RKHS Hk. Then,

every f ∈ Hk is m-times continuously differentiable, and for x ∈ X and a multi-index

α = (α1, . . . , αd, . . . αD) with each αd negative integer and |α| ≤ m, we have

|∂αf(x)| ≤ ‖f‖Hk
√
∂α,αk(x, x).

Universality. Function approximation is a ubiquitous task in statistics and machine learning.

Universality is a concept describing the approximation capacity of a given function class. For

our purposes, we present the notion of C0-universality. Let X be a locally compact Hausdorff

space (such as RD) and C0 be the space of real-valued functions vanishing at infinity equipped

with the uniform norm ‖f‖∞ = supx∈X |f(x)|; A function f is said to vanish at infinity if for

each ε > 0, there exists a compact set Kε ⊂ X such that |f(x)| ≤ ε for any x ∈ X \Kε. An

RKHS H ⊂ C0 is called C0-universal if it is dense in C0 with respect to the uniform norm;

i.e., for each f ∈ C0 and ε > 0, there exists a function fε ∈ H such that ‖f − fε‖∞ ≤ ε

[Carmeli et al., 2010, Sriperumbudur et al., 2011]. The definition of C0-universality is known to

be equivalent to other concepts [see Sriperumbudur et al., 2010, for a review]. The first of these

is Lp-universality [Carmeli et al., 2010, Theorem 4.1], i.e., the density ofH in Lp(X , µ) with

respect to the p-norm ‖f‖Lp(X ,µ) =
(∫
|f(x)|pdµ(x)

)1/p for all Borel probability measures

µ and some p ∈ (1,∞]. Here, Lp(X , µ) is the Banach space of p-integrable µ-measurable

functions [Steinwart and Christmann, 2008]; we sometimes omit the space X and write Lp(µ)

if it is clear from the context. The second equivalent concept is the integrally strictly positive



20 CHAPTER 2. BACKGROUND

definiteness of the kernel [Sriperumbudur et al., 2010]. An kernel is said to be ISPD if it is

measurable and
∫
k(x, y)dµ(x)dµ(y) > 0 for any non-zero finite signed measure µ.

Expectation and kernel mean embedding. We finally show that the expectation of a function

in an RKHS can be characterized by a tool called kernel mean embedding [Berlinet and Thomas-

Agnan, 2004, Smola et al., 2007]. Kernel mean embedding is a technique to represent a

probability distribution in an RKHS. Formally, let P be a probability measure on X , and k be a

positive definite kernel. The kernel mean embedding µP of P is defined as the expectation of

the canonical feature map

µP (·) :=

∫
k(x, ·)dP (x) = EX∼P [k(X, ·)].

Let P√k = {P ∈ P : EX∼P
[√

k(X,X)
]
<∞} with P the set of all probability measures. If

P ∈ P√k, then the kernel mean embedding µP exists and belongs to the RKHSHk [Fukumizu

et al., 2004, Sriperumbudur et al., 2010]. In particular, for any f ∈ Hk, we have

EX∼P [f(X)] = 〈f, µP 〉Hk .

Intuitively, since an RKHS function is a linear function of the canonical feature, taking the inner

product between its weight f and the expected feature µP yields the expectation of the function.

According to Berlinet and Thomas-Agnan [2004, p. 189], the study of kernel mean embed-

ding was originated by Denis Bosq and C. Guilbart. Mean embedding allows us to manipulate

probability distributions using various vector operations resulting from the Hilbert space struc-

ture; e.g., we can quantify the similarity between probability distributions using the norm, as

introduced in the next section. The technique has resulted in a wide range of applications such

as two-sample testing [Gretton et al., 2006, 2012a], independence testing [Gretton et al., 2007],

and nonparametric Bayesian inference [Fukumizu et al., 2013]; see the survey by Muandet et al.

[2017] for other applications.

2.2 Integral probability metrics and the maximum mean discrep-
ancy

Various statistical tasks can be formulated using a distance over probability distributions,

including parameter inference and hypothesis testing. Given a family of probability measures

{Pθ}θ∈Θ, the task of parameter inference is to choose an appropriate parameter θn given a

sample {x1, . . . , xn}. If the sample is generated according to a law R, an appropriate choice

might be the closest one to R in some distance d(Pθ, R). A distance can also be used to

specify a statistical hypothesis. For example, the problem of goodness-of-fit testing is to test

the hypothesis that a model P is equal to the unknown distribution R underlying an observed

sample; this hypothesis may be equally written as H0 : d(P,R) = 0 for some distance d

powerful enough to distinguish any distributions.

One practical class of distance is integral probability metrics [IPMs, Müller, 1997]. For a set
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F of real-valued measurable functions on a measure space X , the IPM between two probability

distributions P,Q on X is defined as the worst-case difference of integrals:

dF (P,Q) := sup
f∈F
|EX∼P [f(X)]− EY∼Q[f(Y )]| .

An IPM is an intuitive summary of the difference between two distributions: if we think of

F as a set of features of interest, then the IPM characterizes expected disagreements in those

features and summarizes them by the worst-case error. Note that an IPM is in general a pseudo

metric and becomes a metric if and only if the function class F separates two distributions, i.e.,

EX∼P [f(X)] 6= EY∼Q[f(Y )] for some f ∈ F [Müller, 1997]. As in goodness-of-fit testing

mentioned above, ensuring the separability is of theoretical interest. Following are examples of

function classes ensuring this condition:

1. F = {f : ‖f‖∞ ≤ 1}, where ‖f‖∞ := supx∈X |f(x)|. This choice yields the total

variation metric.

2. F = {1(−∞,t] : t ∈ R}, where X = R and 1A denotes the indicator function of a set

A. The corresponding distance dF is called the Kolmogorov metric . The Kolmogorov

metric characterizes the maximum discrepancy between cumulative distribution functions

and is used for the Kolmogorov-Smirnov test [Kolmogorov, 1933, Smirnov, 1948]

3. F = {f : ‖f‖∞ + ‖f‖L ≤ 1}, where ‖f‖L := supx 6=y|f(x)− f(y)|/d̃(x, y) and d̃ is a

metric on X (so that X is a metric space). The dF is known as the bounded-Lipschitz

metric (or the Dudley metric) [Dudley, 2002, Chapter 11]. The Dudley metric is known to

metrize weak convergence (or narrow convergence) [Dudley, 2002, Section 11.3]. Here,

the weak convergence of a sequence of probability measures {P1, P2, . . . } is defined as

having
∫
fdPn →

∫
fdP for any continuous bounded function f.

Despite well-understood theoretical properties, not all IPMs are suitable to statistical applications.

IPMs may not admit computable forms due to the optimization formulation and may also be

challenging to estimate [Sriperumbudur et al., 2010]. For example, for two distributions on

RD, the Dudley metric above may be estimated using samples; however, the convergence rate

depends on D and can be slow for a large D [Sriperumbudur et al., 2012].

An IPM can be constructed using an RKHS to overcome these challenges. The maximum

mean discrepancy (MMD) [Gretton et al., 2006, 2012a] is an IPM defined by the unit ball in an

RKHSHk :

MMD(P,Q) = sup
‖f‖Hk≤1

|EX∼P [f(X)]− EY∼Q[f(Y )]| .

An attractive property of the MMD is that it admits a closed-form expression. If P,Q ∈ P√k,
one can show that the MMD is given by their mean embeddings: the supremum is attained by a

function f∗ ∝ µP − µQ, yielding

MMD(P,Q) = ‖µP − µQ‖Hk . (2.2)

The optimal function f∗ is called the witness function [Gretton et al., 2012a, Section 2.3]. The
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MMD uses the RKHS norm to measure the departure of the witness f∗ from zero. A different

norm gives rise to a different discrepancy [Chwialkowski et al., 2015, Jitkrittum et al., 2016];

we will see this in Chapter 5.

A distinctive property of the MMD is that it admits tractable and well-studied estimators.

The expression (2.2) leads to a closed-form solution involving kernel expectations [Gretton

et al., 2012a, Lemma 6]

MMD2(P,Q) = EX,X′∼P⊗P [k(X,X ′)] + EY,Y ′∼Q⊗Q[k(Y, Y ′)]

− 2EX,Y∼P⊗Q[k(X,Y )]
, (2.3)

where X ⊗ Y ∼ P1 ⊗ P2 means that X and Y are independent and X ∼ P1, Y ∼ P2. Given

mutually independent samples {xi}ni=1
i.i.d.∼ P and {yi}mi=1

i.i.d.∼ Q, we can estimate the squared

MMD with a two-sample U-statistic [Hoeffding, 1948, Kowalski and Tu, 2007, p. 131]

M̂MD2(P,R) =
1(
n
2

) 1(
m
2

) ∑
j1<j2

∑
i1<i2

`(xi1 , xi1 ; yj1 , yj2)

with

`(x, x′; y, y′) = k(x, x′) + k(y, y′)− 1

2
{k(x, y) + k(x, y′) + k(x′, y) + k(x′, y′)}.

Note that this statistic is equal to the unbiased estimator of Gretton et al. [2012a, Eq. 3].

Alternatively, one can estimate the MMD using a V-statistic [von Mises, 1947]

MMD2(Pn, Qm) =
1

n2

n∑
i,j=1

k(xi, xj)−
2

mn

n∑
i=1

m∑
j=1

k(xi, yj) +
1

m2

m∑
i,j=1

k(yi, yj),

where Pn = n−1
∑n

i=1 δxi , Qm = m−1
∑m

j=1 δyj , and δx denotes the Dirac measure having

unit mass at x. Note that these two estimators are asymptotically equivalent. In fact, when the

kernel is bounded or translation invariant (i.e., k(x, y) = φ(x− y) for some function φ), then

their difference decays at a rate of O(m−1 + n−1). Moreover, it is known that the V-statistic

estimator achieves
√
mn/(m+ n)-consistency at a rate independent of D for bounded kernels

[Sriperumbudur et al., 2012, Corollary 3.5].

The MMD is a metric on probability measures if the kernel function is characteristic.

A kernel k is characteristic if and only if the mean map P 7→ µP (·) = EX∼P [k(X, ·)] is

injective [Fukumizu et al., 2004, Sriperumbudur et al., 2010]. It is easy to see that the MMD’s

separability follows from the expression (2.2). Examples of characteristic kernels are the

exponentiated quadratic kernel k(x, y) = exp
(
−‖x− y‖22/2λ2

)
for any λ > 0 and the Matérn

class kernels [Matérn, 1986, Stein, 1999]; see Sriperumbudur et al. [2010] for other examples.

It can intuitively be understood that the RKHS defined by a characteristic kernel is rich enough

to distinguish any two distributions. An obvious example of non-characteristic kernels is the

linear kernel k(x, y) = 〈x, y〉, as the mean embedding of P simply becomes the mean of P ; in

this case, the MMD is only informative of the mean difference (the RKHS consists of linear

functions). A concept related to the richness of an RKHS is that of universality introduced in the
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previous section. The relation between characteristic and universal kernels has been investigated

by Sriperumbudur et al. [2011]. For example, for bounded continuous translation-invariant

kernels on RD (such as the aforementioned two characteristic kernels), C0-universality and

characteristicness are equivalent [Sriperumbudur et al., 2011, Section 4.3].

2.3 Stein’s method and Stein discrepancies

Stein’s method is a technique to compare distributions, introduced in the seminal paper by Stein

[1972]. Stein’s method provides a characterization of probability distributions and enables us

to upper bound an IPM. This section serves as a brief introduction to the subject. We refer the

reader to the expository papers by Ross [2011] and Anastasiou et al. [2021] for more detailed

descriptions of the technique; the latter reference also provides an overview of applications in

computational statistics.

A starting point of Stein’s method is identifying an operator characterizing a probability

distribution. Formally, for a distribution P on X , let TP be a linear operator that acts on a set

G(TP ) of functions on X such that

EX∼P
[
TP g(X)

]
= 0 for each g ∈ G(TP ). (2.4)

Such an operator TP and a set G(TP ) are respectively called a Stein operator and a Stein set; the

identity of the form (2.4) is known as Stein’s identity. For simplicity, we assume that TP g is a

real-valued function in the following.

Using a Stein operator of P, one can measure the dissimilarity between Q and P by

examining the deviation of the expectation EX∼Q
[
TP g(X)

]
from zero, where g ∈ G(TP ).

Following this idea, for any subset G ⊂ G(TP ), one can construct a discrepancy measure

S(Q, TP ,G) = sup
g∈G

∣∣EX∼Q[TP g(X)
]∣∣ . (2.5)

This worst-case discrepancy measure is called a Stein discrepancy, introduced by Gorham and

Mackey [2015] (the term usage differs from Ledoux et al. [2015]). Remarkably, by choosing an

appropriate Stein operator and a Stein set, one can construct a computable Stein discrepancy

[Gorham and Mackey, 2015, Chwialkowski et al., 2016, Liu et al., 2016, Oates et al., 2017,

Gorham et al., 2019].

This thesis builds on a class of computable Stein discrepancies, the kernel Stein discrepancy

(KSD) [Chwialkowski et al., 2016, Liu et al., 2016, Oates et al., 2017]. This section aims

to provide an overview of the idea and thus only describes an informal description of the

KSD; see Chapter 3 for its rigorous construction. The KSD is an instance of the MMD; it is

similarly constructed by specifying the Stein set G to be the unit ball B1(Hk) of an RKHS. As

we have seen in Section 2.1, an RKHS function g is a linear function of the canonical feature

ϕx = k(x, ·). As a Stein operator TP is a linear operator, we informally obtain

TP g(x) = TP 〈g, ϕx〉 = 〈g, TPϕx〉.
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This relation implies that the Stein-modified function TP g(x) is a linear function of the modified

feature TPϕx. This feature induces a new kernel function,

hP (x, y) = 〈TPϕx, TPϕy〉,

and TP g(x) is an element of the RKHS determined by hP . In particular, we have EX∼P [hP (X, y)] =

0 for each y ∈ X , and that all elements of the RKHS has zero-mean under the target P (under

appropriate conditions). This viewpoint turns the KSD S
(
Q, TP ,B1(Hk)

)
into a special MMD

defined by kernel hP , resulting in a closed-form expression:

KSD (P‖Q)2 = EX,X′∼Q⊗Q
[
hP (X,X ′)

]
.

As with the MMD, if hP is possible to evaluate, the KSD admits tractable estimators. In contrast

to the MMD, the KSD does not involve integrals with respect to the target P. This feature is

particularly useful when sampling from P is challenging; an example of this situation is where

the target is defined by a density with an unknown normalizing constant. Chapter 3 introduces a

KSD that deals with this class of distributions.

Stein discrepancies and IPMs are closely related. The key to connecting these is the Stein

equation

TP gf = f − EX∼P [f(X)], (2.6)

where f is a function of interest, and gf ∈ G(TP ) is a solution to the Stein equation (2.6). The

existence of a solution depends on the properties of the test function f and the operator TP . If

we can take expectations, then we obtain

EY∼Q[f(Y )]− EX∼P [f(X)] = EY∼Q
[
TP gf (Y )

]
.

For a function class F , this relation yields

sup
f∈F
|EY∼Q[f(Y )]− EX∼P [f(X)]| = sup

g∈GF

∣∣EY∼Q[TP g(Y )
]∣∣ , (2.7)

where GF = {gf : f ∈ F} is the set of solutions to the Stein equation. The key point of Stein’s

method is that the study of the IPM dF (P,Q) can be reduced to the evaluation of the Stein

discrepancy on the RHS of (2.7). The evaluation is typically performed by upper bounding the

Stein discrepancy, as a solution gf to the Stein equation is often not explicit and only known

up to some regularity properties. By Stein’s method, in Chapter 6, we obtain a upper bound on

the IPM defined by a class of pseudo-Lipschitz functions; the upper bound is given by a kernel

Stein discrepancy.



Chapter 3

Comparing latent variable models
using the kernel Stein
discrepancy – Part 1

Summary We propose a kernel-based nonparametric test of relative goodness of fit, where the

goal is to compare two models, both of which may have unobserved latent variables, such that

the marginal distribution of the observed variables is intractable. The proposed test generalizes

the recently proposed kernel Stein discrepancy (KSD) tests [Chwialkowski et al., 2016, Liu

et al., 2016, Yang et al., 2018] to the case of latent variable models, a much more general class

than the fully observed models treated previously. The new test, with a properly calibrated

threshold, has a well-controlled type-I error. In the case of certain models with low-dimensional

latent structure and high-dimensional observations, our test significantly outperforms the relative

Maximum Mean Discrepancy test, which is based on samples from the models and does not

exploit the latent structure.

3.1 Introduction

A major approach to statistical modeling is the use of variables representing quantities that are

unobserved but thought to underlie the observed data: well-known instances include probabilistic

PCA [Roweis, 1997, Tipping and Bishop, 1999], factor analysis [see, e.g., Basilevsky, 1994],

mixture models [see, e.g., Gilks et al., 1995], topic models for text [Blei et al., 2003], and hidden

Markov models (HMMs) [Rabiner, 1989]. The hidden structure in these generative models

serves multiple purposes: it allows interpretability and understanding of model features (e.g.,

the topic proportions in a latent Dirichlet allocation (LDA) model of text), and it facilitates

modeling by leveraging simple low-dimensional dynamics of phenomena observed in high

dimensions (e.g., HMMs with a low dimensional hidden state). Statistical modelers ultimately

use such models to reason about the data; to guarantee the validity of the inference, modelers

desire to choose accurate models and therefore are in need of model diagnostics.

This chapter addresses the problem of evaluating and comparing generative probabilistic

25
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models, in cases where the models have a latent variable structure, and the marginals over the

observed data are intractable. In this scenario, one strategy for evaluating a generative model

is to draw samples from it and to compare these samples to the modeled data using a two-

sample test: for instance, Lloyd and Ghahramani [2015] use a test based on the maximum mean

discrepancy (MMD) [Gretton et al., 2012a]. This approach has two disadvantages, however: it

is not computationally efficient due to the sampling step, and it does not take advantage of the

information that the model supplies, for instance the dependence relations among the variables.

Recently, an alternative model evaluation strategy based on Stein’s method [Stein, 1972,

Chen, 1975, Stein, 1986, Barbour, 1988, Götze, 1991] has been proposed, which directly em-

ploys a closed-form expression for the unnormalized model. Stein’s method is a technique from

probability theory developed to prove central limit theorems with explicit rates of convergence

[see, e.g., Ross, 2011]. The core of Stein’s method is that it characterizes a distribution with a

Stein operator, which, when applied to a function, causes the expectation of the function to be

zero under the distribution. For our purposes, we will use the result that a model-specific Stein

operator may be defined, to construct a measure of the model’s discrepancy. Notably, Stein

operators may be obtained without computing the normalizing constant.

Stein operators have been used to design integral probability metrics (IPMs) [Müller, 1997]

to test the goodness of fit of models. IPMs specify a witness function which has a large difference

in expectation under the sample and model, thereby revealing the difference between the two.

When a Stein operator is applied to the IPM function class, the expectation under the model

is zero, leaving only the expectation under the sample. A Stein-modified W 2,∞ Sobolev ball

was used as the witness function class in [Gorham and Mackey, 2015, Gorham et al., 2019].

Subsequent work in [Chwialkowski et al., 2016, Liu et al., 2016, Gorham and Mackey, 2017]

used as the witness function class a Stein-transformed reproducing kernel Hilbert ball, as

introduced by Oates et al. [2017]: the resulting goodness-of-fit statistic is known as the kernel

Stein discrepancy (KSD). Conditions for using the KSD in convergence detection were obtained

by Gorham and Mackey [2017]. While the foregoing work applies in continuous domains, the

approach may also be used for models on a finite domain, where Stein operators [Ranganath

et al., 2016, Yang et al., 2018, Bresler and Nagaraj, 2019, Reinert and Ross, 2019, Hodgkinson

et al., 2020, Shi et al., 2022] and associated goodness-of-fit tests [Yang et al., 2018] have been

established. Note that it is also possible to use Stein operators to construct feature dictionaries

for comparing models, rather than using an IPM: examples include a test based on Stein features

constructed in the sample space so as to maximize test power [Jitkrittum et al., 2017b, 2018]

and a test based on Stein-transformed random features [Huggins and Mackey, 2018]. While the

aforementioned tests address simple hypotheses, composite tests that use Stein characterizations

have been proposed for specific parametric families including gamma [Henze et al., 2012, Betsch

and Ebner, 2019c] and normal distributions [Betsch and Ebner, 2019b, Henze and Visagie,

2019], and general univariate parametric families [Betsch and Ebner, 2019a] (note that these

tests are not based on IPMs).

While an absolute test of goodness of fit may be desirable for models of simple phenomena,

it will often be the case that in complex domains, no model will fit the data perfectly. In this

setting, it is more constructive to ask which model fits better, either within a class of models
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or in comparing different model classes. A likelihood ratio test would be an alternative choice

for this task, since it is the uniformly most powerful test [Lehmann and Romano, 2005], but

this would require the normalizing constants for both models. A purely sample-based relative

goodness of fit test was proposed by Bounliphone et al. [2016], based on comparing maximum

mean discrepancies between the samples from two rival models with a reference real-world

sample. A second relative test was proposed by Jitkrittum et al. [2018], generalizing Jitkrittum

et al. [2017b] and learning the Stein features for which each model outperforms the other.

A major limitation of the foregoing Stein tests is that they all require the likelihood in closed

form, up to normalization: if latent variables are present, they must be explicitly marginalized

out. While certain previous works on Stein’s method for model comparison did account for

the presence of latent variables, they did so by explicitly marginalizing over these variables in

closed form. Two examples are the Gaussian mixtures studied by Gorham et al. [2019] and the

Gaussian-Bernoulli restricted Boltzmann machine studied by Liu et al. [2016, Section 6], where

there are a small number of hidden binary variables. In many cases of interest, this closed-form

marginalization is not possible.

In the present work, we introduce a relative goodness-of-fit test for latent variable models,

which does not require exact evaluation of the unnormalized observed-data marginals. Our test

compares models by computing approximate kernel Stein discrepancies, where we represent the

distributions over the latent variables by samples. Our approach differs from Bayesian model

selection [Jeffreys, 1961, Schwarz, 1978, Kass and Raftery, 1995, Watanabe, 2013] in which

posterior odds (or Bayes factors) are reported. As in our proposed test, these quantities can be

computed using Monte Carlo techniques [see, e.g., Friel and Wyse, 2012, for a review], but they

do not come with calibrated thresholds to control false rejection rates. Our interest is in the fit of

models, measured in kernel Stein discrepancy, and in the associated frequentist test of relative

goodness of fit. Additionally, in contrast to the aforementioned quantities, our discrepancy

measure does not require the likelihood function to be normalized (see Section 3.3).

We recall the Stein operator and kernel Stein discrepancy in Section 3.2, and the notion of

relative tests in Section 3.3. Our main theoretical contributions, also in Section 3.3, are two-fold:

first, we derive an appropriate test threshold to account for the randomness in the test statistic

caused by sampling the latent variables. Second, we provide guarantees that the resulting test

has the correct Type-I level (i.e., that the rate of false positives is properly controlled) and that

the test is consistent under the alternative: the number of false negatives drops to zero as we

observe more data. Finally, in Section 3.4, we demonstrate our relative test of goodness-of-fit

on a variety of latent variable models. Our main point of comparison is the relative MMD test

[Bounliphone et al., 2016], where we sample from each model. We demonstrate that the relative

Stein test outperforms the relative MMD test in the particular case where the low dimensional

structure of the latent variables can be exploited.

3.2 The kernel Stein discrepancy and latent variable models

In this section, we recall the definition of the Stein operator as used in goodness-of-fit testing, as

well as the kernel Stein discrepancy, a measure of goodness-of-fit based on this operator. We



28 CHAPTER 3. KSD MODEL COMPARISON

will then introduce latent variable models, which will bring us to the setting of relative goodness

of fit with competing models in Section 3.3.

Before proceeding, we call attention to our setting: in this chapter, we treat both continuous-

and discrete-valued observations, as formally defined at the outset of Section 3.2.1. It is our

intention to study these two data modalities as they admit the same treatment. The subsequent

definitions and analysis of our test are independent of whether a continuous or discrete Stein

operator is used, besides in experiments concerning discrete-valued observations. Thus, the

detail about discrete models in Section 3.2.1 may be initially skipped if desired.

3.2.1 Stein operators and the kernel Stein discrepancy

Let X be the space in which the data takes values; forD ≥ 1, the space X is either the Euclidean

space RD or a finite lattice {0, . . . , L−1}D for some L > 1. Depending on X , we shall assume

that the densities below are all defined with respect to the Lebesgue measure or the counting

measure; i.e., the term density includes probability mass functions (pmfs).

Continuous-valued observations. Suppose that we are given data {xi}ni=1
i.i.d.∼ R from

an unknown distribution R, and we wish to test the goodness of fit of a model P . We first

consider the case where the probability distributions P,R are defined on RD and have respective

probability densities p, r, where all density functions considered in this chapter are assumed

strictly positive and continuously differentiable. We treat the case of densities defined on

bounded domains in the supplement, Section 3.A. For differentiable density functions, we define

the score function,

sp(x) ∈ RD :=
∇p(x)

p(x)
= ∇ log p(x),

where the gradient operator is∇ := [∂1, . . . , ∂D]> . The score is independent of the normalizing

constant for p, making it computable even when p is known only up to normalization. Using

this score, we define the Langevin Stein operator on a space F of differentiable functions from

RD to RD [Gorham and Mackey, 2015, Oates et al., 2017],

[TP f ] (x) = 〈sp(x), f(x)〉+ 〈∇, f(x)〉 , f ∈ F .

A kernel discrepancy may be defined based on the Stein operator [Chwialkowski et al.,

2016, Liu et al., 2016, Gorham and Mackey, 2017], which allows us to measure the departure

of a distribution R from a model P . We define F to be a space comprised of D-dimensional

vectors of functions f = (f1, . . . fD) where the d-th function fd is in a reproducing kernel

Hilbert space (RKHS) [Aronszajn, 1950, Steinwart and Christmann, 2008, Definition 4.18] with

a positive definite kernel k(·, ·) : X ×X → R (we use the same kernel for each dimension). The

inner product on F is 〈f, g〉F :=
∑D

d=1 〈fd, gd〉Fk , and Fk denotes an RKHS of real-valued

functions with kernel k.
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The (Langevin) kernel Stein discrepancy (KSD) between P and R is defined as

KSD (P‖R) = sup
‖f‖F≤1

|Ex∼RTP f(x)− Ey∼PTP f(y)|. (3.1)

Under appropriate conditions on the kernel and measure P , the expectation Ey∼PTP f(y) = 0

for any f ∈ F . To ensure this property, we will require that k ∈ C(1,1), the set of continuous

functions on X × X with continuous first derivatives and that Ey∼P
[
‖sp(y)‖2

]
<∞ with ‖·‖2

the Euclidean norm. We further assume that the following tail condition holds outside a bounded

set : p(x)
√
k(x, x) ≤ C‖x‖δ2 for some constants C > 0 and δ > D − 1 [see the clarification

by South et al., 2021, p.12, on the tail condition for the Stein’s identity]. With the vanishing

expectation Ey∼PTP f(y) = 0, the KSD reduces to KSD (P‖R) = sup‖f‖F≤1 |Ex∼RTP f(x)|.
The use of an RKHS as the function class yields a closed form expression of the discrepancy by

the kernel trick [Chwialkowski et al., 2016, Gorham and Mackey, 2017, Proposition 2],

KSD2 (P‖R) = Ex,x′∼R⊗R[hp(x, x
′)],

if Ex∼R[hp(x, x)1/2] <∞. Here, the symbol R⊗R denotes the product measure of two copies

of R (so x and x′ are independent random variables identically distributed with the law R). The

function hp (called a Stein kernel) is expressed in terms of the RKHS kernel k and the score

function sp,

hp(x, x
′) = sp(x)>sp(x

′)k(x, x′) + sp(x)>k1(x′, x) + sp(x
′)>k1(x, x′) + k12(x, x′),

where we have defined

k1(a, b) := ∇xk(x, x′)|x=a,x′=b,

k12(a, b) := ∇>x∇x′k(x, x′)|x=a,x′=b.

For a given i.i.d. sample {xi}ni=1 ∼ R, the discrepancy has a simple closed-form finite sample

estimate,

KSD2 (P‖R) ≈ 1

n(n− 1)

∑
i 6=j

hp(xi, xj), (3.2)

which is a U-statistic [Hoeffding, 1948]. When the kernel is integrally strictly positive def-

inite (ISPD) [Sriperumbudur et al., 2011, Section 2], and R admits a density r that satisfies

Ex∼R
∥∥∇ log

(
p(x)/r(x)

)∥∥
2
<∞, we have that KSD (P‖R) = 0 iff P = R [Barp et al., 2019,

Proposition 1]. The earlier results of Chwialkowski et al. [2016] and Liu et al. [2016] require

more stringent integrability conditions. Gorham and Mackey [2017, Theorem 7] showed that

KSD can distinguish any Borel measure R from P by assuming conditions such as distant

dissipativity (satisfied by finite Gaussian mixtures) [Gorham et al., 2019, Section 3]. However,

such conditions may be difficult to validate for latent variable models. Thus, hereafter, we

assume the former condition on the data distribution R.



30 CHAPTER 3. KSD MODEL COMPARISON

Discrete-valued observations. We next recall the kernel Stein discrepancy in the discrete

setting where distributions are defined on X = {0, . . . , L − 1}D with L > 1, as introduced

by Yang et al. [2018]. In place of derivatives, we specify ∆k as the cyclic forward difference

w.r.t. k-th coordinate: ∆kf(x) = f(x1, . . . , x̃k, . . . , xD) − f(x1, . . . , xk, . . . , xD) where

x̃k = xk + 1 mod L, with the corresponding vector-valued operator ∆ = (∆1, . . . ,∆D). The

inverse operator ∆−1
k is given by the backward difference ∆−1

k f(x) = f(x1, . . . , xk, . . . , xD)−
f(x1, . . . , x̄k, . . . , xD), where x̄k = xk−1 mod L, and ∆−1 = (∆−1

1 , . . . ,∆−1
D ). The score is

then sp(x) := p(x)−1∆p(x), where it is assumed that the pmf is strictly positive (i.e., it is never

zero). The difference Stein operator is then defined asAP f(x) = tr
[
f(x)sp(x)> + ∆−1f(x)

]
,

where it can be shown that Ex∼P [AP f(x)] = 0 [Yang et al., 2018, Theorem 2] (note that we

include a trace for consistency with the continuous case–this does not affect the test statistic

[Yang et al., 2018, Eq. 10]). We have defined the Stein operator and the score function slightly

differently from Yang et al. [2018]; the change is only in their signs, but this results in the same

discrepancy. The difference Stein operator is not the only allowable Stein operator on discrete

spaces: other alternatives are given by Yang et al. [2018, Theorem 3], Hodgkinson et al. [2020],

and Shi et al. [2022]. Although we focus on the Stein operator above, in practice, one might

want to consider different Stein operators depending on the application. For instance, the score

function sp can be numerically unstable, as it contains the reciprocal 1/p(x); this can occur

when the support of the model is severely mismatched to that of the data. In this particular case,

one might choose the Barker-Stein operator proposed by Shi et al. [2022], an instance of the

Zanella-Stein operator of Hodgkinson et al. [2020, Example 2]. See Appendix 3.B for details.

We compare this operator to the difference operator in an experiment where this mismatch

occurs (Section 3.4.3.3).

As in the continuous case, the KSD can be defined as an IPM, given a suitable choice of repro-

ducing kernel Hilbert space for the discrete domain. An example of kernel is the exponentiated

Hamming kernel, k(x, x′) = exp (−dH(x, x′)), where dH(x, x′) = D−1
∑D

d=1 I(xd 6= x′d).

The population KSD is again given by the expectation of the Stein kernel, KSD2 (P‖R) =

E(x,x′)∼R⊗R[hp(x, x
′)], where hp is defined as

hp(x, x
′) = sp(x)>sp(x

′)k(x, x′) + sp(x)>k1(x′, x) + sp(x
′)>k1(x, x′) + k12(x, x′),

and the kernel gradient is replaced by the inverse difference operator, e.g., k1(x, x′) =

∆−1
x k(x, x′), where ∆−1

x indicates that the operator ∆−1 is applied with respect to the ar-

gument x. From Yang et al. [2018, Lemma 8], we have that KSD (P‖R) = 0 iff P = R, under

the conditions that the probability mass functions for P and R are positive and that the Gram

matrix defined over all the configurations in X is strictly positive definite (i.e., the kernel is

integrally strictly positive definite). One can define a kernel satisfying the required condition,

for example, by embedding X into RL×D with one-hot encoding and using a Taylor-type kernel

such as the exponentiated quadratic kernel [Christmann and Steinwart, 2010, Theorem 2.2].
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3.2.2 Kernel Stein discrepancies of latent variable models

Our objective is to use the KSD to evaluate latent variable models, and here we formally specify

our target model class. Let LX|Z = {p(·|z) : z ∈ Z} be a family of probability density

functions on X (called likelihood functions), which are indexed by elements of a set Z . A latent

variable model P is specified by such a family LX|Z and a (prior) probability measure PZ over

Z . The combination of these defines the marginal density function p(x) =
∫
p(x|z)dPZ(z)

and the posterior distribution PZ(dz|x) = {p(x|z)/p(x)}PZ(dz); The distribution P induced

by the former acts as a model of the distribution R underlying the observation, and the latter

enables us to draw an inference over the unobserved variable.

Remark 3.1. In our notation, the variable z can represent multiple latent variables. The likelihood

p(x|z) often contains parameters, but the dependency on these is suppressed here. If a prior

is defined on a parameter, we may treat it as a latent variable; this consideration is relevant

to predictive distributions. The likelihood and the prior in a model may be conditioned on

some fixed data (i.e., they can be posterior predictive distributions), which we require to be

independent of the data used for testing – in such a case, we omit the dependency on the held-out

data. For examples, we refer the reader to Section 3.4.

The definition of the KSD remains the same for latent variable models, but an additional

difficulty arises in its estimation. Unfortunately the U-statistic estimator given in (3.2) requires

the score function of the marginal p, which is challenging to obtain due to the intractability

of marginalizing out the latent variable. We will address this challenge by rewriting the score

function in terms of the posterior distribution of the latent. In the following, we focus on

continuous variable models, but the same conclusion holds for discrete counterparts by replacing

gradient operation with cyclic differences.

Under a regularity condition, the score function can be expressed as

sp(x) = Ez|x[sp(x|z)], (3.3)

where sp(x|z) is the score function of the conditional p(x|z); i.e., sp(x|z) = p(x|z)−1∇xp(x|z)
for continuous-valued x. The reasoning is as follows:

∇xp(x)

p(x)
=

1

p(x)

∫
∇xp(x|z)dPZ(z)

=

∫ ∇xp(x|z)
p(x|z) · p(x|z)dPZ(z)

p(x)
= Ez|x[sp(x|z)],

where we have assumed the exchangeability of differentiation and integration: ∇xp(x) =∫
∇xp(x|z)dPZ(z). The identity (3.3) is an analogue of Fisher’s identity [Fisher, 1925, Demp-

ster et al., 1977], which pertinently formed the basis for Stein control variate methodology

in [Friel et al., 2016] and Bayesian model selection with Hyvärinen score [Dawid and Mu-

sio, 2015, Shao et al., 2019]. Note that the conditional score sp(x|z) is typically possible to

evaluate. For example, consider the following simple form of an exponential family density

p(x|z) ∝ exp(T (x)η(z)) defined on RD with T (x) : RD → R and η : Z → R; for this
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density, sp(x|z) = η(z)∇xT (x). As can be seen in this example, the normalizing constant of

the likelihood p(x|z) is not required.

With this identity, the KSD is rewritten as follows.

Lemma 3.2. Let

Hp[(x, z), (x
′, z′)] = sp(x|z)>sp(x

′|z′)k(x, x′) + sp(x|z)>k1(x′, x)

+ k1(x, x′)>sp(x
′|z′) + k12(x, x′).

(3.4)

Assume E(x,z),(x′,z′)∼R̃⊗R̃|Hp[(x, z), (x
′, z′)]| < ∞ with the joint distribution R̃(d(x, z)) =

PZ(dz|x)R(dx). If the formula (3.3) holds, then,

KSD2 (P‖R) =E(x,z),(x′,z′)∼R̃⊗R̃Hp[(x, z), (x
′, z′)].

Proof. Substituting the formula (3.3) in the definition of KSD gives the required equation by

the Tonelli-Fubini theorem.

Remark 3.3. The integrability assumption holds trivially if the input space X is finite, while

care needs to be taken otherwise. The condition can be checked by examining the absolute

integrability of each term in (3.4). The integrability assumption on the fourth term is mild, and

is satisfied by common kernels, e.g., the exponentiated quadratic or the inverse multi-quadratic

kernels. The condition on the other terms needs to be checked on a model-by-model basis. It

can be shown that the example models in Section 3.4 satisfy the assumption (please see Section

3.C in the supplementary material for details).

The new KSD expression is an expectation of a computable symmetric kernel, and con-

structing an unbiased estimate is straightforward once we obtain a sample. In practice, when the

model is complex, sampling from the posterior distribution generally requires simulation, as the

posterior is not available in closed form. Therefore, we propose to approximate the expectation

by Markov Chain Monte Carlo (MCMC) methods and construct an approximate U-statistic

estimator as follows. Let z
(t)
i =

(
z

(t)
i,1 , · · · , z

(t)
i,m

)
∈ Zm be a latent sample of size m drawn

by an MCMC method having PZ(·|xi) as its invariant measure after t burn-in iterations. Let

s̄p(xi|z(t)
i ) = 1

m

∑m
j=1 sp(xi|z(t)

i,j ). Given a joint sample
{(
xi, z

(t)
i

)}n
i=1
, we estimate the KSD

by

U (t)
n (P ) :=

1

n(n− 1)

∑
i 6=j

H̄p

[(
xi, z

(t)
i

)
,
(
xj , z

(t)
j

)]
, (3.5)

where

H̄p

[(
xi, z

(t)
i

)
,
(
xj , z

(t)
j

)]
= s̄p(xi|z(t)

i )>s̄p(xj |z(t)
j )k(xi, xj) + s̄p(xi|z(t)

i )>k1(xj , xi)

+ k1(xi, xj)
>s̄p(xj |z(t)

j ) + k12(xi, xj),

and the sum is taken over all distinct sample pairs. If P (t)
Z (dz|x) denotes the distribution of

an MCMC sample z(t) = (z
(t)
1 , . . . , z

(t)
m ), then this estimator is indeed a U-statistic, but its
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expectation is that of kernel H̄p with respect to P (t)
Z (dz|x)R(dx) instead of PZ(dz|x)R(dx).

Thus, the estimator is biased against the target estimand, the model’s KSD, for a finite burn-in

period t, and can therefore be seen an approximation to the true U-statistic U (∞)
n . Designing a

statistical test requires understanding the behavior of the statistic (3.5), and we will provide its

analysis in the next section. Although we focus on MCMC for its approximate unbiasedness in

our proposed test, different posterior approximations may be considered in other applications;

for example, with a more computationally efficient approach (e.g., variational approximation),

the new KSD expression in Lemma 3.2 might allow us to consider parameter estimation for

unnormalized statistical models with latent variables [Barp et al., 2019].

3.3 A relative goodness-of-fit test

We now address the setting of statistical testing for model comparison. We begin this section

with our problem settings and notation, and then define a test by showing the asymptotic

normality of approximate U-statistics.

3.3.1 Problem setup

We consider the case where we have two latent variable models P and Q, and we wish to

determine which is a closer approximation of the distribution R generating our data {xi}ni=1.

The respective density functions of the models are given by the integrals p(x) =
∫
p(x|z)dPZ(z)

and q(x) =
∫
q(x|w)dQW (w). As with P , the latent variable w is assumed to take values in a

setW with prior QW . We assume that p(x) and q(x) cannot be tractably evaluated, even up to

their normalizing constants. Our goal is to determine the relative goodness-of-fit of the models

by comparing each model’s discrepancy from the data distribution. Our problem is formulated

as the following hypothesis test:

H0 : KSD (P‖R) ≤ KSD (Q‖R) (null hypothesis),

H1 : KSD (P‖R) > KSD (Q‖R) (alternative).
(3.6)

In other words, the null hypothesis is that the fit of P to R (in terms of KSD) is as good as Q,

or better. Note that the KSD in (3.6) is defined by a particular reproducing kernel, and thus

different kernels yield distinct hypotheses. For kernel selection, we refer the reader to Section

3.3.4.

We next provide an overview of the formal assumptions made throughout this chapter.

Let (Ω,S,Π) be a probability space, where Ω is a sample space, S is a σ-algebra, and Π is a

probability measure. All random variables (for example, data points xi and draws z
(t)
i from

a Markov chain sampler) are understood as measurable functions from the sample space Ω.

The input space X is equipped with the Borel σ-algebra generated by its standard topology.

We assume that Z,W are Polish spaces with the Borel σ-algebras defined by their respective

topologies, on which the priors PZ , QW are defined. Finally, we require that the two models

are distinct; i.e., their marginal densities disagree on a set of positive R-measure.
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3.3.2 Estimating kernel Stein discrepancies of latent variable models

The hypotheses in (3.6) can be equally stated in terms of the difference of the (squared) KSDs,

KSD2 (P‖R)−KSD2 (Q‖R) , which motivates us to design a test statistic by estimating each

term. Let U (t)
n (P,Q) := U

(t)
n (P )−U (t)

n (Q) be the difference of KSD estimates, where, U (t)
n (Q)

is defined as for U (t)
n (P ) in (3.5). Note that U (t)

n (P,Q) is an approximate U-statistic (in the

sense of the final paragraph in Section 3.2.2) defined by the difference kernel

H̄p,q[(x, z,w), (x′, z′,w′)] := H̄p[(x, z), (x′, z′)]− H̄q[(x,w), (x′,w′)]

evaluated on the joint sample
{(
xi, z

(t)
i ,w

(t)
i

)}n
i=1
. The statistic takes as input random variables

with evolving laws, and defining a test require us to understand the behavior of such statistics.

This section delivers an analysis in a general setting.

We first characterize the asymptotic distribution of an approximate U-statistic. The following

theorem shows that such a statistic is asymptotically normal around the expectation of the true

U-statistic provided its bias vanishes fast.

Theorem 3.4 (Asymptotic normality). Let {γt}∞t=1 be a sequence of Borel probability measures

on a Polish space Y and γ be another Borel probability measure. Let
{
Y

(t)
i

}n
i=1

i.i.d.∼ γt, and

for a symmetric function h : Y × Y → R, define a U-statistic and its mean by

U (t)
n =

1

n(n− 1)

∑
i 6=j

h
(
Y

(t)
i , Y

(t)
j

)
, θt = E(Y,Y ′)∼γt⊗γt [h(Y, Y ′)].

Let θ = E(Y,Y ′)∼γ⊗γ [h(Y, Y ′)]. Let νt := E(Y,Y ′)∼γt⊗γt

[
|h̃t(Y, Y ′)|3

]1/3
with h̃t = h − θt,

and assume lim supt→∞ νt < ∞. Assume that σ2
t = 4VarY ′∼γt

[
EY∼γt [h(Y, Y ′)]

]
converges

to a constant σ2. Assume that we have the double limit
√
n(θt − θ) → 0; i.e., for any ε > 0,

there exists N ≥ 1 such that
√
n(θt − θ) ≤ ε for any n, t ≥ N. Then, if σ > 0, we have

√
n
(
U (t)
n − θ

)
d→ N (0, σ2) as n, t→∞,

where d→ denotes convergence in distribution. In the case σ = 0,
√
n(U

(t)
n − θ) → 0 in

probability.

The proof is in Section 3.6 in the supplement. Note that in the preceding and following

results, the limit of n and t is taken simultaneously rather than sequentially, such that the

condition
√
n(θt − θ) → 0 holds: see discussion below and in Section 3.3.3. By letting

Y
(t)
i =

(
xi, z

(t)
i ,w

(t)
i

)
and h = H̄p,q in the foregoing theorem, we obtain the same conclusion

for the difference estimate U (t)
n (P,Q).

The asymptotic normality allows us to define a test procedure. Theorem 3.4 involves

unknown variance σ2, however; in order to construct a test, we need to be able to estimate it

consistently. For our test, we propose to use the following jackknife variance estimator

vn,t := (n− 1)
n∑
i=1

(
U

(t)
n,−i − U (t)

n

)2
(3.7)
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where U (t)
n is defined as in Theorem 3.4, and U (t)

n,−i the U-statistic computed on the sample with

the i-th data point removed. We defer the discussion on this choice until we introduce our test

procedure in Section 3.3.3. Here, we present the required consistency, the proof of which can be

found in Appendix 3.6.2 (see Lemma 3.8).

Lemma 3.5. Define symbols as in Theorem 3.4 and the jackknife variance estimator as in (3.7).

Assume

lim sup
t→∞

E(Y,Y ′)∼γt⊗γt [h(Y, Y ′)4] <∞.

Let σ2 = limt→∞ σ
2
t where σ2

t = 4ζ1,t = 4VarY∼γt
[
EY ′∼γt [h(Y, Y ′)]

]
. Then, we have the

double limit E
(
vn,t − σ2

)2 → 0 as n, t → ∞. In particular, the limit holds regardless of the

growth rate of t as a function of n.

We have shown that the jackknife estimator allows consistent estimation of the asymptotic

variance of U (t)
n (P,Q). Using the results obtained in this section, we present our test procedure

in the next section.

3.3.3 Test procedure

We are finally ready to define the test procedure. Recall that our objective is to compare

model discrepancies, which can be accomplished by estimating the difference KSD2 (P‖R)−
KSD2 (Q‖R). The previous section has established the asymptotic normality of the difference

estimate U (t)
n (P,Q) and provides a consistent estimator of its asymptotic variance. Therefore,

we define our test statistic to be

Tn,t =
√
n
U

(t)
n (P,Q)

σn,t
, (3.8)

where σn,t =
(
vn,t
)1/2 with vn,t the jackknife variance estimator in (3.7) computed using

the joint sample
{(
xi, z

(t)
i ,w

(t)
i

)}n
i=1

and kernel h = H̄p,q. The following property follows

from Theorem 3.4 and Slutsky’s lemma [see e.g., van der Vaart, 2000, p. 13] along with the

consistency of σn,t from Lemma 3.5.

Corollary 3.6. Let µP,Q = KSD2 (P‖R)−KSD2 (Q‖R). Let y
(t)
1 and y

(t)
2 be i.i.d. variables;

y
(t)
1 represents a copy of random variables (x, z(t),w(t)); the variables z(t),w(t) are draws

from the respective Markov chains of P and Q conditioned on x after t burn-in steps, and

x obeys R (the starting points z(1),w(1) for the two Markov chains are shared). Assume

lim supt→∞ E[H̄p,q[y
(t)
1 ,y

(t)
2 ]4] <∞. If the assumptions in Theorem 3.4 hold for the statistic

U
(t)
n (P,Q) with asymptotic variance σ2

P,Q > 0, we have
√
n(U

(t)
n (P,Q) − µP,Q)/σn,t

d→
N (0, 1) as n, t→∞.

Remark 3.7. Corollary 3.6 holds for any choice of the Markov chain sample size m ≥ 1.

However, in practice, a small value of m leads to large variance of the score estimates s̄p, s̄q, and

hence the test statistic Tn,t, which results in a conservative test. To improve the test’s sensitivity,

we therefore recommend using as large an m as possible.
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Corollary 3.6 leads to the following simple model comparison test (summarized in Algorithm

1): for a given significance level α ∈ (0, 1), we compare the test statistic Tn,t against the (1−α)-

quantile τ1−α of the standard normal, and reject the null if Tn,t exceeds τ1−α. By this design,

under the null hypothesis H0 : µP,Q ≤ 0, we have limn,t→∞Π(Tn,t > τ1−α|H0) ≤ α, and the

test is therefore asymptotically level α for each fixed R satisfying H0 [Lehmann and Romano,

2005, Definition 11.1.1]. On the other hand, under any fixed alternative H1 : µP,Q > 0,

it follows from
√
nµP,Q → ∞ (n → ∞) that we have limn,t→∞Π(Tn,t > τ1−α|H1) = 1,

indicating that the test is consistent in power.

Algorithm 1: Test procedure
Input: Data {xi}ni=1, models P , Q, and significance level α
Result: Test the null H0

/*Form a joint sample
{(
xi, z

(t)
i ,w

(t)
i

)}n
i=1

*/
1 for i← 1 to n do
2 Generate m samples z

(t)
i = (z

(t)
i,1 , . . . , z

(t)
i,m) after t burn-in steps with an MCMC

algorithm to simulate PZ(dz|xi);

3 Generate m samples w
(t)
i = (w

(t)
i,1 , . . . , w

(t)
i,m) after t burn-in steps with an MCMC

algorithm to simulate QW (dw|xi);
4 end
5 τ1−α← (1− α)-quantile of N (0, 1);
/*Compute test statistic Tn,t in equation (3.8) */

6 Compute KSD difference estimate U (t)
n (P,Q);

7 Compute variance estimate vn,t;

/*Direct computation of Tn,t =
√
nU

(t)
n (P,Q)/

√
vn,t can be numerically

unstable */

8 if U (t)
n (P,Q) > (

√
vn,t/
√
n) · τ1−α then Reject the null H0 ;

We remark that the above analysis will not apply in particular extreme cases, where both

models are identical, or both perfectly match the data distribution. When these occur, then

σP,Q = 0 and µP,Q = 0 (note that if µp,Q 6= 0, the test statistic diverges as the sample size

increases). Applying our procedure as above to this setting, the normal approximation might

fail to correctly capture the variability of the test statistic, and the type-I error could exceed the

significance level. To detect this failure mode, we would need to independently check that the

two models are not identical, either by inspection or via two-sample testing. A more systematic

treatment could be performed, e.g., by preventing degeneracy using a sample splitting technique

as proposed by Schennach and Wilhelm [2017], and we leave this refinement for future work.

We empirically found that our choice of the variance estimator acted as a safeguard against

the failure mode mentioned above. The jackknife estimator is nonnegative, while individually

estimating the variances and covariance of the two U-statistics might yield a negative estimate.

The jackknife is also known to overestimate the variance [Efron and Stein, 1981], and its use

may result in a more conservative test. This estimator is not the only allowable choice, as the

variance estimation in U-statistics has been extensively studied [for other concrete estimators see,

e.g., Maesono, 1998, and references therein]. In our preliminary analysis, we considered two
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other estimators, but the jackknife estimator controlled type-I errors better than these alternatives

in the near degenerate case. For details, we refer the reader to experiments in Sections 3.J.3 and

3.J.4 in the supplement.

The limiting behaviors of the test are only guaranteed when an appropriate double limit is

taken with respect to the burn-in size t and the sample size n. Theorem 3.4 suggests that the

bias of the statistic U (t)
n (P,Q) should decay faster than 1/

√
n in the limit of t. Our practical

recommendation is to take a burn-in period as long as the computational budget allows; this

heuristic is justified if the bias vanishes as t→∞. For KSD2 (P‖R) and its estimate, the bias

is due to that of the score estimate s
(t)
p (x) = E(t)

z|x[s̄p(x|z)], where E(t)
z|x denotes the expectation

with respect to P (t)
Z (dz |x). If the score’s bias is confirmed to converge to zero, we can check

the bias of the KSD estimate by examining the convergence of E(x,x′)∼R⊗R[hp,t(x, x
′)], with

hp,t(x, x
′) a Stein kernel defined by the approximate score s

(t)
p . The convergence of s

(t)
p can

be established by assuming appropriate conditions on sp(x|z) and the sampler; for instance,

for the exponential family likelihood p(x|z) ∝ exp(T (x)η(z)), if the natural parameter η

is a continuous bounded function, the weak convergence of the sampler implies the desired

convergence (the score sp(x|z) is factorized as η(z)∇T (x)). The quantification of the required

growth rate of t relative to n needs more stringent conditions on the employed MCMC sampler,

which we discuss in the supplement, Section 3.D. Admittedly, it is often not straightforward

to theoretically establish an explicit relation between the growth rates of t and n. We therefore

experimentally evaluate the finite-sample performance of our test in Section 3.4.

The overall computational cost of the proposed test is O{n2 +n(t+m)}, assuming that the

cost of sampling a latent is constant. The test statistic in (3.8) requires evaluating the U-statistic

kernel H̄p,q on all distinct sample pairs. Note that we need to perform this computation only

once if we memoize the evaluated values; in particular, the cost of the variance estimate (3.5) can

be made O(n2) with memoization. Thus, assuming that we have evaluated and stored the score

values
{
s̄p
(
xi|z(t)

i

)
, s̄q
(
xi|w(t)

i

)}n
i=1
, the cost of evaluating the U-statistic kernel is O(n2), but

this operation can be easily parallelized over sample pairs. The additional O{n(t+m)} cost

comes from evaluating the approximate score functions, as it requires running Markov chains

for each data point (see the loop between Lines 1-4 in Algorithm 1). We can improve the

sample-size n dependency in score evaluation by parallelization, since MCMC can be performed

independently over sample points xi.

3.3.4 Kernel choice

A discrepancy measure such as KSD encodes a particular sense of how two distributions differ.

In the case of KSD, the magnitude of this discrepancy is affected not only by evaluated models

but also the choice of a reproducing kernel. Ideally, we should choose a kernel that makes the

KSD reflect the discrepancy of features relevant to the problem at hand. We provide general

guidance on kernel selection as follows:

Continuous observations: As mentioned in Section 3.2, ISPD kernels enable the KSD to

distinguish any two distributions satisfying certain regularity conditions. Of ISPD kernels,

in the light of practical performances reported in prior work in goodness-of-fit testing
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[Gorham and Mackey, 2017] and distribution approximation [Chen et al., 2019, Riabiz

et al., 2021], we advocate for the use of the preconditioned IMQ kernel [Chen et al., 2019]

k(x, x′) =
(
c2 + ‖Λ−1/2(x− x′)‖22

)−β
(3.9)

with Λ a strictly positive definite matrix, and scalars c > 0 and 0 < β < 1; as a default

choice, we recommend to take β = 1/2 and c = 1. Following the kernel method literature,

we recommend to choose the pre-conditioner Λ in a data-dependent way so that the KSD

can capture relevant features of the data. We suggest two default options: the median

heuristic, where Λ = λ2I with λ = median
{
‖xi − xj‖2 : 1 ≤ i < j ≤ n} and I

the identity matrix; the sample covariance Λ =
∑n

i=1(xi − x̄)(xi − x̄)>/(n − 1) with

x̄ =
∑n

i=1 xi/n, which should be suitably regularized. Each of these choices has its own

merits, as we illustrate in a simple example with Gaussian distributions in the supplement

(Section 3.F.2). Moreover, in general, the KSD is not invariant to a change of coordinates

representing the data. The above choices partially address this issue, as they ensure that

the KSD is invariant to rotation and displacement [see Section 3.H.2 in the supplement;

Matsubara et al., 2021, Section 5.1] . For continuous observations, we additionally need

to examine the integrability of the Stein kernel to use the KSD expression of Lemma

3.2. To this end, one might want to make an assumption about the tail decay of the data

distribution. The integrability condition can be alternatively enforced by reweighting

the reproducing kernel so that the Stein kernel is uniformly bounded; i.e., for a kernel

k, define a new kernel kw by kw(x, x′) = k(x, x′)w(x)w(x′) where w : X → (0,∞)

is some decreasing function dominating the growth of the score function. We discuss

how to choose such w in the supplement, Section 3.C. This reweighting might reduce

the sensitivity of the KSD and break the aforementioned property of coordinate-choice

independence, however.

Discrete observations: We have given a condition for a kernel to be ISPD at the end of Section

3.2; e.g., the exponentiated quadratic kernel on one-hot encoding, which can be efficiently

implemented in a sparse tensor format. In general, however, it is challenging to compute

such an ISPD kernel for discrete objects in high-dimensions. Note that ISPD-ness is

only required to distinguish any two distributions. In practice, we only require the KSD

to capture aspects relevant to model evaluation, and might therefore choose a kernel

insensitive to some differences, as long as they represent computationally affordable

alternatives suited to the given problem. An instructive example is testing on distributions

over graphs. Graphs of V nodes can be represented as adjacency matrices that are

elements of {0, 1}V×V . The Dirac delta kernel that examines if two graphs are identical is

an ISPD kernel but computationally intractable (no polynomial algorithm is known). This

notion of graph identification is in practice too restrictive, and therefore one typically uses

kernels that convey other relevant graph properties [see e.g., Borgwardt et al., 2020, for

more details]. We also demonstrate this trade-off in our experiment with latent Dirichlet

allocation models in Section 3.4.3, where we can ignore the sequential structure of the
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data.

Use of multiple kernel functions: As we have seen, there are often multiple choices of the

kernel function, and they might represent distinct features. Our recommendation is to test

the hypotheses corresponding to the kernel choices simultaneously, as it makes evaluation

more rigorous. However, one has to correct for multiple comparisons such as controlling

the family-wise error rate. It should be noted that a correction typically makes the test

more conservative as the number of kernels grows. The user thus needs to control the

number of kernels to be used (e.g., using a handful of values of scale parameter λ for the

above IMQ kernel with Λ = diag(λ, . . . , λ)).

Finally, we note that specific kernels can be employed that encode domain-specific expertise in

particular problem settings: for instance, kernels have been defined on groups [Fukumizu et al.,

2008] and graphs [Borgwardt et al., 2020]. KSDs and associated statistical tests can likewise

be defined for certain of these cases [e.g., Xu and Matsuda, 2020]. That being said, it may

sometimes be preferable to favor an MMD with goal-specific features over an omnibus KSD

test.

3.4 Experiments

We evaluate the proposed test (LKSD, hereafter) through simulations. Our goal is to show the

utility of the KSD in model comparison. To this end, we compare our test with the relative MMD

test [Bounliphone et al., 2016], a kernel-based frequentist test that supports a great variety of

latent variable models. Note that this test and ours address different hypotheses, as the MMD and

LKSD tests use different discrepancy measures; it is indeed possible that they reach conflicting

conclusions (e.g., a model is better in terms of KSD but worse in MMD). To align the judgement

of both tests, we construct problems using models with controllable parameters; for a given

class, a reference distribution, from which a sample is drawn, is chosen by fixing the model

parameter; two candidates models are then formed by perturbing the reference’s parameter such

that a larger perturbation yields a worse model for both tests. We show that there are cases

where the MMD fails to detect model differences whereas the KSD succeeds. For completeness,

we provide the detail of our implementation of the MMD test in the supplement (Section 3.E),

since it requires modification to yield satisfactory performance in our setting. Code to reproduce

all the results is available at https://github.com/noukoudashisoup/lkgof.

Following are details shared by the experiments below. All results below are based on 300

trials, except for the experiment in Section 3.4.2 (see the section for details). In the light of the

discussion in Section 3.3, unless specified, the MMD test draws nmodel = m+ t samples for

each model so that its cost matches the additional computation afforded to LKSD test, which is

of O{n(m+ t)} from MCMC.

https://github.com/noukoudashisoup/lkgof
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3.4.1 Probabilistic Principal Component Analysis

We first consider a simple model in which the score of its marginal is tractable. This allows

us to separately assess the impact of employing a score function approximation. Probabilistic

Principal Component Analysis (PPCA) models serve this purpose since the marginals are given

by Gaussian distributions. Let X = RD and Z = RDz with 1 ≤ Dz < D. A PPCA model

PPCA(A,ψ) is defined by

p(x|z,A, ψ) = N (Az, ψ2Ix), PZ = N (0, Iz),

where A ∈ RD×Dz , Ix ∈ RD×D, Iz ∈ RDz×Dz are the identity matrices, ψ is a positive scalar,

and 0 is a vector of zeros. The conditional score function is sp(x|z) = −(x − Az)/ψ2. In

particular, the marginal density is given by p(x) = N (0, AA> + ψ2Ix).

While the posterior in this model is tractable, it is instructive to see how KSD estimation is

performed by MCMC. By using an MCMC method, such as the Metropolis Adjusted Langevin

Algorithm (MALA) [Besag, 1994, Roberts and Tweedie, 1996] or Hamiltonian Monte Carlo

(HMC) [Duane et al., 1987, Neal, 2011], we obtain latent samples zi ∈ Zm for each xi, which

forms a joint sample {(xi, zi)}ni=1 ; samples zi are used to compute a score estimate at each

point xi,

s̄p(xi|zi) = −

xi −A( 1

m

m∑
j=1

zi,j

) /ψ2,

and these approximate score values are used to compute the U-statistic estimate in (3.5). By

choosing suitably decaying kernels (Section 3.C), we can guarantee the integrability condition

in Lemma 3.2. The vanishing bias assumption in Theorem 3.4 corresponds to the convergence

in mean, which can be measured by the Kantorovich–Rubinstein distance [Kantorovich, 2006]

(also known as the L1-Wasserstein distance [see, e.g., Villani, 2009, Chapter 6]). Note that the

negative logarithm of the unnormalized posterior density is strongly convex, and its gradient is

Lipschitz; the strong convexity- and Lipschitz constants are independent of x. Therefore, using

HMC for example, by appropriately choosing a duration parameter and a discretization step size,

we can show that the bias of the above score estimate diminishes uniformly over x [Bou-Rabee

et al., 2020].

3.4.1.1 Type-I error and test power

We investigate the finite-sample performance of the proposed test in terms of type-I error and

power rates. We generate data from a PPCA model R = PPCA(A,ψ). The dimensions of

the observable and the latent are set to D = 100, Dz = 10, respectively. Each element of the

weight matrix A is drawn from a uniform distribution U [0, 1] and fixed. The variance parameter

ψ is set to 1. As PPCA models have tractable marginals, we also compare our test with the KSD

test using exact score functions (i.e. no MCMC simulation), which serves as the performance

upper-bound. The MCMC sampler we use is HMC; more precisely, we use the NumPyro [Phan

et al., 2019] implementation of No-U-Turn Sampler (NUTS) [Hoffman and Gelman, 2014]; we

take t = 200 burn-in samples and m = 500 consecutive draws for computing a score estimate
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s̄p.

We use two kernel functions: (a) the exponentiated quadratic (EQ) kernel k(x, x′) =

exp
{
−‖x − x′‖22/(2λ2)

}
, and (b) the IMQ kernel (3.9) with β = 0.5, c = 1, and Λ = λ2I.

All three tests use the same kernel function, which allows us to investigate the effect of using

the Stein-modified kernel. The length scale parameter λ is set to the median of the pairwise

(Euclidean) distances of holdout samples from R so that the parameter (and thus the hypothesis)

is fixed across trials. We include the EQ kernel in our comparison, as the population MMD is

possible to compute, allowing us to verify the hypothesis in advance.

We simulate null and alternative cases by perturbing the weight parameter A; we add a

positive value δ > 0 to the (1, 1)-entry of A. Let us denote a perturbed weight by Aδ. Note that

the data PPCA model has a Gaussian marginalN (0, AA>+ψ2Ix). Therefore, this perturbation

gives a model N (0, AδA
>
δ + ψ2Ix), where the first row and column of AδA>δ deviate from

those of AA>. The perturbation is additive and increasing in δ, as each element of A is positive.

We create a problem by specifying perturbation parameters (δP , δQ) for (P,Q). For the EQ-

kernel MMD, we numerically confirmed that the perturbation gives a worse model for a larger

perturbation. While the population KSD is not analytically tractable, this perturbation affects

the score function through the covariance matrix, and the same behavior is expected for KSD;

see Section 3.F in the supplement for details.

Table 3.1: Type-I errors the MMD test of Bounliphone et al. [2016], the proposed LKSD
test, and the KSD test in PPCA Problem 1. Rejection rates are computed on 300 trials with
significance level α = 0.05. The columns EQ-med and IMQ-med denote EQ and IMQ kernels
with the median bandwidth, respectively.

Sample size n Rejection rates
EQ-med IMQ-med

MMD LKSD KSD MMD LKSD KSD
100 0.000 0.013 0.000 0.000 0.010 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000
300 0.003 0.007 0.000 0.003 0.003 0.000
400 0.003 0.007 0.000 0.003 0.000 0.000
500 0.007 0.013 0.000 0.007 0.007 0.000

Problem 1 (null) We create a null scenario by choosing (δP , δQ) = (1, 1 + 10−5) (P has

a smaller covariance perturbation and is closer to R than Q). For different null settings, we

refer the reader to Section 3.J.3 in the supplement. We run the tests with significance levels

α = 0.01, 0.05. Table 3.1 reports the finite-sample size of the three tests for significance level

α = 0.05. The result for α = 0.01 is omitted as none of the tests rejected the hypotheses. The

size of the proposed LKSD test is indeed controlled. The extremely small type-I errors of the

KSD tests are caused by the sensitivity of KSD to this perturbation; the population KSD value

is negative and far from zero, and the test statistics easily fall in the acceptance region. The

other two tests also have their error rates lower than the significant level. Note that their test

thresholds are determined by treating the population discrepancy differences as zero, resulting

in conservative tests.
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(a) : EQ kernel with median scaling.
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(b) IMQ kernel with median scaling.

Figure 3.1: Power curves of the MMD test of Bounliphone et al. [2016], the proposed LKSD
test, and the KSD test with the exact score function in PPCA Problem 2. The perturbation
parameters are set as (δP , δQ = 2, 1). each result is computed on 300 trials. The significance
level α = 0.05. Markers: 3 (the LKSD test);9 (the KSD test); ○ (the relative MMD test).

Problem 2 (alternative) We investigate the power of the proposed test. We set up a alternative

scenario by fixing δP = 2 for P and δQ = 1 for Q. The significance level α is fixed at 0.05.

All the other parameters are chosen as in Problem 1. Figure 3.1 shows the plot of the test

power against the sample size in each problem. The KSD reaches a near 100 percent rejection

rate relatively quickly, indicating that information from the score function is helpful for these

problems. The effect of the score approximation is negligible in this experiment, as the power

curve of the LKSD test overlaps with that of KSD. The power of the MMD test is substantially

lower than the other tests, indicating that the MMD is insensitive to this perturbation to the

covariance.
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(b) n = 300

Figure 3.2: Power curves of the proposed LKSD test and the MMD test in PPCA Problem 2.
The perturbation parameters are set as (δP , δQ = 2, 1). each result is computed on 300 trials.
The significance level α = 0.05. Markers: 3 (LKSD test with IMQ kernel);0 (LKSD test
with EQ kernel); ○ (MMD test with IMQ kernel); × (MMD test with EQ kernel).

3.4.1.2 Effect of kernel parameter choice

Dependency on scaling parameter. Using Problem 2 above, we examine how the test power

is affected by the scaling parameter. We use the EQ and IMQ kernels as above, and choose
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their scaling parameter λ2 from {10−3, 10−2, . . . , 103}. For each n ∈ {100, 300} we run 300

trials and estimate the test power of the LKSD and MMD tests. Figure 3.2 plots the power

curves of the tests. We can see that the high-power region of the EQ kernel is localized while

the IMQ kernel’s power curves are flat, indicating that the IMQ kernel does not depend on the

parameter as much as the EQ. Therefore, for this problem, the IMQ kernel can be seen as more

robust against misspecification of the scaling parameter. Nonetheless, with the right choice of

the scaling parameter, the EQ kernel yields higher power for both MMD and KSD tests. It can

be considered that the distinction arises because of the local nature of the difference between

the two distributions; the EQ kernel is more sensitive in choosing features used to compute the

KSD (see Section 3.F).

Different parameterization. We also consider a different parameter choice for the precondi-

tioning matrix. Here, we compare the median-scaled IMQ kernel with the same kernel having a

covariance preconditioning matrix, as suggested in Section 3.3.4. Figure 3.3 shows the power

curves of the three tests. Here, the relation between the MMD and KSD tests is overturned, and

the KSD test struggles to detect the perturbation to the covariance. This result demonstrates

that certain kernel choices can make the testing problem more challenging than others. Using

multiple kernels, rather than relying on a single choice, could therefore robustify the evaluation,

at the expense of a loss of power due to multiple testing correction.
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Figure 3.3: Power curves of the MMD test, the proposed LKSD test, and the KSD test in
PPCA Problem 2. All the test use the covariance-preconditioned IMQ kernel. The perturbation
parameters are set as (δP , δQ = 2, 1). Each result is computed on 300 trials. The significance
level α = 0.05. Markers: 3 (the LKSD test);9 (the KSD test); ○ (the relative MMD test).

3.4.1.3 Quality of Markov chain samplers

The asymptotic property of our test (Corollary 3.6) hinges on the quality of the Markov chain

samplers. This section studies the effect of these Markov chains on the inference. We vary the

burn-in size t and the score approximation sample size m, which is expected to affect the type-I

error rate and the power of the test. In the experiments below, we set α = 0.05. We choose t

from {50, 100, . . . , 600} and m from {1, 10, 100, 1000}.
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(a) Problem 1 (null H0 is true).
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(b) Problem 2 (alternative H1 is true).

Figure 3.4: The effect of MCMC quality on the test’s performance. Rejection rates against burn-
in size t with varying Markov chain sample size m. PPCA Problems 1 and 2 with α = 0.05.
Both samplers use NUTS. Markers: 3 (m = 1);2 (m = 10);1 (m = 100);4 (m = 1000).
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(a) n = 100
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(b) n = 300

Figure 3.5: The effect of a poor MCMC sampler on the test. Type-I error rates against the
burn-in size t with varying Markov chain sample size m. PPCA Problem 1 (the null H0 is
true). The dark dashed line indicates the significance level α = 0.05. The samplers for P and
Q are respectively MALA and NUTS. Markers: 3 (m = 1);2 (m = 10);1 (m = 100);4
(m = 1000).

In our first experiment, as in the previous sections, we use the NUTS with the same

initialization strategy for both models. With n = 300, we run the test using Problems 1 and 2

above. Figure 3.4 shows rejection rates of the test for different settings of t and m. In both cases,

the burn-in length t does not affect the test’s performance, indicating the fast convergence of the

sampler. The importance of a larger value of m can be seen when the alternative hypothesis

holds, since the test power improves as m increases. The improved performance is likely due to

reduced variance.

We next consider a slow-converging sampler for which the burn-in length t becomes crucial.

We consider the null case (Problem 1) and replace the sampler for the first model P with

MALA. We set the step size for the MALA sampler to make its convergence slow; we use

the step size of 10−4D
−1/3
z . We initialize the two samplers differently to make sure that the

resulting distributions differ when the samplers have not converged: the MALA sampler for P

is initialized with samples from a Gaussian N
{

(1, . . . , 1), Iz
}

and the NUTS sampler for Q

a uniform distribution U [−2, 2]Dz . Figure 3.5 demonstrates the relation between type-I error
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rates and choices of t and m. In contrast to the previous experiment, the burn-in has a clear

effect on the type-I error: insufficient burn-in leads to uncontrolled error rates. The right panel

(n = 300) shows that the test has substantially higher type-I error rates than in the left (n = 100).

Comparison between these cases illustrates that a larger sample size n requires more intensive

burn-in, as the test becomes more confident to reject. A large value of m improves the test as

in the previous experiment. It can be understood that the contribution of burn-in samples is

negligible in the score approximation. Although our analysis in Corollary 3.6 requires long burn-

in, taking large m appears to be more important in practice, especially under a computational

budget constraint. This experiment thus confirms the importance of the quality of the sampler.

3.4.2 Dirichlet process mixtures

Our next experiment applies our test to a Dirichlet process mixtures (DPM) model. Let ψ(x|z)
be a probability density function on RD. We consider a mixture density∫

ψ(x|z)dF (z)

where F is a Borel probability measure on a Polish space Z. A DPM model [Ferguson, 1983]

places a Dirichlet process prior DP(a) on the mixing distribution F . Thus, a DPM model

DPM(a) assumes the following generative process:

xi|zi, φ, F ind.∼ ψ(x|zi), zi|F i.i.d.∼ F, F ∼ DP(a).

Here, a is a finite Borel measure on Z. Note that the marginal density is given by

EF
[∫

ψ(x|z)dF (z)

]
.

Although the prior has an infinite-dimensional component, the required conditional score

function is simply sψ(x|z, φ); thus we only need to sample from a finite-dimensional posterior

PZ(dz|x). Practically, DPM models are of limited use without observations to condition them;

i.e., we are interested in their predictive distributions. If a model is conditioned on held-out data

D, then the predictive density p(x|D) is EF |D
[∫
ψ(x|z)dF (z)

]
, and its score is given by the

expectation of sψ(x|z) with respect to the posterior

ψ(x|z, φ)

p(x|D)
F̄D(dz)

with F̄D the mean measure of PF (dF |D). Sampling from the posterior can be performed with a

combination of the Metropolis-Hastings algorithm and Gibbs sampling [see e.g., Ghosal and

van der Vaart, 2017, Chapter 5]. For the score formula and the MCMC procedure, we refer

the reader to Section 3.G in the supplement. By setting ψ to an isotropic normal density, for

example, we can guarantee the integrability assumption in Lemma 3.2 (see Section 3.C).
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Experiment details. We consider the following simple Gaussian DPM model GDPM(µ),

xi
ind.∼ N (zi, 2I), zi

i.i.d.∼ F, F ∼ DP(a), a = N (µ, I),

where µ ∈ RD, and I is the identity matrix of size D ×D. Note that without conditioning on

observations, the model’s marginal density is simply a Gaussian distribution N (µ, 3I), which

does not require approximation.

We therefore compare predictive distributions, i.e., we compare two GDPM models con-

ditioned on training data Dtr = {x̃i}ntr
i=1

i.i.d.∼ R. We consider two GDPM models with wrong

priors, where their prior means are shifted. Specifically, we take R = GDPM(0), and two

models chosen as Q = GDPM(1̄) and P = GDPM(δ1̄) with 1̄ = 1/
√
D. Unlike the preced-

ing experiments, we condition the two models on the training data, and obtain the predictive

distributions, denoted by PDtr and QDtr , respectively; our problem is thus the comparison

between PDtr and QDtr . The distributions now require simulating their posterior, and we use

a random-scan Gibbs sampler and the Metropolis algorithm with a burn-in period t = 1, 000

and the size of the latents m = 500. For sampling observables from the models, we use a

random-scan Gibbs sampler with a burn-in period 2, 000. We expect that if the training sample

size ntr is small, a larger perturbation would give a worse model as the effect of the prior is still

present; we thus set ntr = 5. Due to the small sample size, the expected model relation might

not hold, depending on the draw of Dtr. Therefore, we examine the rejection rates of the LKSD

and MMD tests, averaged over 50 draws; for each draw of Dtr, we estimate the rejection rates

based on 100 trials. Our problem is formed by varying the perturbation scale δ for PDtr , which

is chosen from a regular grid {0.5, 0.6, · · · , 0.9, 1.1, · · · , 1.5}. This construction gives a null

case when δ < 1, the alternative otherwise. We set the dimension D to 10 and the significance

level α to 0.05. As in Section 3.4.1, we use the IMQ kernel with median scaling.

Figure 3.6 reports the rejection rates of the two tests for each of n ∈ {50, 100, 200}. Note

that the curves in the graph do not represent type-I errors nor power, as they are rejection rates

averaged over draws Dtr, each of which forms a different problem. It can be seen that on

average, both tests have correct sizes (δ < 1). In the alternative regime (δ < 1), the LKSD

test underperforms the MMD with a small sample size (n = 50); however, its improvement in

power is faster and exceeds the MMD at n = 200. These results imply that the LKSD estimate

has a large variance for a small sample size, whereas its estimand (the population difference) is

also larger, and thus the mean of the test statistic diverges faster. Thus, it may be understood

that the KSD is more sensitive to model differences in this setting.

3.4.3 Latent Dirichlet Allocation

Our final experiment studies the behavior of the LKSD test on discrete data using Latent Dirichlet

Allocation (LDA) models. LDA is a mixed-membership model [Airoldi et al., 2014] for grouped

discrete data such as text corpora. We follow Blei et al. [2003] and use the terminology of text

data for ease of exposition. Accordingly, the following terms are defined using our notation.

A word is an element in a discrete set (a vocabulary) {0, . . . , L − 1} of size L. A document

x is a sequence of D words, i.e., x ∈ {0, . . . , L− 1}D is a D-dimensional discrete vector. A
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(a) n = 50
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(c) n = 200

Figure 3.6: Comparison in Gaussian Dirichlet mixture models. Rejection rates plotted against
the perturbation parameter δ. The sample size n is chosen from {50, 100, 200}. The rejection
rates are averaged over draws of Dtr. The supposed null and alternative regimes are δ < 1 and
δ > 1, respectively. Markers: 3 (the LKSD test); ○ (the relative MMD test). The dark dashed
line indicates the significance level α = 0.05. The errorbars indicate the standard deviations of
the estimated rejections rates.

prominent feature of LDA is that it groups similar words assuming they come from a shared

latent topic, which serves as a mixture component. An LDA model assumes the following

generative process on a corpus of documents {xi}ni=1:

1. For each document i ∈ {1, . . . , n}, generate a distribution over K topics θi
i.i.d.∼ Dir(a)

(the Dirichlet distribution), where θi is a probability vector of size K ≥ 1.

2. For the j-th word xji , j ∈ {1, . . . , D} in a document i,

(a) Choose a topic zji
i.i.d.∼ Cat(θi).

(b) Draw a word from xji
i.i.d.∼ Cat(bk), where bk is the distribution over words for topic

k, and the topic assignment zji = k.

Here, a = (a1, . . . , aK) is a vector of positive real numbers, and b = (b1, . . . , bK)> ∈ [0, 1]K×L

represents a collection of K distributions over L words. In summary, an LDA model P =

LDA(a, b) assumes the factorization

n∏
i=1

p(xi|zi, θi; a, b)p(zi, θi; a, b) =

n∏
i=1


D∏
j=1

p(xji |z
j
i , b)pz(z

j
i |θi)

 pθ(θi|a),

where zi and θi act as latent variables.

Because of the independence structure over words, the conditional score function is simply

given as

sp(x|z, θ, a, b) = sp(x|z, b) =

(
p(x̃j |zj , b)
p(xj |zj , b) − 1

)
j=1,...,D

, where x̃j = xj + 1 mod L.

Score approximation requires the posterior distribution p(z|x; a, b) with respect to z. Marginal-

ization of θ renders latent topics dependent on each other, and thus the posterior is intractable. A

latent topic is conjugate to the corresponding topic distribution given all other topics. Therefore,

an MCMC method such as collapsed Gibbs sampling allows us to sample from p(z|x; a, b). As

the observable and the latent are supported on finite sets, the use of Lemma 3.2 is justified;
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Table 3.2: Rejection rates of the MMD test and the LKSD test in LDA experiments. Each result
is based on 300 trials.

(a) Type-I errors of the KSD and MMD tests
in LDA Problem 1; (δP , δQ) = (0.5, 0.6).
The significance level α = 0.05.

Sample size n Rejection rates
MMD LKSD

100 0.003 0.013
200 0.010 0.007
300 0.007 0.003
400 0.003 0.007
500 0.007 0.010

(b) Power of the KSD and MMD tests in LDA Problem 2;
(δP , δQ) = (1.0, 0.5). The significance level α is chosen from
{0.01, 0.05}.

Sample size n Rejection rates
Level α = 0.01 Level α = 0.05
MMD LKSD MMD LKSD

100 0.000 0.010 0.007 0.070
200 0.003 0.030 0.010 0.183
300 0.000 0.097 0.003 0.283
400 0.000 0.197 0.010 0.463
500 0.000 0.280 0.007 0.570

the finite moment assumptions in Corollary 3.6 are guaranteed; and the consistency of the

population mean and variance of the test statistic follows from the convergence of E(t)
z|x[s̄p(x|z)]

and E(t)
w|x[s̄q(x|w)] for each x ∈ X . Note that we have implicitly ordered the vocabulary set to

define the score function X . A naive ordering might induce a discrepancy measure not useful

for model comparison with respect to a given dataset (e.g., the score function might not vary

on the data points). One might consider data-dependent ordering such as sorting by the word

frequency in the given data. Investigating ordering choices appropriate for model evaluation is

an interesting research topic and remains an open question.

3.4.3.1 Synthetic data – prior sparsity perturbation

In the two problems below, we observe a sample {xi}ni=1 from an LDA model R = LDA(a, b).

The number of topics is K = 3. The hyper-parameter a is chosen as a = (a0, a0, a0); for model

R, we set a0 = 0.1. Each of three rows in b = (b1,b2, b3)> ∈ [0, 1]3×L is fixed at a value drawn

from the symmetric Dirichlet distribution with all the concentration parameters one, and the

vocabulary size is L = 10, 000. Each xi ∈ {0, . . . , L−1}D is a document consisting ofD = 50

words.

We design problems by perturbing the sparsity parameter a0. Recall that Dir(a) is a distri-

bution on the (K − 1) - probability simplex. A small a0 < 1 makes the prior pθ(θi|a) = Dir(a)

concentrate its mass on the vertices of the simplex; the case a0 = 1 corresponds to the uniform

distribution on the simplex; choosing a0 > 1 leads to the prior mass concentrated on the center

of the simplex. The data distribution R (with a0 = 0.1) is thus intended to draw sparse topic

proportions θi, and a document xi is likely to have words from a particular topic. By increasing

a0, we can design a departure from this behavior. Therefore, as in the PPCA experiments, we

additively perturb a0 with parameters (δP , δQ) for respective candidate models (P,Q).

As LDA disregards word order, we need a kernel that respects this structure. We use the

Bag-of-Words (BoW) IMQ kernel k(x, x′) = (1 + ‖B(x) − B(x′)‖22)−1/2; it is simply the

IMQ kernel computed in the BoW representation B(x) ∈ {0, 1, 2, . . . , D}L whose `-th entry

(counting from 0 to L − 1) is the count of the occurrences of word ` ∈ {0, . . . , L − 1} in a
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document x. By Lemma 3.17 in Section 3.H.1, this choice ensures that arbitrary reordering of

text sequences does not change the KSD value; i.e., the KSD does not assess models by their

ability to generate sequences. We also tested differing input-scaling values and found that the

bandwidth of the IMQ kernel did not have a significant effect on the test power (Section 3.J.2.2).

For score estimation in the LKSD test, we use a random scan Gibbs sampler; we generate

m = 1, 000 latent samples after t = 4, 000 burn-in iterations.

Problem 1 (null) We create a null situation by having (δP , δQ) = (0.5, 0.6). In this case,

Q′s prior on θ is less sparse than that of P. Table 3.2a shows the size of the different tests for

significance levels α = 0.05; the result for α = 0.01 is omitted as both tests did not reject the

hypothesis. It can be seen that the rejection rates of both tests are bounded by the nominal level.

Problem 2 (alternative) We consider an alternative case in which the sparsity parameters

are chosen as (δP , δQ) = (1.0, 0.5). Here, the model Q is expected to have less mixed topic

proportions. Table 3.2b demonstrates the power of the MMD and LKSD tests. The power of the

LKSD test improves as the sample size n increases, whereas the MMD has almost no power in

this case. In this problem, the topics b are not sparse enough for each topic to have a sufficiently

distinctive vocabulary. Thus, the problem is challenging for the MMD, as it is unable to find

distinguishing words, in addition to the high-dimensionality. By contrast, the KSD is able to

distinguish the models by taking advantage of their underlying structure.

3.4.3.2 Synthetic data – topic perturbation

We provide a negative example to illustrate a failure mode of the LKSD test for discrete data.

The data is generated as in the previous section, whereas we construct two models differently.

We set up a model by perturbing the topics of the data model R. That is, a model is given by

LDA(a, bδ) with bδ = (1 − δ)b + δbptb with 0 < δ < 1. We choose bptb as we did for b; the

value is drawn independently of b. We set the perturbation parameter for Q as δ = 0.01 and

vary it for P, where the value is chosen from {0.06, 0.11, . . . , 0.51}. Thus, P is morphed from

b to bptb and therefore expected to underperform Q as perturbation δ increases. We run trials

with n = 300. For score estimation, we take m = 10, 000 and t = 4, 000.

Figure 3.7 shows the plot of rejection rates against perturbation parameters. We see that the

power of the LKSD test degrades as the perturbation increases. As P ’s topic becomes close

to bptb, some words in the target’s topic b become rare and therefore fall in the low probability

region of P . This situation leads to increasing variance of the test statistic as δ increases,

because the score function contains the reciprocal 1/p(x). The LKSD test can therefore fail

when the support of the model is severely mismatched to that of the data, since the high variance

of the statistic makes is difficult to detect significant departures from the null. Note that this

observation does not apply to the continuous counterpart as the score can be written as the

gradient of the logarithm of the density, which is typically numerically stable.
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Figure 3.7: Power estimates plotted against perturbation parameters δ. The significance level
α = 0.05; the sample size n = 300. Markers: 3 (the LKSD test); ○ (the MMD test).

3.4.3.3 Comparing topic models for arXiv articles

Our final experiment investigates the test’s performance using the arXiv dataset [Cornell Univer-

sity, 2020]. The dataset consists of meta information of scholarly articles on the e-print service

arXiv. We treat the abstract of an article as a document, and use paper categories to set up a

problem. Specifically, we construct a problem by choosing three paper categories for model

P,Q and the data distribution R. Unlike the preceding experiments, for a model category, we

fit an LDA model to the dataset of abstracts in the category. As the KSD requires the number

of words to be fixed, then for a given data category, we extract abstracts of length no less than

D = 100 and subsample excess words. This process yields a dataset of articles of equal length

D; for each trial, we obtain the data {xi}ni=1 by subsampling from the larger set of articles.

Thus, our problem is to compare two LDA models trained on different article sets, and assess

their fit to the dataset.

In the following experiments, we examine the power of LKSD and MMD tests. We vary the

sample size n from 100 to 500. We fix the dataset category to stat.TH (statistics theory) and

inspect two combinations of model categories. To train an LDA model LDA(a, b), we use the

Gensim implementation [Rehurek and Sojka, 2011] of the variational algorithm of Hoffman

et al. [2010]. For sparsity parameters a, we use the parameter returned by this algorithm; we

point-estimate topics b using the mean of the topics under the variational distribution. The

number of topics is set to 100. The vocabulary set is comprised of words that appear in the

abstracts of three chosen categories. As in the previous experiments, we use the IMQ-BoW

kernel for both tests. We fix the significance level α at 0.05.

As we have seen the numerical instability issue in the previous section, we also consider an

alternative KSD that is stable but computationally more expensive, as mentioned in 3.2.1 and

the supplement (Section 3.B). For this, we take a burn-in size t = 500 and a Markov chain size

m = 1, 000. We denote this method by LKSD-stable.

Probability theory vs Statistical methodology. We choose math.PR (mathematics probability

theory) for P and stat.ME (statistics methodology) forQ. In addition to the taxonomic proximity
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Table 3.3: Rejection rates of the MMD test and the LKSD test in the math.PR vs. stat.ME
experiment. Each result is based on 300 trials.

Sample size n Rejection rates
MMD MMD-extra LKSD LKSD-extra LKSD-stable

100 0.150 0.157 0.333 0.673 0.437
200 0.160 0.167 0.807 0.880 0.845
300 0.197 0.207 0.913 0.980 0.950
400 0.180 0.187 0.950 0.986 0.970
500 0.267 0.263 0.966 0.993 0.983

to stat.TH, the category stat.ME has a larger proportion of articles shared with the target category:

3, 121 of 18, 973 (stat.ME) vs. 2, 884 of 46, 769 (math.PR). Thus, we expect Q to outperform

P. This combination results in a vocabulary set of size L = 126, 190. For score estimation, we

set the burn-in length t to 500 and the Markov chain sample size m to 5, 000. Additionally, we

run the LKSD test with m = 15, 000 (labeled LKSD-extra) and the MMD test with the model

sample size nmodel = 10, 000 (labeled MMD-extra). The nmodel is thresholded at 10, 000 as

the computational cost exceeds that of the LKSD test (in fact, sampling in this case makes the

MMD by an order of magnitude slower due to the large vocabulary size).

Table 3.3 summarizes the result. The MMD test underperforms all the KSD-based tests;

extra sampling did not lead to a significant improvement. We can see that increasing the Markov

chain size m boosts the LKSD test, as it reduces the variance of the score estimator. The low

power of the MMD test indicates that the model difference is too subtle to discern from the

word compositions of generated documents; the LKSD tests offers a different viewpoint based

on the model information.

Table 3.4: Rejection rates of the MMD test and the LKSD test in the cs.LG vs. stat.ME
experiment. Each result is based on 300 trials.

Sample size n Rejection rates
MMD LKSD LKSD-stable

100 1 0.000 0.287
200 1 0.007 0.643
300 1 0.013 0.833
400 1 0.013 0.873
500 1 0.113 0.923

Machine learning vs Statistical Methodology. Our second experiment uses cs.LG (computer

science machine learning) for P , while Q uses the same category as the previous experiment.

With this combination, the vocabulary size L is 208, 671. By the same reasoning as above, the

second model Q is expected to be better than P. We run the same tests as above and compare

their performances.

Table 3.4 shows the result. This experiment serves as a negative case study for the LKSD

test: the MMD tests achieved power 1 for all sample-size choices (MMD-extra is omitted

here), whereas the power of the LKSD test does not exceed even the significance level α for

most sample size settings (LKSD-extra is omitted as increasing the Markov chain size did not
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improve the power). We attribute this failure to the unmatched support of the model P in the test

distribution. This reasoning is supported by the high power of the MMD, as the BoW feature

easily detects deviation of document patterns in this case. Thus, as we noted in the synthetic

experiment in Section 3.4.3.2, the LKSD test fails when there is a severe mismatch in data and

model support. The stable LKSD test approaches the same level as the MMD at n = 500, but

still underperforms. While stable, the KSD used for this test can also suffer from the mismatch

of the support, since it depends on the same density ratio as in the unstable counterpart.

3.5 Conclusion

We have developed a test of relative goodness of fit for latent variable models based on the

kernel Stein discrepancy. The proposed test applies to a wide range of models, since the

requirements of the test are mild: (a) models have MCMC samplers for inferring their latent

variables, and (b) likelihoods have evaluable score functions. The proposed test complements

existing model evaluation techniques by providing a different means of model comparison,

which takes advantage of the known model structure. Our experimental results confirm this

view – the relative MMD test was unable to detect subtle differences between models in several

of our benchmark experiments.

Our asymptotic analysis of the test statistic indicates that the test could suffer from bias if

the mixing of the deployed MCMC sampler is slow. Removing the assumptions on the bias and

the moments in Theorem 3.4 is certainly desirable; we envision that the recent development of

unbiased MCMC [Jacob et al., 2020] could be used to construct an alternative unbiased KSD

estimator, and leave this possibility as future work. While we have focused on comparing two

models, extensions to ranking multiple models are possible as in [Lim et al., 2019]. Finally, the

technique used in this chapter can be applied to other Stein discrepancies requiring the score

function [Barp et al., 2019, Xu and Matsuda, 2020]; one interesting application would be the

KSD for directional data [Xu and Matsuda, 2020], where densities with computable normalizing

constants are scarce.
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3.6 Proofs

This section provides proofs for the results concerning the asymptotic normality of our test

statistic: (a) Theorem 3.4, and (b) an estimator of the variance of a U-statistic and its consistency.

3.6.1 Asymptotic normality of approximate U-statistics

Theorem 3.4 (Asymptotic normality). Let {γt}∞t=1 be a sequence of Borel probability measures

on a Polish space Y and γ be another Borel probability measure. Let
{
Y

(t)
i

}n
i=1

i.i.d.∼ γt, and

for a symmetric function h : Y × Y → R, define a U-statistic and its mean by

U (t)
n =

1

n(n− 1)

∑
i 6=j

h
(
Y

(t)
i , Y

(t)
j

)
, θt = E(Y,Y ′)∼γt⊗γt [h(Y, Y ′)].

Let θ = E(Y,Y ′)∼γ⊗γ [h(Y, Y ′)]. Let νt := E(Y,Y ′)∼γt⊗γt

[
|h̃t(Y, Y ′)|3

]1/3
with h̃t = h − θt,

and assume lim supt→∞ νt < ∞. Assume that σ2
t = 4VarY ′∼γt

[
EY∼γt [h(Y, Y ′)]

]
converges

to a constant σ2. Assume that we have the double limit
√
n(θt − θ) → 0; i.e., for any ε > 0,

there exists N ≥ 1 such that
√
n(θt − θ) ≤ ε for any n, t ≥ N. Then, if σ > 0, we have

√
n
(
U (t)
n − θ

)
d→ N (0, σ2) as n, t→∞,

where d→ denotes convergence in distribution. In the case σ = 0,
√
n(U

(t)
n − θ) → 0 in

probability.

Proof. Recall that (Ω,S,Π) is the underlying probability space, and U (t)
n is a random variable

on it. We show that the cumulative distribution function (CDF) of
√
n(U

(t)
n − θ) converges to

that of a normal distribution.

First we consider the case σ > 0. Note that we can express the CDF as

Π

[
√
n

(
U

(t)
n − θ
σ

)
< τ

]
= Π

[
√
n

(
U

(t)
n − θt + θt − θ

σt

)
<

σ

σt
τ

]

= Fn,t

(
στ −√n(θt − θ)

σt

)

where Fn,t denotes the CDF of
√
n(U

(t)
n − θt)/σt. Let Φ be the CDF of the standard Gaussian

distribution. Then, for τ ∈ R,∣∣∣∣∣Π
[
√
n

(
U

(t)
n − θ
σ

)
< τ

]
− Φ(τ)

∣∣∣∣∣ ≤
∣∣∣∣Fn,t(στ −√n(θt − θ)

σt

)
− Φ

(
στ −√n(θt − θ)

σt

)∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣Φ(στ −√n(θt − θ)
σt

)
− Φ(τ)

∣∣∣∣︸ ︷︷ ︸
(ii)

.

We show that both terms on the RHS converge to zero simultaneously. Let ν = lim supt→∞ νt
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and δ be a fixed constant such that 0 < δ < σ. Note that by the convergence assumptions on

νt and σt, there exists tν,δ ≥ 1 such that νt < ν + δ < ∞ for any t ≥ tν,δ; and there exists

tσ,δ ≥ 1 such that σt > σ − δ > 0 for any t ≥ tσ,δ. By the Berry-Esseen bound for U-statistics

[Callaert and Janssen, 1978], for t ≥ max(tν,δ, tσ,δ) and any n ≥ 2, the term (i) is bounded as

(i) ≤ sup
τ ′

∣∣Fn,t(τ ′)− Φ(τ ′)
∣∣

≤ C
(
νt
σt

)3

n−
1
2

< C

(
ν + δ

σ − δ

)3

n−
1
2 ,

where C is a universal constant. For the term (ii), by the continuity of Φ and our assumptions

on
√
n(θt − θ) and σt, we can make the term (ii) arbitrarily small. Formally, for ε/2 > 0, we

can take Nε/2 ≥ 1 such that the term (ii) is bounded by ε/2 for any n, t ≥ Nε/2. Thus, for any

ε > 0, choosing n and t such that

n ≥ max

((
2C

ε
· ν + δ

σ − δ

)2

, Nε/2

)
,

and t ≥ max(tν,δ, tσ,δ, Nε/2), we have∣∣∣∣∣Π
[
√
n

(
U

(t)
n − θ
σ

)
< τ

]
− Φ(τ)

∣∣∣∣∣ ≤ (i) + (ii) ≤ ε

2
+
ε

2
= ε.

Next, for the case σ = 0, consider the squared error nE(U
(t)
n − θ)2, which is decomposed

as

nE(U (t)
n − θ)2 = nE(U (t)

n − θt)2 + n(θt − θ)2.

The first term is the variance of the U-statistic U (t)
n , and so according to Hoeffding [1948, Eq.

5.18], we have, for any n ≥ 2,

nE(U (t)
n − θt)2 =

(n− 2)

(n− 1)
4VarY∼γt

[
EY ′∼γt [h(Y, Y ′)

]︸ ︷︷ ︸
σ2
t

+
2

(n− 1)
VarY,Y ′∼γt⊗γt [h(Y, Y ′)]

≤ σ2
t +

2

n− 1
VarY,Y ′∼γt⊗γt [h(Y, Y ′)].

We have w = lim supt→∞VarY,Y ′∼γt⊗γt [h(Y, Y ′)] <∞ by the finiteness of (the limit supre-

mum of) the third central moment, and σ2
t → σ2 = 0 by assumption. Therefore, for any ε > 0,

we can take tε,v ≥ 1 such that

VarY,Y ′∼γt⊗γt [h(Y, Y ′)] < w + 1, and σ2
t ≤

ε

4
,

for any t ≥ tε,v. Choosing n ≥ 4(w+ 1)/ε+ 1, we have nE(U
(t)
n − θt)2 ≤ ε/2. For the second
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term, we can take Nε/2 ≥ 1 such that n(θt − θ)2 ≤ ε/2 for any n, t ≥ Nε/2. Thus, having

n, t ≥ max
(
tε,v, 4

w + 1

ε
+ 1, Nε/2

)
leads to nE(U

(t)
n −θ)2 ≤ ε.We have shown nE(U

(t)
n −θ)2 → 0,which implies

√
n(U

(t)
n −θ)→

0 in probability.

3.6.2 Variance of a U-statistic

We first recall known facts about U-statistics. For an i.i.d. sample {yi}ni=1 ∼ R, let us define a

U-statistic

Un =
1

n(n− 1)

∑
i 6=j

h(yi, yj),

where h is a symmetric measurable kernel. According to Hoeffding [1948, Eq. 5.18], the

variance of Un is

Var[Un] =
4(n− 2)

n(n− 1)
ζ1 +

2

n(n− 1)
ζ2, (3.10)

where ζ1 = Vary∼R
[
Ey′∼R [h(y, y′)]

]
and ζ2 = Vary,y′∼R⊗R [h(y, y′)] . To obtain the asymp-

totic variance of the
√
n(Un − E[Un]), we only need the first term ζ1 as nVar[Un] → 4ζ1

(n→∞), assuming E(y,y′)∼R⊗R[h(y, y′)2] <∞.
Recall that our test statistic in Section 3.3.3 requires a consistent estimator of the asymptotic

variance in Corollary 3.6 (see also Theorem 3.4). To accommodate the setting of our test, we

consider the following situation: we are given samples {y(t)
i }ni=1 ∼ Rt where {Rt}∞t=1 is a

sequence of distributions approximating R. This defines a sequence of U-statistics

U (t)
n =

1

n(n− 1)

∑
i 6=j

h
(
y

(t)
i , y

(t)
j

)
,

and the variance Var[U
(t)
n ] is given by the corresponding parameters ζ1,t and ζ2,t (see Eq. (3.10)).

In the following, we address the estimation of σ2 = limt→∞ σ
2
t with σ2

t = 4ζ1,t, assuming

that the limit exists. As Theorem 3.4 suggests, the quantity σ2 is the asymptotic variance of
√
n(U

(t)
n − E[Un]).

In the main body, we define our test using the jackknife estimator

σn,t :=

√√√√(n− 1)

n∑
i=1

(
U

(t)
n,−i − U

(t)
n

)2 (3.11)

(see also the test statistic Tn,t in Section 3.3.3), where U (t)
n,−i the U-statistic computed on the

sample with the i-th data point removed. In the following, we provide a consistency proof for

this estimator.

Jackknife estimator and its consistency. We first revisit the definition of the jackknife

variance estimator and its properties. For simplicity, we first drop the dependency on t. The
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jackknife estimator of the variance of a (scaled) U-statistic
√
n(Un − E[Un]) is defined as

vJn = (n− 1)
n∑
i=1

(Un,−i − Un)2, (3.12)

where Un,−i is the U-statistic computed with the sample with the i-th data point removed.

According to Arvesen [1969, Eq. 25, see also Section 3.I], the jackknife estimator has the

expansion

vJn =
2∑
c=0

an,cÛc, (3.13)

where

an,c =
n− 1

n

(
n− 1

2

)−2{
nI(c > 0)− 4

}(n
c

)(
n− c
2− c

)(
n− 2

2− c

)
with I(·) the indicator function; each term in the sum is a U-statistic

Ûc =

(
n

4− c

)−1 ∑
(α,β,γ)∈Cn,4−c

hsym(yα1 , . . . , yαc , yβ1 , . . . , yβ2−c , yγ1 , . . . , yγ2−c), (3.14)

where the sum is over all combinations of (4− c) integers chosen from {1, . . . , n}. If indices

end with 0 as in (α1, . . . , α0), it should be understood that the corresponding variables are

omitted. The function hsym(yα1 , . . . , yαc , yβ1 , . . . , yβ2−c , yγ1 , . . . , yγ2−c) in (3.14) is defined as

a symmetric kernel

∑
σ∈Σ(α,β,γ)

h̃(yσ(α1), . . . , yσ(αc), yσ(β1), . . . , yσ(β2−c))h̃(yσ(α1), . . . , yσ(αc), yσ(γ1), . . . , yσ(γ2−c))

(4− c)!

with h̃ = h − E[Un] and Σ(α, β, γ) the set of all permutations of given 4 − c integers

(α1, . . . , αc, β1, . . . , β2−c, γ1, . . . , γ2−c). Note that we have E[Ûc] = ζc with ζ0 = 0. For

large n, the coefficient an,c behaves as

an,c ≈ 4
1

c!

(
1

(2− c)!

)2

n1−c (c ≥ 1),

an,0 = O(1).

Therefore, if Eh(y, y′)2 <∞, the estimator vJn converges to the asymptotic variance 4ζ1 of the

U-statistic
√
n(Un − E[Un]), a.s.

Next, we recover the dependency on t and define a jackknife estimator

vJn,t = (n− 1)

n∑
i=1

(
U

(t)
n,−i − U (t)

n

)2
,

which is the estimator in (3.12) computed on the sample
{
y

(t)
i

}n
i=1
. The following lemma

provides the required consistency.
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Lemma 3.8. Assume

lim sup
t→∞

E(y1,y2)∼Rt⊗Rt [h(y1, y2)4] <∞.

Let σ2 = limt→∞ σ
2
t where σ2

t = 4ζ1,t = 4Vary∼Rt
[
Ey′∼Rt [h(y, y′)]

]
. Then, we have the

double limit E
(
vJn,t − σ2

)2 → 0 as n, t→∞.

Proof. Note that we have the following relation

E[(vJn,t − σ2)2] = E[(vJn,t − E[vJn,t])
2] + (E[vJn,t]− σ2)2

= E[(vJn,t − E[vJn,t])
2]︸ ︷︷ ︸

variance

+ {E[vJn,t]− σ2
t }2︸ ︷︷ ︸

(squared) bias

−2
(
E[vJn,t]− σ2

t

)(
σ2
t − σ2

)
+
(
σ2
t − σ2

)2
.

(3.15)

The decomposition indicates that as long as the bias and the variance terms in (3.15) decay

as n, t → ∞, the estimator vJn,t serves as a consistent estimator of σ2 (note that we have

σ2
t − σ2 → 0 by assumption). In the following, we show that the assertion holds.

For the bias term, note that by the decomposition (3.13), we have

E[vJn,t] = σt +O(n−1)ζ2,t.

By the assumption on the fourth moment, the limit supremum of ζ2,t = VarRt⊗Rt [h(y1, y2)2]

is finite. Therefore, for any ε > 0, we can take Nb,ε ≥ 1 such that (E[vJn,t] − σt)2 < ε for

n, t ≥ Nb,ε.

For the variance term, using the decomposition (3.13), we have

E[(vJn,t − E[vJn,t])
2
]

=

2∑
c,c′=0

ac,nac′,nCov[Û (t)
c , Û

(t)
c′ ]

≤
(

2∑
c=0

ac,nVar[Û (t)
c ]1/2

)2

,

where Û (t)
c is the U-statistic Ûc computed with the sample {y(t)

i }ni=1. According to Serfling

[2009, Section 5.2.1, Lemma A],

Var[Û (t)
c ] ≤ 4− c

n
Var[hsym(yα1 , . . . , yαc , yβ1 , . . . , yβ2−c , yγ1 , . . . , yγ2−c)],

where the variance is taken with respect to the product measure ⊗4−c
i=1Rt. Note that the variance

on the RHS is bounded as, for each c ∈ {0, 1, 2},
Var[hsym(y1y2, y3, y4)] ≤ E

[
h̃t(y1, y2)4

]
(c = 0),

Var[hsym(y1, y2, y3)] ≤ E
[
h̃t(y1, y2)4

]
(c = 1), and

Var[hsym(y1, y2)] ≤ E[h̃t(y1,y2)4] (c = 2),

where h̃t = h−ERt⊗Rt [h(y1, y2)].By the assumption lim supt→∞ E(y1,y2)∼Rt⊗Rt [h(y1, y2)4] <
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∞, the above observation implies that for each c ∈ {0, 1, 2},

lim sup
t→∞

Var⊗4−c
i=1Rt.

[hsym(yα1 , . . . , yαc , yβ1 , . . . , yβ2−c , yγ1 , . . . , yγ2−c)] <∞.

Therefore, taking appropriate n, t diminishes Var[Û
(t)
c ]. In consequence, as for the bias term,

we can take Nv,ε ≥ 1 such that E[(vJn,t − E[vJn,t])
2
]
< ε for n, t ≥ Nv,ε. Thus, the bias and

variance terms can be made arbitrarily small by taking n, t ≥ max(Nv,ε, Nb,ε).

3.A Kernel Stein discrepancy for bounded domains

We detail the case where data take values in a bounded open set X ⊂ RD. For a density

p, we require that p ∈ C(X̄ ) ∩ C1(X ) with X̄ the closure of X . The kernel is assumed

to satisfy the same conditions everywhere; i.e., k(x, ·) ∈ C(X̄ ) ∩ C1(X ). Additionally, we

require the following conditions : (a) The domain X is assumed to be sufficiently regular –

we assume that X is convex or C1; (b) for any boundary point x ∈ ∂X , p(x)k(x, ·) = 0;

and (c) Ex∼P ‖sp(x)‖2 < ∞, Ex∼P [k(x, x)1/2] < ∞, and Ex∼P [k12(x, x)1/2] < ∞. The

first assumption allows us to use the divergence theorem, and the third one ensures the P -

integrability of 〈sp, f〉 and 〈∇, f〉 [Steinwart and Christmann, 2008, Corollary 4.36]. By the

divergence theorem, the second condition on the kernel implies that any f = (f1, . . . fD)

of the corresponding RKHS F satisfies Ex∼P [AP f(x)] = 0 [Gorham and Mackey, 2015,

Proposition 1]. We can fulfill the required condition by choosing a kernel kϕ defined by

kϕ(x, x′) = ϕ(x)ϕ(x′)k(x, x′) where ϕ : X → [0,∞) such that ϕ ∈ C(X̄ ) ∩ C1(X ) and

ϕ(x) = 0 for x ∈ RD \ X . The KSD is then defined similarly as in Section 3.2.

3.B Numerically stable Stein operator

As we note in Section 3.2, the Stein operator of Yang et al. [2018] can induce numerically

unstable functions, as it contains the reciprocal 1/p(x). This appendix provides a more stable

alternative using the Zanella-Stein operator proposed by Hodgkinson et al. [2020]. We focus

on the Barker-Stein operator of Shi et al. [2022] below, but other operators can be considered

depending on the application. For instance, when the size L of the discrete domain is small

(e.g., binary domains such as adjacent matrices of graphs), we may use the Gibbs-Stein operator

[Bresler and Nagaraj, 2019, Reinert and Ross, 2019, Shi et al., 2022], as it is manageable to

perform the required conditional expectation.

3.B.1 Univariate case

We first consider the univariate case X = {0, . . . , L− 1} with L > 1, as the multivariate case

builds on the construction here. Let be a density p on X . The Zanella-Stein operator is defined

by

AUni
p f(x) =

∑
y∈Nx

a

(
p(y)

p(x)

)(
f(y)− f(x)

)
,
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where the function a : [0,∞) → [0,∞) is referred to as a balancing function, which is

assumed to satisfy a(0) = 0, and a(r) = ra(1/r) for r > 0. The symbol Nx ⊂ X denotes the

neighborhood of x. The operator is derived from the infinitesimal generator of a Markov jump

process with the jump rate given by a as a function of p(y)/p(x). In the following, we use the

Barker balancing function a(r) = r/(1 + r); this results in

a

(
p(y)

p(x)

)
=

p(y)
p(x)

1 + p(y)
p(x)

=
p(y)

p(x) + p(y)
.

This choice of the balancing function was proposed by Shi et al. [2022] and is referred to as

the Barker-Stein operator. The above ratio takes values between 0 and 1 (it saturates to one as

the ratio p(y)/p(x) gets large), and is thus numerically stable even when p(x) is close to zero.

The neighborhood Nx is chosen such that the process can transit from any starting point to any

other point, and admits p as the invariant distribution [see Example 2 of Hodgkinson et al., 2020,

for details]. In the following, Nx is assumed to be the two adjacent points of x with respect to

the cyclic difference. This construction is not limited to D = 1, but it can be challenging to

compute the sum in a high-dimensional space when applied to the KSD, since the number of

neighbors typically grows with the dimension.

3.B.2 Multivariate case

We next consider the multivariate caseX = {0, . . . , L−1}D withD > 1.We follow the product

space construction of a Stein operator [Hodgkinson et al., 2020, Proposition 2]. We define an

operator Ap that acts on a D-dimensional vector-valued function f = (f1, . . . , fD) : X → RD

by

Apf(x) =
D∑
d=1

AUni
pd(·|x−d)Pxd fd(x),

where pd is the distribution given by conditioning on all but the d-th coordinate, x−d =

(x1, . . . , xd−1, xd+1, . . . xD), and Pxd is the projection defining a function on the d-th coordinate

by freezing all the other coordinates; i.e.,

Pxd f : y ∈ {0, . . . , L− 1} 7→ f(x1, . . . xd−1, y, xd+1, . . . , xD).

We can define the KSD using a vector-valued RKHS F =
∏D
d=1Fk with Fk the RKHS of a

scalar kernel k : X × X → R. With this choice, we can define the KSD as in 3.2.1; in particular,

for this operator, we have

KSD2 (P‖R) = Ex,x′∼R⊗R[hp(x, x
′)]

where

hp(x, y) =

D∑
d=1

AUni
x,pd(·|x−d) ⊗AUni

y,pd(·|y−d)k(x, y)
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for any x, y ∈ X , with AUni
∗,pd(·|x−d) acting on ∗. Specifically, the Stein kernel hp is given by

hp(x, y) =

D∑
d=1

∑
ν∈Nx,d

∑
ν̃∈Ny,d

aν(x)aν(y){k(ν(x), ν̃(y)) +k(x, y)−k(x, ν̃(y))−k(ν(x), y)}.

Here,Nx,d denotes the set of neighborhood points with respect to the dth coordinate; we identify

this as a set of functions, each of which maps x to the corresponding neighboring point. The

weight aν is defined by

aν(x) = a

(
p(ν(x))

p(x)

)
.

From this expression, we can conclude that the KSD is possible to estimate as long as we can

evaluate aν . Note that a single evaluation of the Stein kernel hp requires O(DN) with N being

the maximum of the sizes of the neighborhood Nx,d (in our case, N = 2).

3.B.3 Application to latent variable models

The KSD defined above admits essentially the same treatment as in the main body. The Stein

operator above requires evaluating the marginal density p(x) =
∫
p(x|z)PZ(dz). Following the

approach in Section 3.2.2, we can circumvent this issue as

aν(x) =
p(ν(x))

p(x) + p(ν(x))

=

∫
p(ν(x)|z)

p(x|z) + p(ν(x)|z)
p(x|z) + p(ν(x)|z)
p(x) + p(ν(x))

PZ(dz).

The weight aν(x) can be estimated by sampling from the modified posterior

PZ,ν(dz|x) ∝ {p(x|z) + p(ν(x)|z)}PZ(dz).

Given a sample z = {zi}mi=1 for simulating PZ,ν(dz), we can estimate aν(x) by

aν(x|z) :=
1

m

m∑
i=1

p(ν(x)|zi)
p(x|zi) + p(ν(x)|zi)

,

which is possible to evaluate as long as the likelihood p(x|z) is tractable. In contrast to the

difference operator KSD, this approach requires simulating O(D) posterior distributions, as

each dimension generates distinct modified posterior distributions. Thus, while numerically

stable, this approach is computationally more expensive. The user might want to consider this

limitation when they choose between the operator defined here and the difference Stein operator

considered in the main body.
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3.C Integrability condition for the KSD expression

We give sufficient conditions for the integrability condition

E(x,z),(x,z′)∼R̃⊗R̃|Hp[(x, z), (x
′, z′)]| <∞. (3.16)

By the triangle inequality, we have

E(x,z),(x,z′)∼R̃⊗R̃|Hp[(x, z), (x
′, z′)]|

≤ E(x,z),(x,z′)∼R̃⊗R̃

{∣∣∣sp(x|z)>sp(x
′|z′)k(x, x′)

∣∣∣+
∣∣∣sp(x|z)>k1(x′, x)

∣∣∣
+
∣∣∣k1(x, x′)>sp(x

′|z′)
∣∣∣+
∣∣k12(x, x′)

∣∣} .
≤ E(x,x′)∼R⊗R

{
Ez|x ‖sp(x|z)‖2 Ez′|x′

∥∥sp(x′|z′)∥∥2
k(x, x′) + Ez|x ‖sp(x|z)‖2

∥∥k1(x′, x)
∥∥

2

+
∥∥k1(x, x′)

∥∥
2
Ez′|x′

∥∥sp(x′|z′)∥∥2
+
∣∣k12(x, x′)

∣∣} .
From this, the integrability condition is satisfied if

1. E(x,x′)∼R⊗R
[
Ez|x ‖sp(x|z)‖2 Ez′|x′ ‖sp(x′|z′)‖2 k(x, x′)

]
<∞,

2. E(x,x′)∼R⊗R
[
Ez|x ‖sp(x|z)‖2 ‖k1(x′, x)‖2

]
<∞, and

3. E(x,x′)∼R⊗R |k12(x, x′)| <∞.

Note that for a finite domain X = {0, · · · , L− 1}D, these conditions are trivial, as

Ez|x ‖sp(x|z)‖2 =

∫ ‖∆xp(x, z)‖2
p(x, z)

p(x, z)

p(x)
dPZ(z)

≤ 2

p(x)
≤ max

x∈X

2

p(x)
.

In what follows, we consider continuous-valued x. As mentioned in the main body, the third

condition is mild, and fulfilled by e.g., the exponentiated quadratic kernel. Unfortunately we

do not have a handy test for the other requirements, and therefore deal with specific scenarios

below. To this end, we clarify the growth of Ez|x ‖sp(x|z)‖2 as a function of x so that the user

can check the required conditions above.

Exponential families with bounded natural parameters. Let us first consider an exponential

family likelihood p(x|z) ∝ exp
(∑S

s=1 Ts(x)ηs(z)
)
, Ts : RD → R, ηs : Z → R for 1 ≤ s ≤ S.

For this likelihood, we have

Ez|x ‖sp(x|z)‖2 = Ez|x

∥∥∥∥∥
S∑
s=1

ηs(z)∇xTs(x)

∥∥∥∥∥
2

≤
S∑
s=1

‖∇xTs(x)‖2 Ez|x|ηs(z)|.

The conditions concerning the score function are satisfied provided that we have
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1. E(x,x′)∼R⊗R
[
‖∇xTs(x)‖2 Ez|x|ηs(z)| ‖∇xTs′(x′)‖Ez′|x′ |ηs′(z)|k(x, x′)

]
<∞

for any s, s′ ∈ {1, ..., S}.

2. E(x,x′)∼R⊗R
[
‖∇xTs(x)‖2 Ez|x|ηs(z)| ‖k1(x′, x)‖2

]
<∞ for any s ∈ {1, ..., S}.

Let a(x) := ‖∇xTs(x)‖2 Ez|x|ηs(z)|. These conditions can be verified if both the kernel and its

derivative decay faster than a(x). This can be challenging in practice as we have a posterior

expectation in a(x) whose dependency on x may not be easily analyzed. If we restrict the

likelihood to have bounded parameters (i.e., ηs(z) is bounded), then the posterior expectation is

bounded, so we only need to choose a kernel such as

k(x, x′) =
1√

1 +
∑S

s=1 ‖∇xTs(x)‖2
1√

1 +
∑S

s=1 ‖∇xTs(x′)‖22
κ(x, x′)

for a given kernel κ. We summarize this observation in the following lemma:

Lemma 3.9. Consider a latent variable model with likelihood p(x|z) ∝ exp
(∑S

s=1 Ts(x)ηs(z)
)
,

Ts : RD → R, ηs : Z → R for 1 ≤ s ≤ S and an arbitrary prior PZ . If supz∈Z ns(z) <∞,
then

Ez|x ‖sp(x|z)‖2 ≤ max
s

sup
z∈Z

ns(z) ·
S∑
s=1

‖∇xTs(x)‖2 .

Furthermore, for a given bounded kernel κ, reweighting it by

k(x, x′) =
(

1 +

S∑
s=1

‖∇xTs(x)‖2
)−δ(

1 +

S∑
s=1

∥∥∇xTs(x′)∥∥2
)−δ

κ(x, x′)

with some δ ≥ 1/2 ensures that the condition (3.16) holds.

The boundedness assumption on the natural parameter ηs(z) may not be satisfied for some

models. For instance, if we consider a normal mixture model with prior on the mean of the

mixture component, the support of the prior could be unbounded.

Location-scale mixtures. Alternatively, we consider a location-scale family given by a radial-

basis function ψ : [0,∞)→ (0,∞),

p
(
x|z = (µ, σ2)

)
∝ 1

σD
ψ

(
‖x− µ‖22

σ2

)
,

with prior Pµ,σ placed on the parameters. Here, we make the following assumptions:

Assumption 3.10.

The function ψ is monotonically decreasing. The derivative-to-function ratio |ψ′/ψ| is

uniformly upper-bounded by a constant Mψ > 0.

Assumption 3.11.
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The prior satisfies
∫
‖µ‖22/σ4dPµ,σ(µ, σ) < ∞ and

∫
σ−4dPσ(σ) < ∞. Furthermore, it

satisfies ∫ (
ψ(‖x− µ‖22/σ2)

σD

)2

dPµ,σ(µ, σ) <∞.

Isotropic normal- and Student’s t-densities satisfy Assumption 3.10. As ψ is monotonically

decreasing, the third condition in Assumption 3.11 can be verified alternatively by∫
1

σD
dPσ(σ) <∞.

These assumptions effectively prevent the density from being peaky and thus control the growth

of the score function.

Under these assumptions, we can quantify the growth of the score function as follows.

Lemma 3.12. Consider a latent variable model having likelihood

p(x|z = (µ, σ2)) ∝ 1

σD
ψ

(
‖x− µ‖22

σ2

)

with radial-basis function ψ : [0,∞)→ (0,∞) and prior Pµ,δ. Under Assumptions 3.10, 3.11,

in the limit of ‖x‖2 →∞, we have

Ez|x ‖sp(x|z)‖2 = O(‖x‖2).

Furthermore, for a given bounded kernel κ, reweighting it by

k(x, x′) =
(
1 + ‖x‖22

)−δ(
1 + ‖x′‖22

)−δ
κ(x, x′)

with some δ ≥ 1/2 ensures that the condition (3.16) holds.

Proof. First, note that we have

Ez|x ‖sp(x|z)‖2

=

∫
2

σD+2
‖x− µ‖2

∣∣∣∣ψ′(‖x− µ‖22/σ2)

ψ(‖x− µ‖22/σ2)

∣∣∣∣ ψ(‖x− µ‖22/σ2)∫
1
σD
ψ
(
‖x− µ‖22/σ2

)
dPµ,σ(µ, σ)

dPµ,σ(µ, σ)

≤ 2Mψ

∫
1

σD+2 ‖x− µ‖2ψ(‖x− µ‖22/σ2)dPµ,σ(µ, σ)∫
1
σD
ψ
(
‖x− µ‖22/σ2

)
dPµ,σ(µ, σ)︸ ︷︷ ︸

g(x)

.

We therefore show that the growth of the function g is of the order of ‖x‖2 by examining the

limit

lim
‖x‖2→∞

g(x)

‖x‖2
.

Let p̃x(µ, σ) = ψ(‖x− µ‖22/σ2)/σD. For the numerator of g, note that we have

∫ ‖x− µ‖2
σ2

ψ(‖x− µ‖22/σ2)

σD
dPµ,σ(µ, σ) ≤

√∫ (
‖x− µ‖2/σ2

)2
dPµ,σ(µ, σ) · ‖p̃x‖L2(Pµ,σ)
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Asm.3.11
< ∞,

where the first inequality is given by the Cauchy-Schwartz inequality. Thus,

g(x)

‖x‖2
≤

√∫ (
‖x− µ‖2/σ2

)2
dPµ,σ(µ, σ) · ‖p̃x‖L2(Pµ,σ)

‖x‖2‖p̃x‖L1(Pµ,σ)

≤

√∫ (
‖x− µ‖2/σ2

)2
dPµ,σ(µ, σ)

‖x‖22

≤
√∫

(‖x‖2 + ‖µ‖2)2

‖x‖22
1

σ4
dPµ,σ(µ, σ). (3.17)

The second line is obtained with the relation between the L1- and L2-norms: ‖p̃x‖L1(Pµ,σ) ≤
‖p̃x‖L2(Pµ,σ). The function inside the integral in (3.17) is monotonically decreasing at each

(µ, σ) as

lim
‖x‖2→∞

(
1 + 2

‖µ‖2
‖x‖2

+
‖µ‖22
‖x‖22

)
1

σ4
↘ 1

σ4
,

and by Assumption 3.11, it is integrable when ‖x‖2 = 1. Thus, by the monotone convergence

theorem, we have

lim
‖x‖2→∞

g(x)

‖x‖2
≤
√∫

1

σ4
dPσ(σ),

where the upper-bound is finite by Assumption 3.11, indicating that g(x) = O(‖x‖2). Therefore,

for the location-scale family, we have that the score part grows at the speed at most of ‖x‖2.

Therefore, modifying kernel κ by

k(x, x′) =
(
1 + ‖x‖22

)−δ(
1 + ‖x′‖22

)−δ
κ(x, x′) with δ ≥ 1

2

ensures that the decay of the kernel is as fast as the score part.

3.D Convergence assumption in the asymptotic normality proof

To apply Theorem 3.4 to the KSD estimate, we need to verify that the bias∣∣∣Ey,y′∼R̃t⊗R̃tH̄p(y, y
′)− Ey,y′∼R̃⊗R̃Hp(y, y

′)
∣∣∣ (3.18)

decays at some rate. Here, R̃t(d(x, z)) = P
(t)
Z (dz|x)R(dx) (see the paragraph before Theorem

3.4 for the notation).

In what follows, we assume that the MCMC sampler satisfies∣∣∣Ez(t)|xs̄p,d(x|z(t))− sp,d(x)
∣∣∣ ≤ r(t, x) := M(x)r(t), for d = 1, . . . , D, (3.19)

for some function r(t) : N→ (0, 1] decreasing to 0 in t and a positive function M(x), where

s̄p,d denotes the d-th element of the conditional score s̄p (the same rule applies to sp). There
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is usually dependency in M(x) on the initial state of the chain, but this is suppressed here for

simplicity. This assumption can be understood as the convergence of the t-step transition law

of the Markov chain P (t)
Z (dz|x) to the target PZ(dz|x) in terms of the test functions sp,d(x|·).

The convergence can then be checked with the assumption that the test functions belong to a

certain class, and the upper-bound of (3.19) can be stated as a worst-case convergence rate in

that class. For example, the convergence in total variation distance corresponds to the class of

nonnegative measurable function bounded uniformly by 1.

A specification of the decay rate r and the function class relates the condition (3.19) to

standard notions of ergodicity studied in the Markov chain literature [Roberts and Rosenthal,

2004, Meyn et al., 2009]. For instance, suppose that we have the geometric rate r(t) = ρt

for some 0 < ρ < 1, and that the function class is such that all members are measurable and

bounded uniformly by a function V : Z → [1,∞). Then, the corresponding convergence is

known as V -uniform convergence (if V ≡ 1, this corresponds to the uniform ergodicity) [Meyn

et al., 2009, Chapter 16].

We can reduce the convergence of the bias (3.18) to that of the score estimate (3.19). To see

this assertion, we first note that∣∣∣The first term of
(
Ey,y′∼R̃t⊗R̃tH̄p(y, y

′)− Ey,y′∼R̃⊗R̃H̄p(y, y
′)
)∣∣∣

≤ Ex,x′

∣∣∣∣∣k(x, x′)
D∑
d=1

{
Ez(t)|xs̄p,d(x|z(t))Ez′(t)|x′ s̄p,d(x

′|z′(t))− sp,d(x)sp,d(x
′)
}∣∣∣∣∣

≤
D∑
d=1

Ex,x′
[
k(x, x′)

{∣∣∣Ez(t)|xs̄p,d(x|z(t))
∣∣∣ r(t, x′) + r(t, x)

∣∣sp,d(x′)∣∣}]
≤

D∑
d=1

Ex,x′
[
k(x, x′)

{
r(t, x)r(t, x′) + r(t, x′) |sp,d(x)|+ r(t, x)

∣∣sp,d(x′)∣∣}]
≤ Dr(t)2Ex,x′ [k(x, x′)M(x)M(x′)] + 2r(t)

D∑
d=1

Ex.x′
[
k(x, x′)M(x′)

∣∣sp,d(x′)∣∣] .
That is, if Ex,x′ [k(x, x′)M(x)M(x′)] < ∞ and

∑D
d=1 Ex.x′ [k(x, x′)M(x′) |sp,d(x′)|] < ∞,

the difference in the first terms can be bounded by r(t). A similar argument can be applied to

the second and third terms. The constant M(x) in the bound in (3.19) often depends on certain

properties of the target PZ(dz|x). If those properties hold uniformly over x (i.e., M(x) can be

treated as a constant), then the validation of these conditions is straightforward. A concrete

example of such properties is strong log-convexity and having a Lipschitz continuous gradient

of the target (assuming the target is given by a density p(z|x)) [Dalalyan, 2017, Dwivedi et al.,

2019, Bou-Rabee et al., 2020]. In this situation, the bias (3.18) is determined by the rate r(t)

at which the score function converges. Hence, t has to grow as a function of n such that

t(n) = O{r−1(n−s)} with s > 1/2 to apply Theorem 3.4.
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3.E The maximum mean discrepancy relative goodness-of-fit test

We provide the detail of the MMD relative goodness-of-fit test proposed by Bounliphone et al.

[2016] and describe our modification to correct for underestimation of the variances required in

the test (see Appendix 3.J.3).

Given a sample {zi}nRi=1
i.i.d.∼ R and two competing models P,Q, the relative MMD test is

defined as follows:

H0 : MMD(P,R) ≤ MMD(Q,R) (null hypothesis),

H1 : MMD(P,R) > MMD(Q,R) (alternative).

Note that here we use a different symbol for the data in the main body (there, the data variable

is x). Their procedure does not consider the case where the sample size nR does not match the

sizes nP , nQ of respective samples {xi}nPi=1, {yi}
nQ
i=1 from P and Q. Therefore, we provide the

test procedure accommodating this case.

The test statistic is defined by the difference between estimates of the squared MMDs

M̂MD2(P,R)− M̂MD2(Q,R)

=
1(
nP
2

) 1(nQ
2

) 1(
nR
2

) ∑
ix1<ix2

∑
iy1<iy2

∑
iz1<iz2

`diff(xix1 , xix2 ; yiy1 , yiy2 ; ziz1 , ziz2),

where

`diff(x, x′; y, y′; z, z′) = `(x, x′; z, z′)− `(y, y′; z, z′),

and ` is the kernel from Section 2.2. This statistic is a three-sample U-statistic; its asymptotic

distribution is normal under the same assumptions on the relations between the models and

data distribution as in the main body (the second paragraph of Section 3.3.1). Let nsum =

nP + nQ + nR. Assume the following growth condition on the sample sizes

nsum

nP
→ ρ2

P ,
nsum

nQ
→ ρ2

Q, and
nsum

nR
→ ρ2

R

with finite constants ρP , ρQ, and ρR. Assume E[`diff(x, x′; y, y′; z, z′)2] <∞. Then, according

to Kowalski and Tu [2007, Theorem 3, p.168], the limit of (nP , nQ, nR) gives

√
nsum

[{
M̂MD2(P,R)− M̂MD2(Q,R)

}
− {MMD2(P,R)−MMD2(Q,R)}

]
d→ N (0, σ2

P,Q,R),

where

σ2
P,Q,R = 4

(
ρ2
PVarx [E[`diff |x]] + ρ2

QVary [E[`diff |y]] + ρ2
RVarz [E[`diff |z]]

)
,

with

E[`diff |x] = E[`diff(x, x′; y, y′; z, z′)|x],
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and the same notation applies to the conditional expectations of `diff of y and z.

With a consistent estimator σ̂P,Q,R, Bounliphone et al. [2016] proposed an asymptotically

level-α test that rejects the null hypothesis if M̂MD2(P,R)−M̂MD2(Q,R) ≥ (σ̂P,Q,R/
√
nsum)·

τ1−α with τ1−α the (1 − α)-quantile of the standard normal distribution. We found that the

estimator given by Bounliphone et al. [2016] tends to underestimate the target variance, and

that their test exceeded the nominal level in some problems where two models are close to each

other. We therefore consider another estimator for our experiments, as described below.

Variance estimators Following are the variances required for σ2
P,Q,R :

Varx [E[`diff |x]] = Varx
[
E[`(x, x′; z, z′)|x]

]
= Varx

[
Ex′,z[k(x, x′)− k(z, x)|x]

]
,

Vary [E[`diff |y]] = Vary
[
E[`(y, y′; z, z′)|y]

]
= Vary

[
Ez,y′ [k(y, y′)− k(z, y)|y]

]
, and

Varz [E[`diff |z]] = Varz
[
E[`(x, x′; z, z′)− `(y, y′; z, z′)|z]

]
= Varz [Ex,y[k(z, x)− k(z, y)|z]] .

The first two quantities are symmetric in terms of x and y, and therefore we only need to

consider one of them. An estimator for the first variance is given by

Varx

Ex′,z[k(x, x′)− k(z, x)|x]︸ ︷︷ ︸
f(x)

 ≈ 1

nP (nP − 1)

∑
i 6=j

(
f̂i(xi)− f̂j(xj)

)2

2
, (3.20)

where f̂i(xi) is an approximation to f(xi) defined by

f̂i(xi) =
1

(nP − 1)

∑
l 6=i

k(xl, xi)−
1

nR

nR∑
l=1

k(zl, xi).

We similarly estimate the third variance using

Varz

Ex,y[k(z, x)− k(z, y)|z]︸ ︷︷ ︸
g(z)

 ≈ 1

nR(nR − 1)

∑
i 6=j

(ĝi(zi)− ĝj(zj))2

2
, (3.21)

where

ĝi(zi) =
1

nP

nP∑
l=1

k(xl, zi)−
1

nQ

nQ∑
l=1

k(yl, zi) (≈ g(zi)) .

The estimators (3.20) and (3.21) are simple to compute and always nonnegative. The consistency

of these estimators can be checked by expanding the expressions. The derivation is tedious, and

therefore we only prove it for (3.20).

Lemma 3.13. Assume Ex,x′∼P⊗P [k(x, x′)2] < ∞ and Ex,x′∼P⊗R[k(x, z)2] < ∞. Then, Eq.
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(3.20) estimates

Varx
[
Ex′,z[k(x, x′)− k(z, x)|x]

]
consistently in the limit of (nP , nR) such that the ratio nP /nR converges to a finite constant.

Lemma 3.14. Assume that the following quantities are finite:

Ex,z∼Q⊗R[k(x, z)2], Ey,z∼P⊗R[k(y, z)2], and Ez,z′∼R⊗R[k(z, z′)2].

Then, Eq. (3.21) estimates

Varz [Ex,y[k(z, x)− k(z, y)|z]]

consistently in the limit of (nP , nQ, nR) such that the ratios nP /nR and nQ/nR converge to

finite constants.

Proof. Note that the estimator (3.20) is the (approximate) sample variance

1

nP − 1


nP∑
i=1

f̂i(xi)
2 − nP

(
1

nP

nP∑
i=1

f̂i(xi)

)2
 .

Showing the consistency is equivalent to proving the following limits (the symbol
p→ denotes

convergence in probability):

1

nP

nP∑
i=1

f̂i(xi)
p→ Ex[f(x)] and

1

nP

nP∑
i=1

f̂i(xi)
2 p→ Ex[f(x)2].

The first limit is immediate as

1

nP

nP∑
i=1

f̂i(xi) =
1

nP (nP − 1)

∑
l 6=i

k(xl, xi)−
1

nP

1

nR

nR∑
l=1

k(zl, xi),

which is a U-statistic of Ex[f(x)].

For the second convergence claim, we expand the expressions as follows:

f̂i(xi)
2 =

1

(nP − 1)2

∑
j 6=i

∑
l 6=i

k(xj , xi)k(xl, xi) +
1

n2
R

∑
j,j′

k(zj , xi)k(zj′ , xi)

− 2
1

(nP − 1)nR

∑
j 6=i

nR∑
l=1

k(xj , xi)k(zl, xi)

=
(nP − 2)

(nP − 1)

1

(nP − 1)(nP − 2)

∑
j 6=i

∑
l 6=i,j

k(xj , xi)k(xl, xi)

− 1

(nP − 1)2

∑
j 6=i

k(xj , xi)
2

︸ ︷︷ ︸
A

+
1

n2
R

∑
j 6=j′

k(zj , xi)k(zj′ , xi)
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+
1

n2
R

∑
j

k(zj , xi)
2

︸ ︷︷ ︸
B

−2
1

(nP − 1)nR

∑
j 6=i

nR∑
l=1

k(xj , xi)k(zl, xi), and

E[f(xi)
2] = Exi

[
Ex′ [k(xi, x

′)|xi]2 + Ez[k(z, xi)|xi]2 − 2Ex′ [k(xi, x
′)|xi]Ez[k(z, xi)|xi]

]
.

Note that the terms in n−1
P

∑nP
i=1 f̂i(xi)

2 corresponding to A and B above vanish in the limit,

since by the law of large numbers for U-statistics,

1

nP (nP − 1)

nP∑
i=1

∑
j 6=i

k(xj , xi)
2 p→ Ex[k(x, xi)

2] <∞ and

1

nPnR

∑
i,j

k(zj , xi)
2 p→ E[k(x, z)2] <∞.

The other three terms are U-statistics (up to scaling negligible in the limit) of their counterparts

in Ex[f(x)2]. Thus, by the same reasoning, the second limit holds.

3.F MMD and KSD for Gaussian distributions

We provide explicit forms of MMD and KSD measured for Gaussian distributions. These results

are used in constructing the PPCA experiment in Section 3.4 in the main body. In the process,

we also obtain an understanding of the role of the reproducing kernel in the KSD.

3.F.1 MMD

This section provides an explicit formula for MMD between two normal distributions, defined

by the exponentiated quadratic kernel

k(x, x′) = exp

(
−‖x− x′‖22

2λ2

)
,where λ > 0.

The MMD expression in this setting has been shown [see e.g., Sriperumbudur et al., 2012,

Example 3]. We use this formula to compute the difference of MMDs so that we can construct a

problem as in Section 3.4.1.

Lemma 3.15. Let k(x, x′) = exp
{
−‖x− x′‖22 /(2λ2)

}
with λ > 0. For threeD-dimensional

Gaussian distributions P = N (0,Σp), Q = N (0,Σq), and R = N (0,Σr) with full-rank

covariance matrices, we have

MMD2(P,R)−MMD2(Q,R) = λD

 1√∣∣2Σp + λ2I
∣∣ − 1√

2Σq + λ2I
∣∣

− 2

 1√∣∣Σp + Σr + λ2I)
∣∣ − 1√∣∣Σq + Σr + λ2I

∣∣
 ,
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where |·| denotes the determinant.

Note that we can numerically evaluate this expression given covariance matrices. For

completeness, we provide a proof below.

Proof. Recall that the MMD between two distributions P,R is given by

MMD2(P,R) = E(x,x′)∼P⊗P [k(x, x′)]− 2Ex∼P,x′∼R[k(x, x′)] + E(x,x′)∼R⊗R[k(x, x′)].

Let p(x) = N (x;µp,Σp), r(x) = N (x;µr,Σr). Note that when properly scaled, the exponenti-

ated quadratic kernel can be also seen as a Gaussian density function. Therefore, by convolution,

we have

Ex′∼P [k(x, x′)] = (2πλ2)D/2N (x;µp,Σp + λ2I).

Then, the first term is

Ex,x′∼P⊗P [k(x, x′)] =

∫
Ex′∼P [k(x, x′)]N (x;µp,Σp)dx

= (2πλ2)D/2
∫
N (x;µp,Σp + λ2)N (x;µp,Σp)dx

= λD

√ ∣∣Σ̃p

∣∣∣∣(Σp + λ2I)
∣∣∣∣Σp

∣∣ exp

(
1

2

{
µ̃>p Σ̃−1

p µ̃p − µ>p (Σp + λ2I)−1µp − µ>p Σ−1
p µp

})
,

where |·|denotes the determinant, and

Σ̃p =
(
(Σp + λ2I)−1 + Σ−1

p

)−1
, µ̃p = Σ̃p

(
(Σp + λ2I)−1µp + Σ−1

p µp
)
.

The second term is

Ex∼P,x′∼R[k(x, x′)]

= (2πλ2)D/2
∫
N (x;µp,Σp + λ2I)N (x;µr,Σr)dx

= λD

√ ∣∣Σp,r

∣∣∣∣(Σp + λ2I)
∣∣∣∣Σr

∣∣ exp

(
1

2

{
µp,rΣ

−1
p,rµp,r − µ>p (Σp + λ2I)−1µp − µ>r Σ−1

r µr

})
,

where

Σp,r =
(
Σ−1
r + (Σp + λ2I)−1

)−1
, µp,r = Σp,r

{
(Σp + λ2I)−1µp + Σ−1

r µr
}
.

The third term is similarly obtained, but its form is not necessary for comparing models. We

then impose the condition µp = µr = 0. In this case, we have

MMD2(P,R) = λD

√ ∣∣Σ̃p

∣∣∣∣(Σp + λ2I)
∣∣∣∣Σp

∣∣ − 2

√ ∣∣Σp,r

∣∣∣∣(Σp + λ2I)
∣∣∣∣Σr

∣∣
+ E(x,x)′∼R⊗R[k(x, x′)]
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= λD

 1√∣∣2Σp + λ2I
∣∣ − 2

1√∣∣(Σp + Σr + λ2I|

+ E(x,x)′∼R⊗R[k(x, x′)]

Thus, substituting three Gaussian distributions P = N (0,Σp), Q = N (0,Σq), and R =

N (0,Σr), we obtain the desired equality.

3.F.2 KSD

The KSD can be equivalently written in terms of the difference of score functions [Liu et al.,

2016, Definition 3.2]:

KSD2 (P‖R) = Ex1,x2∼R⊗R

[
(sp(x1)− sr(x1))>(sp(x2)− sr(x2))k(x1, x2)

]
.

For two Gaussian densities p(x) = N (x; 0,Σp), r(x) = N (x; 0,Σr), the difference between

their score functions is

sp(x)− sr(x) = −(Σ−1
p − Σ−1

r )x.

Therefore,

KSD2 (P‖R) = Ex1,x2∼R⊗R

[
(sp(x1)− sr(x1))>(sp(x2)− sr(x2))k(x1, x2)

]
= Ex1,x2∼R⊗R

[〈(
Σ−1
p − Σ−1

r

)2
, k(x1, x2)x1x

>
2

〉]
=

〈(
Σ−1
p − Σ−1

r

)2
,Ex1,x2∼R⊗R[k(x1, x2)x1x2

>]︸ ︷︷ ︸
Mk,R

〉
,

where 〈·, ·〉 denotes the matrix inner product, and Mk,R is a matrix depending on the kernel k

and the data distribution R. Therefore, it can be informally understood that the KSD depends on

the difference between the covariances Σp and Σr; if Σp is given by additive perturbation as

Σr+E, the difference depends on the perturbation matrixE.Note that in the PPCA experiments,

the perturbation matrix is an increasing function of δ, element-wise.

3.F.3 Kernel choice and KSD: Gaussian models and data

We illustrate how kernel choice affects the sensitivity of the KSD. We consider the following

setting:

P ∼ N (0, diag(1, , 1, . . . , 1)), R ∼ N (0, diag(σ2
1, . . . , 1))

for some positive σ1 6= 1. The model P misestimates the variance of the first coordinate of

the data. Let us consider the effect of a parameter choice for the IMQ kernel. We specifically
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compare the following kernels:

kIMQ(x, y) =
1√

1 + ‖x− y‖22
, kscale

IMQ(x, y) =
1√

1 +
∑

i>1(xi − yi)2 + σ−2
1 (x1 − y1)2

,

where x1 denotes the first coordinate of x. The latter kernel can be considered as the (precon-

ditioned) IMQ kernel with dimension-wise scaling Λ = diag(σ2
1, 1, . . . , 1) where the scale is

determined by the dimension-wise variance of the data. The KSDs corresponding to these kernel

choices are given as follows:

KSD (P‖R; kIMQ)2 = (σ1 − 1)2 E

 X1Y 1√
1 + σ2

1(X1 − Y 1)2 +
∑

i>1(Xi − Y i)2


︸ ︷︷ ︸

E
[
kIMQ(X,Y )X1Y 1

]
,

KSD
(
P‖R; kscale

IMQ(x, y)
)2

= (σ1 − 1)2 E

 X1Y 1√
1 + (X1 − Y 1)2 +

∑
i>1(Xi − Y i)2


︸ ︷︷ ︸

E
[
kscale

IMQ (X,Y )X1Y 1
]

,

where the expectations are taken with respect to independent standard Gaussian random variables

X,Y. For the KSD to be sensitive to this deviation in variance, the expectations on the RHS have

to be large. In this regard, the key difference between these expressions is that the variance σ2
1

appears in the coefficient of (X1 − Y 1)2. When σ1 � 1, the non-scaled IMQ kernel kIMQ pays

more attention to the first coordinate than the scaled counterpart kscale
IMQ, and we can therefore

expect a higher expectation value for kIMQ. On the other hand, when σ1 � 1, the relation

flips as σ1 reduces the contribution of the first coordinate. Note that this relation holds more

starkly in high dimensions, as the rest of the coordinates have greater influence on the kernel

output. These considerations show that the ability to choose an effective kernel depends on the

problem (not surprisingly). In particular, it shows that dimension-wise scaling (or covariance

preconditioning) could hurt the performance in some problems.

Finally, if we instead use the exponentiated quadratic (EQ) kernel

kEQ(x, y) = exp
(
−‖x− y‖22

)
,

then we have

KSD (P‖R)2 = (σ1 − 1)2 EX,Y
[
exp
(
−
∑
i>1

(Xi − Y i)2
)

exp
(
−σ2

1(X1 − Y 1)2
)
X1Y 1

]
︸ ︷︷ ︸

E[kEQ(X,Y )X1Y 1]

.

When σ1 � 1, the EQ has higher selectivity in the first coordinate than the IMQ because

of its exponential decay; the KSD with the EQ kernel could be more useful in revealing this

perturbation. However, in practice, we do not know the discrepancy of our models a priori. At
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least in terms of local sensitivity such as the example above, the IMQ kernel could be considered

more robust against poor specification of input scaling than the EQ, as the effect of input scaling

is less significant.

3.G The score formula for Dirichlet process models

We provide an explicit formula for the score formula (3.3) for Dirichlet process mixture models,

mentioned in 3.4. We first note that the density p(x|D) is given by

p(x|D) = EF
[∫

ψ(x|z)dF (z)

∣∣∣∣D]
=

∫ ∫
ψ(x|z)dF̄D(z),

where F̄D is the mean measure of the posterior distribution of F given D. Note that F̄D is the

mean of a mixture of Dirichlet processes with the mixing distribution given by the distribution

of the latents of the training data {z̃i}ntr
i=1 conditioned on D [see Ghosal and van der Vaart, 2017,

Remark 5.4]. We can interchange the inside integral and the expectation of F, which results in

the second line. This expression immediately gives

sp(x) =

∫ ∫
∇xψ(x|z)dF̄D(z)

p(x|D)

=

∫ ∫
sψ(x|z, φ)

ψ(x|z)
p(x|D)

dF̄D(z).

We discuss how to evaluate the expectation with MCMC. Our target distribution is

ψ(x|z)
p(x|D)

F̄D(dz).

Note that this distribution is a mixture of two distributions written as

ψ(x|z)
p(x|D)

F̄D(dz) =
1

p(x|D)


Ca
n+ 1

ψ(x|z)
Ca

da(z) +
nCb
n+ 1

ψ(x|z)
Cb

E

[
1

n

∑
i

δZ̃i(dz)

∣∣∣∣∣D
]

︸ ︷︷ ︸
b(dz)


= πa

ψ(x|z)
Ca

da(z) + πb
ψ(x|z)
Cb

db(z),

where Cα =
∫
ψ(x|z)da(z), Cb =

∫
ψ(x|z)db(z), πa = Ca/(Ca + nCb), and πb = 1 − πa.

For the Gaussian DPM model in 3.4.2, we can sample from the posterior ψ(x|z, φ)/Cada(z),

and it can be used for initializing the Markov chain. The distribution in the second term is not

given in closed form as the mean measure b is unknown, but we can sample from b (and so from

F̄D) by Gibbs sampling [Ghosal and van der Vaart, 2017, Theorem 5.3]. Assuming that we

can generate samples from F̄D, we can use the random walk Metropolis algorithm where the
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acceptance probability of the transition from z to z′ is given by

min

(
1,
ψ(x|z′)
ψ(x|z)

)
with the proposal distribution F̄D. However, sampling from F̄D cannot be performed exactly,

and therefore we use Gibbs sampling after sufficient burn-in. Consequently, the use of Gibbs

and Metropolis samplers allows us to sample from ψ(x|z)/p(x|D)F̄D approximately.

3.H Invariance properties of kernel Stein discrepancy

3.H.1 Model invariance

In some applications, models are designed to be invariant to certain transformations. When

comparing a class of models invariant under a transformation, model comparison should be

made so that the ranks of the models remain unaffected under the transformation of the data. We

show that essentially for rotational transformations, we can make the KSD invariant by choosing

a rotationally invariant kernel. In the following, for a map T : X → X and a distribution P,

we denote T -push-forward of P by T#P ; i.e., T#P is defined as the distribution of a random

variable Tx with x ∼ P.

Lemma 3.16. Assume that for an orthogonal matrix O, the following conditions hold: (a)

P has a density p such that p(Ox) = p(x) for any x ∈ RD, and (b) kernel k satisfies

k(Ox,Oy) = k(x, y) for any x, y ∈ RD. Then, we have KSD (P‖O#R) = KSD (P‖R) .

Proof. When we push forward the data distribution by O, the KSD becomes

KSD (P‖O#R)2 = Ex,x′∼R⊗R
[
hp(Ox,Ox

′)
]
.

The assumption p(Ox) = p(x) implies that

sp(Ox) =
1

p(x)

(
∂hp(x+ hO−1ed)|h=0

)D
d=1

= (O−1)>
∇p(x)

p(x)
= Osp(x),

where {e1, . . . , eD} denotes the standard basis of RD. For the kernel derivatives k1 and k12, we

obtain

k1(Ox,Ox′) = Ok1(x, x′) and k12(Ox,Ox′) = k12(x, x′).

Thus,

hp(Ox,Ox
′) = sp(Ox)>sp(Ox

′)k(Ox,Ox′) + sp(Ox)>k1(Ox′, Ox)

+ k1(Ox,Ox′)>sp(Ox
′) + k12(Ox,Ox′)

= sp(x)>sp(x
′)k(x, x′) + sp(x)>k1(x′, x)



3.H. INVARIANCE PROPERTIES OF KERNEL STEIN DISCREPANCY 75

+ k1(x, x′)>sp(x
′) + k12(x, x′) = hp(x, x

′),

and therefore KSD (P‖O#R) = KSD (P‖R) .

An analogous result holds for the KSD for discrete observations.

Lemma 3.17. Let σ : {1, . . . , D} → {1, . . . , D} be a permutation represented by a permutation

matrix Oσ. Assume that P is invariant to Oσ; i.e., (Oσ)#P = P. Assume that kernel k

satisfies k(Oσx,Oσy) = k(x, y) for any x, y ∈ {0, . . . , L− 1}D. Then, KSD (P‖(Oσ)#P ) =

KSD (P‖R) .

Proof. The proof proceeds as in the previous lemma. Note that taking the cyclic forward

difference with respect to the i-th coordinate gives

∆ip(Oσx) = p(xσ(1), . . . , x̃i, . . . xσ(D))− p(xσ(1), . . . , xσ(i), . . . xσ(D))

= p(x1, . . . , x̃σ
−1(i), . . . xD)− p(x)

= ∆σ−1(i)p(x),

where x̃ = x+ 1 mod L. Thereby,

sp(Oσx) = O−1
σ sp(x) = O>σ sp(x).

Similarly, for the kernel derivatives k1 and k12, we have

k1(Oσx,Oσx
′) = O

>
σ k1(x, x′)

k12(Oσx,Oσx
′) = k12(x, x′).

Thus,

hp(Oσx,Oσx
′) = sp(Oσx)>sp(Oσx

′)k(Oσx,Oσx
′) + sp(Oσx)>k1(Oσx

′, Oσx)

+ k1(Oσx,Oσx
′)>sp(Oσx

′) + k12(Oσx,Oσx
′)

= sp(x)>sp(x
′)k(x, x′) + sp(x)>k1(x′, x)

+ k1(x, x′)>sp(x
′) + k12(x, x′) = hp(x, x

′),

and therefore KSD (P‖(Oσ)#R) = KSD (P‖R) .

3.H.2 Coordinate-choice independence

In general, the KSD is not invariant to a change of coordinates, and the KSD may be affected

if we transform both the model and the data distribution. Precisely, for some one-to-one map

T : X → X , we might have KSD (T#P‖T#R) 6= KSD (P‖R) . The following result is

essentially the same as the previous lemmas except that here we do not have the invariance

assumptions for the model; it shows that the KSD can be made invariant at least under rotation

and translation.
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Lemma 3.18. Let T be an affine transform such that Tx = Ox+ b where O is an orthogonal

matrix and b is a vector. Let P,R be probability distributions. Let k = kR be a data-dependent

kernel kR such that kT#R(x, x′) = kR(T−1x, T−1x′) for any x, x′ ∈ RD. Then the KSD

between P and R is invariant under T ; that is, KSD (T#P‖T#R) = KSD (P‖R) .

Proof. Let us denote the density of T#P by pT (x) = p(T−1x). Then, its score function satisfies

spT (x) = Osp(T
−1x).

Similarly, for the kernel derivatives k1 and k12, we have

kT#R,1(x, y) = ∇x̃kR(T−1x̃, T−1y)|x̃=x

= OkR,1(T−1x, T−1y), and

kT#R,12(x, y) = ∇>x̃∇ỹkR(T−1x̃, T−1y)|x̃=x,ỹ=y

= (∇>x̃O−1O>∇ỹ)kR(x̃, ỹ)|x̃=x,ỹ=y = kR,12(x, y).

These relations imply that the Stein kernel satisfies

hpT (Tx, Tx′) = spT (Tx)>spT (Tx′)kT#R(Tx, Tx′) + spT (x)>kT#R,1(Tx′, Tx)

+ kT#R,1(Tx, Tx′)>spT (x′) + kT#R,12(Tx, Tx′)

= sp(x)O
>
Osp(x

′)kR(x, x′) + sp(x)>O>OkR,1(x′, x)

+ kR,1(x, x′)>O−1Osp(x
′) + (∇>x̃O−1O∇ỹ)kR,12(T−1x̃, T−1ỹ)|x̃=Tx,ỹ=Tx′

= sp(x)>sp(x
′)kR(x, x′) + sp(x)>kR,1(x′, x)

+ kR,1(x, x′)>sp(x
′) + kR,12(x, x′) = hp(x, x

′).

Thus,

KSD (T#P‖T#R)2 = Ex,x′∼R⊗R
[
hpT (Tx, Tx′)

]
= Ex,x′∼R⊗R

[
hp(x, x

′)
]

= KSD (P‖R)2 .

An example of the data-dependent kernel is a covariance-preconditioned kernel

kprecond
R (x, y) = φ

(
(x− y)>Σ̂−1

R (x− y)
)

where Σ̂R is the sample covariance matrix ofR and φ is some positive-definite function. Another

example is the median-scaled kernel

kmed
R (x, y) = φ

(
‖x− y‖22/σ2

R,med

)
,

where σR,med is the sample median: median{‖xi − xj‖2|1 < i < j < n}. In fact, radial basis

kernels with data-independent scaling also satisfy the required condition since kT#R(x, y) =
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kR(x, y) = kR(T−1x, T−1y).

3.I Arvesen’s formula for the jackknife variance estimator

The formula in [Arvesen, 1969, Eq. 25] has minor errors. For completeness, we provide a proof

for the decomposition (3.13).

Lemma 3.19. For an i.i.d. sample Dn = {yi}ni=1 from some distribution, define a U-statistic

with symmetric kernel f : Ys → R,

Un =

(
n

s

)−1 ∑
Cn,s

f(yi1 , . . . , yis),

whereCn.s denotes the set of s combinations of integers chosen from {1, . . . , n} with n ≥ s ≥ 1.

Then, we have

vJn := (n− 1)
n∑
i=1

(Un,−i − Un)2

=
s∑
c=0

an,cÛc,

with Un,−i the U-statistic computed with Dn \ {yi},

an,c =
n− 1

n

(
n− 1

s

)−2

{nI(c > 0)− s2}
(
n

c

)(
n− c
s− c

)(
n− s
s− c

)
,

and Ûc is a U-statistic given in Eq. (3.27) in the proof.

Proof. For a combination in Cn,s, we fix a order of integers (say, sorted in ascending order)

and evaluate f. We may assume that the statistic is centered so that E[Un] = 0. The jackknife

estimator is expressed as

vJn = (n− 1)
n∑
i=1

(Un,−i − Un)2

= (n− 1)
{ n∑
i=1

(Un,−i)
2 − n(Un)2

}

= (n− 1)

(
n− 1

s

)−2

 n∑
i=1

∑
α∈Cin,s−1

f(yα1 , . . . , fαs)
∑

β∈Cin,s−1

f(yβ1 , . . . , fβs)

−(n− s)2

n

∑
α∈Cn,s

f(yα1 , . . . , fαs)
∑

β∈Cn,s

f(yβ1 , . . . , fβs)

 ,
(3.22)

where Cin,s−1 denotes the set of all s combinations of integers chosen from {1, . . . , i− 1, i+

1, . . . , n}, and Cn,s denotes the set of all s combinations of integers chosen from {1, . . . , n}.
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The first sum can be expressed as

n∑
i=1

∑
α∈Cin,s−1

f(yα1 , . . . , fαs)
∑

β∈Cin,s−1

f(yβ1 , . . . , fβs)

=

n∑
i=1


( ∑
α∈Cn,s

f(yα1 . . . , fαs)−
∑

α∈Cin,s−1

f(yi, yα1 . . . , fαs−1)
)

·
( ∑
β∈Cn,s

f(yβ1 . . . , fβs)−
∑

β∈Cin,s−1

f(yi, yβ1 . . . , fβs−1)
) .

Note that we have

n∑
i=1

∑
α∈Cin,s−1

f(yi, yα1 . . . , fαs−1) =
1

(s− 1)!

n∑
i=1

∑
α∈P in,s−1

f(yi, yα1 . . . , fαs−1)

=
1

(s− 1)!

∑
α∈Pn,s

f(yα1 . . . , fαs)

=
s!

(s− 1)!

∑
α∈Cn,s

f(yα1 . . . , fαs)

= s
∑

α∈Cn,s

f(yα1 . . . , fαs),

where P in,s−1 is the set of all ordered (s− 1)-tuples of integers chosen from {1, . . . i− 1, i+

1, . . . , n}, and Pn,s denotes the set of all ordered s-tuple of integers chosen from {1, . . . , n}.
The first and third lines are due to the symmetry of f. The second lines holds as the indices on

the RHS on the first line runs all over Pn,s. Moreover, we have

n∑
i=1

∑
α∈Cin,s−1

f(yi, yα1 . . . , fαs−1)
∑

β∈Cin,s−1

f(yi, yβ1 . . . , fβs−1)

=
∑

α,β∈Cn,s
|α∩β|≥1

f(yα1 , . . . , fαs)f(yβ1 . . . , fβs),

where |α ∩ β| expresses the number of common elements between two sets of integers α, β.

Thus, we have

n∑
i=1

∑
α∈Cin,s−1

f(yαi1
, . . . , fαis)

∑
β∈Cin,s−1

f(yβi1
, . . . , fβis)

= n
∑

α∈Cn,s

f(yα1 . . . , fαs)
∑

β∈Cn,s

f(yβ1 . . . , fβs)− 2s
∑

α∈Cn,s

f(yα1 . . . , fαs)

+
∑

α,β∈Cn,s
|α∩β|≥1

f(yα1 , . . . , fαs)f(yβ1 . . . , fβs).
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Now, the expression (3.22) can be summarized as(
n− 1

n

)−1(n− 1

s

)2

× (3.22)

=

 s∑
c=0

{n2 − 2sn+ nI(c > 0)}
∑

α,β∈Cn,s
|α∩β|=c

f(yα1 , . . . , fαs)f(yβ1 , . . . , fβs) (3.23)

−(n− s)2
s∑
c=0

∑
α,β∈Cn,s
|α∩β|=c

f(yα1 , . . . , fαs)f(yβ1 , . . . , fβs)


=

s∑
c=0

{nI(c > 0)− s2}
∑

α,β∈Cn,s
|α∩β|=c

f(yα1 , . . . , fαs)f(yβ1 , . . . , fβs). (3.24)

Finally, we show that each term of the RHS (3.24) is written by a U-statistic Ûc with kernel

fsym(yα1 , . . . , yαc , yβ1 , . . . , yβs−c , yγ1 , . . . , yγs−c)

:=
∑
σ

f(yσ(α1), . . . , yσ(αc), yσ(β1), . . . , yσ(βs−c))f(yσ(α1), . . . , yσ(αc), yσ(γ1), . . . , yσ(γs−c))

(2s− c)! ,

where the sum is over Σ(α, β, γ), the set of all permutations of given integers (α, β, γ) with

α =(α1, . . . , αc), β = (β1, . . . , βs−c), and γ = (γ1, . . . , γs−c). The reasoning is as follows:

Ûc

:=

(
n

2s− c

)−1 ∑
Cn,2s−c

fsym(yα1 , . . . , yαc , yβ1 , . . . , yβs−c , yγ1 , . . . , yγs−c)

=
(n− 2s+ c)!

n!

∑
Pn,2s−c

fsym(yα1 , . . . , yαc , yβ1 , . . . , yβs−c , yγ1 , . . . , yγs−c)

=
(n− 2s+ c)!

n!

1

(2s− c)!
·
∑

Pn,2s−c

∑
σ∈Σ(α,β,γ)

(
f(yσ(α1), . . . , yσ(αc), yσ(β1), . . . , yσ(βs−c))

f(yσ(α1), . . . , yσ(αc), yσ(γ1), . . . , yσ(γs−c))
)

(3.25)

=
(n− 2s+ c)!

n!

1

(2s− c)!
·
∑
σ

∑
σ(α)∈Pn,c

∑
σ(β)∈Pn,s−c
σ(α)∩σ(β)=∅

∑
σ(γ)∈Pn,s−c

σ(γ)∩{σ(α)∪σ(β)}=∅

(
f(yσ(α1), . . . , yσ(αc), yσ(β1), . . . , yσ(βs−c))

· f(yσ(α1), . . . , yσ(αc), yσ(γ1), . . . , yσ(γs−c))
)

(3.26)
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The second line follows from the permutation invariance of fsym. The third line is obtained

by inserting the definition. The fourth line is a result of exchanging the sums. Continuing to

manipulate the expression, we obtain

Ûc =
(n− 2s+ c)!

n!
(s− c)!(s− c)!c!

·
∑

α∈Cn,c

∑
β∈Cn,s−c
α∩β=∅

∑
γ∈Cn,s−c
γ∩{α∪β}=∅

f(yα1 , . . . , yαc , yβ1 , . . . , yβs−c)f(yα1, . . . , yαc , yγ1 , . . . , yγs−c).

=
(n− 2s+ c)!(s− c)!

(n− s)!
(n− s)!(s− c)!

(n− c)!
c!(n− c)!

n!

·
∑

α∈Cn,c

∑
β∈Cn,s−c
α∩β=∅

∑
γ∈Cn,s−c
γ∩{α∪β}=∅

f(yα1 , . . . , yαc , yβ1 , . . . , yβs−c)f(yα1, . . . , yαc , yγ1 , . . . , yγs−c)

=

(
n− s
s− c

)−1(n− c
s− c

)−1(n
c

)−1

·
∑

α∈Cn,c

∑
β∈Cn,s−c
α∩β=∅

∑
γ∈Cn,s−c
γ∩{α∪β}=∅

f(yα1 , . . . , yαc , yβ1 , . . . , yβs−c)f(yα1, . . . , yαc , yγ1 , . . . , yγ−c).

(3.27)

The first line holds because the inner sum (3.26) in Σσ has the same value for each σ and

because of the permutation invariance of f. Note that the sum in the final expression is∑
α,β∈Cn,s
|α∩β|=c

f(yα1 , . . . , fαs)f(yβ1 , . . . , fβs).

Therefore,

vJn = (n− 1)

n∑
i=1

(Un,−i − Un)2

=

s∑
c=0

an,cÛc,

with

an,c =
n− 1

n

(
n− 1

s

)−2

{nI(c > 0)− s2}
(
n

c

)(
n− c
s− c

)(
n− s
s− c

)
.

3.J Additional experiments

3.J.1 PPCA: type-I errors and test power

We provide results supplementary to the results in Section 3.4.3.1.
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Problem 1 (null) Table 3.J.1 summarizes the result for the experiment with (δP , δQ) =

(1, 1 + 10−5) in (3.J.1), where all the tests use the IMQ kernel with covariance preconditioning.

The result for α = 0.01 is omitted as none of the examined tests rejected the hypotheses.

Table 3.J.1: Type-I errors the MMD test of Bounliphone et al. [2016], the proposed LKSD test,
and the KSD test with the covariance preconditioner in PPCA Problem 1. Rejection rates are
computed on 300 trials for significance level α = 0.05.

Sample size n Rejection rates
MMD KSD LKSD

100 0.000 0.017 0.010
200 0.013 0.000 0.003
300 0.020 0.000 0.007
400 0.017 0.000 0.007
500 0.013 0.000 0.007

Problem 2 (alternative) We present the result of the same experiment with α = 0.01 (Figure

3.J.1) to show power decay due to the conservatism.
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(a) (a): PPCA δP = 2, δQ = 1. EQ
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(b) PPCA δP = 2, δQ = 1. IMQ
kernel with median scaling.
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(c) PPCA δP = 2, δQ = 1. IMQ
kernel with covariance precondition-
ing.

Figure 3.J.1: Power curves of the MMD test of Bounliphone et al. [2016], the proposed LKSD
test, and the KSD test with the exact score function in PPCA Problem 2. The perturbation
parameters are set as (δP , δQ = 2, 1). Each result is computed on 300 trials. The significance
level α = 0.01. Markers: 3 (the LKSD test);9 (the KSD test); ○ (the relative MMD test).

Next, we provide the result for the same power experiment with a different choice of

perturbation parameters (δP , δQ) = (3, 1). Figure 3.J.2 shows the power curves of the tests.

The MMD test with the covariance pre-conditioner achieves power 1 at n = 100.
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(a) (a): PPCA δP = 3, δQ = 1. EQ
kernel with median scaling.
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(b) PPCA δP = 3, δQ = 1. IMQ
kernel with median scaling.
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(c) PPCA δP = 3, δQ = 1. IMQ
kernel with covariance precondition-
ing.

Figure 3.J.2: Power curves of the MMD test of Bounliphone et al. [2016], the proposed LKSD
test, and the KSD test with the exact score function in PPCA Problem 2. The perturbation
parameters are set as (δP , δQ = 3, 1). Each result is computed on 300 trials. The significance
level α = 0.05. Markers: 3 (the LKSD test);9 (the KSD test); ○ (the relative MMD test).

3.J.2 LDA

3.J.2.1 Type-I error and test power

LDA models with more sparse topics We run the same experiment as in Section 3.4.3

except that the topics b are made sparse by sampling from the Dirichlet distribution with all

the concentration parameters 0.1. The results are summarized in Tables 3.J.2 and 3.J.3. The

LKSD test underperforms the MMD test in this case. As the topics are more sparse, generated

documents tend to have words from a particular topic; this trend escalates as we increase the

concentration parameter of the topic proportion prior. Models thus observe compositions of

words that they would not generate, resulting in a high-variance test statistic for the same reason

as in Section 3.4.3.2 (In fact, the topics have probabilities as low as 10−40, which comes close

to violating the assumption on the density).

Table 3.J.2: Type-I error for LDA Problem 1 (δP , δQ) = (0.5, 0.6)

Sample size n Rejection rates
EQ BoW IMQ BoW

MMD LKSD MMD LKSD
100 0.007 0.013 0.007 0.013
200 0.007 0.007 0.003 0.007
300 0.007 0.017 0.000 0.017
400 0.013 0.017 0.003 0.020
500 0.020 0.010 0.003 0.010
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Table 3.J.3: Power estimates for LDA Problem 2 (δP , δQ) = (1.1, 0.6)

Sample size n Rejection rates
α = 0.01 α = 0.05

EQ BoW IMQ BoW EQ BoW IMQ BoW
MMD LKSD MMD LKSD MMD LKSD MMD LKSD

100 0.000 0.003 0.023 0.003 0.013 0.040 0.083 0.037
200 0.000 0.000 0.030 0.000 0.017 0.040 0.170 0.043
300 0.003 0.013 0.047 0.013 0.010 0.053 0.290 0.053
400 0.003 0.007 0.093 0.007 0.013 0.080 0.373 0.077
500 0.000 0.000 0.146 0.000 0.000 0.050 0.477 0.050

3.J.2.2 Kernel parameter

As in the PPCA experiment, we investigate the performance dependence on the kernel choice.

Using LDA problem 2 , we examine how the test power is affected by the scaling parameter.

We use the EQ and IMQ BoW kernels as above, and choose their scaling parameter λ2 from

{10−6, 10−5, . . . , 103}. For each n ∈ {100, 300} we run 300 trials and estimate the test power

of the LKSD and MMD tests. Figure 3.2 plots the power curves of the tests. We can see that the

MMD test fails for any choice of the kernel. For the LKSD test, the IMQ kernel has a flat curve,

indicating its independence from the bandwidth (at least in this candidate range), whereas the

EQ kernel benefits from a small bandwidth value.
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(b) n = 300.

Figure 3.J.3: Power curves of the proposed LKSD test and the MMD test in LDA Problem 2.
The perturbation parameters are set as (δP , δQ = 2, 1). Each result is computed on 300 trials.
The significance level α = 0.05. Markers: 3 (LKSD test with IMQ kernel);0 (LKSD test
with EQ kernel); ○ (MMD test with IMQ kernel); × (MMD test with EQ kernel).

3.J.3 Experiment: close models and type-I errors

We investigate the behavior of the LKSD test when two models are close to each other. In

this case, the difference of the U-statistic kernels defined by the models is small, which could

therefore lead to the degeneracy of the U-statistic; i.e., the normal approximation of the test

statistic is not appropriate. In the following, we investigate the three variants of the LKSD test

defined by different choices of the variance estimator. We compare the jackknife estimator

(3.11) with the following two estimators: (i) a U-statistic variance estimator where ζ1 and ζ2 in
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(3.10) are estimated by U-statistics, and (ii) a V-statistic variance estimator where ζ1 is estimated

by a V-statistic. The U-statistic estimation was considered by Bounliphone et al. [2016] and

Jitkrittum et al. [2018]. The issue with the U-statistic estimator is that it underestimates the

actual variance. In fact, we observed that the variance estimator sometimes returns negative
values. This can occur since the statistic is given as a difference between unbiased estimates of

quantities close to zero (this issue applies to the V-statistic estimator). We made the (arbitrary)

choice to accept the null hypothesis when the variance estimate was negative to avoid false

rejections. For this reason, we recommend against using the U-statistic estimator.

3.J.3.1 PPCA

Our first experiment concerns PPCA models. Specifically, we choose a PPCA model for the data

distribution as in Section 3.4.1 with D = 50. The difference is that we fix the perturbation pa-

rameter δP for P at 1, and vary the parameter δQ by choosing it from {10−i : i ∈ {2, 3, . . . , 9}}
(this choice yields null H0 scenarios). We set the significance level α = 0.05. For each

n ∈ {100, 200, 300}, we run the tests for 300 trials and examine the behavior of the tests under

the null.

Figure 3.J.4 shows the tests’ rejection rates. We first note that as the perturbation parameter

decays (the models get closer to each other), the test with the U-statistic estimator rejects more

and has higher type-I errors than the nominal level α = 0.05. These plots demonstrate that the

jackknife and V-statistic versions of the test are more robust in this setting.
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Figure 3.J.4: The behaviors of the two LKSD tests under the null. The nominal level α is set
to 0.05. The test with the U-statistic variance estimator has higher type-I errors as the models
get closer to each other. Markers: 3 (LKSD test with the jackknife variance estimator); ○
(LKSD test with the U-statistic variance estimator);0 (LKSD test with the V-statistic variance
estimator).

3.J.3.2 LDA

We conduct a similar experiment with LDA models. The problem setup is the same as in

Section 3.4.3, except that the vocabulary size L = 100. We perturb the sparsity parameter of

the Dirichlet prior of an LDA model. We set δP = 1 and δQ = 1 + δ, where δ is chosen from

{10−2i : i ∈ {1, . . . , 5}}. For each n ∈ {100, 200, 300}, we run the tests for 300 trials with

significance level α = 0.05.

Figure 3.J.5 shows the rejection rate of each test. The test with the V-statistic estimator is

more conservative than the other tests. The U-statistic variance appears to underestimate the



3.J. ADDITIONAL EXPERIMENTS 85

actual variance.
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Figure 3.J.5: The behaviors of the two LKSD tests under the null. The nominal level α is set
to 0.05. The test with the U-statistic variance estimator has higher type-I errors as the models
get closer to each other. Markers: 3 (LKSD test with the jackknife variance estimator); ○
(LKSD test with the U-statistic variance estimator);0 (LKSD test with the V-statistic variance
estimator).

3.J.4 Experiment: identical models

We look into the behaviors of the LKSD test when the models are identical. Our test procedure

provides no guarantee in this case, as the asymptotic distribution would deviate from the normal

distribution. As in the previous section, we compare the performance of the tests with the three

proposed variance estimators. In the following, we fix the significance level α at 0.05. As in

Sections 3.4.1, 3.4.3, we choose perturbation parameters for the candidate models, and run 300

trials for a differing sample size n ∈ {100, 200, 300}. For both PPCA and LDA models, we

choose δP = δQ = 1. Figure 3.J.6 shows the plot for each problem. We note that the U-statistic

test has higher type-I error rates in this setting, although they are closed to the design level.

Notwithstanding that our test assumptions are violated, the jackknife and V-statistic approaches

reject the null at a rate well below 0.05, and remain conservative in this example.
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(a) Identical PPCA models.
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(b) Identical LDA models.

Figure 3.J.6: Plots of type-I errors when two models are identical. Markers: 3 (LKSD test with
the jackknife variance estimator); ○ (LKSD test with the U-statistic variance estimator);0
(LKSD test with the V-statistic variance estimator). The LKSD test with the U-statistic variance
estimator has higher errors than the nominal level α = 0.05.
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Chapter 4

Comparing latent variable models
using the kernel Stein
discrepancy – Part 2

This chapter addresses the same problem as in the previous chapter. We consider an alternative

approach to the score function estimation discussed in Section 3.2.2. This short chapter examines

the relative merit of the MCMC approach over this alternative. While the approach taken in

this chapter is theoretically sound and straightforward to implement, it results in an extremely

conservative test, and is therefore not useful in practice.

4.1 Introduction

For a distribution R and a latent variable model P defined by a density function p(x) =∫
p(x|z)dPZ(z), the previous chapter considered the estimation of KSD (P‖R) using Fisher’s

identity and MCMC. Use of MCMC has its own disadvantages. One major shortcoming is that

it requires the chain to converge to the stationarity; this may result in a long computational time,

and it may not be simple to diagnose the convergence.

This chapter considers a more straightforward alternative. Instead of using the Fisher’s

identity, we directly estimate the numerator and the denominator of the score function sp =

p(x)−1∇p(x). Specifically, assume that we have an i.i.d. latent sample {zj}mj=1
i.i.d.∼ PZ , and

we simply replace the marginal p(x) with an empirical estimate,

pm(x) :=
1

m

m∑
j=1

p(x|zj),

yielding a plug-in score estimator

spm(x) =
∇xpm(x)

pm(x)
.

As with the MCMC estimator, this score estimator is also biased; i.e., EZm [spm(x)] 6= sp(x) for

87



88 CHAPTER 4. ALTERNATIVE APPROACH TO SCORE ESTIMATION

each x ∈ X , where Zm = {zj}mj=1.

Given a sample {xi}ni=1
i.i.d.∼ R (independent of the latent sample), this score estimate allows

us to consider an approximate U-statistic of KSD2 (P‖R) ,

Un,m(P ) =
1

n(n− 1)

∑
i 6=j

hpm(xi, xj), (4.1)

where hpm is the Stein kernel introduced in Section 3.2.1 of the previous chapter, defined by

the approximate density pm. As in the previous chapter, we can consider the same U-statistic

Un,m(Q) for another model Q and take the difference Un,m(P )-Un,m(Q) to draw inferences

about the KSD difference KSD2 (P‖R)−KSD2 (Q‖R) . Below, we show that the estimator of

(4.1) has two issues: slow bias decay, and challenges in characterizing asymptotic variance of

the null. For simplicity, the following discussion only deals with the continuous observation

case. We follow the same notation as in Chapter 3.

4.2 U-statistics with random kernels

The technique to construct a model comparison test closely follows that of Chapter 3. We

obtain an analogous result of asymptotic normality, where it is crucial to ensure the decay of

the bias induced by the approximation. To facilitate our discussion on the estimator (4.1), we

first present the advertised result. As in Section 3.3.1 of Chapter 3, we take (Ω,S,Π) as an

underlying probability space, and assume that all random variables are measurable functions

from this space.

Theorem 4.1 (Asymptotic normality). Let Hm : Ω → L3(X × X , R ⊗ R) be a measurable

random element independent of the data {xi}ni=1
i.i.d.∼ R. Let Un,m be a U-statistic defined

by Hm and Un be a U-statistic defined by a fixed U-statistic kernel h : X × X → R. We

assume that the random kernel Hm satisfies the convergences σ2
Hm

p→ σ2 > 0 and ν3(Hm)
p→

ν3 <∞, where σ2
Hm

= Varx∼R
[
Ex′∼R[Hm(x, x′)]

]
and ν3(Hm) = Ex,x′∼R⊗R

∣∣Hm(x, x′)−
Ex,x′∼R⊗R[Hm(x, x′)]

∣∣3. Let θ = Ex,x′∼R⊗R[h(x, x′)]. Let θ(Hm) = Ex,x′∼R⊗R[Hm(x, x′)]

the expectation of the random kernel with respect to the data distribution. Suppose that the two

kernels Hm and h are related by the following condition: Ym :=
√
m
(
θ(Hm)− θ

)
converges

to a random variable Y in distribution. With rn,m = n/m→ r ∈ [0,∞), we have

lim
n,m→∞

Π
[√
n(Un,m − θ) < t

]
= EY

[
Φ

(
t−√rY

σ

)]
, (4.2)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution

N (0, 1).

Theorem 4.1 allows us to construct a hypothesis test for model comparison. However, there

are two challenges associated with the use of the approximate U-statistic (4.1) and Theorem 4.1.

First, the convergence Ym
d→ Y effectively requires that the bias E[Un,m|Hm]− θ induced by

the random kernel Hm decays at a 1/
√
m-rate. Second, Theorem 4.1 needs the existence of the

random variable Y for which the RHS of (4.2) can be computed.
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As discussed in Appendix 3.D, the bias decay depends on how fast the approximate score

function spm(x) converges to the target sp(x). Establishing fast convergence is a challenging

task for this ratio estimator, however. For simplicity, we illustrate the challenge in the case

D = 1. By the law of large numbers, under suitable assumptions, we have almost-sure converges

p′m(x)→ p′(x) and pm(x)→ p(x) for each x ∈ X . This being said, the convergence rate may

be slow, particularly when p(x) is small. To see this, decompose the score difference as

spm(x)− sp(x) =
p′m(x)− p(x) + p(x)

p(x)

(
1− p(x)

pm(x)

)
+

(
p′m(x)− p′(x)

p(x)

)
.

We can see that both terms decay as p′m(x)→ p′(x) and pm(x)→ p(x). However, the division

by p(x) amplifies the errors; a smaller p(x) makes it more challenging to attain a certain

precision. This situation is likely to occur when the support of the model p substantially

deviates from that of the data. Hence, the naive ratio estimator could result in a slow bias decay.

In contrast, the MCMC approach taken in the previous chapter successfully avoids directly

estimating the ratio.

Deriving a random variable Y with a tractable expectation (4.2) requires substantial effort.

The bias mentioned above may be solved by a more sophisticated ratio estimator, but a complex

estimator might render the task of finding Y more demanding. Fortunately for our ratio estimator,

we can show that the scaled bias of Ym follows a normal distribution asymptotically.

Lemma 4.2. Let p(x) =
∫
p(x|z)dPZ(z). Let pm(x) := 1

m

∑m
j=1 p(x|zj) with {zj}mj=1

i.i.d.∼
PZ . AssumeX is bounded and open. Assume that the set of likelihood functionsL = {p(x|·)|x ∈
X} and their partial derivatives PDd = {∂dp(x|·)|x ∈ X}, (d = 1, . . . , D) belong to PZ-

Donsker classes [van der Vaart, 2000, Section 19.2], where ∂d denotes the partial derivative

operator with respect to the d-th coordinate. Assume ∂dp ∈ L2(X , R) for each d = 1, . . . , D.

Assume infx∈X p(x) > 0. Then,

√
m
(
Ex,x′∼R⊗R[hpm(x, x′)]− Ex,x′∼R⊗R[hp(x, x

′)]
) d→ N (0, γ2

p),

where the convergence is in the sense of outer integrals [van der Vaart, 2000, Section 18.2].

Here the variance γ2
p is defined by

γ2
p = Varf∼G

[(
D∑
d=1

(L1,dfd + L2,dfD+1)

)(
D∑
d′=1

(L1,d′fd′ + L2,d′fD+1)

)]
,

whereL1,d, L2,d are linear operators defined in the proof (see Equation 4.4), f = (f1, . . . , fD+1) ∼
G with G = {Gx}x∈X a zero-mean multivariate Gaussian process defined by the covariance

function

Cov
[
Gx,d, Gx′,d′

]
= EZ∼PZ

[
Vp,d(x|Z)Vp,d′(x

′|Z)
]
−EZ∼PZ

[
Vp,d(x|Z)

]
EZ∼PZ

[
Vp,d′(x

′|Z)
]
,

where Vp,d(x|z) denotes the d-th component of Vp(x|z) = (∂x1p(x|z), . . . , ∂xDp(x|z), p(x|z)).

This result makes additional assumptions on the model p. The most stringent is infx∈X p(x) >
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0, which rules out distributions supported on the entire space RD. In contrast, the MCMC ap-

proach can handle this situation, as showcased in the experiment with PPCA models. The

PZ-Donsker assumption states that a uniform central limit theorem holds for L and PDd
(d = 1, . . . , D); i.e. the empirical process with index sets L and PDd converges to a Gaussian

process. This condition requires regularity assumptions on the likelihood and the partial deriva-

tives, such as a variant of Lipschitz-continuity for bounded X [van der Vaart, 2000, Example

19.7]. For details, we refer the reader to van der Vaart [2000, Chapter 19].

Unfortunately, the normal approximation of Lemma 4.2 may be inadequate. The variance

γ2
p in Lemma 4.2 involves an integral with respect to z, where the integrand depends on the

reciprocal of the likelihood 1/p(x|z). The variance could therefore be enormous due to the

reciprocal dependence. Moreover, estimating this quantity is challenging, as the reciprocal

can easily blow up the estimator (we observed this trend in our preliminary experiment). The

following result illustrates the role of the variance γ2
p in constructing a test.

Corollary 4.3. Assume the latent samples for P and Q are independent. Let Un,m(P,Q) =

Un,m(P )− Un,m(Q). Let hp,q(x, x′) = hp(x, x
′)− hq(x, x′). Assume that the kernels hpm,qm

and hp,q satisfy the conditions in Theorem 4.1. Assume n/m → r ∈ [0,∞). Then, under

the conditions given in Lemma 4.2, we have limn,m→∞
√
n(Un,m(P,Q)− µP,Q)→ N (0, c2)

with c = σhp,q
√

1 + rρ2, ρ2 = (γ2
p + γ2

q )/σ2
hp,q

, µP,Q = KSD (P‖R)2 −KSD (Q‖R)2 , and

σ2
hp,q

= Varx∼R
[
Ex′∼R[hp,q(x, x

′)]
]
.

When r > 0, the variance γ2
p + γ2

q coming from the normal approximation (Lemma

4.2) amplifies the asymptotic variance σ2
hp,q

of the U-statistic without score approximations.

Therefore, the utility of the test critically depends on the additional variance γ2
p + γ2

q . A large

value of this variance therefore makes the test conservative.

4.3 Conclusion

In this section, we have considered a ratio estimator of the score function derived from the

empirical approximation of the marginal density. The resulting KSD U-statistic provides a

similar test based on the asymptotic normality of the statistic. However, we have shown that

the test has the following shortcomings compared to the MCMC approach in Chapter 3. First,

the bias of the KSD estimate may decay undesirably slowly, thereby requiring a large number

of latent sample points for the approximation. Second, the resulting test applies in theory only

to densities bounded away from zero over the domain. Finally, even in bounded domains, the

test threshold is challenging to estimate and may be overly conservative. These observations

support the test proposed in Chapter 3.
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4.A Proof of asymptotic normality of random kernel U-statistics

Theorem 4.1 (Asymptotic normality). Let Hm : Ω → L3(X × X , R ⊗ R) be a measurable

random element independent of the data {xi}ni=1
i.i.d.∼ R. Let Un,m be a U-statistic defined

by Hm and Un be a U-statistic defined by a fixed U-statistic kernel h : X × X → R. We

assume that the random kernel Hm satisfies the convergences σ2
Hm

p→ σ2 > 0 and ν3(Hm)
p→

ν3 <∞, where σ2
Hm

= Varx∼R
[
Ex′∼R[Hm(x, x′)]

]
and ν3(Hm) = Ex,x′∼R⊗R

∣∣Hm(x, x′)−
Ex,x′∼R⊗R[Hm(x, x′)]

∣∣3. Let θ = Ex,x′∼R⊗R[h(x, x′)]. Let θ(Hm) = Ex,x′∼R⊗R[Hm(x, x′)]

the expectation of the random kernel with respect to the data distribution. Suppose that the two

kernels Hm and h are related by the following condition: Ym :=
√
m
(
θ(Hm)− θ

)
converges

to a random variable Y in distribution. With rn,m = n/m→ r ∈ [0,∞), we have

lim
n,m→∞

Π
[√
n(Un,m − θ) < t

]
= EY

[
Φ

(
t−√rY

σ

)]
, (4.2)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution

N (0, 1).

Proof. Recall that (Ω,S,Π) is the underlying probability space, and Hm, Un,m, and Un are

random variables on it. The probability on the LHS can be expressed as

Proof.

Π
[√
n(Un,m − θ) < t

]
= EHm

[
Π

(√
n

(
Un,m − θ(Hm)

σHm

)
< −

√
n

m

Ym
σHm

+
t

σHm

∣∣∣∣Hm

)]
= EHm

[
Fn|Hm

(
t−√rn,mYm

σHm

)]
,

whereFn|Hm denotes the CDF of
√
n
{
Un,m−θ(Hm)

}
/σHm conditioned onHm. The difference

between the two quantities in Equation (4.2) is bounded as follows:

lim
n,m→∞

∣∣∣∣EHmFn|Hm ( t−√rn,mYmσHm

)
− EY Φ

(
t−√rY

σh

)∣∣∣∣
≤ lim

n,m→∞
EHm

∣∣∣∣Fn|Hm ( t−√rn,mYmσHm

)
− Φ

(
t−√rn,mYm

σHm

)∣∣∣∣
+ lim
n,m→∞

∣∣∣∣EHmΦ

(
t−√rn,mYm

σHm

)
− EY Φ

(
t−√rY

σh

)∣∣∣∣ . (4.3)

For the second term, by Slutsky’s theorem [van der Vaart, 2000, p.11], we have

t−√rn,mYm
σHm

d→ t−√rY
σh

as m → ∞. Therefore, the second term in Equation (4.3) also converges to zero by the fact

the CDF of a Gaussian distribution is bounded and continuous and by the definition of weak
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convergence.

The first term is dealt with as follows. For some δ > 0, let Am be the event {|ν3(Hm)−
ν(h)| < δ} and Ām denote its complement. Similarly, let Bm be the event {|σHm − σ| < ε}
for 0 < ε < σh. Then, the first term is bounded by

lim
n,m→∞

EHm

∣∣∣∣Fn|Hm ( t−√rn,mYmσHm

)
− Φ

(
t−√rn,mYm

σHm

)∣∣∣∣ · 1Am∩Bm(Hm)

≤ lim
n,m→∞

sup
u∈R

EHm
∣∣Fn|Hm(u)− Φ(u)

∣∣1Am∩Bm(Hm),

where we have the fact that the integrand is bounded and limm→∞Π(Ām ∪ B̄m) = 0. By the

Berry-Esseen bound for U-statistics [Callaert and Janssen, 1978], the expectation on the RHS is

then

EHm
∣∣Fn|Hm(u)− Φ(u)

∣∣ 1Am∩Bm(Hm) ≤ Cn− 1
2EHm

[
ν3(Hm)

σ3
Hm

· 1Am∩Bm(Hm)

]

<
C(ν3 + δ)

(σ − ε)3
· n− 1

2 ,

where C is a universal constant. The RHS thus goes to zero as n→∞, which concludes the

proof.

4.B Details of the delta method

We prove two preliminary lemmas.

Lemma 4.4. Let `∞>0(X ) = {f ∈ `∞(X ) : infx∈X f(x) > 0} be a subset of the space `∞(X )

of bounded functions on X equipped with the norm ‖f‖∞ = supx∈X |f(x)|. Assume p′ ∈
L2(X , R). Assume δ = infx∈X p(x) > 0. Then, the map s : L2(X , R)× `∞>0(X )→ L2(X , R)

defined by s(f, g)(x) = f(x)/g(x) is Hadamard differentiable at θ = (p′, p) tangentially

to `∞(X ) × `∞(X ); Its Hadamard derivative is given by s′θ(h1,h2) = h1/p − h2p
′/p2. In

particular, s′θ(`
∞ × `∞) ⊂ L2(X , R).

Proof. By the assumption on p′ and p,we have the following: (a) θ = (p, p′) is included in the

domain of s, and (b) the range of s′θ is included in L2(X , R). By the definition of the domain

of s, we have the range is included in L2(X , R). In the following, we verify the Hadamard

differentiability and derive the derivative. For a converging sequence tn → 0, take arbitrary

sequences {h1,n}∞n=1 ⊂ L2(X , R) and {h2,n}∞n=1 ⊂ `∞(X ) such that h1,n → h1 ∈ L2(X , R)

and h2,n → h2 ∈ `∞(X ), respectively, as n→∞. We prove

lim
n→∞

∥∥∥∥s(p′ + tnh1,n, p+ tnh2,n)− s(p′, p)
tn

− s′θ(h1,h2)

∥∥∥∥
2

= 0.
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As we have

s(p′ + tnh1,n, p+ tnh2,n)− s(p′, p)
tn

=
h1,n

p+ tnh2,n
+ p′

( −h2,n

p(p+ tnh2,n)

)
,

s′θ(h1,h2) =
h1

p
− p′h2

p2
,

it suffices to show∥∥∥∥ h1,n

p+ tnh2,n
− h1

p

∥∥∥∥
2

→ 0,

∥∥∥∥p′p
(

h2,n

p+ tnh2,n
− h2

p

)∥∥∥∥
2

→ 0 (n→∞).

Note that p + tnh2,n ∈ `∞>0(X ) is guaranteed if we take sufficiently large n. For any ε1 > 0,

there exists n1,0 ∈ N such that ‖h1,n − h1‖2 < ε1 for n ≥ n1,0. Similarly, for any ε2 > 0,

we can take n2,0 ∈ N such that ‖h2,n − h2‖∞ < ε2 for n ≥ n2,0. Let n0 ≥ 1 such that

tn ≤ (δ − b)/(ε2 + M2) ∧ ε1 ∧ ε2 for n ≥ n0, where M2 = ‖h2‖∞ and 0 < b < δ.

Then, taking n ≥ max(n2,0, n0) gives p(x) + tnh2,n(x) ≥ b for all x ∈ X . Thus, for

n ≥ max(n0, n1,0, n2,0), with M1 = ‖h1‖∞, we have∥∥∥∥ h1,n

p+ tnh2,n
− h1

p

∥∥∥∥
2

≤
∥∥∥∥(h1,n − h1)

p+ tnh2,n

∥∥∥∥
2

+ tn

∥∥∥∥h1(h2,n − h2)

p(p+ th2,n)

∥∥∥∥
2

+ tn

∥∥∥∥ h1h2

p(p+ th2,n)

∥∥∥∥
2

≤ ε1
b

+
tnM1

bδ
(ε2 +M2)

≤ ε1
b

+
M1

bδ
(ε2 +M2)(ε1 ∧ ε2)

and ∥∥∥∥p′p
(

h2,n

p+ tnh2,n
− h2

p

)∥∥∥∥
2

≤
∥∥∥∥p′p

(
h2,n − h2

p+ tnh2,n

)∥∥∥∥
2

+ tn

∥∥∥∥p′p h2(h2,n − h2)

p(p+ tnh2,n)

∥∥∥∥+ tn

∥∥∥∥p′p h2
2

p(p+ tnh2,n)

∥∥∥∥
2

≤ ‖p
′‖2
δb

(
ε2 +

tnM2

δ
(ε2 +M2)

)
≤ ‖p

′‖2
δb

(
ε2 +

M2

δ
(ε2 +M2)(ε1 ∧ ε2)

)
.

Thus, the convergence of the two terms have been proved.

Lemma 4.5. For a differentiable kernel k ∈ C(1,1) : X × X → R, define its partial derivative

k2,d(x, x
′) = ∂x′dk(x, x′) with respect to the d-th coordinate of the second argument. Let

ψd(f) := 〈f, Tkf〉L2(R) + 2
〈
f, Tk2,d

1
〉
L2(R)

,

where Tkf(·) = Ex′∼R[k(·, x′)f(x′)] and Tk2,d
1(·) = Ex′∼R[k2,d(·, x′)]. Assume k ∈ L2(X ×

X , R⊗R) and Ex∼R[k2,d(·, x′)] ∈ L2(X , R). Then, ψd : L2(X , R)→ L2(X , R) is Hadamard
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differentiable at any f ∈ L2(X , R), and its derivative ψ′d,f : L2(X , R)→ R is given by

ψ′d,f (h) = 2 〈h, Tkf〉L2(R) + 2
〈
h, Tk2,d

1
〉
L2(R)

.

Proof. Take any h ∈ L2(X , R). As we have

ψd(f + tnhn)− ψd(f)

tn
= 2 〈hn, Tkf〉L2(R) + 2

〈
hn, Tk2,d

1
〉
L2(R)

+ tn 〈hn, Tkhn〉L2(R) ,

for any sequence {hn}n≥1 ⊂ L2(X , R) such that hn → h in L2(X , R) and tn > 0. Thus, if

tn → 0, we have∣∣∣∣ψd(f + tnhn)− ψd(f)

tn
− ψ′d,f (h)

∣∣∣∣ ≤ 2‖hn − h‖L2(X ,R)

(
‖Tkf‖L2(X ,R) + ‖Tk2,d

1‖L2(X ,R)

)
+ tn

√
Ex,x′∼R⊗R[k(x, x′)2]‖hn‖2L2(X ,R)

→ 0 (n→∞).

Proof of Lemma 4.2

Proof. We use the functional delta method [van der Vaart, 2000, p.291]. We first rewrite the

KSD KSD2 (P‖R) = Ex,x′∼R⊗R[hp(x, x
′)] as a functional of the density p and its partial

derivatives. Let `∞(X ) be the set of all bounded functions equipped with the supremum norm

‖f‖∞ = supx∈X |f(x)|. Let `∞>0 be its subset of functions having positive minimum values.

Define s : L2(X , R)×`∞>0(X )→ L2(X , R) by s(f, g)(x) := f(x)/g(x) and ψd : L2(R)→ R
by

ψd(h) := Ex,x′
{
f(x)f(x′)k(x, x′) + f(x)k1,d(x

′, x) + f(x′)k1,d(x, x
′)
}

= 〈h, Tkh〉L2(R) + 2
〈
h, Tk2,d

1
〉
L2(R)

,

where we have used k1,d(a, b) = k2,d(b, a). Here, Tk : L2(R)→ L2(R) is the integral operator

given by Tkf(·) = Ex∼R
[
k(·, x)f(x)

]
[Steinwart and Christmann, 2008, Theorem 4.27], and

〈f, g〉L2(R) = Ex∼R[f(x)g(x)]. Then, the expectation Ex,x′∼R⊗R[hp(x, x
′)] is written as a

functional as follows:

Ex,x′∼R⊗R[hp(x, x
′)] =

D∑
d=1

ψd(s(∂dp, p)) + const.,

where the second term involves second derivatives of the kernel and is constant in p and ∂dp. By

Lemmas 4.4, 4.5 and the chain rule of Hadamard differentiation [van der Vaart, 2000, Theorem

20.9], the composite functional ψd ◦ s : l∞(X ) × D0 → R is Hadamard differentiable at

θd = (∂dp, p) tangentially to l∞(X )× l∞(X ) for d = 1, . . . , D. The derivative is given by

(ψd ◦ s)′θd(td, tD+1) = 2
〈
s′θd(td, tD+1), Tks(θd)

〉
L2(R)

+ 2
〈
s′θd(td, tD+1), Tk2,d

1
〉
L2(R)
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= 2

〈
1

p
td, Tks(θd) + Tk2,d

1

〉
L2(R)

− 2

〈
∂dp

p2
tD+1, Tks(θd) + Tk2,d

1

〉
L2(R)

(4.4)

=: L1,dtd + L2,dtD+1.

Therefore, the derivative of Ψ :=
∑

d ψd{s(∂dp, p)} at θ = (∂1p, . . . , ∂Dp, p) is given as

Ψ′θ(t1, . . . , tD+1) =
∑

d(ψd ◦s)′θd(td, tD+1) for (t1, . . . , tD+1) ∈∏D+1
d=1 `

∞(X ). Let Vp(x) =

(∂1p(x), . . . , ∂Dp(x), p(x)) denote the concatenation of the density p and its partial derivatives.

Note that we can write

Vpm(x) =
1

m

m∑
j=1

p(x|zj), Vp(x) = EZ
[
p(x|Z)

]
,

which defines an empirical process
{√

m
(
Vpm(x)− Vp(x)

)}
x∈X . In the limit of m→∞, by

the definition of PZ-Donsker class [van der Vaart, 2000, Section 19.2], we have the convergence

{√
m
(
Vpm(x)− Vp(x)

)}
x∈X

d→ G,

where G is the zero-mean multivariate PZ- brownian bridge process with covariance function

Cov
[
Gx,d, Gx′,d′

]
= EZ∼PZ

[
Vp,d(x|Z)Vp,d′(x

′|Z)
]
−EZ∼PZ

[
Vp,d(x|Z)

]
EZ∼PZ

[
Vp,d′(x

′|Z)
]
.

In consequence, by the functional delta method [van der Vaart, 2000, Theorem 20.8], we have

√
m
(
Ex,x′∼R⊗R[hpm(x, x′)]− Ex,x′∼R⊗R[hp(x, x

′)]
)

=
√
m (Ψ(Vpm)−Ψ(Vp))

d→ N (0,Var[Ψ′θ(G)]).

Specifically, with f = (f1, . . . , fD+1) ∼ G, the variance is given by

Var[Ψ′θ(G)] = Varf∼G

[(
D∑
d=1

(L1,dfd + L2,dfD+1)

)(
D∑
d′=1

(L1,d′fd′ + L2,d′fD+1)

)]
.

(4.5)

4.C Proof of the asymptotic normality of the test statistic

Proof of Corollary 4.3

Proof. Apply Theorem 4.1 with Hm(x, x′) = hpm,qm(x, x′) and h = hp,q. In this case, Ym is

given by

Ym =
√
m
(
E
[
Un,m(P )|hpm

]
−KSD (P‖R)2

)
︸ ︷︷ ︸

Y
(p)
m

−√m
(
E
[
Un,m(Q)|hqm

]
−KSD (Q‖R)2

)
︸ ︷︷ ︸

Y
(q)
m

.
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By Lemma 4.2, Y (p)
m and Y (q)

m converge to N (0, γ2
p) and N (0, γ2

q ), respectively. The two

variables are independent of each other, so the difference between them converges to a normal

variable Y ∼ N (0, γ2
p + γ2

q ). As −Y ∼ N (0, γ2
p + γ2

q ), we have

lim
n,m→∞

Π
[√
n(Un,m(P,Q)− µP,Q) < t

]
= EY

[
Φ

(
−
√
rY

σhp,q
+

t

σhp,q

)]
=

1√
2π

∫
Φ

(√
rρy +

t

σhp,q

)
e−

y2

2 dy = Φ

(
t

σhp,q
√

1 + rρ2

)
.



Chapter 5

Interpretable features for model
comparison

Summary Given two candidate models, and a set of target observations, we address the

problem of measuring the relative goodness of fit of the two models. We propose two new

statistical tests which are nonparametric, computationally efficient (runtime complexity is linear

in the sample size), and interpretable. As a unique advantage, our tests can produce a set of

examples (informative features) indicating the regions in the data domain where one model fits

significantly better than the other. In a real-world problem of comparing GAN models, the test

power of our new test matches that of the state-of-the-art test of relative goodness of fit, while

being one order of magnitude faster.

5.1 Introduction

One of the most fruitful areas in recent machine learning research has been the development of

effective generative models for very complex and high dimensional data. Chief among these

have been the generative adversarial networks [Goodfellow et al., 2014, Nowozin et al., 2016,

Arjovsky et al., 2017], where samples may be generated without an explicit generative model or

likelihood function. A related thread has emerged in the statistics community with the advent

of Approximate Bayesian Computation, where simulation-based models without closed-form

likelihoods are widely applied in bioinformatics applications [see Lintusaari et al., 2017, for a

review]. In these cases, we might have several competing models, and wish to evaluate which is

the better fit for the data.

The problem of model criticism is traditionally defined as follows: how well does a model

Q fit a given sample Zn := {zi}ni=1
i.i.d.∼ R? This task can be addressed in two ways: by

comparing samples Yn := {yi}ni=1 from the modelQ and data samples, or by directly evaluating

the goodness of fit of the model itself. In both of these cases, the tests have a null hypothesis (that

the model agrees with the data), which they will reject given sufficient evidence. Two-sample

tests fall into the first category: there are numerous nonparametric tests which may be used

[Alba Fernández et al., 2008, Friedman and Rafsky, 1979, Gretton et al., 2012a, Székely and

Rizzo, 2004, Rosenbaum, 2005, Harchaoui et al., 2008, Hall and Tajvidi, 2002, Jitkrittum et al.,

97
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2016], and recent work in applying two-sample tests to the problem of model criticism [Lloyd

and Ghahramani, 2015]. A second approach requires the model density q explicitly. In the case

of simple models for which normalization is not an issue (e.g., checking for Gaussianity), several

tests exist [Baringhaus and Henze, 1988, Székely and Rizzo, 2005]; when a model density is

known only up to a normalization constant, tests of goodness of fit have been developed using a

Stein-based divergence [Chwialkowski et al., 2016, Liu et al., 2016, Jitkrittum et al., 2017b].

An issue with the above notion of model criticism, particularly in the case of modern

generative models, is that any hypothetical model Q that we design is likely a poor fit to the

data. Indeed, as noted in Yamada et al. [2019, Section 5.5], comparing samples from various

Generative Adversarial Network (GAN) models [Goodfellow et al., 2014] to the reference

sample Zn by a variant of the Maximum Mean Discrepancy (MMD) test [Gretton et al., 2012a]

leads to the trivial conclusion that all models are wrong [Box, 1976], i.e., H0 : Q = R is rejected

by the test in all cases. A more relevant question in practice is thus: “Given two models P and

Q, which is closer to R, and in what ways?” This is the problem we tackle in this chapter.

To our knowledge, the only nonparametric statistical test of relative goodness of fit is the

Rel-MMD test of Bounliphone et al. [2016], based on the maximum mean discrepancy [MMD,

Gretton et al., 2012a]. While shown to be practical (e.g., for comparing network architectures

of generative networks), two issues remain to be addressed. Firstly, its runtime complexity is

quadratic in the sample size n, meaning that it can be applied only to problems of moderate

size. Secondly and more importantly, it does not give an indication of where one model is

better than the other. This is essential for model comparison: in practical settings, it is highly

unlikely that one model will be uniformly better than another in all respects: for instance, in

hand-written digit generation, one model might produce better “3”s, and the other better “6”s.

The ability to produce a few examples which indicate regions (in the data domain) in which

one model fits better than the other will be a valuable tool for model comparison. This type of

interpretability is useful especially in learning generative models with GANs, where the “mode

collapse” problem is widespread [Salimans et al., 2016, Srivastava et al., 2017]. The idea of

generating such distinguishing examples (so called test locations) was explored in Jitkrittum

et al. [2016, 2017b] in the context of model criticism and two-sample testing.

In this chapter, we propose two new linear-time tests for relative goodness-of-fit. In the

first test, the two models P,Q are represented by their two respective samples Xn and Yn, and

the test generalizes that of Jitkrittum et al. [2016]. In the second, the test has access to the

probability density functions p, q of the two respective candidate models P,Q (which need

only be known up to normalization), and is a three-way analogue of the test of Jitkrittum et al.

[2017b]. In both cases, the tests return locations indicating where one model outperforms the

other. We emphasize that the practitioner must choose the model ordering, since as noted earlier,

this will determine the locations that the test prioritizes. We further note that the two tests

complement each other, as both address different aspects of the model comparison problem.

The first test simply finds the location where the better model produces mass closest to the test

sample: a worse model can produce too much mass, or too little. The second test does not

address the overall probability mass, but rather the shape of the model density: specifically, it

penalizes the model whose derivative log density differs most from the target (the interpretation
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is illustrated in our experiments). In the experiment on comparing two GAN models, we find that

the performance of our new test matches that of Rel-MMD while being one order of magnitude

faster. Further, unlike the popular Fréchet Inception Distance (FID) [Heusel et al., 2017] which

can give a wrong conclusion when two GANs have equal goodness of fit, our proposed method

has a well-calibrated threshold, allowing the user to flexibly control the false positive rate.

5.2 Measures of Goodness of Fit

In the proposed tests, we test the relative goodness of fit by comparing the relative magnitudes

of two distances, following Bounliphone et al. [2016]. More specifically, let d(P,R) be a

discrepancy measure between P and R. Then, the problem can be formulated as a hypothesis

test proposing H0 : d(P,R) ≤ d(Q,R) against H1 : d(P,R) > d(Q,R). This is the approach

taken by Bounliphone et al. who use the MMD as d, resulting in the relative MMD test

(Rel-MMD); we have considered the kernel Stein discrepancy [Chwialkowski et al., 2016, Liu

et al., 2016] as d in Chapter 3. The proposed Rel-UME and Rel-FSSD tests are based on two

recently proposed discrepancy measures for d: the Unnormalized Mean Embeddings (UME)

statistic [Chwialkowski et al., 2015, Jitkrittum et al., 2016], and the Finite-Set Stein Discrepancy

(FSSD) [Jitkrittum et al., 2017b], for the sample-based and density-based settings, respectively.

We first review UME and FSSD. We will extend these two measures to construct two new

relative goodness-of-fit tests in Section 5.3. We assume throughout that the probability measures

P,Q,R have a common support X ⊆ RD.

The Unnormalized Mean Embeddings (UME) statistic. UME is a (random) distance

between two probability distributions [Chwialkowski et al., 2015] originally proposed for

two-sample testing for H0 : Q = R and H1 : Q 6= R. Let kY : X × X → R be a positive

definite kernel. Let µQ be the mean embedding of Q, and is defined such that µQ(w) :=

Ey∼Q[kY (y, w)] (assumed to exist) [Smola et al., 2007]. Gretton et al. [2012a] shows that when

kY is characteristic [Sriperumbudur et al., 2011], the Maximum Mean Discrepancy (MMD)

witness function witQ,R(w) := µQ(w) − µR(w) is a zero function if and only if Q = R.

Based on this fact, the UME statistic evaluates the squared witness function at Jq test locations

W := {wj}Jqj=1 ⊂ X to determine whether it is zero. Formally, the population squared UME

statistic is defined as

U2(Q,R) :=
1

J

J∑
j=1

(µQ(wj)− µR(wj))
2.

For our purpose, it will be useful to rewrite the UME statistic as follows. Define the feature

function

ψW (y) :=
1√
Jq

(
kY (y, w1), . . . , kY (y, wJq)

)> ∈ RJq .

Define the feature expectation ψQW := Ey∼Q[ψW (y)] with respect to Q, and its empirical

estimate ψ̂QW := n−1
∑n

i=1 ψW (yi). The squared population UME statistic is equivalent to

U2(Q,R) := ‖ψQW − ψRW ‖22. For W ∼ η where η is a distribution with a density, Theorem 2 of
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Chwialkowski et al. [2015] states that if kY is real analytic, integrable, and characteristic, then

η-almost surely ‖ψQW − ψRW ‖22 = 0 if and only if Q = R. In words, under the stated conditions,

U(Q,R) := UQ defines a distance between Q and R (almost surely).1 A consistent unbiased

estimator is

Û2
Q =

1

n(n− 1)

∥∥∥∥∥
n∑
i=1

{
ψW (yi)− ψW (zi)

}∥∥∥∥∥
2

2

−
n∑
i=1

‖ψW (yi)− ψW (zi)‖22

 ,
which clearly can be computed in O(n) time. Jitkrittum et al. [2016] proposed optimizing the

test locations W and kY so as to maximize the test power (i.e., the probability of rejecting H0

when it is false) of the two-sample test with the normalized version of the UME statistic. It was

shown that the optimized locations give an interpretable indication of where Q and R differ in

the input domain X .

The Finite-Set Stein Discrepancy (FSSD). FSSD is a discrepancy between two density

functions q and r. Let X ⊆ RD be a connected open set. Assume that Q,R have probability

density functions denoted by q, r respectively. Given a positive definite kernel kY , the Stein

witness function [Chwialkowski et al., 2016, Liu et al., 2016] gq,r : X → RD between q and

r is defined as gq,r(w) := Ez∼R [ξq(z, w)] = (gq,r1 (w), . . . , gq,rD (w))>, where ξq(z, w) :=

kY (z, w)∇z log q(z) + ∇zkY (z, w). Under appropriate conditions (see Chwialkowski et al.

2016, Theorem 2.2, Liu et al. 2016, Proposition 3.3, and Barp et al. 2019, Proposition 1), it

can be shown that gq,r = 0 (i.e., the zero function) if and only if q = r. An implication of this

result is that the deviation of gq,r from the zero function can be used as a measure of mismatch

between q and r. Different ways to characterize such deviation have led to different measures of

goodness of fit.

The FSSD characterizes such deviation from 0 by evaluating gq,r at Jq test locations.

Formally, given a set of test locations W = {wj}Jqj=1, the squared FSSD is defined as follows

[Jitkrittum et al., 2017b]:

FSSD2
q(r) :=

1

dJq

Jq∑
j=1

‖gq,r(wj)‖22 := F 2
q

Under appropriate conditions, it is known that almost surely F 2
q = 0 if and only if q = r. Using

the notations as in Jitkrittum et al. [2017b], one can write F 2
q = E(z,z′)∼R⊗R[∆q(z, z

′)] where

∆q(z, z
′) := τ>q (z)τq(z

′), τq(z) := vec(Ξq(z)) ∈ RDJq with vec(M) denoting a column

vector of concatenated columns of M, and Ξq(z) ∈ RD×Jq is defined such that [Ξq(z)]d,j :=

ξqd(z, wj)/
√
DJq for d = 1, . . . , D and j = 1, . . . , Jq. Equivalently, F 2

q = ‖µq‖22 where

µq := Ez∼R[τq(z)]. Similar to the UME statistic described previously, given a sample Zn =

{zi}ni=1 ∼ R, an unbiased estimator of F 2
q , denoted by F̂ 2

q can be straightforwardly written as a

second-order U-statistic, which can be computed in O(Jqn) time. It was shown in Jitkrittum

et al. [2017b] that the test locations W can be chosen by maximizing the test power of the
1In this chapter, since the distance is always measured relative to the data generating distribution R, we write UQ

instead of U(Q,R) to avoid cluttering the notation.
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goodness-of-fit test proposing H0 : Q = R against H1 : Q 6= R, using F̂ 2
q as the statistic. We

note that, unlike UME, F̂ 2
q requires access to the density q. Another way to characterize the

deviation of gq,r from the zero function is to use the norm in the reproducing kernel Hilbert

space (RKHS) that contains gq,r. This measure corresponds to the kernel Stein discrepancy

having a runtime complexity of O(n2) [Chwialkowski et al., 2016, Liu et al., 2016].

5.3 Proposal: Rel-UME and Rel-FSSD Tests

Relative UME (Rel-UME) Our first proposed relative goodness-of-fit test is based on UME

and tests

H0 : U2(P,R) ≤ U2(Q,R) versus H1 : U2(P,R) > U2(Q,R).

The test uses
√
nŜUn =

√
n(Û2

P − Û2
Q) as the statistic, and rejects H0 when it is larger than

the threshold Tα. Here, we assume that the model sample sizes are equal to the data sample

size. The threshold is given by the (1 − α)-quantile of the asymptotic distribution of
√
nŜUn

when H0 holds i.e., the null distribution, and the pre-chosen α is the significance level. It is

well-known that this choice for the threshold asymptotically controls the false rejection rate

to be bounded above by α yielding a level-α test [Lehmann and Romano, 2005, Definition

11.1.1]. In the full generality of Rel-UME, two sets of test locations can be used: V = {vj}Jpj=1

for computing Û2
P , and W = {wj}Jqj=1 for Û2

Q. The feature function for Û2
P is denoted

by ψV (x) := J
−1/2
p

(
kX(x, v1), . . . , kX(x, vJp

)> ∈ RJp , for some kernel kX which can be

different from kY used in ψW . The asymptotic distribution of the statistic is stated in Theorem

5.1.

Theorem 5.1 (Asymptotic distribution of ŜUn ). Define CQW := covy∼Q[ψW (y), ψW (y)], CPV :=

covx∼P [ψV (x), ψV (x)], andCRVW := covz∼R[ψV (z), ψW (z)] ∈ RJp×Jq . Let SU := U2
P−U2

Q,

and M :=

(
ψPV − ψRV 0

0 ψQW − ψRW

)
∈ R(Jp+Jq)×2. Assume that 1) P,Q and R are all

distinct, 2) (kX , V ) are chosen such that U2
P > 0, and (kY ,W ) are chosen such that U2

Q > 0,

3)

(
ζ2
P ζPQ

ζPQ ζ2
Q

)
:= M>

(
CPV + CRV CRVW
(CRVW )> CQW + CRW

)
M is positive definite. Then, as

n→∞, √
n
(
ŜUn − SU

)
d→ N

(
0, 4(ζ2

P − 2ζPQ + ζ2
Q)
)
.

A proof of Theorem 5.1 can be found in Section 5.C (appendix). Let ν := 4(ζ2
P−2ζPQ+ζ2

Q).

Theorem 5.1 states that the asymptotic distribution of ŜUn is normal with the mean given by

SU := U2
P − U2

Q. It follows that under H0, SU ≤ 0 and the (1− α)-quantile is SU +
√
ντ1−α

where τ1−α is the (1− α)-quantile of the standard normal distribution. Since SU is unknown

in practice, we therefore adjust it to be
√
νΦ−1(1 − α), and use it as the test threshold Tα.

The adjusted threshold can be estimated easily by replacing ν with ν̂n, a consistent estimate

based on samples. It can be shown that the test with the adjusted threshold is still level-α (more

conservative in rejecting H0). We note that the same approach of adjusting the threshold is used

in Rel-MMD [Bounliphone et al., 2016] and in the KSD test in Chapter 3.
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Better Fit of Q in Terms of W . When specifying V and W , the model comparison is

performed by comparing the goodness of fit of P (to R) as measured in the regions specified

by V to the goodness of fit of Q as measured in the regions specified by W . By specifying V

and setting W = V , testing with Rel-UME is equivalent to posing the question “Does Q fit to

the data better than P does, as measured in the regions of V ?” The regions might represent

predictive points, or objects intended to generate. For instance, the observed sample from R

might contain smiling and non-smiling faces, and P,Q are candidate generative models for face

images. If we are interested in checking the relative fit in the regions of smiling faces, V can

be a set of smiling faces. In the following, we will assume V = W and k := kX = kY for

interpretability. Investigating the general case without these constraints will be an interesting

topic of future study. Importantly we emphasize that test results are always conditioned on the

specified V . To be precise, let U2
V be the squared UME statistic defined by V . It is entirely

realistic that the test rejects H0 in favor of H1 : U2
V1

(P,R) > U2
V1

(Q,R) (i.e., Q fits better) for

some V1, and also rejects H0 in favor of the opposite alternative H1 : U2
V2

(Q,R) > U2
V2

(P,R)

(i.e., P fits better) for another setting of V2. This is because the regions in which the model

comparison takes place are different in the two cases. Although not discussed in Bounliphone

et al. [2016], the same behavior can be observed for Rel-MMD i.e., test results are conditioned

on the choice of kernel.

In some cases, it is not known in advance what features are better represented by one model

versus another, and it becomes necessary to learn these features from the model outputs. In this

case, we propose setting V to contain the locations which maximize the probability that the test

can detect the better fit of Q, as measured at the locations. Following the same principle as in

Gretton et al. [2012b], Sutherland et al. [2016], Jitkrittum et al. [2016, 2017a,b], this goal can

be achieved by finding (k, V ) which maximize the test power, while ensuring that the test is

level-α. By Theorem 5.1, for large n the test power Pr
(√
nŜUn > Tα

)
is approximately

Φ

(√
nSU − Tα√

ν

)
= Φ

(
√
n
SU√
ν
−
√
ν̂n
ν

Φ−1(1− α)

)
,

where Φ is the cumulative distribution function of the standard normal distribution. Under H1,

we have SU > 0. For large n, Φ−1(1 − α)
√
ν̂n/
√
ν approaches a constant, and

√
nSU/

√
ν

dominates. It follows that, for large n,

(k∗, V ∗) = arg max
(k,V )

Pr
(√

nŜUn > Tα

)
≈ arg max

(k,V )
SU/
√
ν.

We can thus use ŜUn /(γ +
√
ν̂n) as an estimate of the power criterion objective SU/

√
ν for the

test power, where γ > 0 is a small regularization parameter added to promote numerical stability

following Jitkrittum et al. [2017b, p. 5]. To control the false rejection rate, the maximization

is carried out on held-out training data which are independent of the data used for testing. In

the experiments (Section 5.4), we hold out 20% of the data for the optimization. A unique

consequence of this procedure is that we obtain optimized V ∗ which indicates where Q fits

significantly better than P . We note that this interpretation only holds if the test, using the
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optimized hyperparameters (k∗, V ∗), decides to reject H0. The optimized locations may not be

interpretable if the test fails to reject H0.

Relative FSSD (Rel-FSSD). The proposed Rel-FSSD tests

H0 : F 2
p ≤ F 2

q versus H1 : F 2
p > F 2

q .

The test statistic is
√
nŜFn :=

√
n(F̂ 2

p − F̂ 2
q ). We note that the feature functions τp (for F 2

p )

and τq (for F 2
q ) depend on (kX , V ) and (kY ,W ) respectively, and play the same role as the

feature functions ψV and ψW of the UME statistic. We only state the salient facts of Rel-FSSD,

as the rest of the derivations closely follow Rel-UME. These include the interpretation that

the relative fit is measured at the specified locations given in V and W , and the derivation of

Rel-FSSD’s power criterion (which can be derived using the asymptotic distribution of ŜFn
given in Theorem 5.2, following the same line of reasoning as in the case of Rel-UME). A

major difference is that Rel-FSSD requires explicit (gradients of the log) density functions of

the two models, allowing it to gain structural information of the models that may not be as easily

observed in finite samples. We next state the asymptotic distribution of the statistic (Theorem

5.2), which is needed for obtaining the threshold and for deriving the power criterion. The proof

closely follows the proof of Theorem 5.1, and is omitted.

Theorem 5.2 (Asymptotic distribution of ŜFn ). Let Σss′ := covz∼r[τs(z), τs′(z)] for s, s′ ∈
{p, q} so that Σpq ∈ RDJp×DJq , Σqp := (Σpq)>, Σpp = Σp ∈ RDJp×DJp , and Σqq = Σq ∈
RDJq×DJq . Define SF := F 2

p − F 2
q . Assume that 1) p, q, and r are all distinct, 2) (kX , V ) are

chosen such that F 2
p > 0, and (kY ,W ) are chosen such that F 2

q > 0, 3)

(
σ2
p σpq

σpq σ2
q

)
:=(

µ>p Σpµp µ>p Σpqµq

µ>p Σpqµq µ>q Σqµq

)
is positive definite. Then, as n→∞,

√
n
(
ŜFn − SF

)
d→ N

(
0, 4(σ2

p − 2σpq + σ2
q )
)
.

5.4 Experiments

In this section, we demonstrate the two proposed tests on both toy and real problems. We

start with an illustration of the behaviors of Rel-UME and Rel-FSSD’s power criteria using

simple one-dimensional problems. In the second experiment, we examine the test powers of

the two proposed tests using three toy problems. In the third experiment, we compare two

hypothetical generative models on the CIFAR-10 dataset [Krizhevsky and Hinton, 2009] and

demonstrate that the learned test locations (images) can clearly indicate the types of images that

are better modeled by one of the two candidate models. In the last two experiments, we consider

the problem of determining the relative goodness of fit of two given Generative Adversarial

Networks (GANs) [Goodfellow et al., 2014]. Code to reproduce all the results is available at

https://github.com/wittawatj/kernel-mod.

https://github.com/wittawatj/kernel-mod
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(a) Even mixture proportion (b) Uneven mixing proportion−5 0 5 10
−0.2

0.0

0.2

0.4 p

q

r

witnessp,r

witnessq,r

Power Cri.

Figure 1: One-dimensional plots (in green) of Rel-UME’s power criteria. The dashed lines
indicate MMD’s witness functions.

5.4.1 Illustration of Rel-UME and Rel-FSSD Power Criteria

We consider k = kX = kY to be an exponentiated quadratic, and set V = W = {v} (one test

location). The power criterion of Rel-UME as a function of v can be written as

1

2

wit2
P,R(v)− wit2

Q,R(v)

(ζ2
P (v)− 2ζPQ(v) + ζ2

Q(v))1/2
,

where wit(·) is the MMD witness function (see Section 5.2), and we explicitly indicate the

dependency on v. To illustrate, we consider two Gaussian models p, q with different means

but the same variance, and set r to be a mixture of p and q. Figure 1a shows that when each

component in r has the same mixing proportion, the power criterion of Rel-UME is a zero

function indicating that p and q have the same goodness of fit to r everywhere. To understand

this, notice that at the left mode of r, p has excessive probability mass (compared to r), while q

has almost no mass at all. Both models are thus wrong at the left mode of r. However, since the

extra probability mass of p is equal to the missing mass of q, Rel-UME considers p and q as

having the same goodness of fit. In Figure 1b, the left mode of r now has a mixing proportion

of only 30%, and r more closely matches q. The power criterion is thus positive at the left mode

indicating that q has a better fit.

The power criterion of Rel-FSSD indicates that q fits better at the right mode of r in the case

of equal mixing proportion (see Figure 2a). In one dimension, the Stein witness function gq,r

(defined in Section 5.2) can be written as gq,r(w) = Ez∼r [kY (z, w)∇z (log q(z)− log r(z))],

which is the expectation under r of the difference in the derivative log of q and r, weighted by the

kernel kY . The Stein witness thus only captures the matching of the shapes of the two densities

(as given by the derivative log). Unlike the MMD witness, the Stein witness is insensitive to the

mismatch of probability masses i.e., it is independent of the normalizer of q (this property will

be revisited in Chapter 6). In Figure 2a, since the shape of q and the shape of the right mode of

r match, the Stein witness gq,r (dashed blue curve) vanishes at the right mode of r, indicating a

good fit of q in the region. The mismatch between the shape of q and the shape of r at the left

mode of r is what creates the peak of gq,r. The same reasoning holds for the Stein witness gp,r.
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Figure 2: One-dimensional plots (in green) of Rel-FSSD’s power criteria. The dashed lines
indicate FSSD’s Stein witness functions.

The power criterion of Rel-FSSD, which is given by

1

2

gp,r(w)2 − gq,r(w)2

(σ2
p(w)− 2σpq(w) + σ2

q (w))1/2
,

is thus positive at the right mode of r (shapes of q and r matched there), and negative at the left

mode of r (shapes of p and r matched there). To summarize, Rel-UME measures the relative

fit by checking the probability mass, while Rel-FSSD does so by matching the shapes of the

densities.

5.4.2 Test Powers on Toy Problems

The goal of this experiment is to investigate the rejection rates of several variations of the two

proposed tests. To this end, we study three toy problems, each having its own characteristics.

All the three distributions in each problem have density functions to allow comparison with

Rel-FSSD.

1. Mean shift: All the three distributions are isotropic multivariate normal distributions:

p = N ([0.5, 0, . . . , 0], I), q = N ([1, 0, . . . 0], I), and r = N (0, I), defined on R50. The

two candidates models p and q differ in the mean of the first dimension. In this problem,

the null hypothesis H0 is true since p is closer to r.

2. Blobs: Each distribution is given by a mixture of four Gaussian distributions organized in

a grid in R2. Samples from p, q and r are shown in Figure 4. In this problem, q is closer

to r than p is i.e., H1 is true. One characteristic of this problem is that the difference

between p and q takes place in a small scale relative to the global structure of the data.

This problem was studied in [Gretton et al., 2012b, Chwialkowski et al., 2015].

3. RBM: Each of the three distributions is given by a Gaussian Bernoulli Restricted Boltz-

mann Machine (RBM) model with density function p′B,b,c(x) =
∑

h p
′
B,b,c(x, h), where

p′B,b,c(x, h) = exp
(
x>Bh+ b>x+ c>h− 1

2‖x‖2
)
/Z, h ∈ {−1, 1}Dh is a latent vec-

tor, Z is the normalizer, and B, b, c are model parameters. Let r(x) := p′B,b,c(x), p(x) :=

p′Bp,b,c(x), and q(x) := p′Bq ,b,c(x). Following a similar setting as in Liu et al. [2016],
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Figure 3: (a), (b), (d) Rejection rates (estimated from 300 trials) of the five tests with α = 0.05.
In the RBM problem, n = 2000. (c) Runtime in seconds for one trial in the Blobs problem.

Jitkrittum et al. [2017b], we set the parameters of the data generating density r by uni-

formly randomly setting entries of B to be from {−1, 1}, and drawing entries of b and c

from the standard normal distribution. Let E1,1 be a matrix of the same size as B such

that the (1, 1)-entry is one, and all other entries are 0. We set Bq = B + 0.3E1,1 and

Bp = B + εE1,1, where the perturbation constant ε is varied. We fix the sample size n

to 2,000. Perturbing only one entry of B creates a problem in which the difference of

distributions can be difficult to detect. This serves as a challenging benchmark to measure

the sensitivity of statistical tests [Jitkrittum et al., 2017b]. We set D = 20 and Dh = 5.

We compare three kernel-based tests: Rel-UME, Rel-FSSD, and Rel-MMD (the relative

MMD test of Bounliphone et al. 2016), all using an exponentiated quadratic. For Rel-UME

and Rel-FSSD we set kX = kY = k, where the Gaussian width of k, and the test locations

are chosen by maximizing their respective power criteria described in Section 5.3 on 20%

of the data. The optimization procedure is described in Section 5.A (appendix). Following

Bounliphone et al. [2016], the Gaussian width of Rel-MMD is chosen by the median heuristic

as implemented in the code by the authors. In the RBM problem, all problem parametersB, b,

and c are drawn only once and fixed. Only the samples vary across trials.
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Figure 4: Blobs prob-
lem samples: p, q, r.

Figure 3 shows the test powers of all the tests. When H0 holds,

all tests have false rejection rates (type-I errors) bounded above by

α = 0.05 (Figure 3a). In the Blobs problem (Figure 3b), it can be seen

that Rel-UME achieves larger power at all sample sizes, compared

to Rel-MMD. Since the relative goodness of fit of p and q must

be compared locally, the optimized test locations of Rel-UME are

suitable for detecting such local differences. The poor performance of

Rel-MMD is caused by unsuitable choices of the kernel bandwidth.

The bandwidth chosen by the median heuristic is only appropriate for capturing the global

length scale of the problem. It is thus too large to capture small-scale differences. No existing

work has proposed a kernel selection procedure for Rel-MMD. Regarding the number J of

test locations, we observe that changing J from 1 to 5 drastically increases the test power of

Rel-UME, since more regions characterizing the differences can be pinpointed. Rel-MMD

exhibits a quadratic-time profile (Figure 3c) as a function of n.

Figure 3d shows the rejection rates against the perturbation strength ε in p in the RBM

problem. When ε ≤ 0.3, p is closer to r than q is (i.e., H0 holds). We observe that all the tests

have well-controlled false rejection rates in this case. At ε = 0.35, while q is closer (i.e., H1
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Figure 5: P = {airplane, cat}, Q = {automobile, cat}, and R = {automobile, cat}. (a)
Histogram of Rel-UME power criterion values. (b), (c) Images as sorted by the criterion values
in ascending and descending orders, respectively.

holds), the relative amount by which q is closer to r is so small that a significant difference

cannot be detected when p and q are represented by samples of size n = 2, 000, hence the low

powers of Rel-UME and Rel-MMD. Structural information provided by the density functions

allows Rel-FSSD (both J = 1 and J = 5) to detect the difference even at ε = 0.35, as can be

seen from the high test powers. The fact that Rel-MMD has higher power than Rel-UME, and

the fact that changing J from 1 to 5 increases the power only slightly suggest that the differences

may be spatially diffuse (rather than local).

5.4.3 Informative Power Objective

In this part, we demonstrate that test locations having positive (negative) values of the power

criterion correctly indicate the regions in which Q has a better (worse) fit. We consider image

samples from three categories of the CIFAR-10 dataset [Krizhevsky and Hinton, 2009]: airplane,

automobile, and cat. We partition the images, and assume that the sample from P consists of

2,000 airplane, 1,500 cat images, the sample from Q consists of 2,000 automobile, 1,500 cat

images, and the reference sample from R consists of 2,000 automobile, 1,500 cat images. All

samples are independent. We consider a held-out random sample consisting of 1,000 images

from each category, serving as a pool of test location candidates. We set the kernel to be the

exponentiated quadratic on 2,048 features extracted by the Inception-v3 network at the pool3

layer [Szegedy et al., 2016]. We evaluate the power criterion of Rel-UME at each of the test

locations in the pool individually. The histogram of the criterion values is shown in Figure 5a.

We observe that all the power criterion values are non-negative, confirming that Q is better than

P everywhere. Figure 5b shows the top 15 test locations as sorted in ascending order by the

criterion, consisting of automobile images. These indicate the regions in the data domain where

Q fits better. Notice that cat images do not have high positive criterion values because they can

be modeled equally well by P and Q, and thus have scores close to zero as shown in Figure 5b.

5.4.4 Testing GAN Models

In this experiment, we apply the proposed Rel-UME test to comparing two generative adver-

sarial networks (GANs) [Goodfellow et al., 2014]. We consider the CelebA dataset [Liu et al.,

2015]2 in which each data point is an image of a celebrity with 40 binary attributes annotated
2CelebA dataset: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 1: Rejection rates of the proposed Rel-UME, Rel-MMD, KID and FID, in the GAN
model comparison problem. “FID diff.” refers to the average of FID(P,R) − FID(Q,R)
estimated in each trial. Significance level α = 0.01 (for Rel-UME, Rel-MMD, and KID). S
and N stand for Smile and Non-smile. The prefix R indicates that real data points are used.

P Q R Rel-UME Rel-
MMD

KID FID FID diff.
J10 J20 J40

1. S S RS 0.0 0.0 0.0 0.0 0.0 0.53 -0.045 ± 0.52
2. RS RS RS 0.0 0.0 0.0 0.03 0.02 0.7 0.04 ± 0.19
3. S N RS 0.0 0.0 0.0 0.0 0.0 0.0 -15.22 ± 0.83
4. S N RN 0.57 0.97 1.0 1.0 1.0 1.0 5.25 ± 0.75
5. S N RM 0.0 0.0 0.0 0.0 0.0 0.0 -4.55 ± 0.82

e.g., pointy nose, smiling, mustache, etc. We create a partition of the images on the smiling

attribute, thereby creating two disjoint subsets of smiling and non-smiling images. A set of

30,000 images from each subset is held out for subsequent relative goodness-of-fit testing, and

the rest are used for training two GAN models: a model for smiling images, and a model for

non-smiling images. Generated samples and details of the trained models can be found in

Section 5.B (appendix). The two models are trained once and fixed throughout.

In addition to Rel-MMD, we compare the proposed Rel-UME to Kernel Inception Distance

(KID) [Bińkowski et al., 2018], and Fréchet Inception Distance (FID) [Heusel et al., 2017], which

are distances between two samples (originally proposed for comparing a sample of generated

images, and a reference sample). All images are represented by 2,048 features extracted from

the Inception-v3 network [Szegedy et al., 2016] at the pool3 layer following Bińkowski et al.

[2018]. When adapted for three samples, KID is in fact a variant of Rel-MMD in which a

third-order polynomial kernel is used instead of an exponentiated quadratic (on top of the pool3

features). Following Bińkowski et al. [2018], we construct a bootstrap estimator for FID (10

subsamples with 1,000 points in each). For the proposed Rel-UME, the J ∈ {10, 20, 40} test

locations are randomly set to contain J/2 smiling images, and J/2 non-smiling images drawn

from a held-out set of real images. We create problem variations by setting P,Q,R ∈ {S, N,

RS, RN, RM} where S denotes generated smiling images (from the trained model), N denotes

generated non-smiling images, M denotes an equal mixture of smiling and non-smiling images,

and the prefix R indicates that real images are used (as opposed to generated ones). The sample

size is n = 2, 000, and each problem variation is repeated for 10 trials for FID (due to its

high complexity) and 100 trials for other methods. The rejection rates from all the methods

are shown in Table 1. Here, the test result for FID in each trial is considered “reject H0” if

FID(P,R) > FID(Q,R). Heusel et al. [2017] did not propose FID as a statistical test. That

said, there is a generic way of constructing a relative goodness-of-fit test based on repeated

permutation of samples of P and Q to simulate from the null distribution. However, FID

requires computing the square root of the feature covariance matrix (of size 2048× 2048), and

is computationally too expensive for permutation testing.

Overall, we observe that the proposed test does at least equally well as existing approaches,

in identifying the better model in each case. In Problems 1 and 2, P and Q have the same

goodness of fit, by design. In these cases, all the tests correctly yield low rejection rates, staying
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(a) Sample from P = LS-
GAN trained for 15 epochs.

(b) Sample from Q = LS-
GAN trained for 17 epochs.
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Figure 6: Examining the training of an LSGAN model with Rel-UME. (a), (b) Samples from
the two models P,Q trained on MNIST. (c) Distributions of power criterion values computed
over 200 trials. Each distribution is formed by randomly selecting J = 40 test locations from
real images of a digit type. (d) Test locations showing where Q is better (maximization of the
power criterion), and test locations showing where P is better (minimization).
roughly at the design level (α = 0.01). Without a properly chosen threshold, the (false) rejection

rates of FID fluctuate around the expected value of 0.5. This means that simply comparing FIDs

(or other distances) to the reference sample without a calibrated threshold can lead to a wrong

conclusion on the relative goodness of fit. The FID is further complicated by the fact that its

estimator suffers from bias in ways that are hard to model and correct for (see Bińkowski et al.

[2018, Section D.1]). Problem 4 is a case where the model Q is better. We notice that increasing

the number of test locations of Rel-UME helps detect the better fit of Q. In problem 5, the

reference sample is bimodal, and each model can capture only one of the two modes (analogous

to the synthetic problem in Figure 1a). All the tests correctly indicate that no model is better

than another.

5.4.5 Examining GAN Training

In the final experiment, we show that the power criterion of Rel-UME can be used to examine

the relative change of the distribution of a GAN model after training further for a few epochs.

To illustrate, we consider training an LSGAN model [Mao et al., 2017] on MNIST, a dataset

in which each data point is an image of a handwritten digit. We set P and Q to be LSGAN

models after 15 epochs and 17 epochs of training, respectively. Details regarding the network

architecture, training, and the kernel (chosen to be an exponentiated quadratic on features

extracted from a convolutional network) can be found in Section 5.D. Samples from P and Q

are shown in Figures 6a and 6b (see Figure 5.D.2 in the appendix for more samples).

We set the test locations V to be the set Vi containing J = 40 randomly selected real images

of digit i, for i ∈ {0, . . . , 9}. We then draw n = 2, 000 points from P,Q and the real data

(R), and use V = Vi to compute the power criterion for i ∈ {0, . . . , 9}. The procedure is

repeated for 200 trials where V and the samples are redrawn each time. The results are shown

in Figure 6c. We observe that when V = V3 (i.e., box plot at the digit 3) or V9, the power

criterion values are mostly negative, indicating that P is better than Q, as measured in the

regions indicated by real images of the digits 3 or 9. By contrast, when V = V6, the large mass

of the box plot in the positive orthant shows that Q is better in the regions of the digit 6. For

other digits, the criterion values spread around zero, showing that there is no difference between

P and Q, on average. We further confirm that the class proportions of the generated digits
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from both models are roughly correct (i.e., uniform distribution), meaning that the difference

between P and Q in these cases is not due to the mismatch in class proportions (see Section

5.D). These observations imply that after the 15th epoch, training this particular LSGAN model

two epochs further improves generation of the digit 6, and degrades generation of digits 3 and 9.

A non-monotonic improvement during training is not uncommon since at the 15th epoch the

training has not converged. More experimental results from comparing different GAN variants

on MNIST can be found in Section 5.E in the appendix.

We note that the set V does not need to contain test locations of the same digit. In fact,

the notion of class labels may not even exist in general. It is up to the user to define V to

contain examples which capture the relevant concept of interest. For instance, to compare the

ability of models to generate straight strokes, one might include digits 1 and 7 in the set V . An

alternative to manual specification of V is to optimize the power criterion to find the locations

that best distinguish the two models (as done in experiment 2). To illustrate, we consider

greedily optimizing the power criterion by iteratively selecting a test location (from real images)

which best improves the objective. Maximizing the objective yields locations that indicate the

better fit of Q, whereas minimization gives locations which show the better fit of P (recall from

Figure 1). The optimized locations are shown in Figure 6d. The results largely agree with our

previous observations, and do not require manually specifying V . This optimization procedure

is applicable to any models which can be sampled.

5.5 Conclusion

We have developed two interpretable test of relative goodness of fit. The proposed tests are based

on two distributional discrepancies with interpretable features and come with the following

two advantages. First, the user can formulate hypotheses based on features of their choice and

interpret the test’s result accordingly. Second, these tests allow the user to discover features

distinguishing two models by optimizing their power proxies. Regarding the second benefit,

our real-data experiment focused on discrete optimization, where we specified a finite set of

test locations. Extending this procedure to continuous optimization is an interesting direction to

explore, as considered in Jitkrittum et al. [2016].
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5.A Optimization of Test Locations in Rel-UME and Rel-FSSD

This section describes the optimization procedure we use to select the test locations V and

the bandwidth of the exponentiated quadratic kernel in the experiment “Test Powers on Toy

Problems.” Since the two sets V,W of test locations are constrained to be the same i.e.,

V = W consisting of J = Jp = Jq locations, in total, we have Jd + 1 parameters. We

follow a similar implementation of the optimization procedure for finding the test locations

in FSSD.3 All the parameters are optimized jointly by gradient ascent. We initialize the

test locations by randomly picking J points from the training set. The Gaussian width is

initialized (for gradient ascent) to the square of the mean of medXtr∪Ztr and medY tr∪Ztr ,

where medA := median
(
{‖x− x′‖2}x,x′∈A

)
. This is a similar heuristic used in Bounliphone

et al. [2016] to set the bandwidth of the exponentiated quadratic for Rel-MMD.

5.B Trained Models for Generating Smiling and Non-Smiling Im-
ages

(a) Samples from the smiling model (b) Samples from the non-smiling model

Figure 5.B.1: Samples from the two trained models (smiling, and non-smiling) used in "Testing
GAN Models" experiment in Section 5.4.

This section describes the details of the two GAN models (smiling, and non-smiling models)

we use in the "Testing GAN Models" experiment in Section 5.4. We use the CelebA dataset

[Liu et al., 2015] in which each data point is an image of a celebrity with 40 binary attributes

annotated e.g., pointy nose, smiling, mustache, etc. We create a partition of the images on

the smiling attribute, thereby creating two disjoint subsets of smiling and non-smiling images.

To reduce confounding factors that are not related to smiling (e.g., sunglasses, background),

each image is cropped to be 64x64 pixels, so that only the face remains. Cropping and image

alignment with eyes and lips are done with the software described in Amos et al. [2016]. We
3Code for FSSD released by the authors: https://github.com/wittawatj/kernel-gof.

https://github.com/wittawatj/kernel-gof
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use DCGAN architecture [Radford et al., 2015] (for both generator and discriminator) for both

smiling and non-smiling models, coded in PyTorch. Subsampling was performed so that the

training sizes for the two models are equal. Each model is trained on 84,822 images (i.e., 84822

smiling faces, and 84822 non-smiling faces) for 50 epochs. The training time was roughly three

hours using an Nvidia Titan X graphics card with Pascal architecture. We use Adam optimizer

[Kingma and Ba, 2014] with β1 = 0.5 and β2 = 0.999. The learning rate is set to 10−3 (for

both discriminator and generator in the two models). Some samples generated from the two

trained models are shown in Figure 5.B.1.

5.C Proof of Theorem 5.1

Let all the notations be defined as in Section 5.3. Recall Theorem 5.1:

Theorem 5.1 (Asymptotic distribution of ŜUn ). Define CQW := covy∼Q[ψW (y), ψW (y)], CPV :=

covx∼P [ψV (x), ψV (x)], andCRVW := covz∼R[ψV (z), ψW (z)] ∈ RJp×Jq . Let SU := U2
P−U2

Q,

and M :=

(
ψPV − ψRV 0

0 ψQW − ψRW

)
∈ R(Jp+Jq)×2. Assume that 1) P,Q and R are all

distinct, 2) (kX , V ) are chosen such that U2
P > 0, and (kY ,W ) are chosen such that U2

Q > 0,

3)

(
ζ2
P ζPQ

ζPQ ζ2
Q

)
:= M>

(
CPV + CRV CRVW
(CRVW )> CQW + CRW

)
M is positive definite. Then, as

n→∞, √
n
(
ŜUn − SU

)
d→ N

(
0, 4(ζ2

P − 2ζPQ + ζ2
Q)
)
.

Proof. Consider a random vector t := (x, y, z) ∈ X 3, where x, y, and z are independently

drawn from P,Q, and R, respectively. Let {ti}ni=1 = {(xi, yi, zi)}ni=1
i.i.d.∼ T be i.i.d copies of

t. Define two functions

δPV (t, t′) := (ψV (x)− ψV (z))>(ψV (x′)− ψV (z′)),

δQW (t, t′) := (ψW (y)− ψW (z))>(ψW (y′)− ψW (z′)),

where t′ := (x′, y′, z′). It can be seen that δPV (t, t′) = δPV (t′, t) and δQW (t, t′) = δQW (t′, t) for

all t, t′ ∈ X 3, and that both functions are valid U-statistic kernels. It is not difficult to see

that Û2
P and Û2

Q (estimator given in Section 5.2) can be written in the form of second-order

U-statistics [Serfling, 2009, Chapter 5] as

Û2
P =

(
n

2

)−1 n∑
i=1

∑
j<i

δPV (t, t′) and Û2
Q =

(
n

2

)−1 n∑
i=1

∑
j<i

δQW (t, t′).

Since ψPV 6= ψRV (because U2
P > 0), the U-statistic Û2

P is a non-degenerate U-statistic. Since

ψQW 6= ψRW , Û2
Q is also non-degenerate [Serfling, 2009, Section 5.5.1]. By Hoeffding [1948,

Theorem 7.1], asymptotically their joint distribution is given by a normal distribution:

√
n

((
Û2
P

Û2
Q

)
−
(
U2
P

U2
Q

))
d→ N

(
0, 4

(
ζ2
P ζPQ

ζPQ ζ2
Q

))
, (5.1)
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where

ζ2
P = Vart∼T

[
Et′∼T [δPV (t, t′)]

] (a)
= (ψPV − ψRV )>(CPV + CRV )(ψPV − ψRV ),

ζ2
Q = Vart∼T

[
Et′∼T [δQW (t, t′)]

]
(b)
= (ψQW − ψRW )>(CQW + CRW )(ψQW − ψRW ),

ζPQ = covt∼T

(
Et′∼T [δPV (t, t′)],Et′∼T [δQW (t, t′)]

)
(c)
= (ψPV − ψRV )>CRVW (ψQW − ψRW ),

and CRVW := covz∼R[ψV (z), ψW (z)] ∈ RJp×Jq . At (a), (b), (c), we rely on the independence

among x, y, and z. A direct calculation gives the expressions of ζ2
P , ζ2

Q, and ζPQ. By the

continuous mapping theorem, and (5.1),

√
n
(
ŜUn − SU

)
=
√
n

(
1

−1

)>((
Û2
P

Û2
Q

)
−
(
U2
P

U2
Q

))

d→ N

0, 4

(
1

−1

)>(
ζ2
P ζPQ

ζPQ ζ2
Q

)(
1

−1

) .

Remark 5.3. The assumption that P,Q, and R are all distinct in Theorem 5.1 is necessary for

Û2
P and Û2

Q to follow a non-degenerate normal distribution asymptotically. If R ∈ {P,Q}, then

Û2
S for S ∈ {P,Q} asymptotically follows a weighted sum of chi-squared random variables,

and U2
S = 0. If P = Q, the covariance matrix in (5.1) is rank-defficient.

5.D Details of Experiment 5: Examining GAN Training

LSGAN Architecture We rely on Pytorch code4 by Hyeonwoo Kang to train the LSGAN

[Mao et al., 2017] model that we use in experiment 5. Network architectures of the generator

and the discriminator follow the design used in Chen et al. [2016, Section C.1]. We reproduce

here in Table 5.D.1 for ease of reference.

Table 5.D.1: Discriminator and generator of LSGAN used in experiment 5.

Discriminator Generator

Input: 28× 28 grayscale image Input noise vector z ∼ Unif[0, 1]62

4× 4 conv. 64 LRELU. Stride 2. FC. 1024 RELU. Batch norm.
4× 4 conv. 128 LRELU. Stride 2. Batch norm. FC. 7× 7× 128 RELU. Batch norm.
FC. 104 Leaky RELU. Batch norm. 4× 4 upconv. 64 RELU. Stride 2. Batch norm.
FC 4× 4 upconv. 1 channel.

conv. refers to a convolution layer, FC means a fully-connected layer, RELU means a rectified
linear unit, LRELU means Leaky RELU, and upconv is the transposed convolution.

4https://github.com/znxlwm/pytorch-generative-model-collections (commit: 0d183bb5ea)

https://github.com/znxlwm/pytorch-generative-model-collections
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Figure 5.D.1: Proportions of generated digits from the LSGAN models at 15th and 17th epochs.
Classification of each generated image is done by a trained convolutional neural network
classifier (see Section 5.D).

Kernel Function The kernel k is chosen to be an exponentiated quadratic kernel on features

extracted from a convolutional neural network (CNN) classifier trained to classify the ten digits

of MNIST. Specifically the kernel k is k(x, y) = exp
(
−‖f(x)− f(y)‖22/2ν2

)
, where f is the

output (in R10) of the last fully-connected layer of a trained CNN classifier.5 The architecture

of the CNN is

Input: 28×28 grayscale image→ 5× 5 conv. 10 filters. 2×2 max pool

→ 5× 5 conv. 20 filters. 2×2 max pool

→ FC. 50 RELU.

→ FC. 10 outputs.

We train the CNN for 30 epochs and achieve higher than 99% accuracy on MNIST’s test set.

The Gaussian bandwidth ν is set with the median heuristic.

Class Proportion of Generated Digits To examine the proportion of digits in the generated

samples, we sample 4000 images from both models P (LSGAN-15, LSGAN model trained

for 15 epochs), and Q (LSGAN-17, LSGAN model trained for 17 epochs), and use the CNN

classifier to assign a label to each image. The proportions of digits are shown in Figure 5.D.1.

We observe that the generated digits from both LSGAN-15 and LSGAN-17 follow the right

distribution i.e., uniform distribution, up to variability due to noise. There is no mode collapse

problem. This observation means that the difference between P and Q studied in experiment 5

in the main text is not due to the mismatch of class proportions.

5Code to train the CNN classifier is taken from https://github.com/pytorch/examples/blob/master/
mnist/main.py (commit: 75e7c75).

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py
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(a) Samples from LSGAN trained for 15 epochs.

(b) Samples from LSGAN trained for 17 epochs.

Figure 5.D.2: Samples from LSGAN models trained on MNIST. Samples are taken from the
models at two different time points: after 15 epochs, and after 17 epochs of training.

5.E Comparing Different GAN Models Trained on MNIST

This section extends experiment 5 in the main text to compare other GAN variants trained on

MNIST. All the GAN variants that we consider have the same network architecture as described

in Table 5.D.1. We use the notation AAA-n to refer to a GAN model of type AAA trained for n

epochs. We note that the result presented here for each GAN variant does not represent its best

achievable result.

WGAN-GP-10 vs. LSGAN-10 Here we compare P = Wasserstein GAN with Gradient

Penalty [Gulrajani et al., 2017] and Q = LSGAN [Mao et al., 2017] trained for ten epochs on

MNIST. The results are shown in Figure 5.E.1. From the generated samples from the two models,

it appears that LSGAN yields more realistic images of handwritten digits, after training for ten

epochs. The positive power criterion values in Figure 5.E.1c further confirm this observation
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i.e., Q is better at all digits.

(a) Sample from P = WGAN-GP
trained for 10 epochs.

(b) Sample from Q = LSGAN
trained for 10 epochs.
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Figure 5.E.1: Comparing WGAN-GP (Wasserstein GAN with Gradient Penalty) and LSGAN,
trained for ten epochs on MNIST.

GAN-40 vs. LSGAN-40 In this part, we compare P = GAN-40 [Goodfellow et al., 2014]

and Q = LSGAN trained for 40 epochs on MNIST. The results are shown in Figure 5.E.2. It

can be seen from visual inspection that LSGAN-40 is slightly better overall, except for digits 1

and 5 at which LSGAN-40 appears to be significantly better. This observation is also hinted by

the power criterion values at digits 1 and 5 which tend to be positive (see Figure 5.E.2c).

(a) Sample from P = GAN trained
for 40 epochs.

(b) Sample from Q = LSGAN
trained for 40 epochs.
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Figure 5.E.2: Comparing GAN (the original formulation) and LSGAN, trained for 40 epochs on
MNIST.

WGAN-30 vs WGAN-30 As a sanity check, we also run the same procedure on a case where

P = Q. We set P = Q = Wasserstein GAN [WGAN, Arjovsky et al., 2017] trained for 30

epochs on MNIST. The results are shown in Figure 5.E.3. As expected, the power criterion

values spread around zero in all cases. We note that we did not modify the procedure to treat

this special case. In particular, in each trial, two samples are drawn from P and Q as usual.
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(a) Sample from P = Q = WGAN trained for 30 epochs.
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Figure 5.E.3: Comparing two models which are the same for sanity checking. The model is set
to WGAN trained for 30 epochs.
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Chapter 6

Controlling moments with kernel Stein
discrepancies

Summary The kernel Stein discrepancy (KSD) enables us to measure the similarity between

a given distribution and a distribution defined by a density having an intractable normalizing

constant. To use the KSD in practice, one needs to know what can be interpreted from the

discrepancy. This chapter investigates the interpretability of the KSD in terms of moments;

fundamental statistical quantities. The result in this chapter extends that of Gorham and Mackey

[2017], who showed that the KSD controls the bounded-Lipschitz metric. Specifically, we prove

that the KSD controls the integral probability metric defined by a class of continuous functions

of polynomial growth, generalizing Lipschitz functions.

6.1 Introduction

Consider two probability distributions P and Q over RD, where P is defined by a density

function p andQ is arbitrary. We assume that the density pmay contain an unknown normalizing

factor. Suppose we are interested in comparing the expectations of a test function f0 under

these two distributions. As a test function is usually only known up to certain properties (e.g.,

differentiability or growth conditions), a natural measure to consider is the worst case error, or

an integral probability metric [Müller, 1997],

sup
f∈F
|EX∼P [f(X)]− EY∼Q[f(Y )]|

over a function class F containing f0. This setting may be interpreted as either evaluating

the goodness of fit of a statistical model P against the data distribution Q, or assessing an

approximation Q to a posterior distribution P in Bayesian inference. Our particular focus in this

chapter is on continuous functions of polynomial growth. In this case, the IPM above implies

disagreement in terms of moments, since they are defined by monomials of coordinates.

As the expectations are rarely analytically tractable, one might compare empirical estimates

using samples from both distributions. In some scenarios, however, assuming access to samples

from P may be problematic; e.g., correct samples from P are unavailable if the goal is to assess

119
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the quality of a Markov chain Monte Carlo sampler Q targeting intractable P. One possible way

to sidestep the intractable integral is using a Stein discrepancy [Gorham and Mackey, 2015]

sup
g∈G
|EY∼Q[TP g(Y )]|,

where TP is a Stein operator inducing functions whose expectations under P are zero, and G
is some function class included in the domain of TP . Different choices of the operator and

the function class yield distinct Stein discrepancies. Two major classes are the graph Stein

discrepancies [Gorham and Mackey, 2015, Gorham et al., 2019] and the kernel Stein discrepancy

(KSD) [Chwialkowski et al., 2016, Liu et al., 2016, Oates et al., 2017]. Notably, it is possible to

compute these discrepancies. As we have seen in Chapter 3, the KSD circumvents the supremum

and admits a closed-form expression involving kernel evaluations on samples, whereas the graph

Stein discrepancy requires solving a linear program.

While successfully avoiding the intractable expectation, a drawback of Stein discrepancies is

that they lack interpretability: the test functions TP g in a Stein discrepancy are not immediately

interpretable in terms of a given class F of interest. Following the spirit of Stein’s method,

this problem has been addressed by lower bounding a Stein discrepancy by a known IPM –

convergence in the Stein discrepancy then implies the IPM convergence. Gorham and Mackey

[2015] showed that the Langevin graph Stein discrepancy controls the L1-Wasserstein distance

(the IPM defined by 1-Lipschitz functions) for distantly dissipative target distributions; Gorham

et al. [2019] later generalized this result to heavy-tailed targets with diffusion graph Stein

discrepancies. Gorham and Mackey [2017] proved that the Langevin KSD with the inverse

multi-quadratic kernel (IMQ) controls the bounded-Lipschitz metric; Chen et al. [2018] offer

other kernel choices.

Despite its computational appeal, the KSD is limited in that it need not control convergence

in unbounded functions, particularly functions of polynomial growth. This issue has been

in part addressed by the aforementioned works on the graph Stein discrepancies. However,

their analyses are limited to linearly growing functions – it is unclear how these results extend

to functions of faster growth. Polynomially growing functions are of practical interest since

they are related to fundamental statistical quantities, such as mean and variance (the latter

corresponds to a quadratically growing function). Our objective is thus to extend the reach of

the KSD to functions of arbitrary polynomial growth.

In this chapter, we investigate conditions under which the KSD controls the convergence of

expectations of polynomially growing functions. Specifically, we prove that the KSD controls the

IPM defined by a class of pseudo-Lipschitz functions, a polynomial generalization of Lipschitz

functions. Our KSD bound builds on the result of finite Stein factors by Erdogdu et al. [2018].

Our specific contributions are twofold. First, our analysis considers the diffusion kernel Stein

discrepancy (DKSD) [Barp et al., 2019], a generalization of the Langevin KSD [Chwialkowski

et al., 2016, Liu et al., 2016, Oates et al., 2017]; this extension allows us to consider heavy-

tailed targets. Second, we provide reproducing kernels required for the advertised convergence

property to hold.
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6.2 Background

We begin with background material required to present our main results.

6.2.1 Definitions and symbols specific to this chapter

Pseudo-Lipschitz functions. A function h : RD → R is called pseudo-Lipschitz continuous

(or simply C-pseudo-Lipschitz) of order q if it satisfies, for some constant C > 0,

|h(x)− h(y)| ≤ C(1 + ‖x‖q2 + ‖y‖q2)‖x− y‖2 for all x, y ∈ RD, (6.1)

where ‖·‖2 denotes the Euclidean norm. We denote the smallest constant C satisfying (6.1)

by µ̃pLip(h)1,q. We denote by pLip1,q the set of pseudo-Lipschitz functions of order q with

µ̃pLip(h)1,q ≤ 1. The pseudo-Lipschitz continuity generalizes the Lipschitz continuity (corre-

sponding to the case q = 0) and allows us to describe functions of polynomial growth.

Vectors, matrices, and tensors. For a real vector v, ‖v‖op = ‖v‖2. We identify an order L

tensor T ∈ RD1×···×DL as a multilinear map from RD1 × · · · × RDL to R via the natural inner

product

T : (u1, . . . , uL) ∈ RD1×···×DL 7→ R,
〈
T, v(1) ⊗ · · · ⊗ v(L)

〉
=
∑

i1,...,iL

Ti1,...,iLv
(1)
i1
· · · v(L)

iL
,

and define the operator norm ‖T‖op by

‖T‖op = sup
‖u(l)‖

2
=1

∣∣∣〈T, u(1) ⊗ · · · ⊗ u(l) ⊗ · · · ⊗ u(L)
〉∣∣∣ .

Derivatives. The symbol ∇ = (∂1, . . . , ∂D)> denotes the gradient operator with ∂d denoting

the partial derivative with respect to the d-th coordinate. The symbol∇m denotes the operator

that outputs all them-th order partial derivatives, defined as (∇mg(x))i1,...im = ∂i1 · · · ∂img(x).

For a vector-valued function g : RD → RD′ , we define∇ig : RD → RD ⊗ · · · ⊗ RD︸ ︷︷ ︸
i times

⊗RD′ by

(∇ig(x))k1,...,ki−1,d = (∇igd(x))k1,...,ki−1
; i.e., ∇i is applied to g element-wise. For a matrix

valued function f, we define its column-wise divergence by 〈∇, f(x)〉; i.e., 〈∇, f(x)〉i =∑
j ∂jfji(x).

Generalized Fourier transform. Our main result (Proposition 6.13) requires an analogue

of the Fourier transform of a function that is not an element of L1 or L2, where Lr, r ∈ {1, 2}
denotes the Banach space of r-integrable functions with respect to the Lebesgue measure. For

our purpose, we use the following generalized Fourier transform.

Definition 6.1 (Generalized Fourier transform [Wendland, 2004, Defintion 8.9]). Let Φ be a

continuous complex-valued function on RD such that for some constant q ≥ 0,Φ(x) = O(‖x‖q2)

in the limit of ‖x‖2 →∞. A measurable function Φ̂ is called the generalized Fourier transform
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of Φ if it satisfies the following conditions: (a) the restriction of Φ̂ on every compact set

K ⊂ RD \ {0} is square integrable, and (b) there exists a nonnegative integer m such that∫
Φ(x)γ̂(x)dx =

∫
Φ̂(ω)γ(ω)dω

is true for all Schwartz functions γ satisfying γ(ω) = O(‖ω‖2m2 ) for ‖ω‖2 → 0. The integer m

is called the order of Φ̂.

The Fourier transform of Φ coincides with the generalized Fourier transform, if it exists. In

the following, we limit ourselves generalized Fourier transforms of order zero.

6.2.2 Generators of Itô diffusions and their Stein equations

We first consider the generator of an Itô diffusion as a Stein operator. This object is related to

the diffusion Stein operator considered in the next Section; the diffusion Stein operator is a

first-order differential operator, whereas generators considered in this section are of the second

order.

For a function f pseudo-Lipschitz of order q, consider the Stein equation

APuf = f − EX∼P [f(X)], (6.2)

defined by the generator AP of an Itô diffusion with invariant distribution P, where uh : RD →
R is a solution to the equation. The diffusion is defined by the following stochastic differential

equation:

dZxt = b(Zxt )dt+ σ(Zxt )dBt with Zx0 = x. (6.3)

Here, (Bt)t≥0 is a D′-dimensional Wiener process; b ∈ C1 : RD → RD and σ ∈ C1 : RD →
RD×D′ represent the drift and the diffusion coefficients. The drift coefficient b is chosen so that

the diffusion has P as an invariant measure:

b(x) =
1

2p(x)
〈∇, p(x){a(x) + c(x)}〉 ,

where a(x) = σ(x)σ(x)> is the covariance coefficient, c(x) = −c(x)> ∈ RD×D is the

skew-symmetric stream coefficient. Then, the generator AP is an operator defined by

APuf (x) := 〈b(x),∇uf (x)〉+
1

2

〈
σ(x)σ(x)>,∇2uf (x)

〉
.

Characterizing the regularity of a solution uf to (6.2) requires additional assumptions on the

diffusion. Erdogdu et al. [2018] revealed that a solution is a pseudo-Lipschitz function for a

fast-converging diffusion. To introduce their result, we first detail required assumptions.

Condition 6.2 (Polynomial growth of coefficients). For some qa ∈ {0, 1} and any x ∈ RD, the

drift and the diffusion coefficients of (6.3) satisfy the growth condition

‖b(x)‖2 ≤
λb
4

(1+‖x‖2), ‖σ(x)‖F ≤
λσ
4

(1+‖x‖2), and ‖σ(x)σ(x)>‖op ≤
λa
4

(1+‖x‖qa+1
2 ),
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with λb, λσ, λa > 0.

Condition 6.3 (Dissipativity). For α, β > 0, the diffusion (6.3) satisfies the dissipativity

condition

AP ‖x‖22 ≤ −α‖x‖22 + β.

The operator AP is the generator of an Itô diffusion with coefficients b and σ, and AP ‖x‖22 =

2 〈b(x), x〉+ ‖σ(x)‖2F .

Condition 6.4 (Wasserstein rate). For q ≥ 1, the diffusion Zxt has Lq-Wasserstein rate ρq :

[0,∞)→ R if

inf
couplings(Zxt ,Z

y
t )
E[‖Zxt − Zyt ‖q2]1/q ≤ ρq(t)‖x− y‖2 for x, y ∈ RD and t ≥ 0,

where the infimum is taken over all couplings between Zxt and Zyt . We further define the relative

rates

ρ̃1(t) = log(ρ2(t)/ρ1(t)) and ρ̃2(t) = log[ρ1(t)/{ρ2(t)ρ1(0)}]/ log[ρ1(t)/ρ1(0)].

Erdogdu et al. [2018] shows that the solution uf to the Stein equation (6.2) satisfies the

following property:

Theorem 6.5 (Finite Stein factors from Wasserstein decay, Erdogdu et al. 2018, Theorem 3.2).
Assume that Conditions 6.2, 6.3, and 6.4 for the L1-Wasserstein distance hold and that f is

pseudo-Lipschitz of order q with at most degree-q polynomial growth of its i-th derivatives

for i = 2, 3, 4. Then, the solution uf to the equation (6.2) is pseudo-Lipschitz of order q with

constant ζ1, and has i-th order derivative with degree-q polynomial growth for i = 2, 3, 4 :

‖∇iuf (x)‖op ≤ ζi(1 + ‖x‖q2) for i ∈ {2, 3, 4}, and x ∈ RD.

The constants ζi (called Stein factors) are given as follows:

ζi = τi + ξi

∫ ∞
0

ρ1(t)ωqa+1(t+ i− 2)dt for i = 1, 2, 3, 4,

where

ωqa+1(t) = 1 + 4ρ1(t)1−1/(qa+1)ρ1(0)
1
2

[
1 +

1

α̃qqa+1

{(1 ∨ ρ̃qa+1(t))2λaq + 3(qa + 1)β}q
]
,

with α̃1 = α, α̃2 = inft≥0[α− qλa(1 ∨ ρ̃2(t)]+,

τ1 = 0, τi = µ̃pLip(f)1,qπ̃(f)2:i,qν̃1:q(σ)κqa(6q) for i = 2, 3, 4,

ξ1 = µ̃pLip(f)1,q,ξi = µ̃pLip(f)1,qν̃1:i(b)ν̃0:i−2(σ−1)ρ1(0)ωqa+1(1)κqa+1(6q)i−1 for i = 2, 3, 4,

where π̃(f)i,q = supx∈RD‖∇if(x)‖op/(1 +‖x‖q), π̃(f)a:b,q := maxi=a,...,b π̃(f)i,q, ν̃a:b(g) is
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a constant whose precise form is given in the proof of Erdogdu et al. [2018, Theorem 3.2], and

κqa+1(q) = 2 +
2β

α
+
qλa
4α

+
α̃qa+1

α

(
qλa + 6(qa + 1)β

2rα̃qa+1

)
.

There are two known sufficient conditions for establishing exponential Wasserstein decay

(Condition 6.4). The first is uniform dissipativity, which is a simple (but more restrictive)

condition leading to exponential L1- or L2- exponential decay rates.

Proposition 6.6 (Wasserstein decay from uniform dissipativity, Wang 2020, Theorem 2.5 ). A

diffusion with drift and diffusion coefficients b and σ has Lq-Wasserstein rate ρq(t) = e−rt/2, if

for all x, y ∈ RD,

2〈b(x)− b(y), x− y〉+ ‖σ(x)− σ(y)‖2F − (q − 2)‖σ(x)− σ(y)‖2op ≤ −r‖x− y‖22.

The second and more general condition is distant dissipativity. Explicit L1-Wasserstein

decay rates from distant dissipativity are obtained by the following result of Gorham et al. 2019,

which builds upon the analyses of Eberle [2015] and Wang [2020].

Proposition 6.7 (Wasserstein decay from distant dissipativity, Gorham et al. 2019, Corollary

12). A diffusion with drift and diffusion coefficients b and σ is called distantly dissipative if for

the truncated diffusion coefficient

σ̃(x) := (σ(x)σ(x)> − s2I)1/2 with s ∈ [0, 1/M0(σ−1))

with M0(σ−1) = supx∈RD‖σ−1(x)‖op, it satisfies

2
〈b(x)− b(y), x− y〉

s‖x− y‖22
+
‖σ̃(x)− σ̃(y)‖2F
s2‖x− y‖22

− ‖
(
σ̃(x)− σ̃(y)

)>
(x− y)‖2F

s2‖x− y‖42

≤

−K ‖x− y‖2 > R

L ‖x− y‖2 ≤ R

for some K > 0 and R,L ≥ 0. If the distant dissipativity holds, then the diffusion has

Wasserstein rate ρ1(t) = 2eLR
2/8e−rt/2 for

s2r−1 ≤


e−1

2 R2 + e
√

8K−1R+ 4K−1 if LR2 ≤ 8,

8
√

2πR−1L−1/2(L−1 +K−1) exp
(
LR2

8

)
+ 32R−2K−2 otherwise.

These two conditions also conveniently lead to the dissipativity condition (Condition 6.3)

defined above. Therefore, we assume that the diffusion satisfies either of these conditions in the

following.

6.2.3 Diffusion Stein operators and their Stein equations

In this section, we recall the diffusion Stein operator of Gorham et al. [2019]. For a diffusion

process defined in (6.3), the diffusion Stein operator is defined as an operator that takes as input
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a vector-valued differentiable function g : RD → RD and outputs a real-valued function as

follows:

TP g(x) =
1

p(x)
〈∇, p(x)m(x)g(x)〉

= 2〈b(x), g(x)〉+ 〈m(x),∇g(x)〉

where b(x) = 〈∇, p(x)m(x)〉/(2p(x)) and m(x) = a(x) + c(x). Note that we can recover the

Langevin Stein operator [Gorham and Mackey, 2015] by taking a ≡ I and c ≡ 0.

Recall the Stein equation for the second-order Stein operator APuf = f − EX∼P [f(X)].

By relating the definition of AP to TP , we have that the function gf = ∇uf/2 solves the Stein

equation TP g = f − EX∼P [f(X)] [Gorham et al., 2019, Section 2]. As a result of Theorem

6.5, we have the following corollary:

Corollary 6.8. Let q ≥ 0. Let f ∈ C3 be a pseudo-Lipschitz function of order q with derivatives

satisfying the polynomial decay condition in Theorem 6.5. The solution gf = ∇uf/2 to the

Stein equation TP g = f − EX∼P [f(X)] belongs to the set

G = {g : RD → RD : ‖g(x)‖2 ≤
√
Dζ1(1 + ‖x‖q2),

‖∇ig(x)‖op ≤ ζi+1(1 + ‖x‖q2) for i ∈ {1, 2}, x ∈ RD},

where ζ1, ζ2, and ζ3 are the Stein factors from Theorem 6.5.

Proof. The derivative norm bounds follow directly from Theorem 6.5. Note that the bound on

‖g(x)‖2 follows from the pseudo-Lipschitzness of uf as

|∂juf (x)| = lim
h→0

∣∣∣∣uf (x+ hej)− uf (x)

h

∣∣∣∣
≤ lim

h→0
ζ1(1 + ‖x+ hej‖q−1

2 + ‖x‖q−1
2 )
‖hej‖2
|h|

= ζ1(1 + 2‖x‖q−1
2 ) ≤ 2ζ1(1 + ‖x‖q−1

2 ),

where {e1, . . . , eD} is the standard basis of RD.

The following proposition shows that the diffusion Stein operator induces zero-mean func-

tions (see Appendix 6.A.3 for a proof).

Proposition 6.9 (The diffusion Stein operator generates zero-mean functions). Let qa ∈ {0, 1}
be the additional growth exponent of ‖a(x)‖op from Condition 6.2. If qa = 0, assume P has

a finite q-th moment; if qa = 1, a finite (q + 1)-th moment. Let g ∈ C1 be a function with the

following growth conditions:

‖g(x)‖2 ≤ C0(1 + ‖x‖q−1
2 ),

‖∇g(x)‖op ≤ C1(1 + ‖x‖q−1
2 ),

for each x ∈ RD, and some positive constants C0 and C1. Then, we have EX∼P [TP g(X)] = 0.
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6.2.4 The diffusion kernel Stein discrepancy

We recall the definition of the diffusion kernel Stein discrepancy (DKSD) proposed by Barp et al.

[2019]. As with the Langevin KSD in Chapter 3, we can construct a computable Stein discrep-

ancy by combining the diffusion Stein operator with an RKHS. Let P and Q be distributions

over RD. The DKSD is defined as follows:

S
(
Q, TP ,B1(Gκ)

)
= sup

g∈B1(Gκ)
|EY∼Q [TP g(Y )]| ,

where B1(Gκ) is the unit ball of a vector-valued RKHS Gκ determined by a matrix-valued

kernel κ : RD × RD → RD×D [Carmeli et al., 2006]. In the following, by abuse of notation,

we denote S
(
Q, TP ,B1(Gκ)

)
by S(Q, TP ,Gκ). Note that the Langevin KSD is obtained as a

specific instance of the DKSD by choosing a(x) ≡ I, c ≡ 0, and κ = kI for a scalar-valued

kernel k and the D-dimensional identity matrix I. In particular, we obtain the KSD with a

reweighted kernel w(x)k(x, y)w(y) by choosing a(x) = w(x)I with w a scalar-valued positive

function. As with the Langevin KSD, the use of an RKHS leads to a closed-form expression for

the DKSD:

S(Q, TP ,Gκ)2 = EX,X′∼Q⊗Q[hp(X,X
′)],

where

hp(x, y) =
1

p(x)p(y)

〈
∇y, 〈∇x, (p(x)m(x)κ(x, y)m(y)>p(y)〉

〉
,

provided that x 7→ ‖Tpκ(x, ·)‖Gκ is integrable with respect to Q [Barp et al., 2019, Theorem 1].

Although the majority of the following analyses focus on the simple RKHS κ = kI, we present

results using a general vector-valued RKHS where possible.

6.3 Main results

We formalize our objective in this chapter, as outlined in the introduction. Let P be a distribution

over RD defined by a twice continuously differentiable density function p. For a distribution Q,

we are interested in the maximum discrepancy over a function classF : supf∈F |EX∼P [f(X)]−
EY∼Q[f(Y )]|. Our focus is on functions with growing in the polynomial order of q ≥ 1.

Therefore, we specify the function class F to be a subset of pseudo-Lipschitz functions of order

q − 1

Fq := {
f : RD → R : f ∈ C3 with µ̃pLip(f)1,q−1 ≤ 1

and sup
x
‖∇if(x)‖op/

(
1 + ‖x‖q−1

2

)
≤ 1 for i ∈ {2, 3}

}.
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We define an IPM corresponding to the class Fq by

dFq(P,Q) = sup
f∈Fq

∣∣EX∼P [f(X)]− EY∼Q[f(Y )]
∣∣. (6.4)

Appendix 6.B.5 shows that Fq contains degree-q polynomial functions of (x1, . . . , xD) ∈ RD,
if scaled appropriately. Note that for this class, we can take the Stein factors {ζ1, ζ2, ζ3} that

are independent of test functions and only depend on the diffusion through b(x) and σ(x).

Unfortunately, the IPM dFq is not computable as it involves an intractable integral. Thus, we

aim to relate the IPM dFq to the DKSD, a computable discrepancy measure.

Before presenting results concerning the DKSD, we first show a convergence property of

dFq . In the following, we denote the set of probability measures with finite q-th moments by

Pq := {probability measure µ :
∫
‖x‖q2dµ(x) <∞}.

Proposition 6.10. Let P ∈ Pq be a probability measure on RD with a finite q-th moment with

q ≥ 1. For a sequence of probability measures {Q1, Q2, . . . , } ⊂ Pq, the following conditions

are equivalent: (a) dFq(Qn, P )→ 0 as n→∞, and (b) as n→∞, the sequenceQn converges

weakly to P, and EX∼Qn
[
‖X‖q2

]
→ EX∼P

[
‖X‖q2

]
.

Proof. We relate the metric dFq to the bounded-Lipschitz metric [see, e.g., Dudley, 2002,

Section 11.2] and make use of uniform integrability. See Appendix 6.A.1 for a complete

proof.

The above result shows that the distance dFq characterizes both weak convergence (conver-

gence in distribution) and convergence with respect to the q-th moment. For sequences in Pq,
another example of a metric characterizing this topology is Lq-Wasserstein distance defined by

the Euclidean distance [see, e.g., Villani, 2009, Theorem 6.9].

In the following, we make an additional assumption on the growth of the stream coefficient

in the DKSD.

Condition 6.11 (Polynomial growth of the stream coefficient). For any x ∈ RD, the stream

coefficient of (6.3) satisfies the growth condition

‖c(x)‖op ≤
λc
4

(1 + ‖x‖2)qa+1

with λc > 0 and qa as in Condition 6.2.

Note that under Conditions 6.2, 6.11, we have

‖m(x)‖F ≤
√
D‖m(x)‖op ≤

√
Dλm(1 + ‖x‖2)qa+1 with λm =

λa ∨ λc
4

.

6.3.1 Uniform integrability and DKSD bounds

To prove our main result, we make use of an analogue of uniform integrability for a family of

functions, defined as follows:
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Definition 6.12 (Uniform integrability with respect to q-th moments). Let q > 0. A sequence

of probability measures Q = {Q1, Q2 . . . , } ⊂ Pq is said to have uniformly integrable q-th

moments if

lim
r→∞

lim sup
n→∞

∫
{‖x‖2>r}

‖x‖q2dQn(x) = 0.

It is known that for weakly converging sequences, convergence of a moment is equivalent to

the uniform integrability of the moment [Ambrosio et al., 2005, Lemma 5.1.7] (see also Lemma

6.32 in Appendix 6.B.2). Intuitively, uniform integrability is a condition enforcing that the

probability mass does not diverge too fast along the sequence. If q = 0, the above definition is

reduced to uniform tightness [see, e.g., Dudley, 2002, Chapter 9]. The uniform integrability is a

stricter condition in that it requires the decay rate of the tail probability to stay faster than a q-th

degree polynomial.

Our first result shows that for sequences with a uniformly integrable moment, the DKSD

implies convergence in dFq .

Proposition 6.13. Let Φ ∈ C2 be a positive definite function with non-vanishing generalized

Fourier transform Φ̂. Let w(x) = (v2 + ‖x‖22)qw with real numbers v ≥ 1 and qw ≥ 0. Let

GkI be the RKHS defined by kernel kI with k(x, y) = Φw(x, x′) + `(x, x′), where Φw(x, x′) =

w(x)w(x′)Φ(x − x′),and ` is an optional positive definite kernel. Then, for a sequence of

measures Q = {Q1, Q2, . . . , } ⊂ Pq+qa with uniformly integrable (q + qa)-th moments, we

have S(Qn, TP ,GkI)→ 0 only if dFq(P,Qn)→ 0.

Proof. We only provide a proof sketch here and refer the reader to Appendix 6.A.2 (see also

Proposition 6.26 for the precise statement) for the full proof. Our strategy is to bound the

IPM dFq explicitly by the DKSD. Consider the Stein equation TP gf = f − EX∼P [f(X)] for

f ∈ Fq. We approximate Tpgf by mollification. Specifically, we decompose the function TP gf
into three parts:

TP gf = TP gf − TP gtrunc︸ ︷︷ ︸
Step 1: truncation

+ TP gtrunc − TP gRKHS︸ ︷︷ ︸
Step 2: approximation

+ ‖gRKHS‖︸ ︷︷ ︸
Step 3: measuring RKHS norm

TP gRKHS

‖gRKHS‖
.

In the first step, we truncate Tpgf to make it bounded and ignore the tail expectation. In the

second step, we approximate the truncated function with a smooth function. In the last step, we

show that the smooth function is an RKHS function if the kernel Φ is chosen appropriately. The

expectations of truncation and approximation errors are evaluated using the characterization

of gf derived in Corollary 6.8; the expectation of the third term can be bounded by the DKSD.

Thus, we obtain a bound on dFq in terms of the DKSD. If the DKSD term vanishes, the rest of

the error terms can be made arbitrarily small.

When qa = 1, i.e., we have a quadratic growth of the operator norm of the covariance

coefficient, we need approximating distributions {Q1, Q2, . . . } to have an extra moment. This

requirement is placed in order to make the Stein discrepancy upper bound well-defined; oth-

erwise, the upper bound is vacuous. Indeed, if one is willing to make the assumption Q 6= P,

it is appropriate to assume a higher-order moment. For example, any numerical quadrature
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method is represented by a discrete measure with a finite support, thereby guaranteeing a finite

moment of any order. Note that in proving the uniform integrability of a sequence of measures

Q = {Q1, Q2 . . . }, it is not sufficient to assume that each Q ∈ Q has a finite moment of a

higher order (a sufficient condition is having their moments of that order uniformly bounded).

6.3.2 The DKSD detects non-uniform integrability

In the previous section, we assumed that the approximating distributions {Q1, Q2, . . . } had

uniformly integrable q-th moments if ‖a(x)‖op grows linearly, or (q+ 1)-th moments if quadrat-

ically. Proposition 6.13 indicates that we can use any kernel formed by a positive definite

function for diagnosing non-convergence. However, such a kernel alone is not enough when

the uniform integrability is violated. Indeed, in the case of weak convergence, Gorham and

Mackey [2017] demonstrated that an inadequate choice of the kernel yields a discrepancy that

converges to zero even when the sequence is not uniformly tight and hence non-convergent;

the IMQ kernel suggested by Gorham and Mackey [2017] ensures that vanishing KSD implies

the tightness of the sequence. Analogously, we explore conditions that allow us to check the

uniform integrability using the DKSD.

The following two lemmas characterize uniform integrability using the DKSD:

Lemma 6.14. Let Q = {Q1, Q2, . . . } ⊂ Pq be a sequence of probability measures for q > 0.

Let Gκ be the RKHS of RD-valued functions defined by a matrix-valued kernel κ : RD ×RD →
RD×D. Suppose that for any ε > 0, there exists rε > 0 and a function g ∈ Gκ such that

TP g(x) ≥ ‖x‖q21{‖x‖2 > rε} − ε for any x ∈ RD. Then, Q has uniformly integrable q-th

moments if S(Qn, TP ,Gκ)→ 0 as n→∞.

Proof. For any ε > 0, we have∫
{‖x‖2>rε}

‖x‖q2dQn(x) ≤
∫
Tpg(x)dQn(x) ≤ ‖g‖GκS(Qn, TP ,Gκ) + ε.

Letting n→∞ concludes the proof.

Lemma 6.15 (KSD upper-bounds the integrability rate). Let Gκ be the RKHS of RD-valued

functions defined by a matrix-valued kernel κ : RD × RD → RD×D. Suppose there exists

a function g ∈ Gκ such that TP g(x) ≥ ν for any x ∈ RD with some constant ν ∈ R, and

lim inf‖x‖−(q+θ)
2 TP g(x) ≥ η for some q ≥ 0, η > 0, and θ > 0 as ‖x‖2 → ∞. Assume

S(Q, TP ,Gκ) <∞ for a distribution Q ∈ Pq+θ. Then, for sufficiently small ε > 0, we have

Rq(Q, ε) := inf

{
r ≥ 1 :

∫
{‖x‖2>r}

‖x‖q2dQ(x) ≤ ε
}

≤
{

2
(

1 +
q

θ

)(S(Q, TP ,Gκ)− ν
ηε

)} 1
θ
∨ q
θ

.



130 CHAPTER 6. KSD AND MOMENT CONVERGENCE

Thus, for a sequence of measures {Q1, Q2 . . . } ⊂ Pq+θ, we have

lim sup
n→∞

S(Qn, TP ,Gκ) <∞⇒ lim sup
n→∞

Rq(Qn, ε) <∞.

In particular, if the sequence {Q1, Q2 . . . } does not have uniformly integrable q-th moments,

then Stein discrepancy S(Qn, TP ,Gκ) diverges.

Proof. The proof is in Appendix 6.B.4.1.

The quantity Rq(Q, ε) (termed an integrability rate) in Lemma 6.15 represents the radius

of a ball, outside of which the tail moment integral becomes negligible. Note that Q ∈ Pq is

equivalent to having Rq(Q, ε) <∞ for each ε > 0. In particular, if a sequence {Qn}n≥1 does

not have uniformly integrable q-th moments, the integrability rate Rq(Qn, ε) diverges.

The above two lemmas require the Stein-modified RKHS to have a function growing at

a certain rate. The first lemma requires a stronger condition in that it requires a function that

approximates the power function ‖x‖q2 arbitrarily well. The existence proof for the first lemma is

left as future work, and we focus on the second lemma. Note that the second lemma in contrast

relies on the existence of a function that behaves as ‖x‖q2 outside a ball; we can create an RKHS

that satisfy this requirement using a linear kernel and the diffusion Stein operator, provided that

the diffusion satisfies the dissipativity condition (Condition 6.3).

Lemma 6.16 (Tilted linear kernels have the lower bound properties). Suppose the diffusion

targeting P satisfies the dissipativity condition (Condition 6.3) with α, β > 0 and the coefficient

condition (Condition 6.2) with λa > 0 and qa ∈ {0, 1}. Let w(x) = (v2 + ‖x‖22)qw−u with

qw ≥ 0, u ≥ 0, and v > 0. Assume (qw − u) < 2α/λa if qa = 1. Let

k(x, x′) = w(x)w(x′)〈x, x′〉.

There exists a function g ∈ GkI such that ‖g‖GkI =
√
D and the corresponding diffusion Stein

operator TP satisfies

TP g(x) ≥ ν for any x ∈ RD, and lim inf
‖x‖2→∞

‖x‖−2(qw−u+1)
2 TP g(x) ≥ η

for some ν ∈ R and η > 0.

Proof. The proof can be found in Appendix 6.B.4.2.

The next result is an immediate consequence of Lemma 6.16.

Corollary 6.17. Define symbols as in Lemma 6.16. For the RKHS GkI of a kernel k = k1 + k2

with k1 an arbitrary positive definite kernel and k2 the kernel from Lemma 6.16, there exists a

function g ∈ GkI such that the corresponding diffusion Stein operator TP satisfies

TP g(x) ≥ ν for any x ∈ RD, and lim inf
‖x‖2→∞

‖x‖−2(qw−u+1)
2 TP g(x) ≥ η

for some ν ∈ R and η > 0. In particular, if the RKHSs of kernels k1 and k2 do not overlap,

‖g‖GkI =
√
D.
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6.3.3 Recommended kernel choice

We have established the conditions required for the DKSD to control the pseudo-Lipschitz

metric dFq . In the following, we present our recommended settings.

Linear growth case When qa = 0, we need the uniform integrability with respect to the q-th

moment. We recommend the following kernel function

kΦ,q,θ(x, x
′) = wq,θ(x; v)wq,θ(x

′; v)
(

Φ(x− x′) + k̃lin(x, x′; v)
)
, (6.5)

where the weight wq,θ is given by

wq,θ(x; v) = (v2 + ‖x‖22)
q+θ−1

2

with v ≥ 1, and k̃lin denotes the normalized linear kernel:

k̃lin(x, x′) =
v2 + 〈x, x′〉√

v2 + ‖x‖22
√
v2 + ‖x′‖22

.

This choice ensures that the two kernels in the sum (6.5) have the same growth rate. The

kernel Φ(x − x′) can be any function with a non-vanishing (generalized) Fourier transform.

Examples are the exponentiated quadratic (EQ) kernel, the IMQ kernel, and the Matérn class

kernels [Matérn, 1986, Stein, 1999]. Note that the normalized linear kernel enables us to

use light-tailed kernels (e.g., the EQ or the Matérn kernels) that are recommended against by

Gorham and Mackey [2017]. In particular, one benefit of the Matérn class is that we can use

rougher functions: the RKHS of an IMQ kernel consists of infinitely differentiable functions,

whereas a Matérn kernel can specify an RKHS of finitely differentiable functions. The increased

complexity would render the DKSD more sensitive to the difference between distributions (see

Section 6.4.3).

Quadratic growth case When qa = 1, we need the uniform integrability with respect to the

(q + 1)-th moment. Therefore, we recommend to use the same form of the kernel as in (6.5)

except that wq,θ is replaced with

wq+1,θ(x) = (v2 + ‖x‖22)
q+θ

2 .

6.3.4 The DKSD detects convergence

We have shown that vanishing DKSD implies convergence in dFq . Here, we clarify conditions

on which the DKSD converges to zero.

Proposition 6.18. Let Gκ be the RKHS defined by a matrix-valued kernel κ : RD × RD →
RD×D. Let q ≥ 1. Assume that any function g in the unit ball B1(Gκ) satisfies the following:

there exist some constants C0, C1, and C2 such that

‖∇ig(x)‖op ≤ Ci(1 + ‖x‖q−1
2 ) for any x ∈ RD and i ∈ {0, 1, 2}.
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Assume a linear growth condition on m (Conditions 6.2, 6.11 with qa = 0). Assume that b

is φ1(b)-Lipschitz in the Euclidean norm, and m is φ1(m)-Lipschitz in the Frobenius norm.

Suppose P ∈ Pq. Then,

S(Q, TP ,Gκ) ≤ Cb,mdpLip1,q
(Q,P ),

where

Cb,m =
λbC1(5 + 2q−1)

4
+ 4C0φ1(b) +

λmC2D(5 + 2q−1)

2
+ 2
√
DC1φ1(m)

In particular, we have S(Qn, TP ,Gκ)→ 0 if dFq(P,Qn)→ 0.

Proof. The claim follows from showing that a Stein-modified RKHS function TP g is pseudo-

Lipschitz of order q. The full proof is available in Appendix 6.A.4.

Proposition 6.19. Let Gκ be the RKHS of RD-valued functions defined by a matrix-valued

kernel κ : RD × RD → RD×D. Let q ≥ 1. Assume that any function g in the unit ball B1(Gκ)

satisfies the following: there exist some constants C0, C1, and C2 such that

‖∇ig(x)‖op ≤ Ci(1 + ‖x‖q−1
2 ) for any x ∈ RD and i ∈ {0, 1, 2}.

Assume a quadratic growth condition on m (Conditions 6.2, 6.11 with qa = 1). Assume that

b is φ1(b)-Lipschitz, and m is pseudo-Lipschitz of order 1 in the operator norm with constant

µ̃pLip(m)1,1. Suppose P ∈ Pq+1. Then,

S(Q, TP ,Gκ) ≤ Cb,mdpLip1,q+1
(Q,P ),

where

Cb,m = (5 + 2q)

(
λbC1

4
+
λmC2D

2
+ C1Dµ̃pLip(m)1,1

)
+ 4φ1(b)C0.

In particular, we have S(Qn, TP ,Gκ)→ 0 if dFq+1(P,Qn)→ 0.

Proof. The proof proceeds as in the previous proposition and can be found in Appendix 6.A.4.

Note that the two propositions above require stronger convergence requirements than that of

dFq .

6.4 Experiments

We conduct numerical experiments to examine the theory developed above. In the first two

experiments, we investigate the behavior of the KSD using simple light-tailed and heavy-tailed

target distributions. Then, we present a negative case study, where the KSD fails to detect

discrepancies in moment estimates.
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6.4.1 The Langevin KSD

Our first problem studies the behavior of Langevin KSD corresponding to the choice a ≡ I ,

c ≡ 0. This setting allows us to contrast with the IMQ kernel previously recommended by

Gorham and Mackey [2017], which is known to control the bounded-Lipschitz metric.

6.4.1.1 Non-convergence in mean

We first consider a problem where a sequence does not converge in mean to their target

and therefore not in dFq (q = 1). We choose a target P and an approximating sequence

{Q1, Q2, . . . , } as follows:

P = N (−1̄, I), Qn =

(
1− 1

n+ 1

)
P +

1

n+ 1
N
(
(n+ 1)1̄, I

)
, n ≥ 1,

where 1̄ = 1/
√
D and N (µ,Σ) denotes the multivariate Gaussian distribution over RD with

mean µ and covariance Σ. We take D = 5. While the sequence {Q1, Q2, . . . , } converges

weakly to P, it does not converge in mean. Indeed, by construction, the approximating sequence

has the following biased limit:

lim
n→∞

EY∼Qn [Y ] = lim
n→∞

(
1− 1

n+ 1

)
EX∼P [X] +

1

n+ 1
E
Z∼N

(
(n+1)1̄,I

)[Z]

= EX∼P [X] + 1̄.

We examine the kernel choice (6.5) recommended in Section 6.3.3. For the weight function

w1,θ, we take θ = 0.5. We use v = 1 for the linear kernel and the weight function. For the

translation-invariant kernel Φ, we use the IMQ kernel kIMQ(x, x′) = (1 + ‖x− x′‖22)−1/2. We

also consider the case θ = 0.We compare these two choices against using kIMQ alone.

We estimate the KSD using the U-statistic estimator. Specifically, we draw an i.i.d. sample

of size 1, 000 from Qn and compute a U-statistic; we repeat this process 30 times and take the

average of the computed U-statistics.
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Figure 1: Comparisons of KSD with different kernels. Settings: (a) IMQ; the IMQ kernel kIMQ

(solid line), (b) IMQ sum (lin.) θ = 0; the sum of the IMQ kernel and the normalized linear
kernel (dashed line), (c) IMQ sum (lin.) θ = 0.1; the sum of the IMQ kernel and the normalized
linear kernel with tilting θ = 0.1 (dash-dotted line).

Figure 1 shows the change of the KSD along the sequence for the three kernels. It can be

seen that the KSD decreases with the IMQ kernel alone. For the other two choices, the KSD

value does not decay; in particular, the kernel with the additional tilting θ = 0.1 diverges as n

increases. By design, our kernel choices induce functions growing linearly or super-linearly, and

their KSD can therefore capture the non-convergence of the mean. Remarkably, although the

case θ = 0 is not guaranteed by our theory, the KSD does not decay to zero, implying possibility

for theory improvement.

6.4.1.2 Non-convergence in variance

As in the previous section, we consider a case where a sequence does not converge in variance

to their target and therefore not in dFq (q = 2). We use the following target and approximating

sequence:

P = N (0, I), Qn =

(
1− 1

n+ 1

)
P +

1

n+ 1
N
(
0, 2(n+ 1)I

)
, n ≥ 1.

As with the mean shift problem above, this example is constructed so that the sequence converges

in distribution but not in variance, since the Gaussian in the second term always adds diagonal

covariance 2I.
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Figure 2: Comparisons of KSD with different kernels. Settings: (a) IMQ; the IMQ kernel kIMQ

(solid line), (b) IMQ sum (lin.) θ = 0; the sum of the IMQ kernel and the normalized linear
kernel q = 1 (dashed line), (c) IMQ sum (quad.) θ = 0; the sum of the IMQ kernel and the
normalized linear kernel with quadratic tilting q = 2 (dotted line), (d) IMQ sum (quad.) θ = 0.1;
The sum of the IMQ kernel and the normalized linear kernel with quadratic tilting q = 2 and
additional reweighting θ = 0.1 (dash-dotted line).

Figure (2) shows the KSD’s transition along the approximating sequence for our four kernel

choices. As in the previous experiment, the IMQ-KSD decreases; the mean-characterizing KSD

also decays , confirming that having a function of linear growth is not sufficient to detect the

non-convergence. For the two kernels yielding quadratically growing Stein-RKHS functions,

we see a similar trend as in the previous experiment; in particular, the behavior of the KSD with

θ = 0 closely follows that of θ = 0.1.

6.4.2 The DKSD and heavy-tailed distributions

In this section, we turn to heavy-tailed distribution to investigate the performance of the DKSD.

Heavy-tailed distributions such as Student’s t-distribution have bounded score functions, and it

is known that the Langevin KSD fail to detect non-convergence for this target class [Gorham

and Mackey, 2017, Theorem 10].

As our target P, we use the standard multivariate t-distribution with the degrees of freedom

ν > 1 defined by the density

p(x) =
Γ
(
ν+D

2

)
Γ
(
ν
2

)
ν
D
2 π

D
2

(
1 + ‖x‖22

)− ν+D
2 .

The t-distribution is uniformly dissipative with σ(x) =
√

1 + ν−1‖x‖22I and λa = 4. If ν > 2,

the diffusion is dissipative (Condition 6.3) with α = 1 − 2ν−1 (see Lemma 6.38). With this

choice, the DKSD is reduced to the Langevin KSD with the kernel tilted by 1 + ν−1‖x‖22.
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According to Lemma 6.16, the allowed power of the weight is qw < (α + 1)/2 < 1. As

Proposition 6.13 requires uniform integrability of the higher moment, this bound on qw implies

that the DKSD can only be used for examining mean convergence. In the following, we take

ν = 3 and consider the same perturbation as in the previous section:

Qn =

(
1− 1

n+ 1

)
P +

1

n+ 1
N
(
(n+ 1)1̄, I

)
, n ≥ 1.

We consider the quadratic growth case in Section 6.3.3. We compare the following two

kernels: (a) q = 0 (uniform integrability of the first moment), (b) q = 1 (the second moment).

The case q = 1 conforms to the requirement of Proposition 6.13, whereas the case q = 0 violates

it. We also include the IMQ kernel as a baseline.

0 50 100
sequence index n

105

108

DKSD(P,Qn)

IMQ sum (lin.) θ = 0.1 IMQ sum (quad.) θ = 0.1

0 50 100
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105

108
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Figure 3: Comparisons of DKSD with different kernels in the t-distribution problem. Settings:
(a) IMQ sum (lin.) θ = 0.1; the sum of the IMQ kernel and the normalized linear kernel q = 0
(dashed line), (b) IMQ sum (quad.) θ = 0.1; The sum of the IMQ kernel and the normalized
linear kernel with quadratic tilting q = 1 and additional reweighting θ = 0.1 (dash-dotted line).

Figure 3 demonstrates the result. The curve for the IMQ kernel is omitted, as its KSD

decayed extremely fast and sometimes yielded negative values. While our theory requires the

uniform integrability of the second moment, the linear-growth DKSD detects non-convergence;

the same trend is observed for the quadratic-growth counterpart as expected. Recall that as

the linear-growth DKSD characterizes the uniform integrability of the first moment, weak

convergence control is sufficient for determining convergence in mean. The success of the

linear-growth DKSD may therefore be attributed to its ability to control weak convergence; this

feature should be proved without the extra uniform integrability condition, and we leave this

task as future work. Finally, the stricter requirement may be considered as an artifact of the

strong claim of Proposition 6.13, which deals with the uniform convergence under a class of

pseudo-Lipschitz functions.
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6.4.3 Failure mode: distribution mixtures with isolated components

Our final experiment concerns the following distributions:

P =
1

2
N (µ1, I) +

1

2
N (µ2, I), Q̃n = rnN (µ1, I) + (1− rn)N (µ2, I),

where r1 = 0.05 and rn ↗ 1/2 as n → ∞. The target P is supported by our theory, since

the Gaussian mixtures are known to be distantly dissipative [Gorham et al., 2019, Example

3]. However, when the distance ‖µ1 − µ2‖2 between the two modes is large, the KSD is

unable to capture the discrepancy of the mixture ratio rn. Indeed, the Wasserstein rate ρ1(t) =

2eLR
2/8e−rt/2 in Proposition 6.7 has an exponent depending on R = ‖µ1 − µ2‖2, and the

diffusion therefore suffers from the slow convergence when R is large, rendering the KSD

insensitive to this difference.

We detail our experimental procedure. In contrast to the previous experiments, rather than

estimating the KSD between P and Q̃n, we use a sample {xi}Ni=1from Q̃n to form a sequence

of empirical distributions Qn = N−1
∑

i≤N δxi . In this case, the KSD between P and Qn
is possible to compute exactly. This consideration is more relevant in practice since we are

interested in how well a particular sample approximates P. In the following, we set µ1 = −30·1,
µ2 = −10 · 1 and D = 5. The mixture ratio rn is chosen from a regular grid of size 30 on the

logarithmic scale with base 10. For each rn, we draw 100 sample of size N = 500 and compute

the KSD; we repeat this procedure 100 times and report the average KSD.

Our main question is whether the KSD can detect convergence in the first moment. It is

clear that the mean of Qn changes significantly as rn increases. To this end, we consider the

sum kernel in (6.5) with q = 1, ensuring that the Stein-modified RKHS has a function of linear

growth. As {Q1, Q2 . . . , } has uniformly integrable first moments, we simply do not apply the

additional tilting (i.e., θ = 0). We examine two choices of the translation invariant kernel Φ :

the IMQ kernel kIMQ(x, x′) =
(
1 + ‖x− x′‖22/σ2

)−1/2 and the Matérn kernel

kMat(x, x
′) =

(
1 +

√
3‖x− x′‖2

σ

)
exp

(
−
√

3

σ
‖x− x′‖2

)
.

First, we fix the bandwidth σ to 1 for both kernels. Figure 4 plots the KSD value against the

mixture ratio with error bars representing standard deviations. For both kernels, their KSDs do

not change along the sequence.
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Figure 4: Comparison between the IMQ and the Matérn kernels in the mixture problem. Without
bandwidth optimization. Error bars represent standard deviations.

This observation implies that the bandwidth choice may be suboptimal, making the KSD

too weak to detect the change in the mixing proportion. Therefore, we next consider optimizing

the bandwidth σ for each Qn to improve the sensitivity. Following the approaches in non-

parametric hypothesis testing [Gretton et al., 2012b, Sutherland et al., 2016, Jitkrittum et al.,

2016, 2017b], we choose a bandwidth by optimizing the power of a test using the objective

S(Qn, TP ,GkI)2/
√
vH1 , where vH1 = VarX∼Qn

[
EX′∼Qn [hp(X,X

′)]
]
. This objective is a

proxy of the power of the KSD goodness-of-fit tests [Chwialkowski et al., 2016, Liu et al.,

2016] and can be computed exactly. The optimization procedure may be interpreted as seeking

a bandwidth that allows us to conclude P 6= Qn using as few sample points as possible, without

using the whole of Qn.

Figure 5 shows the result. The IMQ kernel stays at the same value past the point rn = 0.3,

whereas the Matérn kernel shows a decreasing curve and captures the discrepancy. The Matérn

kernel can therefore be thought of as more stable and inducing a stringent discrepancy measure.

0.1 0.2 0.3 0.4 0.5
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(a) IMQ kernel
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(b) Matérn kernel

Figure 5: Comparison between the IMQ and the Matérn kernels in the mixture problem. With
optimized bandwidth for each kernel. Error bars represent standard deviations.
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Figure 6: The KSD defined by the Matérn
kernel in the mixture problem. The kernel’s
bandwidth is optimized for each rn. Error
bars represent standard deviations.
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Figure 7: A two component Gaussian mix-
ture and its posterior probability π̃(x) of
component assignment.

Although Figure 5b indicates that the optimization approach might be helpful, the following

result casts doubt on this observation. We raise the growth rate of the Matérn sum kernel to

q = 2 (and θ = 0) in order to investigate the second moment convergence. Contrary to our

expectation, Figure 6 demonstrates that the KSD grows as the mixture ratio approaches to

the true value. We observed the same trend even without optimization. Note that since the

Stein-modified RKHS contains quadratically growing functions, the KSD takes larger values

with more samples observed around the mode µ1 = −30 · 1 as rn ↗ 1/2. If the contribution of

the mixture ratio is negligible, the change in the KSD value is therefore largely determined by

the change of sampling locations.

We can attribute the KSD’s weak dependence on the mixture ratio to the score function. To

see this, consider a density

rπ(x) = πp1(x) + (1− π)p2(x), 0< π <1.

The score function of rπ is given by

sr,π(x) = π̃(x)sp1(x) +
(
1− π̃(x)

)
sp2(x), where π̃(x) =

πp1(x)

πp1(x) + (1− π)p2(x)
.

The function π̃(x) represents the posterior probability of an observation x arising from the

mixture component p1. We claim that for any two π 6= π′, the difference between sr,π and

sr,π′ is virtually absent. Our reasoning is as follows: sr,π(x) becomes sp1 (or sp2 ) in the high-

probability region of p1 (or p2); thus, the difference between two score functions is negligible

under rπ′ for any other configuration π′ so long as two components are concentrated in separate

regions as in the Gaussian mixture example. This pathology is due to the following behavior of

the posterior density π̃(x) : it becomes effectively a binary-valued function that outputs 1 in

the high-density region of p1 and 0 in the counterpart of p2(x). Indeed, if p1(x)� p2(x), the

posterior π̃(x) ≈ 1 and is effectively independent of π. Figure 7 illustrates this situation for

a Gaussian mixture in D = 1. Hence, in this case, varying the mixing proportion π does not
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modify the score function sr,π significantly.

As the KSD between two densities depends on the difference of their score functions [Liu

et al., 2016, Definition 3.2], the KSD is therefore insensitive to mismatches of the mixture ratios.

Our experiments shows that kernel choice and optimization alone cannot solve this issue, calling

for a more fundamental solution to this failure mode.

6.5 Conclusion

In this chapter, we have dealt with the question of the KSD’s interpretability. We have shown

that the KSD upper bounds the pseudo-Lipschitz metric dFq , the worst-case expectation error

over a class of polynomially growing function. A particular consequence of this result is that we

may interpret the KSD in terms of convergence of moments. Our experiments confirm that the

KSD with our proposed kernel choices indeed detect non-convergence in dFq .

A theoretical shortcoming of our result is that we need a coercive function to characterize

the uniform integrability (Lemma 6.15). Lemma 6.14 shows that we only need a function

dominating a function of the form x 7→ ‖x‖q1{‖x‖>r}. A related question to address is whether

we can remove the uniform integrability of a higher order moment in Proposition 6.13. As

heavy-tailed distributions have finitely many moments, assuming a higher-order moment can be

restrictive.

Finally, we have seen a failure mode of the KSD in Section 6.4.3. Being unable to detect

a mixture-ratio mismatch affects our inference significantly. We should therefore combine

the KSD with other diagnostic tools if available. Given diverse applications of the KSD, it is

desirable to develop a new computable discrepancy addressing this shortcoming.
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6.A Proofs of main results

6.A.1 Characterization of pseudo-Lipschitz metrics

Proposition 6.20. Let P ∈ Pq be a probability measure on RD with a finite q-th moment with

q ≥ 1. For a sequence of probability measures {Q1, Q2, . . . , } ⊂ Pq, the following conditions

are equivalent: (a) dFq(Qn, P )→ 0 as n→∞, and (b) as n→∞, the sequenceQn converges

weakly to P, and EX∼Qn
[
‖X‖q2

]
→ EX∼P

[
‖X‖q2

]
.

Proof. (a) ⇐ (b) Our goal is to show that the following quantity can be made arbitrarily small

by taking sufficiently large n :

sup
f∈Fq

∣∣∣∣∫ fdQn −
∫
fdP

∣∣∣∣ = sup
f∈Fq

∣∣∣∣∣∣∣∣
∫ (

f − f(0)
)

d(Qn − P ) +

∫
f(0) d(Qn − P )︸ ︷︷ ︸

=0

∣∣∣∣∣∣∣∣
= sup

f∈Fq

∣∣∣∣∫ f̄ d(Qn − P )

∣∣∣∣ ,
where f̄ denotes f − f(0). To this end, we smoothly truncate a function f̄ using the bump

function 1R,1 of Lemma 6.37 with r = R and δ = 1 for some R ≥ 1 (the function 1R,1(x)

vanishes if ‖x‖2 > R+ 1). Specifically, we break up the integral on the RHS as

sup
f∈Fq

∣∣∣∣∫ f̄ d(Qn − P )

∣∣∣∣ = sup
f∈Fq

∣∣∣∣∫ f̄1R,1 d(Qn − P ) +

∫
f̄(1− 1R,1) d(Qn − P )

∣∣∣∣
and evaluate each term below.

As a preparatory step, we clarify some properties of f̄ . Note that for any f ∈ Fq, we have

|f̄(x)| = |f(x)− f(0)| ≤ (1 + ‖x‖q−1
2 )‖x‖2 for x ∈ RD. This implies that we have

‖f̄1R,1‖∞ = sup
x∈R
|f̄(x)1R,1(x)| < (R+ 1) + (R+ 1)q =: C1,R

and as f̄1R,1(x) is everywhere differentiable,

‖f̄1R,1‖L = sup
x,y∈RD,x 6=y

|f̄1R,1(x)− f̄1R,1(y)|
‖x− y‖2

≤ sup
x∈RD

1R,1(x)‖∇f̄(x)‖2 + f̄(x)‖∇1R,1(x)‖2

≤
√
D
{

1 + 2(R+ 1)q−1
}

+ 8e−1{1 +R+ (R+ 1)q} =: C2,R

Let CR = 2(C1,R ∨ C2,R) Then, f̄1R,1/CR belongs to the set of bounded Lipschitz functions

BL1 = {f : RD → R : ‖f‖∞ + ‖f‖L ≤ 1}.

We are ready to bound the quantify of interest. For ε > 0, using the weak convergence
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assumption, take n large enough so that

dBL1(P,Qn) := sup
f∈BL1

∣∣∣∣∫ fdQn −
∫
fdP )

∣∣∣∣ < ε

2CR
,

which is possible as the bounded Lipschitz metric dBL1 metrizes weak convergence [Dudley,

2002, Section 11.3]. The definition of R has been left unspecified; here, we take R such that∫
{‖x‖2>R}

‖x‖q2dP (x) ∨ sup
n≥1

∫
{‖x‖2>R}

‖x‖q2dQn(x) <
ε

8
.

The existence of R is guaranteed by Lemma 6.32: for a weakly converging sequence of

probability measures {Q1, Q2, . . . }, the convergence in the q-th moment is equivalent to the

q-th moment uniform integrability. Then,

sup
f∈Fq

∣∣∣∣∫ f̄ d(Qn − P )

∣∣∣∣
≤ sup

f∈Fq
CR

∣∣∣∣∫ C−1
R · f̄1R,1 d(Qn − P )

∣∣∣∣+ sup
f∈Fq

∣∣∣∣∫ f̄(1− 1R,1) d(Qn − P )

∣∣∣∣
≤ CR sup

f∈BL1

∣∣∣∣∫ f d(Qn − P )

∣∣∣∣+ sup
f∈Fq

∣∣∣∣∫ f̄(1− 1R,1)dQn

∣∣∣∣+ sup
f∈Fq

∣∣∣∣∫ f̄(1− 1R,1)dP

∣∣∣∣
≤ CR sup

f∈BL1

∣∣∣∣∫ f d(Qn − P )

∣∣∣∣+ sup
f∈Fq

∫
{‖x‖2>R}

|f̄ |dQn + sup
f∈Fq

∫
{‖x‖2>R}

|f̄ |dP

≤ CR ·
ε

2CR
+
ε

4
+
ε

4
= ε.

The third line follows from the bounded Lipschitzness of f̄1R,1/CR and the triangle inequality;

the fourth line is another application of the triangle inequality and 1− 1R,1(x) ≤ 1{‖x‖2 > R};
the fifth line is true because |f̄(x)| = |f(x)− f(0)| ≤ (1 + ‖x‖q−1

2 )‖x‖2 for any x ∈ RD, and

because of the definition of R.

(a) ⇒ (b) We first prove that convergence in dFq implies weak convergence. For any

ε > 0 and f ∈ BL1, define the Gaussian convolution f̃ε(x) = EG[f(x − εG)] with G is a

standard Gaussian random vector. The function is infinitely differentiable and satisfies, by the

Lipschitzness of f,

sup
x∈RD

|f(x)− f̃ε(x)| ≤ εEG
[
‖G‖2

]
.

By Lemma 6.30, we have constant bounds on the operator norms of the derivatives up to the third

order; the bounding constants depend on ε. With Cε the maximum of the bounding constants,

we C−1
ε f̃ε ∈ Fq. Then,

dBL1(Qn, P ) = sup
f∈BL1

∣∣∣∣∫ fdQn −
∫
fdP )

∣∣∣∣
≤ sup

f∈BL1

∫
|f − f̃ε|dQn +

∫
|f − f̃ε|dP + Cε

∣∣∣∣∫ C−1
ε f̃ε d(Qn − P )

∣∣∣∣
≤ 2εEG

[
‖G‖2

]
+ CεdFq(P,Qn).
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Taking the successive limits of n, ε shows that dBL1(Qn, P )→ 0, implying the weak conver-

gence of the sequence.

Next, we show that convergence in dFq implies EX∼Qn‖X‖q2 → EX∼P ‖X‖q2. As the weak

convergence has been established above, we only need to show that the sequence {Q1, Q2, . . . , }
has uniformly integrable q-th moments. As P ∈ Pq, we can take R satisfying∫

‖x‖2>R
‖x‖q2dP (x) ≤ ε.

Consider the function fq,R(x) = ‖x‖q2
(
1 − 1R,1(x)

)
with the smooth bump function 1R,1 of

Lemma 6.37. This function has derivatives, up to the third order, growing in the order of ‖x‖q−1
2 ,

and therefore with a proper scaling CR > 0 (depending on R), we have f̃q,R := CRfq,R ∈ Fq.
By the convergence in dFq , for any ε > 0 we can take N such that for any n > N,∫

f̃q,RdQn ≤
∫
f̃q,RdP + CRε.

These choices yield,∫
‖x‖2>R+1

‖x‖q2dQn(x) ≤
∫
fq,RdQn

≤ C−1
R

(∫
f̃q,RdP + CRε

)
≤
∫
‖x‖2>R+1

‖x‖q2dP + ε ≤ 2ε.

Thus, we have arrived at the desired conclusion limr→∞ lim supn→∞
∫
‖x‖2>r‖x‖

q
2dQn(x) =

0.

Corollary 6.21. For q ≥ 1, let dpLip1,q−1
(P,Q) be the IPM defined by pLip1,q−1, the set of

functions that are pseudo-Lipschitz of order q − 1 with its pseudo-Lipschitz constant bounded

by 1. For a sequence of probability measures {Q1, Q2, . . . , } ⊂ Pq, the following conditions

are equivalent: (a) dpLip1,q−1
(Qn, P ) → 0 as n → ∞, and (b) as n → ∞, the sequence Qn

converges weakly to P, and EX∼Qn‖X‖q2 → EX∼P ‖X‖q2.

Proof. The direction(a)⇒ (b) results from Proposition 6.10, as dFq(P,Q) ≤ dpLip1,q−1
(P,Q).

The other direction (b)⇒ (a) can be shown as in the proof of Proposition 6.10.

6.A.2 Uniform integrability and a DKSD lower bound

Our goal is to show a KSD bound on the IPM dFq(P,Q).

Let g be a solution to the Stein equation TP g = f − EX∼P [f(X)] for f ∈ Fq. We

approximate Tpg by mollification. Specifically, we decompose the function TP g into three parts:

TP g = TP g − TP gtrunc︸ ︷︷ ︸
Step 1: truncation

+ TP gtrunc − TP gRKHS︸ ︷︷ ︸
Step 2: approximation

+ ‖gRKHS‖︸ ︷︷ ︸
Step 3: measuring RKHS norm

TP gRKHS

‖gRKHS‖
.
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We elaborate on each step as follows.

Step 1: Smoothly truncating g. Let us start with the following notion.

Definition 6.22 (Integrability rate of order q). For any probability measure Q and ε > 0, the

integrability rate Rq(Q, ε) of order q is defined as

Rq(Q, ε) := inf

{
r ≥ 1 :

∫
{‖x‖2>r}

‖x‖q2dQ(x) ≤ ε
}
,

where we use the convention inf ∅ =∞.

Note thatQ ∈ Pq is equivalent to havingRq(Q, ε) <∞ for each ε > 0. In the following, for

each ε > 0 and a probability measure Q, we consider the integrability rate R = Rq+qa(Q, ε).

Let where 1R,1 be a smooth bump function from Lemma 6.37, which vanishes outside the

centered Euclidean ball of radius R+ 1. For a function g ∈ G, we consider a truncated version

gR,1 := 1R,1 · g. The truncation results yields the following error estimate:

Lemma 6.23. Let Q ∈ Pq+qa a probability measure and R = Rq+qa(Q, ε). For each ε > 0,

we have ∣∣∣∣∫ TP gdQ−
∫
TP gR,1dQ

∣∣∣∣ ≤ cP,D · ε
with cP,D = 2

√
Dζ1

(
λb + 8e−1

)
+Dλmζ2.

Proof. Observe that for each x ∈ RD,

|TP g(x)− TP gR,1(x)|
≤ |〈2b(x), g(x)(1− 1R,1)(x)〉|+ |〈m(x),∇g(1− 1R,1)(x)〉|
≤ 2‖b(x)‖2‖g(x)‖2|(1− 1R,1)(x)|+D|1− 1R,1(x)|‖m(x)‖op‖∇g(x)‖op

+ ‖∇1R,1(x)‖2‖g(x)‖2

≤ 1
{
‖x‖2 > R

} [{λb
2

(1 + ‖x‖2) + 8e−1
}
·Dζ1 +Dζ2λm

(
1 + ‖x‖qa+1

2

)]
(1 + ‖x‖q−1

2 ).

By the definition of R, we have∫
{‖x‖2>R}

‖x‖q′2 dQ ≤
∫
{‖x‖2>R}

‖x‖q+qa2 dQ ≤ ε.

for any 0 ≤ q′ < q + qa. Thus,∣∣∣∣∫ TP gdQ−
∫
TP gR,1dQ

∣∣∣∣
≤
∫
‖x‖2>R

[{λb
2

(1 + ‖x‖2) + 8e−1
}
·
√
Dζ1(1 + ‖x‖q−1

2 )

+Dζ2λm
(
1 + ‖x‖qa+1

2

)(
1 + ‖x‖q−1

2

)]
dQ(x)



6.A. PROOFS OF MAIN RESULTS 145

≤
{

2
√
Dζ1

(
λb + 8e−1

)
+Dλmζ2

}
ε.

Step 2: Constructing a smooth approximation to gR,1. We consider approximating the

function gR,1 with an RKHS function. For later use, we consider factorizing gR,1 using a

differentiable positive function w(x) : RD → [1,∞); i.e.,

gR,1(x) = w(x)gwR,1,

where gwR,1 := gR,1/w. We assume that supx∈RD ‖∇ logw(x)‖2 =: Mw <∞. We also define

a helper function

Bw(z) := sup
x∈RD,u∈[0,1]

w(x)

w(x− uz) .

The form of w will be specified below, which will be of the form w(x) =
(
v2 + ‖x‖22

)qw ; for

this w, we have Bw(z) = O(‖z‖qw2 ). Note that 0 < ρ ≤ 1, Bw(ρz) ≤ Bw(z).

For fixed ρ > 0, we define a smooth approximation gwρ to by convolution,

gwρ (x) := EZ
[
gwR,1(x− ρZ)

]
,

where Z is a RD-valued random variable with E
[
‖Z‖2Bw(Z)

]
<∞ (its law will be specified

in the sequel). The following result quantifies the approximation error and mirrors the proof

of Lemma 12 of Gorham and Mackey [2017]; here, we do not assume the Lipschitzness of the

drift b (assuming the Lipschitzness will improve the D-dependency of the bound).

Lemma 6.24. Let gwR,1 := gR,1/w,and gwρ (x) := EZ
[
gwR,1(x− ρZ)

]
. For each fixed ρ ∈

(0, 1], the approximation gwρ satisfies the following:∣∣∣∣∫ TP (wgwρ )dQ−
∫
TP gR,1dQ

∣∣∣∣
≤ ρ · UP,D,w · (1 +R+ 2ε) · {1 + (R+ 1)q−1}

with

UP,D,w = 4
{

(2λb +MwDλm) · ũ(1)
P,D,w +Dλmũ

(2)
P,D,w

}
where ũ(1)

P,D,w and ũ(2)
P,D,w are constants given respectively in Lemmas 6.39, 6.40 with δ = 1.

Proof. By Lemmas 6.39, 6.40, for each x ∈ RD, we have

|TPwgwρ (x)− TPwgwR,1(x)|
≤ |2w(x)〈b(x), gwρ (x)− gwR,1(x)〉|+ |w(x)〈m(x),∇gwρ (x)−∇gwR,1(x)〉|

+ w(x)|〈m(x),∇ logw(x)⊗ (gwρ (x)− gwK,δ(x))〉|
≤ w(x){2‖b(x)‖2 + ‖m(x)‖op‖∇ logw(x)‖2}‖gwρ (x)− gwK,δ(x)‖2

+Dw(x)‖m(x)‖op‖∇gwρ (x)−∇gwK,δ(x)‖op
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≤ ρ · {1 + (R+ 1)q−1}
[{

λb
2

(1 + ‖x‖2) +Mwλm(1 + ‖x‖qa+1
2 )

}
ũ

(1)
P,D,w

+Dλm · (1 + ‖x‖qa+1
2 )ũ

(2)
P,D,w

]
Note that ∫

(1 + ‖x‖qa+1
2 )dQ(x) ≤ 1 +Rqa+1 +

∫
{‖x‖2>R}

(1 + ‖x‖qa+1
2 )dQ(x)

≤ 1 +Rqa+1 + 2ε.

As a consequence,∣∣∣∣∫ TPwgwρ dQ−
∫
TP gwR,1dQ

∣∣∣∣
≤ ρ(1 +Rqa+1 + 2ε)

[{
λb
2

+Mwλm

}
ũ

(1)
P,D,w +Dλmũ

(2)
P,D,w

]
{1 + (R+ 1)q−1}.

Step 3: Measuring the RKHS norm of wgwρ . The RKHS norm of wgwρ is derived once we

specify the convolution distribution and the RKHS kernel function. The former will be specified

below; for the latter, we assume that the scalar kernel is given by a weighted kernel

k(x, x′) = w(x)w(x′)k̃(x, x′),

where k̃(x, x′) is another positive definite kernel. This choice yields

‖wgwρ ‖GkI =

√√√√ D∑
d=1

∥∥w(gwρ )d
∥∥2

Gk
=

√√√√ D∑
d=1

∥∥(gwρ )d
∥∥2

Gk̃
,

where (gwρ )d is the dth component of gwρ . Thus, we only need to check the Gk̃ norm of each

coordinate function of gwρ .

We consider the tilting function w(x) = (v2 + ‖x‖22)qw with v ≥ 1 and qw ∈ [0,∞). We

specify the law of the convolution variable Z in 6.A.2 (i.e., the convolution kernel) with the sinc

density from Lemma 6.34

sq̃w(x) =

D∏
d=1

sinc4q̃w(xd)

Sq̃w
,

where Sq̃w =
∫∞
−∞ sinc4q̃w(x)dx, q̃w = dqwe + 1 with the symboldxe denoting the smallest

integer greater than or equal to x. Lemma 6.34 guarantees that sq̃w is well-defined and has

a finite q̃w-th moment. Note that by the convolution theorem and ‖sq̃w‖L1 = 1, the Fourier

transform ŝq̃w of sq̃w satisfies

|ŝq̃w(ω)|2 ≤ (2π)−D1{‖ω‖∞ ≤ 4q̃w} for ω ∈ RD,

where ‖ω‖∞ = maxd=1,...,D|ωi|.
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Lemma 6.25. Let gR,1 = g · 1R,1 with 1R,1 a smooth bump function from Lemma 6.37. Let

w(x) = (v2 + ‖x‖22)qw with v ≥ 1 and qw > 0. Let Φw(x, x′) = w(x)w(x′)Φ(x− x′) where

Φ ∈ C2 is a positive definite function with non-vanishing generalized Fourier transform Φ̂.

Define the convolution gwρ of gwR,1 = gR,1/w by

gwρ (x) := EZ
[
gwR,1(x− ρZ)

]
,

where Z has the law with density sq̃w from Lemma 6.34 with q̃w = dqwe+ 1. Let k = Φw. Then,

the RKHS norm ‖wgwρ ‖GkI is evaluated as

‖wgwρ ‖GkI ≤ (2π)−D/4Dζ1

√
sup

‖ω‖∞≤4q̃w/ρ
Φ̂(ω)−1 ·

√
Vol(BR+1) · (1 + (R+ 1)q−2qw−1),

where Vol(BR+1) is the volume of the Euclidean ball of radius R+ 1. In particular, the same

conclusion holds if the kernel k is given by k = Φw + `, where ` is another positive definite

kernel.

Proof. We first address the case k(x, x′) = Φw(x, x′). As
(
gwρ
)
d

is given by the convolution

with s(x) = ρ−Dsq̃w(x/ρ), by the convolution theorem [Wendland, 2004, Theorem 5.16], its

Fourier transform of is expressed by the product

(2π)D/2(̂gwR,1)d(ω)ŝ(ω) = (2π)D/2(̂gwR,1)d(ω)ŝq̃w(ρω),

(note that we are using the definition of Fourier transform in [Wendland, 2004, Definition 5.15]).

Thus, by [Wendland, 2004, Theorem 10.21], the RKHS norm of (gwρ )d is given by

∥∥(gwρ )d
∥∥2

GΦw
= (2π)−D/2

∫ |(̂gwρ )d(ω)|2

Φ̂(ω)
dω = (2π)D/2

∫ |(̂gwR,1)d(ω)ŝq̃w(ρω)|2

Φ̂(ω)
dω

≤ (2π)−D/2 sup
‖ω‖∞≤4q̃w/ρ

Φ̂(ω)−1 · ‖(̂gwR,1)d‖2L2

= (2π)−D/2 sup
‖ω‖∞≤4q̃w/ρ

Φ̂(ω)−1 · ‖(gwR,1)d‖2L2 ,

where the last equality is a result of the Plancherel theorem, since (gwR,1)d ∈ L1 ∩ L2. One can

check ‖(gwR,1)d‖L2 ≤
√

Vol(BR+1) · supx∈RD |(gwR,1)d| and

sup
x∈RD

|(gwR,1)d| ≤
√
Dζ1 sup

x∈RD
1R,1(x)

{
1 +

‖x‖q−1
2

(v2 + ‖x‖22)qw

}
≤
√
Dζ1(1 + (R+ 1)q−2qw−1),

Therefore, we obtain

‖wgwρ ‖GkI

=

√√√√ D∑
d=1

∥∥w(gwρ )d
∥∥2

Gk
=

√√√√ D∑
d=1

∥∥(gwρ )d
∥∥2

GΦw
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≤ (2π)−D/4Dζ1

√
sup

‖ω‖∞≤4q̃w/ρ
Φ̂(ω)−1 ·

√
Vol(BR+1) · (1 + (R+ 1)q−2qw−1).

We next deal with the case k = Φw + `. According to Aronszajn [1950], because k is the

sum of two kernels, the RKHS norm of Gk of a (scalar-valued) function g ∈ Gk is given by

‖g‖Gk = inf{‖g1‖GΦw
+ ‖g2‖G` : g = g1 + g2, g1 ∈ GΦw , g2 ∈ G`}.

As we have shown that each component of wgwρ is an element of GΦw , we have ‖(wgwρ )d‖Gk ≤
‖(wgwρ )d‖GΦw

. The rest of the proof follows from the definition of the vector-valued RKHS

GkI .

The following proposition summarizes the above three steps.

Proposition 6.26. Let ε > 0 be an arbitrary fixed positive real number. Let ρ ∈ (0, 1] be

a fixed number. Let Φ ∈ C2 be a positive definite function with non-vanishing generalized

Fourier transform Φ̂. Let w(x) = (v2 + ‖x‖22)qw with real numbers v ≥ 1 and qw ≥ 0. Let

GkI be the RKHS defined by kernel kI with k(x, y) = Φw(x, x′) + ˜̀(x, x′) where Φw(x, x′) =

w(x)w(x′)Φ(x− x′). Let Q be a probability measure in Pq+qa and R := Rq+qa(Q, ε/cP,D).

Then, we have

dFq(P,Q)

≤ ε+ ρUP,D,w · (1 +Rqa+1 + 2ε) · {1 + (R+ 1)q−1}

+ (2π)−
D
4 Dζ1

√
Vol
(
B1(RD)

)
(R+ 1)D · (1 + (R+ 1)q−2qw−1)FΦ(4q̃wρ

−1)S(Q, TP ,GkI),

where Vol
(
B1(RD)

)
denotes the volume of the unit ball in the Euclidean space RD, FΦ(t) =

sup‖ω‖∞≤t Φ̂(ω)−1, and q̃w = dqwe+ 1. Therefore, for a sequence of measures {Q1, Q2, . . . , }
in Pq+qa with uniformly integrable (q + qa)-th moments, we have S(Qn, TP ,GkI)→ 0 only if

dFq(P,Qn)→ 0.

Proof. Using the results obtained so far, we have for a function f ∈ Fq,

|EY∼Qf(Y )− EX∼P [f(X)]| = |EY∼QTP g(Y )|
≤ |EY∼Q[TP g(Y )− TP gR,1(Y )]|

+ |EY∼Q[TP gR,1(Y )− TPwgwρ (Y )]|+ |EY∼QTPwgwρ (Y )|
≤ |EY∼Q[TP g(Y )− TP gR,1(Y )]|

+ |EY∼Q[TP gR,1(Y )− TPwgwρ (Y )]|+
∥∥wgwρ ∥∥GkI S(Q, TP ,GkI)

≤ ε+ ρUP,D,w(1 +R2 + 2ε) · {1 + (R+ 1)q−1}

+ (2π)−D/4Dζ1FΦ(4q̃wρ
−1)
√

Vol
(
B1(RD)

)
(R+ 1)DS(Q, TP ,Gk).

Taking the supremum over Fq completes the proof of the first claim.

For the second claim, if the sequence has uniformly integrable q-th moments, we can take

finite r ≥ 1 such that Rq+qa(Qn, ε) ≤ r for all n ≥ 1. Thus, if S(Qn, TP ,GkI) → 0, taking
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successive limits of n, ρ, ε shows dFq(P,Qn)→ 0.

6.A.3 The diffusion Stein operator and zero-mean functions

Proposition 6.27 (The diffusion Stein operator generates zero-mean functions). Let qa ∈ {0, 1}
be the additional growth exponent of ‖a(x)‖op from Condition 6.2. If qa = 0, assume P has

a finite q-th moment; if qa = 1, a finite (q + 1)-th moment. Let g ∈ C1 be a function with the

following growth conditions:

‖g(x)‖2 ≤ C0(1 + ‖x‖q−1
2 ),

‖∇g(x)‖op ≤ C1(1 + ‖x‖q−1
2 ),

for each x ∈ RD, and some positive constants C0 and C1. Then, we have EX∼P [TP g(X)] = 0.

Proof. The proof is essentially that of Gorham et al. [2019, Proposition 3]. Note that by the

moment assumption on P, we have EX∼P
[
(1 + ‖X‖qa+1

2 )(1 + ‖X‖q−1
2 )

]
<∞ and thus

EX∼P |TP g(X)| ≤ 2EX∼P ‖b(X)‖2‖g(X)‖2 +DEX∼P ‖m(x)‖op‖∇g(X)‖op <∞.

Thus, we may apply the dominated convergence theorem and then the divergence theorem to

obtain

EX∼P [TP g(X)] = lim
r→∞

∫
Br

〈∇, p(x){a(x) + c(x)}g(x)〉dx

= lim
r→∞

∫
∂Br

〈nr(z), {a(x) + c(x)}g(z)〉p(z)dz,

where dz denotes the (D − 1)-dimensional Hausdorff measure. Let

f(r) =

∫
∂Br

‖a(z) + c(z)‖op‖g(z)‖2p(z)dz

Then we have ∫
∂Br

〈nr(z), g(z)〉p(z)dz ≤ f(r).

By the coarea formula (and integration with polar coordinates), we have∫ ∞
0

f(r)dr =

∫ ∞
0

{∫
∂Br

‖a(x) + c(x)‖op‖g(z)‖2p(z)dz
}

dr

≤ 2λmC0

∫ ∞
0

{∫
∂Br

(1 + ‖z‖qa+1
2 )(1 + ‖z‖q−1

2 )p(z)dz

}
dr

= 2λmC0

∫
(1 + ‖x‖qa+1

2 )(1 + ‖x‖q−1
2 )p(x)dx <∞.

Thus, we have lim infr→∞ f(r) = 0 and therefore EX∼P [TP g(X)] = 0.
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6.A.4 DKSD upper bounds

Proposition 6.28. Let Gκ be the RKHS defined by a matrix-valued kernel κ : RD × RD →
RD×D. Let q ≥ 1. Assume that any function g in the unit ball B1(Gκ) satisfies the following:

there exist some constants C0, C1, and C2 such that

‖∇ig(x)‖op ≤ Ci(1 + ‖x‖q−1
2 ) for any x ∈ RD and i ∈ {0, 1, 2}.

Assume a linear growth condition on m (Conditions 6.2, 6.11 with qa = 0). Assume that b

is φ1(b)-Lipschitz in the Euclidean norm, and m is φ1(m)-Lipschitz in the Frobenius norm.

Suppose P ∈ Pq. Then,

S(Q, TP ,Gκ) ≤ Cb,mdpLip1,q
(Q,P ),

where

Cb,m =
λbC1(5 + 2q−1)

4
+ 4C0φ1(b) +

λmC2D(5 + 2q−1)

2
+ 2
√
DC1φ1(m)

In particular, we have S(Qn, TP ,Gκ)→ 0 if dFq(P,Qn)→ 0.

Proof. For any g ∈ B1(Gκ), we show that TP g is a pseudo-Lipschitz function of order q. By

the derivative assumptions, we have

‖g(x)− g(y)‖2 ≤
C1

2

(
1 + ‖x‖q−1

2 + ‖y‖q−1
2

)
‖x− y‖2,

and

‖∇g(x)−∇g(y)‖2 ≤
C2

2

(
1 + ‖x‖q−1

2 + ‖y‖q−1
2

)
‖x− y‖2.

Also,
(1 + ‖x‖2)

(
1 + ‖x‖q−1

2 + ‖y‖q−1
2

)(
1 + ‖x‖q2 + ‖y‖q2

) (
1 + ‖x‖q2 + ‖y‖q2

)
≤ 5 + 2q−1

Using these estimates, we obtain

|TP g(x)− TP g(y)| ≤ 2‖b(x)‖2‖g(x)− g(y)‖2 + 2‖b(x)− b(y)‖2‖g(y)‖2
+D‖m(x)‖op‖∇g(x)−∇g(y)‖op +

√
D‖m(x)−m(y)‖F‖∇g(y)‖op

≤ Cb,m(1 + ‖x‖q2 + ‖y‖q2)‖x− y‖2,

where

Cb,m =
λbC1(5 + 2q−1)

4
+ 4C0φ1(b) +

λmC2D(5 + 2q−1)

2
+ 2
√
DC1φ1(m).

As a result, for any g ∈ B1(Gκ),

|EX∼QTP g(X)| = Cb,mC
−1
b,m |EX∼QTP g(X)− EY∼PTP g(Y )|

≤ Cb,mdFq(Qn, P ),
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where the equality holds since EY∼PTP g(Y ) = 0 by Proposition 6.9. Taking the supremum

over B1(Gκ) provides the required relation S(Q, TP ,Gκ) ≤ Cb,mdFq(Qn, P ).

Proposition 6.29. Let Gκ be the RKHS of RD-valued functions defined by a matrix-valued

kernel κ : RD × RD → RD×D. Let q ≥ 1. Assume that any function g in the unit ball B1(Gκ)

satisfies the following: there exist some constants C0, C1, and C2 such that

‖∇ig(x)‖op ≤ Ci(1 + ‖x‖q−1
2 ) for any x ∈ RD and i ∈ {0, 1, 2}.

Assume a quadratic growth condition on m (Conditions 6.2, 6.11 with qa = 1). Assume that

b is φ1(b)-Lipschitz, and m is pseudo-Lipschitz of order 1 in the operator norm with constant

µ̃pLip(m)1,1. Suppose P ∈ Pq+1. Then,

S(Q, TP ,Gκ) ≤ Cb,mdpLip1,q+1
(Q,P ),

where

Cb,m = (5 + 2q)

(
λbC1

4
+
λmC2D

2
+ C1Dµ̃pLip(m)1,1

)
+ 4φ1(b)C0.

In particular, we have S(Qn, TP ,Gκ)→ 0 if dFq+1(P,Qn)→ 0.

Proof. The proof proceeds as in Proposition 6.18. For any g ∈ B1(Gκ), we have

|TP g(x)− TP g(y)|
≤ 2‖b(x)‖2‖g(x)− g(y)‖2 + 2‖b(x)− b(y)‖2‖g(y)‖2

+D‖m(x)‖op‖∇g(x)−∇g(y)‖op +
√
D‖m(x)−m(y)‖F‖∇g(y)‖op

≤ λbC1

4
(1 + ‖x‖2)

(
1 + ‖x‖q−1

2 + ‖y‖q−1
2

)
‖x− y‖2 + 2φ1(b)C0(1 + ‖x‖q−1

2 )‖x− y‖2

+
λmC2D

8
(1 + ‖x‖22)(1 + ‖x‖q−1

2 + ‖y‖q−1
2 )‖x− y‖2

+ C1Dµ̃pLip(m)1,1(1 + ‖x‖q−1
2 )(1 + ‖x‖2 + ‖y‖2)‖x− y‖2

≤ Cb,m(1 + ‖x‖q+1
2 + ‖y‖q+1)‖x− y‖2,

where

Cb,m = (5 + 2q)

(
λbC1

4
+
λmC2D

2
+ C1Dµ̃pLip(m)1,1

)
+ 4φ1(b)C0.

6.B Auxiliary results

6.B.1 Results from previous work

Lemma 6.30 (An extended version of Gorham et al. [2019, Lemma 17]). Let G be a D-

dimensional standard normal random vector, and fix s > 0. If f : RD → R bounded and
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measurable, and fs(x) = E[f(x+ sG)], then

M0(fs) ≤M0(f), M1(fs) ≤
√

2

π

M0(f)

s
,

M2(fs) ≤
√

2
M0(f)

s2
, and M3(fs) ≤

3M0(f)

s3
,

where M0(fs) = supx∈RD |fs(x)|, and Mi(fs) = supx∈RD‖∇ifs(x)‖op for i ∈ {1, 2, 3}.

Proof. We prove the bound on M3(fs), as the other bounds are given in Gorham et al. [2019,

Lemma 17]. Let φs ∈ C∞ be the density of sG and ∗ be the convolution operator. By Leibniz’s

rule, 〈
∇3fs, u1 ⊗ u2 ⊗ u3

〉
=
〈(
f ∗ ∇3φs

)
(x), u1 ⊗ u2 ⊗ u3

〉
.

The RHS can be evaluated as

∣∣〈(f ∗ ∇3φs
)
(x), u1 ⊗ u2 ⊗ u3

〉∣∣
=

∣∣∣∣∫ f(x− y)
〈
∇3φs(y), u1 ⊗ u2 ⊗ u3

〉
dy

∣∣∣∣
≤ M0(f)

s6

∫ ∣∣∣∣∣∣


3∏
i=1

〈y, ui〉 − s2
∑
ijk

〈ui, y〉〈uj , uk〉


∣∣∣∣∣∣φs(y)dy

≤ M0(f)

s6

√√√√√∫


3∏
i=1

〈y, ui〉 − s2
∑
ijk

〈ui, y〉〈uj , uk〉


2

φs(y)dy

=
M0(f)

s6

√√√√√s6E

(∑
ijk

〈ui, G〉〈uj , uk〉
)2


≤ 3M0(f)

s3
· ‖u1‖2‖u2‖2‖u3‖2.

where
∑

ijk denotes the sum over the choices of (i, j, k) from {(1, 2, 3), (2, 1, 3), (3, 1, 2)}, the

equality holds by Isserlis’ theorem, and the last inequality follows from the Cauchy-Schwarz

inequality after expanding the square.

6.B.2 Miscellaneous results

Definition 6.31 (f -uniform integrability). Let Q be a set of probability measures on RD, and

f : RD → [0,∞) be a nonnegative function that is integrable for each Q ∈ Q. The function f

is called uniformly integrable with respect to Q, or the set Q is called f -uniformly integrable if

lim
r→∞

sup
Q∈Q

∫
{f(x)>r}

fdQ = 0.

Note that for a sequenceQ = {Q1, Q2 . . . }, the f -uniform integrability is equivalent to

having

lim
r→∞

lim sup
n→∞

∫
{f(x)>r}

fdQn = 0.
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The following lemma is an analogue of Kallenberg [2021, Lemma 5.11]:

Lemma 6.32. Let Q1, Q2, . . . be a sequence of probability measures on a separable metric

space X weakly converging to Q. Then, for a nonnegative continuous function f, we have

1.
∫
fdQ ≤ lim infn→∞

∫
fdQn,

2. limn→∞
∫
fdQn →

∫
fdQ <∞⇔Q = {Q1, Q2, . . . } is f -uniformly integrable.

Proof. The proof follows Kallenberg [2021, Lemma 5.11]. Below, we use the notation µ(f) =∫
fdµ for a measure µ.

For any r > 0, x 7→ f(x) ∧ r is a bounded continuous function. Thus, by the weak

convergence assumption,

lim inf
n→∞

Qn(f) ≥ lim inf
n→∞

Qn(f ∧ r)

= Q(f ∧ r).

The first claim follows as we let r →∞.
For the second claim, let us assume that Q is f -uniformly integrable. For any r > 0, we

have

|Qn(f)−Q(f)|
≤ |Qn(f)−Qn(f ∧ r)|+ |Qn(f ∧ r)−Qn(f ∧ r)|+ |Q(f ∧ r)−Q(f)|.

The first term on the RHS satisfies

|Qn(f)−Qn(f ∧ r)| = Qn
(
(f − r)1{f>r}

)
≤ 2Qn

(
f1{f>r}

)
≤ 2 sup

n
Qn
(
f1{f>r}

)
.

Note that Q(f) ≤ lim inf Qn(f) <∞. Thus, letting n→∞ and then r →∞ proves the claim.

For the other direction, assume Qn(f)→ Q(f) <∞. With a fixed r > 0, as n→∞,

Qn(f1{f>r}) ≤ Qn
(
f − f ∧ (r − f)+

)
→ Q

(
f − f ∧ (r − f)+

)
,

where we denote (a)+ = max(a, 0). Since x 7→ f(x)∧ (r− f(x))+ converges to f point-wise

as r →∞, by the dominated convergence theorem we have Q
(
f − f ∧ (r − f)+

)
→ 0.

Lemma 6.33. Let w(x) =
(
a+ b‖x‖22

)q
with a ≥ 1, b > 0, and q > 0. Then,

Bw(z) := sup
x∈RD,u∈[0,1]

w(x)

w(x− uz)

≤
(

1 + 2

(
1 +

b‖z‖22
a

))q
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and

Mw := sup
x∈RD

‖∇ logw(x)‖2 = sup
x∈RD

2bq‖x‖2
a+ b‖x‖22

≤ q
√
b

a
.

Proof. We have

w(x+ uz)

w(x)
=

(
a+ b‖x+ uz‖22
a+ b‖x‖22

)q
≤
(

1 +
‖x+ uz‖22

(a/b) + ‖x‖22

)q
≤
(

1 + 2
‖x‖22 + ‖z‖22
(a/b) + ‖x‖q2

)q
≤
(

1 + 2

(
1 +

b‖z‖22
a

))q
.

The first claim follows by observing

sup
x∈RD,u∈[0,1]

w(x)

w(x− uz) ≤ sup
u∈[0,1]

sup
x∈RD

w(x+ uz)

w(x)
.

The second claim can be checked easily.

Lemma 6.34 (A sinc function density and its moments). For an integer q ≥ 1, let sq : RD →
(0,∞) be a probability density function defined by

sq(x) =

(
1

I4q,∞

)D D∏
d=1

(sinc(xd))
4q,

where

sinc : R→ R, sinc(x) =


sin(x)
x x 6= 0

1 x = 0
,

and I4q,t = 2
∫ t

0 sinc4q(x)dx for t ∈ (0,∞]. Let Z be a random variable with the law specified

by s4q. Then, the q-th moment E[‖Z‖q2] is finite. Specifically, it has the following upper bound:

E[‖Z‖q′2 ] ≤


3D log 2

π q = 1,

Dq′
(
I4q,1
I4q,∞

+ 1
2q−q′

1
I4q,∞

)D
, q > 1,

where q′ is an integer such that 1 ≤ q′ ≤ q.

Proof. The density sq is nonnegative due to the even power. We have

I4q,∞ =

∫ ∞
0

sinc4q(x)dx ≤
∫ ∞

0
sinc2(x)dx =

π

2
,

where the inequality holds as |sinc2(x)| ≤ 1 everywhere, and the integral value is obtained

by integration by parts and using
∫∞

0 sinc(x) = π/2 [see, e.g., Abramowitz and Stegun, 1965,

Chapter 5]. Thus, I4q,∞ <∞, and the existence of the density sq is guaranteed.
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Assume q > 1, the moment estimates are derived as follows:

ID4q,∞E[‖Z‖q′2 ]

=

∫
‖z‖q′2 sq(z)dz ≤

∫
‖z‖q′1 sq(z)dz

=
∑

i1+···+iD=q′

(
q′!

i1!i2! · · · iD!

) D∏
d=1

2

∫ ∞
0

sin2q(zd)

|zd|2q−id
(

sin(zd)

zd

)2q

dzd.

The inequality holds because ‖·‖1 upper bounds ‖·‖2. By noting that sinc(x) ≤ 1 for all x ∈ R,
we can further evaluate the integral:

∫ ∞
0

sin2q(zd)

|zd|2q−id
(

sin(zd)

zd

)2q

dzd

≤
∫ 1

0

(
sin(zd)

zd

)2q

dzd +

∫ ∞
1

1

|zd|2q−id
dzd

=
I4q,1

2
+

1

(2q − id)− 1
≤ I4q,1

2
+

1

(2q − q′)− 1
.

Thus, we have

E[‖Z‖q′2 ] ≤ Dq′
(
I4q,1

I4q,∞
+

2

(2q − q′)− 1

1

I4q,∞

)D
.

When q = 1, a similar computation shows

E[‖Z‖2] ≤ 2D

ID4,∞

∫ ∞
0

sin4(zd)

z3
d

dzd ·
D∏
d′ 6=d

∫
sin4(zd)

z4
d

dzd′

=
2D log 2

I4,∞
=

3D log 2

π
·

Remark 6.35. The tedious expectation estimate is derived to ensure that the inside of the power

function is small (typically less than 1).

Lemma 6.36. Let f(t) = e−1/t1(0,∞)(t). Let

h(t) =
f
(
r + δ − t

)
f
(
r + δ − t

)
+ f

(
t− r

) .
Then, h(t) = 0 for t ≥ r + δ, h(t) = 1 for t ≤ r, and 0 < h(t) < 1 otherwise. Moreover, the

first two derivatives of h satisfies the following: for any t ≥ 0,

∣∣∣∣dhdt
∣∣∣∣ (t) ≤

 2
δ2 δ ≤ 1/2

8e1/δ−2 δ > 1/2
,
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∣∣∣∣d2h

dt2

∣∣∣∣ (t) ≤


2
(

1−2δ
δ4

)
+ 2

δ4

(
1 + 4e−1/δ

)
0 < δ ≤ 1/2−

√
1/12,

96
√

3
(
√

3−1)4 e
− 2
√

3√
3−1 e1/δ + 2

δ4

(
1 + 4e−1/δ

)
1/2−

√
1/12 < δ ≤ 1/2,(

96
√

3
(
√

3−1)4 e
− 2
√

3√
3−1 + 32e−4(e1/δ + 4)

)
e1/δ. δ > 1/2.

Proof. The cutoff property of h is well known, and therefore we focus only on the bounds on

the derivatives.

As a preparatory step, let us write down the first three derivatives of f, which are given, for

t > 0, as follows:

f ′(t) =
1

t2
e−1/t,

f ′′(t) =
1

t4
e−1/t(−2t+ 1), and

f (3)(t) =
1

t6
e−1/t(6t2 − 6t+ 1) =

6

t6
e−1/t

{
t−

(
1

2
+

√
1

12

)}{
t−
(

1

2
−
√

1

12

)}
.

The first derivative f ′ increases from 0 to 1/2 and then decreases. Thus, f ′(t) ≤ f ′(δ ∧ 1/2)

for δ > 0 and 0 < t ≤ δ. The second derivative f ′′ increases from zero to its maximum at

t =
(

1/2−
√

1/12
)
, and we have f ′′(t) ≤ f ′′

{
δ∧(1/2−

√
1/12)

}
for δ > 0 and 0 < t ≤ δ.

Also, note that we have for 0 ≤ t− r ≤ δ,

1

f
(
δ − (t− r)

)
+ f(t− r) ≤

1

f(δ)
.

Now we evaluate the first derivative of h.We consider the region r < t < r+δ, as otherwise

h is constant. Using h ≤ 1, we obtain∣∣∣∣dhdt
∣∣∣∣ =

∣∣∣∣∣− f ′
(
r + δ − t

)
f
(
t− r

)(
f
(
r + δ − t

)
+ f

(
t− r

))2 +
f
(
r + δ − t

)
f ′
(
t− r

)(
f
(
r + δ − t

)
+ f

(
t− r

))2
∣∣∣∣∣

≤
∣∣∣∣∣ f ′

(
r + δ − t

)
f
(
r + δ − t

)
+ f

(
t− r

)∣∣∣∣∣+

∣∣∣∣∣ f ′
(
t− r

)
f
(
r + δ − t

)
+ f

(
t− r

)∣∣∣∣∣
≤ 2

f ′(δ ∧ 1/2)

f(δ)

=

 2
δ2 δ ≤ 1/2

8e1/δ−2 δ > 1/2
.

The second derivative can be similarly evaluated as follows:∣∣∣∣d2h

dt2

∣∣∣∣ =

∣∣∣∣∣−f
′′
(r + δ − t)f(t− r)− 2f ′(r + δ − t)f ′(r − t) + f ′′(t− r)f(r + δ − t)(

f
(
r + δ − t

)
+ f

(
t− r

))2
−2

(
−f ′(r + δ − t)f(r − t) + f ′(t− r)f(r + δ − t)

)2(
f
(
r + δ − t

)
+ f

(
t− r

))3
∣∣∣∣∣
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≤
∣∣∣∣∣ f

′′
(r + δ − t)

f
(
r + δ − t

)
+ f

(
t− r

)∣∣∣∣∣+ 2

∣∣∣∣∣ f ′(r + δ − t)f ′(r − t)(
f
(
r + δ − t

)
+ f

(
t− r

))2
∣∣∣∣∣

+

∣∣∣∣∣ f ′′(t− r)
f
(
r + δ − t

)
+ f

(
t− r

)∣∣∣∣∣
+ 2

∣∣∣∣∣−f ′(r + δ − t)f(r − t) + f ′(t− r)f(r + δ − t)(
f
(
r + δ − t

)
+ f

(
t− r

)) ∣∣∣∣∣
2

1

f
(
r + δ − t

)
+ f

(
t− r

)
≤
∣∣∣∣∣ f

′′
(r + δ − t)

f
(
r + δ − t

)
+ f

(
t− r

)∣∣∣∣∣+ 2

∣∣∣∣∣ f ′(r + δ − t)f ′(t− r)(
f
(
r + δ − t

)
+ f

(
t− r

))2
∣∣∣∣∣

+

∣∣∣∣∣ f ′′(t− r)
f
(
r + δ − t

)
+ f

(
t− r

)∣∣∣∣∣+ 2
(|f ′(r + δ − t)|+ |f ′(t− r)|)2

f
(
r + δ − t

)
+ f

(
t− r

) .

Evaluating each term yields∣∣∣∣d2h

dt2

∣∣∣∣ (t) ≤ 2

∣∣∣∣∣f ′′
{
δ ∧ (1/2−

√
1/12)

}
f(δ)

∣∣∣∣∣+ 2

∣∣∣∣f ′(δ ∧ 1/2)

f(δ)

∣∣∣∣2 + 8
|f ′(δ ∧ 1/2)|2

f
(
δ)

.

≤


2
(

1−2δ
δ4

)
+ 2

δ4

(
1 + 4e−1/δ

)
0 < δ ≤ 1

2 − 1√
12
,

96
√

3
(
√

3−1)4 e
− 2
√

3√
3−1 e1/δ + 2

δ4

(
1 + 4e−1/δ

)
1
2 − 1√

12
< δ ≤ 1/2,(

96
√

3
(
√

3−1)4 e
− 2
√

3√
3−1 + 32e−4(e1/δ + 4)

)
e1/δ. δ > 1

2 .

Lemma 6.37. Let f(t) = e−1/t1(0,∞)(t). Let 1r,δ(x) = h
(
‖x‖2

)
be a smooth bump function

defined by

h(t) =
f
(
r + δ − t

)
f
(
r + δ − t

)
+ f

(
t− r

) .
Then, we have 1r,δ(x) = 1 for ‖x‖2 ≤ r, 0 < 1r,δ(x) < 1 for r < ‖x‖2 < r+δ, and 1r,δ(x) = 0

for ‖x‖2 ≥ r + δ; the gradient ∇Ir,δ(x) vanishes outside {x ∈ RD : r < ‖x‖2 < r + δ}.
Furthermore, we can uniformly bound the derivative norms ‖∇x1r,δ(x)‖2 and ‖∇x1r,δ(x)‖2
by constants depending only on δ. Specifically,

‖∇x1r,δ(x)‖2 ≤
2

δ2
1(0,1/2](δ) + 8e1/δ−21(1/2,∞)(δ)

and

‖∇2
x1r,δ(x)‖op <

∣∣∣∣d2h

dr2

(
‖x‖2

)∣∣∣∣+
2

r

∣∣∣∣dhdr (‖x‖2)
∣∣∣∣

≤


2
rδ2 + 2

(
1−2δ
δ4

)
+ 2

δ4

(
1 + 4e−1/δ

)
0 < δ ≤ 1

2 − 1√
12
,

2
rδ2 + 96

√
3

(
√

3−1)4 e
− 2
√

3√
3−1 e1/δ + 2

δ4

(
1 + 4e−1/δ

)
1
2 − 1√

12
< δ ≤ 1

2 ,

8
re

1/δ−2 +

(
96
√

3
(
√

3−1)4 e
− 2
√

3√
3−1 + 32e−4(e1/δ + 4)

)
e1/δ. δ > 1

2 .

Proof. We restrict the evaluation of the derivatives to the region r < ‖x‖2 ≤ r+ δ, as otherwise
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h is constant and has zero derivatives. According to Lemma 6.36, the first derivative satisfies

‖∇xh(‖x‖2)‖2 =

∥∥∥∥∥ x

‖x‖2
dh

dt

∣∣∣∣
t=‖x‖2

∥∥∥∥∥
2

=

∣∣∣∣dhdt (‖x‖)
∣∣∣∣

≤ 2

δ2
1(0,1/2](δ) + 8e1/δ−21(1/2,∞)(δ).

The second derivative can also be evaluated as

∇2
xh(‖x‖2) =

d2h

dt2
x⊗ x
‖x‖2 +

dh

dt

1

‖x‖

(
I − x⊗ x

‖x‖2
)
.

Consequently, we have

‖∇2
xh(‖x‖2)‖op = sup

‖u‖2=‖v‖2=1,
〈u,∇2

xh(‖x‖2)v〉

<

∣∣∣∣d2h

dr2

(
‖x‖2

)∣∣∣∣+
2

r

∣∣∣∣dhdr (‖x‖2)
∣∣∣∣ .

The rest of the proof follows from the estimates of Lemma 6.36.

Lemma 6.38. For ν > 2, let the standard multivariate t-distribution be

p(x) =
Γ
(
ν+D

2

)
Γ
(
ν
2

)
ν
D
2 π

D
2

(
1 + ‖x‖22

)− ν+D
2 .

Then, the t-distribution satisfies the dissipativity condition in Proposition 6.6 with q = 1 and

σ(x) =
√

1 + ν−1‖x‖22I. For this choice, we have λa = 4, and the diffusion is dissipative

(Condition 6.3) with α = 1− 2ν−1.

Proof. For this density, we have

∇ log p(x) =− ν +D

ν

x

1 + ν−1‖x‖22
, a(x) = 1 + ν−1‖x‖22, and

2b(x) = a(x)∇ log p(x) + 〈∇, a(x)〉 = −ν +D − 2

ν
x.

Thus,

2〈b(x)− b(y), x− y〉+ ‖σ(x)− σ(y)‖2F − ‖σ(x)− σ(y)‖2op

= −ν +D − 2

ν
‖x− y‖22 + (D − 1)

(√
1 + ν−1‖x‖22 −

√
1 + ν−1‖y‖22

)2

≤ −ν +D − 2

ν
‖x− y‖22 +

D − 1

ν
‖x− y‖22

= −
(

1− 1

ν

)
‖x− y‖22.
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In particular,

AP ‖x‖22=2〈b(x), x〉+ ‖σ(x)‖2F
= −ν +D − 2

ν
‖x‖2 +D(1 + ν−1‖x‖22)

= −(1− 2ν−1)‖x‖2 +D.

6.B.3 Results concerning approximation

Lemma 6.39. LetBw(z) = supx∈RD,u∈[0,1]w(x)/w(x−uz) andMw = supx∈RD‖∇ logw(x)‖2.
Let Z be a random variable with EZ

[
‖Z‖2Bw(Z)

]
< ∞. With fixed ρ ∈ (0, 1], define for

gwR,δ := gR,δ/w, the convolution

gwρ (x) = EZ
[
gR,δ(x− ρZ)

w(x− ρZ)

]
.

We have

‖gwR,δ − gwρ ‖2 ≤
ρ

w(x)
· ũ(1)

P,δ,D,w{1 + (R+ δ)q−1}

with a constant

ũ
(1)
P,δ,D,w =

[√
Dζ1MwE

[
‖Z‖2Bw(ρZ)

]
+ {ζ2 + Cδζ1}

]
,

where Cδ is a constant bounding ‖∇1R,δ(x)‖2 satisfying Cδ = 8e−δ for δ > 1/2.

Proof. By the definition of gρ, we have

gwρ (x)−gwR,δ(x) = EZ
[
gR,δ(x− ρZ)

{
1

w(x− ρZ)
− 1

w(x)

}
+
gR,δ(x− ρZ)− gR,δ(x)

w(x)

]
.

To bound each quantity inside the expectation, we derive their norm estimates. For gR,δ, we

have

M0(gR,δ) := sup
x∈RD

‖gR,δ(x)‖op

= max
‖x‖2≤R+δ

‖g(x)‖2 =
√
Dζ1{1 + (R+ δ)q−1}

(6.6)

and

π̃(gR,δ)1,0 := sup
x′∈RD

‖∇gR,δ(x′)‖op

≤ sup
x′∈RD

1R,δ(x) ‖∇g(x)‖op + sup
x′∈RD

‖∇1R,δ(x)‖2 ‖g(x)‖2

≤ (ζ2 + Cδζ1) {1 + (R+ δ)q−1},

(6.7)

whereCδis a universal constant depending on δ. Further, by the fundamental theorem of calculus,
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‖gK,δ(x− ρZ)− gK,δ(x)‖2 ≤ ρ
∥∥∥∥∫ 1

0
∇gR,δ(x− tρZ)Z2dt

∥∥∥∥
2

≤ ρ
∫ 1

0
‖∇gR,δ(x− tρZ)‖op‖Z‖2dt2

≤ ρ‖Z‖2π̃(gR,δ)1,0.

We also have∣∣∣∣ 1

w(x− ρZ)
− 1

w(x)

∣∣∣∣ = ρ

∫ 1

0

∣∣∣∣〈∇ww2
(x− tρZ), Z

〉∣∣∣∣dt
≤ ρ ‖Z‖2

1

w(x)

∫ 1

0

w(x)

w(x− tρZ)

∥∥∥∥∇ww (x− tρZ)

∥∥∥∥
2

dt (6.8)

≤ ρMw ‖Z‖2Bw(ρZ)

w(x)
.

Combining these evaluations yields

‖gwρ (x)− gwR,δ(x)‖2 ≤ EZ
[
‖gR,δ(x− ρZ)‖2

∣∣∣∣ 1

w(x− ρZ)
− 1

w(x)

∣∣∣∣]
+ EZ

[∥∥∥∥gR,δ(x− ρZ)− gR,δ(x)

w(x)

∥∥∥∥
2

]
≤ ρ

w(x)

[
MwE

[
‖Z‖2Bw(ρZ)

]
M0(gR,δ) + π̃(gR,δ)1,0

]
=
[√

Dζ1MwE
[
‖Z‖2Bw(ρZ)

]
+ {ζ2 + Cδζ1}

]
· ρ{1 + (R+ δ)q−1}

w(x)

Lemma 6.40. Define symbols as in Lemma 6.39. For each fixed ρ ∈ (0, 1], we have

‖∇gwρ (x)−∇gwR,δ(x)‖op ≤
ρ

w(x)
ũ

(2)
P,δ,D,w(x) · {1 + (R+ δ)q−1},

where

ũ
(2)
P,δ,D,w =

{
(1 +Mw) (ζ3 + 2Cδζ2 + CR,δζ1)EZ

[
‖Z‖2

]
+Mw (1 + 2Mw) ((ζ2 + Cδζ1))EZ

[
‖Z‖2Bw(Z)

]}
,

where Cδ and CR,δ are respective uniform bounds on ‖∇1R,δ(x)‖2 and ‖∇21R,δ(x)‖op, satis-

fying Cδ = 8e−δ and

CR,δ =
8

R
e1/δ−2 +

(
96
√

3

(
√

3− 1)4
e
− 2
√

3√
3−1 + 32e−4(e1/δ + 4)

)
e1/δ.

for δ > 1/2.

Proof. Before the proof, we introduce a notation. We denote the l-mode (vector) product of a
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tensor T ∈ RD1×···×DL with a vector v ∈ RDl by T ×̄lv. The resulting tensor is of order L− 1;

its size is (D1, . . . , Dl−1, Dl+1, . . . , DL); it is expressed element-wise as

(T ×̄lv)i1···il−1il+1···iL =

Dl∑
il=1

Ti1···il···Lvil .

First, note that

‖∇gwρ (x)−∇gwR,δ(x)‖op =
∥∥∥EZ[∇gwR,δ(x− ρZ)−∇gwR,δ(x)

]∥∥∥
op

≤
∥∥∥∥EZ [∇gR,δ(x− ρZ)

w(x− ρZ)
− ∇gR,δ(x)

w(x)

]∥∥∥∥
op︸ ︷︷ ︸

(a)

+

∥∥∥∥EZ [∇ logw(t− ρZ)

w(x− ρZ)
⊗∇gR,δ(x− ρZ)− ∇ logw(x)

w(x)
⊗∇gR,δ(x)

]∥∥∥∥
op︸ ︷︷ ︸

(b)

,

(6.9)

In the first line, we have exchanged the gradient and the expectation operation. We evaluate

each term below.

The term (a) is evaluated as∥∥∥∥EZ [∇gR,δ(x− ρZ)

w(x− ρZ)
− ∇gR,δ(x)

w(x)

]∥∥∥∥
op

≤
∥∥∥∥EZ [∇gR,δ(x− ρZ)

(
1

w(x− ρZ)
− 1

w(x)

)]∥∥∥∥
op︸ ︷︷ ︸

(i)

+
1

w(x)
‖EZ [∇gR,δ(x− ρZ)−∇gR,δ(x)]‖op︸ ︷︷ ︸

(ii)

,

(6.10)

The term (i) is bounded as

(i) ≤ EZ
[∣∣∣∣ 1

w(x− ρZ)
− 1

w(x)

∣∣∣∣ ‖∇gR,δ(x− ρZ)‖op

]
≤ ρ

w(x)
Mwπ̃(gR,δ)1,0EZ [‖Z‖2Bw(ρZ)] .

The term (ii) is evaluated as follows. By the fundamental theorem of calculus,

∇gR,δ(x− ρZ)−∇gR,δ(x) = −ρ
∫ 1

0
∇2gR,δ(x− tρZ)×̄1Zdt.
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Note that the operator norm of∇2gR,δ is bounded by

π̃(gR,δ)2,0 := sup
x∈RD

‖∇2gR,δ(x)‖op

≤ sup
x∈RD

(
1R,δ(x)‖∇2g(x)‖op + 2‖∇1R,δ(x)‖2‖gR,δ(x)‖2 + ‖∇21R,δ(x)‖2‖gR,δ(x)‖2

)
≤ sup

x∈RD

(
1R,δ(x)ζ3 + 2‖∇1R,δ(x)‖2ζ2 + ‖∇21R,δ(x)‖2ζ1

)
(1 + ‖x‖q−1

2 )

≤ (ζ3 + 2Cδζ2 + CR,δζ1) {1 + (R+ δ)q−1}.
(6.11)

Thus, the operator norm in the term (ii) is bounded as

∥∥EZ[∇gR,δ(x− ρZ)−∇gR,δ(x)
]∥∥

op

≤ EZ
[
‖∇gR,δ(x− ρZ)−∇gR,δ(x)‖op

]
= ρEZ

[
‖Z‖2 sup

‖u(3)‖2=1

∥∥∥∥{∫ 1

0
∇2gR,δ(x− tρZ)×̄1

Z

‖Z‖2
dt

}
×̄3u

(3)

∥∥∥∥
2

]

≤ ρEZ
[
‖Z‖2 sup

‖u(l)‖2=1,l∈{1,2,3}

∣∣∣∣{∫ 1

0
∇2gR,δ(x− tρZ)×̄1u

(1)dt

}
×̄3u

(3)×̄2u
(2)

∣∣∣∣
]

≤ ρEZ
[
‖Z‖2

∫ 1

0
sup
‖u(l)‖=1

|〈∇2gR,δ(x− tρZ), u(1) ⊗ u(2) ⊗ u(3)〉|dt
]

≤ ρEZ
[
‖Z‖2

∫ 1

0
‖∇2gR,δ(x− tρZ)‖opdt

]
≤ ρπ̃(gR,δ)2,0EZ‖Z‖2.

Thus, the term (ii) is bounded by

ρ

w(x)
π̃(gK,δ)2,0EZ‖Z‖2.

Similarly, we can evaluate the term (b) in (6.9)

(b) =
‖EZ [∇w(t− ρZ)⊗∇gR,δ(x− ρZ)−∇w(x)⊗∇gR,δ(x)]‖op

w(x)

≤ 1

w(x)

∥∥∥∥EZ [∇ logw(t− ρZ)

w(x− ρZ)
⊗
(
∇gR,δ(x− ρZ)−∇gR,δ(x)

)]∥∥∥∥
op

+
1

w(x)

∥∥∥∥EZ [(∇ logw(t− ρZ)

w(x− ρZ)
− ∇ logw(x)

w(x)

)
⊗∇gR,δ(x)

]∥∥∥∥
op

≤ 1

w(x)
EZ
∥∥∥∥∇ logw(t− ρZ)

w(x− ρZ)

∥∥∥∥
2

‖∇gR,δ(x− ρZ)−∇gR,δ(x)‖op

+
1

w(x)
‖∇gR,δ(x)‖2EZ

∥∥∥∥∇ logw(t− ρZ)

w(x− ρZ)
− ∇ logw(x)

w(x)

∥∥∥∥
2

≤ Mw

w(x)
EZ‖∇gR,δ(x− ρZ)−∇gR,δ(x)‖op
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+
2ρM2

w

w(x)2
π̃(gR,δ)1,0EZ

[
‖Z‖2Bw(ρZ)

]
≤ ρMw

w(x)

(
EZ‖Z‖2π̃(gR,δ)2,0 +

2Mw

w(x)
π̃(gw,δ)1,0EZ

[
‖Z‖2Bw(ρZ)

])
.

With B(ρZ) ≤ B(Z) in mind, combining the results, we obtain

‖∇gwρ (x)−∇gwR,δ(x)‖op ≤
ρ

w(x)
ũ

(2)
P,δ,D,w(x){1 + (R+ δ)q−1},

where

ũ
(2)
P,δ,D,w = (1 +Mw)EZ‖Z‖2π̃(gR,δ)2,0

+Mw (1 + 2Mw)EZ
[
‖Z‖2Bw(Z)

]
π̃(gR,δ)1,0

=
{

(1 +Mw) (ζ3 + 2Cδζ2 + CR,δζ1)EZ
[
‖Z‖2

]
+Mw (1 + 2Mw) ((ζ2 + Cδζ1))EZ

[
‖Z‖2Bw(Z)

]}
.

6.B.4 Results for DKSD

6.B.4.1 DKSD and uniform integrability

Lemma 6.41 (KSD upper-bounds the integrability rate). Let Gκ be the RKHS of RD-valued

functions defined by a matrix-valued kernel κ : RD × RD → RD×D. Suppose there exists

a function g ∈ Gκ such that TP g(x) ≥ ν for any x ∈ RD with some constant ν ∈ R, and

lim inf‖x‖−(q+θ)
2 TP g(x) ≥ η for some q ≥ 0, η > 0, and θ > 0 as ‖x‖2 → ∞. Assume

S(Q, TP ,Gκ) <∞ for a distribution Q ∈ Pq+θ. Then, for sufficiently small ε > 0, we have

Rq(Q, ε) := inf

{
r ≥ 1 :

∫
{‖x‖2>r}

‖x‖q2dQ(x) ≤ ε
}

≤
{

2
(

1 +
q

θ

)(S(Q, TP ,Gκ)− ν
ηε

)} 1
θ
∨ q
θ

.

Thus, for a sequence of measures {Q1, Q2 . . . } ⊂ Pq+θ, we have

lim sup
n→∞

S(Qn, TP ,Gκ) <∞⇒ lim sup
n→∞

Rq(Qn, ε) <∞.

In particular, if the sequence {Q1, Q2 . . . } does not have uniformly integrable q-th moments,

then Stein discrepancy S(Qn, TP ,Gκ) diverges.

Proof. Let g ∈ GkI be a function with the stated properties. Let f(x) = ‖x‖q21{‖x‖2 > r}. We

consider the integral∫
{‖x‖2>r}

‖x‖q2dQ(x) =

∫
f(x)dQ(x) =

∫ ∞
0

Q({f(x) > t})dt.
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By dividing the range of the integral, we obtain∫ ∞
0

Q({f(x) > t})dt = rqQ({‖x‖2 > r}) +

∫ ∞
rq

Q({f(x) > t})dt

= rqQ({‖x‖2 > r}) +

∫ ∞
r

Q
{
‖x‖2 > t1/q

}
dt,

where we regard the second term as zero when q = 0.

We evaluate the tail probabilities in terms of the Stein discrepancy. Following the proof

of Gorham and Mackey [2017, Lemma 17], we define γ(r) = inf{TP g(x)− ν : ‖x‖2 ≥ r}.
By assumption, there exists rη > 0 such that TP g ≥ η‖x‖q+θ2 for ‖x‖2 > rη. Define rγ :=

rη ∨ 2(|ν|/η)1/(q+θ). It is straightforward to check that for r ≥ rγ , we have γ(r) ≥ ηrq+θ/2.
By Markov’s inequality,

Q({‖x‖2 > r}) ≤ EX∼Qγ(‖X‖2)

γ(r)
≤ EX∼Q[TP g(X)− ν]

γ(r)
≤ S(Q, TP ,GkI)− ν

γ(r)
.

These observations yield the following estimate of the above integral:∫
{‖x‖2>r}

‖x‖q2dQ(x) = rqQ({‖x‖2 > r}) + 1{q>0}

∫ ∞
r

Q({‖x‖2 > t1/q})dt

≤ rqS(Q, TP ,GkI)− ν
γ
(
r
) + 1{q>0}

∫ ∞
r

S(Q, TP ,GkI)− ν
γ
(
t
) dt

≤ 2
S(Q, TP ,GkI)− ν

ηrθ
+ 21{q>0}

∫ ∞
r

S(Q, TP ,GkI)− ν
ηt1+θ/q

dt

≤ 2
S(Q, TP ,GkI)− ν

η

(
1

rθ
+
q

θ

1

rθ/q
1{q>0}

)
≤ 2

(
1 +

q

θ

) S(Q, TP ,GkI)− ν
η

1

rθ∧θ/q

where we assume r ≥ rγ ∨ 1. Therefore, for ε > 0, by taking sufficiently large rε ≥ 1 such that

2
(

1 +
q

θ

) S(Q, TP ,GkI)− ν
η

1

r
θ∧θ/q
ε

≤ ε and rε ≥ rγ ,

we have ∫
‖x‖2>rε

‖x‖q2dQ ≤ ε.

Therefore, the order-q integrability rate Rq(Q, ε) satisfies

Rq(Q, ε) ≤
{

2
(

1 +
q

θ

)(S(Q, TP ,GkI)− ν
ηε

)} 1
θ
∨ q
θ

∨ rγ .

For sufficiently small ε, the Stein discrepancy term dominates rγ . Thus, the claim has been

proved.
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6.B.4.2 The DKSD with the tilted linear kernel detects non-uniform integrability

Lemma 6.42 (Tilted linear kernels have the lower bound properties). Suppose the diffusion

targeting P satisfies the dissipativity condition (Condition 6.3) with α, β > 0 and the coefficient

condition (Condition 6.2) with λa > 0 and qa ∈ {0, 1}. Let w(x) = (v2 + ‖x‖22)qw−u with

qw ≥ 0, u ≥ 0, and v > 0. Assume (qw − u) < 2α/λa if qa = 1. Let

k(x, x′) = w(x)w(x′)〈x, x′〉.

There exists a function g ∈ GkI such that ‖g‖GkI =
√
D and the corresponding diffusion Stein

operator TP satisfies

TP g(x) ≥ ν for any x ∈ RD, and lim inf
‖x‖2→∞

‖x‖−2(qw−u+1)
2 TP g(x) ≥ η

for some ν ∈ R and η > 0.

Proof. We prove that the function g(x) = −w(x)x satisfies the properties in the statement.

Note that the kernel k is the linear kernel tilted by (v2 + ‖x‖22)qw−u.The function g then belongs

to the RKHS GkI , since each component is the product of two functions from the RKHSs of the

respective kernels. It is straightforward to check ‖g‖GkI =
√
D. Applying the diffusion Stein

operator yields

TP g(x) = w(x)

(
−2〈b(x), x〉 − 〈m(x), I〉 − 2(qw − u)

(v2 + ‖x‖22)
〈m(x), x⊗ x〉

)
= w(x)

(
−AP ‖x‖22 −

2(qw − u)‖x‖22
v2 + ‖x‖22

〈
σ(x)σ(x)>, x⊗ x

〉
‖x‖22

)
.

We first address the case qw − u ≤ 0. In this case, we have

TP g(x) ≥ w(x)(α‖x‖22 − β),

where the inequality follows from Condition 6.3 and the nonnegative second term inside the

parentheses above. From this estimate, the following relation holds for ‖x‖2 > R =
√
β/α+ 1,

TP g(x) ≥ η‖x‖2(qw−u+1),

where η =
(
1 + v2/R2

)qw−uα{1 − β/(α + β)} > 0. As Tpg(x) is continuous, it has the

minimum in the centered closed ball of radius R. Thus,

TP g(x) ≥ ν := 0 ∨ min
0≤‖x‖2≤R

TP g(x)

= −βw(0)

We next show the case qw−u > 0.Using Condition 6.3 and the growth condition (Condition
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6.2), we obtain

TP g(x) ≥ w(x)

(
α‖x‖22 − β −

λa(qw − u)

2

‖x‖22
(v2 + ‖x‖22)

(
1 + ‖x‖qa+1

2

))
This estimate provides us the lower bound

TP g(x) ≥ η‖x‖2(qw−u+1)
2

for ‖x‖2 > R1 = R0 + 1,with η =
(
1 + v2/R2

)qw−uf(R1) where

f(r) =

{
α− 1

r2

(
β +

λa(qw − u)

2

r2

v2 + r2

(
1 + rqa+1

))}
,

and R0 is chosen such that f(R0) = 0. The existence of such R0 is guaranteed if f is increasing

and achieves a positive value; the case qa = 0 automatically satisfies this requirement, whereas

the case qa = 1 further requires

α >
λa(qw − u)

2
.

To show a uniform lower bound, note that with R1 above, TP g(x) ≥ 0 for ‖x‖2 > R1, and

TP g(x) ≥ −w(R1)

{
β +

λa(qw − u)

2

R2
1

v2 +R2
1

(
1 +Rqa+1

1

)}
for ‖x‖2 ≤ R1.

6.B.4.3 The KSD with the tilted IMQ kernel detects non-uniform integrability

Lemma 6.43. Suppose the diffusion targeting P satisfies the dissipativity condition (Condition

6.3) with α, β > 0 and the coefficient condition (Condition 6.2) with λa > 0 and qa ∈ {0, 1}.
Let w(x) = (v2 + ‖x‖22)qw−u with qw ≥ 0, u ≥ 0, and v > 0. Assume (qw − u) < 2α/λa if

qa = 1. Let

k(x, x′) = w(x)w(y)(v2
0 + ‖x− x′‖2)−t

for t ∈ (0, 1). Then, there exists a function g ∈ GkI such that with any fixed s ∈ (0, (t+ 1)/2),

TP g(x) ≥ ν for any x ∈ RD and lim inf
‖x‖→∞

‖x‖−2(qw−u+s)
2 TP g(x) ≥ η

for some ν ∈ R and η > 0.

Proof. From the proof of Lemma 16 of Gorham and Mackey [2017], for any fixed 2s ∈ (0, t+1)

and w > v0/2, we have that the function

g(x) = −2α
x

(w2 + ‖x‖22)1−s

is an element of GkI with the RKHS norm D(w, v0, s, t)
1/2 <∞ [see Lemma 16 of Gorham

and Mackey, 2017, for the norm estimate] The rest of the proof proceeds as in Lemma 6.16.
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6.B.5 Polynomial functions are pseudo-Lipschitz functions

We show that the class Fq suffices for characterizing convergence in moments.

Lemma 6.44. Let q ≥ 1 be an integer. The q-th power ‖x‖q2 of the Euclidean norm is a

pseudo-Lipschitz function of order q − 1. Its pseudo-Lipschitz constant is bounded by 1 ∨ q/2.

Proof. The case q = 1 follows from the triangle inequality. For q ≥ 2, the claim follows by

observing

|‖x‖q2 − ‖y‖q2| ≤ q
∫ 1

0

∣∣∣‖tx+ (1− t)y‖q−1
2 〈tx+ (1− t)y, x− y〉

∣∣∣ dt
≤ q‖x− y‖2

∫ 1

0
‖tx+ (1− t)y‖q−1

2 dt

≤ q‖x− y‖2
∫ 1

0
t‖x‖q−1

2 + (1− t)‖y‖q−1
2 dt

=
q

2
(‖x‖q−1

2 + ‖y‖q−1
2 )‖x− y‖2

≤ q

2
(1 + ‖x‖q−1

2 + ‖y‖q−1
2 )‖x− y‖2,

where we have applied Jensen’s inequality to derive the third line.

Lemma 6.45. Let q ≥ 1 be an integer. Let q = (q1, . . . , qD) ∈ {0, . . . , q}D be a multi-index

such that
∑D

d=1 qd = q ≥ 1. Then, xq :=
∏D
d=1 x

qd
d is pseudo-Lipschitz of order q − 1. Its

pseudo-Lipschitz constant µ̃pLip(xq)1,q−1 is bounded by 1∨ (2(D−1)+1) ·q/2, and its degree

q − 1 polynomial derivative coefficient π̃(xq)q−1,i is bounded by maxd=1,...,D qd!
(
i+D−1
D−1

)
.

Proof. We first prove the following relationship:

|xq − yq| ≤ CD
q

2
(‖x‖q−1 + ‖y‖q−1)‖x− y‖2,

where CD = 2(D − 1) + 1. From the proof of Lemma 6.44, for D = 1, we have

|xq − yq| ≤ q

2
(|x|q−1 + |y|q−1)|x− y|.

For D > 1, suppose that the relation is true for D − 1. Take a multi-index q of size q. For

q = 1, the claim is true with Lipschitz constant 1. Without loss of generality, we may assume

‖x‖2 ≥ ‖y‖2. Then, for q > 1,

|xq − yq|

=

∣∣∣∣∣
D−1∏
d=1

xqdd · x
qD
D −

D−1∏
d=1

xqdd · y
qD
D +

D−1∏
d=1

xqdd · y
qD
D −

D−1∏
d=1

yqdd · y
qD
D

∣∣∣∣∣
≤
∣∣∣∣∣
D−1∏
d=1

xqdd

∣∣∣∣∣ · ∣∣xqDD − yqDD ∣∣+ |yqDD | ·
∣∣∣∣∣
D−1∏
d=1

xqdd −
D−1∏
d=1

yqdd

∣∣∣∣∣
≤ ‖x‖

∑D−1
d=1 qd · qD

2
(|xD|qD−1 + |yD|qD−1)|xD − yD|
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+ |yD| ·
∑D−1

d=1 qd
2

(‖x‖
∑D−1
d=1 qd−1

2 + ‖y‖
∑D−1
d=1 qd−1

2 )‖(x1, . . . , xD−1)− (y1, . . . , yD−1)‖2

≤ ‖x− y‖2
{
qD
2
‖x‖

∑D−1
d=1 qd

2 · (‖x‖qD−1
2 + ‖y‖qD−1

2 )

+‖y‖qD2 CD−1

∑D−1
d=1 qd

2
(‖x‖

∑D−1
d=1 qd−1

2 + ‖y‖
∑D−1
d=1 qd−1

2 )

}

≤ ‖x− y‖2
{
qD
2

2‖x‖q−1
2 + CD−1

∑D−1
d=1 qd

2
(‖x‖q−1

2 + ‖y‖q−1
2 )

}
≤ q

2
‖x− y‖2{(CD−1 + 2)‖x‖q−1

2 + CD−1‖y‖q−1
2 }

≤ q

2
(CD−1 + 2)‖x− y‖2(‖x‖q−1

2 + ‖y‖q−1
2 ).

Solving CD = CD−1 + 2 yields CD = 2(D − 1) + 1. Therefore,

|xq − yq| ≤ q

2
(2(D − 1) + 1) · (1 + ‖x‖q−1

2 + ‖y‖q−1
2 )‖x− y‖2.

Next we check the degree q polynomial coefficient of the ith derivatives. We assume q ≥ i
below, as the derivatives are zero otherwise. Note that we have

(∇ixn)l1,...,li =
D∏
d=1

nd!

(nd −md)!
· xqd−mdd · 1{qd≥md},

where md := #{ld : ld = d}, and

‖∇ixq‖op = sup
‖u(d)‖2=1

∣∣∣∣∣∣
∑

∑
md=i

D∏
d=1

(
qd!

(qd −md)!
· xqd−mdd 1{qd≥md}

)
u

(d)
ld

∣∣∣∣∣∣
≤ max

d
qd! sup
‖u(d)‖2=1

∑
∑
md=i

D∏
d=1

|‖x‖qd−md2 u
(d)
id
|

≤ max
d
qd! sup
‖u(d)‖2=1

∑
∑
md=i

D∏
d=1

‖x‖qd−md2 ‖u(d)‖2

≤ max
d
qd!

∑
∑
md=i

‖x‖
∑
d qd−md

2

≤ max
d
qd!

(
i+D − 1

D − 1

)
‖x‖q−i2 .

Therefore,

π̃(xq)q−1,i= sup
x∈RD

‖∇ixq‖op

1 + ‖x‖q−1
2

≤ max
d
qd!

(
i+D − 1

D − 1

)
sup
x∈RD

(
‖x‖q−i2

)
1 + ‖x‖q−1

2

.

Consider the function f(r) = rm/(1 + rm+i−1) on [0,∞) with m > 0, i ≥ 1. If i = 1, the

function is monotonically increasing and its supremum is limr→∞ f(r) = 1. If i > 1, the

function is nonnegative, and by taking the derivative, it can be shown that the function takes its
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maximum at r∗ = {m/(i− 1)}m/(m+i−1) with its value

f(r∗) =
( m
i−1)

m
m+i−1

1 + m
i−1

≤
m
i−1

1 + m
i−1

< 1.

Thus, we have

π̃(xq)i,q ≤ max
d=1,...,D

qd!

(
i+D − 1

D − 1

)
.

The above result indicates that if we divide a given monomial xq :=
∏D
d=1 x

qd
d by the

maximum of 1 ∨ (2(D − 1) + 1) · q/2 and maxd=1,...,D qd!
(

3+D−1
D−1

)
, we have xq ∈ Fq, where

Fq is the psuedo-Lipschitz class used in (6.4).
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Chapter 7

Conclusion and further research

As modern applications involve increasingly complex statistical models, it is critical to provide

appropriate tools to investigate their limitations. This thesis addresses two main challenges

in assessing generative models: intractability, and interpretability. In Chapters 3, 4, we have

treated the question of intractability and developed a test for comparing latent variable models.

In an attempt to address the question of interpretability, in Chapter 5, we have introduced a

novel test for comparing generative models; in Chapter 6, we have established an interpretable

goodness-of-fit measure based on moments. In addition to proposals in each chapter, these

works suggest the following two potential research directions. The first direction concerns

intractability. The extension of the Kernel Stein Discrepancy to latent variable models enables us

to consider a large class of models defined by intractable marginals with unknown normalizing

constants. While this extension covers a large class, there are interesting model classes that are

ruled out from this framework. An example class is simulation-based models [Cranmer et al.,

2020], where the likelihood function is not explicitly given or is challenging to compute. While

discrepancy measures such as the MMD or the UME statistic in Chapter 5 apply to this class,

these may not be practical, especially when the simulation cost is high. However, as we have

seen in Chapter 3, information from the model helps us sample-efficiently detect discrepancies

that may be challenging to uncover absent a large number of observed samples. Building upon

this idea, it would be interesting to extend evaluation techniques such as the KSD to broader

model classes, including implicit models.

A related question arises in approximate Bayesian inference, where evaluating posterior

approximations remains challenging. A benefit of the KSD approach is that we can characterize

the deviation of an approximation from a given target distribution by exploiting the density

function. However, the KSD does not apply if the likelihood or the prior is not computable. Such

situations are typical for posterior distributions associated with sequential models (e.g., state

space models) [Chopin and Papaspiliopoulos, 2020] or simulation-based models [Lintusaari

et al., 2017, Cranmer et al., 2020]. Developing a characterization like the KSD for such

distribution classes is an important open question.

In respect of interpretability, the two tests developed in Chapter 5 are based on kernel-based

distributional discrepancies, where the user can specify features of interest; the test also allows

the user to search for features distinguishing two models. A limitation of the discrepancy

171
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measures used in our tests is that they can only measure the incompatibility of generative

processes in terms of the resulting marginal distributions. It would be of practical interest to

develop an informative measure of discrepancy for a specific, possibly latent component in a

generative process. Exploiting model structures as in Chapter 3 might allow us to achieve this

goal, and this task is an important direction to explore.
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