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4 Abstract

Abstract
The development of quantum computers has promised to greatly improve our

understanding of quantum many-body physics. However, many physical systems

display complex and unpredictable behaviour which is not amenable to analytic or

even computational solutions. This thesis aims to further our understanding of what

properties of physical systems a quantum computer is capable of determining, and

simultaneously explore the behaviour of exotic quantum many-body systems.

First, we analyse the task of determining the phase diagram of a quantum

material, and thereby charting its properties as a function of some externally

controlled parameter. In the general case we find that determining the phase diagram

to be uncomputable, and in special cases show it is PQMAEXP-complete. Beyond this,

we examine how a common method for determining quantum phase transitions —

the Renormalisation Group (RG) — fails when applied to a set of Hamiltonians

with uncomputable properties. We show that for such Hamiltonians (a) there is a

well-defined RG procedure, but this procedure must fail to predict the uncomputable

properties (b) this failure of the RG procedure demonstrates previously unseen and

novel behaviour.

We also formalise in terms of a promise problem, the question of computing the

ground state energy per particle of a model in the limit of an infinitely large system,

and show that approximating this quantity is likely intractable. In doing this we

develop a new kind of complexity question concerned with determining the precision

to which a single number can be determined.

Finally we consider the problem of measuring local observables in the low energy

subspace of systems — an important problem for experimentalists and theorists alike.

We prove that if a certain kind of construction exists for a class of Hamiltonians, ,

the results about hardness of determining the ground state energy directly implies

hardness results for measuring observables at low energies.
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Impact Statement
It is widely believed that the advent of quantum computers will enable researchers to

tackle computational problems previously thought to be intractable. Tasks concerning

modelling physical systems, such as those relevant to material science and chemistry,

are thought to be more amenable to quantum computers relative to their non-quantum

counter-partners.

This thesis analyses to what extent this is true, and furthers our characterisation

of what problems quantum computers will be able to efficiently solve. There are

many groups working not only in academia, but also in industry attempting to use

quantum computers for these purposes. As such this work will allow researchers

to focus their efforts on finding algorithms for physical systems which are more

likely to demonstrate a comparative speed-up for quantum computers. Furthermore,

the understanding of what makes a physical system hard to “solve” helps inform

algorithm design when solving other systems.

Aside from practical relevance to algorithms, the research contributes to a

broader understanding of quantum complexity theory and the power of logical

machines, and how quantum mechanics can be utilised by such machines. In

particular here we study a unique form of computation problem that may lead to

important insights into complexity theory.

Our results may have additional impact in the understanding of complex

behaviour such as phase transitions in many-body quantum systems from a condensed

matter perspective. In particular, we expect our methods to be of interest to scientists

working to demonstrate rigorous results about complex physical systems such as

spin glasses. In addition, some of the results here put hard limits on how effectively

algorithms can be used to analyse many-body quantum systems — such as limiting

the effectiveness of extrapolating numerical information for small systems to larger

systems.

The results in this thesis have been distributed via academic talks at conferences,

universities, and workshops as well as on social media.
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Chapter 1

Introduction

Quantum mechanics is a physical theory describing the microscopic physics of

bodies, such as atoms and molecules, whereas classical physics describes physics at

a larger scale, including almost all physical processes that a person might typically

experience. Compared to classical physics, quantum mechanics displays a huge

array of apparently mysterious and unfamiliar behaviour such as entanglement,

de-localisation, and interference.

Much of the physics of the 20th and 21st century has been devoted to under-

standing the behaviour of systems described by quantum mechanics, in particular

systems comprised of multiple interacting particles — known as many-body physics.

That is, furnished with a description of a set of particles and the interactions be-

tween them, can we determine a given property e.g. the electrical conductivity?

Intuitively, it might seem that, provided the interactions between particles are not

too complicated, the problem is straightforward. Regrettably, this is often not the

case. Although quantum mechanics may give a framework for studying microscopic

systems, determining physical properties from first principles is often not an easy

task and in most cases simple, closed-form solutions simply do not exist. This is

succinctly summed up by the Philip W. Anderson quote “More is different”, which is

to say that large collections of particles, even if they have simple interactions between

them, can display enormously complex behaviour — far more complicated than

one might reasonably expect [And08]. In general, the behaviour of these systems

cannot be straightforwardly extracted from the underlying interactions and requires
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a completely different toolkit to analyse them — a reductionist viewpoint can only

have limited success1.

Some of those systems which have been most frustrating to physicists are so

called “condensed matter systems”, which are essentially ensembles of particles which

can interact with each other in all manner of ways, such as in solid materials. Indeed,

many unusual and perplexing properties of these many-body systems have been

discovered and explained over course the past century which require the description

of quantum mechanics including the low-temperature superconductivity and the

quantum Hall effect. Many more have been observed but their mechanism remain

unaccounted for, such as high temperature superconductivity [GK82].

Of course, understanding the properties of microscopic quantum systems is

important, not just from a theoretical perspective but also for practical uses such as

designing new materials, new drugs, and studying chemical reactions. Often we find

these problems are simply intractable on classical computers. That is solving for

these properties — even if great simplifications are made — would take too long to

be practical.

Recently the development of quantum computers — computers which exploit

the properties of quantum mechanics to improve information processing — promise

to help tackle this problem. Quantum computers are capable of implementing a range

of algorithms which (are thought to) solve problems far more efficiently than classical

computers, especially problems related to physical systems such as simulating the

time evolution of molecules. But, even for quantum computers, some physical

systems and their properties are believed to remain highly non-trivial to determine.

In this thesis we are concerned with developing and improving the understand-

ing of which physical systems and their properties can be determined efficiently,

inefficiently, or not at all using either classical or quantum computers; a field called

Hamiltonian complexity.

Hamiltonian complexity borrows many techniques and concepts from computa-

1In some sense this is obvious. Humans are capable of performing incredibly complex processes,
but are built from elementary particles, the laws governing which can be written down on a piece of
paper.
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tional complexity theory which is a field devoted to characterising how efficiently

computational problems can be solved. In particular, complexity theory typically

asks whether an efficient algorithm exists for a particular problem. For example

an efficient algorithm exists for adding two numbers, but is not thought to exist for

calculating matrix permanents. Perhaps surprisingly, these tools from complexity

theory are able not only to classify which quantum mechanical systems may or may

not be solvable efficiently using algorithms (or a variety of other methods), but also

can give us insight into the physical properties of such systems. This classification

approach stands in contrast to how much of physics is typically done — ideally we

would like a simple, closed-form solution, or perhaps a convergent perturbative series

which solves our problem. Hamiltonian complex is an admission that, in general,

this is not possible and many-body quantum physics is much more complicated and

messy than we would like. While Einstein, Dirac and other giants of physics have

produced beautiful and succinct theories describing nature, Hamiltonian complexity

gently tells us that much of physics won’t be like that. Instead, we’ll have to wrestle

with it numerically, and even then there will be many systems we cannot deal with.

Although Hamiltonian complexity has resulted in a rich classification of systems

and properties which are easy or hard to determine, there exists little understanding

or insight into where this boundary between simple and complex systems occurs.

It remains to be seen whether it is possible to tease out a boundary where physical

systems switch from simple to complex based only on the parameters describing the

system.

Furthermore, there is a noticeable dearth of results relating to systems in the

thermodynamic limit (i.e. systems that are infinitely large). This is an important limit

for several reasons. Perhaps most importantly, the thermodynamic limit gives the

“bulk” behaviour of materials and removes any finite-sized effects. Often this is the

regime condensed matter physicists wish to study materials — reflecting the fact we

usually deal with macroscopic systems of > 1023 particles where finite sized effects

are assumed to be irrelevant. Moreover, important phenomena such as quantum

phase transitions only technically occur in this limit. In this thesis we seek to prove



26 Chapter 1. Introduction

results about such systems, thus bringing Hamiltonian complexity closer to problems

studied by condensed matter physicists.

1.1 Structure of this Thesis
Chapter 2 gives preliminaries on notation, as well a more in-depth introduction to

quantum physics, complexity theory and Hamiltonian complexity. It also introduces

some of the relevant previous literature.

Chapter 3 explores the difficulty of computing the phase diagram at zero

temperature for a general Hamiltonian on a 2D lattice. In particular, we show that

the problem is uncomputable for a general Hamiltonian. That is, there exists no

general algorithm, no matter how inefficient, which determines the phase diagram of

a Hamiltonian. The results in this chapter are published in [BCW21].

Chapter 4 looks a new computational problem which characterises how difficult

it is to estimate the energy per particle in a 2D infinite lattice. Not only is this

one of the first complexity results in the thermodynamic limit, it introduces a new

type of complexity theory problem in of which we study a fixed property of a fixed

Hamiltonian and vary the precision. These results were first shown in [WC21].

Chapter 5 looks a set techniques for computing phases materials called the

“Renormalisation Group” methods. We take a Hamiltonian which has uncomputable

properties (the Hamiltonian from [CPGW15a]) and explicitly construct a renormali-

sation group flow for it. In doing so, we unveil an entirely new set of renormalisation

group behaviour, and demonstrate why such techniques must fail for Hamiltonians

with uncomputable properties. In particular, it shows the reason that the RG scheme

must fail to “solve” the system is not because it impossible to construct an RG scheme,

but instead because the RG scheme demonstrates pathological behaviour. These

results were first shown in [WOC21].

Chapter 6 examines the problem of estimating the expectation value of local

measurements on low temperature quantum systems. This is important as the only

access an experimentalist has to a low temperature quantum system is through

making local measurements. In particular, we prove a lifting lemma showing that if
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determining the ground state energy of a family of Hamiltonian is computationally

intractable, then computing the expectation values of local observables is too. These

results were first given in [WBG20].

Finally, in chapter 7 we outline results from [WB21], where we considered the

phase diagrams of physical systems which are simpler than those in chapter 3 —

these systems are such that they only undergo a single phase transition, and if one

takes a sufficiently large (and computable) section of the lattice then their phase is

the same phase as in the thermodynamic limit. We show even for these simpler class

of Hamiltonians, it remains computationally intractable to determine where a phase

transitions takes place.





Chapter 2

Background and Previous Work

2.1 Notation
Let B(H) be the space of bounded linear operators on a complex Hilbert space

H . For 𝐴 ∈ B(H), Null (𝐴) is the null-space/kernel of 𝐴. Define Λ(𝐿 ×𝑊) :=

{1, . . . , 𝐿} × {1, . . . ,𝑊} to be the square lattice of length 𝐿, width𝑊 , with 𝐿,𝑊 ∈ N.

We attach to each site 𝑖 ∈ Λ(𝐿 ×𝑊) in the lattice a Hilbert space H𝑖 � C𝑑 for a

constant 𝑑 which we call the local Hilbert space dimension. The overall Hilbert

space on of a set of lattice points 𝑆 ⊂ Λ(𝐿), or indeed any graph in which the points

are embedded, is then the tensor product of the all the local Hilbert spaces
⊗

𝑖∈𝑆H𝑖.

Given a string 𝑥 ∈ {0,1}𝑛, then |𝑥 | = 𝑛 will denote the binary length of the string.

Systems with a local Hilbert space C2 will often be called “qubits” and systems with

Hilbert space C𝑑 will often be called qudits. A qudit will often be referred to as a

“spin with local dimension 𝑑”, or a “spin” where the local Hilbert space dimension is

left implicit. Given some quantum state |𝜓⟩ ∈ H and a Hermitian operator 𝐴 ∈ B(H),

the expectation value of 𝐴 with respect to |𝜓⟩ is ⟨𝐴⟩ B ⟨𝜓 | 𝐴 |𝜓⟩.

A Hamiltonian is a Hermitian matrix describing the physics of a physical system.

We will generally denote Hamiltonians with the letter 𝐻. We say a Hamiltonian

𝐻 ∈ B((C𝑑)⊗𝑁 ) is 𝑘-local if it can be written as:

𝐻 =
∑︁
𝑖

ℎ𝑖 (2.1)

if each ℎ𝑖 acts non-trivially on at most 𝑘 spins, ℎ𝑖 ∈ B((C𝑑)⊗𝑘 ). That is to say, each
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ℎ𝑖 is implicitly tensored with an identity on all the qudits it acts trivially on. For

example, if given a 1D line of qudits of length 𝑁 , the term ℎ2,3 in implicitly means:

11⊗ℎ2,3⊗14⊗15⊗ . . .⊗1𝑁 , (2.2)

where ℎ2,3 ∈ B((C𝑑)⊗2). Here the ℎ𝑖 ∈ B((C𝑑)⊗𝑘 ) are called the local interaction

terms. Typically we will require ∥ℎ𝑖∥ ≤ 1, which is to say that the norm of the local

terms is independent of the total size of the physical system.

All Hamiltonians observed in the physical world are local Hamiltonians. Note

that locality in this sense does not necessarily imply any sense of geometric or

physical locality: the particles which interact may be separated by large physical

distances. When specifying terms which reflect that interactions typically become

weaker with distance, we will refer to this as geometric locality. Examples include

nearest neighbour interactions, which only couple adjacent spins, or power-law

interactions where the interaction strength between spins distance 𝑟 away decays as

1/𝑟𝛼 for some constant 𝛼 ≥ 1.

For a given Hamiltonian 𝐻, we will denote its eigenvalues as _𝑖 (𝐻), such that

_min(𝐻) := _0(𝐻) ≤ _1(𝐻) ≤ _2(𝐻) ≤ . . . . The spectral gap, Δ(𝐻), of a Hamiltonian

𝐻 is then defined as:

Δ(𝐻) B _1(𝐻) −_0(𝐻). (2.3)

Given a lattice Λ(𝐿 ×𝑊), a Hamiltonian 𝐻 =
∑
𝑖 ℎ𝑖 is nearest-neighbour if

ℎ𝑖 ∈ B(C𝑑 ⊗C𝑑) such that each ℎ𝑖 acts non-trivially only on neighbouring pairs

of lattice sites. We write nearest neighbour sites as ⟨𝑖, 𝑗⟩. Furthermore, on a

𝐷-dimensional hypercube lattice, translational invariance implies ℎ𝑖,𝑖+1 = ℎ𝑖+𝑘,𝑖+1+𝑘
for any 𝑘 ∈ N, along every cardinal direction of the lattice (this is sometimes called

shift invariance in other fields). We note that the interactions along any cardinal

direction may be different from the interaction along any other cardinal direction1.

1For example, on a 2D lattice, a translationally invariant Hamiltonian will have the same interactions
along all the rows, but may have a different set of interaction along the columns
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By a classical Hamiltonian, we mean a Hamiltonian which is diagonal in the standard

basis.

A special subclass of Hamiltonians are frustration free Hamiltonians. A

Hamiltonian 𝐻 =
∑
𝑖 ℎ𝑖 is a frustration free Hamiltonian if {ℎ𝑖}𝑖 are all positive

semi-definite and the ground state energy of the overall Hamiltonian is zero. This

implies that the ground state of 𝐻 is also the ground state of each ℎ𝑖 individually.

Occasionally we will make use of the Pauli 𝑥, 𝑦 and 𝑧 operators which we denote

as 𝑋 , 𝑌 and 𝑍 respectively, where:

𝑋 =
©«
0 1

1 0
ª®¬ , 𝑌 =

©«
0 −𝑖

𝑖 0
ª®¬ , 𝑍 =

©«
1 0

0 −1
ª®¬ .

2.1.1 Quantum Mechanics

All quantum systems have their state at a given time described by a complex vector

in some Hilbert space H which will evolve with time, |𝜓(𝑡)⟩. The physics of the

system — the way in which the particles interact — is described by a Hermitian

linear operator known as the Hamiltonian 𝐻. These quantum systems then evolve

according to the Schrödinger equation:

𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝑖𝐻 |𝜓(𝑡)⟩ ,

such that after time 𝑡′, assuming the Hamiltonian remains fixed, the system’s state is

updated as

|𝜓(𝑡′+ 𝑡)⟩ = 𝑒−𝑖𝐻𝑡′ |𝜓(𝑡)⟩ .

The Hamiltonian also gives the energy of the system as

⟨𝜓 |𝐻 |𝜓⟩ = 𝐸.

Remarkably, once the Hamiltonian for the system is known, we have a complete

description of the system and can use this to predict its properties — although we
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shall see this is often a difficult task! We also see that any local observable can

be represented by a Hermitian operator 𝐴, such that when a measurement is made

the outcome must always be an eigenvalue of 𝐴, and the state which results is the

corresponding eigenvalue of 𝐴.

2.1.1.1 Phases of Matter
The reader will most likely be familiar with phases of matter in the context of

thermal phases, such as ice melting to water and evaporating to steam. More

generally, many-body systems are often characterised by a set of parameters, such

as coupling strengths between atoms, temperature, or the strength of an applied

magnetic field. For certain ranges of parameters, the system may display particular

collective properties, and then undergo a rapid transition at a critical point to form a

new phase with different properties. For example, in the transition from water to ice,

the relevant parameters are pressure and temperature.

The mechanisms for phase transitions have confounded physicists since the early

20th Century (and probably before) due to the often surprising collective behaviour

of the relatively simple constituent parts. Early models for phase transitions include

the van der Waals gas model of hard sphere molecules, and the famous Ising model

of atoms modelled as tiny magnetic moments.

If one restricts the system to zero temperature, then these phase transitions can

still happen as a function of non-thermal parameters (e.g. applied magnetic field or

chemical composition), and are known as quantum phase transitions [Sac11]. While

so called thermal phase transitions can usually be understood a being driven by a

change in temperature — the energy of the constituent atoms/molecules overcomes

some energy barrier — quantum phase transitions are best thought of as being

driven by quantum fluctuations which become relevant only near absolute zero.

Quantum phase transitions describe the many phenomena such as low temperature

superconductivity and the quantum hall effect.

Definition 2.1 (Quantum Phase Transition (QPT), from [Sac11]). Consider a local

Hamiltonian 𝐻 (𝜑) = ∑
ℎ𝑖 (𝜑), where the matrix entries of ℎ𝑖 (𝜑) are analytic in 𝜑.

In the thermodynamic limit, a quantum phase transition occurs where there is a
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non-analytic change in the characteristics of the ground state as a function of 𝜑 (e.g.

the ground state energy _min(𝐻 (𝜑))). If the matrix elements of a Hamiltonian are

functions of multiple parameters ℎ𝑖 (𝜑1, \2, . . . ), then there is a phase transition at

𝜑 = 𝜑∗ if there is a non-analytic change in the ground state energy at 𝜑∗ when all

other parameters are held constant.

Quantum phase transitions can be extraordinarily complex: the phase diagram

for the phase Hall effect consists of a fractal “Hoftstadter butterfly” with an infinite

number of phases and phase transitions [OA01]. Moreover QPT characterise

important behaviour in physics, such as the metal-insulator phase transitions [Voj00]

or the structure of atomic nuclei [Elh+16]. Despite the relative importance of quantum

phase transitions in explaining collective behaviour of systems, their complexity

means they remain poorly understood.

If an experimentalist is working in a lab, it is likely difficult to measure non-

analyticities in the ground state energy. Instead, it is often useful to work in terms of

an order parameter which characterises some property of the phase. In the example of

the transverse 1D Ising model, the order parameter corresponds to the magnetisation

along the 𝑍 axis. There is one phase which has zero expected magnetisation, and

another with ±1 magnetisation. Throughout this thesis we will find it useful to work

with order parameters.

2.1.2 Spin Systems
A key model for condensed matter physicists are the spin lattice Hamiltonians.

These are idealised models of real materials in which a set of spins (which replicate

the magnetic moments of atoms or molecules) are arranged in a lattice and given

interactions between them. The interactions depend on the particular physical

system they are trying to model, and under different guises they are used as models

for everything from superconductivity [Hub63] to quantum memories [Den+02].

Remarkably, despite their simplicity, these models can accurately display a wide

range of physical phenomena, whether it be magnetism (quantum or classical) or

topological phenomena. This thesis will be concerned primarily with studying this

class of Hamiltonians.
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For the most part we will assume spin systems can accurately be described by

local Hamiltonians, usually with some sense of geometric locality.

2.2 Computability and Computational Complexity
Computational complexity is a subfield of theoretical computer science that seeks

to describe how difficult a given computational task is. Intuitively, it is obvious

that some tasks are more difficult that others. An example the reader can test for

themselves is the following: take two numbers of length 10 bits and add them together.

Now consider a second problem: choose a random 20 bit integer and try to find

its prime factors. The reader should have found the factoring significantly harder,

despite the information input to both problems being 20 bits.

Complexity theory attempts to formalise how hard these computational problems

are, and has lead to the development of so-called complexity classes. Complexity

classes classify computational problems (such as addition, factorisation, route finding,

etc.) in terms of the “amount of computational resources” need to solve them. By

“computational resources” we mean the amount of time or space a Turing Machine

needs to solve this class of problems. Turing Machines (TM) are a model of

computation consisting of a control “head” and an infinite tape, such that the tape is

divided up into cells. The head has several internal states that it can be in, and can

read the tape and write symbols on the tape. Upon reading a cell in the tape, the TM

head can write over it, transition to a new internal state and then move left or right

— the particular action it take at a given point depends on the contents of the cell it

is reading and the state the head is in. Turing Machines have become the standard

model of computation in theoretical computer science. We give a rigorous definition

of a TM a little later in definition 2.2. Remarkably, it is believed that all models of

computation are equivalent to Turing Machines, and hence Turing Machines provide

a natural way of characterising computation complexity (known as the Church-Turing

thesis).

We have been deliberately imprecise in the previous paragraph, which we clarify

here. Computational complexity primarily deals with “decision problems”; those
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which can be formulated as having a yes or no answer. Thus, rather than asking

for the prime factors of a number, instead the decision version of the problem asks

whether a number has a prime factor above or below some integer 𝑘 . It is clear that

one can convert easily between the two (i.e. the decision version of factoring can be

used to solve find the prime factors of a number by repeated applications).

The best known complexity classes are P and NP. The former, describes the set

of decision problems which are solvable by polynomial time algorithms run on a TM:

the algorithm runs for time at most 𝑂 (𝑛𝑐) for an input of length 𝑛 and a constant 𝑐.

The class NP is the set of problems which can be verified in polynomial time: that

is if one is given the answer to a computational problem, then one can check it is

correct in polynomial time.

The factoring example above is a (notorious) example of a problem in NP, but

thought not to be in P. Finding the prime factors of an 𝑛 bit problem is thought to be

difficult enough that no polynomial algorithm exists for the task. However, if one is

given a set of integers, and asked to check they are the prime factors of some larger

number, it is easy to do so by multiplying them together. Hence it has a polynomial

time verification algorithm.

A fundamental problem in computer science is the question of whether P = NP

or P ≠ NP. Remarkably, this apparently simple problem is still open. Unfortunately,

this is a problem endemic to complexity theory: proving that complexity classes are

equal to each other (or not) is extremely difficult, and the exact relationships between

most important classes are unknown.

To compare the hardness of decision problems we often talk about reductions.

We say that one computation problem 𝐴 reduces to another 𝐵 under a polynomial

time reduction, if there is a polynomial time Turing Machine which takes the output

of 𝐵 and then uses it to solve 𝐴. In this sense problem 𝐵 is at least as hard as problem

𝐴. If the reduction goes both ways then the two problems are equally hard.

Perhaps surprisingly, for most complexity classes there exist special subsets

of problems called “hard” problems such that any problem in the complexity class

can be reduced to a hard problem. If a problem is hard for a complexity class and
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contained in that same complexity class we call it “complete” for that class. Well

known NP-complete problems include the Travelling Salesman Problem and the

Satisfiability problem.

2.2.1 Quantum Complexity Classes

During the 1980s and beyond, it was speculated that Turing Machines running

according to the rules of quantum mechanics may show an advantage in a variety of

areas [Fey82]. Some initial evidence was supplied by the Deutsch’s algorithm which

was capable of solving a problem with fewer queries than a deterministic classical

TM, and then by a series of improvements which showed a quantum TM can use

exponentially fewer queries than a classical TM [DJ92]. Convincing evidence of a

quantum speed-up came with the arrival of Shor’s algorithm which demonstrated

that a quantum logic circuit could solve the factoring problem in polynomial time

[Sho97], whereas the best known classical algorithms take quasi-exponential time

despite decades of effort searching for improvements.

As such, there developed a parallel theory of complexity theory for quantum

computers [BV97]. These classes are typically formulated as the set of problems

which can be solved by quantum Turing Machines or quantum circuits. Quantum

circuits are simply logic circuits where the logical gates must be unitaries chosen

from some fixed, predetermined gate-set. Quantum Turing Machines (QTMs) are

Turing Machines in which the transition rules are unitaries [BV97]. We give a

rigorous definition of QTM later in definition 2.7.

Since quantum mechanics is inherently probabilistic, the complexity classes

are typically phrased in terms of what set of problems can be solved with high

probability, as opposed to those which can be solved deterministically. As such,

the natural analogue of P is a class known as BQP. A problem is in BQP if it the

correct answer can be found with probability > 2/3. Similarly, the natural quantum

analogue of NP is QMA: the set of problems for which given a proof of the answer,

can verify whether or not it is correct with probability > 2/3 [KSV02]. We note here

that the bound 2/3 is arbitrary and that by running the problem multiple times, one

can amplify the output probability to get exponentially close to 1 [NC10].
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We note that BQP and QMA are technically classes of promise problems, in

which one is guaranteed some property of the problem one is studying holds, and

cases where the promise does not hold are not studied.

As in the classical case, the relations between quantum and classical complexity

classes are unknown. The fact factoring is in BQP provides evidence that the

inclusion P ⊂ BQP is strict, but it is not expected that NP ⊆ BQP or BQP ⊆ NP

[RT19]. Beyond factoring there exist other problems which are efficiently solvable on

a quantum computer which appear to be classically difficult. Two important ones are

simulating physical quantum systems [Llo96] and solving linear systems of equations

[HHL09].

2.2.2 Computability

If complexity theory is the study of how hard it is for a TM to solve a problem, it

is natural to ask whether there are problems which cannot be solved by any TM

in any finite amount of time — they are undecidable or uncomputable2. Turing

demonstrated one such problem: determining whether an arbitrary TM halts on some

input is undecidable [Tur37]. That is to say, there exists no finite time algorithm

which will take as input a description of a Turing Machine and output, in a finite

amount of time, determine whether that TM eventually halts or not. This was then

extended by Rice to show that any non-trivial, semantic property of a Turing Machine

is undecidable [Ric53].

Since Turing’s original proof, a wide range of problems in computer science,

mathematics and physics have been shown to be undecidable. These include

determining whether a finite set of tiles will tile a plane [Rob71], determining the

Kolmogorov complexity of a string [LV93], or determining whether a player has a

winning strategy in a game of Magic: The Gathering [CBH19], as well as many

others. Notably for physicists, the problems of determining the spectral gap of a

Hamiltonian on an infinite lattice is undecidable [CPGW15b], as is determining the

trajectory of a particle in a potential [Moo90]. We will discuss the spectral gap

2Technically, undecidability applies only to decision problem whereas uncomputability applies to
functions.
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problem in more detail later.

While quantum computers promise to solve some problems faster than classical

computers, a quantum computer can be simulated by a classical computer with

exponential overhead, hence the set of decidable problems is the same for classical

and quantum computers — thus preserving the Church-Turing thesis. We note

that there exists a strong version of the Church-Turing thesis (conveniently known

as the Strong Church-Turing thesis) which postulates that all “reasonable” models

of computation are equivalent to each other up to polynomial overhead. As such,

quantum computation appears to violate this stronger version of the thesis.

2.2.3 Complexity Definitions

Here we give the formal definitions of the concepts we will need for complexity

theory. We include the definition of Turing Machines here for completeness, but we

will rarely use the full definition.

Definition 2.2 (Turing Machine [BV97]). A deterministic TM is defined by a triplet

(Σ,𝑄, 𝛿), where Σ is a finite alphabet with an identified blank symbol #, 𝑄 is a finite

set of states with an identified initial state 𝑞0 and two final states 𝑞 𝑓 ≠ 𝑞0, and 𝛿, the

deterministic transition function, is a function

𝛿 :𝑄×Σ→ Σ×𝑄× {𝐿, 𝑅} (2.4)

The TM has a two-way infinite tape of cells indexed by Z and a single read/write

tape head that moves along the tape.

A configuration or instantaneous description of the TM is a complete description

of the contents of the tape, the location of the tape head, and the state 𝑞 ∈ 𝑄of the

finite control. At any time only a finite number of tape cells may contain non-blank

symbols. The initial contents of the tape is known as the input.

For any configuration 𝑐 of TM 𝑀 , the successor configuration 𝑐0 is defined by

applying the transition function to the current state 𝑞 and currently scanned symbol

𝜎 in the obvious way. We write 𝑐→𝑀 𝑐0 to denote that 𝑐0 follows from 𝑐 in one step.

By convention, we require that the initial configuration of 𝑀 to satisfies the following
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conditions: the tape head is in cell 0, called the start cell, and the machine is in

state 𝑞0. An initial configuration has input 𝑥 ∈ (Σ−#)∗ if 𝑥 is written on the tape

in positions 0,1,2, . . . , and all other tape cells are blank. The TM halts on input 𝑥

if it eventually enters the final state 𝑞 𝑓 , from which there are no further transition

rules. The number of steps a TM takes to halt on input 𝑥 is its running time on input

𝑥. If a TM halts then its output is the string in Σ∗ consisting of those tape contents

from the leftmost non-blank symbol to the rightmost non-blank symbol, or the empty

string if the entire tape is blank. A TM which halts on all inputs therefore computes a

function from (Σ−#)∗ to Σ∗.

The main objects of study in classical computer science are decision problems,

also known as languages, which we define below:

Definition 2.3 (Decision Problem or Language [AB10]). Consider a Boolean function

𝑓 : {0,1}∗→{0,1}. We identify such a function 𝑓 with the set 𝐿 𝑓 = {𝑥 : 𝑓 (𝑥) = 1} and

call such sets languages or decision problems (we use these terms interchangeably).

We identify the computational problem of computing 𝑓 (i.e., given 𝑥 compute 𝑓 (𝑥))

with the problem of deciding the language 𝐿 𝑓 (i.e., given 𝑥, decide whether 𝑥 ∈ 𝐿 𝑓 ).

On an instance of a decision problem/language 𝑥 ∈ {0,1}∗, we say that a TM 𝑀

accepts if it outputs 1 (i.e. 𝑀 (𝑥) = 1), and rejects if it outputs 0 (i.e. 𝑀 (𝑥) = 0).

We note that sometimes rather than being given a single final state 𝑞 𝑓 , TMs are

sometimes defined as having a pair of final states 𝑞𝐴, 𝑞𝑅 which signal whether a TM

is accepting or rejecting on some computation (e.g. in [Pap94]). Similar to single

halting state, there are no transitions out of 𝑞𝐴 or 𝑞𝑅.

We now define the class NP. This is the class of decision problems for which, if

there is a “yes” output for the problem, then there is a witness or proof 𝑤 which can

be efficient verified by a classical TM.

Definition 2.4 (NP). A language 𝐿 ⊆ {0,1}∗ is in NP if there exists polynomial 𝑝,

and a deterministic polynomial time Turing Machine 𝑀 such that for each instance

𝑥 ∈ {0,1}∗ either:

Accepts: if 𝑥 ∈ 𝐿, ∃𝑤 ∈ {0,1}𝑝( |𝑥 |) such that 𝑀 (𝑥,𝑤) = 1 with probability 1.
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Rejects: if 𝑥 ∉ 𝐿 then ∀𝑤 ∈ {0,1}𝑝( |𝑥 |) , 𝑀 (𝑥,𝑤) = 0 with probability 0.

We will also be interested in the exponential version of this class:

Definition 2.5 (NEXP). A language 𝐿 ⊆ {0,1}∗ is in NEXP if there exists polynomial

𝑝, and a deterministic exponential time Turing Machine 𝑀 such that for each instance

𝑥 ∈ {0,1}∗ either:

Accepts if 𝑥 ∈ 𝐿, ∃𝑤 ∈ {0,1}2𝑝 ( |𝑥 | ) such that 𝑀 (𝑥,𝑤) = 1 with probability 1.

Rejects if 𝑥 ∉ 𝐿 then ∀𝑤 ∈ {0,1}2𝑝 ( |𝑥 | ) , 𝑀 (𝑥,𝑤) = 0 with probability 0.

Clearly NEXP is a much larger class of problems than NP and NP ⊂ NEXP. We also

define the concept of (Karp) reducibility:

Definition 2.6 (Polynomial Time Reductions [AB10]). We say a language 𝐴 ⊂ {0,1}∗

is polynomial-time Karp reducible to a language 𝐵 ⊆ {0,1}∗ (sometimes shortened to

just “polynomial-time reducible”) if there is a polynomial-time computable function

𝑓 : {0,1}∗→ {0,1}∗, such that for every 𝑥 ∈ {0,1}∗, 𝑥 ∈ 𝐴 if and only if 𝑓 (𝑥) ∈ 𝐵.

As mentioned, we can also define a quantum Turing Machine which can run

quantum computations. We note for simplicity, many formulations of quantum

computation use quantum circuits as they are conceptually easier to deal with.

However, we will make use of QTMs in this thesis and so include the definition for

completeness.

Definition 2.7 (Quantum Turing Machine [BV97]). Call C̃ the set consisting of 𝛼 ∈ C

such that there is a deterministic algorithm that computes the real and imaginary

parts of 𝛼 to within 2−𝑛 in time polynomial in 𝑛. A Quantum Turing Machine 𝑀 is

described by a tuple (Σ,𝑄, 𝛿) where Σ is a finite alphabet with an identified blank

symbol #, 𝑄 is a finite set of states with an identified initial state 𝑞0 and final state

𝑞 𝑓 ≠ 𝑞0, and 𝛿, the quantum transition function, is a function

𝛿 :𝑄×Σ→ C̃Σ×𝑄×{𝐿,𝑅} . (2.5)
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The QTM has a two-way infinite tape of cells indexed by Z and a single read/write

tape head that moves along the tape. We define configurations, initial configurations,

and final configurations exactly as for deterministic TMs. Let 𝑆 be the inner-product

space of finite complex linear combinations of configurations of 𝑀 with the Euclidean

norm. We call each element |𝜙⟩ ∈ 𝑆 a superposition of 𝑀. The QTM 𝑀 defines a

linear operator𝑈𝑀 : 𝑆→ 𝑆, called the time evolution operator of 𝑀 , as follows: if

𝑀 starts in configuration 𝑐 with current state 𝑝 and scanned symbol 𝜎, then after

one step 𝑀 will be in superposition of configurations |𝜓⟩ = 𝛼𝑃, where each non-zero

𝛼𝑖 corresponds to a transition 𝛿(𝑝,𝜎, 𝜏, 𝑞, 𝑑), and 𝑐𝑖 is the new configuration that

results from applying this transition to 𝑐. Extending this map to the entire space 𝑆

through linearity gives the linear time evolution operator𝑈𝑀 .

For decision or promise problems run on a QTM, it is not immediately clear

how to define acceptance or rejection.

We now rigorously define the quantum analogue3 of the class P.

Definition 2.8 (BQP). A promise problem 𝐿 = (𝐿𝑌𝐸𝑆, 𝐿𝑁𝑂) ⊂ {0,1}∗ is in BQP if

there exists a polynomial 𝑞 and a Quantum Turing Machine 𝑀 such that for each

instance 𝑥 ∈ 𝐿, 𝑀 (𝑥) halts in 𝑞(𝑥) steps. Furthermore, let Π = |1⟩⟨1| be a projector

onto the first qubit of the QTM’s track, then if a 𝑀 produces an output state |𝜙⟩:

Accepts: ⟨𝜙 |Π |𝜙⟩ > 2/3 if 𝑥 ∈ 𝐿𝑌𝐸𝑆.

Rejects: ⟨𝜙 |Π |𝜙⟩ < 1/3 if 𝑥 ∈ 𝐿𝑁𝑂 .

The natural analogue of NP is the class of promise problems for which a witness

can be given as a quantum state and can be efficiently checked using a quantum

circuit or QTM.

Definition 2.9 (QMA). A promise problem 𝐿 = (𝐿𝑌𝐸𝑆, 𝐿𝑁𝑂) ⊂ {0,1}∗ is in QMA iff

there exists a a Quantum Turing Machine 𝑀 such that for each instance 𝑥 and any |𝜓⟩

on 𝑂 (𝑝( |𝑥 |)) qubits, on input (𝑥, |𝜓⟩), 𝑀 halts in 𝑂 (𝑞( |𝑥 |)) steps, for polynomials

𝑝, 𝑞. Furthermore, let Π = |1⟩⟨1| be a projector onto the first qubit of the QTM’s

track, then if a 𝑀 produces an output state |𝜙⟩:
3Technically, BQP is closer to the classical class BPP, but “morally” BQP plays the same role as P.
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Accepts: if 𝑥 ∈ 𝐿𝑌𝐸𝑆, ∃ |𝜓⟩ such that 𝑀 runs on input (𝑥, |𝜓⟩) and the output satisfies

⟨𝜙|Π |𝜙⟩ > 2/3.

Rejects: if 𝑥 ∈ 𝐿𝑁𝑂 , then ∀ |𝜓⟩, 𝑀 runs on input (𝑥, |𝜓⟩) and the output satisfies

⟨𝜙|Π |𝜙⟩ < 1/3.

Problems which are QMA-complete are believed to be intractable for a quantum

computer. We can also define the associated exponential class.

Definition 2.10 (QMAEXP). A promise problem 𝐿 = (𝐿𝑌𝐸𝑆, 𝐿𝑁𝑂) ⊂ {0,1}∗ is in

QMAEXP iff there exists a 𝑘 and a Quantum Turing Machine 𝑀 such that for each

instance 𝑥 and any |𝜓⟩ on 𝑂 (2|𝑥 |𝑘 ) qubits, on input (𝑥, |𝜓⟩), 𝑀 halts in 𝑂 (2|𝑥 |𝑘 )

steps. Furthermore, let Π = |1⟩⟨1| be a projector onto the first qubit of the QTM’s

track, then if a 𝑀 produces an output state |𝜙⟩:

Accepts: if 𝑥 ∈ 𝐿𝑌𝐸𝑆, ∃ |𝜓⟩ such that 𝑀 runs on input (𝑥, |𝜓⟩) and the output satisfies

⟨𝜙|Π |𝜙⟩ > 2/3.

Rejects: if 𝑥 ∈ 𝐿𝑁𝑂 , then ∀ |𝜓⟩, 𝑀 runs on input (𝑥, |𝜓⟩) and the output satisfies

⟨𝜙|Π |𝜙⟩ < 1/3.

We note that some previous literature has made use of the abbreviation QMAEXP,

which we avoid in this thesis.

Throughout, we will make use of oracle classes: these are the set of problems

solvable by a Turing Machine with access to an oracle solving some problem (or

class of problems).

Definition 2.11 (Oracle Turing Machines [AB10]). An oracle Turing machine is a

TM, 𝑀 , that has a special read/write tape we call 𝑀’s oracle tape and three special

states 𝑞𝑞𝑢𝑒𝑟𝑦, 𝑞𝑦𝑒𝑠, 𝑞𝑛𝑜. To execute 𝑀 , we specify in addition to the input a language

𝑂 ⊂ {0,1}∗ that is used as the oracle for 𝑀. Whenever during the execution 𝑀

enters the state 𝑞𝑞𝑢𝑒𝑟𝑦, the machine moves into the state 𝑞𝑦𝑒𝑠 if 𝑞 ∈𝑂 and 𝑞𝑛𝑜 if 𝑞 ∉𝑂,

where 𝑞 denotes the contents of the special oracle tape. Note that, regardless of the

choice of 𝑂, a membership query to 𝑂 counts only as a single computational step. If
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𝑀 is an oracle machine, 𝑂 ⊂ {0,1}∗ a language, and 𝑥 ∈ {0,1}∗, then we denote the

output of M on input x and with oracle 𝑂 by 𝑀𝑂 (𝑥).

Definition 2.12 (Oracle Classes [AB10]). For every 𝑂 ⊂ {0,1}∗, P𝑂 is the set of

languages decided by a polytime deterministic TM with oracle access to 𝑂 and NP𝑂

is the set of languages decided by a polytime nondeterministic TM with oracle access

to 𝑂.

There are often definitional problems with oracle classes which arise. We will

flag these and discuss them when necessary.

2.3 Hamiltonian Complexity and Current State of the

Field
We’ve briefly discussed condensed matter physics and complexity theory, but how

do these apparently vastly different fields relate to each other? While some physical

systems can be solved to give a neat set of formula for every property — such as the

2D classical Ising model — many systems of interest are simply too complex to be

nicely characterised by a set of closed-form equations. Sometimes these systems are

amenable to statistical arguments, but in general one must resort to using numerics

to study them. For such systems, the question then becomes “can we develop an

algorithm which will efficiently solve this system and output the desired properties?”

This very naturally becomes “can we characterise the computational complexity of

Hamiltonians and their properties?”. This is the field of Hamiltonian Complexity.

As mentioned previously, studying physical systems is far from just an academic

interest: modelling Hamiltonians and predicting their properties is essential for

a wide range of commercial interests including battery development, optimising

chemical processes, and drug development [MBK15]. Classical algorithms for

solving physical properties of systems have been widely employed both for academic

and commercial purposes. Often these algorithms lack rigorous theoretical backing:

they appear to work “well enough”, are motivated by some physical intuition, or

make some simplifying assumptions to make the problem more tractable. Famous
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examples of such methods include the density matrix renormalisation group [Whi92],

and density functional theory [Par85]. By studying the complexity of Hamiltonians,

we can see to what extent we hope to find efficient algorithms for such problems.

2.3.1 The Local Hamiltonian Problem

Given some quantum system, described by a Hamiltonian, often the first properties

a physicist is interested in are its energy levels and the corresponding eigenstates.

The most important of these is the ground state (the lowest energy state of the

Hamiltonian), which characterises the low temperature properties of the Hamiltonian.

The first attempt to study the complexity of finding the ground state energy (or

indeed any property of a physical systems) was made by Barahona [Bar82], where

it was demonstrated that approximating the ground state energy of a classical Ising

model is NP-complete by giving a reduction from MAX-SAT to the ground state

energy of the Ising model. As a result, it is believed that finding the ground state

of spin-glasses is intractable, even if restricted to entirely classical Hamiltonians.

However, if the interactions of the Ising model are restricted to be a planar graph, then

the problem suddenly becomes tractable and there is a polytime algorithm [Had75].

A foundational result for quantum systems was proved by Kitaev [KSV02],

where it was shown that estimating the ground state energy of a 5-local Hamiltonian

was QMA-complete, and in the process demonstrated the class QMA is the natural

quantum analogue to NP. More formally, the result shows that the following promise

problem, is QMA-complete:

Definition 2.13 (Local Hamiltonian problem (LH)).

Input: A 𝑘-local Hamiltonian 𝐻 =
∑𝑚
𝑖 ℎ𝑖, acting on 𝑁 qudits, and 𝑚 =𝑂 (poly(𝑁)),

with two parameter 𝛼, 𝛽 such that 𝛽−𝛼 = Ω(1/poly(𝑁)).

Output:

YES: if _0(𝐻) < 𝛼

NO: if _0(𝐻) > 𝛽.

Promise: _0(𝐻) ∉ [𝛼, 𝛽].
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A key tool in Kitaev’s proof of QMA-hardness is a technique known as the

circuit-to-Hamiltonian mapping, which we review in the following subsection. The

QMA-completeness of the Local Hamiltonian problem implies that we do not expect

to efficiently estimate ground state energy of local Hamiltonians, even with access

to quantum computers. It is worth noting that the results [Bar82] and [KSV02]

only apply to spin-glasses: collections of particles for which the interactions can

be chosen independently. Furthermore, for these results there are no geometric

constraints on how the particles interact with each other. As such, these result do not

necessarily prove QMA-completeness of the Local Hamiltonian problem for systems

with interactions similar to those found in nature.

2.3.1.1 Circuit-to-Hamiltonian Mappings

The circuit-to-Hamiltonian mapping is the central tool for proving complexity results,

and can itself be viewed as a quantum version of the much celebrated Cook-Levin

theorem. The idea is to construct a Hamiltonian 𝐻 ∈ B((C𝑑)⊗𝑁 ) such that its ground

state is a superposition of some computation at all different steps of the computation.

Such Hamiltonians are also referred to as Feynman-Kitaev Hamiltonians or History

State Hamiltonians.

We let the Hilbert space of the Hamiltonian have two parts:

H =H𝐶 ⊗H𝑅

whereH𝐶 will contain a set of “clock states” which record which time step the register

is in, andH𝑅 which is the computational register of the computation. In particular,

let there be a computation starting with an initial state |𝜓0⟩ ∈ H𝑅, and lasting for 𝑇

steps such that the computational register after 𝑡 steps is |𝜓𝑡⟩ =𝑈𝑡𝑈𝑡−1 . . .𝑈1 |𝜓0⟩,

then this can be encoded in a so called history state:

Definition 2.14 (History state). A history state |Ψℎ𝑖𝑠𝑡⟩ ∈ HC⊗HR is a quantum state

of the form

|Ψℎ𝑖𝑠𝑡⟩ =
1
√
𝑇

𝑇∑︁
𝑡=1
|𝑡⟩C |𝜓𝑡⟩Q , (2.6)
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where {|1⟩ , . . . , |𝑇⟩} is an orthonormal basis for HC, and |𝜓𝑡⟩ =
∏𝑡
𝑖=1𝑈𝑖 |𝜓0⟩ for

some initial state |𝜓0⟩ ∈ HR and set of unitaries𝑈𝑖 ∈ B(HR).

HC is called the clock register andHR is called the computational register. If

𝑈𝑡 is the unitary transformation corresponding the 𝑡th step of a quantum computation

— which may be a gate in a quantum circuit or a QTM transition — then |𝜓𝑡⟩ is the

state of the computation after 𝑡 steps. We say that the history state |Ψ⟩ encodes the

evolution of the quantum computation.

To construct a Hamiltonian with |Ψℎ𝑖𝑠𝑡⟩ as a ground state, Kitaev develops a

Hamiltonian which is the sum of three parts. The first is the propagation Hamiltonian.

𝐻𝑝𝑟𝑜𝑝 :=
𝑇∑︁
𝑡=1

(
|𝑡⟩ ⟨𝑡 −1|𝐶 ⊗𝑈𝑡 + |𝑡 −1⟩ ⟨𝑡 |𝐶 ⊗𝑈†𝑡

)
. (2.7)

This forces the ground state to be the evolution of some quantum state through a

particular quantum circuit. Kitaev also introduces an initialisation term:

𝐻𝑖𝑛𝑖𝑡 := |0⟩⟨0|𝐶 ⊗Π𝑖𝑛𝑖𝑡 . (2.8)

This is a projector onto the first time step which ensures the computational register

is initialised in whatever we want the initial state to be (which will usually be the

input to the computation). There is a third term 𝐻𝐶𝑙𝑜𝑐𝑘 designed to enforce the

correct propagation of the clock. How the clock is implemented depends on the

particular construction and so we leave it nondescript here. The resulting Hamiltonian

𝐻 = 𝐻𝑖𝑛𝑖𝑡 +𝐻𝑝𝑟𝑜𝑝 +𝐻𝑐𝑙𝑜𝑐𝑘 has a history state ground state as per eq. (2.6).

Proving QMA-hardness

To prove QMA-hardness of the Local Hamiltonian problem, another term must be

added to the Hamiltonian above. This term is chosen to penalise rejected outputs. In

particular we assume that there is an output qubit which onto which the output of the

computation is placed. Then add the following term to the Hamiltonian:

𝐻𝑜𝑢𝑡 := |𝑇⟩⟨𝑇 | ⊗ |0⟩⟨0|𝑜𝑢𝑡 ,
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to give:

𝐻 = 𝐻𝑖𝑛𝑖𝑡 +𝐻𝑝𝑟𝑜𝑝 +𝐻𝑜𝑢𝑡 +𝐻𝑐𝑙𝑜𝑐𝑘 . (2.9)

To prove QMA-hardness of the Local Hamiltonian problem for this Hamiltonian,

we allow part of the initial computational register to be unconstrained; this part of

the register will be taken as a witness state. We then use the circuit-to-Hamiltonian

mapping to encode a verification circuit which takes as input some 𝑥 ∈ {0,1}𝑛 and

some witness state |𝑤⟩ ∈ (C2)⊗𝑂 (poly(𝑛)) , runs for time 𝑇 = 𝑂 (poly(𝑛)), and then

outputs either |0⟩ or |1⟩ with high probability.

Remarkably, one can show using a basis transformation that the Hamiltonian in

eq. (2.9) has the same energy as a particle propagating along a line and receiving

an energy penalty on the final step, where the energy penalty is proportional to

𝑇𝑟 ( |𝜓𝑇 ⟩⟨𝜓𝑇 |1⊗ |0⟩⟨0|𝑜𝑢𝑡) [KSV02]. This allows us to reduce the eigenvalue analysis

to that of solving a tridiagonal Toeplitz matrix. The energy is then either _0(𝐻) ≤ 𝛼

or _0(𝐻) ≥ 𝛽 if the computation accepts or rejects respectively, for some pair (𝛼, 𝛽)

such that 𝛽−𝛼 = Ω(1/poly(𝑁)). Thus the Local Hamiltonian problem is QMA-hard.

Towards More Natural Systems

The initial construction by Kitaev to prove hardness of the Local Hamiltonian problem

was for a 5-local, non-geometrically local, highly non-physical Hamiltonian. In

natural physical systems, interactions between bodies tend to be 2-local, bodies

typically couple more strongly with particles which are geometrically closer to them,

and there is often some underlying interaction structure (e.g. particles are on a lattice

or some other graph).

The more “natural” or simple a Hamiltonian is while also displaying hard-to-

compute properties, the more insight this gives us into the intrinsic complexity of

nature and into the structure of Hamiltonians as a whole. While Kitaev’s initial

hardness proof prevents one from finding an efficient algorithm for solving ground

state energies of 5-local Hamiltonians with no geometric structure, it leaves open the

possibility that the same problem on a 1D chain of qubits with nearest neighbour

interactions efficiently solvable.
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The Hamiltonians observed in real physical systems possess a wide range

of properties which one might make them simpler to solve. First of all, almost

all interactions seen in nature are 2-local, and very often shielding factors mean

the interactions between particles decays exponentially with distance. Condensed

matter systems often possess symmetries, such as a regular lattice, and can be

effectively modelled as Hamiltonians with only nearest neighbour interactions.

Furthermore, the local interactions between particles are often the same between ever

pair of neighbouring particles, and hence the interactions are both rotationally and

translationally invariant. Beyond the properties of the local interactions, properties

such as having a large spectral gap, or being frustration free can be shown to make

systems easier to solve.

Perhaps intuitively one can understand this by the fact that by imposing simpler

interactions and symmetries on a Hamiltonian, and other conditions on a physical

system, there are fewer degrees of freedom in which one can “encode” complexity or

computation. Alternatively, more degrees of freedom reduces size of the solution

space on must search through.

An important goal of Hamiltonian complexity is to examine increasingly simple

systems and determine where the boundary between complex and simple lies. With

this in mind there has been a huge number of results proving QMA-completeness of

Hamiltonians for increasingly simple systems. The two primary methods for this

are improvements to the circuit-to-Hamiltonian mapping and through perturbation

gadgets. We review these advances separately.

Adaptations of the Circuit-to-Hamiltonian Mapping

Over many works, new variants of circuit-to-Hamiltonian mappings have been

developed to apply the method to more realistic Hamiltonians which have properties

similar to those we find in nature.

One of the first improvements was made in [KR03a] which improved locality to

3-local, and [KKR06], who reduced the locality to 2-local Hamiltonians. In [Aha+07]

it was shown that the Local Hamiltonian problem was QMA-hard for 1D Hamiltonians

of local Hilbert space dimension 13. Remarkably, this was then improved upon in
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[GI09], where it was shown how a 1D, translationally invariant, nearest neighbour

Hamiltonian can be used to encode a circuit-to-Hamiltonian mapping 4. This result

is especially important as the only input to the Hamiltonian is the length of the

chain it is specified on — all other parts of the Hamiltonian remain fixed. This

allows QMAEXP-hardness of the Local Hamiltonian problem to be proven for 1D,

translationally invariant, nearest neighbour Hamiltonians.

However, the Hamiltonian in [GI09] has a huge local Hilbert space dimension

which is highly unlikely to be observed in nature. [BCO17] use Quantum Thue

Systems to reduce the local Hilbert space dimension to 42. [BP17a] proves QMAEXP-

hardness on a 3D lattices with face-centred cubic unit cells, but for a local Hilbert

space dimension of 4, and for 4-local Hamiltonians.

The Space-time Circuit-to-Hamiltonian Mapping

There is an similar, but slightly conceptually different version of the circuit-to-

Hamiltonian mapping that has been used throughout the literature, often known as

the space-time circuit-to-Hamiltonian mapping. The construction presented in the

previous sections has a ground state which consists of the computational register

tensored with a global clock, and then puts these in superposition. Space-time

circuit-to-Hamiltonian mappings forgo a global clock construction, and instead

give each qubit a local clock variable. The ground state is then a superposition

of all valid configurations of these clocks. The construction is based on those in

first utilised in [Zur90] and [Jan07]. This construction has been used to prove

QMA-completeness for interacting fermions [BT14], to develop better quantum

error-correcting codes [Boh+19], and give an alternative proof to the equivalence

between adiabatic computation and the circuit model [MLM07; GTV15].

To illustrate how this works, we give an example of how the computation is

encoded in [BT14]. Assume we want to encode a depth 𝐷 circuit of 𝑛 qubits. Then

we give each qubit a local clock register of 𝐷 −1 states, |𝑡⟩, 𝑡 ∈ {0,1,2, . . . 𝐷} which

records the time-step in the circuit. Let𝑈1
𝑡 [𝑞] be a 1-qubit gate acting on the qubit 𝑞

on the 𝑡𝑡ℎ time-step. Then for each single-qubit gate there is a term in 𝐻𝑡𝑟𝑎𝑛𝑠 of the

4Technically Gottesman and Irani encode a QTM’s evolution in a Hamiltonian rather than a circuit,
so this should more properly be called a “QTM-to-Hamiltonian mapping”.
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form:

𝐻1
𝑡 [𝑞] = (𝑈1

𝑡 [𝑞]⊗ |𝑡⟩ − |𝑡 −1⟩)(𝑈1†
𝑡 [𝑞]⊗ ⟨𝑡 | − ⟨𝑡 −1|).

Denote two qubit gates acting on qubits 𝑝 and 𝑞 at time-step 𝑡 as 𝑈2
𝑡 [𝑞, 𝑝]. Then

such a gate is encoded in the Hamiltonian as:

𝐻2
𝑡 [𝑞, 𝑝] = (𝑈2

𝑡 [𝑞, 𝑝]⊗ |𝑡, 𝑡⟩ − |𝑡 −1, 𝑡 −1⟩)(𝑈2†
𝑡 [𝑞, 𝑝]⊗ ⟨𝑡, 𝑡 | − ⟨𝑡 −1, 𝑡 −1|).

The 𝐷-dimensional qudit can then be mapped down to a set of 𝐷 + 1 qubits as

|𝑡⟩ = |0⟩1 |0⟩2 . . . |0⟩𝑡 |1⟩𝑡+1 |0⟩𝑡+2 . . . |0⟩𝐷+1. Thus the time dimension of the circuit

is mapped to a spacial dimension, where rows of qubits represent a particular time

step (hence the inclusion of “space-time” in the name of the construction). Penalties

can then be added to the Hamiltonian such that only valid time configurations occur

in the history state (i.e. so that a gate on one qubit line does not get applied in an

incorrect order). Input and output penalties are then added on appropriately.

We also note an innovative construction used to prove the Local Hamiltonian

problem is QMA-complete for the Bose-Hubbard model [CGW13]. Rather than

encoding the desired computation in the interactions, it keeps the strength and

form of the interactions constant and instead uses the interaction graph to encode

computations. Importantly, the interactions here are comparatively simple when

compared to the techniques above which encode circuits or Turing Machines (though

the interaction geometry is comparatively complex). These techniques were then

adapted to prove QMA-completeness for the XY-model with magnetisation [CGW16].

Although in this section we have focused on circuit-to-Hamiltonian mappings for

QMA-hardness construction, they have been used to prove a variety of other results.

Consequently there are a variety of constructions useful for different systems which

are often trying to improve on different properties of the system or construction

[CLN18; BC18a; GC18].
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2.3.1.2 Perturbative Gadgets

Beyond circuit-to-Hamiltonian mappings, there exists another common method of

proving hardness results for Hamiltonians, known as perturbative gadgets.

First developed in [KKR06] as an alternative method to prove QMA-hardness

of the Local Hamiltonian problem, perturbative gadgets are additional qubits (or

qudits) added to the Hamiltonian which allow the form and type of the Hamiltonian’s

interaction terms to be rearranged, while preserving the spectrum up to some small

error. Using perturbative gadgets, it is possible to take an initial Hamiltonian with

complicated interactions and high locality, and find a new Hamiltonian which has

simple, 2-local interactions with lower spacial dimensionality (e.g. of the form of

the Heisenberg Hamiltonian [CM13; CMP18]) such that the low energy spectrum is

preserved. The fundamental idea to change the form of interactions is the following:

suppose there is a 3-local interaction between qubits 𝑞1, 𝑞2, 𝑞3 that we wish to reduce

to a set of 2-local interactions. We call this 3-local Hamiltonian 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 . We then

introduce a new gadget Hamiltonian with auxiliary qubits �̃� = 𝐻 +𝑉 , where 𝐻 is

diagonal and has spectral gap Δ, and where 𝑉 is a 2-local perturbation with off

diagonal terms. The new qubits then “mediate” the interaction between the original

qubits 𝑞1, 𝑞2, 𝑞3. By expanding �̃� in the low energy subspace using a Feynman-Dyson

series (other expansions can be used), then for sufficiently large Δ and an appropriate

choice of 𝑉 the difference | |�̃� −𝐻𝑡𝑎𝑟𝑔𝑒𝑡 | | can be made sufficiently small.

The introduction of perturbative gadgets sparked a cascade of results: interacting

qubit Hamiltonians on a 2D lattice are QMA-complete [OT08], 2-local qubit systems

with restricted types of interactions are QMA-complete [BL08], and that density

functional theory is QMA-complete [SV09] (this results also proves the LH problem

for the Hubbard model in an external magnetic field is QMA-complete). Recently this

result has been utilised to prove that determining the ground state energy of interacting

electron orbitals is QMA-complete [O’G+21]. Finally, perturbative gadgets have

been used to providing a complexity classification for all qubit Hamiltonians [CM13].

Indeed, Cubitt and Montanaro demonstrate that the Local Hamiltonian problem for

a given class of Hamiltonian is complete for one of the following classes: P, NP,
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StoqMA, or QMA. This result was then generalised to qudit Hamiltonians [PM18].

We note that one of the disadvantages of using perturbative gadgets to prove

complexity results is that one needs to add large energy factors to the local interaction

terms in the new Hamiltonians. For large systems, these factors can be enormous

and arguably non-realistic. Work has been done to address this criticism — making

the gadgets more “physical” — but these alternative constructions usually contain

undesirable trade-offs (e.g. additional ancillary qubits) [CN15; Bau19].

2.3.2 Problems Beyond Ground State Energies
The ground state energy of a Hamiltonian is far from the only property of interest

for physicists, and the Hamiltonian complexity literature reflects this. Indeed,

the problem of determining many physical properties can be formulated as a

computational problem and its complexity studied. We examine some examples here:

Local Observables: Ambainis considers the problem of approximating the expecta-

tion value of log(𝑛)-local measurements on ground states and low energy subspace

— a natural extension beyond the Local Hamiltonian problem [Amb14]. Formally,

given an observable 𝐴, one is asked whether for states 𝛿 =𝑂 (1/poly(𝑁)) close to the

ground state if the expectation value ⟨𝐴⟩ > 𝛽 or ⟨𝐴⟩ < 𝛼, for 𝛽−𝛼 = Ω(1/poly(𝑁)).

In particular, it is demonstrated that the problem is PQMA[log]-complete. Gharibian

and Yirka improve on this result to 𝑂 (1)-local Hamiltonians [GY19]. This is further

improved to PQMA[log]-completeness for 1D systems, and for physically realistic

systems such as the Heisenberg model using perturbative gadgets [CMP18]. Part of

this thesis furthers the study of this problems to new classes of Hamiltonians (see

chapter 6).

Low Energy Subspace Structure: Gharibian and Sikora examine the problem of

determining if parts of the ground state subspace have an energy barrier between

them [GS18]: this is important for quantum memories as for a quantum memory

to remain stable over time, it must have an energy barrier between codewords.

This problem can be formalised as a computational problem GSCON and was

shown to be QCMA-complete for 5-local Hamiltonians, for 21-local commuting

Hamiltonians [GMV16], and for 21-local stoquastic Hamiltonians [Nag+21]. The
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result in [GMV16] is particularly important as most designs for error correcting codes

involve commuting Hamiltonians (albeit not with 21-local interactions). In [WBG20],

it was shown that even for a 2-local, nearest neighbour, translationally invariant

Hamiltonian, the problem remains QCMAEXP-complete (or QCMA-complete if the

Hamiltonian is not translationally invariant). Furthermore, this work developed a

“lifting lemma” showing that if a circuit-to-Hamiltonian mapping exists for a family

of Hamiltonians (subject to certain constraints) then the GSCON problem is QCMA

or QCMAEXP-hard.

Spectral Gaps: The spectral gap of a Hamiltonian (the difference in energies between

the first excited state and the ground state energy) is essential to determining the

properties of Hamiltonians: systems which have large spectral gaps tend to be

significantly easier to solve for5. Indeed, there are efficient approximations to states

and local observables for gapped Hamiltonians in certain cases [Has07a; Has07b;

LVV15; DB19].

In [Amb14] it is shown that the problem of estimating the spectral gap is

contained in PQMA[log] , and is PUQMA[log]-hard. Beyond the spectral gap’s importance

physically, it also useful in characterising the complexity of the Local Hamiltonian

problem for different parameter regimes [DGF20].

Consistency of Local Density Matrices: The Consistency of Local Density Matrices

(CLDM) is another important problem which widely occurs in chemistry. Here

one is given a set of reduced 𝑘-local density matrices {𝜌1, 𝜌2 . . . 𝜌𝑚}, where each

𝜌𝑖 describes the reduced state on some set of qudits 𝑆𝑖, and are asked to determine

whether there is a global density matrix of a system such that |𝑇𝑟𝑆𝑖 (𝜎) − 𝜌𝑖 | < 𝜖 where

𝑇𝑟𝑆𝑖 traces out the entire system except 𝑆𝑖. This was shown to be QMA-complete

under Turing reductions by Liu [Liu06], which was then improved to Karp reductions

[BG19]. A natural variation of this is the 𝑁-representability problem, in which the

Hamiltonian is restricted to only 2-local interactions between fermions, and the aim

to to determine the overall density matrix describing the system. This has also been

shown to be QMA-complete [LCV07]. For stoquastic Hamiltonians, the the CLDM

5In this paragraph we only discuss the spectral gap with respect to finite systems. We discuss the
thermodynamic limit later.
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problem has been shown to be StoqMA-hard for a slightly different definition of

CLDM than that used in previous results [Liu07].

Time Evolution: The above properties are concerned primarily with the static

properties of a Hamiltonian. Naturally one might ask what happens if we evolve a

state under the time dynamics of a system? In general, predicting the time dynamics

of a Hamiltonian is BQP-complete problem [Fey84], and hence we do not expect

there to be classical algorithm which efficiently simulates time dynamics for quantum

systems (in contrast quantum computers are capable of this [Llo96; BCK15]). One

might expect that Hamiltonians for which predicting ground state properties (for

example) are complex, also have difficult to determine time evolutions. However, this

is not the case in general. Examples of this include the existence of Hamiltonians for

which the Local Hamiltonian problem is StoqMA-complete, but the time dynamics

are BQP-complete. Even more strikingly is the ferromagnetic Heisenberg model

which has a 0 energy ground state, but BQP-complete time dynamics [CGW13].

Partition Functions and Free Energies The partition function and free energy give

the thermal properties of a Gibbs states of some systems — that is, the properties of a

system in thermal equilibrium at some temperature. For both classical and quantum

systems it is well known that for sufficiently high temperatures, there exists efficient

algorithms for approximating the partition function [Bar18; MH21]. Classically, it is

well known that computing the partition function exactly is #𝑃-hard, and that within

some relative error it is BPPNP-hard in general [Sto83]. In the quantum setting, the

free energy has been studied under certain conjectures, and the problem of computing

the partition function has been shown to be equivalent to counting the number of

witness states accepted by a QMA verifier [Bra+21]. However, the complexity of

computing the free energy of a quantum Hamiltonian polynomial additive precision

remains unknown6. A more limited version of this problem where try to compute

the partition function normalised by a factor 2−𝑛, to 1/poly(𝑛) precision, has been

shown to be DQC1-complete. Here DQC1 is a quantum complexity class which is

thought to be weaker than BQP, but still stronger than P [Bra08]. However, general

6This corresponds to computing the partition function to relative precision.
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hardness results for the non-normalised quantum case remain illusive.

Others Problems: Properties such as the energy of excited states [JGL10], determin-

ing the critical point of phase transitions [WB21], determining ground state energies

of free fermion models with impurities [BG17]7, and calculating the density of states

[BFS11] have all been studied from a Hamiltonian complexity perspective. We will

examine some of these in this thesis.

We also, note that Hamiltonian complexity techniques have been important in

formalising and understanding the idea of analogue Hamiltonian simulation. This

is the idea of designing a Hamiltonian which replicates the behaviour of another

Hamiltonian of interest (sometimes called the “target” Hamiltonian) [BK02; VC05;

CMP18; PB20; Koh+20].

2.3.3 Hamiltonian Complexity in the Thermodynamic Limit

The problems in the previous sections we have been dealing with Hamiltonians

defined on a finite number of particles. However, much of condensed matter physics

is concerned with properties of Hamiltonians in the thermodynamic limit of an

infinite number of particles. The thermodynamic limit is employed to study the

bulk properties of materials — those which are independent from finite-size effects.

The bulk properties are typically those which occur when looking at macroscopic

behaviour, where the number of particles is of the order ∼ 1023. Such systems

are assumed to be large enough that their behaviour is considered independent of

finite-size effects. Furthermore, particular phenomena such as phase transitions

are only rigorously defined in the thermodynamic limit [Sac11]. As a result it is

important to study this limit theoretically.

A series of computability and complexity results have been for developed such

systems. Notably, in a seminal piece of work, Cubitt, Perez-Garcia, and Wolf used

techniques from Hamiltonian complexity to demonstrate that determining whether

a system has a constant spectral gap, or is gapless in the thermodynamic limit is

undecidable [CPGW15a; CPGW15b]. Their construction applies to 2D, nearest

neighbour, translationally invariant Hamiltonians. Furthermore, their result implies a

7This result proves containment in QCMA, but does not prove hardness.
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“Rice’s Theorem” for Hamiltonian ground states: (almost) any non-trivial property of

a ground state is undecidable in the thermodynamic limit. This includes determining

expectation values of local observables, correlation functions, entanglement measures

etc.

This undecidability of the spectral gap result was then improved to 1D systems

[Bau+18b]. Building on these works, a similar set of authors proved the existence of

“size-driven phase transitions”: phase transitions where the driving parameter is the

system size [Bau+18a]. Their system undergoes a phase transition at some finite,

but arbitrarily large and uncomputable system size, demonstrating that finite-sized

effects are in some sense always present. It has also been shown that thermalisation

of an observable on 1D translationally invariant Hamiltonians from an initial state is

undecidable [SM21]. 8

A key consequence of these results is that a system at a finite size may have

properties which do not necessarily reflect the properties of the system in the

thermodynamic limit. Importantly, this means that using an algorithm to determine

some property of an 𝑁 × 𝑁 system (for example) and then extrapolating to the

thermodynamic limit is not guaranteed to work (or rather, in some circumstances it

is guaranteed not to work!). This is often a working assumption for doing numerics

in condensed matter physics, and hence this result potentially undermines this

assumption.

An alternative formulation of the above paragraph is that finite-sized effects are

always present, and can radically alter the behaviour of the system even at large sizes.

Thus, in some sense using the thermodynamic limit as a mathematical “trick” to

study the bulk properties of some medium is not always well defined.

We note, however, that there are systems which are known to have computable

and well defined properties in the thermodynamic limit. There are also well known

results that allow the determination of the spectral gap in the thermodynamic

limit from finite sized systems. The Knabe bound shows that for frustration free

8Although not directly relevant to the discussion above, we note an the following result for the
sake of interest: it has been proven that there exists supersymmetric quantum field theories for which
determining whether or not the theory breaks supersymmetric is undecidable [Tac22].



2.3. Hamiltonian Complexity and Current State of the Field 57

Hamiltonians, if a spectral gap decreases slowly enough then the system must be

gapped in the thermodynamic limit [Kna88]. Bounds such as these have been used

to show that for frustration-free, translationally invariant, nearest neighbour spin-1/2

Hamiltonians in 1D the spectral gap problem is decidable [BG15].

Quantum Phase Transitions Though a large number of properties of Hamiltonians

have been studied, a somewhat glaring gap exists in the literature: there is a limited

understanding of phase transitions from a Hamiltonian complexity perspective.

The undecidability of the spectral gap results [CPGW15a; Bau+18b], although

hinting at results about phase transitions (since the closing of the spectral gap is

necessary for a quantum phase transitions), do not actually prove results about

phase transitions for reasons that will be discussed later. This is notable given that

quantum phases, and quantum phase transitions are responsible for a huge amount

of interesting, low-temperature physics. Indeed, a huge amount of effort has been

devoted to determining phases: from a theoretical perspective the renormalisation

group methods were designed to better understand exactly this problem (we will

discuss this more later). Experimentally, analogue simulation has been used to probe

systems which exhibit QPTs [LS17; Eba+21], however, there are limitations on how

effectively some systems and properties can be simulated [CPD21]. In chapter 3 and

chapter 7 we seek to improve our understanding QPTs from a complexity perspective

and understand to what extent numerics and computation able to predict quantum

phase transitions.

Complexity (not Computability) in the Thermodynamic Limit The Local Hamil-

tonian problem plays a foundational role in Hamiltonian complexity, there is little

literature on the equivalent problem in the thermodynamic limit. In the thermo-

dynamic limit, the ground state energy necessarily diverges, and hence is not a

meaningful quantity, hence it is natural to ask about the energy per particle, better

known as the ground state energy density. On a lattice Λ(𝐿×𝑊) this is the energy

per particle, defined as

E𝜌 (𝐿,𝑊) :=
_0(𝐻Λ(𝐿×𝑊))

𝐿𝑊
, (2.10)
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and the quantity in the thermodynamic limit is found by taking 𝐿,𝑊 →∞. In

chapter 4 we explore the complexity of computing this quantity.

2.3.4 The Renormalisation Group

So far we have focused on results demonstrating that properties of Hamiltonians

are intractable or uncomputable, especially at low energies/temperatures. But of

course, there are a wide range of results proving that in certain cases properties can

be efficiently computed.

Renormalisation group (RG) techniques are a broad range of numerical and

analytic methods which typically work by iteratively simplifying the systems at

different length scales or momentum scales while preserving physical properties.

The idea being that after many iterations, the small scale “microscopic” details will

have been integrated out, while the observable physics will remain. Based on ideas

by Wilson [Wil71; WK74] who used the techniques to solve the Kondo problem,

a huge number of techniques have emerged to determine the phase of physical

systems. Renormalisation group techniques and the associated ideas have become a

fundamental part of condensed matter physics and high energy physics since their

development.

Importantly for this thesis, RG methods have been of fundamental importance in

describing phase transitions (of both the quantum and thermal kind) and associated

phenomena such as universality. Given a description of a Hamiltonian in terms of the

couplings between spins, it is not at all clear a phase should emerge. But by iterating an

appropriate renormalisation group scheme, we can remove the necessary “irrelevant

physics” while preserving important properties about the phase (e.g. whether the

phase is spontaneously magnetised). This has been applied with incredible success

to a huge range of systems, including the 1D Ising model where RG techniques can

be used to solve the system exactly. Indeed, many of the tensor network techniques

such as MPS, PEPS and MERA were originally inspired by RG methods.

Despite their important role in modern condensed matter physics, the effective-

ness of RG techniques on the exotic systems that occur in Hamiltonian complexity

has not been analysed. In particular, what happens when we apply RG techniques
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to Hamiltonians with undecidable properties. We know they must fail, but it is

not immediately clear how they do so, or if even one can meaningfully apply RG

techniques to Hamiltonians with uncomputable properties. In chapter 5 we investigate

this.

2.4 Authors and Contributions
Chapter 3 is co-authored by Johannes Bausch and Toby Cubitt, and has been published

here [BCW21]. The problem of the computability of phase diagrams was initially

suggested by Toby Cubitt. Most of the proof idea is my own work, although many of

the details of the construction were added to, corrected and worked out by Johannes

Bausch.

Chapter 4 is co-authored with Toby Cubitt. The problem of estimating the

ground state energy density was initially suggested by Toby Cubitt. Most of what is

in this thesis is my own work — a section about the robustness of the tiling which

has significant input from Toby Cubitt have been omitted. A full version of the work

can be found in [WC21], and a condensed version in [WC22].

Chapter 5 is joint work with Emilio Onorati and Toby Cubitt and has been

submitted for publication. A preprint can be found here [WOC21] The idea of

applying renormalisation group techniques to the uncomputable Hamiltonian of

[CPGW15a] was Toby Cubitt’s. Emilio Onorati’s contributions are primarily in the

section concerning the renormalisation of the classical tiling Hamiltonian which has

been excluded from this thesis.

Chapter 6 is joint work with Johannes Bausch and Sevag Gharibian. A preprint

can be found here [WBG20] The work was my idea, and initially inspired by a search

for a problem which was PQMAEXP-complete, which was then further refined and

generalised on by my co-authors. All authors of this work were heavily involved in

proving these results. We note that only some of the results from this work have been

included here.

Chapter 7 is joint work with Johannes Bausch. A preprint can be found here

[WB21] The idea was inspired by a conversation with Ashley Montanaro at a visit to
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the University of Cambridge. The proof idea and details were refined many times

and have equal contributions from the authors. For the purposes of brevity, some of

the main proofs have only been sketched out rather than being included in full.

Figures in chapters which are joint work with Johannes Bausch were designed

by him, and in all other chapters are my own work.



Chapter 3

Uncomputability of Phase Diagrams

3.1 Introduction

In this part of the thesis we address the problem of determining the phase diagram of

a condensed matter system in the thermodynamic limit. In particular can we find an

algorithm which will determine such a thing?

As described in chapter 2, quantum phase transitions describe a large number of

important physical phenomena. Examples include the 2D Hubbard model which is

thought to describe the behaviour of the high-temperature superconducting cuprates

but remains poorly understood [PKC15]; the structure of atomic nuclei [Elh+16];

nucleation processes in QCD [CK92]; and many more processes.

Some of these phase transitions are well understood: classic toy models of phase

transitions include the 1-dimensional transverse field Ising Model which is known to

have a transition from an unordered to ordered phase at a critical magnetic field strength

[Sac11]. On the other hand, in general numerical simulations are computationally

difficult, and may even be intractable [SMS13; SV09]. Moreover, quantum phase

diagrams can be highly complex. Experimentally and computationally one of the

best studied, the 2D electron gas—a model for free electrons in semiconductors—is

well known to have a complex phase diagram; the system undergoes a large number

of phase transitions, most notably those associated with the quantum hall effect.

Indeed, the phase diagrams of such systems are known to be incredibly rich with

some producing Hoftstadter butterfly patterns with an infinite number of phases
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[OA01].

There are a variety of methods that are heuristically used to calculate phases, or

at least predict some properties of phases, but a general algorithm for determining the

phase diagrams of a system is unknown. As outlined in section 2.3.2, renormalisation

group methods have played a key role in this study, but are often applied in an ad hoc

way. That is, given a Hamiltonian, it is not clear whether a particular RG method

should be successful. The decimation procedure which is successful for 1D classical

Ising model [Car96] does not take into account factors such as entanglement, and

hence one should not expect it to succeed for highly entangled quantum systems (and

indeed, typically it does not).

As per definition 2.1, given a Hamiltonian 𝐻 (𝜑) parametrised by 𝜑, a quantum

phase transition occurs where there is a non-analytic change in the ground state

energy in terms of 𝜑 [Sac11]. So a vanishing spectral gap is a necessary (though

not always sufficient) condition for a phase transition to occur. Cubitt, Perez-Garcia,

and Wolf [CPGW15a; CPGW15b] showed that determining whether the spectral gap

is zero or some constant is undecidable. Specifically, given a (finite) description of

a translationally invariant, nearest neighbour Hamiltonian on a 2D square lattice,

they prove that deciding whether it has a spectral gap or not is at least as hard as

solving the Halting Problem. This result was recently strengthened to the case of 1D

Hamiltonians [Bau+18b].

In both the 1D and 2D undecidability constructions mentioned above, the

Hamiltonian 𝐻 (𝜑) depends on an external parameter 𝜑. Whether the Hamiltonian

is gapped or gapless depends on the value of this parameter, with the former

corresponding to a non-critical phase and the latter to a critical phase. Hence

these results give Hamiltonians with highly complex phase diagrams [CPGW15b].

However, the Hamiltonian 𝐻 (𝜑) is not a continuous function of 𝜑. Specifically, the

Hamiltonian contains some terms which depend continuously on the value of 𝜑,

but also others which depend on the number of bits |𝜑 | in the binary expansion of

𝜑. Clearly, the latter takes integer values, and has discontinuous jumps as 𝜑 varies

smoothly.
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This limitation significantly restricts the implications one can draw from the

spectral gap undecidability results, in particular for quantum phase diagrams, which

are one of the main reasons for caring about spectral gaps in first place. For example,

the definition of a quantum phase transition is a non-analytic change in the ground

state energy, however, if a model is allowed to have non-analytic changes in the

parameters of the Hamiltonian engineering a quantum phase transition is trivial.

Take the 1D transverse Ising model, and rather than having the magnetic field as a

parameter, take the binary length of the magnetic field strength as a coefficient so

that the Hamiltonian is 𝐻 =
∑
⟨𝑖, 𝑗⟩ 𝑍(𝑖)𝑍

( 𝑗) + |𝜑 |∑𝑖 𝑋(𝑖) . It is trivial to show that the

ground state can vary non-analytically moving from one value of 𝜑 ot the next.

Furthermore, it is not “natural” for the spectral gap of a Hamiltonian to depend

on the length of 𝜑’s binary expression in the sense that no real system is likely to have

properties like this. Finally, the constructions in [CPGW15a] do not allow anything

to be said about the spectral gap if 𝜑 and |𝜑 | are decoupled: this means it is not

possible say anything about the full phase diagram of these models, except along a

disconnected collection of line-segments in the full 2D phase diagram.

It also means that the undecidability critically relies on fine-tuning the value of

one parameter in the Hamiltonian to precisely the integer value that matches |𝜑 |; for

an arbitrarily small deviation from this precise value, the proof techniques cannot

say anything about the spectral gap, let alone about the phase diagram. The fact

that this discontinuous dependence on both 𝜑 and |𝜑 | is fundamental to the proof

approach raises the possibility that undecidability and its consequences may not apply

to the continuous families of Hamiltonians traditionally considered in condensed

matter models, and may have no real consequences for understanding quantum phase

diagrams, even in principle.

The result proved in this chapter directly implies that the phase diagram of

systems such as this can be uncomputable: there provably does exist any procedure

or algorithm for determining the phase diagram of the system, even given a complete

description of the parameters of the model.
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3.2 Preliminaries
The quantum many-body systems we will consider are translationally invariant,

nearest-neighbour, 2D spin lattice models. Since we are interested in phase

transitions— which strictly speaking can only occur in the thermodynamic limit of

infinitely large lattices—we will take the thermodynamic limit by letting the lattice

size 𝐿 go as 𝐿→∞. An alternative definition to a non-analyticity in the ground

state energy is that we can recognise phase transitions by a discontinuous change of a

macroscopic observable 𝑂𝐴/𝐵, Both conditions will be satisfied by our construction.

The resulting Hamiltonian over the entire lattice is then

𝐻Λ(𝐿) B
𝐿∑︁
𝑖=1

𝐿−1∑︁
𝑗=1
ℎrow
(𝑖, 𝑗),(𝑖+1, 𝑗) +

𝐿−1∑︁
𝑖=1

𝐿∑︁
𝑗=1
ℎcol
(𝑖, 𝑗),(𝑖, 𝑗+1) . (3.1)

As in [CPGW15a], we then define a Hamiltonian to be gapped or gapless as:

Definition 3.1 (Gapped, from [CPGW15a]). We say that 𝐻Λ(𝐿) of Hamiltonians is

gapped if there is a constant 𝛾 > 0 and a system size 𝐿0 ∈ N such that for all 𝐿 > 𝐿0,

_0(𝐻Λ(𝐿)) is non-degenerate and Δ(𝐻Λ(𝐿)) ≥ 𝛾. In this case, we say that the spectral

gap is at least 𝛾.

Definition 3.2 (Gapless, from [CPGW15a]). We say that 𝐻Λ(𝐿) is gapless if there is

a constant 𝑐 > 0 such that for all 𝜖 > 0 there is an 𝐿0 ∈ N so that for all 𝐿 > 𝐿0 any

point in [_0(𝐻Λ(𝐿)),_0(𝐻Λ(𝐿)) + 𝑐] is within distance 𝜖 from spec𝐻Λ(𝐿) .

We note that not all Hamiltonians are gapped or gapless as per this definition,

but these stronger definitions will help remove any ambiguities. Throughout the

paper we will be using the notion of a continuous family of Hamiltonians, defined as:

Definition 3.3 (Continuous family of Hamiltonians). We say that a Hamiltonian

𝐻 (𝜑) =∑
𝑗 ℎ 𝑗 (𝜑) depending on a parameter 𝜑 ∈ R, made up of a sum over local terms

ℎ 𝑗 (𝜑) each acting on a local Hilbert spaceH , is continuous if each ℎ 𝑗 (𝜑) : R −→

B(H) is a continuous function. We say that a family of Hamiltonians {𝐻𝑖 (𝜑)}𝑖∈𝐼 for

some index set 𝐼 is a continuous family if each 𝐻𝑖 (𝜑) is continuous.
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3.3 Results
In this chapter we will explicitly construct a one-parameter continuous family of

Hamiltonians, such that for all values 𝜑 ∈ R of the external parameter, the system is

guaranteed to be in one of two possible phases, distinguished by an order parameter

given by the ground state expectation value of a translationally-invariant macroscopic

observable/order parameter 𝑂𝐴/𝐵. The two phases are also distinguished by the

spectral gap of the Hamiltonian 𝐻Λ. However, determining which phase the system

is in is undecidable, hence the phase diagram of the system as a function of 𝜑 is

uncomputable. More precisely, we prove the following theorem:

Theorem 3.1 (Phase Diagram Uncomputability). For any given Turing Machine TM,

we can construct explicitly a dimension 𝑑 ∈ N, 𝑑2× 𝑑2 matrices 𝑎, 𝑎′, 𝑏, 𝑐, 𝑐′ and a

𝑑 × 𝑑 matrix 𝑚 with the following properties:

(i) 𝑎, 𝑐 and 𝑚 are diagonal with entries in Z

(ii) 𝑎′ is Hermitian with entries in Z+ 1√
2
Z,

(iii) 𝑏 has integer entries.

(iv) 𝑐′ is Hermitian with entries in Z.

(v) For any real number 𝜑 ∈ R and any 0 ≤ 𝛽 ≤ 1, which can be chosen arbitrarily

small, setting

ℎcol B 𝑐+ 𝛽𝑐′ independent of 𝜑,

ℎrow(𝜑) B 𝑎 + 𝛽
(
𝑎′+ 𝑒i𝜋𝜑𝑏 + 𝑒−i𝜋𝜑𝑏†

)
,

we have ∥ℎrow(𝜑)∥ ≤ 2, ∥ℎcol(𝜑)∥ ≤ 1.

Define 𝐻Λ(𝐿) as in eq. (3.1), and let𝑂𝐴/𝐵 B 𝐿−2 ∑
𝑖∈Λ𝑚𝑖. Then, given 𝜑 ∈ [2−[,2−[ +

2−[−ℓ) with [ ∈ N, the following statements hold:

1. If TM halts on input [, then for some ℓ ≥ 1, 𝐻Λ(𝜑) is gapless in the sense of

definition 3.2, with a ground state that is critical (i.e. with algebraic decay of
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correlations), and for all eigenstates |Ψ𝐵⟩ with energy ⟨Ψ𝐵 |𝐻Λ(𝜑) |Ψ𝐵⟩ ≤ 1 it

holds that ⟨Ψ𝐵 |𝑂𝐴/𝐵 |Ψ𝐵⟩ = 0.

2. If TM is non-halting on input [ and ℓ = 1, then 𝐻Λ(𝜑) is gapped in the sense of

definition 3.1, with a unique, product ground state |Ψ𝐴⟩ with ⟨Ψ𝐴 |𝑂𝐴/𝐵 |Ψ𝐴⟩ =

1.

Undecidability of which of the two cases pertains follows immediately from

undecidability of the Halting Problem, by choosing TM to be a universal Turing

Machine. For simplicity we will refer to the phases 𝐴 and 𝐵 determined by the value

for the macroscopic observable 𝑂𝐴/𝐵 as the gapped and gapless phase respectively.

As a consequence of the new Hamiltonian construction in this paper, we also

obtain the following result:

Corollary 3.1. For all 𝜑 ∈ [0,1], 𝐻Λ(𝜑) is either in a phase with a product ground

state and a spectral gap ≥ 1, or it is in a gapless phase with algebraic decay of

correlations, where the two phases are distinguished by the expectation value of a

macroscopic observable 𝑂𝐴/𝐵. Moreover, there exists a subset 𝑆 ⊂ [0,1] with Borel

measure `(𝑆) > 0, such that even for computable 𝜑 ∈ 𝑆, determining the phase that

𝐻Λ(𝜑) is in is uncomputable.

A less precise but simple interpretation of the above corollary is:

Corollary 3.2 (informal). The phase diagram of 𝐻Λ(𝜑) as a function of its parameter

𝜑 is uncomputable.

A set of schematic phase diagrams is shown in fig. 3.1.

3.4 Proof Overview
As shown in section 2.3.1.1 it is possible to construct a quantum many-body system

whose lowest-energy eigenstate represents the evolution of any desired computation

[KSV02]. If we introduce a local term in the Hamiltonian that gives additional

energy to any state with overlap with the halting state of the computation, we can

arrange for states representing computations that halt to pick up additional energy
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Figure 3.1: A selection of sample phase diagrams of the continuous family {𝐻Λ(𝐿) (𝜑)}𝐿,𝜑
written for a series of possible universal encoded Turing machines varying from
top to bottom, plotted against 𝜑 on the 𝑥-axis (note the log scaling). Blue means
gapless (which is where the TM halts asymptotically on input 𝜑), yellow gapped
(TM runs forever). At the points 2−[ for [ ∈ N we can have a phase transition
between gapped and gapless phases, depending on the behaviour of the encoded
TM; there is a positive measure interval above these points where the phase
behaviour is consistent. The grey sections are parameter ranges which we do
not evaluate explicitly; there will be a phase transition at some point within that
region if the bounding intervals have different phases. The lighter yellow area
indicates a changing gapped instance. In our construction the gapless behaviour
is more intricately-dependent on 𝜑; but the TM can be chosen such that both
halting and non-halting phases cover an order one area of the phase diagram.

relative to states representing computations that do not halt, and open up a gap in the

spectrum. In this way, Turing’s well-known Halting Problem can be transcribed into

a property of the quantum many-body system, namely whether or not it has a spectral

gap. Thus determining whether the system has a spectral gap is at least as hard the

Halting Problem. Since the Halting Problem is known to be undecidable, determining

whether the Hamiltonian is gapped or gapless is also undecidable. Conceptually, this

is how [CPGW15b; CPGW15a; Bau+18b] proved undecidability of the spectral gap.

The starting point for our construction is also undecidability of the Halting

Problem [Tur37]: in brief, this states that determining whether a universal (classical)

Turing machine (UTM) halts or not on a given input is, in general, undecidable. In

the quantum computation setting, [CPGW15a] showed how an input can be extracted

from a phase in a quantum gate such as 𝑈 = diag(1,exp(2𝜋i𝜑)), using quantum

phase estimation (QPE, [NC10]) which outputs a binary expansion of 𝜑. The latter

can then be fed as input to a UTM. Thus this combination of QPE and UTM runs
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the universal Turing Machine on any desired input encoded in 𝜑, and the Halting

Problem for this combination is undecidable.

How do we reduce this QTM-based Halting Problem to a result about phases in a

many-body system? This is a culmination of the following techniques from previous

works. However, for each one of them, significant obstacles must be overcome to

prove uncomputability of phase diagrams.

1. The first necessary ingredient is a QTM-to-Hamiltonian mapping which allows

the construction of local, translationally-invariant couplings which result in a

1D spin chain Hamiltonian whose ground state energy is exactly zero if the

encoded QTM does halts within a certain time interval; or otherwise is positive

[GI09]. Using such an QTM-to-Hamiltonian mapping, a QTM running the

QPE + UTM computation described above is encoded into the spin chain

Hamiltonian, with 𝜑 now appearing as a parameter of the resulting Hamiltonian.

However, the energy difference between the halting and non-halting cases

decreases as the time interval increases, meaning we need further techniques

to obtain a non-zero energy difference in the thermodynamic limit.

2. A second ingredient is amplifying this penalty. In [CPGW15a] this is done

by combining the QTM-to-Hamiltonian mapping with an aperiodic tiling

Hamiltonian, thereby ensuring that, for each length of computation, a fixed

density of such circuit-to-Hamiltonian instances are distributed across the spin

lattice. In this way, the ground state energy density is zero iff the QTM-to-

Hamiltonian mapping always has zero energy, and thus depends on whether

the QPE+UTM computation ever halts.

3. In [Bau+18b] point 2 is replaced by a so-called Marker Hamiltonian. This in

combination with a circuit-to-Hamiltonian construction results in a ground

state which partitions the spin chain into segments just large enough for the

UTM to halt, if it halts. Here the segments do not have a fixed length, but

instead self-adjust to find their own length. In contrast to [CPGW15a], this has

the effect that either all encoded instances of computations halt, or none do.
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4. The final step is the addition of an Ising-type coupling as in [CPGW15a;

Bau+18a], which breaks the local Hilbert space up into subspacesH𝐴⊕H𝐵, and

which ensures that the low-energy spectrum is contained either entirely in the 𝐴

or 𝐵 subspace, depending on the ground state energy density just constructed.

Since determining the ground state energy density is uncomputable, it is also

uncomputable to determine whether the system is in phase 𝐴 or 𝐵 with respect

to the Hamiltonian parameter 𝜑.

As mentioned, we require significant alterations to this collection of ingredients.

Concretely, the issue is that if we encode an input 𝜑 to be extracted using error-free

QPE then we require the circuit gates to depend explicitly on the binary length of 𝜑,

denoted |𝜑 |. Consequently the resulting matrix elements of the Hamiltonian will also

explicitly depend on |𝜑 |—a discontinuous function of 𝜑. To remove this dependence

we instead perform the QPE procedure approximately, by using a universal gate set

that approximates all the gates depending on |𝜑 | [DN05a]. However, [CPGW15a;

Bau+18b]’s construction crucially relies on the QPE expansion of 𝜑 to be performed

exactly; any errors destroy the construction.

To overcome this obstacle, we first encode this approximate QPE plus the

evolution of a UTM in a QTM-to-Hamiltonian mapping, which has positive energy iff

the QPE + UTM computation does not halt. We label the resulting Hamiltonian𝐻comp.

This is outlined in sections 3.4.1, 3.4.2 and 3.4.3 where the QTM-to-Hamiltonian

mapping and the computation it encodes are explained, respectively. A significant

novel technical contribution of this work is then a proof that the Marker Hamiltonian

used in [Bau+18b] does, in fact, allow for some leeway in the precision to which

QPE is performed and can be used to provide a correction for the energy penalty

picked up as a result of any errors in the QPE.

To generate the required energy correction, we consider a 2D spin lattice and

construct an underlying classical Hamiltonian, which we denote 𝐻cb, that partitions

the lattice into a uniform grid of squares. We note that the method from [CPGW15a]

would be inappropriate for this construction as it would lead to an accumulation

of energies we cannot correct for without matrix elements depending explicitly on
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|𝜑 |. Within each square, the ground state encodes the evolution of a classical Turing

machine (encoded as a tiling problem akin to the ones used in [Ber66; Rob71])

which will calculate the energy correction necessary to offset the error introduced by

approximately performing QPE. The classical Hamiltonian is then coupled to the

Marker Hamiltonian. We denote this combination 𝐻 (⊞) .

Section 3.4.5 describes the ground state of the resulting Hamiltonian 𝐻 (⊞)

such that the halting or non-halting behaviour together with the Marker Hamiltonian

determines whether the energy density of the constructed Hamiltonian is non-negative

(in the non-halting case), or negative (in the halting case). Crucially, it is now robust

with respect to the errors present in the expansion of 𝜑 from the approximate QPE

procedure. Finally, in section 3.4.6 we show how 𝐻comp, 𝐻cb, 𝐻
(⊞) are combined

mathematically to lift this undecidability of the ground state energy density, to

uncomputablity of the phase diagram, using now-standard techniques [CPGW15a;

Bau+18a; Bau+18b]. For a mathematically rigorous derivation we refer the reader to

the later sections from section 3.5 up to and including section 3.9.

3.4.1 Encoding Computation in Hamiltonians

As explain in section 2.3.1.1, it is possible to encode the evolution of a computation

the ground state of a Hamiltonian. The ground state energy of the Hamiltonian can be

made dependent on aspects of the computation by adding a projector that penalises

certain computational states, and the resulting energy is known to high precision

[BC18a; Wat19].

3.4.2 The Encoded Computation

As in [CPGW15a; Bau+18b], the computation we wish to encode via such a QTM-to-

Hamiltonian mapping will be a pair of QTMs running in succession: the first will run

quantum phase estimation on a quantum gate𝑈𝜑 which outputs a number in binary,

and the second will be a UTM which takes the output of the QPE as input. The

gate𝑈𝜑 is encoded in the transition unitary𝑈 describing the QTM, which is in turn

encoded in the matrix elements of the Hamiltonian. The energy of the Hamiltonian

encoding the computation will then be made dependent on whether the computation
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halts or not, allowing us to relate its ground state energy to the halting property.

Phase Estimation. Given a unitary matrix𝑈𝜑 =
( 1 0

0 𝑒i𝜋𝜑
)
, the quantum phase estima-

tion (QPE) algorithm takes as input the eigenvector corresponding to the eigenvalue

𝑒i𝜋𝜑, and outputs an estimate of 𝜑 in binary. If the number of qubits on which the

phase estimation is performed is smaller than the number of bits required to express

𝜑 in full, the algorithm is only approximate [NC10]. Furthermore, if a finite gate set

is used, some of the required unitary gates in the algorithm must be approximated

rather than performed exactly [DN05a]. Hence from phase estimation we get an

output state consisting of a superposition over binary strings:

|𝜒(𝜑)⟩ =
∑︁

𝑥∈{0,1}𝑛
𝛽𝑥 |𝑥⟩ , (3.2)

where the amplitudes 𝛽𝑥 are concentrated around those values for which 𝑥 ≈ 𝜑 and

rapidly drop off away from 𝜑. Details are in section 3.5.

Universal QTM. We then feed the output |𝜒(𝜑)⟩ of this phase estimation into

the input of a universal Turing Machine, as in [CPGW15a], which then runs a

computation which may or may not halt. By the well-known undecidability of the

Halting Problem [Tur37], determining whether the QTM halts for a given string is

undecidable.

3.4.3 From QTM to Hamiltonian
Using the QTM-to-Hamiltonian mapping described in section 3.4.1, the computation

outlined above is mapped to a one-dimensional, translationally-invariant, nearest-

neighbour Hamiltonian 𝐻comp(𝜑) [GI09], with a penalty for the non-halting case. It

can be shown that the ground state energy of 𝐻comp(𝜑) scales as

_min(𝐻comp(𝜑)) ∼ 𝜖 (𝐿)/poly𝐿, (3.3)

where

𝜖 (𝐿) =
∑︁
𝑥∈𝑆(𝐿)

|𝛽𝑥 |2. (3.4)



72 Chapter 3. Uncomputability of Phase Diagrams

The 𝛽𝑥 are the QPE coefficients in eq. (3.2), and 𝑆(𝐿) is the set of inputs for which

the universal TM does not halt within time 𝑇 (𝐿).

Since the 𝛽𝑥 are concentrated around the binary expansion of 𝜑, if the latter

encodes a halting instance there will be a length 𝐿0 for which 𝜖 (𝐿) ≈ 0 for all 𝐿 > 𝐿0;

otherwise 𝜖 (𝐿) ≈ 1 for all 𝐿. This immediately yields a Hamiltonian for which the

ground state energy is halting-dependent (and hence uncomputable). We refer the

reader to section 3.5 for details.

3.4.4 Tiling and Classical Computation

In eq. (3.3) we see that the difference between the Hamiltonian’s ground state energy

in the case where 𝜖 (𝐿) from eq. (3.4) is approximately 1 or 0 decreases with the

system size 𝐿. Thus the energy gap between the two cases goes to zero irrespective

of whether 𝜑 encodes a halting or non-halting instance. To amplify this gap so that

there is a finite energy gap in the thermodynamic limit (as per points 2 and 3), we will

combine the Feynman-Kitaev Hamiltonian with a classical Hamiltonian based on a

Wang tiling that partitions the space suitably to ensure a fixed density of computation

instances is spawned across the lattice. The result we achieve with this is an energy

gap opening up as 𝐿 grows between the cases where 𝜖 takes different values.

It is well known that there exist Wang tile sets that encode the evolution of

a classical TM [Ber66; Rob71] within a square grid: TM tape configurations are

represented by rows, such that adjacent rows represent successive time steps of the

TM (fig. 3.2).

We combine both Wang tiles and the Turing Machine tiling ideas by constructing

a tile set whose valid tilings have the following properties:

1. A tiling pattern that creates a square grid across the lattice Λ (much like a

checkerboard). The side length of the grid squares can be varied (provided all

grid squares are the same size) and still correspond to a valid tiling (depicted

in fig. 3.3).

2. Within each square of the grid we use the tiles to encode a TM which first

counts the size of the square it is contained in, and then outputs a marker • on
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Figure 3.2: The evolution of a classical TM can be represented by Wang tiles, where colours
of adjacent tiles have to match, and arrow heads have to meet arrow tails of the
appropriate kind. Here the evolution runs from the bottom of the square to the
top, where it places a marker • on the boundary as explained in section 3.4.5.
In this image, the TM’s evolution is contained in an individual square in the
checkerboard grid shown in the figure below.

the top border of the square, where the placement of this marker is a function

of the size of the square (depicted in in fig. 3.2).

Having developed this tiling, we map it to a corresponding tiling Hamiltonian

using the mapping described in section 3.7.1, which we denote 𝐻cb, such that its

ground states retain the properties of the valid tilings listed above. The reader is

referred to section 3.7 for details.

3.4.5 Classical Tiling with Quantum Overlay

We now want to combine the classical Hamiltonian encoding the Wang tiles, and

the quantum Hamiltonian encoding the Halting Problem computation, to create an

overall Hamiltonian which has a large ground state energy difference between the

halting and non-halting cases, without the ∼ 1/poly(𝐿) decay in eq. (3.3). To do so,

we split the local Hilbert space of each lattice spin into a classical part Hc and a

quantum partHe ⊕Hq givingH =Hc ⊗ (He ⊕Hq), whereHe = {|𝑒⟩} just contains

a filler state |𝑒⟩e. The ground state can then be designed to be a product state of the

form |𝐶⟩c ⊗ |𝜓0⟩eq, where |𝐶⟩c is a valid classical tiling configuration—as described

in section 3.4.4—and |𝜓0⟩eq is a quantum state with the following properties:

1. We use the 1D Marker Hamiltonian from [Bau+18b], and couple its negative
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Figure 3.3: Section of the checkerboard tiling Hamiltonian’s ground state. The white squares
form borders, and in the interior we place tiles simulating the evolution of a
classical Turing Machine.

energy contribution to the size of each grid square in the classical tiling and

the placement of the • marker. The negative energy each square contributes is

a determined by where the • marker is placed, and thus by the action of the

classical TM. We denote this combined Hamiltonian 𝐻 (⊞) .

2. We effectively place the ground state of a Hamiltonian 𝐻comp encoding the

quantum phase estimation plus universal Turing machine along the top edge of

the square, by adding additional penalty terms to the Hamiltonian that penalize

the classical and quantum layers to occur in this configuration elsewhere.

3. Everywhere not along the horizontal edge of a grid square in Hc is in the

zero-energy |𝑒⟩e filler state inHe ⊕Hq.

As mentioned, the patterns in the degenerate ground space of 𝐻cb are checkerboard

grids of squares with periodicity 𝑤×𝑤, where the integer square size 𝑤 is not fixed.

By choosing the classical TM encoded in the tiling to place a • marker at an

appropriate point, we are able to tune the ground state energy of 𝐻 (⊞) such that the

total energy of a single 𝑤×𝑤 square 𝐴 in the checkerboard pattern is:
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_min(𝑤) := _min

(
𝐻 (⊞) |𝐴 +𝐻comp |𝐴

) 
≥ 0 if 𝜖 (𝑤) ≥ 𝜖0(𝑤) ∀𝑤.

< 0 if 𝜖 (𝑤) < 𝜖0(𝑤) ∀𝑤 ≥ 𝑤0

(3.5)

where 𝜖0(𝑤) is some cut-off point, 𝑤0 is the halting length (recall from the previous

section that the runtime of the computation encoded in the ground state depends on

the size of the available tape, i.e. the size of the checkerboard square edge that the

TM runs on), and where _min(𝑤0) = −𝛿(𝑤0) < 0 for the halting length 𝑤0 is a small

negative constant.

The Marker Hamiltonian’s energy bonus thus compensates for the QPE approxi-

mation errors by lowering the energy by just enough such that a halting instance has

negative energy. On the other hand, the energy of the non-halting instance remains

large enough that the energy of a single square remains positive [Bau+18b; Wat19].

Thus, provided 𝜖 (𝑤) is sufficiently small, the ground state of 𝐻cb +𝐻comp +

𝐻 (⊞)(+coupling terms) is a checkerboard grid of squares with a constant but negative

energy density. Otherwise the ground state energy density of the lattice is lower-

bounded by zero. Which of the two cases holds depends on determining whether

𝜖 (𝑤) ≥ 𝜖0(𝑤) or < 𝜖0(𝑤), which is undecidable; undecidablity of the ground state

energy density follows. The reader is referred to section 3.8 for more details.

We define the Hamiltonian formed by 𝐻cb, 𝐻comp, 𝐻
(⊞) and the coupling terms

as 𝐻𝑢 (𝜑). Assume 𝜑 encodes a halting instance and set 𝑤 = argmin𝑠{_min(𝑠) < 0},

and 𝐴 is a single square of size 𝑤×𝑤. Then the ground state energy 𝐻𝑢 (𝜑) on a grid

Λ of size 𝐿×𝐻 is given by

_min(𝐻𝑢 (𝜑)) =
⌊
𝐿

𝑤

⌋ ⌊
𝐻

𝑤

⌋
_min(𝐻𝑢 (𝜑) |𝐴). (3.6)

3.4.6 Uncomputability of the Phase Diagram

To go from undecidability of the ground state energy density, demonstrated at the

end of section 3.4.5, to undecidability of the phase (and spectral gap) we follow the

approach of [CPGW15a; CPGW15b] by combining 𝐻𝑢 (𝜑) with a trivial state |0⟩
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such that |0⟩⊗Λ has zero energy, and the spectrum of 𝐻𝑢 (𝜑) is shifted up by +1 (see

lemma 3.20). From this shift and eq. (3.6) it can be shown:

_min(𝐻𝑢 (𝜑))


≥ 1 in the non-halting case, and

−→ −∞ otherwise.
(3.7)

Let ℎ𝑢 (𝜑) denote the local terms of 𝐻𝑢 (𝜑), let ℎ𝑑 be the local terms of the critical

XY-model, and let |0⟩ be a zero energy state, such that the total Hilbert space is

(H1⊗H2) ⊕ {|0⟩}. Then the local terms of the total Hamiltonian 𝐻Λ(𝜑) are defined

as

ℎ𝑖,𝑖+1(𝜑) B |0⟩⟨0| (𝑖) ⊗(1− |0⟩⟨0|) (𝑖+1) + (1− |0⟩⟨0|) (𝑖)⊗ |0⟩⟨0| (𝑖+1) (3.8)

+ ℎ𝑖,𝑖+1𝑢 (𝜑)⊗1(𝑖)2 ⊗1
(𝑖+1)
2 +1(𝑖)1 ⊗1

(𝑖+1)
1 ⊗ℎ𝑖,𝑖+1

𝑑
. (3.9)

The result is the following: the overall spectrum of the Hamiltonian is

spec(𝐻Λ(𝜑)) = {0} ∪ (spec(𝐻𝑢 (𝜑)) + spec(𝐻𝑑)) ∪𝐺,

where 𝐺 ⊂ [1,∞). To understand this, we consider the two cases. If a non-halting

instance is encoded _min ≥ 0 in eq. (3.5), then 𝐻𝑢 (𝜑)—from eq. (3.7)—has ground

state energy lower-bounded by 1; the ground state of the overall Hamiltonian is the

trivial zero energy classical product state |0⟩⊗Λ, and 𝐻Λ has a constant spectral gap.

If _min < −|𝛿 |, then 𝐻𝑢 (𝜑) has a ground state with energy diverging to −∞. We

further note that the critical XY-model has a dense spectrum with zero ground state

energy, hence from the 𝐻𝑑 term we obtain a dense spectrum above the ground state

[LSM61]. As a result the Hamiltonian becomes gapless and has a highly entangled

ground state with algebraically decaying correlations.

Since existence of a halting length 𝑤0 in eq. (3.5) is undecidable, discriminating

between _min ≥ 0 or < −|𝛿 | is also undecidable. This implies determining whether
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the Hamiltonian is in the critical, quantum-correlated phase or the trivial product

state gapped phase is undecidable as well.

As 𝐻Λ(𝜑) is a continuous function of 𝜑, there exist finite measure regions for

which all values of 𝜑 have the same ground state and for which there is no closing

of the spectral gap, which delineates the two phases. Setting Π𝑖 B |0⟩⟨0| (𝑖) , the

observable 𝑂𝐴/𝐵 = 𝐿
−2 ∑

𝑖∈ΛΠ𝑖 has expectation value 1 when in the state |0⟩⊗Λ(𝐿) ,

and 0 in the other case. This is true even if the observable is restricted to a finite

geometrically local subset of the lattice.

We direct the reader to section 3.9 for details.

3.5 Modified Quantum Phase Estimation
We start by rigorously proving the results about quantum phase estimation (QPE)

described in the proof overview.

3.5.1 The State of the Art

In [CPGW15a], the QPE on a unitary𝑈𝜑 with eigenvalue 𝑒i𝜋𝜑 can output 𝜑 exactly:

this is due to the fact that, in their construction, the QTM has access to a perfect

gate set that is sufficient to expand precisely |𝜑 | digits—in particular, the standard

QPE algorithm requires performing small controlled rotation gates 𝑅𝑛 with angles

2i𝜋2−𝑛 for 𝑛 = 1, . . . , |𝜑|, and since |𝜑 | is explicitly encoded in the local terms of the

Hamiltonian, this circuit can be performed.

Furthermore, in [Bau+18b], one can detect when the binary expansion of 𝜑

is too long for the tape available to the QTM and penalize said segment lengths

accordingly—the Marker Hamiltonian then has as a ground state a partition of the

spin chain into segments of length just long enough to perform QPE on 𝜑 and for the

dovetailed TM to halt—if it halts.

In our new construction the situation is fundamentally different. Since the

local terms of our Hamiltonian 𝐻Λ(𝜑) do not explicitly depend on |𝜑 | any more, we

cannot provide the QPE with a set of rotation gates sufficient to perform an exact

quantum Fourier transform. This means that we cannot guarantee the parameter we

are estimating is short enough to be written on the tape available.
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We therefore have to change the construction in two key ways. First, our

encoding of 𝜑 will be in unary instead of binary. Since this is a undecidability result

we are not constrained by poly-time reductions—or indeed any finite computational

resources; any runtime overhead is acceptable. Secondly, we will perform some

gates in the QPE only approximately. The gate approximation uses standard gate

synthesis algorithms from Solovay-Kitaev [DN05a], where we gear the precision of

the algorithm such that it suffices to obtain a large enough certainty on the first 𝑗

digits of 𝜑, given our tape has said length. The error resulting from truncating 𝜑 to 𝑗

digit is more involved, as QPE yields a superposition of states close in value to 𝜑,

which can for example mean that it rounds an expansion like 0.00001111 to 0.00010.

We will circumvent this issue by choosing an encoding which lets us easily discover

and penalize a too-short expansion, similar to the one in [Bau+18b].

3.5.2 Notation for QPE

Throughout we will denote the binary expansion of a number 𝑥 as 𝑥, and the first 𝑗

digits of such an expansion as 𝑥··· 𝑗 . A question mark ? will denote a digit that can

either be a 0 or a 1. The 𝑗 th digit of 𝑥 will then be 𝑥 𝑗 . For a given number 𝑥, we

define clz𝑥 to be the count of leading zeros until the first 1 within 𝑥—where we set

clz0 =∞. Similarly, we define the string pfx𝑥 to be the prefix of the string 𝑥 such

that pfx𝑥 = 0×clz𝑥1, i.e. 𝑥 = (pfx𝑥)?? . . ..

Within this section, we will further denote by𝑈𝜑 a local unitary operator with

eigenvalue 𝑒i𝜋𝜑, and will refer to 𝜑 as the phase to be extracted.

Finally, letM be a universal reversible classical TM that takes its input in unary,

i.e. as a string 00 . . .0100 . . .; everything past the first leading one will be ignored;

we liftM to a quantum TM by standard procedures [BV97].

In the following analysis we first start with an encoding scheme and analyse how

the approximate QPE behaves on it; we finally show that each encoded parameter

𝜑 admits a small 𝜖-ball around it where the system behaves in an identical fashion,

making the behaviour of gapped vs. gapless robust and showing that our family of

Hamiltonians is undecidable on a non-zero-measure set over the entire parameter

range 𝜑 ∈ [0,1]. We do not make a claim of knowing how the construction behaves
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for any choice of parameter. That is, given a particular value of 𝜑, even if the halting

behaviour ofM on input clz𝜑 were known, this would not always be sufficient to

determine the behaviour of the Hamiltonian at this point.

3.5.3 Exact QPE with Truncated Expansion

We deal with the expansion error of our phase estimation first. As already mentioned,

we need to choose an encoding that lets us detect and penalize expansion failure.

Definition 3.4 (Unary Encoding). Let [ ∈ N be the input we wish to encode. Then

𝜑 = 𝜑([) := 0.000 · · ·0︸   ︷︷   ︸
[−1 digits

100 · · · ≡ 2−[ .

As mentioned, it is unclear a priori how much overlap the post-QPE state has

with binary strings that encode the same number in unary (i.e. the string with the same

number of leading 0 digits). The benefit of using the above encoding is that phase

estimation tends to round numbers that are too short to be expanded in full. Since

we are encoding small numbers (assuming a little Endian bit order), this rounding

will produce a large overlap with the all-zero state
��0̄〉. If we then penalise this

outcome—e.g. by defining the dovetailed TM to move right forever on a zero input,

which means it does not halt—we can ensure that the tape length will be extended

until the input can be read in full, at which point there is no further expansion error

to deal with.

As a first step we analyse the approximate quantum phase estimation procedure

and compare the associated error with the perfect case, meaning that for now we give

the QTM access to the same operations as in [CPGW15a] and [Bau+18b], which

includes access to the unitary 𝑈𝜑 and rotation gates 𝑅𝑛 = 2i𝜋2−[ , which suffice to

perform phase estimation exactly. We then do the QPE algorithm identically to that

laid out in [CPGW15a]; as this is the standard QPE algorithm from [NC10], we

phrase the following lemma in a generic way.

Lemma 3.1. Let 𝜑([) ∈ R be a unary encoding of [ ∈ N as per definition 3.4. On 𝑡

qubits of precision, QPE is performed on the unitary𝑈𝜑 encoding 𝜑([) defined in
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definition 3.4; denote the QPE output by |𝜒⟩. Then either:

1. 𝑡 ≥ |𝜑 |, and |𝜒⟩ = |�̄�⟩,

2. 𝑡 < |𝜑 |, and

|𝜒⟩ =
∑︁

𝑥∈{0,1}𝑡
𝛽𝑥 |𝑥⟩ with |𝛽0 | ≥

1
2
.

Proof. The first case is clear—we have a perfect gate set and sufficient tape, hence

QPE is performed exactly. For the second case where 𝑡 < |𝜑 | the 𝛽𝑥 are given in

[NC10, eq. 5.25],

𝛽𝑥 =
1
2𝑡

1− exp
(
2𝜋i(2𝑡𝜑− (𝑏 + 𝑥))

)
1− exp(2𝜋i(𝜑− (𝑏 + 𝑥)/2𝑡)) , (3.10)

where 𝑏 is the best 𝑡 bit approximation to 𝜑 less than 𝜙, i.e. 0 ≤ 𝜑−2−𝑡𝑏 ≤ 2−𝑡 . By

definition 3.4 we have 𝑏 ≡ 0, and therefore here

𝛽𝑥 =
1
2𝑡

1− exp
(
2𝜋i(2𝑡−𝑎 − 𝑥)

)
1− exp(2𝜋i(2−𝑎 − 𝑥/2𝑡))

and thus

𝛽0 =
1
2𝑡

1− exp
(
2𝜋i2𝑡−𝑎

)
1− exp(2𝜋i2−𝑎) =

1
2𝑡

sin
(
𝜋2𝑡−𝑎

)
sin(𝜋2−𝑎) .

The claim then follows from 𝑥/2 ≤ sin(𝑥) ≤ 𝑥 for 𝑥 ∈ [0, 𝜋/2). □

Corollary 3.3. Take some [ ∈ N and 𝜑([) as defined in definition 3.4. Running the

same quantum phase estimation QTM as in [CPGW15a] to precision 𝑚 bits yields

an output state |𝜒⟩ given in lemma 3.1, such that either

1. 𝑚 ≥ [ and |𝜒⟩ = |�̄�([)⟩, or

2. 𝑚 < [ and | ⟨𝜒 |0⟩ | ≥ 1/2.

What if 𝜑([) is not exactly given by the encoding in definition 3.4? It is clear

that |𝜒⟩ is still a superposition of bit strings |𝑥⟩, weighted by 𝛽𝑥 as in eq. (3.10). But

our encoding allows us to derive a variant for corollary 3.3 that applies to an interval

around the correctly-encoded inputs. Here we prove that we still have a large overlap

with the all zero if the phase 𝜑 is not expanded fully.
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Corollary 3.4. Let [ ∈ N, and 𝜑([) as in definition 3.4. Take a perturbed phase

𝜑′ ∈ [𝜑([), 𝜑([) +2−[−ℓ) for some ℓ ∈ N, ℓ ≥ 1. Running the same quantum phase

estimation QTM as in [CPGW15a] to precision 𝑚 bits yields an output state |𝜒⟩

given in lemma 3.1, such that either

1. 𝑚 ≥ [ and | ⟨𝜒 |�̄�([)⟩ | ≥ 1−2−ℓ, or

2. 𝑚 < [, and | ⟨𝜒 |0⟩ | ≥ 1/4.

Proof. We start with the first case. Take 𝛽𝑥 from eq. (3.10). Assume for now that

𝑚 = [; for increasing 𝑚 the overlap with �̄�([) can only increase. It is clear that the

best 𝑚 bit approximation to 𝜑′ less than 𝜑′ is given by 𝑏 = 2𝑚 �̄�([) (as the first [

digits of both are identical, and �̄�′
[+1 = 0 by assumption). Then

𝛽0 =
1

2𝑚
1− exp(2𝜋i(2𝑚𝜑′− 𝑏))
1− exp(2𝜋i(𝜑′− 𝑏/2𝑚)) =

1
2𝑚

sin(𝜋2𝑚𝜖)
sin(𝜋𝜖) ≥ 1−2−ℓ,

where 𝜖 = 𝜑′ − 𝑏/2𝑚, and the last inequality follows from sin(𝑥)/𝑥 ≥ 1− 𝑥 for

𝑥 ∈ [0,1].

The second claim follows analogously: here again 𝑏 = 0, and at most 2𝑚𝜑′ ∈

[0,3/4); the final bound is obtained by applying 𝑥/4 ≤ sin(𝑥) ≤ 𝑥 for 𝑥 ∈ [0,3𝜋/4),

via
1

2𝑚
sin(𝜋2𝑚𝜑′)

sin(𝜋𝜑′) ≥
1
4
. □

3.5.4 Solovay-Kitaev Modification to Phase Estimation
The second step in our QPE analysis is to approximate the small rotation gates that

were previously allowed in corollary 3.3. We construct a QTM which only uses a

standard gate set and𝑈𝜑 for some 𝜑 = 𝜑([) = 2−[, to run Quantum Phase Estimation

(QPE) on𝑈𝜑 and output a state which is very close in fidelity to the expansion of 𝜑

if done without error (i.e. if all gates were exact).

First note that all steps of the QPE procedure as described in [CPGW15a] can

be done exactly up to applying the phase gradient and locating the least significant

bit—i.e. up until Section 3.6. However, after this, controlled rotation gates of the

form 𝑅𝑛 = 2i𝜋2−𝑛 , for 1 ≤ 𝑛 ≤ |�̄� | = [, need to be applied to perform the inverse
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QFT. In [CPGW15a], this was done by further giving the QTM access to the gate

2i𝜋2−[ . To circumvent this necessity, we approximate small rotation gates using the

Solovay-Kitaev algorithm.

3.5.4.1 Solovay-Kitaev QTM

First we introduce the standard statement for the existence of a TM which outputs

a high precision approximation to the gate 𝑅𝑛 = 2i𝜋2−[ using the Solovay-Kitaev

algorithm.

Lemma 3.2 (SK Machine [DN05b]). There exists a classical TM which, given an

integer 𝑘 and maximum error 𝜖 , outputs an approximation �̃�𝑘 to the gate 𝑅𝑘 ∈ SU(2)

such that ∥ �̃�𝑘 − 𝑅𝑘 ∥ < 𝜖 . The TM runs in time and space O(log𝑐1 (1/𝜖)) for some

3.97 < 𝑐1 < 4.

Part way through the quantum phase estimation procedure, we need to apply

the inverse QFT. However, we do not have access to gates of the form 2i𝜋2−[ , and

our entire QTM will be limited to space 𝐿. As a result, whenever the procedure

requires a 2i𝜋2−[ -gate or a power of such a gate, we run the Solovay-Kitaev algorithm

to generate an approximation. As there is O([2) many gates to be approximated

overall, the procedure will have to be repeated this many times.

However, since we are performing the QPE on a finite length tape, we only have

𝐿 qubits onto which we can write out the output of the Solovay-Kitaev algorithm;

this limits the precision we can achieve using this technique.

Inverting the space bound in lemma 3.2 with respect to the error 𝜖 , the best

approximation obtainable is thus

�̃�𝑘 −𝑅𝑘 ≤ 𝑒−O(𝐿1/𝑐1 ) ≤ 2−𝑐2𝐿
1/𝑐1
, (3.11)

where we wrote the constant in the exponent as 𝑐2. Both Solovay-Kitaev constants 𝑐1

and 𝑐2 can be written down explicitly.
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3.5.4.2 Approximation Error for Output State
The gates used in the inverse QFT in the previous section were only performed up to

a finite precision and hence there will be an error associated with the output state

relative to the case with perfect gates. We will see that the output is then a state that

is exponentially close to what would be expected in the case with perfect gates.

Let �̃�𝑛 be the approximation to the rotation gate 𝑅𝑛 = 2𝜋i2−[ such that ∥ �̃�𝑛 −

𝑅𝑛∥ < 𝜖 , where 𝜖 = 2−𝑐2𝐿
1/𝑐1 is given by the Solovay-Kitaev theorem, eq. (3.11)

and lemma 3.2.

Lemma 3.3. Let 𝑈QPE be the unitary describing the implementation of QPE by

a QTM on 𝑚 qubits with each gate performed exactly. Let �̃�QPE be the unitary

describing the same QPE algorithm on 𝑚 qubits, but where Solovay-Kitaev is used

to approximate the rotation gates 𝑅𝑛 to precision 𝜖; all other gates are implemented

exactly. Then the total error of the approximate QPE is

�̃�QPE−𝑈QPE
 < 𝑚2

2
𝜖 =

𝑚2

2
2−𝑐2𝐿

1/𝑐1
. (3.12)

Proof. The first part of the phase estimation procedure—the phase gradient operations

𝑈PG—can be done exactly in both the approximate and exact cases. If QPE is

performed to 𝑚 qudits, we see that there are 𝑚2/2 applications of 𝑅𝑛 gates during

the inverse QFT procedure. As �̃�QPE = �̃�
†
QFT𝑈PG, the claim follows from applying

the triangle inequality 𝑚2/2 times. □

3.5.5 Total Quantum Phase Estimation Error
We have seen previously that there will be errors from both the fact that the parameter

𝜑 may have a binary expansion longer than the tape length available, and from the

Solovay-Kitaev (S-K) algorithm we use to approximate and apply the rotation gates.

Here we combine the two errors and upper bound the total deviation introduced. We

continue using 𝑚 to denote the number of binary digits that 𝜑 is expanded to, and 𝐿

is the full tape length.

We emphasize that the two are not necessarily identical, as we can always cordon

off a section of the tape to restrict the QPE to only work to within a more limited
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precision—i.e. we can execute the QPE TM on a subsegment of size 𝑚 ≤ 𝐿 as in

corollary 3.3, and approximate the latter with Solovay-Kitaev that itself can make

use of the full tape space available, i.e. 𝐿. For now we treat 𝐿 and 𝑚 as independent

quantities, regardless of how they are implemented, and we will choose their specific

relation in due course.

Lemma 3.4. Let [ ∈ N and 𝜑([) ∈ R as in definition 3.4, and take �̃�QPE as the

Solovay-Kitaev QPE unitary with output | �̃�⟩. Then either

1. 𝑚 ≥ [ and | ⟨�̃� |�̄�([)⟩ | ≥ 1− 𝛿(𝐿,𝑚), or

2. 𝑚 < [ and | ⟨�̃� |0⟩ | ≥ 1/2− 𝛿(𝐿,𝑚).

Here

𝛿(𝐿,𝑚) < 𝑚
2

2
2−𝑐2𝐿

1/𝑐1
.

Proof. Immediate from lemma 3.3, eq. (3.11), and corollary 3.3. □

As before, we add an approximate variant for the case where 𝜑′ ≠ 𝜑([).

Lemma 3.5. Let [ ∈ N, and 𝜑([) as in definition 3.4. Take a perturbed phase

𝜑′ ∈ [𝜑([), 𝜑([) + 2−[−ℓ) for ℓ ∈ N, ℓ ≥ 1, and consider the same setup as in

lemma 3.4. Then either

1. 𝑚 ≥ [ and | ⟨�̃� |�̄�([)⟩ | ≥ 1−2−ℓ − 𝛿(𝐿,𝑚), or

2. 𝑚 < [, and | ⟨�̃� |0⟩ | ≥ 1/4− 𝛿(𝐿,𝑚).

Proof. Analogously to lemma 3.4, but using corollary 3.4. □

The bound in terms of 𝛿(𝐿,𝑚) is only useful for large 𝐿, in which case it is easy

to see that since 𝑚 ≤ 𝐿, 𝛿→ 0 for 𝐿→ 0. Since we need 𝛿 to be small in due course,

we capture a more precise bound in the following remark.

Remark 3.1. For any 𝛿0 > 0 there exists an 𝐿0 = 𝐿0(𝑐1, 𝑐2, 𝛿0) such that 𝛿(𝐿,𝑚) < 𝛿0

for all 𝐿 ≥ 𝐿0, where 𝛿(𝐿,𝑚) is defined in lemma 3.4, and 𝑐1, 𝑐2 are the Solovay-

Kitaev constants from eq. (3.11).
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𝑅− 𝜋
3

𝑅− 𝜋
3

𝑅 2𝜋
3

ancillas
all 0?

QPE universal
TMM

halted?

instance [

|0⟩anc

an
ci

lla
s

|out⟩anc

Figure 3.4: QPE and universal TM circuit. The construction uses one flag ancilla |0⟩anc to
verify that as many ancillas as necessary for the successive computation are
correctly-initialized ancillas (e.g. |0⟩), and if not rotating the single guaranteed
|0⟩anc flag by 𝜋/3. On some ancillas, the problem instance 𝑙 is written out.
Another rotation by 𝜋/3 is applied depending on whether the dovetailed universal
TMM halts on [ or not within the number of steps allowed by the clock driving
its execution, which in turn is limited by the tape length.

3.6 QPE and Universal QTM Hamiltonian
In this section we examine how to encode the quantum Turing machine performing

quantum phase estimation described in section 3.5 into a Hamiltonian on a spin chain

of length 𝐿, such that the ground state energy of the Hamiltonian is non-negative if

and only if a dovetailed universal Turing machineM halts on input 𝜑([) and within

tape length 𝐿. We further prove that this ground state energy remains non-negative

(or negative, respectively) if instead of 𝜑([) we are given a slightly perturbed phase

𝜑′ ∈ [𝜑([), 𝜑([) +2−[−ℓ), given ℓ ≥ 1 is large enough.

To this end, we first amend the computation slightly. In [CPGW15a], the authors

used Gottesman and Irani’s history state construction for a Turing machine with

an initially empty tape. To ensure a correctly initialised tape, the authors use an

initialization sweep; essentially a single sweep over the entire tape with a special

head symbol, under which one can penalize a tape in the wrong state.

Instead of using an initialization sweep, we make do with a single ancilla

(denoted with subscript “anc” in the following) which is initialized to |0⟩anc, and

verify on a circuit level that all the other ancillas are correctly initialized. In order

to achieve this, we first execute a single 𝑅2𝜋/3 rotation on |0⟩anc to initialize it to a

𝑅2𝜋/3 |0⟩anc-rotated state. Next, we execute a controlled 𝑅−𝜋/3 rotation in the opposite

direction on |𝜙⟩anc, where the controls are on all the ancillas we wish to ensure are in

the right state. If and only if all of the controlling ancillas are in state |1⟩—which we
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can check e.g. with a multi-anticontrolled operation—will we perform a rotation by

𝑅−𝜋/3. After the controlled rotation, we apply 𝑋 flips to all the ancillas we wish to

initialize to |0⟩.

This ancilla will carry another role: in case the dovetailed universal TMM

from section 3.5 halts, we transition to a finalisation routine that performs another

𝑅−𝜋/3 rotation on it. The net effect of this circuit is that, after the entire computation

ends, the ancilla is in state |out⟩anc with overlap

⟨1|out⟩anc =


0 if all ancillas are correctly initialized andM halted, or
√

3
2 otherwise.

(3.13)

This idea in the context of circuit-to-Hamiltonian mappings was introduced in

[BCO17]; for completeness we give an overall circuit diagram of the entire compu-

tation to be mapped to a Hamiltonian in fig. 3.4. We remark that breaking down a

multi-controlled quantum gate into a local gate set is a standard procedure described

e.g. in [NC10]. We formalise the above procedure in the following lemma:

Lemma 3.6. Consider an initial state

|𝜓0⟩ = |0⟩anc

(
𝛼 |1⟩⊗𝐿 +

√︁
1−𝛼2 |𝜙⟩

)
where |𝜙⟩ ⊥ |1⟩⊗𝐿 .

Assume the Turing machineM halts with probability 𝜖 when acting on an initial

state |0⟩anc |1⟩⊗𝐿 . Then, the final output state of the computation |𝜓𝑇 ⟩ satisfies

⟨𝜓𝑇 |
[
|1⟩⟨1|anc ⊗1⊗𝐿

]
|𝜓𝑇 ⟩ =

3
4

(
1−𝛼2𝜖2

)
.
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Proof. By explicit calculation, we have

|𝜓0⟩
𝑅2𝜋/3↦−−−−→ 𝑅2𝜋/3 |0⟩anc

(
𝛼 |1⟩⊗𝐿 +

√︁
1−𝛼2 |𝜙⟩

)
𝑐𝑅−𝜋/3↦−−−−−→ 𝛼𝑅𝜋/3 |0⟩anc |1⟩⊗𝐿 +

√︁
1−𝛼2𝑅2𝜋/3 |0⟩ |𝜙⟩

M−−→ 𝛼𝑅𝜋/3 |0⟩anc

(
𝜖 |𝜓halt⟩ +

√︁
1− 𝜖2 |𝜓non−halt⟩

)
+
√︁

1−𝛼2𝑅2𝜋/3 |0⟩anc

(
𝜖′ |𝜙halt⟩ +

√︁
1− 𝜖′2 |𝜙non−halt⟩

)
𝑐𝑅−𝜋/3−−−−−→ 𝛼𝜖 |0⟩ |𝜓halt⟩ +𝛼

√︁
1− 𝜖2𝑅𝜋/3 |0⟩ |𝜓non−halt⟩

+ 𝜖′
√︁

1−𝛼2𝑅𝜋/3 |0⟩anc |𝜙halt⟩ +
√︁

1− 𝜖′2
√︁

1−𝛼2𝑅2𝜋/3 |0⟩anc |𝜙non−halt⟩

= |𝜓𝑇 ⟩ .

Using

|0⟩
𝑅𝜋/3↦−−−→ cos

(𝜋
3

)
|0⟩ + sin

(𝜋
3

)
|1⟩ and |0⟩

𝑅2𝜋/3↦−−−−→ cos
(𝜋

3

)
|0⟩ − sin

(𝜋
3

)
|1⟩

this means that

⟨𝜓𝑇 |
[
|1⟩⟨1|anc ⊗1⊗𝐿

]
|𝜓𝑇 ⟩ = sin2

(𝜋
3

) (
1−𝛼2𝜖2

)
. □

3.6.1 Feynman-Kitaev Hamiltonian

Given our quantum Turing machine from section 3.5 augmented with a single

necessary “good” ancilla |0⟩anc as just described, we apply the Gottesman and Irani

construction from [GI09] to translate our desired computation in the ground state

of a one-dimensional, nearest neighbour, translationally invariant Hamiltonian with

open boundary conditions (cf. section 2.3.1.1 for a more detailed explanation). We

summarize the core ideas to set up the notation used in this section, but refer the

reader to [GI09; CPGW15a; BC18a] for details.

As discussed in section 3.5.5, the QPE Turing machine we devised has two

meta parameters 𝐿 and 𝑚. On a spin chain of length 𝐿, instead of expanding 𝐿−3

digits of 𝜑 as is the case in [CPGW15a], we allow the expansion to happen on a

smaller sub-segment of length 𝑚 of the chain. This can be done dynamically, i.e.
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by adding a Turing machine before the QPE invocation which sections off a part

𝑚 = 𝑚(𝐿) of the tape and places a distinct symbol there. Since it is obvious how

to do this we will not go into detail here, and remark that in the final construction we

will choose 𝑚 = 𝐿−3: an explicit construction for such a Turing machine is given

in[Bau+18b, Lem. 15]. The QPE and dovetailed universal TM—augmented by the

single-ancilla construction described at the start of this section—we will jointly call

M′ =M′(𝐿,𝑚), i.e. such that there is 𝐿 tape available; we emphasize thatM′(𝐿,𝑚)

has an identical set of symbols and internal states for all 𝐿 and 𝑚.

In all of the following we will analyse the spectrum of the history state

Hamiltonian within a “good” type of subspace, by which we mean a tape bounded

by special endpoint states and . This subspace will, analogous to the 2D

undecidability construction, be called bracketed states; on an overall local Hilbert

spaceH =H𝑎 ⊕H𝑏 such that | ⟩ , | ⟩ ∈ H𝑏, we set

Sbr(𝑚) := | ⟩ ⊗H⊗𝐿𝑎 ⊗ | ⟩ . (3.14)

Since no transition rule for the history state Hamiltonian ever moves these boundary

markers, the overall Hamiltonian we construct will be block-diagonal with respect

to signatures determined by the brackets. A standard argument then shows that

within this bracketed subspace, the history state Hamiltonian encoding the QPE

Turing machine behaves as designed, and we can analyse the spectrum therein by

analysing the encoded computation. Outside of the bracketed subspace, a variant

of the Clairvoyance lemma allows us to always lower-bound the energy, such that it

does not interfere with the rest of the construction.

In order to make all of this precise, we first define the full QPE history state

Hamiltonian in the following theorem, which is adapted from [CPGW15a, Th. 10].

Theorem 3.2 (QPE history state Hamiltonian). Let 𝐿,𝑚 ∈ N, 0 < 𝑚 ≤ 𝐿 −3. Let

there exist a Hermitian operator ℎ ∈ B(C𝑑 ⊗C𝑑), where the local Hilbert space

contains special marker states | ⟩ and | ⟩ that define the bracketed subspace Sbr

as in eq. (3.14), such that
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1. ℎ ≥ 0,

2. 𝑑 depends (at most polynomially) on the alphabet size and number of internal

states ofM′,

3. ℎ = 𝐴+ 𝑒i𝜋𝜑([)𝐵+ 𝑒−i𝜋𝜑([)𝐵†, where

• 𝐵 ∈ B(C𝑑⊗C𝑑) independent of [ and with coefficients in Z, and

• 𝐴 ∈ B(C𝑑⊗C𝑑) is Hermitian, independent of [, and with coefficients in

Z+Z/
√

2;

Furthermore, a spin chain of length 𝐿 with local dimension 𝑑, the translationally-

invariant nearest-neighbour Hamiltonian 𝐻QTM(𝐿) :=
∑𝐿−1
𝑖=1 ℎ

(𝑖,𝑖+1) has the following

properties.

4. 𝐻QTM(𝐿) is frustration-free, and

5. the unique ground state of 𝐻QTM(𝐿) |Sbr (𝑚) is a computational history state as

in definition 2.14 encoding the evolution ofM′(𝐿,𝑚).

The history state satisfies

6. 𝑇 = Ω(poly(𝐿)2𝐿) time-steps, in either the halting or non-halting case;

7. IfM′ runs out of tape within a time 𝑇 less than the number of possible TM

steps allowed by the history state clock, the computational history state only

encodes the evolution ofM′ up to time 𝑇 .

8. In either the halting or non-halting case, the remaining time steps of the

evolution encoded in the history state leave the computational tape forM′

unaltered, and instead the QTM runs an arbitary computation on a waste tape

as described in [CPGW15a].

Proof. Almost all of the above follows from [CPGW15a, Th. 10]. Item 3 differs

only in that we have removed any dependence on 𝑒i𝜋2−|𝜑 | due to the new modified

transition rules, as we now approximate the necessary rotations using the Solovay-

Kitaev theorem (see section 3.5). □
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3.6.1.1 Clock Construction
The history state Hamiltonian described above encodes an evolution of a computation

for 𝑇 (𝐿) steps, where 𝑇 (𝐿) does not depend on the computation itself. This ensures

that the history state will be a superposition over 𝑇 (𝐿) time steps independent on

whetherM′ halts on the tape of length 𝐿 − 2 and with cordonned-off subsection

𝑚. As mentioned previously, in the case of the computation halting, this is done by

forcing the QTM head to switch to an additional “waste tape” where an arbitrary

computation is performed until the clock finishes.

Theorem 7.9 uses the clock construction designed in [CPGW15a, sec. 4.2, 4.3,

4.4]. Bounds on the clock runtime are readily obtained: if 𝑇 (𝐿) denotes the runtime

of the clock on a tape of length 𝐿, we have

Ω

(
𝐿b𝐿

)
≤ 𝑇 (𝐿) ≤ O

(
𝐿b𝐿 log(𝐿)

)
(3.15)

for some constant b ∈ N.

3.6.1.2 QTM and Clock Combined
Theorem 7.9 combines the QTM and clock such that the QTM head only makes a

transition when the oscillator from the clock part of the history state passes over the

QTM head. Details can be found in [CPGW15a, sec. 4.6.1].

3.6.2 The Initialisation and Non-Halting Penalty
We now want to introduce a penalty term which will penalise computations that have

not halted and not been initialised correctly.

Initialisation Penalty. In order to ensure that the single ancilla we require is

correctly initialized, we introduce a projector that penalizes |𝜓⟩anc in any state but

|0⟩anc at the start of the computation. This can be done by a term of the form

|0⟩⟨0|C ⊗ (1− |1⟩⟨1|)anc, which is local if and only if we can locally detect the initial

clock state |0⟩C above the single ancilla on the tape. As per the constructions in

[GI09; CPGW15a], this state can indeed be locally detected.

Finalisation Penalty. The final penalty follows precisely the same pattern: we add a

local projector of the form |𝑇⟩⟨𝑇 |C ⊗ (1− |1⟩⟨1|)anc, and ensure that the final clock
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state |𝑇⟩C can be recognized locally above where |out⟩anc sits. To realise this, we

note that the ancilla bit is located at the end of string of qudits encoding the TM

tape. The final clock state can then be locally determined by a nearest-neighbour,

translationally invariant term that recognises the final clock state by looking at the

pair of qudits at the end of the chain. Again, this is done in [GI09; CPGW15a].

Penalty Term Construction. The amplitude of the output ancilla |𝜓⟩anc depends on

correct initialization of the ancillas for the QTM, as well as on the halting amplitude,

and is given in eq. (3.13). To penalize the overlap ⟨1|𝜓⟩anc—which corresponds to

wrong initialization, or halting—we add the following nearest neighbour term to the

Hamiltonian:

ℎ
(out)
𝑖,𝑖+1 =

��[■] [ →

1 , . . . , b]
〉〈
[■] [ →

1 , . . . , b]
��
𝑖,𝑖+1 ⊗ (1𝑖 − |1⟩⟨1|𝑖) ⊗1𝑖+1.

As just mentioned, the input penalty term ℎ
(in)
𝑖,𝑖+1 can similarly be written as a nearest-

neighbour projector onto a clock state at 𝑡 = 0. Thus, on the entire chain we have the

penalty terms

𝐻 (in) =
𝐿−1∑︁
𝑖=1
ℎ
(in)
𝑖,𝑖+1 (3.16)

𝐻 (out) =
𝐿−1∑︁
𝑖=1
ℎ
(out)
𝑖,𝑖+1 . (3.17)

Definition 3.5. We denote the QPE+QTM history state Hamiltonian including the in-

and output penalties from eq. (3.16) with 𝐻comp(𝐿, 𝜑) := 𝐻QTM(𝐿, 𝜑) +𝐻 (in) +𝐻 (out) .

3.6.3 Ground State Energy in Halting and Non-Halting Case

The ground state energy of 𝐻comp depends on how much penalty is picked up

throughout the computation. Known techniques like Kitaev’s geometrical lemma

[KSV02; BCO17] for a lower bound and a simple triangle inequality for the upper
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bound can be used to show that

Ω

(
1
𝑇3

)
≤ _min(𝐻comp(𝜑([))) ≤ O

(
1
𝑇

)
(3.18)

for a non-halting instance [ ∈ N. However, both the upper and lower bounds here are

not tight enough for our purposes.

In order to obtain tighter bounds, we realize that our history state construction

has a linear clock (i.e. one that never branches and simply runs from 𝑡 = 0 to 𝑡 = 𝑇);

in this case, tight bounds on the overall energy effect of the penalty terms already

exist; we refer the reader to [BC18a; CLN18; Wat19] for an extended analysis. For

the sake of completeness and brevity, we quote some of the definitions and lemmas

from prior literature in the appendix and reference them in the following.

Lemma 3.7. In case [ ∈N correspond to a non-halting instance, the lowest eigenvalue

of 𝐻comp satisfies _min(𝐻comp(𝜑([))) = Ω(𝑇−2).

Proof. It can straightforwardly be checked that 𝐻comp is a standard-form Hamiltonian

as per definition A.2, and so as per the Clairvoyance Lemma [Wat19, Lem. 5.6] (and

also proven in lemma A.3, appendix A.1) we know that 𝐻comp breaks down into three

subspaces. The subspaces of types 1 and 2 are trivially shown to have ground state

energies Ω(𝑇−2).

Within the third subspace, which we label 𝑆, there are no illegal terms and

only the in- and output penalties 𝐻 (in) +𝐻 (out) from eq. (3.16) have to be considered.

Again, using the Clairvoyance Lemma [Wat19, Lem. 5.6] or lemma A.3 the clock

evolution within this subspace is linear—meaning there is never any branching—and

hence 𝐻comp |𝑆 is equivalent to Kitaev’s original circuit-to-Hamiltonian construction.

This means that the Hamiltonian therein is of the form

𝐻comp |𝑆 = 𝐻prop + |0⟩⟨0|C ⊗Π (in) + |𝑇⟩⟨𝑇 |C ⊗Π (out)

where 𝐻prop ∼ Δ⊗1 for a path graph Laplacian Δ, and Π (in)/(out) are the in- and

output penalties inflicted at time 0 and 𝑇 ; this Hamiltonian is then explicitly of

the family of Hamiltonians studied in [BC18a]. In particular, by [BC18a, Th. 7],
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Hamiltonians of this form have ground state energy _min(𝐻comp |𝑆) = Ω(𝑇−2). Thus

all three of the subspaces have a minimum eigenvalue of the form Ω(𝑇−2), and since

they are invariant subspaces, we see that the overall minimum eigenvalue must be

_min(𝐻comp) = Ω(𝑇−2). □

Lemma 3.8 (Theorem 6.1 from [Wat19]). Let 𝐻 (𝜑) ∈ B(C𝑑)⊗𝐿 be a standard form

Hamiltonian encoding a QTM with runtime 𝑇 (𝐿), with in- and output penalty terms

𝐻 (in)/(out) . Let there exist a computational path with no illegal states such that the

final state of the computation is |𝜓𝑇 ⟩ and such that the output penalty term satisfies

⟨𝑇 | ⟨𝜓𝑇 |𝐻 (out) |𝜓𝑇 ⟩ |𝑇⟩ ≤ 𝜖 .

Then the ground state energy is bounded by

0 ≤ _min
(
𝐻 (𝜑)

)
≤ 𝜖

(
1− cos

(
𝜋

2(𝑇 −𝑇init) +1

))
= O

( 𝜖
𝑇2

)
,

where 𝑇init = O(log(𝑇)) is the time frame within which the input penalty term 𝐻 (in)

applies to the history state.

With this machinery developed, we can derive the following lemma for the

specific Hamiltonian 𝐻comp at hand.

Theorem 3.3. Take 𝐻comp to encode a phase 𝜑′ ∈ [𝜑([), 𝜑([) +2−ℓ), with 𝜑([), as

per definition 3.4, and let 𝛿(𝐿,𝑚) be as in lemma 3.4. Then for

1. 𝑚 < [ we have

_min(𝐻comp) = Ω
[
𝑇−2] .

2. 𝑚 ≥ [ and 𝜑([) corresponds to a non-halting instance, then

_min(𝐻comp) = Ω
[
𝑇−2] .
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3. 𝑚 ≥ [ and 𝜑([) corresponds to a halting instance, then

_min(𝐻comp) = O
[(

2−ℓ + 𝛿(𝐿,𝑚)
)2 1
𝑇2

]
.

Proof. Combing lemma 3.5 with lemma 3.6 we derive upper and lower bounds on

the magnitude of the amplitudes that a given instance has on a non-halting state.

Together with lemma 3.7 this gives us the lower bounds for points 1 and 2. To get the

upper bound in 3, by lemma 3.5 and eq. (3.13), the output penalty is bounded as

⟨𝜓𝑇 |Π (out) |𝜓𝑇 ⟩ ≤ sin2
(𝜋

3

) (
2−ℓ + 𝛿(𝐿,𝑚)

)2
.

Since no other term contributes a positive energy, the ground state of 𝐻comp can be

upper-bounded with lemma 3.8 as

_min(𝐻comp) = O

( (
2−ℓ + 𝛿(𝐿,𝑚)

)2

𝑇2

)
. □

3.7 Checkerboard and TM Tiling

3.7.1 Wang Tiles and Hamiltonians
Wang tilings will play a central role in the construction (and the rest of this thesis).

Definition 3.6 (Wang Tiles). Wang tiles are unit length square tiles with markings

on each of the four edges. For a given set of Wang tiles {𝑡𝑖}𝑛𝑖=1, the markings define

horizontal matching rules R𝐻𝑜𝑟𝑧 (respectively, vertical matching rules R𝑉𝑒𝑟𝑡) such

that two tiles 𝑡𝑖, 𝑡 𝑗 can only be placed next to each other horizontally (vertically) if

(𝑡𝑖, 𝑡 𝑗 ) ∈ R𝐻𝑜𝑟𝑧 ((𝑡𝑖, 𝑡 𝑗 ) ∈ R𝑉𝑒𝑟𝑡).

There is then a standard technique to map a set of Wang tiles to a set of spins

on a lattice such that the ground state of the spins has the same configuration as the

tiling pattern when all tiling rules are satisfied (see [GI09, Section 3] or the appendix

of [Bau+18a] for a summary). Consider a set of Wang tiles T rules with horizontal

constraints R𝐻𝑜𝑟𝑧 ⊆ T ×T such that if 𝑡𝑖 is placed to the left of 𝑡 𝑗 , then it must be

the case that (𝑡𝑖, 𝑡 𝑗 ) ∈ R𝐻𝑜𝑟𝑧 and likewise for the vertical tiling rules R𝑉𝑒𝑟𝑡 .
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Map every tile type 𝑡𝑖 ∈ T to spin state of a classical particle |𝑡𝑖⟩. We then

impose a Hamiltonian over the lattice such that if the tiling pair (𝑡𝑖, 𝑡 𝑗 ) ∉ R𝐻𝑜𝑟𝑧 (or

(𝑡𝑖, 𝑡 𝑗 ) ∉ R𝑉𝑒𝑟𝑡 depending on the orientation), then we introduce the term
��𝑡𝑖𝑡 𝑗 〉 〈

𝑡𝑖𝑡 𝑗
��

for all forbidden pairings (𝑡𝑖, 𝑡 𝑗 ) over all points in the lattice.

Thus we end up with a Hamiltonian composed of local interactions of the form

ℎ𝑐𝑜𝑙𝑘,𝑘+1 =
∑︁

(𝑡𝑖 ,𝑡 𝑗 )∉R𝐻𝑜𝑟𝑧

��𝑡𝑖𝑡 𝑗 〉 〈
𝑡𝑖𝑡 𝑗

��
𝑘,𝑘+1 (3.19)

ℎ𝑟𝑜𝑤𝑘,𝑘+1 =
∑︁

(𝑡𝑖 ,𝑡 𝑗 )∉R𝑉𝑒𝑟𝑡

��𝑡𝑖𝑡 𝑗 〉 〈
𝑡𝑖𝑡 𝑗

��
𝑘,𝑘+1 , (3.20)

3.7.2 Tiling to Hamiltonian Mapping

Given a fixed set of Wang tiles on a 2D lattice, we can map the corresponding tiling

pattern to a classical translationally invariant, nearest neighbour Hamiltonian over

spins on the same lattice, as described in section 3.7.1.

In case we need to have more than one tile set on the same lattice, we can simply

introduce lattice layers:

Remark 3.2 (Tiling Layers [GI09]). For multiple tile sets T1, . . . ,Tℓ, there exists a

meta tileset T with a set of meta-tiling rules, such that the meta-tiling rules are only

satisfied iff the tiling rule for each element of the tuple is satisfied. The corresponding

Hamiltonian is defined on the tensor product of the individual Hilbert spaces. Tile

constraints may also be placed between layers.

Proof. Given a lattice, we represent the meta-tile set as an ℓ-tuple associated with

each site. Each element represents a layer in the tiling. Tiling rules for the 𝑘 th layer

are enforced between the 𝑘 th elements of tuples on neighbouring sites. Tiling rules

between layers can be prevented from occurring by disallowing certain tuples from

appearing. □

3.7.3 Checkerboard Tiling

In this section, we define a tile set that periodically tiles the infinite plane. The

underlying pattern we wish to create is that of a square lattice, where each grid
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cell within the pattern has the same side length, much like the boundaries on a

checkerboard. The tiling will not be unique; in fact, there will be a countably

infinite number of variants of the tiling which satisfy the tiling rules, corresponding

to the pattern’s periodicity. This non-uniquess is intended: the corresponding

tiling Hamiltonian will have a degenerate ground state, the interplay of the other

Hamiltonians’ energy eigenstates that are conditioned on this underlying lattice

pattern will then single out a unique ground state.

We constructively define this checkerboard tiling in this section. In order to

explain and proof rigorously how the highest net-bonus tiling, we break the proof

up into two parts; in the first part, we will create a checkerboard pattern of various

square sizes, but such that the offset from the lower left corner in the lattice is left

unconstrained. In the second part, we will lift this degeneracy.

Proposition 3.1 (Unconstrained Checkerboard Tiling). We define the tileset T1 to

contain the following edge-colored tiles:

corner & edge :

interior :

The rules for these tiles—by convention—are such that edges have to match up. Then

all valid tilings for a lattice Λ will either:

1. have no corner tile present, or

2. have corner tiles present as shown in fig. 3.7, i.e. such that they are part of

a checkerboard pattern of squares, where the squares’ side length—and the

offset of the left- and bottommost corner tile—is unconstrained.

Proof. Fig. 3.7 forms a valid tiling by inspection. What is left to prove is that given

we demand at least one corner tile to be present this is the only tiling pattern possible.

To this end, we first note that the tiles directly adjacent to the corner tile are

necessarily of the configuration in fig. 3.5.
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Figure 3.6: Sub-tiling patterns 𝐴1, 𝐴2 and 𝐴3 from left to right, possible with at most four
tiles in proposition 3.1.

Figure 3.5: A tiling configuration.

We then note that the only way for multiple of these corner tiles to join up is via

blue horizontal links (called configuration 𝐴2), red vertical ones (configuration 𝐴3),

or diagonal purple ones (configuration 𝐴1); we show sections of these links 𝐴1, 𝐴2

and 𝐴3 in fig. 3.6.

This reduces the problem to finding valid geometric patterns of horizontal blue,

vertical red and diagonal purple lines, which are only ever allowed to intersect jointly

together; the resulting pattern is a grid of squares laid out by the red and blue edge

tiles, where the fact that each enclosed area is a square is enforced by the purple

diagonals. If the square size is bigger than the lattice Λ, this means that only a single

corner tile is present; otherwise there is multiple ones, as shown in fig. 3.7. Naturally,

offset and square sizes remain unconstrained; the claim follows. □

We emphasize that the tileset T in proposition 3.1 does have valid tilings that

are e.g. all-grey- or all-black-edged areas, or those where only a purple diagonal with

grey on one side, and black on the other side is present, as shown in fig. 3.6. For this

reason, and in order to lift the offset degeneracy still present, we add extra constraints
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Figure 3.7: Section of the checkerboard tiling Hamiltonian’s ground state.

to the tileset.

In order to single out all those patterns that commence with a full square in the

lower left corner of the lattice region, we employ Gottesman and Irani’s boundary

trick which exploits the fact that on any hyperlattice there is always a very specific

mismatch between the number of vertices and the number of edges. In our case it

reads as follows.

Proposition 3.2 (Constrained Checkerboard Tiling). Take the tileset T from proposi-

tion 3.1 with the same edge-matching tiling rules, and define a new tileset T ′ with

the following additional bonuses and penalties:

1. any interior tile gets a bonus of −1 if it appears to the top, and a bonus of −1 if

it appears to the right of another tile, and

2. any interior tile gets an unconditional penalty of 2.

Then the highest score tilings possible with T ′ on a square lattice Λ are the

checkerboard patterns shown in fig. 3.7, but such that a corner tile lies in the lower

left of the lattice. All other tilings have net score ≥ 1.

Proof. The only effect of the extra bonus and penalty terms are that the grey interior

tiles can no longer appear on the left or bottom lattice boundaries; edge tiles have to

be placed there. This, in turn, means that the only zero penalty configuration for the

lower left corner is to place a corner tile there, meaning that the only net zero penalty

configurations have at least one corner tile present. The rest of the claim then follows

from proposition 3.1. □
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With the tilesetT ′ defined such that the highest net-score tilings are checkerboard

patterns with unconstrained square sizes and offset (0,0) from the lower left corner

in the spin lattice, we can formalize the tiling Hamiltonian in the following lemma.

Lemma 3.9 (Checkerboard Tiling Hamiltonian). There exists a diagonal Hermitian

operator ℎ ∈ B(C𝑑⊗C𝑑) for 𝑑 = 11 with matrix entries in Z as in eq. (3.19) such

that the corresponding tiling Hamiltonian 𝐻cb =
∑
𝑖∼ 𝑗 ℎ

(𝑖, 𝑗) on a square lattice Λ has

a degenerate zero energy ground space 𝑆cb spanned by checkerboard tilings as in

fig. 3.7, of all possible square sizes, where the pattern starts with a corner tile at the

origin (i.e. in the lower left corner of the lattice), as laid out in proposition 3.2. Any

other eigenstate not contained in this family of zero energy states has eigenvalue ≥ 1.

Proof. Translating the tileset T ′ from proposition 3.2 into local terms as in eq. (3.19)

via [Bau+18a, Cor. 2] yields local Hamiltonian terms ℎ ∈ B(C𝑑⊗C𝑑), where 𝑑 is the

number of tiles in the tileset—here 11; the local terms have entries in Z because all

the weights (bonuses and penalties) in the tileset are integers. 𝐻cb will have a ground

space spanned by tilings with net score 0, which we proved in proposition 3.2 to look

as claimed.

Furthermore, since all other tilings must have integer net penalty, all other tiling

eigenstates will have energy ≥ 1. The claim follows. □

3.7.4 Classical Turing Machine Tiling

It is well know that a classical TM which runs for time 𝑁 and uses a tape of length

𝑁 can be encoded in an 𝑁 ×𝑁 grid of tiles [Ber66]. A brief overview of how this

is done is given in the following. We first recall that a TM is specified by a tuple

(Σ,𝑄, 𝛿) where𝑄 is the TM state, Σ is the TM alphabet, and 𝛿 is a transition function

𝛿 :𝑄×Σ→𝑄×Σ× {𝐿, 𝑅}. (3.21)

as well as an initial state 𝑞0, an accepting state 𝑞𝑎, and a blank symbol # ∈ Σ. Here

𝐿, 𝑅 in the transition function output tell the TM head whether to move left or right

respectively.
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We now take the 𝑁 ×𝑁 grid which we can place tiles on. We will identify the

rows of the grid with the tape of the TM, where successive rows will be successive

time steps. Each tile now represents a cell of the TM’s tape at a given time step. We

now introduce a set of tiles which encode the evolution of the TM. We will need tiles

which represents every possible configuration that a cell can take (what is written in

the cell, whether the TM head is there, etc.).

To encode the evolution of such a TM into a set of tiles, we introduce three types

of tiles: variety 1 which is specified only by an element of Σ, variety 2 specified by

Σ×𝑄× {𝑟, 𝑙}, and variety 3 specified by Σ×𝑄× {𝑅, 𝐿}. At position 𝑃 offset from

the left within a row, these tiles have the following function:

Variety 1 With marking (𝑐), 𝑐 ∈ Σ, the corresponding cell on the TM’s tape contains 𝑐,

and the TM head is not at position 𝑃 at the corresponding time step.

Variety 2 With marking (𝑐, 𝑞, 𝑑), 𝑐 ∈ Σ, 𝑞 ∈ 𝑄, 𝑑 ∈ {𝑟, 𝑙}, the corresponding cell on the

TM’s tape contains 𝑐, the TM head is at position 𝑃 at this time step, but has

not yet overwritten the tape symbol. The TM is in state 𝑞 and the TM head has

just moved from the right/left of 𝑃.

Variety 3 With entry (𝑐, 𝑞, 𝐷), 𝑐 ∈ Σ, 𝑞 ∈ 𝑄, 𝐷 ∈ {𝑅, 𝐿}, the corresponding cell on the

TM’s tape contains 𝑐, the TM head has just moved right/left from position 𝑃

where it has just overwritten the previous symbol. The TM is in state 𝑞 at this

time step.

As a last remark, we note that one can always dovetail multiple TM tilings, as

shown by Gottesman and Irani.

Lemma 3.10 (Tiling-Layer Dovetailing [GI09]). LetM1 andM2 be classical Turing

machines with the same alphabet Σ such that their evolution is encoded in a tiling

pattern on different tiling layers (see remark 3.2) of a rectangular grid with a border

as in fig. 3.7. Then—by potentially altering the tile sets—it is possible to constrain

the tiling layers at the border such thatM2 takes the output ofM1 as its input and

continues the computation.
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Proof. IfM1 andM2 are TMs, then there exists a TM 𝑀 which carries outM1

followed by M2 [Tur37]. Define a tileset on each layer that corresponds to said

Turing machine, such thatM1 runs from bottom-to-top andM2 runs top-to-bottom

on each respective layer. We now need to show that there is a way of enforcing

equality of the tapes of the two tiling layers next to the boundary; then the claim

follows.

Similar to remark 3.2, let the meta tile at position 𝑘 be specified by a 2-tuple

𝑇𝑘 = (𝑡𝑖, 𝑡 𝑗 )𝑘 . Let the set of tiles making up the border be 𝐵. Then we enforce the

2-local tiling rule that the only valid tiles that can appear next to the upper border tiles

have the form ((𝑡𝑖, 𝑡𝑖), 𝑏), where 𝑏 ∈ 𝐵 (i.e. the tiles must have the same markings

in both layers). Thus the output ofM1 is the input ofM2. M2 then continues the

computation on the top layer of the grid. □

In this fashion, any Turing machine (e.g. a universal one) can be encoded in a

grid of tiles, which in turn can be used to define a local Hamiltonian with a ground

state that corresponds to the TM’s valid evolution; given a TM tiling, this can be

achieved by using the tiling-to-Hamiltonian mapping already explained. Giving due

credit, we capture this mapping for TM tilings in the following lemma.

Lemma 3.11 (Berger’s Turing machine Tiling Hamiltonian [Ber66]). For any

classical Turing machine (Σ,𝑄, 𝛿) there exists a diagonal Hermitian operator

ℎ ∈ B(C𝑑⊗C𝑑) for 𝑑 = poly( |Σ |, |𝑄 |) with matrix entries in Z as in eq. (3.19) such

that the corresponding tiling Hamiltonian
∑
𝑖∼ 𝑗 ℎ

(𝑖, 𝑗) on a square lattice Λ has a

degenerate ground space 𝑆TM,tiling containing

1. any tape configuration without TM head tiling the plane forward indefinitely,

2. a tiling pattern corresponding to valid Turing machine evolutions where the

initial head is aligned on one side of the lattice and where the TM does not

halt on the initial tape and space provided, and

3. any valid Turing machine evolution starting mid-way that does not halt within

the space provided.
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Proof. See [Ber66]; the fact that the tape without head tiles the infinite plane is

obvious since the tape can be initialized arbitrarily and will consistently cover the

lattice, i.e. by being copied forward. If the TM’s head is present in a tile, and since

there is no transition into the initial state 𝑞𝑖 ∈ 𝑄 of the TM, if the initial state is

present it has to reside on one side of the lattice. Similarly, if the TM halts within

the space provided there is no forward transition, meaning that tiling cannot have

zero energy. Finally, if neither initial nor final state are present the tiling can show

a consisten Turing machine evolution starting mid-way, with the tape being copied

forward, or potentially altered if the TM head passes by. □

We emphasize that the TM in lemma 3.11 does not have to be reversible. We

will later lift the large degeneracy of the so-defined ground space by forcing an initial

tape and head configuration; with such an initial setup, the tiling becomes unique

since the forward evolution of a TM head and tape is always unambiguous.

3.7.5 Combining Checkerboard and Turing Machine Tiling

As seen in remark 3.2 and lemma 3.10, we can combine two tilesets into one, by

defining the new tileset as the Cartesian product of the two. In this fashion we couple

the TM tile set to apper above grey-shaded interior of the squares in the underlying

checkerboard pattern from proposition 3.2; the area above the edge tiles we fill with

a dummy border tile. We use this dummy border to enforce initialization of the TM’s

tape and head: for a tape cell above but not to the right of the border, the tape cell is

blank. For a cell above and to the right of a border, we put the TM into its initial

configuration 𝑞0.

In case we need our Turing machine to run for more steps than are available

on a single 𝐿 × 𝐿 grid, we can do so as well by introducing multiple layers as per

remark 3.2.

Lemma 3.12. Let 𝑛1, 𝑛2 ∈ N be constant, and take a TM tileset S such that the TM

tiles appear over the grey-shaded interior of the checkerboard pattern in fig. 3.7. We

can define a new tileset S′ such that the TM head will start in the lower left corner

on an empty tape; on a grey square of side length 𝐿 it will have a tape of length 𝑛1𝐿
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and runtime 𝑛2𝐿 available.

Proof. Initializing the head and tape on one edge of the grey square is achieved by

penalizing any other tiles from appearing there, which we can do using inter-layer

constraints as in remark 3.2. Once the TM tiling reaches one end of the grey square,

we can similarly copy its state to another layer with a separate TM tileset that makes

it evolve in the opposite direction. This shows that one can increase the available

number of time steps by another constant 𝑛2. An even simpler argument shows that

on finitely many grid cells 𝐿 one can always increase the number of tape cells by a

constant factor 𝑛1, by redefining 𝑛1 sets of separate symbols. The claims follow. □

3.7.6 Cordonning off an Edge Subsection
In this section, we show that one can define a classical TM tiling that puts a single

marker on an extra layer within each checkerboard square in fig. 3.7, namely on the

lower edge, and at position 𝑥 = ⌈𝐿1/𝑐⌉ for any 𝑐 ∈ N, 𝑐 > 0. Since we have already

shown how to define a classical TM tiling to appear only within the grey shaded

interior of each checkerboard sqaure (remark 3.2), how to allow constant tape and

runtime overhead (lemma 3.12), and how to dovetail TM tilings (lemma 3.10), the

claim is immediate from the following two lemmas.

Lemma 3.13. Let 𝑓 : N→ N such that 1 ≤ 𝑓 (𝑁) ≤ 𝑁 be computable within time

O(2|𝑥 |) where |𝑥 | is the binary length of its input. Consider the checkerboard tiling

constructed in proposition 3.2 such that each square has side length 𝑁 +2 (which is

measured between corner tiles). Then there exists a set of tiles which has this same

checkerboard pattern, but for every corner tile, except those along the bottom edge,

there is a special symbol • at distance 𝑓 (𝑁) from the left border along the top edge.

Proof. The proof is a variant of a construction from [GI09]. First, we add an extra

tiling layer above the grey interior of the checkerboard tilings which translates the

square’s side length 𝑁 into binary; this can be done with a counter tiling, see [GI09;

Pat14] and [BP17a, sec. F2.3].

Using lemma 3.10, we then dovetail this output with a TM that computes the

function 𝑓 (𝑁) by taking input from the previous layer. Since this is promised to be
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computable in time O(2|𝑁 |) = O(𝑁), this can be done via lemma 3.12. The output of

this computation is then 𝑓 (𝑁) in binary.

Finally we run a binary-to-unary converting TM on the binary output of 𝑓 (𝑁)

by reversing the binary counter tiling in [GI09; Pat14]; this requires 𝑁 steps. This

leaves a marker at distance 𝑓 (𝑁) along the square interior. We can then introduce a

tiling rule which forces a • marker onto the edge above it. The configuration on the

upper white edge of each complete square of the tiling is then as per fig. 3.8

Figure 3.8: A tiling configuration.

where the black dot • marks distance 𝑓 (𝑁) away from the left border. □

With lemma 3.13 in place, all that is left is to show existence of a TM that

calculates the 8th root of a number given in binary, and obeys the required constraint

on the number of steps—i.e. at most linear in the square’s side length 𝐿.

Lemma 3.14. Let 𝑐 ∈ N, 𝑐 > 0. There exists a classical TM which, on binary input

𝐿, computes ⌈𝐿1/8⌉ in binary, and requires at most O(log8
2(𝐿)) steps.

Proof. It is known that taking the square root of a number has the same time

complexity as multiplication (see [Alt79]). For a number of ℓ = log2 𝐿 digits, long

multiplication has time- and space complexity ∼ log2
2 𝐿. Taking the 8th root can thus

be done in ∼ log8
2 𝐿 steps by calculating

8√· =
√︂√︃√· □

Now we have all the ingredients together to define the following augmented

checkerboard Hamiltonian, which is in essence the checkerboard tiling Hamiltonian

defined in lemma 3.9, but with a classical TM acting within its grey squares to place

an additional marker onto the horizontal edges.
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Lemma 3.15 (Augmented Checkerboard Tiling Hamiltonian). Let 𝐻cb be the Hamil-

tonian defined in lemma 3.9. Then we can increase the local Hilbert space dimension

to accommodate for the extra tileset necessary in lemma 3.14, and define a new

Hamiltonian 𝐻′cb as per eq. (3.19) where

1. the zero energy ground state is spanned by the same checkerboard patterns as

in lemma 3.9, but such that the horizontal edges above a grey square carry a

special marker • at offset 𝐿1/8 from the left cornerstone,

2. any other eigenstate has eigenvalue ≥ 1.

Proof. The first claim follows by lemmas 3.13 and 3.14, and lemma 3.11. The second

claim follows since the grey TM interiors feature unique tilings, enforced by penalties

only. □

For later reference, we further prove the following two tiling robustness facts.

Remark 3.3 (Checkerboard Tiling Robustness). We single out the pair of tiles in

fig. 3.9,

Figure 3.9: A tiling configuration.

in the tileset T ′ used in proposition 3.2. Then either

1. the pair of tiles is part of an edge of some length 𝐿 as shown in the proof of

lemma 3.13—i.e. fig. 3.8—with a grey square of size 𝐿 × 𝐿 below it, and a

valid TM tiling enforcing the position of the extra edge marker • at position

⌈𝐿1/8⌉, or

2. there exists a unique penalty ≥ 1 at another location in the lattice that can be

associated to the tile pair.
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Proof. Since the corner tile in the pair cannot be one on the left lattice boundary,

we follow the tiling to its left; it has to be a blue edge 𝐴2 pattern as in fig. 3.6, and

necessarily end in another corner tile—if not, take the mismatching tile and resulting

penalty of size 1 as the unique associated one.

Given the blue horizontal edge is intact, this defines a distance between the two

corner tiles, 𝐿. The subsquare 𝐿× 𝐿 below this defined edge then has to be a valid

checkerboard square with augmenting TM as in lemma 3.15, which in turn enforces

the position of the • marker between the two upper corner tiles at the specified offset.

If the square is not intact—which includes it being cut off—take the closest penalty

in Manhattan distance from the tile pair as the associated penalty of size ≥ 1 (or one

of the closest one in case of ambiguities). □

Remark 3.4 (Augmented Checkerboard Tiling Robustness). In any given ground

state of the checkerboard tiling, there can be at most one • between two cornerstone

markers; this marker is only ever present on blue horizontal edges that have a full

grey interior square below them, meaning the • is offset at ⌈𝐿1/8⌉ from its left, as in

lemma 3.14. Any other configuration introduces a penalty ≥ 1.

Proof. A bullet can only appear above the appropriate marker in the classical TM.

We design the TM such that it produces exactly one such marker and such a marker

gets a penalty if it is not above the point at which the TM places it. Thus, if there

exists more than one • per edge joining two cornerstones, at most one of them can be

above the marker left by the classical TM, and hence the other will receive an energy

penalty.

Furthermore, since • can only occur at the output of a valid TM tiling, it can

only occur on edges that lie above a full TM tiling. Since the lattice boundaries are

white edges by proposition 3.2, the claim follows. □

3.8 A 2D Marker Checkerboard
In this section we will introduce a Hamiltonian on a one-dimensional spin chain

which has a fine-tuned negative energy. More specifically, our goal in this section is

to take the tiling pattern given in fig. 3.7 used to define 𝐻′cb in lemma 3.15, and on a
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separate layer add the Marker Hamiltonian 𝐻 ( 𝑓 ) from [Bau+18b, Thm. 11].

In slight extension from the construction therein, we only allow the boundary

markers |■⟩ to coincide with the cornerstones of the checkerboard tiling (see fig. 3.10)

Figure 3.10: A tile.

and condition the transition terms ℎ1 and ℎ2 from [Bau+18b, Lem. 2] to only

occur in between two cornerstones and if and only if the marker • is present there,1

i.e. on the blue horizontal edge as per fig. 3.11.

Figure 3.11: A tiling configuration.

All other configurations are energetically penalised. The negative energy

contribution of one such edge—and thus by remark 3.4 also of one square below said

edge in the checkerboard pattern—is

𝐸edge(𝐿) := _min(𝐻 ( 𝑓 ) |𝑆(𝐿)), (3.22)

where 𝑆(𝐿) denotes a single ■-bounded segment of the original marker construction

of length 𝐿. The arrow ↑ denotes the position of the special symbol that indicates

position 𝐿1/8, as explained in lemmas 3.14 and 3.15.

As the ground state energy of 𝐻 ( 𝑓 ) depends on the choice of the falloff 𝑓

we carefully pick this function to be able to discriminate between the halting and

non-halting cases in theorem 3.3. In particular, we will choose 𝑓 such that if a

universal TM halts on input 𝜑([), then min𝐿 (𝐸edge(𝐿) + _min(𝐻comp)) < 0, if it

1This can easily be enforced with a regular expression.
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does not halt then min𝐿 (𝐸edge(𝐿) +_min(𝐻comp)) ≥ 0, where we assumed the Turing

machine’s tape length is 𝐿 as well. For inputs 𝜑′ ∈ [𝜑([), 𝜑([) +2−[−ℓ) for some

ℓ ≥ 1 a similar condition will be true depending on the amplitude that the output state

has on halting and non-halting.

One obstacle is that the bounds on the energy contribution in [Bau+18b, Lem.

7] is too loose for our purposes, i.e. it was asymptotically bounded as lying in the

interval _min(𝐻 ( 𝑓 )) ∈ (−2− 𝑓 (𝐿) ,−4− 𝑓 (𝐿)). In the following section, we prove that the

scaling of the upper bound is in fact tight.

3.8.1 A Tight Marker Hamiltonian Bound

In this section we improve on the bounds set out in [Bau+18b, Lem. 7] for the ground

state energy of the Marker Hamiltonian. To do this, we consider the following 𝑤×𝑤

matrix:

Δ′𝑤 = Δ(𝑤) − |𝑤⟩⟨𝑤 | . (3.23)

We now adapt [Bau+18b, Lem. 7] to prove a better lower bound on the lowest

eigenvalue.

Lemma 3.16. The minimum eigenvalue of Δ′𝑤 satisfies

_min(Δ′𝑤) ≥ −
1
2
− 3

4𝑤
. (3.24)

Proof. Our proof is essentially the same as in Bausch et al. except we use a better

ansatz for the lower bound on the ground state energy. We begin by noting that, as in

the proof of [Bau+18b, Lem. 7], the characteristic polynomial of Δ′𝑤 is

𝑝𝑤 (_) = −
2−𝑤−1
√
_−4

(
3
√
_(𝑥𝑤 (_) − 𝑦𝑤 (_)) +

√
_−4(𝑥𝑤 (_) + 𝑦𝑤 (_))

)
(3.25)
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where

𝑥𝑤 (_) =
(
_−
√
_−4
√
_−2

)𝑤
𝑦𝑤 (_) =

(
_+
√
_−4
√
_−2

)𝑤
.

Since it is not clear if 𝑝𝑤 (_) = 0 has any closed form solutions in expressible in _

directly, we instead try to bound where the solutions can be.

First we calculate 𝑝𝑤 (−1/2) = (−1)1+𝑤2−𝑤, and thus know that sgn 𝑝𝑤 (−1/2) =

1 for 𝑤 odd, and −1 for 𝑤 even. If we can show that 𝑝𝑤 (−1/2− 𝑓 (𝑤)) has the

opposite sign for some function 𝑓 (𝑤) ≥ 0, then by the intermediate value theorem we

know there has to exist a root in the interval [−1/2− 𝑓 (𝑤),−1/2]. Since we are trying

to prove a tighter bound than [Bau+18b, Lem. 7], we will assume 0 ≤ 𝑓 (𝑤) ≤ 2−𝑤.

Let 𝑝𝑤 (−1/2− 𝑓 (𝑤)) =: 𝐴𝑤/𝐵𝑤 , where we use the notation of [Bau+18b, Lem.

7]:

𝐵𝑤 = 2𝑤+1
√︂
𝑓 (𝑤) + 9

2
,

𝐴𝑤 = −𝑎1,𝑤 (𝑥′𝑤 − 𝑦′𝑤) − 𝑎2,𝑤 (𝑥′𝑤 + 𝑦′𝑤),

𝑎1,𝑤 = 3
√︂
𝑓 (𝑤) + 1

2
,

𝑎2,𝑤 =

√︂
𝑓 (𝑤) + 9

2
,

𝑥′𝑤 =

(√︂
𝑓 (𝑤) + 9

2

√︂
𝑓 (𝑤) + 1

2
− 𝑓 (𝑤) − 5

2

)𝑤
,

𝑦′𝑤 =

(
−
√︂
𝑓 (𝑤) + 9

2

√︂
𝑓 (𝑤) + 1

2
− 𝑓 (𝑤) − 5

2

)𝑤
.

Then 𝐵𝑤, 𝑎1,𝑤 and 𝑎2,𝑤 are real positive for all 𝑤. We distinguish two cases.
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𝑤 even. If 𝑤 is even, we need to show 𝑝𝑤 (−1/2−1/2𝑤) ≥ 0, which is equivalent to

0 ≤ 𝐴𝑤
𝐵𝑤

⇐⇒ 0 ≤ 𝐴𝑤 = −𝑎1,𝑤 (𝑥′𝑤 − 𝑦′𝑤) − 𝑎2,𝑤 (𝑥′𝑤 + 𝑦′𝑤)

⇐⇒ 0 ≥ 𝑎(𝑥′𝑤 − 𝑦′𝑤) + (𝑥′𝑤 + 𝑦′𝑤) where 𝑎 :=
𝑎1,𝑤

𝑎2,𝑤
∈ [1,2]

⇐⇒ 𝑎−1
𝑎 +1

𝑦′𝑤 ≥ 𝑥′𝑤 .

For 𝑤 even, 𝑦′𝑤 ≥ 𝑥′𝑤, and furthermore we find that 𝑥′1/𝑤𝑤 /𝑦′1/𝑤𝑤 is monotonically

decreasing (assuming that 𝑓 (𝑤) ≥ 0 and is itself monotonically decreasing), so it

suffices to find a 𝑓 (𝑤) which satisfies

𝑎−1
𝑎 +1

≥
(
5
2
− 3

2

)𝑤 (
5
2
+ 3

2

)−𝑤
=

1
4𝑤
. (3.26)

Expanding out 𝑎 as

𝑎 = 3

√︄
𝑓 (𝑤) +1/2
𝑓 (𝑤) +9/2 , (3.27)

and substituting this into the above, we find

𝑓 (𝑤) ≥ 9
4(4𝑤) −10+5(4−𝑤) . (3.28)

Hence we can choose 𝑓 (𝑤) = 3/4𝑤, which works for all 𝑤 ≥ 2.

𝑤 odd. Now 𝑦′𝑤 ≤ 𝑥′𝑤, and it suffices to show

𝑎−1
𝑎 +1

𝑦′𝑤 ≤ 𝑥′𝑤

which is true provided 𝑎−1
𝑎+1 ≤ 1. This also holds true for all 𝑤 ≥ 0 for 𝑓 (𝑤) = 3/4𝑤.

This finishes the proof. □
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Theorem 3.4. The minimum eigenvalue of Δ′𝑤 satisfies

−1
2
− 3

4𝑤
≤ _min(Δ′𝑤) ≤ −

1
2
− 1

4𝑤
. (3.29)

Proof. Lemma 3.16 gives the lower bound, and [Bau+18b, Lem. 8] gives the upper

bound. □

3.8.2 Balancing QPE Error and True Halting Penalty

With this tighter bound derived in theorem 3.4, we can calculate the necessary

magnitude and scaling of 𝐸edge(𝐿) as explained at the start of section 3.8 as follows.

As a first step, we notice that the clock runtime 𝑇 = 𝑇 (𝐿) of the QTM is bounded

by eq. (3.15), which holds both in the halting and non-halting case, since the clock

idles after the computation is done. That is, the clock runtime does not depend on

the input to the computation.

Let 𝐸pen,halt(𝐿) and 𝐸pen,too short(𝐿) be the ground state energies of 𝐻comp(𝐿)

in the case where the encoded computation does not halt with high probability, and

when the binary expansion of the encoded phase is too long, respectively, i.e. when

|𝜑′| > 𝑚. Then from theorem 3.3 we get:

𝐸pen,non-halt(𝐿) ≥ 𝐸pen,too short(𝐿) = Ω

[
1
𝑇2

]
∗
≥ 𝐾1

𝐿2b2𝐿 log2 𝐿
, (3.30)

where we made use of remark 3.1 at step (∗). Similarly, let 𝐸pen,halt(𝐿) be the

minimum eigenvalue when the QTM halts on input 𝜑′ ∈ [𝜑([), 𝜑([) + 2−[−ℓ), as

given in definition 3.4. Then again from theorem 3.3 and for sufficiently large ℓ we

get:

𝐸pen,halt(𝐿) =O
[(

2−ℓ + 𝛿(𝐿,𝑚)
) 1
𝑇2

]
∗∗
=O

[(
2−ℓ + 𝐿22−𝐿

1/4
) 1
𝑇2

]
≤ 𝐾22−𝐿1/4

b2𝐿 . (3.31)

where in step (∗∗) we have used the fact that 𝑚 ≤ 𝐿, 𝑐1 < 4 and 𝑐2 ≥ 1. Both 𝐾1

and 𝐾2 in eqs. (3.30) and (3.31) are positive constants, chosen sufficiently small and
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large to satisfy the two bounds. How large does ℓ have to be—or in other words, how

small does the interval around 𝜑([) have to be that 𝜑′ is chosen from—for eq. (3.31)

to hold?

2−ℓ ≤ 𝐿22−𝐿
1/4 ⇔ ℓ ≥ log2

(
𝐿−22𝐿

1/4
)
. (3.32)

In order to discriminate between the two asymptotic history state penalties in

eqs. (3.30) and (3.31), 𝐸edge(𝐿) thus has to lie asymptotically between these two

bounds, i.e. we need

𝐸edge(𝐿) = o
(

1
𝐿2b2𝐿 log2 𝐿

)
and 𝐸edge(𝐿) = 𝜔

(
1

b2𝐿2𝐿1/4

)
.

Now we know by theorem 3.4 that 𝐸edge(𝐿) ∼ 4− 𝑓 (𝐿) for some 𝑓 : N −→ N

marker falloff, which itself has to be computable by a history state construction on

the segment of length 𝐿. We therefore require

o
(

1
𝐿2b2𝐿 log2 𝐿

)
=

1
4 𝑓 (𝐿)

= 𝜔

(
1

b2𝐿2𝐿1/4

)
, or

𝜔 (𝐿 + log𝐿 + log log𝐿) = 𝑓 (𝐿) = o
(
𝐿 + 𝐿1/4

)
. (3.33)

This lets us formulate the following conclusion.

Corollary 3.5. There exists a constant𝐶 such that 𝑓 (𝐿) =𝐶 (𝐿+𝐿1/8) asymptotically

satisfies eq. (3.33).

3.8.3 Marker Hamiltonian with L + L1/8 Falloff

The crucial question is: can we create a Marker Hamiltonian with a falloff exponent

like 𝑓 (𝐿) = 𝐶 (𝐿 + 𝐿1/8), which would satisfy corollary 3.5? As discussed in

[Bau+18b], this is certainly possible for any polynomial of 𝐿, or even an exponential—

in essence it is a question of creating another history state clock for which the runtime

of the segment of length 𝐿 equals 𝑓 (𝐿). Herein lies the problem: while a runtime

𝐿 is easy—just have a superposition of a particle sweeping from one side to the

other—how do we perform 𝐿1/8 additional steps?

While there might be a clever way of doing this purely within the scope of a
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history state construction, we take the easy way out.2 In section 3.7.6, we discussed

how we can place a special symbol on the lower edge, which by lemma 3.14 can be

at distance 𝐿1/8 from the left corner. With this in mind and with the tighter marker

Hamiltonian spectral bound from lemma 3.16 to define the following variant of a

marker Hamiltonian:

Lemma 3.17. Let 𝐶 ∈ N be constant. Take the standard marker Hamiltonian 𝐻 ( 𝑓 )0

from [Bau+18b] defined on a local Hilbert space H0 = C
𝑑′ , where 𝑑′ depends on

the decay function 𝑓 to be implemented. Then there exists a variant 𝐻 ( 𝑓 ) with

local Hilbert spaceH =H0⊗C2, where |⋆⟩ is one of the basis states of the second

subspace, such that 𝐻 ( 𝑓 ) has the following additional properties:

1. 𝐻 ( 𝑓 ) =
∑
𝑖 ℎ𝑖, with ℎ𝑖 ∈ B(C𝑑⊗C𝑑), and 𝑑 = O(𝐶).

2. [ℎ, |⋆⟩⟨⋆|] = 0.

3. If 𝑆(𝑟) is the subspace of a single ■-bounded segment of length 𝐿, containing

a single⋆ offset at position 𝑟, then

− 3
4 𝑓 (𝐿)

≤ _min

(
𝐻 ( 𝑓 ) |𝑆(𝑟)

)
≤ − 1

4 𝑓 (𝐿)
, (3.34)

where 𝑓 (𝐿) = 𝐶 (𝐿 + 𝑟).

Proof. We design the marker Hamiltonian variant to perform the following procedure

before stopping:

1. Sweep the length of the edge 𝐿,

2. Sweep back to the |⋆⟩ symbol sitting at offset 𝑟.

3. If the number of rounds is not yet 𝐶, switch to another head state and repeat,

where even iterations run in reverse.

2We note that if this task is possible within the history state framework, then it may be possible to
prove the main result of this paper for 1D. Indeed, the 2D tiling construction is only used to allow the
1D Marker Hamiltonian to have the correct drop off.
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Finally, employ Gottesman and Irani’s boundary trick, used as in [Bau+18b, Rem. 3],

which exploits the mismatch in number of one- and two-local interaction terms to

remove the constant −1/2 offset present in theorem 3.4 by only adding translationally-

invariant nearest neighbour terms to the Hamiltonian. The energy scaling then

follows directly from theorem 3.4, and the dimension and [ℎ𝑀 , |⋆⟩⟨⋆|] = 0 follow

by construction. □

This marker Hamiltonian we will now combine with the Hilbert space of the

checkerboard Hamiltonian 𝐻′cb from lemma 3.15, to obtain a 1D marker Hamiltonian

where the location of the boundary symbols ■ and offset marker⋆ align with the

checkerboard tiles as

■ ←→ and ⋆ ←→ • (3.35)

and such that the marker Hamiltonian terms do not occur above any other but the

blue edge tiles.

Corollary 3.6 (1D Marker Hamiltonian). Let 𝐻′cb be the checkerboard Hamiltonian

from lemma 3.15, with local Hilbert spaceHcb. Take 𝐻 ( 𝑓 ) from lemma 3.17, with

local Hilbert spaceH , and let𝐶 ∈ N, 𝐶 ≥ 1. Then there exists a marker Hamiltonian

𝐻
( 𝑓 )
1 with one- and two-local interactions ℎ1 ∈ B(H ′), ℎ2 ∈ B(H ′⊗H ′) where

H ′ := (H ⊕ C)⊗Hcb, and such that 𝐻 ( 𝑓 )1 has the following properties.

1. If 𝑆(𝑟) denotes the subspace of a good tiling edge segment fig. 3.8 of length 𝐿,

where the marker • is offset at position 𝑟 from the left, then

− 3
4 𝑓 (𝐿)

≤ _min

(
𝐻
( 𝑓 )
1 |𝑆(𝑟)

)
≤ − 1

4 𝑓 (𝐿)
,

with 𝑓 (𝐿) = 𝐶 (𝐿 + 𝑟).

2. Restricted to any other tiling subspace 𝑆′ which does not contain the pair of

tiles in fig. 3.12,
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Figure 3.12: A tiling configuration.

we have _min(𝐻 ( 𝑓 )1 |𝑆′) ≥ 0.

Proof. Let ℎ′1 and ℎ′2 denote the one- and two-local terms of 𝐻 ( 𝑓 ) , trivially extended

to the larger Hilbert space H ⊕ C. Let |0⟩ denote the extra basis state in H ⊕ C.

Denote with Π a projector onto the tiling subspace spanned by the corner and blue

edge tiles given in proposition 3.1. We explicitly construct the local interactions ℎ1

and ℎ2 of 𝐻 ( 𝑓 )1 by setting

ℎ1 := ℎ′1⊗Π + |0⟩⟨0| ⊗Π + (1− |0⟩⟨0|)⊗Π
⊥+

(1− |⋆⟩⟨⋆|)⊗
��� •

〉〈
•

���+ (1− |■⟩⟨■|)⊗ ��� 〉〈 ���
and

ℎ2 := ℎ′2⊗Π
⊗2.

The marker bonus is only ever picked up by the (final state) marker head running into

the right boundary in a configuration |· · ·▷▷▶■⟩, which by the one-local Hamiltonian

constraints newly imposed can only occur above the tile pair blue edge–corner given;

any other configuration will have a net penalty ≥ 0. By construction, the ground

space of 𝐻 ( 𝑓 )1 features the required alignment from eq. (3.35). The claim then follows

from lemma 3.17. □
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This is the last ingredient we require to formulate a two-dimensional variant of

the Marker Hamiltonian, with the required falloff from corollary 3.5.

Theorem 3.5 (2D Marker Hamiltonian). We denote with Λ the given lattice. Let ℎ1

and ℎ2 be the local terms defining the 1D marker Hamiltonian from corollary 3.6

with constant 𝐶 ∈ N, 𝐶 ≥ 1. Further let 𝐻′cb be the augmented checkerboard lattice

with symbol • offset by 𝐿1/8 on each of the horizontal edges, as defined in lemma 3.15.

On the joint Hilbert space we set

𝐻 (⊞, 𝑓 ) := 1⊗𝐻′cb +
∑︁
𝑖∈Λ

ℎ
(𝑖)
1 +

∑︁
𝑖∈Λ

ℎ
(𝑖)
2

where the second sum runs over any grid index where the 2×1-sized interaction can

be placed. Then the following hold:

1. 𝐻 (⊞, 𝑓 ) block-decomposes as 𝐻 (⊞, 𝑓 ) =
⊕𝐿

𝑠=1𝐻
(⊞, 𝑓 )
𝑠 ⊕ 𝐵; the family 𝐻

(⊞, 𝑓 )
𝑠

corresponds to all those tiling patterns compatible with the augmented checker-

board pattern in lemma 3.15 with square size 𝑠. 𝐵 collects all other tiling

configurations.

2. The ground state of 𝐻 (⊞, 𝑓 )𝑠 , labelled |𝜓𝑠⟩ is product across squares |𝜓𝑠⟩ =⊗
𝑖 |𝜙𝑖⟩, where 𝑖 runs over all squares in the tiling.

3. 𝐵 ≥ 0.

4. Denote with 𝐴 a single square of the ground state |⊞𝑠⟩ (i.e. a square making

up the grid), denoted |⊞𝑠⟩𝐴. Then its energy contribution to the ground state

of 𝐻 (⊞, 𝑓 )𝑠 is

− 3
4𝐶 (𝑠+𝑠1/8)

≤ ⟨⊞𝑠 |𝐴𝐻 (⊞, 𝑓 ) (𝑠) |𝐴 |⊞𝑠⟩𝐴 ≤ −
1

4𝐶 (𝑠+𝑠1/8)
.

where 𝐶 is the constant from corollary 3.6.

5. Denote with Π = |⊞𝑠⟩⟨⊞𝑠 |𝐴 the projector onto the orthogonal complement of



3.9. Spectral Gap Undecidability of a Continuous Family of Hamiltonians 117

the ground state of 𝐻 (⊞, 𝑓 )𝑠 |𝐴. Then

Π𝐻
(⊞, 𝑓 )
𝑠 |𝐴Π ≥ 0.

Proof. We prove the claims step by step.

Claim 1 & 2 The classical tiling Hamiltonian 𝐻′cb is diagonal in the computational basis.

Furthermore, by construction, ℎ1 and ℎ2 defined in corollary 3.6 commute

with the tiling terms.

Claim 3 The bonus of −1/2 introduced in the marker Hamiltonian can only ever act

across a pair of tiles

Since we have proven the checkerboard tiling to be robust with respect to the

occurence of this tile pair in remark 3.3, we know that the combination carries

at least a penalty ≥ 1 if it occurs in any non-checkerboard configuration; this

means that any tiling in 𝐵 can never have a sub-configuration such that the

marker bonus offsets penalties inflicted by the tiling constraints; 𝐵 ≥ 0 follows.

Claim 4 The “good” subspace in the fourth claim we know by remark 3.4 to necessarily

look as the blue edge segment fig. 3.8. This, in turn, means that 𝑟 = ⌈𝐿1/8⌉ in

lemma 3.17, and the claim follows from the first energy bound proven therein.

Claim 5 Follows in a similar fashion as the fourth claim, from remark 3.4 and from the

second claim in lemma 3.17. □

3.9 Spectral Gap Undecidability of a Continuous Fam-

ily of Hamiltonians
In this section we combine the 2D Marker Hamiltonian with the QPE History State

construction.
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3.9.1 Uncomputability of the Ground State Energy Density
Lemma 3.18. Let ℎ1, ℎ

row
2 , ℎcol

2 be the one- and two-local terms of 𝐻 (⊞, 𝑓 ) with local

Hilbert spaceHm, and similarly denote with 𝑞1, 𝑞2 be the one- and two-local terms

of 𝐻comp from definition 3.5 with local Hilbert spaceHq, respectively. Let Πedge be a

projector onto the edge tiles in proposition 3.1. Define the combined Hilbert space

H :=Hm ⊗ (Hq ⊕C), where |0⟩ denotes the basis state for the extension ofHq.

We define the following one- and two-local interactions:

ℎtot
1 := ℎ1⊗1+Πedge⊗𝑞1 +Πedge⊗ |0⟩⟨0| +Π⊥edge⊗(1− |0⟩⟨0|)

ℎ
tot,row
2 := ℎrow

2 ⊗1+Π
⊗2
edge⊗𝑞2

ℎ
tot,col
2 := ℎcol

2 ⊗1

𝑝
tot,row
2 :=

[��� 〉〈 ���⊗1] ⊗ [
1⊗ | ⟩⟨ |

]
+[

1⊗
��� 〉〈 ���] ⊗ [

| ⟩⟨ | ⊗1
]

On a lattice Λ define the overall Hamiltonian

𝐻 :=
∑︁
𝑖∈Λ

ℎtot
1,(𝑖) +

∑︁
𝑖∈Λ

(
ℎ

tot,row
2,(𝑖) + 𝑝

tot,row
2,(𝑖)

)
+
∑︁
𝑖∈Λ

ℎ
tot,col
2,(𝑖) ,

where each sum index runs over the lattice Λ where the corresponding Hamiltonian

term can be placed. Then 𝐻 has the following properties:

1. 𝐻 =
⊕

𝑠𝐻𝑠 ⊕ 𝐵′ block-decomposes as 𝐻 (⊞, 𝑓 ) in theorem 3.5, where 𝐵′ = 𝐵⊗1.

2. 𝐵′ ≥ 0.

3. All eigenstates of 𝐻𝑠 are product states across squares in the tiling with square

size 𝑠, product across rows within each square, and product across the local

Hilbert spaceHm ⊗ (Hq ⊕C).

4. Within a single square 𝐴 of side length 𝑠 within a block 𝐻𝑠, all eigenstates are

of the form |⊞𝑠⟩ |𝐴⊗ |𝑟0⟩ ⊗ |𝑟⟩, where

(a) |⊞𝑠⟩ is the ground state of the 2D marker Hamiltonian block 𝐻 (⊞, 𝑓 )𝑠 ,
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(b) |𝑟0⟩ is an eigenstate of 𝐻comp ⊕ 0, i.e. the history state Hamiltonian with

local padded Hilbert spaceHq ⊕C, and

(c) |𝑟⟩ ∈ (Hq ⊕C)⊗(𝑠×(𝑠−1)) defines the state elsewhere.

5. The ground state of𝐻𝑠 |𝐴 is unique and given by|𝑟⟩ = |0⟩⊗(𝑠×(𝑠−1)) and |𝑟0⟩ = |Ψ⟩,

where

|Ψ⟩ =
𝑇−1∑︁
𝑡=0
|𝑡⟩ |𝜓𝑡⟩

is the history state of 𝐻comp as per theorem 7.9, and such that |𝜓0⟩ is correctly

initialized.

Proof. We already have all the machinery in place to swiftly prove this lemma. First

note that, by construction, all of {ℎtot
1 , ℎ

tot,row
2 , ℎ

tot,col
2 , ℎcol

2 , 𝑝
tot,row
2 } pairwise commute

with the respective tiling Hamiltonian terms {ℎ1, ℎ
row
2 , ℎcol

2 }. Furthermore, the local

terms from 𝐻comp—𝑞1 and 𝑞2—are positive semi-definite; together with theorem 3.5

this proves the first three claims. As shown in theorem 7.9 and since the Hamiltonian

constraints in 𝑝tot,row
2 enforce the ground state of the top row within the square 𝐴 to

be bracketed, the first and third claim imply the fourth and fifth. □

Lemma 3.19. Take the same setup as in lemma 3.18, and let 𝐻comp = 𝐻comp(𝜑′)

for 𝜑′ ∈ [𝜑([), 𝜑([) + 2−[−ℓ), where 𝜑([) is the unary encoding of [ ∈ N from

definition 3.4. As usual ℓ ≥ 1. Then for a block 𝐻𝑠 we have

1. If 𝑠 < [, 𝐻𝑠 ≥ 0.

2. If 𝑠 ≥ [ andM does not halt on input [ within space 𝑠, then 𝐻𝑠 ≥ 0.

3. If 𝑠 ≥ [ andM halting on input [, and ℓ ≥ log2(𝑠−22𝑠1/4) as per eq. (3.32),

then _min(𝐻𝑠) < 0.

Proof. We start with the first claim. By lemma 3.18, it suffices to analyse a single

square 𝐴 of side length 𝑠; the proof then essentially follows that of [Bau+18b, Thm.

20]. We first assume 𝑠 < [. Using the same notation as in theorem 3.5, and denoting
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with Πedge the projector onto the white horizontal edge within 𝐴, we have

_min(𝐻𝑠 |𝐴) = _min

[
𝐻 (⊞, 𝑓 ) (𝑠) |𝐴 ⊗1+Πedge ⊗𝐻comp(𝜑′)

]
= 𝐸edge(𝑠) +𝐸pen,tooshort(𝑠) ≥ 0,

where we used corollary 3.5 and theorem 3.5 and the fact that the two Hamiltonian

terms in the sum commute.

The other claims follow equivalently: in each case by corollary 3.5, the sum of

the edge bonus and TM penalties satisfy eq. (3.33). For the second claim, by the

same process we thus get

_min(𝐻𝑠 |𝐴) = 𝐸edge(𝑠) +𝐸pen,non-halt(𝑠) ≥ 0.

Then for the third claim,

_min(𝐻𝑠 |𝐴) = 𝐸edge(𝑠) +𝐸pen,halt(𝑠) < 0. □

Corollary 3.7. Take the same setup as in lemma 3.19, and let 𝜑([) encode a halting

instance. Set 𝑤 = argmin𝑠{_min(𝐻𝑠) < 0}, and 𝑊 a single tile of size 𝑤×𝑤. Then

the ground state energy of 𝐻 (𝜑′) on a grid Λ of size 𝐿×𝐻 is bounded as

_min(𝐻 (𝜑′)) =
⌊
𝐿

𝑤

⌋ ⌊
𝐻

𝑤

⌋
_min(𝐻 (𝜑′) |𝑊 ). (3.36)

Proof. From lemma 3.18, we know the ground state of 𝐻 (𝜑′) is a grid with offset

(0,0) from the lattice’s origin in the lower left. Each square of the grid contributes

energy _min(𝐻 (𝜑′) |𝑊 ) < 0; the prefactor in eq. (3.36) is simply the number of

complete squares within the lattice.

For all truncated squares on the right hand side, 𝐻comp from definition 3.5 with

either the left or right ends truncated has zero ground state energy, since it is either

free of the in- or output penalty terms. Furthermore, we see that if we truncate the

right end of the 1D Marker Hamiltonian 𝐻 ( 𝑓 )1 in lemma 3.17, it has a zero energy
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ground state since it never encounters the tile pair

from theorem 3.5 necessary for a bonus. Truncating squares at the top does not yield

any positive or negative energy contribution. The total lattice energy is therefore

simply the number of complete squares on the lattice, multiplied by the energy

contribution of each square. □

Theorem 3.6 (Undecidability of Ground State Energy Density). Discriminating be-

tween a negative or nonnegative ground state energy density of 𝐻 (𝜑′) is undecidable.

Proof. Immediate from lemma 3.19 and corollary 3.7; the energy of a single square

is either a small negative constant, or nonnegative. Determining which is at least as

hard as solving the halting problem. □

With this result we can almost lift the undecidability of ground state energy

density to the spectral gap problem. In order to make the result slightly stronger, for

this we first shift the energy of 𝐻 (𝜑′) by a constant.

Lemma 3.20 ([Bau+18b, Lem. 23]). By adding at most two-local identity terms, we

can shift the energy of 𝐻 from lemma 3.18 such that

_min(𝐻)


≥ 1 in the non-halting case, and

−→ −∞ otherwise.

3.9.2 Undecidability of the Spectral Gap

With the proven uncomputability of the ground state energy density, we can lift the

result using the usual ingredients—a Hamiltonian with a trivial ground state, as well

as a dense spectrum Hamiltonian that will be pulled down alongside the spectrum of

the QPE Hamiltonian, if the encoded universal Turing machine halts on the input

encoded in the phase parameter—to prove that the existence of a spectral gap for our

constructed one-parameter family of Hamiltonians is undecidable as well.
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Theorem 3.7 (Undecidability of the Spectral Gap). For a continuous-parameter

family of Hamiltonians, discriminating between gapped with trivial ground state

|0⟩⊗Λ, and gapless as defined in definitions 3.1 and 3.2, is undecidable.

Proof. So far we have constructed a Hamiltonian 𝐻 (𝜑′) with undecidable ground

state energy asymptotics given in lemma 3.20; we denote its Hilbert space withH1.

We add the usual Hamiltonian ingredients as in [CPGW15a] or [Bau+18b, Thm. 25]:

𝐻dense Asymptotically dense spectrum in [0,∞) on Hilbert spaceH2.

𝐻trivial Diagonal in the computational basis, with a single 0 energy product ground

state |0⟩⊗Λ, and a spectral gap of 1 (i.e. all other eigenstates have nonnegative

energy ≥ 0); its Hilbert space we denote withH3.

𝐻guard A 2-local Ising type interaction onH :=H1 ⊗H2 ⊕H3 defined as

𝐻guard :=
∑︁
𝑖∼ 𝑗

(
1
(𝑖)
1,2 ⊗1

( 𝑗)
3 +1

(𝑖)
3 ⊗1

( 𝑗)
1,2

)
,

where the summation runs over all neighbouring spin sites of the underlying

lattice Λ (horizontal and vertical).

We then define

𝐻Λ(𝐿) (𝜑′) := 𝐻 (𝜑′) ⊗12 ⊕ 03 +11 ⊗𝐻dense ⊕ 03 +01,2 ⊕𝐻trivial +𝐻guard.

The guard Hamiltonian ensures that any state with overlap both withH1 ⊗H2 and

H3 will incur a penalty ≥ 1. It is then straightforward to check that the spectrum of

𝐻tot is given by

spec(𝐻Λ) = {0} ∪ (spec(𝐻 (𝜑′)) + spec(𝐻dense)) ∪𝐺

for some 𝐺 ⊂ [1,∞), where the single zero energy eigenstate stems from 𝐻trivial.

In case that _min(𝐻 (𝜑′)) ≥ 1, spec(𝐻 (𝜑′)) + spec(𝐻dense) ⊂ [1,∞) and hence

the ground state of 𝐻Λ is the ground state of 𝐻trivial with a spectral gap of size one.
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For _min(𝐻 (𝜑′)) −→−∞, 𝐻dense is asymptotically gapless and dense; this means

that 𝐻Λ becomes asymptotically gapless as well. □

Since the spectral properties of 𝐻 (𝜑′) are—by lemma 3.19—robust to a choice

of 𝜑′ within an interval around an encoded instance 𝜑([) as per definition 3.4—i.e.

for large enough ℓ we can vary 𝜑′ ∈ [𝜑([), 𝜑([) +2−[−ℓ)—theorem 7.5 immediately

proves theorem 3.1 and corollaries 3.1 and 3.2.

The Hamiltonian we have used to prove this result had phases distinguishable by

an order 𝑂𝐴/𝐵. However, we can adapt the Hamiltonian to change between any two

phases which have different properties. For example, let 𝐻𝑋 and 𝐻¬ be Hamiltonians

with zero ground state energy such that their grounds states have property 𝑋 and

not 𝑋 respectively in the thermodynamic limit (and assume 𝐻 (𝜑′) has property 𝑋).

Then determining whether the ground state of the Hamiltonian:

𝐻Λ(𝐿) (𝜑′) := 𝐻 (𝜑′) ⊗12 ⊕ 03 +11 ⊗𝐻𝑋 ⊕ 03 +01,2 ⊕𝐻¬𝑋 +𝐻guard.

has property 𝑋 in the thermodynamic limit is undecidable. Thus the phase diagram

between these two phases is uncomputable.

3.10 Discussion
One of the main aims of this work was as a first foray into the study of the complexity

of phase transitions. Quantum phase transitions are one of the best studied, but

poorly understood, physical phenomena. We envision this work can be extended in

several directions:

Uncomputablity in 1D. Here we have only studied phase diagrams in 2D. As

described in 3.8, our construction has relied on the fact we can encode a classical

Turing Machine into 2D tilings. This is not possible in 1D. However, since 1D

systems tend to be fundamentally easier to solve than 2D systems, it may still be

the case that the phase diagram of a 1D system is computable. However, given the

undecidability of the spectral gap in 1D [Bau+18b], it would not be unexpected that

computing the phase diagram in 1D is also uncomputable.
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More Realistic Systems. The complexity of determining the critical value of 𝜑 at

which the quantum phase transition occurs. This work has shown it is in general

undecidable, but for more physically realistic systems—for example those with

smaller Hilbert space dimension—does this remain the case?

Finite Systems. In this work we have only studied phase diagrams in the thermody-

namic limit; naturally, those cannot occur in reality. Yet for any finite-sized system,

determining any property is necessarily decidable (as we can simply diagonalise

the Hamiltonian). A natural question is thus what we can say about the complexity

of determining phases and phase parameters for finite system sizes, for a suitable

notion of phase transitions in this context. We do not know the limits for which

the properties of condensed matter systems become decidable. However, the study

of these limits has potentially far-reaching consequences for high-energy physics

and quantum chemistry, among other areas. We explore an element of this later in

chapter 7.



Chapter 4

The Computational Complexity of the

Ground State Energy Density

Problem

4.1 Introduction

In section 2.3 of the introduction of this thesis we reviewed a number of Hamiltonian

complexity problems which characterised how difficult it is to determine properties

of Hamiltonians beyond the ground state energy. The input to all of these problems

is (usually) a description of a local Hamiltonian on a finite number of particles, and

the complexity-theoretic hardness is a function of varying the Hamiltonian.

However, many-body and condensed matter physicists are more often interested

in estimating properties of a many-body system in the thermodynamic limit of

infinitely many particles. Many physical properties, such as phase transitions,

phase diagrams, spectral gaps, etc., are only well-defined theoretically in this limit.

Moreover, in experimental physics, these models often arise as idealisations of

physical materials, where a typical sample will contain such a large number of atoms

that the properties of the material are well-approximated by the infinite limit.

Furthermore, they are typically interested in computing the physical properties of

a single fixed Hamiltonian. Often, the local interactions have some regular structure,

such as translational invariance where all the local interactions take the same form.
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The standard formulation of the Local Hamiltonian problem does not capture this

type of question — every different instance corresponds to a different Hamiltonian –

rather than a fixed Hamiltonian.

Examples of these cases are the Fermi-Hubbard model (believed to be a model of

high temperature superconductivity) or Lattice Quantum Chromodynamics (a model

of the gluon-quark interactions). We wish to extract the properties both of these fixed

Hamiltonians in the thermodynamic limit. The Local Hamiltonian problem and other

problems where the Hamiltonian varies in the input do not capture the complexity of

this.

Related Work There are a small number of results proving hardness of estimating

the ground state energy for a translationally invariant Hamiltonian where the local

interaction is fixed, and the only input to the problem is the lattice size. Here, since a

lattice of size 2𝑛 can be specified in 𝑛 bits, the natural complexity class is NEXP (or

QMAEXP in the quantum case), rather than NP. The Wang tiling completion problem

is known to be NEXP-complete [Pap94; GI09], which can trivially be translated

to the ground state energy problem for a single, fixed, translationally invariant,

nearest-neighbour, classical Hamiltonian on a 2D square lattice, where the state at

some of the boundaries is fixed (fixed boundary conditions). As the interaction is

fixed, the only remaining problem input is the size of the lattice. Remarkably, this

alone suffices for the hardness result. Gottesman and Irani [GI09] also extended

these results to more natural types of boundary condition. They went on to prove the

analogous QMAEXP-completeness result for families of quantum Hamiltonians on a

1D chain. However, these results still concern Hamiltonians on finite numbers of

particles; indeed, the problem input is the number of particles the Hamiltonian acts

on.

In the thermodynamic limit, the ground state energy is no longer a meaningful

quantity; it typically has infinite magnitude, and is not physically measurable. In this

setting, the more relevant quantity is the ground state energy density: the minimum

energy per particle. Just as the ground state energy is a key starting point for studying

the physics of finite many-body systems, the ground state energy density (GSED) is a
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key starting point for physics in the thermodynamic limit. Methods of approximating

the ground state energy density in condensed matter systems have been the subject of

much study in the physics literature [Per+92; HW94].

Less is known about the computational complexity of the ground state energy

density problem, than for the ground state energy. Gottesman and Irani [GI09]

proved that the ground state energy density problem for translationally invariant,

nearest-neighbour, quantum Hamiltonians on a 1D chain with a Ω(1/2𝑛) promise-gap

is NEXP-complete. Here, the input is a description of the local interaction of the

system, and the complexity is a function of varying over the Hamiltonian. Meanwhile,

as a stepping stone to their undecidability result for the spectral gap, [CPGW15b;

CPGW15a] proved that deciding whether the ground state energy density is 0 or

strictly positive, with no promise gap, is undecidable, Their result holds for quantum,

translationally invariant, nearest neighbour Hamiltonians on a 2D square lattice with

a fixed local dimension. [Bau+18b] later extended this undecidability result to 1D

chains (again as a stepping stone to the spectral gap problem) and [BCW21] extends

to to 2D systems for which the local interaction are analytic in the input parameter

(as we saw in chapter 3).

However, as with most ground state energy complexity results, these results

still have as input the description of the Hamiltonian, and the hardness is a result of

varying the Hamiltonian. That is, to prove hardness we need to vary the physical

systems itself. Indeed, it is perhaps better to think of these results as being about a

parameterised family of Hamiltonians rather than a fixed Hamiltonian.

4.1.1 The Ground State Energy Density problem

If we restrict to a single, fixed Hamiltonian in the thermodynamic limit, it may seem

that there are no input parameters left, and complexity theory can have nothing to

say! However, one can still ask about the complexity of estimating the ground state

energy density to a given precision, where the only input is the precision required.

(See section 4.2 for precise problem definitions.) Arguably, this is the problem

formulation closest to that often encountered in condensed matter physics.

The ground state energy density of the specific Hamiltonian we construct is a
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single, real number E𝜌. Our hardness results imply the solutions to all instances

of NEEXP-complete problem are encoded in the digits of this single number, with

successive digits of E𝜌 giving the solution to successive instances of a canonical

NEEXP-complete problem. In this sense, the ground state energy density of this

Hamiltonian is somewhat reminiscent of Chaitin’s constant [Cha75], but encoding

solutions to problems in a certain complexity class, rather than the Halting problem.

Aside: at the time that a preprint of this work was released, a similar work by

Aharonov and Irani was released with similar results on the estimation of the ground

state energy density [AI21] (with the published work now appearing here [AI22]).

Both results were achieved independently and publication of the preprints was

organised to appear simultaneously.

4.2 Results
Define the energy density of the finite lattice as:

Definition 4.1 (Ground State Energy Density). Consider a translationally invariant

Hamiltonian defined on an 𝐿×𝐻 lattice, 𝐻Λ(𝐿×𝐻)). The ground state energy density

is defined as

E𝜌 (𝐿,𝐻) :=
_0(𝐻Λ(𝐿×𝐻))

𝐿𝐻
. (4.1)

The thermodynamic limit of the ground state energy density is defined as the limiting

value as the lattice width and height bare taken to infinity:

E𝜌 := lim
𝐿,𝐻→∞

E𝜌 (𝐿,𝐻). (4.2)

If the ground state energy density is referred to without qualification, then it is

referring to the thermodynamic limit case.

This limit is well defined [CPGW15a]. We now consider some useful definitions

for the computational problems. For all these definitions we will be referring to

the infinite lattice case. We can cast the problem of finding E𝜌 as a computational

promise problem similar in spirit to the local Hamiltonian problem:
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Definition 4.2 (Ground State Energy Density (GSED) promise problem).

Problem Parameters: A fixed, translationally invariant, nearest-neighbour Hamilto-

nian on a 2𝐷 infinite square lattice of 𝑑-dimensional spins.

Input: Two real numbers 𝛽 and 𝛼, such that 𝛽−𝛼 = Ω(2−𝑝(𝑛)), for some integer 𝑛

and polynomial 𝑝(𝑛).

Output: Determine whether E𝜌 > 𝛽 (No instance) or E𝜌 < 𝛼 (YES instance).

Promise: The ground state energy density does not lie between in the interval [𝛼, 𝛽].

This is perhaps more naturally thought of in terms of the corresponding function

problem:

Definition 4.3 (Ground State Energy Density (FGSED) function problem).

Problem Parameters: A fixed, translationally invariant, nearest-neighbour Hamilto-

nian acting on an 2𝐷 infinite lattice of 𝑑-level spins.

Input: An error bound 𝜖 , specified in binary.

Output: An approximation to the ground state energy density, Ẽ𝜌 such that

| E𝜌−Ẽ𝜌 | ≤ 𝜖 .

We will often restrict GSED in definition 4.2 to classical Hamiltonians, rather

than general (quantum) Hamiltonians. When we wish to highlight this distinction,

we refer to these as classical GSED and quantum GSED, respectively.

The main results of this work are as follows:

Theorem 4.1. PNEEXP ⊆ EXPGSED ⊆ EXPNEXP for classical GSED.

Here NEEXP is defined analogously with NP, but the verifying TM is allowed

doubly exponential time to run and the witness can be doubly exponentially long. We

expect that the EXPNEXP upper bound presented here is tight and there is potentially

room to improve the lower bound. The above theorem implies:

Corollary 4.1. GSED is NEEXP-hard under exponential time Turing reductions, for

a classical, translationally invariant, nearest-neighbour Hamiltonian.

We also prove:

Theorem 4.2. Classical GSED ∈ NEXP.
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Corollary 4.1 and theorem 4.2 are not in conflict with each other. Allowing

exponential-time Turing reductions (as opposed to the polytime Turing reductions

usually considered) allows exponentially harder problems to be solved.

The fact we are considering EXPGSED rather than GSED with polytime reductions

is fundamental to the problem being about estimating the the ground state energy

density for a particular Hamiltonian, where the problem instances differ only in the

precision to which that same ground state energy density should be computed (rather

than each problem instance corresponding to a different Hamiltonian). We show

that, using our hardness construction, one should not expect NP ⊆ PGSED unless the

polynomial hierarchy collapses to Σ
𝑝

2 .

We can also consider the case of quantum Hamiltonians:

Theorem 4.3. PNEEXP⊆EXPGSED⊆EXPQMAEXPfor quantum GSED.

For the function problem, one readily obtains the corresponding complexity

bounds:

Theorem 4.4. FGSED ∈ FPNEXP for classical FGSED.

We also get the bound

Lemma 4.1. FPNEEXP ⊆ FEXPFGSED ⊆ FEXPNEXP, for FGSED for a fixed classical,

translationally invariant, nearest neighbour Hamiltonian.

4.3 Preliminaries
Definition 4.4. NEEXP or N2EXP

A language 𝐿 is in NEEXP if there exists a positive constant 𝑘 and a deterministic

Turing Machine 𝑀 such that for each instance 𝑥 and a classical witness 𝑤 such that

|𝑤 | =𝑂 (22 |𝑥 |𝑘 ), on input (𝑥,𝑤), 𝑀 halts in 𝑂 (22 |𝑥 |𝑘 ) steps and

• if 𝑥 ∈ 𝐿, ∃𝑤 such that 𝑀 accepts (𝑥,𝑤) with probability 1.

• if 𝑥 ∉ 𝐿 then ∀𝑤, 𝑀 accepts (𝑥,𝑤) with probability 0.

We also define QMAEEXP the same way as QMA, but allowing for a doubly-

exponentially long witness and circuit runtime.
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We also refer the reader to section section 2.2.3 for definitions of oracle machines

and their associated complexity classes. For the particular case of PSPACE𝑂 machines,

the PSPACE machine can execute exponentially many computational steps. Thus

there is a subtlety as to whether the space bound also applies to the oracle tape or

not. Multiple possible definitions for what the PSPACE machine has access to with

regards to the oracle tape have been considered in the literature [For94]. We discuss

the different results we get depending on the choice of definition in section 4.6.2.1.

4.4 Tiling Preliminaries

4.4.1 Robinson Tiles

Robinson’s tiling [Rob71] is based on a set of 5 basic Wang tiles, shown in figure

fig. 4.1, with the rule that one tile can be placed next to another only if the arrow

heads on the first tile correctly join with the arrow tails on the adjacent tile. I.e. the

tiling rules enforce the condition that arrow heads on one tile must meet arrow tails

of the same type on its neighbour in the appropriate direction.

(a)	   (b)	   (d)	  (c)	   (e)	  

Figure 4.1: The five Robinson tiles we will use. Image taken from [CPGW15a].

Tile (a) in fig. 4.1 has arrows on all sides of the tile and is known as a cross and

in this depiction is said to face up and to the right. The other 4 tiles are known as

arms. Each of the arms has a principle arrow across the centre of the tile and which

indicates its direction (all the tiles depicted in fig. 4.1 are facing downwards). Arrow

markings can be either red or green. On a given arm the horizontal and vertical

arrows must have different colours and on cross tiles we force all arrow markings to

have the same colour. The Robinson tile set includes all rotations and reflections of

these basic tiles.
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When these tiles are augmented with certain additional markings, described

in [Rob71; CPGW15a], the tiling rules force a pattern of interlocking, nested squares

to form in any valid tiling of the plane (see fig. 4.2(c)). The series of squares

have side lengths 3,7,15,31, . . . ,2𝑛 − 1, for 𝑛 ∈ N (see fig. 4.3). Robinson adds

additional coloured markings to the tiles, such that for odd 𝑛 the borders formed by

the double-arrow tile markings running along the edges of the squares are green, and

for even 𝑛 they are red. We direct the reader to [Rob71] and [CPGW15a] for more

detailed discussions of tiling pattern and how it is formed.

Figure 4.2: (a) A possible tiling arrangement to create a 3-square. (b) shows the same square
once the coloured arrows have been introduced. (c) shows a 7-square having
combined several 3-squares. Images (b) and (c) taken from [CPGW15a].

For our purposes we will mostly focus on red borders, and refer to these as just

borders. The combination of the borders and the interior of the border is referred

to as a square. We refer to a red border of side 4𝑛−1 as an 𝑛-border. When green

borders are referenced, this will always be made explicit.

Consider fig. 4.4. Let 𝑅𝑟𝑣, 𝑅𝑙𝑣, 𝑅𝑢ℎ, 𝑅
𝑑
ℎ

be the sets of Robinson tiles which contain

tiles of type (𝑏), (𝑐), and (𝑑) markings, where the double-arrow markings going

across the entire tile are red, and where the arrow markings going across the entire

tile are respectively facing right, left, up or down. Let 𝑅𝑋 be the set of red crosses,

and let 𝑅𝑈𝑅
𝑋
, 𝑅𝑈𝐿

𝑋
, 𝑅𝐷𝐿

𝑋
, 𝑅𝐷𝑅

𝑋
be the cross tiles that have double arrow markings facing

up-right, up-left, down-left and down-right respectively.

Definition 4.5 (𝑛-borders). Consider a (4𝑛 − 1) × (4𝑛 − 1) subset of a tiling grid,

not including its interior. Then the region forms 2-border if for every point along

the left vertical edge, right vertical edge, bottom horizontal edge, and along the
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Figure 4.3: A Robinson tiling pattern showing only red borders. Image modified from
[CPGW15a].

top horizontal edge is in 𝑅𝑙
ℎ
, 𝑅𝑟

ℎ
, 𝑅𝑑

ℎ
, 𝑅𝑢

ℎ
, respectively. Furthermore, the tile in the

top-right corner 𝑅𝐷𝐿
𝑋

, top-left corner is 𝑅𝐷𝑅
𝑋

, bottom-left corner is 𝑅𝑈𝑅
𝑋

, and bottom

right corner is 𝑅𝑈𝐿
𝑋

.

Finally note that Robinson tiles allows for two half-planes to be translated

relative to each other without violating any of the tiling rules. We wish to avoid this

and hence use the modified set of Robinson tilings introduced in [CPGW15a], such

that the final set of tiles is all rotations and reflections of those shown in fig. 4.4. It is

shown in [CPGW15a] that these tiles produce the same pattern of nested squares, but

prevent any two half-planes from be translated relative to each other.

(b) (d)(a) (c) (e)

Figure 4.4: The standard Robinson tiles with additional dashed markings added in to prevent
slippage between planes. Image modified from [CPGW15a].
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Figure 4.5: The evolution of a classical TM can be represented by Wang tiles, where colours
of adjacent tiles have to match, and arrow heads have to meet arrow tails. Here
the evolution runs from the bottom of the square to the top. The red labels
between adjacent rows represent the position and state of the TM head, and the
red labels between adjacent columns represent movement of the TM head after
it has acted on the cell.

4.4.2 Encoding Turing Machines with Tiles
It is well known that the evolution of a classical Turing Machine can be encoded as a

set of Wang tiles as explained in section 3.7.4 (see fig. 4.5 for an example of such

an encoding, and see [Ber66; Rob71; GI09; CPGW15a; Bau+18a] for some further

detailed discussions on this topic).

4.4.3 Encoding Turing Machines in the Robinson Tiling
In this section we review how the tiling-encoding of TMs can be combined with the

Robinson tiling to create a new set of tiles which, when the plane is tiled according

to the tiling rules, encodes the evolution of a separate TM within each 𝑛-square in

the Robinson tiling pattern. This construction was introduced in [Rob71] to prove

undecidability of the tiling of a 2D plane.

Encoding the evolution of a TM directly within the interior of a 𝑛-border is not

possible as the Robinson tiling pattern is composed of 𝑚-squares nested within other

𝑛-squares, 𝑚 < 𝑛. Thus TMs would overlaps with each other. [Rob71] circumvents
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this problem by identifying a sub-grid within each Robinson 𝑛-border which allows a

TM to be encoded without overlapping with the smaller 𝑚-squares, 𝑚 < 𝑛, nested

within.

Definition 4.6 (Free Rows/Columns and Free Squares, [Rob71]). A free row/column

of square is a row/column in a Robinson 𝑛-border that stretches across the border’s

interior uninterrupted by any of the 𝑚-borders with 𝑚 < 𝑛.

A free square or free tile is a square in the grid that is both in a free row and a

free column. Within an 𝑛-square there are exactly 2𝑛 +1 free rows/columns.

Lemma 4.2 (Encoding TM in Robinson Tiling, [Rob71]). Consider any classical

Turing Machine which can have its evolution be encoded in a (2𝑛 +1) × (2𝑛 +1) grid

of Wang tiles. Then the evolution of this TM can be encoded in the free rows and

columns of an 𝑛-square in a Robinson Tiling.

We will use the details of Robinson’s construction of lemma 4.2 later, hence we

provide some exposition here.

Consider a Robinson 𝑛-border. Following [Rob71], to demarcate where the

free tiles are so that we can encode a Turing Machine in them, introduce a new kind

of marking on the tiles called an ‘obstruction signal’. These signals are designed

so they are emitted and absorbed from the outside of a red border and while also

being absorbed by the inside of a border, as seen in fig. 4.6. In terms of tiles, these

markings are formed by adding an additional set of markings such that tiles of type

(b) in fig. 4.4 with a red double-arrow “emit” the obstruction signals from one side

and “absorb” them on both sides. Tiles that do not emit or absorb obstruction signals

force them to propagate in the same direction. The obstruction signals are only

emitted from the outer edges of a red Robinson border. A free tile is one which does

not have an obstruction signal going across it in either direction. In our new tile set,

we only encode the Turing Machine tape, head and state symbols in the free tiles.

Transmitting Signals between Free Tiles Thus we are able to encode the evolution

of a Turing Machine in these free tiles, effectively creating a (2𝑛 +1) × (2𝑛 +1) square

for it to run in. There is a problem in that the free tiles are not spatially close to
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Figure 4.6: The obstruction signals for a red 24-square are shown in blue. Each of the tiles
within the 22-squares emits a signal outwards. The free rows are the rows in
which there are no obstruction signals running horizontally (for example the
central row). The free columns are the columns in which there are no obstruction
signals running vertically (for example the central column).

each other. To solve this, [Rob71] implicitly introduces a new set of tile markings:

Turing Machine signals. These signals can be emitted and absorbed by free tiles

and run along free rows and columns. Otherwise they are absorbed by tiles with

double arrowed red markings: tiles of types (a), (b), or (c), shown in fig. 4.4, on the

sides of tiles parallel to the red double arrow lines. Tiles which are not free tiles,

and do not absorb the TM signals, force the TM signals to propagate across them.

These signal markings allow the tiling to transmit the necessary conditions between

spatially distant free tiles.

Initialising the TM Finally, boundary conditions are needed to force the correct

initial configuration of the Turing Machine. To ensure this, [Rob71] introduces a

further set of tile markings that interact with the Turing Machine markings. The

markings are chosen so that every arm tile which is both horizontally facing and

forms the bottom border of an 𝑛-border, and which does not absorb an obstruction

signal, must emit a Turing Machine signal upwards. Choose this signal to be 𝑠0

which will force the tiles in the initial layer at free positions to be blank, so that the

initial tape configuration is entirely blank.

The exception to this is in the centre of the edge where the tile will emit a Turing
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Machine signal 𝑠0𝑞0 indicating the Turing Machine head starts there. Similarly,

choose the tiling markings so any arms in the top, left and right parts of the square’s

border will absorb any stray Turning Machine signals along their inner edges.

4.5 Robinson Tiling Robustness
In this section we prove a series of results demonstrating that if a region 𝑅 ⊆ Z2 is

tiled with Robinson tiles, but tiling defects are allowed to occur (i.e. points between

adjacent tiles at which the matching rules are not satisfied), then only a finite number

of Robinson squares can be destroyed per defect. Similarly bounds were proven in

[Mie97; CPGW15a], but are not strong enough for our purposes.

4.5.1 Robinson Border Deficit Bound
Definition 4.7 (Tile configuration). A tile configuration is an assignment of a

Robinson tile to each point in the lattice Z2. The defect set of a tile configuration 𝑇

is the set of all points in 𝑍∗2 between non-matching tiles in 𝑇 .

Definition 4.8 (Border deficit). The 𝑛-border deficit, deficit𝑛 (𝑇, 𝑆, 𝑅), in a region

𝑆 of a tile configuration 𝑇 with respect to Robinson tiling 𝑅, is the (magnitude of

the) difference between the total number of complete 𝑛-borders of 𝑇 within 𝑆, and the

number of complete 𝑛-borders of 𝑅 within 𝑆.

The total border deficit, deficit(𝑇), of a tile configuration 𝑇 is the difference

between the total number of complete borders in 𝑇 and the number of complete

borders in a Robinson tiling of the same region, maximised over Robinson tilings.

The bulk of the work proving a bound on the border deficit was done by Toby

Cubitt, and hence we exclude the proofs from this thesis, and instead state the relevant

theorem:

Theorem 4.5. Let 𝑇 be a tile configuration of a finite subregion of Z2 with perimeter

of length 𝐿. Let 𝐷 denote its defect set. The border deficit of 𝑇 is bounded by

deficit(𝑇) ≤ 399|𝐷 | + 𝐿. (4.3)

Proof. See the arXiv preprint [WC21]. □
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We now use theorem 4.5 to prove a bound on the deficit on the number of

Robinson squares.

Definition 4.9. An inner border of an 𝑛-border in a Robinson tiling is an 𝑚-border

(necessarily with 𝑚 ≤ 𝑛) located in the interior of the 𝑛-border, and not contained in

the interior of any other border.

Definition 4.10. An 𝑛-square is a tile configuration of a (4𝑛−1) × (4𝑛−1) region of

the lattice containing an 𝑛-border around the perimeter, inner 𝑚-borders in the same

locations as in a Robinson tiling, and no other borders and no defects in the region

between the 𝑛-border and the inner 𝑚-borders.

We call the region of the lattice between an 𝑛-border and the locations where

the inner 𝑚-borders would be in a Robinson tiling, including the 𝑛-border and the

inner 𝑚-borders themselves, the 𝑛-square region. The interior of the 𝑛-square region

is the region excluding the 𝑛-border and the inner 𝑚-border locations.

Definition 4.11 (Square deficit). The 𝑛-square deficit, square deficit𝑛 (𝑇, 𝑆, 𝑅), in a

region 𝑆 of a tile configuration 𝑇 with respect to Robinson tiling 𝑅, is the (magnitude

of the) difference between the total number of complete 𝑛-squares of 𝑇 within 𝑆, and

the number of complete 𝑛-squares of 𝑅 within 𝑆.

The total square deficit, square deficit(𝑇), of a tile configuration 𝑇 is the

difference between the total number of complete squares in 𝑇 and the number of

complete squares in a Robinson tiling of the same region, maximised over Robinson

tilings.

Theorem 4.6. Let 𝑇 be a tile configuration of a finite subregion of Z2 with perimeter

of length 𝐿. Let 𝐷 denote its defect set. The square deficit of 𝑇 is bounded by

square deficit(𝑇) ≤ 799|𝐷 | +2𝐿. (4.4)

Proof. See the arXiv preprint [WC21]. □
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4.5.2 Obstruction Signal Bound
We now bound the deficit of squares which have correct obstruction tilings. As

discussed in section 4.4.3, obstruction signals are used to demarcate free tiles. We

now add these markings to the modified Robinson tiles: we make a small change

relative to the obstruction markings in [Rob71] and choose all obstruction signals

to have a direction: the horizontal left-to-right or downwards. This new set of tiles

modified Robinson tiles + obstruction markings are labelled obstruction tiles.

Definition 4.12 (Correct Obstruction Tiling). A complete Robinson square has a

correct obstruction tiling if:

1. a tile has no obstruction signals iff it is in both a free row and free column.

2. a tile has horizontal (vertical) obstruction signals run across it iff it is in a free

column (row).

3. all tiles not contained a free row or column of the 𝑛-border, and not contained

within another 𝑚-border, have obstruction signals running across them both

horizontally and vertically.

Consider the deficit in the number of squares present with correct obstruction

tilings in the case of defects versus defect-free tilings:

Lemma 4.3. Let 𝑇 be a tile configuration of a finite subregion of Z2 with perimeter

of length 𝐿, and 𝐷 its defect set.

Define the obstruction deficit of 𝑇 , obstruction deficit(𝑇), to be the difference

between the total number of complete Robinson squares in 𝑇 with a correct internal

obstruction tiling, and the number of these in a Robinson tiling of the same region,

maximised over Robinson tilings.

The obstruction deficit of 𝑇 is bounded by

obstruction deficit(𝑇) ≤ 800|𝐷 | +2𝐿. (4.5)

Proof. Definition 4.11 and theorem 4.6, bound the square deficit. Given any complete

square, obstruction signals which are emitted by the smaller interior borders can
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terminate if (a) there is a defect in their path, or (b) they end on a tile with double

red arrows. Case (a) implies there is a defect in the interior of the square. Case (b)

implies there a tile with a double red arrow marking which is horizontal (vertical)

in a free column (row), which must immediately result in a defect if contained in a

square. Conversely, a tile without obstruction signals which is not placed in a free

row must be adjacent to a tile with obstruction signals, and thus must cause a defect.

It follows that if any of the conditions from definition 4.12 are not met, then there

must be an interior defect. Furthermore, if there is a complete 𝑛-square with a defect,

the tiling outside the 𝑛-border is unaffected as its 𝑛-border is identical to the case

without a defect. Thus

obstruction deficit(𝑇) ≤ square deficit(𝑇) + |𝐷 | (4.6)

□

4.5.3 Robinson + TM Tiling Bound

Finally, the obstruction tiles need to be combined with the obstructions tiles, which

are themselves a combination of the Robinson and obstruction tiles. We use the

full set of tiles described in section 4.4.3 which include the Robinson markings,

obstruction markings, and Turing Machine signals.

Definition 4.13. An 𝑛-square has a correct TM encoding if its (2𝑛 +1) × (2𝑛 +1) free

tiles encode the correct evolution of a TM from some fixed initial state according to

the TM’s transition rules.

Lemma 4.4. Let 𝑇 be a tile configuration of a finite subregion of Z2 with perimeter

of length 𝐿, 𝐷 its defect set.

Define the total deficit of 𝑇 , total deficit(𝑇), to be the difference between the

total number of complete Robinson squares in 𝑇 with a correct internal Turing

Machine tiling, and the number of these in a Robinson tiling of the same region,

maximised over Robinson tilings.
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The total deficit of 𝑇 is bounded by

total deficit(𝑇) ≤ 801|𝐷 | +2𝐿. (4.7)

Proof. All tiles with no obstruction markings present must have TM markings (but

not TM signal markings) and visa-versa. Thus, assuming an 𝑛-square has correct

obstruction markings, TM markings only appear on free tiles, and the TM signals

only appear on tiles with obstruction markings going horizontally or vertically, but

not both.

All tiles with only a horizontal (vertical) obstruction markings have a TM signal

running vertically (horizontally). Since by definition 4.12, such tiles only appear in

the appropriate free column (row), the TM signals only run along the free columns

(rows). The TM signals propagate until they reach a free square, at which point they

may change. If a TM signal changes between tiles, not mediated by a free tile, there

must be a defect. Thus

total deficit(𝑇) ≤ obstruction deficit(𝑇) + |𝐷 |. (4.8)

□

4.6 Proofs of GSED Complexity Results

4.6.1 Classical hardness for PNEEXP

In this section we set out to prove the following theorem:

Theorem 4.7. PNEEXP ⊆ EXPGSED, for GSED as defined in definition 4.2, for a

classical, nearest-neighbour, translationally invariant Hamiltonian.

To prove this result, we will show that it is possible to encode the outputs of a

doubly-exponential time nondeterministic TM in the ground state energy density of a

particular, fixed, classical Hamiltonian.

Specifying the Encoded TMs We want to enumerate over all input strings for a TM

deciding some language, encode these using tiles, and arrange for the TMs running
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on different inputs to be encoded within Robinson borders of different sizes. This is

summed up as:

Lemma 4.5 (TMs in Robinson Squares). Let 𝑥𝑛 ∈ {0,1}∗ be the (𝑛−𝑛0)𝑡ℎ string in

lexicographic order where 𝑛0 is a fixed integer, and let 𝑀 be a non-deterministic

TM. It is possible to construct a tile set such that all valid tilings of an 𝐿× 𝐿 lattice

consist of the pattern of nested squares formed by the Robinson tiling, such that within

each complete 𝑛-border, ∀𝑛 ≥ 𝑛0, the tiles encode a valid computational evolution of

𝑀 (𝑥𝑛) for time 22𝑐 |𝑥𝑛 | , 𝑐 ≥ 1.

Proof. As per lemma 4.2, we are able to encode a TM in the (2𝑛 +1) × (2𝑛 +1) grid

of free tiles of a Robinson 𝑛-squares. Section 3 of [GI09] proves that given a 𝐿× 𝐿

grid with an appropriate border, it is possible to encode a computation of length 𝑘𝐿

and space 𝐿, for 𝑘 =𝑂 (1). Here the Robinson 𝑛-borders provide such a border.

We choose to encode a series of TMs as follows. This first TM is binary counter

machine 𝑀𝐵𝐶 which after time step 𝑇 , has 𝑇 written in binary on the tape (see [Pat14]

or [GI09, Section 3] for an explicit construction of this machine). This outputs the

square size 2𝑛+1 in binary. Then run a TM computing log4(𝑦−1) −𝑛0 on this output,

which outputs 𝑥 ∈ {0,1}∗, the (𝑛−𝑛0)𝑡ℎ string in lexicographic order. Finally encode

a non-deterministic TM which takes input 𝑥 and runs for 22(𝑘−2) |𝑥 | (≤ 2(𝑘−2)𝑛) steps.

We can force 𝑀 to run for 22(𝑘−2) |𝑥 | steps by employing a counter to limit the number

of steps to 22(𝑘−2) |𝑥 | ; if the TM halts before reaching end of the allotted time, the final

time step is copied to the next time step. If the timer runs out before the full grid

space is used, the final time step of the encoded TM is copied forwards until the grid

is filled. Choose 𝑛0 to be the smallest integer such that these TMs have enough space

to operate properly on a grid of size (2𝑛0 +1) × (2𝑛0 +1). □

Note that, at this point, the tiling here can encode any computational path (even

those which reject when there is an accepting path) of the nondeterministic TM 𝑀 as

we have not constrained the output in any way.
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4.6.1.1 Mapping Tiles to Hamiltonians
So far we have presented the problem in terms of a tiling problem and need to map

this to a classical Local Hamiltonian problem. We use the tiling to local Hamiltonian

mapping presented in section 3.7.1 to create such a Hamiltonian with translationally

invariant, nearest neighbour local interactions on a 2D lattice. In particular. we map

the tiling rules produced by lemma 4.5 to a Hamiltonian to get a nearest-neighbour,

translationally invariant Hamiltonian. We add a term penalising rejecting instances

of the verification computation; Π𝑁𝑂 is an additional term we add in which assigns

an energy penalty to No problem instances.

We encapsulate the definition of the Hamiltonian in the following:

Definition 4.14 (Robinson + Computation Hamiltonian).

Let ℎ𝑐𝑜𝑙,𝑅𝑜𝑏, ℎ𝑟𝑜𝑤,𝑅𝑜𝑏 ∈ B(C𝑅 ⊗ C𝑅) be the local terms which encode the local

matching rules for the Robinson tiling, obstruction rules and TM rules from lemma 4.5.

Let (Π𝑁𝑂) 𝑗 , 𝑗+1 be a projector onto the reject state of the encoded TM, 𝑀 , on a site in

row 𝑗 , and a Robinson border tile on the adjacent site in row 𝑗 +1. Then the overall

local terms are:

ℎ𝑟𝑜𝑤𝑖,𝑖+1 = Λℎ
𝑟𝑜𝑤,𝑅𝑜𝑏

𝑖,𝑖+1 (4.9)

ℎ𝑐𝑜𝑙𝑗 , 𝑗+1 = Λℎ
𝑐𝑜𝑙,𝑅𝑜𝑏

𝑗, 𝑗+1 + (Π𝑁𝑂) 𝑗 , 𝑗+1 (4.10)

where Λ ∈N is a parameter that we will fix later.

Π𝑁𝑂 is constructed such that the energy penalty is only applied at the edge of a

Robinson border where a TM has halted in the No state (i.e. once the TM has stopped

running). Λ characterises the energy penalty for breaking the Robinson tiling, the

obstruction signals, or the TM signals. We will need to choose Λ to be a sufficiently

large constant to make it energetically unfavourable to break the Robinson tiling in

the ground state.

Lemma 4.6. Define 𝐻 (4𝑛) |𝑃 to be the Hamiltonian on a (4𝑛−1) × (4𝑛−1) region

described by the local terms given in eqs. (4.9) and (4.10), restricted to the subspace

𝑃 corresponding to defect-free tilings of the region that contain a complete Robinson
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𝑛-border. Let 𝑥 ∈ {0,1}∗ be the (𝑛−𝑛0)𝑡ℎ string in lexicographic order and let 𝑀

be a non-deterministic Turing Machine running for time 22𝑐𝑚 on inputs of length 𝑚,

𝑐 ≥ 1.

Then for 𝑛 ≥ 𝑛0, the ground state energy of 𝐻 (4𝑛) |𝑃 is

_0(𝐻 (4𝑛) |𝑃) = 𝑖𝑛 :=


0 𝑀 (𝑥)outputs Yes

1 𝑀 (𝑥)outputs No.
(4.11)

Proof. 𝐻 (4𝑛) |𝑃 is restricted to the subspace of valid tiling configurations containing

a complete Robinson 𝑛-border. Clearly, this border must run around the edge of

the (4𝑛−1) × (4𝑛−1) region. By lemma 4.5 valid tilings encode the evolution of a

non-deterministic TM 𝑀 (𝑥), where 𝑥 is the (𝑛−𝑛0)𝑡ℎ string in lexicographic order.

By restricting to the subspace 𝑃 we have ensured the encoded TM evolves correctly.

If 𝑥 is a Yes instance, then 𝑀 (𝑥) must have an accepting computational path,

and so there must be a set of states that encode the correct evolution which finishes

in an accepting state. Hence there is no energy penalty and the ground state is 0.

If 𝑥 is a No instance, then there is no accepting path. Any correct evolution of

𝑀 (𝑥) therefore enters the rejecting state, and the tile marking the rejecting state of

the TM picks up an energy penalty of 1 from the term (Π𝑁𝑂)𝑘,𝑘+1 (and no other state

receives this energy penalty).

□

4.6.1.2 Robustness of the Ground State
We now want to find the ground state energy of the lattice with Hamiltonian from

definition 4.14. The possible energy contributions come from tiling defects and

energy penalties for No instances of the encoded computation. In the following, we

use the square deficit bounds established in section 4.5 to show that it is energetically

unfavourable to have too many tiling defects, regardless of how many No instances

might be encoded in 𝑛-squares.

Lemma 4.7 (Robinson Square Bound). The number of 𝑛-borders in a Robinson

tiling of Λ(𝐿×𝐻) ⊂ Z2 using modified Robinson tiles is bounded by ≥ (⌊𝐻/2𝑛+1⌋ −
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1)
(
⌊𝐿/2𝑛+1⌋ −1

)
and ≤

(
⌊𝐻/2𝑛+1⌋ +1

)
(⌊𝐿/2𝑛+1⌋ +1) for all 𝑛.

Proof. A Robinson border is completely contained in an 𝐿 ×𝐻 lattice iff its top

edge and its left edge are completely contained in the lattice. Lemma 48 of

[CPGW15a] shows that the number of top edges of a Robinson 𝑛-square which

are completely contained in the 𝐿 ×𝐻 lattice is ≥ ⌊𝐻/2𝑛+1⌋
(
⌊𝐿/2𝑛+1⌋ − 1

)
and

≤
(
⌊𝐻/2𝑛+1⌋ +1

)
⌊𝐿/2𝑛+1⌋. From this it is straightforward to see the number of left

edges which are completely contained in the lattice is ≥
(
⌊𝐻/2𝑛+1⌋ −1

)
⌊𝐿/2𝑛+1⌋ and

≤ ⌊𝐻/2𝑛+1⌋
(
⌊𝐿/2𝑛+1⌋ +1

)
.

Combining these two bounds gives ≥ (⌊𝐻/2𝑛+1⌋ − 1)
(
⌊𝐿/2𝑛+1⌋ − 1

)
and ≤(

⌊𝐻/2𝑛+1⌋ +1
)
(⌊𝐿/2𝑛+1⌋ +1). □

We now want to check that the ground state of the Hamiltonian on the overall

lattice is a tiling of the lattice with Robinson squares in which a verification TM is

encoded as we expect, but potentially with a bounded number of defects.

Lemma 4.8. Let ℎ𝑟𝑜𝑤, ℎ𝑐𝑜𝑙 ∈ B(C𝑅 ⊗C𝑅) be the local interactions that encode the

tiling rules given by eqs. (4.9) and (4.10). Let 𝐻Λ(𝐿×𝐿) be the Hamiltonian with these

local interactions on Λ(𝐿× 𝐿).

Then for sufficiently large 𝐿, the ground state energy _0(𝐻Λ(𝐿×𝐿)) is contained

in the interval[ ⌊log4 (𝐿/2)⌋∑︁
𝑛=𝑛0

(⌊
𝐿

22𝑛+1

⌋
−1

)2
_0(𝐻 (4𝑛) |𝑃) +Λ|𝐷 | − 𝑘1 |𝐷 | − 𝑘2𝐿,

⌊log4 (𝐿/2)⌋∑︁
𝑛=𝑛0

(⌊
𝐿

22𝑛+1

⌋
+1

)2
_0(𝐻 (4𝑛) |𝑃) +Λ|𝐷 | − 𝑘1 |𝐷 | − 𝑘2𝐿

]
(4.12)

for some constants Λ, 𝑘1 and 𝑘2 such that Λ≫ 𝑘1 + 𝑘2, and |𝐷 | =𝑂 (𝐿).

Proof. From lemma 4.6, we see that in the ground state energy contribution from

each sufficiently large, complete, Robinson 𝑛-square is _0(𝐻 (4𝑛) |𝑃) ∈ {0,1}. By

lemma 4.7, the number of 𝑛-borders of a given size in an 𝐿× 𝐿 region with no defects

is bounded by ≥ (⌊𝐿/22𝑛+1⌋ −1)2 and ≤ (⌊𝐿/22𝑛+1⌋ +1)2.

Let 𝑁 (𝐷) denote the number of borders correctly encoding the TM evolution

for some tile configuration 𝑇 with defect set 𝐷. Let 𝑁𝑌𝐸𝑆 (𝐷), 𝑁𝑁𝑂 (𝐷) be the
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number of borders which encode Yes and No instances, respectively. Hence

𝑁 (𝐷) = 𝑁𝑌𝐸𝑆 (𝐷) +𝑁𝑁𝑂 (𝐷). Let 𝐸 ( |𝐷 | defects) be the energy of a configuration

with |𝐷 | defects. Then

𝐸 ( |𝐷 | defects) = Λ|𝐷 | +𝑁𝑁𝑂 (𝐷) (4.13)

𝐸 (0 defects) = 𝑁𝑁𝑂 (∅) (4.14)

Combining these:

𝐸 ( |𝐷 | defects) −𝐸 (0 defects) = Λ|𝐷 | − (𝑁𝑁𝑂 (∅) −𝑁𝑁𝑂 (𝐷)) (4.15)

𝐸 ( |𝐷 | defects) −𝐸 (0 defects) ≥ Λ|𝐷 | − (𝑁 (∅) −𝑁 (𝐷)) (4.16)

where the fact 𝑁 (∅) −𝑁 (𝐷) ≥ 𝑁𝑁𝑂 (∅) −𝑁𝑁𝑂 (𝐷) has been used.

Lemma 4.4 gives total deficit(𝑇) = 𝑁 (∅) −𝑁 (𝐷) ≤ 𝑘1 |𝐷 | + 𝑘2𝐿 for constants

𝑘1, 𝑘2, hence

𝐸 ( |𝐷 | defects) −𝐸 (0 defects) ≥ Λ|𝐷 | − (𝑘1 |𝐷 | + 𝑘2𝐿) (4.17)

Now choose the parameter Λ to be constant such that Λ≫ 𝑘1+ 𝑘2. If |𝐷 | =Ω(𝐿),

then for sufficiently large 𝐿,

𝐸 ( |𝐷 |defects) −𝐸 (0defects) ≥ (Λ− 𝑘1− 𝑘2)Ω(𝐿)𝑘 = Ω(𝐿).

Thus, for sufficiently large 𝐿, the 0-defect case becomes the ground state.

If |𝐷 | =𝑂 (𝐿1−𝑜(1)), then for sufficiently large 𝐿 we have that

𝐸 ( |𝐷 |defects) −𝐸 (0defects) ≥ Λ|𝐷 | − 𝑘1 |𝐷 | − 𝑘2𝐿 = −𝑂 (𝐿).

Thus we see the minimum lower bound occurs for |𝐷 | =𝑂 (𝐿1−𝑜(1))

There is one energy contribution that has been omitted. Some Robinson squares

will be too small to have the TM’s encoded in them run correctly. However, there

are only finitely many square sizes for which this is the case, and each square size
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appears with constant density. So their contribution to to the ground state energy

density is a constant which can be computed in constant time, and subtracted off with

a 1-local term of the form
∑
𝑖∈Λ(𝐿×𝐿) 𝛼1𝑖. (Cf. [CPGW15a].) □

For simplicity of the exposition, we omit the above constant energy shift from

the expressions and discussion, as it does not affect the analysis.

Lemma 4.9. Consider an 𝐿× 𝐿 lattice with a local Hamiltonian interactions given

by eqs. (4.9) and (4.10), and let 𝐻 (4𝑛) |𝑃 and 𝑖𝑛 be defined as in lemma 4.6. In the

limit of 𝐿→∞, the ground state energy density is

E𝜌 =
1
4

∞∑︁
𝑛=𝑛0

_0(𝐻 (4𝑛) |𝑃)
16𝑛

=
1
4

∞∑︁
𝑛=𝑛0

𝑖𝑛

16𝑛
. (4.18)

Proof. By lemma 4.8, we have bounds on the ground state energy for the region:

⌊log4 (𝐿/2)⌋∑︁
𝑛=𝑛0

1
𝐿2

(⌊
𝐿

22𝑛+1

⌋
−1

)2
_0(𝐻 (4𝑛) |𝑃) + (Λ− 𝑘1)𝑂 (𝐿−1) + 𝑘2𝐿

−1

≤ E𝜌 (𝐻Λ(𝐿×𝐿))

≤
⌊log4 (𝐿/2)⌋∑︁

𝑛=𝑛0

1
𝐿2

(⌊
𝐿

22𝑛+1

⌋
+1

)2
_0(𝐻 (4𝑛) |𝑃)) + (Λ− 𝑘1)𝑂 (𝐿−1) + 𝑘2𝐿

−1

(4.19)

Taking the limit 𝐿→∞ gives

lim
𝐿→∞
E𝜌 (𝐻Λ(𝐿×𝐿)) = E𝜌 =

1
4

∞∑︁
𝑛=𝑛0

_0(𝐻 (4𝑛) |𝑃)
16𝑛

=
1
4

∞∑︁
𝑛=𝑛0

𝑖𝑛

16𝑛
. (4.20)

□

We now prove the main theorem, which we restate here for convenience.

Theorem 4.8 (PNEEXP⊆EXPGSED). PNEEXP⊆EXPGSED, for GSED as defined in def-

inition 4.2, for a classical, translationally invariant, nearest-neighbour Hamiltonian.

Proof. Consider any polytime bounded TM 𝑀1. We will show we can simulate

𝑀NEEXP
1 with 𝑀GSED

2 where 𝑀2 is another exptime TM. If 𝑀NEEXP
1 takes an 𝑛-bit

input, it can then make 𝑂 (poly(𝑛)) queries. Denote these queries by {𝑞𝑖}𝑂 (poly(𝑛))
𝑖=1 .
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Each individual query must have length |𝑞𝑖 | = 𝑂 (poly(𝑛)). The 𝑀1 machine then

runs for an 𝑂 (poly(𝑛)) time and produces some output.

To simulate this, 𝑀2 takes the 𝑛-bit input and calculates each of the queries

which 𝑀1 makes: {𝑞𝑖}𝑂 (poly(𝑛))
𝑖=1 . Each query 𝑞𝑖 is made to a NEEXP oracle. So 𝑀2

takes each query 𝑞𝑖, and reduces it to an instance of determining the output of a

doubly-exponentially time non-deterministic TM, 𝑀 , on input 𝑦𝑖. This reduction can

be computed in polynomial time, as the problem of determining the output of double-

exponential-time non-deterministic TMs is manifestly NEEXP-hard. (Note by using

padding arguments we can reduce any language in NEEXP to NTIME(22𝑐𝑛) for some

𝑐 > 1 [Pap94]). This defines a new set of inputs to the non-deterministic machine 𝑀 ,

{𝑦𝑖}𝑂 (poly(𝑛))
𝑖=1 , such that |𝑦𝑖 | =𝑂 (poly(𝑛)). Now order the {𝑦𝑖}𝑖 lexicographically and

take the largest one. Suppose the largest string, 𝑦 𝑗 , is the 𝑘 𝑡ℎ string in lexicographic

order. Then 𝑘 =𝑂 (2𝑂 ( |𝑦 𝑗 |)) =𝑂 (2poly(𝑛)).

We will use the GSED oracle for the Hamiltonian of definition 4.14 to perform

a binary search in order to obtain a sufficiently precise approximation to the ground

state energy density E𝜌, such that we can extract the result of computing 𝑀 on all

inputs up to 𝑦 𝑗 . To do this, we need to query the GSED oracle on all the instances

before it in lexicographic order, of which there are 𝑘 =𝑂 (2poly(𝑛)) many.

By lemma 4.9, outputs 𝑖𝑛 to the queries {𝑦𝑖}𝑖 are encoded as

E𝜌 =
1
4

∞∑︁
𝑛=𝑛0

𝑖𝑛

16𝑛
. (4.21)

We extract the 𝑖𝑘 iteratively as follows. Assume for simplicity that 𝑛0 = 1. (If this is

not the case, 𝑛 can trivially be adjusted appropriately.) To determine the 𝑖1, note that

if 𝑖1 = 0, then the maximum E𝜌 can be is

E𝜌 =
1
4

∞∑︁
𝑛=2

1
16𝑛

=
1

960
(4.22)

and otherwise the minimum it can be is 1/64. Hence we ask whether E𝜌 ≥ 𝛽1 = 1/64
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or E𝜌 ≤ 𝛼1 = 1/960. Thus

𝑖1 =


0 if E𝜌 < 1/960

1 if E𝜌 > 1/64.

We can then perform a similar process for all 𝑖𝑚, 1 ≤ 𝑚 < 𝑘 , assuming we have

previously extracted 𝑖1, 𝑖2, . . . , 𝑖𝑚−1. When extracting the 𝑚𝑡ℎ instance, we have that

either E𝜌 ≤ 𝛼𝑚 or E𝜌 ≥ 𝛽𝑚, where

𝛽𝑚 =
1
4

(
1

16𝑚
+
𝑚−1∑︁
𝑛=1

𝑖𝑛

16𝑛

)
𝛼𝑚 =

1
4

(𝑚−1∑︁
𝑛=1

𝑖𝑛

16𝑛
+
∞∑︁

𝑛=𝑚+1

1
16𝑛

)
. (4.23)

Since 𝑦 𝑗 is the 𝑘 𝑡ℎ string in lexicographic order, 𝑘 =𝑂 (2poly(𝑛)), the maximum

precision we need to go to is Ω(2−2poly(𝑛) ), which is possible provided 𝛼𝑚, 𝛽𝑚 can

have binary length |𝛼𝑚 |, |𝛽𝑚 | =𝑂 (2poly(𝑛)). Since 𝑀2 is an exponential time machine,

it has time and space to write these strings to the oracle tape. Furthermore, 𝑀2 only

needs to make 𝑂 (2poly(𝑛)) queries. Thus 𝑀GSED
2 is able extract all the answers to the

queries made by 𝑀NEEXP
1 , and hence after making these queries and performing the

relevant post-processing, output the solution. □

4.6.2 Classical Containment in EXPNEXP

We now need to show that for classical GSED, as defined in definition 4.2, EXPGSED⊆

EXPNEXP. The first step is to show that the ground state energy density of a finite

𝐿 × 𝐿 part of the lattice is a good estimate for the energy density of the full

lattice [CPGW15a]:

Lemma 4.10. Consider a translationally invariant, nearest-neighbour Hamiltonian

on Λ(𝐿 × 𝐿) lattice defined by local terms ℎ𝑟𝑜𝑤
𝑖,𝑖+1, ℎ

𝑐𝑜𝑙
𝑗 , 𝑗+1. Let E𝜌 (𝐿) be the energy

density of the Hamiltonian on this lattice, and let E𝜌 be the energy density in the
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𝐿→∞ limit. Then

| E𝜌 (𝐿) −E𝜌 | =
4max

{ℎ𝑟𝑜𝑤
𝑖,𝑖+1

,ℎ𝑐𝑜𝑙𝑖,𝑖+1

}
𝐿

. (4.24)

Proof. Let 𝐻 (𝐿) be the Hamiltonian defined on Λ(𝐿 × 𝐿) and let 𝑡 ∈ N. Let

𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) be the Hamiltonian with the same local terms, but with the terms

ℎ𝑟𝑜𝑤
𝑖,𝑖+1, ℎ

𝑐𝑜𝑙
𝑗 , 𝑗+1 removed for 𝑖, 𝑗 ∈ 𝑡N. Then:

𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) = 𝐻 (𝑡𝐿) −
∑︁

𝑖 mod 𝑡=0
ℎ𝑟𝑜𝑤𝑖,𝑖+1−

∑︁
𝑗 mod 𝑡=0

ℎ𝑟𝑜𝑤𝑗, 𝑗+1. (4.25)

The interaction graph of 𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) is a set of 𝑡2 squares of size 𝐿 × 𝐿. Hence

equation 4.25 gives

𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) −𝐻 (𝑡𝐿) ≤ 4𝑡2𝐿max
{ℎ𝑟𝑜𝑤𝑖,𝑖+1

,ℎ𝑐𝑜𝑙𝑖,𝑖+1

} .
It is straightforward to see that _0(𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡)) = 𝑡2_0(𝐻 (𝐿)). Combining these gives

|𝑡2_0(𝐻 (𝐿)) −_0(𝐻 (𝑡𝐿)) | ≤ 4𝐿𝑡2 max
{ℎ𝑟𝑜𝑤𝑖,𝑖+1

,ℎ𝑐𝑜𝑙𝑖,𝑖+1

} .
Dividing through by 𝑡2𝐿2 to get energy densities gives

| E𝜌 (𝐿) −E𝜌 | ≤
4max

{ℎ𝑟𝑜𝑤
𝑖,𝑖+1

,ℎ𝑐𝑜𝑙𝑖,𝑖+1

}
𝐿

. (4.26)

□

Lemma 4.11. GSED ∈ NEXP for any classical, nearest-neighbour, translationally

invariant Hamiltonian, for GSED as defined in definition 4.2.

Proof. (𝛼, 𝛽) is the input of the problem, 𝛽−𝛼 = Ω(2−𝑞(𝑛)). We show an EXP

machine will be able calculate E𝜌 (𝐿) (using the notation of lemma 4.10) using a

classical witness for 𝐿 = 2𝑝(𝑛) , for a polynomial 𝑝.

First compute the ground state energy of an 𝐿 × 𝐿 square of the lattice. Take

as the witness the ground state of the Hamiltonian restricted to an 𝐿 × 𝐿 region of
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the lattice: |𝜓⟩ = |𝜙1⟩ ⊗ |𝜙2⟩ ⊗ . . . |𝜙𝐿2⟩, where |𝜙𝑖⟩ ∈ C|S| is the state of the spin at

lattice site 𝑖. Now,

E𝜌 (𝐿) =
1
𝐿2

∑︁
⟨𝑖, 𝑗⟩
⟨𝜙𝑖 |

〈
𝜙 𝑗

��ℎ𝑖, 𝑗 |𝜙𝑖⟩ ��𝜙 𝑗 〉 ,
where ⟨𝑖, 𝑗⟩ denotes pairs of nearest-neighbours. ⟨𝜙𝑖 |

〈
𝜙 𝑗

��ℎ𝑖, 𝑗 |𝜙𝑖⟩ ��𝜙 𝑗 〉 can be

computed in 𝑂 (1) time, and there are 𝑂 (𝐿2) such terms. Since 𝐿 = 2𝑝(𝑛) , the

estimate E𝜌 (𝐿) can be computed in 𝑂 (𝐿2) = 𝑂 (22𝑝(𝑛)) time. By lemma 4.10,

| E𝜌 (𝐿) − E𝜌 | = 𝑂 (𝐿−1), hence provided we choose 𝑝(𝑛) to be sufficiently large

relative to 𝑞(𝑛), the approximation E𝜌 (𝐿) allows us to determine E𝜌 > 𝛽 or E𝜌 < 𝛼

for 𝛽−𝛼 = Ω(2−𝑞(𝑛)). □

Lemma 4.12 (EXPNEXP Containment). EXPGSED⊆ EXPNEXP, for GSED as defined

in definition 4.2, for a fixed, classical Hamiltonian.

Proof. For EXPGSED⊆EXPNEXP we show that, given an exponential time TM 𝑀1

with access to an oracle GSED, its action can be simulated by an exponential time

TM 𝑀2 with oracle access to NEXP.

Consider the action of 𝑀GSED
1 . If it takes an 𝑛-bit input, it may make𝑂 (exp(𝑛))

queries, each of length 𝑂 (exp(𝑛)), before outputting an answer based on these query

outcomes. Each query must be in the form of an (𝛼, 𝛽) such that 𝛽−𝛼 = Ω(2−2𝑝 (𝑛) )

for some polynomial 𝑝.

The (𝛼, 𝛽) queries made by 𝑀1 must have input length of |𝑞𝑖 | =𝑂 (exp(𝑛)) By

lemma 4.11 determining whether E𝜌 > 𝛽 or E𝜌 < 𝛼 for 𝛽−𝛼 =Ω(2−|𝑞𝑖 |) =Ω(2−2−𝑔 (𝑛) )

is contained in NEXP. Thus 𝑀NEXP
2 can simulate the queries to GSED by making

querying the NEXP oracle, and hence the entire action of EXPGSED. □

Why not polytime Turing Reductions, PGSED? Naturally a question arises as to why

we consider EXPGSED here, rather than PGSED. Here we show that using our hardness

construction, one cannot even hope to prove NP ⊆ PGSED unless the polynomial

hierarchy collapses to Σ𝑃2 .

Lemma 4.13. Let PGSEDℎ be the class of languages decided by a polynomial time



152Chapter 4. The Computational Complexity of the Ground State Energy Density Problem

oracle machine with access to a GSED oracle for the Hamiltonian of definition 4.14

only. Let P𝑂log be the languages decided by a polytime oracle machine with oracle

𝑂 which is only able to make log(𝑛) length queries to the oracle for an 𝑛-bit input.

Then PGSEDℎ ⊂ PNEEXP
log .

Proof. Let 𝑀GSEDℎ

1 be a polytime TM with oracle access to a GSED oracle for

the Hamiltonian defined in definition 4.14 only. Let 𝑀NEEXP
2 an oracle machine

which can only make 𝑂 (log(𝑛)) length queries to the oracle. We will show the latter

machine can simulate the former.

𝑀
GSEDℎ

1 can make at most𝑂 (poly(𝑛)) length queries to the oracle, corresponding

to 𝛼, 𝛽 queries such that 𝛽−𝛼 = Ω(2−𝑝(𝑛)) for some polynomial 𝑝. After making

at most poly(𝑛) queries, it performs some post-processing and finally outputs an

answer.

𝑀NEEXP
2 can simulate this by simply calculating E𝜌 for the Hamiltonian in

definition 4.14 by querying the NEEXP oracle for the first 𝑂 (log(𝑛)) instances,

and then computing an estimate for E𝜌, denoted Ẽ𝜌, using equation eq. (4.18).

By making sufficiently many queries to the NEEXP oracle, one can make it so

|Ẽ𝜌 −E𝜌 | = 𝑂 (2−𝑞(𝑛)) for some polynomial 𝑞. Thus by making 𝑞(𝑛) ≫ 𝑝(𝑛), 𝑀2

can then simulate all the queries that 𝑀GSEDℎ

1 makes, do the same post-processing,

and output the same answer. □

Theorem 4.9. Using the notation defined in lemma 4.13, if NP ⊆ PGSEDℎ , then the

polynomial hierarchy collapses to Σ𝑃2 .

Proof. From lemma 4.13, PGSEDℎ ⊆ PNEEXP
log . Now note PNEEXP

log ⊆ 𝑃/poly. This is

true because for an input of length 𝑛, PNEEXP
log can make at most 𝑂 (poly(𝑛)) different

queries. Hence we could simply give a TM a 𝑂 (poly(𝑛)) length advice string giving

the answers to each of these queries, such that the advice string only depends on the

input length 𝑛.

Thus PGSEDℎ ⊆ PNEEXP
log ⊆ 𝑃/𝑝𝑜𝑙𝑦. However, it is known that if NP ⊆ 𝑃/poly,

then the polynomial hierarchy collapses to Σ𝑃2 [KL80].

□
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This provides strong evidence that our hardness construction is not NP-hard

under polytime Turing reductions.

4.6.2.1 Improving the Hardness Result
We can improve our containment and hardness results by using a PSPACE oracle

machine. There is, however, some controversy as to how a PSPACE oracle machine

should have access to its oracle; in particular whether the input tape to the oracle has

a polynomial space bound or not [Bus88; Har+93; For94]. Here we consider both of

these definitions and show how they can be used to tighten our complexity bounds

on GSED.

Definition 4.15 (1𝑠𝑡 PSPACE Oracle Machine Definition).

A PSPACE𝑂 oracle machine is a PSPACE machine with access to an oracle input

tape, for which it can make polynomial length queries to the oracle.

For this definition we get:

Theorem 4.10. PSPACENEEXP ⊆ EXPGSED.

Proof. Identical to the proof for theorem 4.8 except 𝑀1 is now a PSPACE machine

which needs to be simulated by the EXPGSED oracle machine. □

A potentially more interesting result occurs when we use the following definition:

Definition 4.16 (2𝑛𝑑 PSPACE Oracle Machine Definition).

A PSPACE𝑂 oracle machine is a PSPACE machine with access to a write only

oracle input tape, for which it can make exponential length queries to the oracle.

This is the preferred definition of several authors [LL76; For94]. For this

definition of oracle machine, we realise that one can do the binary search protocol

used in the proof of theorem 4.8 to get:

Theorem 4.11. PNEEXP ⊆ PSPACEGSED.

Proof. The proof will be similar to the proof for theorem 4.8, except now the PSPACE

machine will have to make exponentially long oracle calls to the GSED oracle for to

extract the query results while using only polynomial space everywhere else.
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Let 𝑀GSED be a PSPACE machine with (for convenience) two work tapes1

(bounded by polynomial space) and one unbounded oracle tape which is read only.

Let the GSED oracle be the one for the Hamiltonian of definition 4.14. Let 𝑀GSED

have made (𝑘 −1) queries to the oracle machine with outputs 𝑖1, 𝑖2 . . . 𝑖𝑘−1, for 𝑖 𝑗 as

defined in lemma 4.6, such that it now needs to make a 𝑘 𝑡ℎ query. To do so, it needs

to calculate a pair (𝛼𝑘 , 𝛽𝑘 ) which will allow it to extract 𝑖𝑘 . Assume 𝑀 has the string

𝑖1𝑖2 . . . 𝑖𝑘−1 stored on one of the two work tapes. We need to write out the numbers

𝛼𝑘 , 𝛽𝑘 in binary as given in equation eq. (4.23).

Without loss of generality, assume the oracle input tape is initially in the all

0 state. To write out 𝛽𝑘 on the input tape, 𝑀 take a query outcome 𝑖 𝑗 , then moves

4 𝑗 +2 down the tape and places 𝑖 𝑗 in the (4 𝑗 +2)𝑡ℎ cell (corresponding to value 1
4
𝑖 𝑗

16 𝑗 ).

Finally in the (4𝑘 +2)𝑡ℎ cell it places a 1. To determine where the head is on the

oracle input tape, we let 𝑀 have a binary counter on its second work tape. 𝑀 can

determine where the head is on the input tape by increment/decrementing the binary

counter whenever the head moves right/left.

𝑀 cannot write out 𝛼𝑘 exactly, as it does not have a finite binary expansion.

Instead, upper bound it by a number 𝑎𝑘 > 𝛼𝑘 , 𝛽−𝑎𝑘 = Ω(2−poly(𝑘)) which does have

a finite expansion

𝑎𝑘 =
1
4

(
𝑘−1∑︁
𝑛=1

𝑖𝑛

16𝑛
+ 2

16𝑘+1

)
> 𝛼𝑘 . (4.27)

To write this out, 𝑀 also places 𝑖 𝑗 in the (4 𝑗 +2)𝑡ℎ cell, for 𝑗 ≤ 𝑘 −1. We then place

a 1 in the (4𝑘 +3)𝑡ℎ cell (which is the contribution from the 2×16−𝑘−1 term). Hence

querying the oracle for (𝑎𝑘 , 𝛽𝑘 ) gives the same answer as querying with (𝛼𝑘 , 𝛽𝑘 ).

𝑀 then continues with the computation until all the necessary queries have

been extracted. Since only poly(𝑛) many queries are made, the PSPACE machine is

capable of storing them all on its work tape. It can then post-process the queries and

output the answer to the relevant PNEEXP computation.

Since 𝑀 only needs to record the number of queries 𝑘 = 𝑂 (poly(𝑛)) and the

1This can be reduced to a single work tape by standard arguments.
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binary counter it uses to keep track of the TM head on the input string — which

counts up to 16𝑂 (poly(𝑘)) — can be expressed in poly(𝑘) = poly(𝑛) bits, we have that

𝑀 only uses poly(𝑛) space on its two work tapes, as required. □

This result maybe should not be too surprising given that it is known how to do

binary search procedures using exponentially less space.

The results from this section immediately give:

Corollary 4.2. PNEEXP ⊆ PSPACEGSED ⊆ PSPACENEXP

4.6.2.2 Complexity Results for FGSED
We show containment of the function problem version FGSED of the ground state

energy density problem:

Theorem 4.12. FGSED ∈ FPGSED ⊆ FPNEXP for classical FGSED.

Proof. Let 𝜖 be the input to FGSED, such that |𝜖 | = 𝑛. Let 𝑀GSED be a polytime

TM with oracle access to GSED. Then using poly(𝑛) many (𝛼, 𝛽) queries to GSED,

for 𝛽−𝛼 = Ω(2−poly(𝑛)), we can use a binary search procedure to find an estimate

Ẽ𝜌 such that |Ẽ𝜌 −E𝜌 | = 𝑂 (2−poly(𝑛)) < 𝜖 . Thus a 𝑀GSED machine can compute

FGSED. Since GSED ∈ NEXP, this implies FGSED ∈ FPGSED ⊆ FPNEXP. □

Lemma 4.14. FPNEEXP ⊆ FEXPFGSED ⊆ FEXPNEXP for classical FGSED.

Proof. To show FEXPFGSED ⊆ FEXPNEXP, consider two exponential time oracle

machines 𝑀FGSED
1 and 𝑀NEXP

2 . Let 𝑀1 make 𝑂 (exp(𝑛)) oracle calls to FGSED,

and then do some exponential time post-processing. 𝑀2 can simulate these oracle

calls by, for each oracle call 𝑀1 makes, estimating using the NEXP oracle exp(𝑛)

to estimate the ground state energy density produced by FGSED. Since 𝑀1 makes

exp(𝑛) queries, 𝑀2 needs to make 𝑂 (exp(𝑛)) ×𝑂 (exp(𝑛)) =𝑂 (exp(𝑛)) queries. It

can then perform the same post-processing as 𝑀1. Thus FEXPFGSED ⊆ FEXPNEXP.

To show FPNEEXP ⊆ FEXPFGSED, consider a polytime oracle machine 𝑀NEEXP
3

and an exptime oracle machine 𝑀FGSED
4 . 𝑀3 can make at most 𝑂 (poly(𝑛)) queries

to the NEEXP oracle of at most 𝑂 (poly(𝑛)) length, and then do post-processing
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to output the relevant function. 𝑀4 can simulate all of these queries by asking the

FGSED oracle for an estimate for 𝜖 such that |𝜖 | = 𝑂 (exp(𝑛)), from which it can

extract all the NEEXP queries. It can then do the relevant post-processing and output

the same function as 𝑀3.

□

4.6.3 Quantum Containment in EXPQMAEXP

In this section we show containment of GSED for quantum Hamiltonians.

Lemma 4.15. GSED ∈ QMAEXP for any quantum, nearest-neighbour, translationally

invariant Hamiltonian, for GSED as defined in definition 4.2.

Proof. (𝛼, 𝛽) is the input of the problem for 𝛽−𝛼 =Ω(2−𝑝(𝑛)). Let |𝜓⟩ be the ground

state an 𝐿×𝐿 section of the lattice, for 𝐿 = 2𝑞(𝑛) , which our QMAEXP machine will take

as a witness. Perform quantum phase estimation of 𝑒𝑖𝐻Λ(𝐿) to 𝑞(𝑛) bits of precision,

which gives an estimate _̃0 of _0(𝐻Λ(𝐿)) such that |_̃0 −_0(𝐻Λ(𝐿)) | ≤ 2−𝑝(𝑛) , and

takes time 𝑂 (2𝑞(𝑛)) [NC10].

Since E𝜌 (𝐿) = _̃0, and by lemma 4.10 that | E𝜌 (𝐿) −E𝜌 | =𝑂 (2−𝑝(𝑛)), choosing

𝑞(𝑛) to be sufficiently larger than 𝑝(𝑛) allows us to verify whether E𝜌 > 𝛽 or

E𝜌 < 𝛼. □

Corollary 4.3. EXPGSED ⊆ EXPQMAEXP for a fixed, nearest-neighbour, translationally

invariant quantum Hamiltonian.

Proof. The proof is identical to lemma 4.12, but making use of lemma 4.15. □

Since classical Hamiltonians are a subset of quantum Hamiltonians, the following

result is an immediate corollary of theorem 4.8:

Corollary 4.4. PNEEXP⊆EXPGSED for a fixed, nearest-neighbour, translationally

invariant quantum Hamiltonian.

4.7 Discussion
Quantum GSED A natural question to ask is if tighter results can be found for

GSED for quantum Hamiltonians. As we have seen, it follows straightforwardly
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that EXPGSED⊆EXPQMAEXP , but a non-trivial quantum lower bound does not follow

easily.

Our proof of a PNEEXP lower bound works as we can enumerate over NEEXP-

complete problems. Attempting to prove a similar quantum lower bound (e.g.

PQMAEEXP) runs into the problem that, since QMAEEXP is a promise class, for a given

QMAEEXP-complete problem there may be instances which do not satisfy the promise

(so called “invalid queries”). This makes it impossible to enumerate over all instances

of a given QMAEEXP-complete problem without potentially including instances which

do not satisfy the promise. It is not currently known how to avoid these instances

from occurring, although some techniques exist, such as [GY19; GPY20; WBG20].

Closing the Classical Upper and Lower Bounds So far we have separate lower and

upper bounds PNEEXPand EXPNEXP. The containment protocol given here works

via a natural binary search algorithm to determine E𝜌, and as such we believe it is

optimal. While it is not immediately clear how the lower bound might be improved, it

is not clear whether the construction presented here should give a tight lower bound.

Other Precision Problems As far as the authors know, this is the first complexity

result about a theorem in which the only input parameter which is varied is the

precision, but where the object of study is fixed. Furthermore, GSED can be viewed

as a precision version of the Local Hamiltonian problem; can similar “precision

based” problems be developed for other decision/promise problems? Is there a

natural situation in which they occur?





Chapter 5

Uncomputably Complex

Renormalisation Group Flows

5.1 Introduction

We’ve seen in Chapter 2 that there can exist Hamiltonians that undergo phase

transitions at points which are uncomputable to determine. However, there exists

an enormously useful tool set in theoretical physics known as the “Renormalisation

Group” (RG), which is used to extract macroscale properties of systems. A natural

question to ask is why can’t we use RG methods to solve the phase of the model seen

in the previous chapter? The uncomputability result implies that any computable

method must fail, but it’s not clear why. Is it simply because this model does not

have a well defined RG scheme available? Maybe any legitimate RG scheme fails

to preserve key properties. Perhaps something more perverse is going on. In this

chapter we consider the application of RG techniques to the undecidable Hamiltonian

in [CPGW15a; CPGW15b] and demonstrate not only that a “good” RG scheme

can exist, but that such an RG scheme presents novel and previously unexplored

behaviour. Unsurprisingly, this new behaviour is also uncomputable.

Determining phases of many-body systems from an underlying model of the

interactions between their constituent parts remains one of the major research areas

in physics, from high-energy physics to condensed matter. Indeed, the question of

how to go from a microscopic model of physics, in which for 𝑁 particles there are
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𝑂 (2𝑁 ) degrees variables to a macroscopic description of a material which requires

only a few variables to describe has long befuddled scientists. Even more confusing

is the fact that many materials, although differing significantly in their microscopic

description, display apparently very similar behaviour.

Many powerful techniques have been developed to tackle this problem. One

of the most far-reaching and fundamental was the development by Wilson [Wil71;

WK74] of renormalisation group techniques, building on early work by others [BP53;

GML54]. At a conceptual level, RG analysis involves constructing a map that takes

as input a description of the many-body system (e.g. a Hamiltonian, or an action, or a

partition function, etc.), and outputs a description of a new many-body system (a

new Hamiltonian, or action, or partition function, etc.), that can be understood as a

“coarse-grained” version of the original system, in such a way that physical properties

of interest are preserved but irrelevant details are discarded.

For example, the RG map may “integrate out” the microscopic details of the

interactions between the constituent particles described by the full Hamiltonian of

the system. This procedure produces a coarse-grained Hamiltonian that still retains

the same physics at larger length-scales [Kad66]. By repeatedly applying the RG

map, the original Hamiltonian is transformed into successively simpler Hamiltonians,

where the physics may be far easier to extract. The RG map therefore describes a

dynamical map on Hamiltonians, and consecutive applications of this map generates a

“flow” in the space of Hamiltonians. Often, the form of the Hamiltonian is preserved,

and the RG flow can be characterised as a trajectory for its parameters.

The development of RG methods not only allowed sophisticated theoretical

and numerical analysis of a broad range of many-body systems. It also explained

phenomena such as universality, whereby many physical systems, apparently very

different, exhibit the same macroscopic behaviour, even at a quantitative level. This

is explained by the fact that these systems “flow” to the same fixed point under the

RG dynamics — many degrees of freedom present in the microscopic description

are “integrated out” as the Hamiltonian flows and simply become irrelevant.

For many condensed matter systems — even complex strongly interacting ones
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— the RG dynamics are relatively simple, exhibiting a finite number of fixed points

to which the RG flow converges. Hamiltonians that converge to the same fixed point

correspond to the same phase, so that the basins of attraction of the fixed points map

out the phase diagram of the system. However, more complicated RG dynamics are

also possible, including chaotic RG flows with highly complex structure [MBK82;

SKS82; DEE99; DT91; MN03]. Nonetheless, as with chaotic dynamics more

generally, the structure and attractors of such chaotic RG flows can still be analysed,

even if specific trajectories of the dynamics may be highly sensitive to the precise

starting point. This structure elucidates much of the physics of the system [GP83;

ER85; SS14]. RG techniques have become one of the most important technique in

modern physics for understanding the properties of complex many-body systems.

On the other hand, the work presented in chapter 3 of this thesis, as well as

previous work [CPGW15a; CPGW15b; Bau+18b] has shown that determining the

macroscopic properties of many-body systems, even given a complete underlying

microscopic description, can be uncomputable or undecidable. The result implies

that any RG technique which we may apply to this specific system to characterise

the spectrum and other properties is bound to fail: there can be no RG scheme — or

even more broadly, no algorithm — that can answer the spectral gap problem. Yet, it

is unclear how such a negative result will emerge. In principle, this obstacle may

be due to the fact that there may not exist an RG map which can compute a coarse-

grained version of an intractable Hamiltonian, or which cannot retain its macroscopic

properties at every iteration, or again whose fixed points are not well-defined (or do

not exist to begin with). In this work we prove that there are no such critical obstacles:

we show that a legitimate RG procedure actually exists by providing an explicit

construction. At the same time we illustrate in which way it fails in determining

the spectral gap. More specifically, we construct an RG map for the Hamiltonian

of [CPGW15a] which has the following features: (i) The RG map is computable at

each renormalisation step. (ii) The RG map preserves whether the Hamiltonian is

gapped or gapless. (iii) The Hamiltonian is guaranteed to converge to one of two

fixed points under the RG flow: one gapped, with low energy properties similar to
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those of an Ising model with field; the other gapless, with low energy properties

similar to the critical XY-model. (iv) The behaviour of the Hamiltonian under the

RG mapping, the trajectory of the RG flow and which fixed point it converges to are

all uncomputable. Our RG scheme is based on the the block renormalisation group

(BRG) [Jul+78; JP79; PJP82; BS99].

Remarkably, our RG scheme exhibits a novel type of behaviour, displaying a

qualitatively new and more extreme form of unpredictability than chaotic RG flows:

unpredictability of chaotic systems arises from the fact that even a tiny difference

in the initial system parameters — which in practice may not known exactly — can

eventually lead to exponentially diverging trajectories (see fig. 5.1b). However, the

more precisely the initial parameters are known, the longer it is possible to accurately

predict it, and if the system parameters are perfectly known it is in principle possible to

determine the long-time behaviour of the RG flow. The RG flow behaviour exhibited

in this work is more intractable still. Even if we know the exact initial values of all

system parameters, its RG trajectory and the fixed point it ultimately ends up at is

provably impossible to predict. Moreover, no matter how close two initial parameters

are, it is impossible to predict how long their trajectories will remain close together

before abruptly diverging to different fixed points that correspond to separate phases

(see fig. 5.1a). Thus, the structure of the RG flow — e.g. the basins of attraction

of the fixed points — is so complex that it cannot be computed or approximated,

even in principle. We note that a similar form of unpredictability has previously

been seen in classical single-particle dynamics, in seminal work by Moore [Moo90;

Moo91; Ben90], while our result shows for the first time that this extreme form of

unpredictability can occur in RG flows of many-body systems.

It is worth emphasising here that work in this chapter is not attempting to use

RG methods to determine properties of the Hamiltonian used in [CPGW15a], rather

we wish to determine general properties about RG techniques by analysing their

behaviour when applied to Hamiltonians with undecidable properties. Finally we

note that this work can be found as a preprint here: [WOC21].
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(a) Uncomputable RG flow. (b) Chaotic RG flow.

Figure 5.1: In both diagrams, 𝑘 represents the number of RG iterations and [ represents
some parameter characterising the Hamiltonian; the blue and red dots are fixed
points corresponding to different phases. We see that in the chaotic case, the
Hamiltonians diverge exponentially in 𝑘 , according to some Lyapunov exponent.
In the undecidable case, the Hamiltonians remain arbitrarily close for some
uncomputably large number of iterations, whereupon they suddenly diverge to
different fixed points.

5.2 Preliminaries and Previous Work

5.2.1 Notation

We denote the renormalisation group map by R, and the 𝑘-fold iteration of this map

by R (𝑘) . We will denote renormalised quantities and operators with 𝑅 or 𝑅(𝑘) prefix

for the renormalised and 𝑘-times renormalised cases respectively. For example,

denote the renormalised Hamiltonians terms as 𝑅(ℎ𝑟𝑜𝑤)𝑖,𝑖+1 and 𝑅(ℎ𝑐𝑜𝑙) 𝑗 , 𝑗+1, and

the local terms after 𝑘-fold iterations as 𝑅(𝑘) (ℎ𝑟𝑜𝑤)𝑖,𝑖+1 and 𝑅(𝑘) (ℎ𝑐𝑜𝑙) 𝑗 , 𝑗+1. We then

denote the Hamiltonian defined over the lattice by the renormalised interactions as

𝑅(𝐻)Λ(𝐿) , and for the 𝑘-times iteration as 𝑅(𝑘) (𝐻)Λ(𝐿) . We note that in general

R(ℎ𝑟𝑜𝑤
𝑖,𝑖+1) ≠ 𝑅(ℎ

𝑟𝑜𝑤)𝑖,𝑖+1, and similarly for the other terms.

If the initial local Hilbert space isH , then the local Hilbert space after 𝑘 iterations

of the RG map is denoted 𝑅(𝑘) (H). Throughout, we will denote a canonical set of

local basis states by 𝔅, and after the renormalisation mapping has been applied 𝑘

times it becomes 𝔅(𝑘) , so that 𝑅(𝑘) (H) = span{|𝑥⟩ ∈𝔅(𝑘)}.

It will occasionally be useful to distinguish ℎ𝑟𝑜𝑤 acting on given row 𝑗 . When

this is important, we write ℎ𝑟𝑜𝑤
𝑖,𝑖+1( 𝑗) to denote the interaction between columns 𝑖 and
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𝑖 +1 in the 𝑗 𝑡ℎ row. Similarly ℎ𝑐𝑜𝑙
𝑗 , 𝑗+1(𝑖) denotes the interaction between rows 𝑗 and

𝑗 +1 in the 𝑖𝑡ℎ column.

Finally, following [CPGW15a], we adopt the following precise definitions of

gapped and gapless given in definition 3.1 and definition 3.2. In [CPGW15a] it was

shown that the particular Hamiltonians they construct always fall into one of these

clear-cut cases, allowing sharp spectral gap undecidability results to be proven.

5.2.2 Real Space Renormalisation Group Maps
The notion of what exactly constitutes a renormalisation group scheme is somewhat

imprecise, and there is no universally agreed upon definition in the literature. We

therefore start from a minimal set of conditions that we would like a mapping on

Hamiltonians to satisfy, if it is to be considered a reasonable RG map. The RG scheme

we define for the Hamiltonian from [CPGW15a] will satisfy all these conditions as

well as additional desirable properties.

Definition 5.1 (Renormalisation Group (RG) Map). Let {ℎ𝑖}𝑖 be an arbitrary set

of 𝑟-local interactions ℎ𝑖 ∈ B((C𝑑)⊗𝑟), for 𝑟 =𝑂 (1) and 𝑑 ∈N. A renormalisation

group (RG) map

R({ℎ𝑖}) = {ℎ′𝑖} (5.1)

is a mapping from one set of 𝑟-local interactions to a new set of 𝑟′-local interactions

ℎ′
𝑖
∈ B((C𝑑′)′⊗𝑟 ′), with 𝑟′, 𝑑′ ∈N, satisfying the following properties:

1. R({ℎ𝑖}) is a computable map.

2. Let 𝐻 and 𝑅(𝑘) (𝐻) be the Hamiltonian defined by the original local terms

and the 𝑘-times renormalised local terms respectively. If 𝐻 is gapless, then

𝑅(𝑘) (𝐻) is gapless, as per definition 3.2. If 𝐻 is gapped, then 𝑅(𝑘) (𝐻) is

gapped, as per definition 3.1.

3. If the order parameter for the system has a non-analyticity between two

phases of 𝐻, then there is a renormalised order parameter which also has a

non-analyticity between the two phases for 𝑅(𝑘) (𝐻).
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4. If the initial local Hamiltonian terms can decomposed into as

ℎ𝑖 =
∑︁
𝑗

𝛼 𝑗𝑂 𝑗 , (5.2)

for some operator {𝑂 𝑗 } 𝑗 , then 𝑘-times renormalised local Hamiltonian terms

are of the form

𝑅(𝑘) (ℎ)𝑖 =
∑︁
𝑗

𝛼
(𝑘)
𝑗
𝑅(𝑘) (𝑂) 𝑗 , (5.3)

where 𝛼(𝑘)
𝑖

= 𝑓 ({𝛼(𝑘−1)
𝑖
}𝑖) for some function 𝑓 .

The motivation for points 2 and 3 of definition 5.1 is that we want to preserve the

quantum phase diagram of the system. Point 3 of definition 5.1 requires that if we

start in phase A, the system should remain in phase A under the RG flow: a key

property of any RG scheme. Furthermore, any indicators of a phase change still

occur (e.g. non-analyticity of the order parameter). Point 4 asks that the “form” of

the Hamiltonian is preserved.

Hamiltonians under RG flows have “fixed points” which occur where the

Hamiltonian is left invariant by the action of the RG procedure. If 𝐻∗ is the fixed

point a particular Hamiltonian is converging to under the RG flow, and ℎ∗ is the

corresponding local term, then the local terms away from the fixed point can be

rewritten in terms of their deviation from the fixed point as:

ℎ = ℎ∗ +
∑︁
𝑖

𝛽𝑖𝑂𝑖 (5.4)

and after renormalisation

𝑅(𝑘) (ℎ) = ℎ∗ +
∑︁
𝑖

𝛽
(𝑘)
𝑖
𝑂′𝑖, (5.5)

where if 𝛽(𝑘)
𝑖
→ 0 as 𝑘→∞ then𝑂𝑖 is said to be an irrelevant operator; if 𝛽(𝑘)

𝑖
→∞,

then 𝑂𝑖 is a relevant operator; and if 𝛽(𝑘)
𝑖
→ 𝑐 for a constant 𝑐, then 𝑂𝑖 a marginal

operator.



166 Chapter 5. Uncomputably Complex Renormalisation Group Flows

We note that many well-known renormalisation group schemes fit the criteria

given in definition 5.1 when applied to the appropriate Hamiltonians. In the following

subsections, we review a number of these. However, in general, a given RG scheme

may satisfy the conditions for the family of Hamiltonians it was designed for, but

will not necessarily satisfy all the desired conditions when applied to an arbitrary

Hamiltonian.

5.2.2.1 The Block Spin Renormalisation Group Map

We base our RG map on a blocking technique widely used in the literature to study

spin systems, often called the Block Spin Renormalisation Group (BRG)1 [Jul+78;

JP79; PJP82; BS99]. Modifications and variations of this RG scheme have also been

extensively studied [MDS96; WKL02].

The BRG is among the simplest RG schemes. The procedure works by grouping

nearby spins together in a block, and then determining the associated energy levels

and eigenstates of this block by diagonalisation. Having done this, high energy (or

otherwise unwanted) states are removed resulting in a new Hamiltonian.

As an explicit example, suppose there exists a Hamiltonian on a 1D chain

𝐻 =

𝑁−1∑︁
𝑖=1

𝐾 (0)ℎ(0)
𝑖,𝑖+1 +𝐶

(0)
𝑁∑︁
𝑖=1
1𝑖 . (5.6)

The BRG first groups the lattice points into pairs

𝐻 = 𝐾 (0)
𝑁−1∑︁
𝑖 𝑜𝑑𝑑

ℎ
(0)
𝑖,𝑖+1 +𝐾

(0)
𝑁−1∑︁
𝑖 𝑒𝑣𝑒𝑛

ℎ
(0)
𝑖,𝑖+1 +𝐶

(0)
𝑁∑︁
𝑖=1
1𝑖 . (5.7)

We then diagonalise the operators for odd 𝑖. (In higher dimensional geometries we

group the terms into blocks of neighbouring qudits.) Having done this, remove all

“high energy states” within each block, either by introducing an energy cut-off or just

keeping a chosen subset of the lowest energy states. The produces a renormalised

1This is also sometimes called the “quantum renormalisation group”.
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Hamiltonian

𝑅(1) (𝐻) = 𝐾 (1)
𝑁/2−1∑︁
𝑖=1

ℎ
(1)
𝑖,𝑖+1 + 𝑏

(1)
𝑁/2∑︁
𝑖=1
ℎ
(1)
𝑖
+𝐶 (1)

𝑁/2∑︁
𝑖=1
1𝑖 . (5.8)

For each further RG iteration the same process is repeated: the terms ℎ𝑖,𝑖+1 for odd 𝑖

are diagonalised and the high energy states are removed.

After 𝑘 iterations, the RG procedure returns a Hamiltonian of the same form,

but now with different coupling constants:

𝑅(𝑛) (𝐻) = 𝐾 (𝑛)
𝑁/2−1∑︁
𝑖=1

ℎ
(𝑛)
𝑖,𝑖+1 + 𝑏

(𝑛)
𝑁/2∑︁
𝑖=1
ℎ
(𝑛)
𝑖
+𝐶 (𝑛)

𝑁/2∑︁
𝑖=1
1𝑖 . (5.9)

5.2.3 Properties of the Spectral Gap Undecidability Construction
Constructing a mathematically rigorous RG flow for the undecidable Hamiltonian

exhibited in [CPGW15b; CPGW15a] presents particular challenges, since its prop-

erties are uncomputable. Nonetheless, we are able to construct such a scheme by

carefully analysing the local structure and properties of this Hamiltonian. We review

the structure here.

We start by stating the main result in [CPGW15a], where the authors construct

a Hamiltonian depending on one external parameter, which is gapped iff a universal

Turing Machine halts on an input related to the Hamiltonian parameter. The spectral

gap problem for this Hamiltonian is therefore equivalent to the Halting Problem,

hence undecidable.

Definition 5.2 (From theorem 3 of [CPGW15a]). For any given universal Turing

Machine (UTM), we can construct explicitly a dimension 𝑑, 𝑑2 × 𝑑2 matrices

𝐴, 𝐴′, 𝐵,𝐶,𝐷,𝐷′,Π and a rational number 𝛽 which can be as small as desired, with

the following properties:

1. 𝐴 is diagonal with entries in Z.

2. 𝐴′ is Hermitian with entries in Z+ 1√
2
Z,

3. 𝐵,𝐶 have integer entries,
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4. 𝐷 is diagonal with entries in Z,

5. 𝐷′ is Hermitian with entries in Z.

6. Π is a diagonal projector.

For each natural number 𝑛, define:

ℎ1(𝑛) = 𝛼(𝑛)Π,

ℎcol(𝑛) = 𝐷 + 𝛽𝐷′, independent of 𝑛

ℎrow(𝑛) = 𝐴+ 𝛽
(
𝐴′+ 𝑒𝑖𝜋𝜑𝐵+ 𝑒−𝑖𝜋𝜑𝐵† + 𝑒𝑖𝜋2−|𝜑 |𝐶 + 𝑒−𝑖𝜋2−|𝜑 |𝐶†

)
,

where 𝛼(𝑛) ≤ 𝛽 is an algebraic number computable from 𝑛 and |𝜑 | denotes the length

of the binary representation of 𝜑. Then:

1. The local interaction strength is bounded by 1, i.e.

max(∥ℎ1(𝑛)∥, ∥ℎrow(𝑛)∥, ∥ℎcol(𝑛)∥) ≤ 1.

2. If UTM halts on input 𝑛, then the associated family of Hamiltonians {𝐻Λ(𝐿) (𝑛)}

is gapped with gap 𝛾 ≥ 1.

3. If UTM does not halt on input 𝑛, then the associated family of Hamiltonians

{𝐻Λ(𝐿) (𝑛)} is gapless.

We first explain the overall form of the Hamiltonian and the Hilbert space structure,

and later how the individual parts fit together.

5.2.3.1 Local Interaction Terms and Local Hilbert Space Structure

The Hamiltonian 𝐻𝑢 (𝜑) is constructed such that its ground state is composed of two

components: a classical “tiling layer” and a highly entangled “quantum layer”. The

local Hilbert space decomposes as:

H𝑢 =H𝑐 ⊗ (H𝑞 ⊕ |𝑒⟩), (5.10)
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whereH𝑐 is the Hilbert space corresponding ot the classical tiling layer andH𝑞 ⊕ |𝑒⟩

is the “quantum” layer. The local terms ℎ𝑢 are constructed as

ℎ𝑢 = ℎ
(𝑖,𝑖+1)
𝑇

⊗1(𝑖)𝑒𝑞⊗1(𝑖+1)𝑒𝑞 +1(𝑖)𝑐 ⊗1(𝑖+1)𝑐 ⊗ℎ(𝑖,𝑖+1)𝑞 + “coupling terms”. (5.11)

Let ℎ(𝑖, 𝑗)𝑢 ∈ B(C𝑑⊗C𝑑) be the local terms of the Hamiltonian 𝐻𝑢, ℎ(𝑖, 𝑗)𝑑
∈

B(C2⊗C2) be the local interactions of the 1D critical XY model, and let 𝐻𝑑 be the

Hamiltonian composed of XY interactions along the rows of the lattice. This has a

dense spectrum in the thermodynamic limit [LSM61]. ℎ(𝑖, 𝑗)𝑢 = ℎ
(𝑖, 𝑗)
𝑢 (𝜑) is designed

so that 𝐻𝑢 (𝜑) =
∑
ℎ𝑢 (𝜑) has a ground state energy which depends on whether a

universal Turing Machine (UTM) halts when given on input 𝜑 supplied in binary. In

particular, on a lattice of size 𝐿× 𝐿, the ground state energy is

_0(𝐻Λ(𝐿)
𝑢 ) =


−Ω(𝐿) if UTM does not halt on input 𝜑,

+Ω(𝐿2) if UTM does halt on input 𝜑.
(5.12)

Since the halting problem is undecidable, determining which of the two ground state

energies of 𝐻𝑢 (𝜑) occurs is undecidable.

The local Hilbert space of the overall Hamiltonian can be decomposed as:

H = |0⟩ ⊕H𝑢 ⊗H𝑑 . (5.13)

Here |0⟩ is a zero-energy filler state, H𝑑 is the Hilbert space associated with the

dense spectrum Hamiltonian ℎ𝑑 , and H𝑢 is the Hilbert space associated with the

Hamiltonian with undecidable ground state energy ℎ𝑢.

The local interactions along the edges and on the sites of the lattice are act on

this local Hilbert space as:

ℎ(𝜑) (𝑖, 𝑗) = |0⟩ ⟨0| (𝑖) ⊗ (1− |0⟩ ⟨0|) ( 𝑗) + ℎ(𝑖, 𝑗)𝑢 (𝜑) ⊗1(𝑖, 𝑗)
𝑑
+1(𝑖, 𝑗)𝑢 ⊗ ℎ(𝑖, 𝑗)

𝑑
(5.14)

ℎ(𝜑) (1) = −(1+𝛼2)Π𝑢𝑑 , (5.15)

where Π𝑢𝑑 is a projector onto H𝑢⊗H𝑑 , and 𝛼2 = 𝛼2( |𝜑|) is a constant depending
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only on |𝜑 |. Importantly, the spectrum of the overall lattice Hamiltonian composed

of these local interactions is

spec𝐻 (𝜑) = {0} ∪ {spec(𝐻𝑢 (𝜑)) + spec(𝐻𝑑)} ∪ 𝑆, (5.16)

for a set 𝑆 with all elements > 1. This means that if _0(𝐻Λ(𝐿)
𝑢 ) → −∞ then the

overall Hamiltonian has a dense spectrum, while if _0(𝐻Λ(𝐿)
𝑢 ) → +∞ the overall

Hamiltonian has a spectral gap > 1.

In the _0(𝐻Λ(𝐿)
𝑢 (𝜑)) = +Ω(𝐿2) case, the ground state of the entire Hamiltonian

is |0⟩Λ. In the _0(𝐻Λ(𝐿)
𝑢 (𝜑)) = −Ω(𝐿) case, the overall ground state is |𝜓𝑢⟩ ⊗ |𝜓𝑑⟩

where |𝜓𝑢⟩ and |𝜓𝑑⟩ are the ground states of 𝐻𝑢 (𝜑) and 𝐻𝑑 =
∑
𝑖∈Λ ℎ

𝑖,𝑖+1
𝑑

respectively.

We now explain the terms ℎ𝑇 and ℎ𝑞 as well as the cumulative effects of the

coupling terms.

The Tiling Hamiltonian In [CPGW15a] a Wang tile set is chosen to be a slightly

modified version the Robinson tiles from [Rob71], shown in fig. 5.2a. We refer the

reader to section 4.4 for a summary of Robinson tiles. When placed on a 2D grid

such that the tiling rules are satisfied, the markings on the tiles form an aperiodic

tiling consisting of a series of nested squares of sizes 4𝑛 +1, for all 𝑛 ∈N, as shown

in fig. 5.2b.

This set of tiles can then be mapped to a 2D, translationally invariant, nearest

neighbour, classical Hamiltonian by the procedure explained previously in sec-

tion 3.7.1. Then, the ground state of the entire 2D lattice, |𝑇⟩𝑐, corresponds to the

Robinson tiling pattern as shown in fig. 5.2b. Any other configuration must violate a

tiling rule and thus receives an energy penalty. We denote the local interaction terms

of this Hamiltonian as ℎ𝑇 ∈ B(H𝑐⊗H𝑐).

The Quantum Hamiltonian 𝐻𝑢 (𝜑) is constructed so that its ground state energy

encodes the halting or non-halting of a computation as per the circuit-to-Hamiltonian

construction used in chapter 3. The fundamental ingredient required is the “QTM-

to-Hamiltonian” mapping, as explained in section 2.3.1.1 [GI09; CPGW15a]. This

takes a given quantum QTM and creates a corresponding Hamiltonian which has a
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(a) The modified Robinson tiles used in
[CPGW15a].

(b) Ground state |𝑇⟩𝑐 of the classical Hamilto-
nian.

Figure 5.2

ground state which encodes its evolution. It is then possible to add a local projector

term to the Hamiltonian which gives an additional energy penalty to certain outcomes

of the computation. In particular, [CPGW15a] penalise the halting state, so that if the

QTM which is encoded halts at some point, the Hamiltonian defined by ℎ𝑞 picks up

an additional energy contribution. As a result, the energy of the ground state differs

depending on whether or not the QTM halts within time 𝑇 .

In particular, [CPGW15a] adapt the QTM-to-Hamiltonian mapping originally

developed by Gottesman and Irani [GI09], which takes a QTM and maps its evolution

to 1D, translationally invariant, nearest neighbour, Hamiltonian. By 𝐻𝑞 we denote

this modified version of the Gottesman-Irani Hamiltonian (cf. section 5.2.4).

The length of the computation encoded on a chain of length 𝐿 is 𝑇 (𝐿) ∼

poly(𝐿)2𝐿 , and the associated ground state energy is

_0(𝐻𝑞 (𝐿)) =


0 if QTM is non-halting within time 𝑇 (𝐿),

\ (1/𝑇2) if QTM halts within time 𝑇 (𝐿).
(5.17)

We give a more detailed analysis of the construction at the beginning of section 5.5.

Combining ℎ𝑇 , ℎ𝑞 and the Coupling Terms The terms ℎ𝑢 are designed so that

all eigenstates of 𝐻Λ(𝐿)
𝑢 are product states |𝑇⟩𝑐 ⊗ |𝜓⟩𝑒𝑞 where |𝑇⟩ ∈ H⊗(𝐿×𝐿)𝑐 and
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|𝜓⟩ ∈ H⊗(𝐿×𝐿)𝑒𝑞 [CPGW15a, Lemma 51].

Furthermore, the coupling terms are chosen such that the ground state has the

following properties:

1. the classical part of the ground state |𝑇⟩𝑐 corresponds to a perfect Robinson

tiling. The pattern created has a series of nested red Robinson squares as per

fig. 5.2b.

2. the quantum part of the ground state |𝜓⟩𝑒𝑞 has the following structure: along

the top of every red Robinson square there is a history state (as defined in

definition 2.14); everywhere which is not along the top of a square is in the

zero energy filler state |𝑒⟩𝑒.

The consequence of this is that ground states of𝐻𝑞 (ℓ) of all lengths ℓ ∈ 4𝑁 +1, 𝑛 ∈

N, appear with a constant density across the lattice. If, for any length, the encoded

computation halts, then the ground state picks up a constant energy density, so that

the energy scales as Ω(𝐿2). However, if the encoded computation never halts, then

for all lengths the ground state of the Gottesman-Irani Hamiltonian has zero energy,

and (due to boundary effects), the ground state has energy −Ω(𝐿) [CPGW15a].

5.2.4 The Gottesman-Irani Hamiltonian
The particular circuit-to-Hamiltonian mapping used in the previous section will be im-

portant when it comes to renormalising the overall Hamiltonian. The overall structure

used in [CPGW15a] is a modification of the one used in [GI09]. Following [GI09],

the QTM can be encoded into a 1D, translationally-invariant, nearest-neighbour

Hamiltonian, which we refer to as a Gottesman-Irani Hamiltonian, denoted by

𝐻𝑞 (𝐿) ∈ B((C𝑑)⊗𝐿).

This is summarised by theorem 32 of [CPGW15a]; we write out a slightly

simpler version here.

Theorem 5.1 (Informal Version of Theorem 32 of [CPGW15a]).

Let C𝑑 = C𝐶 ⊗C𝑄 be the local Hilbert space of a 1-dimensional chain of length

𝐿, with special marker states
�� 〉

,
�� 〉

. Denote the orthogonal complement of

span(
�� 〉

,
�� 〉
) in C𝑑 by C𝑑−2. Let 𝑑,𝑄 and 𝐶 all be fixed.
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For any well-formed unidirectional Quantum Turing Machine 𝑀 = (Σ,𝑄, 𝛿) and

any constant𝐾 > 0, we can construct a two-body interaction ℎ ∈ B(C𝑑⊗C𝑑) such that

the 1-dimensional, translationally-invariant, nearest-neighbour Hamiltonian 𝐻 (𝐿) =∑𝐿−1
𝑖=1 ℎ

(𝑖,𝑖+1) ∈ B(H (𝐿)) on the chain of length 𝐿 has the following properties:

1. 𝑑 depends only on the alphabet size and number of internal states of 𝑀 .

2. ℎ ≥ 0, and the overall Hamiltonian 𝐻 (𝐿) is frustration-free for all 𝐿.

3. Denote H(𝐿 − 2) := (C𝑑−2)⊗𝐿−2 and define S𝑏𝑟 = span(
�� 〉
)⊗H (𝐿 −

2)⊗ span(
�� 〉
) ⊂ H . Then the unique ground state of 𝐻 (𝐿) |S𝑏𝑟 is a com-

putational history state (cf. definition 2.14 for a definition) encoding the

evolution of 𝑀 .

Moreover, the action of 𝑀 satisfies:

1. The computational history state always encodes Ω(2𝐿) time-steps. If 𝑀 halts

in fewer than the number of encoded time steps, exactly one |𝜓𝑡⟩ has support

on a state |⊤⟩ that encodes a halting state of the QTM. The remaining time

steps of the evolution encoded in the history state leave 𝑀’s tape unaltered,

and have zero overlap with |⊤⟩.

2. If 𝑀 runs out of tape within a time 𝑇 less than the number of encoded time

steps, the computational history state only encodes the evolution of 𝑀 up to

time 𝑇 . The remaining steps of the evolution encoded in the computational

history state leave 𝑀’s tape unaltered.

We refer the reader to [CPGW15a; GI09] for a detailed overview. We provide in

the following a more detailed sketch of how the modified Gottesman-Irani construction

works, and refer the reader to [CPGW15a; GI09] for a detailed overview. We begin

by considering the general setup. Our basis states for (C𝑑)⊗𝐿 (i.e. the chain of length

𝐿) will have the following structure:
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· · · Track 1: Clock oscillator · · ·

· · · Track 2: Counter TM head and state · · ·

· · · Track 3: Counter TM tape · · ·

· · · Track 4: QTM head and state · · ·

· · · Track 5: QTM tape · · ·

· · · Track 6: Time-wasting tape · · ·

The local Hilbert space at each site is the tensor product of the local Hilbert space of

each of the six tracksH =
⊗6

𝑖=1H𝑖.

The outline of the construction is the following: tracks 1 encodes the evolution

of an oscillator which goes back and forth along its track as per fig. 5.3 Tracks 2 and

4 contain the heads of a classical and quantum TM respectively. These heads are

only able to move when the oscillator on track 1 passes by their heads – in this way

their evolution can be encoded with only local Hamiltonian terms. Tracks 3 and 5

are the read/write tapes for the respective TMs.

The classical TM encoded by the track 2 head will be a simple counter: it will

write out binary number on its tape (on track 3) and then increment it by one to the

next binary number. The head on track 2 is only able to make a transition when the

oscillator head passes next to it in the track above. This continues until the tape is

filled, at which point it halts along with the clock oscillator.

The QTM on tracks 4 and 5 will be a generic QTM. The QTM evolves as per

its transition rules until either: (a) the counter TM runs out of space and hence the

Figure 5.3: Evolution of the Track 1 clock oscillator, from [GI09].
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oscillator stops, or (b) the QTM finishes its computation and halts. If the QTM

halts before the counter TM runs out of steps, it places a halting marker on track

5. The head then moves to track 6 where it performs some arbitrary time wasting

computation which is guaranteed not to halt before the counter TM.

We also note that tracks 1-3 evolved entirely classically whereas tracks 4-6

will contain quantum states. As such, we decompose the local Hilbert space into a

classical and quantum part C𝐶⊗C𝑄 .

5.2.5 Order Parameters
As per claim 3 of definition 5.1, we now discuss order parameters in more detail. It

can be checked that the Hamiltonian in [CPGW15a] has an order parameter for its

two phases2 (which we label A and B for convenience) which can be distinguished

by an order parameter 𝑂𝐴/𝐵, defined as:

𝑂𝐴/𝐵 =
1
|Λ|

∑︁
𝑖∈Λ
|0⟩⟨0| (𝑖) . (5.18)

Note this order parameter is identical to the one for the Hamiltonian in chapter 3.

In particular, upon moving from one phase to another, the expectation value of

the order parameter is expected to undergo a non-analytic change. In the case

_0(𝐻Λ(𝐿)
𝑢 (𝜑)) = +Ω(𝐿2) the ground state of the entire Hamiltonian is then |0⟩Λ and

hence ⟨𝑂𝐴/𝐵⟩ = 1, and otherwise ⟨𝑂𝐴/𝐵⟩ = 0. This is true even if we restrict 𝑂𝐴/𝐵

to subsections of the lattice, hence 𝑂𝐴/𝐵 is a local order parameter (as opposed to

the global order parameters required to distinguish topological phases). Thus 𝑂𝐴/𝐵

undergoes a non-analytic change between phases, which itself demonstrates a phase

transition. More generally for a ball 𝐵(𝑟) of radius 𝑟, and for a state |a⟩ ∈ H⊗Λ we

can define a local observable

𝑂𝐴/𝐵 (𝑟) =
1
|𝐵(𝑟) |

∑︁
𝑖∈𝐵(𝑟)

|0⟩⟨0| (𝑖) , (5.19)

which acts as a local order parameter.

2Phase in this context refers to the state of matter, not a quantum mechanical phase factor (of the
form 𝑒𝑖 \ ).
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5.3 Results and Overview of RG Procedure
The main results of this chapter are the following set of theorems and corollaries:

Theorem 5.2 (Exact RG flow for Undecidable Hamiltonian). Let 𝐻 (𝜑) be the

Hamiltonian defined in [CPGW15a]. We construct a renormalisation group procedure

for the Hamiltonian which has the following properties:

1. R is computable.

2. If 𝐻 (𝜑) is gapless, then 𝑅(𝑘) (𝐻 (𝜑)) is gapless, and if 𝐻 (𝜑) is gapped, then

𝑅(𝑘) (𝐻 (𝜑)) is gapped (where gapped and gapless are defined in definition 3.1

and definition 3.2).

3. For the order parameter 𝑂𝐴/𝐵 (𝑟) (as defined in eq. (5.19)) which distinguishes

the phases of 𝐻Λ(𝐿) and is non-analytic at phase transitions, there exists a

renormalised observable 𝑅(𝑘) (𝑂𝐴/𝐵 (𝑟)) which distinguishes the phases of

𝑅(𝑘) (𝐻)Λ(𝐿) and is non-analytic at phase transitions.

4. Under an arbitrary number of iterations, the renormalised local interactions

belong to a family F (𝜑, 𝜏1, 𝜏2, {𝛼𝑖}𝑖, {𝛽𝑖}𝑖), and for any finite 𝑘 all of the

parameters are computable.

5. If 𝐻 (𝜑) initially has algebraically decaying correlations, then 𝑅(𝑘) (𝐻 (𝜑)) also

has algebraically decaying correlations. If 𝐻 (𝜑) initially has zero correlations,

then 𝑅(𝑘) (𝐻 (𝜑)) also has zero correlations.

Theorem 5.3 (Uncomputability of RG flows). Let ℎ(𝜑), 𝜑 ∈ Q, be the full local

interaction of the Hamiltonian from [CPGW15a]. 𝐻 (𝜑) :=
∑
ℎ(𝜑) (𝑖, 𝑗) is gapped if

the UTM corresponding to ℎ(𝜑) halts on input 𝜑, and gapless if the UTM never halts,

where gapped and gapless are defined in definition 3.1 and definition 3.2. Using the

RG scheme defined in theorem 5.2 then under 𝑘 iterations of the RG scheme (defined

later in definition 5.14) acting on 𝐻 (𝜑), the renormalised local terms are given by

𝑅(𝑘) (ℎ(𝜑)), which can be parameterised as part of a family F (𝜑, 𝜏1, 𝜏2, {𝛼𝑖}𝑖, {𝛽𝑖}𝑖)

(defined later in corollary 5.4). If the UTM is non-halting on input 𝜑, for all 𝑘 > 𝑘0(𝜑),
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𝜏2(𝑘) = −2𝑘 , for some computable 𝑘0(𝜑). If the UTM is halting on input 𝜑, then

there exists an uncomputable 𝑘ℎ (𝜑) such that for 𝑘0(𝜑) < 𝑘 < 𝑘ℎ (𝜑), 𝜏2(𝑘) = −2𝑘 ,

and for all 𝑘 > 𝑘ℎ (𝜑) then 𝜏2(𝑘) = −2𝑘 +Ω(4𝑘−𝑘ℎ (𝜑)).

A direct consequence of this is:

Corollary 5.1. Determining which fixed point the Hamiltonian flows to under this

RG scheme is undecidable.

The overall RG scheme is explicitly given in definition 5.14, and the family

F (𝜑, 𝜏1, 𝜏2, {𝛽𝑖}) which the renormalised Hamiltonians belong to is given in corol-

lary 5.4. One of the consequences of theorem 5.3 is that the Hamiltonian is guaranteed

to flow towards one of two fixed points. However, determining which fixed point it

flows to for a given value of 𝜑 is undeciable.

The undecidability of the fixed point follows implicitly from undecidability

of the spectral gap [CPGW15a; CPGW15b], since the fixed point depends on

the gappedness of the unrenormalised Hamiltonian. However, theorem 5.3 shows

precisely how the trajectory of the Hamiltonian in parameter space diverges in an

uncomputable manner under RG flow.

We note a subtlety in the statement of theorem 5.2. It is important that we are

able to explicitly construct the RG scheme, rather than just prove the existence of

such an RG scheme. If only existence were proven, it would leave open the possibility

that finding the RG scheme is itself an uncomputable task, thus meaning it cannot

actually be determined.

5.3.1 Overview of the Proof of the Main Results
The renormalisation group scheme we will employ will be a variant of the BRG

described in section 5.2.2.1, where we block 2× 2 groups of spins to a single

“super-spin” which preserves some of the properties of the original set. Due to the

complexity of the Hamiltonian in consideration, we will first renormalise the different

parts ℎ𝑢, ℎ𝑑 , |0⟩ of the Hamiltonian separately, then combine these RG maps into

the complete map. For a finite size lattice, ℎ𝑢 has a ground state which is product

between H𝐶 and H𝑞 ⊕ |𝑒⟩. This key property allows us to essentially renormalise
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the tiling Hamiltonian and the Gottesman-Irani Hamiltonian separately.

Renormalising the Tiling Hamiltonian

Section 4.4.1 (and fig. 4.3) shows that the ground state of the tiling Hamiltonian

corresponds to a particular pattern; notably the Robinson tiling creates a self-similar

pattern for across all sizes of squares, where smaller squares are nested within larger

ones. We design a blocking RG procedure which takes a set of 2×2 Robinson tiles,

then maps them onto a single new tile which has the same markings and tiling rules

as one in the original set of Robinson tiles. Doing this we recover a set of tiles which

recreate the Robinson tiling pattern, but now with the smallest squares “integrated

out”. Repeated iterations of this process still preserve the Robinson tiling pattern.

The details are give in section 5.4.

Renormalising the Gottesman-Irani Hamiltonian

The Gottesman-Irani Hamiltonian ℎ𝑞 is a 1D Hamiltonian which serves as a QTM-

to-Hamiltonian map. As noted in section 5.2.3, in the ground state of
∑
ℎ𝑢, ground

states of Gottesman-Irani Hamiltonians appear along the top edge of the Robinson

tiles. We aim to design an RG scheme such that the energy of the Gottesman-Irani

ground state attached to a square remains the same even when the square size is

halved. To do this, we map pairs of spins in the Gottesman-Irani Hamiltonian to a

new “combined spin” which now has local Hilbert space dimension 𝑑2 if the original

dimension is 𝑑. As with the BRG, we consider the new 1-local terms and diagonalise

them. Since we know the form of the ground state explicitly, it is possible to identify

states which pick up too much energy to have overlap with the ground state. We

can truncate the local Hilbert space by removing these states and hence reduce the

dimension of the combined spin to something < 𝑑2 (but still > 𝑑). This blocking

procedure will preserve whether the Hamiltonian has a zero energy ground state or a

ground state with energy > 0.

In mathematical terms, the procedure is implemented by a series of isometries

which are used to map the original states to the new blocked states, and then subspace

restrictions which remove the high energy states. This is summarised in lemma 5.4.

We refer the reader to section 5.5 for full details.
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Renormalising ℎ𝑢 Since ℎ𝑢 = ℎ(𝑖,𝑖+1)𝑇
⊗1(𝑖)𝑒𝑞⊗1(𝑖+1)𝑒𝑞 +1(𝑖)𝑐 ⊗1(𝑖+1)𝑐 ⊗ℎ(𝑖,𝑖+1)𝑞 + coupling terms,

to renormalise it, we do the following:

• Choose a 2×2 block of spins.

• Renormalise the classical tiling part of the Hamiltonian as above.

• To renormalise the quantum part of the Hamiltonian, break the 2×2 block into

two 2×1 blocks. Renormalise these two sections as the above renormalisation

for the Gottesman-Irani Hamiltonian. The 2×2 block is now a 2×1 block.

• Trace out part of the Hilbert space such the 2×1 block is now a single site in

the renormalised Hilbert space such that we are left with 1-local and 2-local

projector terms which introduce an energy shift. This energy shift exactly

compensates for any energy lost in the integrating out operation.

The above can be shown to preserve the ground state energy in the desired way. See

definition 5.13 in section 5.6.1 for the complete description.

Renormalising the Entire Hamiltonian We renormalise ℎ𝑑 and |0⟩⟨0| in a straight-

forward way such that their properties are preserved. Thus the overall renormalisation

scheme acts on ℎ𝑢 as above, and essentially leaves ℎ𝑑 and |0⟩⟨0| unchanged.

Since ℎ𝑢, ℎ𝑑 and |0⟩⟨0| have their respective ground state energies preserved

(approximately), whether the ground state is |0⟩Λ or the more complex ground

state of the tiling+quantum Hamiltonian, is preserved. Importantly it can be shown

the spectral gap of both cases is preserved. The RG process can then be iterated

arbitrarily many times: we show the relevant properties are preserved throughout.

Determining the properties of the ground state and spectral gap are undecidable for

the unrenormalised Hamiltonian, and since these properties are preserved by the RG

mapping, it is also undecidable for the renormalised Hamiltonians.

The renormalisation of the entire Hamiltonian is given in detail in section 5.6.
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Figure 5.4: Flow diagram of the proof.

5.4 Renormalisation of the Robinson Tiling Hamilto-

nian
The renormalisation of the Robinson tiling and the corresponding Hamiltonian were

primarily the work of Emilio Onorati, and as such we will only include a brief

sketch of the result in this thesis to reduce the overall length. We refer the reader to

[WOC21] for full details of the classical renormalisation procedure.

To renormalise the Robinson tiling an RG map will be constructed under

which the two graphs representing respectively the adjacency relations (roughly

speaking, the rules telling us what tiles can stay above / below / left / right of a
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given tile) for the Robinson tiles and for a specific subset of 2× 2 supertiles are

isomorphic. This implies that the pattern produced by the tiling of the 2D plane

using Robinson tiles is scale-invariant. This property is crucial in order to ensure

that the density of the Gottesman-Irani ground states (corresponding to the top edges

of the squares appearing in the pattern) which encode the QTM is preserved under

the renormalisation procedure.

More formally, we have that:

Theorem 5.4. (Adjacency Rules Isomorphism) Let 𝑇1 be the set of Robinson tiles

and 𝐴1 be the corresponding adjacency rules. Let 𝑇2 be the set of 2×2 supertiles,

obtained from all combinations allowed by 𝐴1 of four Robinson tiles placed in a

2×2 square, and 𝐴2 be the adjacency rules of 𝑇2, derived from the principle that two

supertiles can be placed next to each other only if the Robinson tiles on the edges

that are put adjacent respect 𝐴1. Then there exists a subset 𝑇 ′2 ⊂ 𝑇2, |𝑇 ′2 | = |𝑇1 | = 56,

with tiling rules 𝐴′2 = 𝐴2 |𝑇 ′2 , and a bijection 𝑇 ′2→ 𝑇1 under which 𝐴1 and 𝐴′2 are

equivalent.

From this result it follows that:

Corollary 5.2. (Scale Invariance of the Robinson Tiling) Under the bijection in

theorem 5.4, the Robinson tiling pattern is preserved under the 2× 2→ 1× 1

renormalisation of the grid.

We can then translate this scale invariance into a statement about the properties

of the Hamiltonian which describes the Robinson tiling, i.e.,

Theorem 5.5 ((Informal) Robinson Tiling Hamiltonian Renormalisation). Let ℎ𝑇 ∈

C𝑇 ⊗C𝑇 be the local interactions which describe the Robinson tiling Hamiltonian.

Then there exists a renormalisation group mapping R𝑇 such that 𝑅𝑇 (ℎ𝑇 ) ∈ C𝑇 ⊗C𝑇 ,

such that 𝑅𝑇 (ℎ𝑇 ) preserves both the ground state energy and the tiling pattern.

More formally we can write:

Definition 5.3 (Tiling Hamiltonian Renormalisation). Let ℎ𝑐𝑜𝑙
𝑇
, ℎ𝑟𝑜𝑤
𝑇
∈ B(C𝑇 ⊗C𝑇 ) be

the local interactions describing the tiling Hamiltonian. Let ℎ𝑟𝑜𝑤
𝑖,𝑖+1( 𝑗) denote the row
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interaction between sites (𝑖, 𝑗), (𝑖 +1, 𝑗) and similarly let ℎ𝑐𝑜𝑙
𝑗 , 𝑗+1(𝑖) be the interaction

between (𝑖, 𝑗), (𝑖, 𝑗 +1). Let the 2×2 supertiles be assigned at (𝑖, 𝑗), (𝑖 +1, 𝑗), (𝑖, 𝑗 +

1), (𝑖 +1, 𝑗 +1) and sites consistent with it. Then the renormalised Hamiltonian has

local terms 𝑅(ℎ𝑐𝑜𝑙
𝑇
), 𝑅(ℎ𝑐𝑜𝑙

𝑇
) ∈ B(C𝑇 ⊗C𝑇 ),

𝑅(ℎ𝑐𝑜𝑙𝑇 )⌈ 𝑗/2−1⌉,⌈ 𝑗/2−1⌉+1 =𝑉(𝑖,𝑖+1),( 𝑗+2, 𝑗+3)𝑉(𝑖,𝑖+1),( 𝑗 , 𝑗+1)
(
ℎ𝑐𝑜𝑙𝑇, 𝑗+1, 𝑗+2(𝑖) + ℎ

𝑐𝑜𝑙
𝑇, 𝑗+1, 𝑗+2(𝑖 +1)

) ��
𝑇 ′2

(5.20)

×𝑉†(𝑖,𝑖+1),( 𝑗 , 𝑗+1)𝑉
†
(𝑖,𝑖+1),( 𝑗+2, 𝑗+3) (5.21)

𝑅(ℎ𝑟𝑜𝑤𝑇 )⌈𝑖/2−1⌉,⌈𝑖/2−1⌉+1 =𝑉(𝑖+2,𝑖+3),( 𝑗 , 𝑗+1)𝑉(𝑖,𝑖+1),( 𝑗 , 𝑗+1)
(
ℎ𝑟𝑜𝑤𝑇,𝑖+1,𝑖+2( 𝑗) + ℎ

𝑟𝑜𝑤
𝑇,𝑖+1,𝑖+2( 𝑗 +1)

) ��
𝑇 ′2

(5.22)

×𝑉†(𝑖,𝑖+1),( 𝑗 , 𝑗+1)𝑉
†
(𝑖+2,𝑖+3),( 𝑗 , 𝑗+1) (5.23)

where 𝑉 is an isometry which can be explicitly constructed. In the above we have

used the standard abbreviation that each local term is implicitly tensored with the

appropriate identity terms, e.g. ℎ𝑐𝑜𝑙
𝑇, 𝑗+1, 𝑗+2(𝑖) is actually 1𝑖, 𝑗 ⊗1𝑖+1, 𝑗 ⊗ ℎ𝑐𝑜𝑙𝑇, 𝑗+1, 𝑗+2(𝑖) ⊗

1𝑖, 𝑗+3 ⊗1𝑖+1, 𝑗+3.

The result is:

Lemma 5.1. The matrix form of the initial and renormalised Hamiltonian are the

same, i.e.,

𝑅(ℎ𝑟𝑜𝑤𝑇 )𝑖,𝑖+1 = ℎ
𝑟𝑜𝑤
𝑇,𝑖,𝑖+1 and 𝑅(ℎ𝑐𝑜𝑙𝑇 ) 𝑗 , 𝑗+1 = ℎ

𝑐𝑜𝑙
𝑇, 𝑗 , 𝑗+1. (5.24)

5.5 Renormalisation of the Quantum Hilbert Space
In this section we will deal with the renormalisation of the quantum Hamiltonian.

For this, we will need a number of definitions from [CPGW15a].

Definition 5.4 (Standard Basis States). Let the single site Hilbert space beH = ⊗𝑖H𝑖
and fix some orthonormal basis for the single site Hilbert space. Label the set of

single site basis states for site 𝑖 as 𝔅
(𝑖)
𝑞 . Then a standard basis state for H⊗𝐿 are

product states over the single site basis.
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Definition 5.5 (Penalty Terms and Transition Rules). The two-local quantum Hamilto-

nian will contain two types of terms: penalty terms and transition rule terms. Penalty

terms have the form |𝑎𝑏⟩⟨𝑎𝑏 | where |𝑎⟩ and |𝑏⟩ are standard basis states. This adds a

positive energy contribution to any configuration containing the state |𝑎𝑏⟩, which we

call an illegal pair. Transition rule terms take the form 1
2 ( |𝑎𝑏⟩ − |𝑐𝑑⟩)(⟨𝑎𝑏 | − ⟨𝑐𝑑 |)

with |𝑎𝑏⟩ ≠ |𝑐𝑑⟩, where |𝑎𝑏⟩ and |𝑐𝑑⟩ act on the same pair of adjacent sites.

Definition 5.6 (Legal and Illegal States). We call a standard basis state legal if it

does not contain any illegal pairs, and illegal otherwise

We then define a standard form Hamiltonian on the joint system

H𝐶 ⊗H𝑄 B (C𝐶 ⊗C𝑄)⊗𝐿 = (C𝐶)⊗𝐿 ⊗ (C𝑄)⊗𝐿 . (5.25)

Importantly, the Gottesman-Irani Hamiltonian we will be considering will be of

standard form. Standard form Hamiltonians are a particular type of Hamiltonian.

Due to the length of the definition, we leave it to definition A.2 and simply claim that

certain properties apply to standard form Hamiltonians.

The 1D Gottesman-Irani Hamiltonian 𝐻𝑞 (𝐿) ∈ B(C𝑑)⊗𝐿 , introduced in sec-

tion 5.2.4, can be written as:

𝐻𝑞 = 𝐻𝑡𝑟𝑎𝑛𝑠 +𝐻𝑖𝑛 +𝐻𝑝𝑒𝑛 +𝐻ℎ𝑎𝑙𝑡 , (5.26)

where 𝐻𝑡𝑟𝑎𝑛𝑠 contains transition rule terms, 𝐻𝑝𝑒𝑛 is a set of penalty terms which

penalise states that should not appear in correct history states, 𝐻𝑖𝑛 penalises states

which are incorrectly initialised, and 𝐻ℎ𝑎𝑙𝑡 penalises states which encode a halting

computation. Moreover, it has a six-fold tensor product form

H𝑞 =
6⊗
𝑗=1
(H𝑞) 𝑗 . (5.27)

where each (H𝑞) 𝑗 is identified with a different track.
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Lemma 43 of [CPGW15a] identifies three subspaces of states, which are closed

under the action of 𝐻𝑞.

1. Illegal Subspace, S1: All |𝑥⟩ ∈ S1 ⊂𝔅⊗𝐿 are in the support of 𝐻𝑝𝑒𝑛 and hence

⟨𝑥 |𝐻 |𝑥⟩ ≥ 1. By [CPGW15a] Lemma 43, the minimum eigenvalue of these

subspaces is _0(𝐻 |S1) ≥ 1.

2. Evolve-to-Illegal Subspace, S2: All standard basis states |𝑥⟩ ∈ S2 ⊂ 𝔅⊗𝐿

will evolve either forwards or backwards in time to an illegal state in 𝑂 (𝐿2)

steps under the transition rules. As per lemma 5.8 of [Wat19], the minimum

eigenvalue of these subspaces is _0(𝐻 |S2) = Ω(𝐿−2).

3. Legal Subspace, S3: all standard basis states in S3 are legal and do not evolve

to illegal states. By [CPGW15a] lemma 43, they have zero support on 𝐻𝑝𝑒𝑛 or

𝐻𝑖𝑛.

In our renormalisation procedure we seek to preserve only the low energy

subspace, hence at any point where we can locally identify states as being in subspace

S1 or S2, we will remove them from the state space in the renormalisation step.

However, we note that in the general case we cannot locally identify all such

states in S2. That is, determining the whether a state evolves to an illegal under the

action of the transitions may be impossible if we only look at what the state looks

like on a 𝑂 (1)-subset of the sites.

5.5.0.1 The Ground States
From [CPGW15a] we know that there are two cases we need to consider: the QTM

encoded in 𝐻𝑞 (𝐿) halts or does not halt.

Lemma 5.2. Let a given UTM be encoded in the Gottesman-Irani Hamiltonian

𝐻𝑞 (𝐿). Then 𝐻𝑞 (𝐿) has a ground state energy that is either 0 if the UTM does not

halt within time 𝑇 (𝐿) or 1− cos
(
𝜋

2𝑇
)

if the UTM does halt within 𝑇 (𝐿). 𝑇 (𝐿) is a

fixed, predetermined function. In the non-halting case, the ground state is

|Ψℎ𝑖𝑠𝑡 (𝐿)⟩ =
1
√
𝑇

𝑇 (𝐿)∑︁
𝑡=1
|𝑡⟩ |𝜓𝑡⟩ , (5.28)
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and in the halting case it is

|Ψℎ𝑎𝑙𝑡 (𝐿)⟩ =
𝑇 (𝐿)∑︁
𝑡=1

2cos
(
(2𝑡 +1)𝜋𝑡

4𝑇

)
sin

( 𝜋
4𝑇

)
|𝑡⟩ |𝜓𝑡⟩ , (5.29)

where |𝑡⟩ is the state of the clock register and |𝜓𝑡⟩ =
∏𝑡

𝑗=1𝑈 𝑗 |𝜓0⟩ and |𝜓0⟩ is the

initial state of the computational register and the {𝑈𝑡} represent the action of the

QTM at time step 𝑡.

Proof. Combine the standard form property of 𝐻𝑞 from [CPGW15a] with Lemma

5.10 of [Wat19]. □

5.5.1 Block Renormalisation of the Gottesman-Irani Hamiltonian

In this section we will construct a renormalisation scheme for the Gottesman-Irani

Hamiltonian. For a given spin at site 𝑖, we write each possible conventional basis

state (i.e. basis state before the RG procedure has started) as

������𝑎𝛼
〉
(𝑖)

∈ C𝐶 ⊗C𝑄 , where

the top cell indicates the classical tracks of the construction encoded in [CPGW15a],

while the bottom cell indicates the quantum tracks (see section 5.2.4).

We then define a pair of operations: the blocking operationB𝑞 and the truncation

operation T𝑞. Given a line of qudits B𝑞 will essentially combine pairs of lattice sites

into single sites with a larger local Hilbert space dimension, while T𝑞 will remove

any of the new single site states which can be locally detected to have zero overlap

with the ground state. Thus T𝑞 reduces the local Hilbert space dimension.

We do not truncate all high energy states since in the halting case this would

remove the ground state of the Gottesman-Irani Hamiltonian (note this is a slight

difference from the standard definition of the BRG). Instead, we removed states based

on a combination of high energy and a priori knowledge of the ground state.

Blocking B𝑞
The blocking part of the renormalisation procedure is defined as follows.

Definition 5.7 (Gottesman-Irani Blocking, B𝑞). Let |𝜓⟩ ∈ H (𝑖)𝑞 ⊗H (𝑖+1)𝑞 , 𝑖 ∈N. The

blocking operation, B𝑞 :H (𝑖)𝑞 ×H (𝑖+1)𝑞 →H ′(𝑖/2)𝑞 , is given by the action of the unitary
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𝑈𝑖,𝑖+1 :H (𝑖)𝑞 ×H (𝑖+1)𝑞 → 𝑅(H𝑞)′ as

B (𝑖,𝑖+1)𝑞 : |𝜓⟩ ↦→𝑈𝑖,𝑖+1 |𝜓⟩ (5.30)

where

𝑈𝑖,𝑖+1 =
∑︁

|𝑥⟩,|𝑦⟩∈𝔅
|𝑥𝑦⟩𝑖/2 ⟨𝑥 |𝑖 ⟨𝑦 |𝑖+1 . (5.31)

We extend this to |𝜒⟩ ∈ H⊗𝐿𝑞 as

B𝑞 : |𝜒⟩ ↦→𝑈 |𝜒⟩ , (5.32)

where𝑈 =
⊗𝑖≤𝐿/2

𝑖∈2N 𝑈𝑖,𝑖+1.

This can be expressed more intuitively in terms of basis states

B (𝑖,𝑖+1)𝑞 :

������𝑎𝛼
〉
(𝑖)

⊗

������𝑏𝛽
〉
(𝑖+1)

−→

������𝑎𝑏𝛼𝛽
〉
(𝑖/2)

. (5.33)

Note that B𝑞 is just a relabelling of the space, so the local Hilbert space dimension is

now C𝑑2 and part of the tensor product structure is lost. We denote byH ′𝑞 this new

local Hilbert space spanned by the basis 𝔅′(1) .

From here forward if |𝑎⟩ , |𝑏⟩ are the initial states, then the image under the

blocking will be denoted |𝑎𝑏⟩, and if the map is repeated |𝑎𝑏⟩ . |𝑐𝑑⟩ is mapped to

|𝑎𝑏𝑐𝑑⟩, etc.

Truncation T𝑞
The truncation part of the RG map truncates the local Hilbert space to discard those

states which locally have support on the penalty terms.

Definition 5.8 (Gottesman-Irani Truncation Mapping, T𝑞). Let 𝔅(1) be the set of

basis states defined by B𝑞 such states with a preimage |𝑎⟩ |𝑏⟩, such that |𝑎⟩ , |𝑏⟩ ∈𝔅
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cannot be locally identified as being in subspace S1 or S2. That is

⟨𝑎 | ⟨𝑏 | ℎ𝑖,𝑖+1𝑝𝑒𝑛 |𝑎⟩ |𝑏⟩ = ⟨𝑎 | ⟨𝑏 | ℎ𝑖,𝑖+1𝑖𝑛
|𝑎⟩ |𝑏⟩ = 0, (5.34)

⟨𝑎 | ⟨𝑏 | ℎ(𝑖,𝑖+1)𝑡𝑟𝑎𝑛𝑠 ℎ
(𝑖,𝑖+1)
𝑝𝑒𝑛 ℎ

(𝑖,𝑖+1)
𝑡𝑟𝑎𝑛𝑠 |𝑎⟩ |𝑏⟩ = 0. (5.35)

The truncation mapping is then T (𝑖,𝑖+1)𝑞 : 𝑅(H𝑞)′ → 𝑅(H𝑞) for 𝑅(H𝑞) =

span{𝔅(1)𝑞 } ⊂ 𝑅(H)′𝑞. Then the full restriction is T𝑞 :H ′⊗𝐿/2𝑞 → 𝑅(H𝑞)⊗𝐿/2.

We now combine the unitary and subspace restriction to give an isometry which

implements T𝑞 ◦B𝑞.

Lemma 5.3 (Renormalisation Unitary Structure). Let the renormalisation isometry

𝑉𝐺𝐼
𝑖,𝑖+1 be the unitary map follow by subspace restriction previously described. Define

𝑉𝐺𝐼 :H⊗𝐿𝑞 → 𝑅(H𝑞)⊗𝐿/2 to implement the mapping T𝑞 ◦B𝑞 on a state inH⊗𝐿𝑞 , as

T𝑞 ◦B𝑞 : |𝜒⟩ ↦→𝑈 |𝜒⟩ |𝑅(H𝑞)⊗𝐿/2 =:𝑉𝐺𝐼 |𝜒⟩ . (5.36)

where𝑈 is defined in definition 5.7 and 𝑅(H𝑞) is defined in definition 5.8. Then 𝑉𝐺𝐼

can be defined as and decomposed as

𝑉𝐺𝐼 :=
𝑖≤⌊𝐿/2⌋⊗
𝑖∈2N

𝑉𝐺𝐼𝑖,𝑖+1 =
𝑖≤⌊𝐿/2⌋⊗
𝑖∈2N

©«
6⊗
𝑗=1

𝑉
𝐺𝐼 ( 𝑗)
𝑖,𝑖+1

ª®¬ , (5.37)

with

𝑉𝐺𝐼𝑖,𝑖+1 :H⊗2
𝑞 → 𝑅(H𝑞) (5.38)

and where each part of the decomposition acts on one of the six different tracks,

𝑉
𝐺𝐼 ( 𝑗)
𝑖,𝑖+1 :H⊗2

𝑞, 𝑗 → 𝑅(H𝑞) 𝑗 . (5.39)

Proof. The decomposition𝑉𝐺𝐼 =
⊗𝑖≤⌊𝐿/2⌋

𝑖∈2N 𝑉𝐺𝐼
𝑖,𝑖+1 is evident from the block procedure.

The decomposition 𝑉𝐺𝐼
𝑖,𝑖+1 =

⊗6
𝑗=1𝑉

𝐺𝐼 ( 𝑗)
𝑖,𝑖+1 arises from the fact that the procedure

keeps each basis state as a product across the different tracks and hence the different

H𝑞, 𝑗 . □
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We now need to define how the Hamiltonian acts with respect to the RG

procedure. We want to break down the Hamiltonian into different subspaces and

renormalise them separately while preserving the ground state (in both the halting

and non-halting cases) and its energy.

Lemma 5.4 (Renormalised Gottesman-Irani Hamiltonian). Let ℎ𝑞 be the local terms

of a nearest neighbour, translationally invariant Hamiltonian

𝐻𝑞 (𝐿) =
𝐿∑︁
𝑖=1
ℎ
(𝑖,𝑖+1)
𝑞 = 𝐻𝑡𝑟𝑎𝑛𝑠 +𝐻𝑝𝑒𝑛 +𝐻𝑖𝑛 +𝐻𝑜𝑢𝑡 , (5.40)

such that 𝐻 (𝐿) is standard form. Let 𝑉 : C𝑑 ⊗ C𝑑 → C 𝑓 (𝑑) , be the isometry

from lemma 5.3. Then the renormalised Hamiltonian, defined as

R(𝐻𝑞 (𝐿)) =𝑉𝐺𝐼𝐻𝑞 (𝐿)𝑉𝐺𝐼† =
𝐿−1∑︁
𝑖=1
𝑉𝐺𝐼ℎ

(𝑖,𝑖+1)
𝑞 𝑉𝐺𝐼† = 𝑅(𝐻𝑞) (𝐿), (5.41)

is a translationally invariant, nearest-neighbour Hamiltonian with local interac-

tions 𝑅(ℎ𝑞) (𝑖/2,𝑖/2+1) =𝑉𝐺𝐼 (ℎ(𝑖−1,𝑖)
𝑞 + ℎ(𝑖+1,𝑖+2)𝑞 )𝑉𝐺𝐼† and 𝑅(ℎ𝑞)𝑖/2 =𝑉𝐺𝐼ℎ(𝑖,𝑖+1)𝑞 𝑉𝐺𝐼†.

Furthermore, 𝑅(𝐻𝑞) (𝐿) has the following properties:

1. 𝑅(𝐻𝑞) (𝐿) is a standard form Hamiltonian.

2. 𝑅(𝐻𝑡𝑟𝑎𝑛𝑠) encodes a transition 𝑉𝐺𝐼 ( |𝑎𝑏⟩ |𝜓𝑎𝑏𝑐𝑑⟩) →𝑉𝐺𝐼 ( |𝑐𝑑⟩𝑈𝑎𝑏𝑐𝑑 |𝜓𝑎𝑏𝑐𝑑⟩)

iff 𝐻𝑡𝑟𝑎𝑛𝑠 encodes the transition |𝑎𝑏⟩ |𝜓𝑎𝑏𝑐𝑑⟩ → |𝑐𝑑⟩𝑈𝑎𝑏𝑐𝑑 |𝜓𝑎𝑏𝑐𝑑⟩.

3. 𝑅(𝐻𝑝𝑒𝑛), 𝑅(𝐻𝑖𝑛), 𝑅(𝐻𝑜𝑢𝑡) have support on a renormalised basis state

𝑉𝐺𝐼 ( |𝑎𝑏⟩ |𝜓⟩) iff 𝐻𝑝𝑒𝑛, 𝐻𝑖𝑛, 𝐻𝑜𝑢𝑡 respectively have non-zero support on

|𝑎𝑏⟩ |𝜓⟩.

4. _0(𝐻𝑞 (𝐿)) = _0(𝑅(𝐻𝑞) (𝐿/2)) (the ground state energy is preserved).

5. 𝑅(𝐻𝑞) maintains the six-fold tensor product structure of the original Hamilto-

nian 𝐻𝑞 in eq. (5.27), that is, 𝑅(H𝑞) =
⊗6

𝑗=1 𝑅(H𝑞) 𝑗 .

Proof. First note that for all 𝑖 ∈ 2N, 𝑉𝐺𝐼
𝑖,𝑖+1ℎ

(𝑖,𝑖+1)𝑉𝐺𝐼†
𝑖,𝑖+1 ∈ B(C

𝑓 (𝑑)) is now a 1-

local term in the new renormalised Hamiltonian, for some 𝑓 : N→ N. However,
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𝑉𝐺𝐼
𝑖+2,𝑖+3𝑉

𝐺𝐼
𝑖,𝑖+1ℎ

(𝑖+1,𝑖+2)𝑉𝐺𝐼†
𝑖,𝑖+1𝑉

𝐺𝐼†
𝑖+2,𝑖+3 ∈ B(C

𝑓 (𝑑) ⊗C 𝑓 (𝑑))

Claims 1 and 2: From the linearity of 𝑉𝐺𝐼 , we see that R(𝐻𝑞 (𝐿)) = 𝑅(𝐻𝑡𝑟𝑎𝑛𝑠) +

𝑅(𝐻𝑝𝑒𝑛) + 𝑅(𝐻𝑖𝑛) + 𝑅(𝐻𝑜𝑢𝑡). It is trivial to see that 𝑅(𝐻𝑡𝑟𝑎𝑛𝑠) = 𝑉𝐺𝐼𝐻𝑡𝑟𝑎𝑛𝑠𝑉𝐺𝐼† =∑
𝑎𝑏→𝑐𝑑 (𝑉𝐺𝐼 |𝑐𝑑⟩ ⊗𝑈𝑎𝑏𝑐𝑑 −𝑉𝐺𝐼 |𝑎𝑏⟩)(⟨𝑐𝑑 | ⊗𝑈†𝑎𝑏𝑐𝑑𝑉

𝐺𝐼† − ⟨𝑎𝑏 |𝑉𝐺𝐼†), and hence

encodes transitions between the renormalised states. This also shows 𝑅(𝐻𝑡𝑟𝑎𝑛𝑠)

satisfies Claim 2. Due to the decompositional properties of 𝑉𝐺𝐼 , as shown in

lemma 5.3, we preserve that 𝐻𝑡𝑟𝑎𝑛𝑠 acts diagonally on the states in C𝐶 . Likewise, it

preserves the form of 𝐻𝑝𝑒𝑛, 𝐻𝑖𝑛, 𝐻𝑜𝑢𝑡 as projectors onto a subset of states.

Claim 3: Consider the penalty terms: given a renormalised state 𝑉𝐺𝐼 |𝜓⟩, it is clear

that

(⟨𝜓 |𝑉𝐺𝐼†)𝑉𝐺𝐼𝐻𝑝𝑒𝑛𝑉
𝐺𝐼†(𝑉𝐺𝐼 |𝜓⟩) = ⟨𝜓 |𝐻𝑝𝑒𝑛 |𝜓⟩ = 1,

hence 𝑉𝐺𝐼 |𝜓⟩ is penalised by the renormalised Hamiltonian iff |𝜓⟩ is penalised by

the unrenormalised Hamiltonian. The same applied to 𝐻𝑖𝑛 and 𝐻𝑜𝑢𝑡 .

Claim 4: First note that any state

|Ψ{𝑎𝑡}⟩ =
𝜏∑︁
𝑡=1
𝑎𝑡 ( |𝑡⟩ |𝜓𝑡⟩). (5.42)

which encodes a valid evolution is in the kernel of 𝐻𝑖𝑛, 𝐻𝑝𝑒𝑛, and is contained in

subspace S3. Thus, 𝑉𝐺𝐼 |Ψ{𝑎𝑡}⟩ ∈ 𝑅(H)⊗𝐿/2, and after the RG procedure T𝑞 ◦B𝑞
the corresponding renormalised state is

|Ψ′{𝑎𝑡}⟩ =
𝜏∑︁
𝑡=1
𝑎𝑡𝑉

𝐺𝐼 ( |𝑡⟩ |𝜓𝑡⟩). (5.43)

To see the energy of such states is preserved note

⟨Ψ′{𝑎𝑡}|𝑉𝐺𝐼𝐻𝑞 (𝐿)𝑉𝐺𝐼† |Ψ′{𝑎𝑡}⟩ = ⟨Ψ{𝑎𝑡}|𝐻𝑞 (𝐿) |Ψ{𝑎𝑡}⟩ . (5.44)

From lemma 5.2 the ground states are of the form |Ψ{𝑎𝑡}⟩. We know that the state
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𝑉𝐺𝐼 |Ψ{𝑎𝑡}⟩ has the same energy. Since the minimum eigenvalue is given by

_0(𝐻𝑞 (𝐿)) = min
𝑥∈H⊗𝐿𝑞

⟨𝑥 |𝐻𝑞 (𝐿) |𝑥⟩
⟨𝑥 |𝑥⟩

= min
𝑥∈H⊗𝐿𝑞

⟨𝑥 |𝑈𝑈†𝐻𝑞 (𝐿)𝑈†𝑈 |𝑥⟩
⟨𝑥 |𝑈†𝑈 |𝑥⟩

(5.45)

≤ min
𝑥∈H⊗𝐿𝑞

𝑉𝐺𝐼 |𝑥⟩≠0

⟨𝑥 |𝑉𝐺𝐼𝑉𝐺𝐼†𝐻𝑞 (𝐿)𝑉𝐺𝐼†𝑉𝐺𝐼 |𝑥⟩
⟨𝑥 |𝑉𝐺𝐼†𝑉𝐺𝐼 |𝑥⟩

(5.46)

= _0(𝑅(𝐻𝑞) (𝐿/2)),

where going from eq. (5.45) to eq. (5.46) we have used the fact that we have

restricted the subspace to remove the states that are integrated out by 𝑉𝐺𝐼 . Since

_0(𝑅(𝐻𝑞) (𝐿/2)) = _0(𝐻𝑞 (𝐿/2)), then we can confirm 𝑉𝐺𝐼 |𝜓ℎ𝑎𝑙𝑡⟩ and 𝑉𝐺𝐼 |𝜓ℎ𝑖𝑠𝑡⟩

are the appropriate ground states after the renormalisation procedure.

Claim 5: The preservation of the structure in eq. (5.27) follows directly from the

tensor product form of the isometry given in eq. (5.37) applied according to the

renormalisation method described by eq. (5.41).

□

Consecutive steps of the RG procedure can be derived straightforwardly. The

Hilbert space obtained after 𝑘-th RG steps of can be constructed by induction

(T𝑞 ◦B𝑞)◦(𝑘) = T𝑞 ◦B𝑞 ◦ (T𝑞 ◦B𝑞)◦(𝑘−1)

We can thus concatenate multiple renormalisations of the Gottesman-Irani Hamilto-

nian in one isometry, 𝑉𝐺𝐼 [𝑘] : 𝑅(𝑘−1) (H𝑞)⊗2𝐿→ 𝑅(𝑘) (H𝑞)⊗𝐿 , given by

𝑉𝐺𝐼 [𝑘] = Π𝑘
𝑗=1𝑉

𝐺𝐼
𝐿/2 𝑗

where 𝑉𝐺𝐼
𝐿/2 𝑗 is the isometry outlined in lemma 5.3, but now acting on the appropriate

local Hilbert space, and the subscript 𝐿/2 𝑗 indicates that the operator is acting on a

1D chain of 𝐿/2 𝑗 sites.
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Accordingly, the renormalised Hamiltonian is then

𝑅(𝑘) (𝐻𝑞 (𝐿)) =𝑉𝐺𝐼 [𝑘]𝐻𝑞 (𝐿)𝑉𝐺𝐼† [𝑘] .

It follows immediately from lemma 5.4 is that this RG mapping takes standard

form Hamiltonians to standard form Hamiltonians while preserving the energy of the

ground state.

5.6 Putting it all Together
In this section we combine the renormalisation group schemes for the separate parts

of the Hamiltonian. First recall Lemma 51 of [CPGW15a] which characterises the

ground state of the Hamiltonian defined by the local terms ℎ𝑢:

Lemma 5.5 (Tiling + quantum layers, Lemma 51 of [CPGW15a]). Let ℎrow
𝑐 , ℎcol

𝑐 ∈

B(C𝐶⊗C𝐶) be the local interactions of a 2D tiling Hamiltonian 𝐻𝑐, with two

distinguished states (tiles) |𝐿⟩ , |𝑅⟩ ∈ C𝐶 . Let ℎ𝑞 ∈ B(C𝑄⊗C𝑄) be the local inter-

action of a Gottesman-Irani Hamiltonian 𝐻𝑞 (𝑟), as in section 5.5. Then there

is a Hamiltonian on a 2D square lattice with nearest-neighbour interactions

ℎrow
𝑢 , ℎcol

𝑢 ∈ B(C𝐶+𝑄+1⊗C𝐶+𝑄+1) with the following properties: For any region

of the lattice, the restriction of the Hamiltonian to that region has an eigenbasis of the

form |𝑇⟩𝑐 ⊗ |𝜓⟩𝑞, where |𝑇⟩𝑐 is a product state representing a classical configuration

of tiles. Furthermore, for any given |𝑇⟩𝑐, the lowest energy choice for |𝜓⟩𝑞 consists of

ground states of 𝐻𝑞 (𝑟) on segments between sites in which |𝑇⟩𝑞 contains an |𝐿⟩ and

an |𝑅⟩, a 0-energy eigenstate on segments between an |𝐿⟩ or |𝑅⟩ and the boundary

of the region, and |𝑒⟩’s everywhere else.

The |𝐿⟩ and |𝑅⟩ tiles are identified in [CPGW15a] with the right-down and

left-down red cross in the Robinson tiles respectively (see section 5.4). The ground

state can then be shown to be the ground state of the Robinson tiling Hamiltonian

plus a “quantum layer” in which the Gottesman-Irani ground states appear only over

the tops of the Robinson squares. Everywhere else in the quantum layer is a filler

state |𝑒⟩.
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A key point is that the eigenstates are all product states across H𝑐 and H𝑒𝑞.

We wish for the RG mapping to preserve this property. This restricts the type of

renormalisation isometries we use, as detailed in the following lemma.

Lemma 5.6 (Separable Eigenstates). Let𝐻Λ(2𝐿)
𝑢 denote the Hamiltonian in lemma 5.5.

Then for an isometry 𝑍 = 𝑍𝑐⊗𝑍𝑒𝑞 where 𝑍𝑐 :H⊗2×2
𝑐 → 𝑅(H𝑐) and 𝑍𝑒𝑞 :H⊗2×2

𝑒𝑞 →

𝑅(H𝑒𝑞), the operator 𝑍𝐻Λ(2𝐿)
𝑢 𝑍† also has eigenstates of the form |𝑇 ′⟩𝑐 ⊗ |𝜓⟩𝑒𝑞 for

|𝑇 ′⟩𝑐 ∈ 𝑅(H𝑐)⊗Λ(𝐿) and |𝜓⟩𝑒𝑞 ∈ 𝑅(H𝑒𝑞)⊗Λ(𝐿) .

Proof. As per lemma 5.5, the eigenstates of 𝐻Λ(2𝐿)
𝑢 decompose as product states

|𝑇𝑐⟩ ⊗ |𝜓𝑖⟩𝑒𝑞, hence we can write

𝐻
Λ(2𝐿)
𝑢 =

∑︁
𝑖

_𝑖 |𝑇𝑖⟩⟨𝑇𝑖 | ⊗ |𝜓𝑖⟩⟨𝜓𝑖 |𝑒𝑞 . (5.47)

Applying the renormalisation isometry 𝑍 gives

𝑍𝐻
Λ(2𝐿)
𝑢 𝑍† =

∑︁
𝑖

_𝑖𝑍𝐶 |𝑇𝑖⟩⟨𝑇𝑖 |𝑐 𝑍†𝐶⊗𝑍𝑒𝑞 |𝜓𝑖⟩⟨𝜓𝑖 |𝑒𝑞 𝑍
†
𝑒𝑞 (5.48)

=:
∑︁
𝑖

_𝑖
��𝑇 ′𝑖 〉〈𝑇 ′𝑖 ��𝑐′ ⊗ ��𝜓′𝑖〉〈𝜓′𝑖 ��𝑒𝑞′ . (5.49)

Thus the product structure across the two subspaces is preserved. □

Here we show that renormalising the full Hamiltonian preserves this Robinson

tiling plus Gottesman-Irani ground state structure.

5.6.1 RenormalisingH𝑇 ⊗ (H𝑒 ⊕H𝑞)
From lemma 5.6, we know the eigenstates of the Hamiltonian defined by ℎ𝑢 are

product states across the classical-quantum Hilbert space partition and this structure

is preserved under a tensor product of isometries on the two subspace separately.

Thus we can consider the basis states ofH𝑇 andH𝑒𝑞 separately and then later show

this preserves the desired properties.

Blocking Operation B𝑢 We know that 𝑉𝐶 from lemma 5.1 will renormalise the

classical state space by mapping sets of 2×2 tiles to new tiles which recreate the
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tiling pattern at all but the lowest level. We use this isometry unchanged, acting on

the classical part of the Hilbert space.

Consider the quantum Hilbert space H𝑒𝑞. First note that the Gottesman-

Irani Hamiltonian to be renormalised is a standard form Hamiltonian, and so can be

renormalised as per section 5.5.1. However, the blocking procedure from section 5.5.1

is not sufficient for our purposes as it (a) takes a set of 2×1 lattice sites to a single

lattice site and so is not appropriate for a 2D lattice, and (b) does not include the filler

state |𝑒⟩𝑒. To remedy this we need an isometry which acts as:

𝑉
𝑒𝑞

(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) :H (𝑖, 𝑗)𝑒𝑞 ⊗H (𝑖+1, 𝑗)𝑒𝑞 ⊗H (𝑖, 𝑗+1)𝑒𝑞 ⊗H (𝑖+1, 𝑗+1)𝑒𝑞 → (H ′𝑒𝑞⊗H ′𝑒𝑞) (𝑖/2, 𝑗/2) . (5.50)

We will find it useful to define the following notation:

Definition 5.9 (𝑘-times Blocked Basis States). Let |𝑥1⟩ , |𝑥2⟩ , . . . , |𝑥2𝑘 ⟩ ∈ 𝔅∪ |𝑒⟩𝑒,

then we denote the corresponding renormalised basis state after 𝑘 applications of

the RG mapping as |𝑥1𝑥2 . . . 𝑥2𝑘 ⟩.

Now define 𝑉𝑞(𝑖,𝑖+1) ( 𝑗) as follows, where 𝑉𝐺𝐼
𝑖,𝑖+1 is the isometry used in lemma 5.4:

𝑉
𝑞

(𝑖,𝑖+1) ( 𝑗) =𝑉
𝐺𝐼
𝑖,𝑖+1 + |𝑒𝑒⟩𝑖/2, 𝑗/2 ⟨𝑒 |𝑖, 𝑗 ⟨𝑒 |𝑖+1, 𝑗 (5.51)

+ |𝑥𝑒⟩𝑖/2, 𝑗/2 ⟨𝑥 |𝑖, 𝑗 ⟨𝑒 |𝑖+1, 𝑗 + |𝑒𝑥⟩𝑖/2, 𝑗/2 ⟨𝑒 |𝑖, 𝑗 ⟨𝑥 |𝑖+1, 𝑗 . (5.52)

This defines a new set of quantum basis states which now reflect the fact |𝑒⟩𝑒 is part

of the Hilbert space. Denote this

ℭ(1) := 𝔅(1) ∪ |𝑒𝑒⟩
⋃
𝑥∈𝔅
|𝑒𝑥⟩

⋃
𝑥∈𝔅
|𝑥𝑒⟩ . (5.53)

𝑉𝑞 only maps 2×1 spins to a single spin. We need an operator which maps a 2×2

block to a single spin. Define 𝑊 :H ′(𝑖/2, 𝑗)𝑒𝑞 ⊗H ′(𝑖/2, 𝑗+1)𝑒𝑞 → (H ′𝑒𝑞⊗H ′𝑒𝑞) (𝑖/2, 𝑗/2) , as

simply

𝑊(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) =
∑︁
( |𝑥⟩𝑞1 ⊗ |𝑦⟩𝑞2)𝑖/2, 𝑗/2 ⟨𝑥 |𝑖/2, 𝑗 ⊗ ⟨𝑦 |𝑖/2, 𝑗+1 . (5.54)
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This unitary acts to map the 1×2 set of sites to a single lattice site in the renormalised

lattice.

The isometry:

𝑉
𝑒𝑞

(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) :=𝑊(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)
(
𝑉
𝑞

(𝑖,𝑖+1) ( 𝑗)⊗𝑉
𝑞

(𝑖,𝑖+1) ( 𝑗 +1)
)
, (5.55)

then maps 2×2 spins to a single spin.

The overall blocking map B𝑢 is then given by:

Definition 5.10 (Blocking Isometry, 𝑉 𝑏, B𝑢). Let 𝑉𝐶 and 𝑉 𝑒𝑞 be the isometries from

definition 5.3 and eq. (5.55) respectively. Then the blocking isometry for 𝐻𝑢 is given

by

𝑉 𝑏(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) =𝑉
𝐶
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) ⊗𝑉

𝑒𝑞

(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) . (5.56)

We now need to consider the full renormalisation process: the isometry defined

above will map a certain subset of states to states on the renormalised lattice. However,

some parts of the Hilbert space will be “integrated out”. For convenience we will

sometimes use indices 𝐼, 𝐽 to indicate row and column indices on the new lattice

after the RG transformation.

Let ℎ(𝑖,𝑖+1)𝑞 ( 𝑗), ℎ(𝑖,𝑖+1)𝑞 ( 𝑗 + 1) be the local terms of the quantum Hamiltonian

before renormalisation, then we see that

𝑉
𝑒𝑞

(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)

(
ℎ
(𝑖,𝑖+1)
𝑞 ( 𝑗 +1) + ℎ(𝑖,𝑖+1)𝑞 ( 𝑗)

)
𝑉
𝑒𝑞†
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)

= ℎ
(1)′(𝐼,𝐽)
𝑞 ⊗1𝑞2 +1𝑞1⊗ℎ

(1)′(𝐼,𝐽)
𝑞 (5.57)

and

𝑉
𝑒𝑞

(𝑖+2,𝑖+3) ( 𝑗 , 𝑗+1)𝑉
𝑒𝑞

(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)

(
ℎ
(𝑖+1,𝑖+2)
𝑞 ( 𝑗) + ℎ(𝑖+1,𝑖+2)𝑞 ( 𝑗)

)
𝑉
𝑒𝑞†
(𝑖+2,𝑖+3) ( 𝑗 , 𝑗+1)

×𝑉 𝑒𝑞†(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) = ℎ
′(𝐼,𝐼+1)
𝑞1 ⊗1(𝐼,𝐽)𝑞2 ⊗1

(𝐼+1,𝐽)
𝑞2 +1(𝐼,𝐽)𝑞1 ⊗1

(𝐼+1,𝐽)
𝑞1 ⊗ℎ′(𝐼,𝐼+1)𝑞2 . (5.58)



5.6. Putting it all Together 195

Truncation Operation T𝑢 The operator𝑊 has essentially merged two sites into a

single site. We now wish to integrate out one of these sites and restrict to the set

of “allowed states” in the other. We will implement this using the 1-local projector

Π𝑔𝑠 (𝑘)

Definition 5.11 (Truncation Operation T𝑢). Let |𝜓⟩ ∈ H𝑐⊗H𝑒𝑞, then

T𝑢 : |𝜓⟩ ↦→ (1𝑐⊗1𝑞1⊗Π𝑔𝑠 (𝑘)) |𝜓⟩ , (5.59)

where

Π𝑔𝑠 (𝑘) =



���𝑒×2𝑘
〉〈
𝑒×2𝑘

��� 𝑘 even���𝜓ℎ𝑖𝑠𝑡 (4𝑛 +1)𝑒×2𝑘−4𝑛−1
〉〈
𝜓ℎ𝑖𝑠𝑡 (4𝑛 +1)𝑒×2𝑘−4𝑛−1

��� if 𝑘 odd, 2𝑘−1 < 4𝑛 +1 < 2𝑘 ,

and non-halting���𝜓ℎ𝑎𝑙𝑡 (4𝑛 +1)𝑒×2𝑘−4𝑛−1
〉〈
𝜓ℎ𝑎𝑙𝑡 (4𝑛 +1)𝑒×2𝑘−4𝑛−1

��� if 𝑘 odd, 2𝑘−1 < 4𝑛 +1 < 2𝑘 ,

and halting,

(5.60)

and where |𝜓ℎ𝑖𝑠𝑡 (𝐿)⟩ and |𝜓ℎ𝑎𝑙𝑡 (𝐿)⟩ are defined in lemma 5.2. This extends to states

|𝜒⟩ ∈ (H𝑐⊗H𝑒𝑞)⊗Λ(𝐿) , as

T𝑢 : |𝜒⟩ ↦→
⊗

(𝐼,𝐽)∈Λ(𝐿)
(1(𝐼,𝐽)𝑐 ⊗1(𝐼,𝐽)𝑞1 ⊗Π

(𝐼,𝐽)
𝑔𝑠 (𝑘)) |𝜒⟩ . (5.61)

Definition 5.12 (Renormalisation Isometry, 𝑉𝑢). Let 𝑉 𝑏(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) and Π𝑔𝑠 be as

defined in definition 5.10 and eq. (5.60) respectively. We define the isometry

implementing the entire renormalisation scheme as

𝑉𝑢(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) := (1𝑐⊗Π𝑔𝑠)𝑉 𝑏(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) . (5.62)

To see why this is appropriate note that the Hamiltonian after the application of

the blocking isometries has two sets of local terms: a 1-local term and a 2-local term

(see definition 5.13 and the discussion following). First consider the 1-local term
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ℎ
(1)′(𝐼,𝐽)
𝑞 ⊗1𝑞2 +1𝑞1⊗ℎ

(1)′(𝐼,𝐽)
𝑞 and examine how it transforms under T𝑢 and Π𝑔𝑠. The

idea is that Π𝑔𝑠 will “integrate out” the 𝑞2 subspace by removing all states which are

not the ground state while maintaining the energy contribution from this subspace. If

the site is large enough to contain a full history state of length 4𝑛 +1, for some 𝑛 ∈N,

then we keep only that state and the relevant renormalised |𝑒⟩ states. Otherwise we

keep only the renormalised |𝑒⟩ states. Hence

Π
(𝐼,𝐽)
𝑔𝑠 (𝑘) (ℎ(1)′(𝐼,𝐽)𝑞1 ⊗1(𝐼,𝐽)𝑞2 +1

(𝐼,𝐽)
𝑞1 ⊗ℎ

(1)′(𝐼,𝐽)
𝑞2 )Π (𝐼,𝐽)𝑔𝑠 (𝑘) (5.63)

=ℎ
(1)′(𝐼,𝐽)
𝑞1 ⊗Π (𝐼,𝐽)𝑔𝑠 (𝑘) + tr

(
Π
(𝐼,𝐽)
𝑔𝑠 (𝑘)ℎ′(𝐼,𝐽)𝑞2

)
1
(𝐼,𝐽)
𝑞1 ⊗Π

(𝐼,𝐽)
𝑔𝑠 (𝑘). (5.64)

Since Π𝑔𝑠 is a projector onto a 1-dimensional subspace, we will often omit it when

writing the Hamiltonian. Thus obtain the term

ℎ
(1)′(𝐼,𝐽)
𝑞 +Tr

(
Π𝑔𝑠 (𝑘)ℎ′(𝐼,𝐽)𝑞2

)
1𝑞 . (5.65)

Now examine how the 2-local terms transform:

Π𝑔𝑠 (𝑘) (𝐼,𝐽 )⊗Π𝑔𝑠 (𝑘) (𝐼+1,𝐽 )
(
ℎ
′(𝐼,𝐼+1)
𝑞 ⊗1(𝐼,𝐽 )𝑞2 ⊗1(𝐼+1,𝐽 )𝑞2 (5.66)

+1(𝐼,𝐽 )𝑞1 ⊗1(𝐼+1,𝐽 )𝑞1 ⊗ℎ′(𝐼,𝐼+1)𝑞

)
Π𝑔𝑠 (𝑘) (𝐼,𝐽 )⊗Π𝑔𝑠 (𝑘) (𝐼+1,𝐽 ) (5.67)

= ℎ
′(𝐼,𝐼+1)
𝑞 ⊗Π𝑔𝑠 (𝑘) (𝐼 )⊗Π𝑔𝑠 (𝑘) (𝐼+1) (5.68)

+ tr
(
ℎ
′(𝐼,𝐼+1)
𝑞 Π𝑔𝑠 (𝑘) (𝐼 )⊗Π𝑔𝑠 (𝑘) (𝐼+1)

)
1
(𝐼,𝐽 )
𝑞1 ⊗Π𝑔𝑠 (𝑘) (𝐼 )⊗Π𝑔𝑠 (𝑘) (𝐼+1) . (5.69)

Importantly tr
(
ℎ
′(𝐼,𝐼+1)
𝑞 Π𝑔𝑠 (𝑘) (𝐼)⊗Π𝑔𝑠 (𝑘) (𝐼+1)

)
only picks up a non-zero contri-

bution from the terms proportional to 1(𝐼)⊗1(𝐼+1) (we also note that this lat-

ter term is zero for interactions going along columns). Again the subspace

spanned by Π𝑔𝑠 (𝑘) (𝐼)⊗Π𝑔𝑠 (𝑘) (𝐼+1) is a 1-dimensional subspace and hence we

will often omit writing it explicitly. Thus the 2-local terms effectively become

ℎ
′(𝐼,𝐼+1)
𝑞 + tr

(
ℎ
′(𝐼,𝐼+1)
𝑞 Π𝑔𝑠 (𝑘) (𝐼)⊗Π𝑔𝑠 (𝑘) (𝐼+1)

)
1
(𝐼,𝐽)
𝑞 ⊗1(𝐼+1,𝐽)𝑞 . This can be generalised

straightforwardly to further iterations.

We formalise the overall RG mapping in the following definition:

Definition 5.13 (ℎ𝑢 Renormalisation Mapping). Let ℎ𝑐𝑜𝑙 (𝑖,𝑖+1)𝑢 , ℎ
𝑟𝑜𝑤( 𝑗 , 𝑗+1)
𝑢 ∈ B(C𝑑 ⊗
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C𝑑) and 𝑉𝑢(𝑖,𝑖+1) ( 𝑗 , 𝑗+1) be as in definition 5.12. Then the renormalised local terms are

given by

R : ℎ𝑟𝑜𝑤(𝑖+1,𝑖+2)𝑢 ( 𝑗) + ℎ𝑟𝑜𝑤(𝑖+1,𝑖+2)𝑢 ( 𝑗 +1) →𝑉𝑢(𝑖+2,𝑖+3) ( 𝑗 , 𝑗+1)𝑉
𝑢
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)×(

ℎ
𝑟𝑜𝑤(𝑖+1,𝑖+2)
𝑢 ( 𝑗) + ℎ𝑟𝑜𝑤(𝑖+1,𝑖+2)𝑢 ( 𝑗 +1)

)
𝑉
𝑢†
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)𝑉

𝑢†
(𝑖+2,𝑖+3) ( 𝑗 , 𝑗+1)

=: 𝑅(ℎ𝑟𝑜𝑤𝑢 ) (𝑖,𝑖+1)

R : ℎ𝑐𝑜𝑙 ( 𝑗+1, 𝑗+2)𝑢 (𝑖) + ℎ𝑐𝑜𝑙 ( 𝑗+1, 𝑗+2)𝑢 (𝑖 +1) →𝑉𝑢(𝑖+2,𝑖+3) ( 𝑗 , 𝑗+1)𝑉
𝑢
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)×(

ℎ
𝑐𝑜𝑙 ( 𝑗+1, 𝑗+2)
𝑢 (𝑖) + ℎ𝑐𝑜𝑙 ( 𝑗+1, 𝑗+2)𝑢 (𝑖 +1)

)
𝑉
𝑢†
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)𝑉

𝑢†
(𝑖+2,𝑖+3) ( 𝑗 , 𝑗+1) ,

=: 𝑅(ℎ𝑐𝑜𝑙𝑢 ) (𝑖,𝑖+1)

R : ℎ𝑟𝑜𝑤(𝑖,𝑖+1)𝑢 ( 𝑗) + ℎ𝑟𝑜𝑤(𝑖+1,𝑖+2)𝑢 ( 𝑗 +1) +
∑︁
𝑘=0,1
ℓ=1,2

(
ℎ
(1) (𝑖+𝑘, 𝑗+ℓ)
𝑢

)
→

𝑉𝑢(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)

(
ℎ
𝑟𝑜𝑤(𝑖,𝑖+1)
𝑢 ( 𝑗) + ℎ𝑟𝑜𝑤(𝑖+1,𝑖+2)𝑢 ( 𝑗 +1) +

∑︁
𝑘=0,1
ℓ=1,2

(
ℎ
(1) (𝑖+𝑘, 𝑗+ℓ)
𝑢

) )
𝑉
𝑢†
(𝑖,𝑖+1) ( 𝑗 , 𝑗+1)

=: 𝑅(ℎ(1)𝑢 ) (𝑖) .

𝑅(𝑘) (ℎ𝑟𝑜𝑤𝑢 ), 𝑅(𝑘) (ℎ𝑐𝑜𝑙𝑢 ) (𝑖,𝑖+1) , 𝑅(𝑘) (ℎ
(1)
𝑢 ) (𝑖) are defined in the same way but with the

appropriate isometries for the 𝑘 𝑡ℎ iteration of the RG mapping.

Remark 5.1. 𝑅(𝑘) (ℎ(1)𝑢 ) (𝑖) and 𝑅(𝑘) (ℎ𝑟𝑜𝑤𝑢 ) (𝑖,𝑖+1) have local projector terms of the

form
∑𝑘
𝑚=1 4𝑚^ (𝑚)1(𝑖) and

∑𝑘
𝑚=1 2𝑚𝛾 (𝑚)1(𝑖)⊗1(𝑖+1) , where 𝛾 (𝑘) and ^ (𝑘) are given by

^ (𝑘) := Tr
(
Π𝑔𝑠 (𝑘)ℎ′(𝐼,𝐽)𝑞2

)
(5.70)

𝛾 (𝑘) := tr
(
ℎ
′(𝐼,𝐼+1)
𝑞 Π𝑔𝑠 (𝑘) (𝐼)⊗Π𝑔𝑠 (𝑘) (𝐼+1)

)
. (5.71)

We now examine the properties of the full Hamiltonian under this mapping, and

show that its ground state energy and other properties are preserved.
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Lemma 5.7 (𝐻𝑢 Renormalisation). Let 𝐻𝑢 (𝐿) =
∑
ℎ
𝑟𝑜𝑤( 𝑗 , 𝑗+1)
𝑢 +∑ℎ

𝑐𝑜𝑙 (𝑖,𝑖+1)
𝑢 , where

ℎcol
𝑗 , 𝑗+1 =ℎ

col
𝑐 ⊗1

( 𝑗)
𝑒𝑞 ⊗1( 𝑗+1)𝑒𝑞 (5.72a)

ℎrow
𝑖,𝑖+1 =ℎ

row
𝑐 ⊗1

(𝑖)
𝑒𝑞⊗1(𝑖+1)𝑒𝑞 (5.72b)

+1(𝑖)𝑐 ⊗1(𝑖+1)𝑐 ⊗ℎ𝑞 (5.72c)

+ |𝐿⟩⟨𝐿 | (𝑖)𝑐 ⊗(1𝑒𝑞 −
�� 〉〈 ��) (𝑖)⊗1(𝑖+1)𝑐𝑒𝑞 (5.72d)

+ (1𝑐 − |𝐿⟩⟨𝐿 |𝑐) (𝑖)⊗
�� 〉〈 ��(𝑖) ⊗1(𝑖+1)𝑐𝑒𝑞 (5.72e)

+1(𝑖)𝑐𝑒𝑞⊗ |𝑅⟩⟨𝑅 | (𝑖+1)𝑐 ⊗(1𝑒𝑞 −
�� 〉〈 ��) (𝑖+1) (5.72f)

+1(𝑖)𝑐𝑒𝑞⊗(1𝑐 − |𝑅⟩⟨𝑅 |) (𝑖+1)𝑐 ⊗
�� 〉〈 ��(𝑖+1) (5.72g)

+1(𝑖)𝑐 ⊗ |0⟩⟨0| (𝑖)𝑒 ⊗ |𝑅⟩⟨𝑅 | (𝑖+1)𝑐 ⊗1(𝑖+1)𝑒𝑞 (5.72h)

+ |𝐿⟩⟨𝐿 | (𝑖)𝑐 ⊗1(𝑖)𝑒𝑞⊗1(𝑖+1)𝑐 ⊗ |0⟩⟨0| (𝑖+1)𝑒 (5.72i)

+1(𝑖)𝑐 ⊗ |0⟩⟨0| (𝑖)𝑒 ⊗(1𝑐 − |𝐿⟩⟨𝐿 |) (𝑖+1)𝑐 ⊗(1𝑒𝑞 − |0⟩⟨0|) (𝑖+1)𝑒 (5.72j)

+ (1𝑐 − |𝑅⟩⟨𝑅 |) (𝑖)𝑐 ⊗(1𝑒𝑞 − |0⟩⟨0|) (𝑖)𝑒 ⊗1(𝑖+1)𝑐 ⊗ |0⟩⟨0| (𝑖+1)𝑒 , (5.72k)

+1(𝑖)𝑐𝑒𝑞⊗1(𝑖+1)𝑐𝑒𝑞 (5.72l)

ℎ
(1)
𝑖

=− (1+𝛼2(𝜑))1(𝑖)𝑐𝑒𝑞, (5.72m)

where

𝛼2(𝜑) :=
∑︁

4𝑛+7> |𝜑|
4−2𝑛−1_0(𝐻𝑞 (4𝑛)), (5.73)

as defined in Proposition 53 of [CPGW15a]. Then the 𝑘 times renormalised

Hamiltonian 𝑅(𝑘) (𝐻𝑢)Λ(𝐿×𝑊) has the following properties:

1. For any finite region of the lattice, the restriction of the Hamiltonian to that

region has an eigenbasis of the form |𝑇⟩𝑐 ⊗ |𝜓𝑖⟩ where |𝑇⟩𝑐 is a classical tiling

state (cf. Lemma 51 of [CPGW15a]).

2. Furthermore, for any given |𝑇⟩𝑐, the lowest energy choice for |𝜓⟩𝑞 consists of

ground states of 𝑅(𝑘) (𝐻𝑞) (𝑟) on segments between sites in which |𝑇⟩𝑐 contains

an
��𝑅(𝑘) (𝐿)〉 and an

��𝑅(𝑘) (𝑅)〉, a 0-energy eigenstate on segments between an��𝑅(𝑘) (𝐿)〉 or
��𝑅(𝑘) (𝑅)〉 and the boundary of the region, and |𝑒⟩’s everywhere
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else. Any eigenstate which is not an eigenstate of 𝑅(𝑘) (𝐻𝑞) (𝑟) on segments

between sites in which |𝑇⟩𝑐 contains an
��𝑅(𝑘) (𝐿)〉 and an

��𝑅(𝑘) (𝑅)〉 has an

energy > 1 (cf. Lemma 51 of [CPGW15a]).

3. The ground state energy is contained in the interval

[
(𝑔(𝑘) −4𝑘𝛼2(𝜑))𝐿𝑊 −2−𝑘𝑊 +

⌊log4 (𝐿/2)⌋∑︁
𝑛=1

( ⌊
𝑊

22𝑛+1(𝑘 𝑚𝑜𝑑2)

⌋
×

(⌊
𝐿

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋
−1

) )
_0(𝑅(𝑘) (𝐻𝑞) (4𝑛−⌊(𝑘 𝑚𝑜𝑑2)/2⌋)),

(𝑔(𝑘) −4𝑘𝛼2(𝜑))𝐿𝑊 −2−𝑘𝑊 +
⌊log4 (𝐿/2)⌋∑︁

𝑛=1

( (⌊
𝑊

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋
+1

)
×

⌊
𝐿

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋ )
_0(𝑅(𝑘) (𝐻𝑞) (4𝑛−⌊(𝑘 𝑚𝑜𝑑2)/2⌋))

]
where

𝑔(𝑘) = 4𝑘
∑︁

4𝑛+1<2𝑘

4−2𝑛−1_0(𝐻𝑞 (4𝑛)), (5.74)

(cf. Lemma 52 of [CPGW15a]).

Proof. The proof of this lemma is long and does not contain much insight. For the

sake of brevity we refer the reader to [WOC21, Appendix C]. The essentials of the

proof are that (𝑎) the classical RG map recreates the Robinson tiling Hamiltonian

(𝑏) the interactions between the “classical layer” and “quantum layer” are recreated

and (𝑐) the ground state of the Gottesman-Irani Hamiltonian is preserved. These

factors mean the ground state is similar in form to the ground state of the original

Hamiltonian, and thus almost all the relevant results about the original Hamiltonian

apply to the renormalised Hamiltonian. □

Lemma 5.8. Let 𝑆𝑏𝑟 (𝑘) be the subspace spanned by states for which the left-most

site is of the form
���𝑒×𝑝 {𝑥}×2𝑘−𝑝−1

〉
for a fixed integer 1 ≤ 𝑝 ≤ 2𝑘 and the right-most
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site is of the form
���{𝑦}×2𝑘−𝑞−1 𝑒×𝑞

〉
for fixed integer 1 ≤ 𝑞 ≤ 2𝑘 . Then

_0(𝑅(𝑘) (𝐻𝑞) (𝐿) |𝑆𝑏𝑟 (𝑘)) = min
2𝑘−1𝐿+1≤𝑥≤2𝑘𝐿

_0(𝐻𝑞 (𝑥)) (5.75)

Proof. 𝑅(𝑘) (ℎ𝑞) is block-diagonal with respect to the subspaces of 𝑅(𝑘) (H𝑒𝑞)⊗2

spanned by products of
���𝑒×𝑝 {𝑥}×2𝑘−𝑝−1

〉
and���{𝑦}×2𝑘−𝑞−1 𝑒×𝑞

〉
for fixed 𝑝, 𝑞, together with the orthogonal complement thereof,

while acting as identity on 𝑅(𝑘) (H𝑐)⊗2.

Thus the ground state energy is equal to min2𝑘−1𝐿+1≤𝑥≤2𝑘𝐿 _0(𝐻𝑞 (𝑥)). □

Corollary 5.3. If lim
𝐿→∞

_0(𝐻Λ(𝐿)
𝑢 ) = +∞, then lim

𝐿→∞
_0(𝑅(𝑘) (𝐻𝑢)Λ(𝐿)) = +∞ for all 𝑘 ≥

𝑘0( |𝜑 |), and 𝑘0( |𝜑 |) is the smallest integer such that 2𝑘0 > |𝜑 | +7. If lim
𝐿→∞

_0(𝐻Λ(𝐿)
𝑢 ) =

−∞, then lim
𝐿→∞

_0(𝑅(𝑘) (𝐻𝑢)Λ(𝐿)) = −∞ for all 𝑘 ≥ 𝑘0(𝜑).

Proof. Consider applying the RG mapping 𝑘 > 𝑘0(𝜑) times, then we see that

𝑔(𝑘) = 4𝑘
∑︁

4𝑛+1<2𝑘

4−2𝑛−1_0(𝐻𝑞 (4𝑛)) (5.76)

= 4𝑘
∑︁

4𝑛+1<2𝑘0

4−2𝑛−1_0(𝐻𝑞 (4𝑛)) +4𝑘
∑︁

2𝑘0<4𝑛+1<2𝑘

4−2𝑛−1_0(𝐻𝑞 (4𝑛)) (5.77)

= 4𝑘𝛼2(𝜑) +4𝑘
∑︁

2𝑘0<4𝑛+1<2𝑘

4−2𝑛−1_0(𝐻𝑞 (4𝑛)). (5.78)

From lemma 5.7, the interval the ground state energy is contained in is

[
𝐿𝐻

∑︁
2𝑘0<4𝑛+1<2𝑘

4−2𝑛−14𝑘_0(𝐻𝑞 (4𝑛)) −2−𝑘𝐻

+
⌊log4 (𝐿/2)⌋∑︁

𝑛=1

(⌊
𝐻

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋ (⌊
𝐿

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋
−1

))
_0(𝑅(𝑘) (𝐻𝑞) (4𝑛−⌊(𝑘 𝑚𝑜𝑑2)/2⌋)),

𝐿𝐻
∑︁

2𝑘0<4𝑛+1<2𝑘

4−2𝑛−14𝑘_0(𝐻𝑞 (4𝑛)) −2−𝑘𝐻

+
⌊log4 (𝐿/2)⌋∑︁

𝑛=1

((⌊
𝐻

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋
+1

) ⌊
𝐿

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋)
_0(𝑅(𝑘) (𝐻𝑞) (4𝑛−⌊(𝑘 𝑚𝑜𝑑2)/2⌋))

]
. (5.79)
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From lemma 5.8, if _0(𝐻𝑞 (4𝑛+1)) = 0 for all 𝑛, then _0(𝑅(𝑘) (𝐻𝑞) (4𝑛+1)) = 0 for all

𝑛. In this case the ground state energy becomes _0(𝑅(𝑘) (𝐻)Λ(𝐿)) = −2−𝑘𝐿 𝐿→∞−−−−→−∞.

We see that if for any 𝑛0, _0(𝐻𝑞 (4𝑛0 +1)) > 0, then _0(𝑅(𝑘) (𝐻𝑞) (4𝑛 +1)) > 0

∀𝑛 ≥ 𝑛′0 (𝑛′0 not necessarily equal to 𝑛0). Define 𝑔(𝑘) =: [(𝑘) +4𝑘𝛼2(𝜑), where 𝑔(𝑘)

is defined in eq. (5.74), then [(𝑘) ≥ 0, and we see that the lower bound of the ground

state is

𝐿2[(𝑘) −2−𝑘𝐿+
⌊log4 (𝐿/2)⌋∑︁

𝑛=1

(⌊
𝐿

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋ (⌊
𝐿

22𝑛+1−(𝑘 𝑚𝑜𝑑2)

⌋
−1

))
×

_0(𝑅(𝑘) (𝐻𝑞) (4𝑛−⌊(𝑘 𝑚𝑜𝑑2)/2⌋)) 𝐿→∞−−−−→ +∞.

□

For 2𝑘0 ≤ |𝜑 | + 7 the above relationship is not necessarily preserved. To

see why, note that for lengths ℓ ≤ |𝜑 | + 7 the Gottesman-Irani Hamiltonian will

not encode the correct computation and hence will pick up some energy. Since

_0(𝑅(𝑘) (𝐻𝑞) (𝐿) |𝑆𝑏𝑟 ) = min2𝑘−1𝐿+1≤𝑥≤2𝑘𝐿 _0(𝐻𝑞 (𝑥)) rather than

_0(𝑅(𝑘) (𝐻𝑞) (𝐿) |𝑆𝑏𝑟 ) = _0(𝐻𝑞 (𝑥)), the energies in the summation term and the 𝛼2

term will not exactly cancel out until we reach higher order steps of the RG flow. This

is only rectified once we reach 2𝑘0 > |𝜑 | +7 as the energy integrated out by the projector

Π𝑔𝑠, as given in definition 5.11, is exactly _0(𝐻𝑞 (𝑥)), not _0(𝑅(𝑘) (𝐻𝑞) (𝐿) |𝑆𝑏𝑟 ).

5.6.2 Renormalising 𝐻𝑑

The only part of the Hamiltonian acting onH𝑑 is 𝐻𝑑; there is no coupling to other

parts of the Hilbert space and so we can renormalise this part independently. Indeed,

we can choose 𝐻𝑑 to be any Hamiltonian with a dense spectrum that is a fixed point

of an appropriate RG scheme. That is, 𝐻𝑑 should be preserved by the RG scheme.

For concreteness, following [CPGW15a] (but with small changes), we will let

𝐻𝑑 be the critical XY-model with local terms 𝑋𝑖⊗𝑋𝑖+1 +𝑌𝑖⊗𝑌𝑖+1 + `/2(𝑍𝑖⊗1(𝑖+1) +
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1(𝑖)⊗𝑍𝑖+1), which can be written as:

ℎ
𝑟𝑜𝑤(𝑖,𝑖+1)
𝑑

= 𝑋𝑖⊗𝑋𝑖+1 +𝑌𝑖⊗𝑌𝑖+1, (5.80)

ℎ
𝑐𝑜𝑙 (𝑖,𝑖+1)
𝑑

= 0, (5.81)

ℎ
(1) (𝑖)
𝑑

= `𝑍𝑖 . (5.82)

This has zero gap for any 0 ≥ ` < 1. Since the critical XY model is critical, it forms

a fixed point in any reasonable RG scheme.

In particular, Penson, Jullien, and Pfeuty apply the BRG to renormalise this

model [PJP82]. Notably, they show that there are multiple fixed points depending on

the block size used: here since we are interested in blocking 2×2 blocks, we choose

a block size of 2, and set ` equal to one of the relevant fixed point values, ensuring a

gapless spectrum. The authors demonstrate that the coefficient of ℎ𝑟𝑜𝑤(𝑖,𝑖+1)
𝑑

and 𝑍𝑖

terms maintain a constant ratio to each other. This RG scheme can then be expressed

in terms of an RG isometry 𝑉 𝑑 . Since the two coefficients maintain a constant ratio,

the renormalisation unitary simply rescales these two terms.

5.6.3 Renormalising |0⟩

If we wish to preserve the form of the possible ground states depending, it is

straightforward to see that this can be done if the states |0⟩ simply get mapped to

themselves |0⟩⊗(2×2)→ |0⟩ under the RG operation. This can be implemented using

the isometry

𝑉0
(𝑖,𝑖+1),( 𝑗 , 𝑗+1) := |0⟩ (𝑖/2, 𝑗/2) ⟨0| (𝑖, 𝑗) ⟨0| (𝑖+1, 𝑗) ⟨0| (𝑖, 𝑗+1) ⟨0| (𝑖+1, 𝑗+1) . (5.83)

5.6.4 The Overall Renormalised Hamiltonian

Accounting for the renormalisation of all the different parts of the Hamiltonian, we

can now define renormalisation group mapping for the entire Hamiltonian. Recall
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that the original local terms are

ℎ(𝜑) (𝑖, 𝑗) = |0⟩ ⟨0| (𝑖) ⊗ (1− |0⟩ ⟨0|) ( 𝑗) + (1− |0⟩ ⟨0|) (𝑖) ⊗ |0⟩ ⟨0| ( 𝑗) (5.84)

+ ℎ(𝑖, 𝑗)𝑢 (𝜑) ⊗1(𝑖, 𝑗)
𝑑
+1(𝑖, 𝑗)𝑢 ⊗ ℎ(𝑖, 𝑗)

𝑑
(5.85)

ℎ(𝜑) (1) =− (1+𝛼2(𝜑))Π𝑢𝑑 , (5.86)

where 𝛼2(𝜑) is defined in lemma 5.7.

Definition 5.14 (Full Renormalisation Group Mapping). Let 𝑉𝑢, 𝑉0, 𝑉 𝑑 be the

isometries defined in definition 5.12, eq. (5.83), and section 5.6.2 respectively.

Define:

𝑉𝑟(𝑖,𝑖+1),( 𝑗 , 𝑗+1) B 𝑉
0
(𝑖,𝑖+1),( 𝑗 , 𝑗+1) ⊕

(
𝑉𝑢(𝑖,𝑖+1),( 𝑗 , 𝑗+1)⊗𝑉

𝑑
(𝑖,𝑖+1),( 𝑗 , 𝑗+1)

)
. (5.87)

Then the overall RG mapping of local Hamiltonian terms is given by

R :ℎ(𝜑) (𝑖,𝑖+1) ↦→𝑉
𝑟†
(𝑖,𝑖+1),( 𝑗 , 𝑗+1)ℎ(𝜑)

(𝑖,𝑖+1)𝑉𝑟(𝑖,𝑖+1),( 𝑗 , 𝑗+1) (5.88)

R :ℎ(𝜑) (𝑖+1,𝑖+2) ↦→𝑉
𝑟†
(𝑖+2,𝑖+3),( 𝑗 , 𝑗+1)ℎ(𝜑)

(𝑖+1,𝑖+2)𝑉𝑟(𝑖,𝑖+1),( 𝑗 , 𝑗+1)𝑉
𝑟
(𝑖+2,𝑖+3),( 𝑗 , 𝑗+1) (5.89)

Lemma 5.9. Applying the RG mapping from definition 5.14 to the terms in eq. (5.84)

we see that the renormalised 1- and 2-local terms become

𝑅(𝑘) (ℎ(𝜑)) (𝑖, 𝑗) =2𝑘 ( |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)
𝑢𝑑
+Π (𝑖)

𝑢𝑑
⊗ |0⟩⟨0| ( 𝑗)) (5.90)

+𝑅(𝑘) (ℎ𝑢 (𝜑)) (𝑖, 𝑗) ⊗1(𝑖, 𝑗)𝑑
+1(𝑖, 𝑗)𝑢 ⊗ ℎ(𝑖, 𝑗)

𝑑
(5.91)

𝑅(𝑘) (ℎ(𝜑)) (1) =(𝑔(𝑘) −4𝑘𝛼2(𝜑) −2𝑘 )Π (𝑖)
𝑢𝑑
+𝑅(𝑘) (ℎ(1)𝑢 ) (𝑖) (5.92)

where 𝑔(𝑘) is defined in lemma 5.7. All the terms are computable.

Proof. Note that the RG isometry acts block-diagonally with respect to the subspaces

spanned by |0⟩⊗(2×2) and those spanned by states in (𝑅(𝑘) (H𝑢) ⊗H𝑑)⊗(2×2) . Further-

more, any state which is not in one of the two subspaces is projected out. The ℎ𝑢 (𝜑),

ℎ𝑑 and 1-local terms transform as they would in the absence of the |0⟩ state, thus

giving the terms seen above. The term 𝑔(𝑘) is computable for any 𝑘 by calculating
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the _0(𝐻𝑞) (4𝑛 +1) for all 𝑛 ≤ 2𝑘 +1. Since this is a finite dimensional matrix for

any finite 𝑛, this is a computable quantity.

The form of the overall renormalisation isometry means the |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)
𝑢𝑑

term must be preserved in form, however, we note that because all states of 2×2

blocks in different subspaces in the previous RG step must be in |0⟩⊗(2×2) or

(𝑅(𝑘) (H𝑢) ⊗ 𝑅(𝑘) (H)𝑑)⊗(2×2) , then two neighbouring blocks must pick up an energy

penalty of ×2 of the previous local terms. □

Corollary 5.4. The local terms of the initial Hamiltonian ℎ(𝜑) and all

further renormalised local terms belong to a family of Hamiltonians

F (𝜑, 𝜏1, 𝜏2, {𝛼𝑖}𝑖, {𝛽𝑖}𝑖), which all take the form

𝑅(𝑘) (ℎ(𝜑)) (𝑖, 𝑗) =𝜏1( |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)𝑢𝑑 +Π
(𝑖)
𝑢𝑑
⊗ |0⟩⟨0| ( 𝑗)) (5.93)

+𝑅(𝑘) (ℎ𝑢 (𝜑, {𝛽𝑡}𝑡)) (𝑖, 𝑗) ⊗1(𝑖, 𝑗)𝑑
+1(𝑖, 𝑗)𝑢 ⊗ 𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗) (5.94)

𝑅(𝑘) (ℎ(𝜑)) (1) =𝜏2Π𝑢𝑑 +𝑅(𝑘) (ℎ𝑢 (𝜑, {𝛼𝑡}𝑡)) (1) , (5.95)

where the sets {𝛼𝑡}𝑡 , {𝛽𝑖} characterises the parameters of the renormalised Gottesman-

Irani Hamiltonian. Furthermore, for any 𝑘 ∈N, the coefficients 𝜏1(𝑘), 𝜏2(𝑘), {𝛼𝑡 (𝑘)}𝑡
and {𝛽𝑡 (𝑘)}𝑡 are computable.

Proof. Follows immediately from lemma 5.9. □

Lemma 5.10. Let 𝑅(𝑘) (ℎ(𝜑)) (𝑖, 𝑗) , 𝑅(𝑘) (ℎ(𝜑)) (1) be the local terms defined by the RG

mapping in definition 5.14 for any 𝑘 > 𝑘0( |𝜑 |). The Hamiltonian 𝑅(𝑘) (𝐻) defined by

these terms then has the following properties:

1. If the unrenormalised Hamiltonian 𝐻 (𝜑) has a zero energy ground state with

a spectral gap of 1/2, then 𝑅(𝑘) (𝐻) also has a zero energy ground state with

zero correlations functions, and has a spectral gap of ≥ 2𝑘−1.

2. If the unrenormalised Hamiltonian 𝐻 (𝜑) has a ground state energy −∞ with

a dense spectrum above this, then 𝑅(𝑘) (𝐻) also a ground state energy of −∞

with a dense spectrum, and has algebraically decaying correlation functions.
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Proof. First examine the spectrum of the renormalised Hamiltonian from lemma 5.9:

for convenience let

𝑅(𝑘) (ℎ0) (𝑖, 𝑗) := 2𝑘 ( |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)
𝑢𝑑
+ |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)

𝑢𝑑
). (5.96)

Further let

𝑅(𝑘) (𝐻Λ(𝐿)
0 ) :=

∑︁
⟨𝑖, 𝑗⟩

𝑅(𝑘) (ℎ0) (𝑖, 𝑗) , (5.97)

𝑅(𝑘) (𝐻𝑢)Λ(𝐿) :=
∑︁
⟨𝑖, 𝑗⟩
1
(𝑖, 𝑗)
𝑑
⊗𝑅(𝑘) (ℎ𝑢) (𝑖, 𝑗) (5.98)

𝑅(𝑘) (𝐻𝑑)Λ(𝐿) :=
∑︁
⟨𝑖, 𝑗⟩
1
(𝑖, 𝑗)
𝑢 ⊗𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗) (5.99)

We note 𝑅(𝑘) (𝐻0)Λ,𝑅(𝑘) (𝐻𝑑)Λ, 𝑅(𝑘) (𝐻𝑢)Λ all commute. Further note that

spec𝑅(𝑘) (𝐻0)Λ ⊂ 2𝑘Z≥0. (5.100)

If _0(𝐻 (𝜑)) = 0, then it implies _0(𝐻𝑢 (𝜑)) → +Ω(𝐿2) (see section 5.2.3). By

corollary 5.3, this implies _0(𝑅(𝑘) (𝐻𝑢 (𝜑))) → +Ω(𝐿2) too. Hence the ground state

is the zero-energy |0⟩Λ(𝐿) state. Since spec𝑅(𝑘) (𝐻0)Λ ⊂ 2𝑘Z≥0, then the first excited

state (provided 𝐿 is sufficiently larger) has energy at least 2𝑘 . Finally, the state |0⟩Λ(𝐿)

has zero correlations.

If _0(𝐻 (𝜑)) = −Ω(𝐿), then _0(𝐻𝑢 (𝜑)) → −Ω(𝐿) (see section 5.2.3). By

corollary 5.3, this implies _0(𝑅(𝑘) (𝐻)) → −Ω(𝐿). Since spec(𝑅(𝑘) (𝐻0)) ⊂ 2𝑘Z≥0,

then the ground state is the ground state of 𝑅(𝑘) (𝐻𝑑)Λ(𝐿) + 𝑅(𝑘) (𝐻𝑢)Λ(𝐿) . Since

spec(𝑅(𝑘) (𝐻𝑑)Λ(𝐿)) becomes dense in the thermodynamic limit, we see that the

Hamiltonian has a dense spectrum in the thermodynamic limit. Let |𝜓⟩𝑢 and

|𝜙⟩𝑑 be the ground states of 𝑅(𝑘) (𝐻𝑢)Λ(𝐿) and 𝑅(𝑘) (𝐻𝑑)Λ(𝐿) respectively, then the

ground state of 𝑅(𝑘) (𝐻𝑑)Λ(𝐿) +𝑅(𝑘) (𝐻𝑢)Λ(𝐿) is |𝜓⟩𝑢 |𝜙⟩𝑑 . Since 𝑅(𝑘) (𝐻𝑑)Λ(𝐿) is just

the critical XY-model and its ground state has algebraically decaying correlations

[LSM61], hence the overall ground state has algebraically decaying correlations. □
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5.6.5 Order Parameter Renormalisation

In section 5.2.5 we saw that the observable 𝑂𝐴/𝐵 (𝑟) functioned as an order

parameter which distinguished the two phases. Defining 𝑉𝑟 B 𝑉0
(𝑖,𝑖+1),( 𝑗 , 𝑗+1) ⊕(

𝑉𝑢(𝑖,𝑖+1),( 𝑗 , 𝑗+1)⊗𝑉
𝑑
(𝑖,𝑖+1),( 𝑗 , 𝑗+1)

)
, and 𝑉𝑟 [𝑘] as the corresponding isometry for the 𝑘 𝑡ℎ

step of the RG process, then define

𝑅(𝑘) (𝑂𝐴/𝐵) (𝑟) :=𝑉𝑟 [𝑘]𝑂𝐴/𝐵 (2𝑘𝑟)𝑉𝑟† [𝑘] . (5.101)

The following lemma then holds:

Lemma 5.11. Let
��𝜓𝑔𝑠〉 be the ground state of 𝑅(𝑘) (𝐻𝑢). The expectation value of

the order parameter satisfies:

〈
𝜓𝑔𝑠

��𝑅(𝑘) (𝑂𝐴/𝐵) (𝑟)
��𝜓𝑔𝑠〉 = 

1 if _0(𝑅(𝑘) (𝐻)) = 0

0 if _0(𝑅(𝑘) (𝐻)) = Ω(𝐿).
(5.102)

Proof. If _0(𝑅(𝑘) (𝐻)) → −Ω(𝐿), then the ground state is that of 𝐻 (Λ(𝐿))𝑢 , and hence

the state |0⟩ does not appear anywhere in the ground state.

If _0(𝑅(𝑘) (𝐻)) = 0, the ground state is |0⟩Λ(𝐿) . Since, under 𝑉𝑟 [𝑘], |0⟩⊗2𝑘×2𝑘 ↦→ |0⟩,

the lemma follows. □

Thus the renormalised order parameter still acts as an order parameter for the

renormalised Hamiltonian. In particular, it still undergoes a non-analytic change

when moving between phases.

5.6.6 Uncomputability of RG flows

We finally have all the ingredients for the proof of our two main results.

Theorem 5.6 (Exact RG flow for undecidable Hamiltonian). Let 𝐻 be the Hamil-

tonian defined in [CPGW15a]. The renormalisation group procedure, defined in

definition 5.14, has the following properties:

1. R(ℎ) is computable.



5.6. Putting it all Together 207

2. If 𝐻 (𝜑) is gapless, then 𝑅(𝑘) (𝐻 (𝜑)) is gapless, and if 𝐻 (𝜑) is gapped, then

𝑅(𝑘) (𝐻 (𝜑)) is gapped.

3. For the order parameter of the form 𝑂𝐴/𝐵 (𝑟) which distinguished the phases

of 𝐻Λ(𝐿) , there exists a renormalised observable 𝑅(𝑘) (𝑂𝐴/𝐵) (𝑟) which distin-

guishes the phases of 𝑅(𝑘) (𝐻)Λ(𝐿) and is non-analytic at phase transitions.

4. For 𝑘 iterations, the renormalised local interactions of 𝑅(𝑘) (𝐻) are computable

and belong to the family F (𝜑, 𝜏1, 𝜏2, {𝛽𝑖}), as defined in corollary 5.4.

5. If 𝐻 (𝜑) initially has algebraically decaying correlations, then 𝑅(𝑘) (𝐻 (𝜑)) also

has algebraically decaying correlations. If 𝐻 (𝜑) initially has zero correlations,

then 𝑅(𝑘) (𝐻 (𝜑)) also has zero correlations.

Proof. Claim 1 follows from definition 5.14, where the renormalisation isometries

and subspace restrictions are explicitly written down and are manifestly computable,

and hence for any 𝑘 the coefficients in lemma 5.9 are computable. Claim 2 follows

from lemma 5.10: we see that, for all 𝑘 > 𝑘0 the spectrum below energy 2𝑘−1 is

either dense with a ground state with energy at −∞, or is empty except for a single

zero energy state, corresponding to the gapped and gapless cases of 𝐻 (𝜑). Claim 3

follows from lemma 5.11. Claim 4 follows from corollary 5.4. Claim 5 follows from

the properties of the ground states in the cases _0(𝐻Λ(𝐿)
𝑢 ) → ±∞ and by lemma 5.10.

□

Theorem 5.7 (Uncomputability of RG flow). Let ℎ(𝜑), 𝜑 ∈ Q, be the full local

interaction of the Hamiltonian from [CPGW15a]. Consider 𝑘 iterations of the RG

map from definition 5.14 acting on 𝐻 (𝜑), such that the renormalised local terms are

given by 𝑅(𝑘) (ℎ(𝜑)), which can be parameterised as per corollary 5.4.

If the UTM is non-halting on input 𝜑, then for all 𝑘 > 𝑘0(𝜑) we have that

𝜏2(𝑘) = −2𝑘 , for some computable 𝑘0(𝜑). If the UTM halts on input 𝜑, then there

exists an uncomputable 𝑘ℎ (𝜑) such that for 𝑘0(𝜑) < 𝑘 < 𝑘ℎ (𝜑) we have 𝜏2(𝑘) = −2𝑘 ,

and for all 𝑘 > 𝑘ℎ (𝜑) then 𝜏2(𝑘) = −2𝑘 +Ω(4𝑘−𝑘ℎ (𝜑)).
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Figure 5.5: A schematic picture of the flow of Hamiltonians in parameter space. 𝜎(𝑘) is
defined in Orange represents some value of 𝜑 = 𝜑0 for which the QTM does not
halt on input, while purple represents 𝜑 = 𝜑0 + 𝜖 for any algebraic number 𝜖 for
which the QTM halts. For small 𝑘 , the orange and purple lines coincide. Then at
a particular value of 𝑘 , 𝜎(𝑘) becomes non-zero and then increases exponentially.

Proof. Consider the expression for 𝜏2 from lemma 5.9:

𝜏2(𝑘) = 4𝑘
∑︁

4𝑛+1<2𝑘

4−2𝑛−1_0(𝐻𝑞 (4𝑛)) +4𝑘𝛼2(𝜑) −2𝑘 . (5.103)

From the definition of 𝛼2(𝜑), we see that there is a 𝑘0(𝜑) ∈ N such that 𝑔(𝑘0(𝜑)) =

𝛼2(𝜑), and hence we get

𝜏2(𝑘) = −2𝑘 +4𝑘
∑︁

2𝑘0 (𝜑)<4𝑛+1<2𝑘

4−2𝑛−1_0(𝐻𝑞 (4𝑛)). (5.104)

If the encoded QTM never halts, then by lemma 5.2 _0(𝐻𝑞 (4𝑛)) = 0 for all 𝑛 such

that 4𝑛 +1 > 2𝑘0 (𝜑) . If the encoded UTM halts then by lemma 5.2 there exists an 𝑛0

such that _0(𝐻𝑞 (4𝑛)) > 0 for all 𝑛 > 𝑛0. Then 𝑘ℎ (𝜑) is defined as the minimum 𝑘

such that 4𝑛0 +1 < 2𝑘ℎ (𝜑) . Thus determining 𝑘ℎ (𝜑) is at least as hard as computing

the halting time and thus is an uncomputable number.

□

5.7 Fixed points of the RG flow
Theorem 5.6 shows that our RG scheme satisfies the expected properties. We now

qualitatively examine the Hamiltonian for large values of 𝑘 .
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5.7.1 Fixed Point for Gapped Instances

Here we show that for gapped instances the Hamiltonian becomes “Ising-like”, for

appropriately small energy scales. From corollary 5.4 the renormalised Hamiltonian

is

𝑅(𝑘) (ℎ𝑟𝑜𝑤 (𝜑)) (𝑖, 𝑗) =2𝑘 ( |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)
𝑢𝑑
+ |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)

𝑢𝑑
) (5.105)

+𝑅(𝑘) (ℎ𝑟𝑜𝑤𝑢 (𝜑)′) (𝑖, 𝑗) ⊗1
(𝑖, 𝑗)
𝑑
+1(𝑖, 𝑗)𝑢 ⊗ 𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗) (5.106)

+2𝑘Π (𝑖)
𝑢𝑑
⊗Π ( 𝑗)

𝑢𝑑
(5.107)

𝑅(𝑘) (ℎ𝑐𝑜𝑙 (𝜑)) (𝑖, 𝑗) =2𝑘 ( |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)
𝑢𝑑
+ |0⟩⟨0| (𝑖) ⊗Π ( 𝑗)

𝑢𝑑
) (5.108)

+𝑅(𝑘) (ℎ𝑐𝑜𝑙𝑢 (𝜑)′) (𝑖, 𝑗) ⊗1
(𝑖, 𝑗)
𝑑

(5.109)

𝑅(𝑘) (ℎ(𝜑)) (1) =(𝑔(𝑘) −4𝑘𝛼2(𝜑) −2𝑘 )Π𝑢𝑑 +𝑅(𝑘) (ℎ(1)𝑢 (𝜑)), (5.110)

where here we have explicitly separated out Π
(𝑖)
𝑢𝑑
⊗Π ( 𝑗)

𝑢𝑑
from the term

𝑅(𝑘) (ℎ𝑟𝑜𝑤𝑢 (𝜑)) (𝑖, 𝑗) = 𝑅(𝑘) (ℎ𝑟𝑜𝑤𝑢 (𝜑)′) (𝑖, 𝑗) +Π
(𝑖)
𝑢𝑑
⊗Π ( 𝑗)

𝑢𝑑
.

Define the Ising-like Hamiltonian with local terms:

ℎ
′𝑟𝑜𝑤
𝐼𝑠𝑖𝑛𝑔 (𝑘)

(𝑖, 𝑗) := 2𝑘
(
|0⟩⟨0| (𝑖) ⊗Π ( 𝑗)

𝑢𝑑
+Π ( 𝑗)

𝑢𝑑
⊗ |0⟩⟨0| (𝑖) +Π (𝑖)

𝑢𝑑
⊗Π ( 𝑗)

𝑢𝑑

)
ℎ
′𝑐𝑜𝑙
𝐼𝑠𝑖𝑛𝑔 (𝑘)

(𝑖, 𝑗) := 2𝑘
(
|0⟩⟨0| (𝑖) ⊗Π ( 𝑗)

𝑢𝑑
+Π ( 𝑗)

𝑢𝑑
⊗ |0⟩⟨0| (𝑖)

)
ℎ′𝐼𝑠𝑖𝑛𝑔 (𝑘) (1) := 𝐵(𝑘)Π𝑢𝑑 .

This is reminiscent of the Ising interaction with both an ferromagnetic

|0⟩⟨0| (𝑖) ⊗ |1⟩⟨1| ( 𝑗) + |1⟩⟨1| (𝑖) |0⟩⟨0| ( 𝑗) along the rows and columns and an anti-

ferromagnetic |1⟩⟨1| (𝑖) ⊗ |1⟩⟨1| ( 𝑗) term along just the rows, with local field

𝐵(𝑘) = (𝑔(𝑘) −4𝑘𝛼2(𝜑) −2𝑘 ) |1⟩⟨1|, but with the orthogonal projector Π𝑢𝑑 playing

the role of the projector onto the |1⟩⟨1| state. However, note that Π𝑢𝑑 projects

onto a larger dimensional subspace than |1⟩⟨1|, so e.g. the partition function of this

Ising-like Hamiltonian is not identical to that of an Ising model.

We now show the following:

Proposition 5.1. Let 𝐸 be a fixed energy cut-off and 𝐻′
𝐼𝑠𝑖𝑛𝑔
(𝑘) = ∑

⟨𝑖, 𝑗⟩ ℎ
′
𝐼𝑠𝑖𝑛𝑔
(𝑘) (𝑖, 𝑗) .
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Then 𝑅(𝑘) (𝐻 (𝜑)) |≤𝐸 −𝐻′𝐼𝑠𝑖𝑛𝑔 (𝑘) |≤𝐸
𝑜𝑝
≤

(
𝐸

2𝑘

)2
. (5.111)

Proof. Consider the local interaction term ℎ0 = |0⟩⟨0| ⊗Π𝑢𝑑 +Π𝑢𝑑⊗ |0⟩⟨0|. This

commutes with all other terms in both the 𝑅(𝑘) (𝐻 (𝜑)) Hamiltonian and the Ising-like

Hamiltonian, and hence the eigenstates of both of the overall Hamiltonians are also

eigenstates of |0⟩⟨0| ⊗Π𝑢𝑑 +Π𝑢𝑑⊗ |0⟩⟨0|. As a result, for each eigenstate, a given site

𝑝 ∈ Λ either has support only on |0⟩𝑝 or only on 𝑅(𝑘) (H𝑢𝑑). Therefore, an eigenstate

defines regions (domains) of the lattice where all points in the domain are inH𝑢𝑑 .

For a given eigenstate |𝜓⟩, let 𝐷 B
{
𝑖 ∈ Z2 | tr

(
|0⟩ ⟨0| (𝑖) |𝜓⟩ ⟨𝜓 |

)
= 0

}
denote the

region of the lattice where the state is supported on 𝑅(𝑘) (H𝑢𝑑), and 𝜕𝐷 be the set of

sites on the boundary of 𝐷. Then we see that the terms in eq. (5.106) act non-trivially

only within 𝐷, and that the boundaries of 𝐷 receive an energy penalty of 2𝑘 |𝜕𝐷 |

from terms in eq. (5.105) and eq. (5.108).

Note that
𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗)𝑜𝑝,𝑅(𝑘) (ℎ𝑢 (𝜑)′) (𝑖, 𝑗)𝑜𝑝,𝑅(𝑘) (ℎ(1)𝑢 (𝜑))𝑜𝑝 ≤ 2. For𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗)𝑜𝑝 this is straightforward to see. For

𝑅(𝑘) (ℎ𝑢 (𝜑)′) (𝑖, 𝑗)𝑜𝑝, any states

which pick up non-zero energy, other than those which receive a penalty due to

halting, are removed from the local Hilbert space (as per section 5.5).

Let 𝑚 ∈N be a cut-off such that |𝜕𝐷 | ≤ 𝑚, hence |𝐷 | ≤ 𝑚2/16. Since for each

boundary term we get an energy penalty of at least 2𝑘 from ℎ0, we can relate 𝑚 to

the energy cut-off 𝐸 to 𝑚 as 𝐸 B 2𝑘𝑚. If we consider the Hamiltonians restricted to
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a subspace with energy ≤ 𝐸 B 2𝑘𝑚, then𝑅(𝑘) (𝐻 (𝜑)) |≤𝐸 −𝐻′𝐼𝑠𝑖𝑛𝑔 (𝑘) |≤𝐸
𝑜𝑝

(5.112)

=

∑︁⟨𝑖, 𝑗⟩
(
𝑅(𝑘) (ℎ𝑢 (𝜑)′) (𝑖, 𝑗) ⊗1(𝑖, 𝑗)𝑑

+1(𝑖, 𝑗)𝑢 ⊗ 𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗)
) ����
≤𝐸


𝑜𝑝

(5.113)

≤ 𝑚
2

16

(𝑅(𝑘) (ℎ𝑢 (𝜑)′) (𝑖, 𝑗)
𝑜𝑝
+
𝑅(𝑘) (ℎ𝑑) (𝑖, 𝑗)

𝑜𝑝

+
𝑅(𝑘) (ℎ(1)𝑢 (𝜑))

𝑜𝑝

) (5.114)

≤ 𝑚
2

2
(5.115)

<

(
𝐸

2𝑘

)2
. (5.116)

Going from eq. (5.113) to eq. (5.114) we have used the fact that the terms in the

sum are only non-zero within domains, and |𝐷 | ≤ 𝑚2/16. Going from eq. (5.114) to

eq. (5.116) we have used the bound on the individual norms of the local terms. □

Thus, for appropriately small energies, we expect only small deviations from the

”Ising-like” Hamiltonian. And these deviations vanish as the RG process is iterated.

In particular, the spectrum will look like fig. 5.6.

5.7.2 Fixed Point for Gapless Instances

For a 𝜑 for which 𝐻 (𝜑) is gapless, 𝑅(𝑘) (𝐻 (𝜑)) is also gapless and we see that

the ground state is that of 𝑅(𝑘) (𝐻𝑢 (𝜑)). If we restrict to a low energy subspace,

one can see that excited states are either the excited states of the Gottesman-Irani

Hamiltonians or the excited states of the critical XY-model. Indeed, let 𝐸 (𝑘) be the

subspace of states with energy less than 2𝑘 , then for sufficiently large 𝑘 we see that

𝑅(𝑘) (𝐻)Λ |𝐸 (𝑘) = 𝑅(𝑘) (𝐻𝑢 (𝜑))Λ |𝐸 (𝑘)⊗1Λ𝑑 +1
Λ⊗𝑅(𝑘) (𝐻𝑑)Λ |𝐸 (𝑘) . (5.117)

Since 𝑅(𝑘) (𝐻𝑑)Λ |𝐸 (𝑘) has the same spectrum as 𝐻𝑑 , the spectrum of 𝑅(𝑘) (𝐻)Λ |𝐸 (𝑘)
is also dense in the thermodynamic limit. Furthermore, 𝑅(𝑘) (𝐻)Λ |𝐸 (𝑘) has alge-

braically decaying correlations since 𝑅(𝑘) (𝐻𝑑)Λ |𝐸 (𝑘) also has algebraically decaying
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Figure 5.6: The energy level diagram of 𝑅 (𝑘 ) (𝐻). The blue levels represent excitations of
the 2𝑘 ( |0⟩⟨0| (𝑖) ⊗Π ( 𝑗 )

𝑢𝑑
+Π (𝑖)

𝑢𝑑
⊗ |0⟩⟨0| ( 𝑗 ) ) term, while the red area represents the

excited states of 𝑅 (𝑘 ) (ℎ𝑢 (𝜑)′) (𝑖, 𝑗 ) , 𝑅 (𝑘 ) (ℎ𝑑) (𝑖, 𝑗 ) , and 𝑅 (𝑘 ) (ℎ (1)𝑢 (𝜑)). The size
of the red region increases as the domains get larger, and hence there are more
high energy states. The ground state has no associated red region due to the
presence of the spectral gap. The blue lines have an energy spacing of integer
multiples of 2𝑘 (although they are not necessarily as regular).

correlations [LSM61].

5.8 Discussion
We have seen under the renormalisation group procedure constructed here, the

Hamiltonian flows towards either an Ising-like Hamiltonian or an XY-like Hamiltonian.

Which case occurs depends on the parameter 𝜏2 in eq. (5.95). Let 𝑘 be the number

of iterations of the RG procedure, then from theorem 5.7 we see that there are two

cases: 𝜏2 = −2𝑘 always, or 𝜏2 = −2𝑘 initially, and once a sufficiently large value

of 𝑘 is reached it begins to diverge as 𝜏2 > −2𝑘 +Ω(4𝑘 ). Determining which case

occurs is undecidable. Moreover, the value of 𝑘 at which we go from the first case to

the second is uncomputable. Thus, determining the trajectory of the system for an

arbitrary value of 𝜑 is uncomputable. Even if 𝜑 were known exactly, we see that the

Hamiltonian’s path in parameter space would be unpredictable.
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Contrast this with chaotic behaviour: for chaotic systems, a tiny difference in

the initial system parameters can lead to large diverges in trajectories later. Here

the difficulty in predicting behaviour arises as it is usually difficult to determine

the initial system parameters exactly. However, if the system parameters are known

exactly, it should theoretically be possible to ascertain the long-time system. RG

flows which undergo chaotic behaviour have been demonstrated before [MBK82;

SKS82; DEE99; DT91; MN03].

The behaviour of the RG trajectory shown here is stronger than this in that

even if the initial parameters characterising the microscopic interactions are known

exactly, determining which fixed point the system may flow to is not possible to

determine. We compare this to a similar uncomputability result in [Moo90] which

showed that computing the trajectory of a particle in a potential is uncomputable.

The Hamiltonian discussed in this work is highly artificial and the RG scheme

reflects this. Indeed, this Hamiltonian has an enormous local Hilbert space dimension

and its matrix elements are functions of both 𝜑 and the binary length of 𝜑, |𝜑 |.

Both of these factors are unlikely to be present in naturally occurring Hamiltonians.

Thus an obvious route for further work is to consider RG schemes for more natural

Hamiltonians which display undecidable behaviour.

Furthermore, although the RG scheme is essentially a simple BRG scheme, the

details of its construction and analysis rely on knowledge of the structure of the

ground states. Due to the behaviour of this undecidable model, any BRG scheme

will have to exhibit similar behaviour to the one we have analysed rigorously here.

But it would be interesting to find a simpler RG scheme for this Hamiltonian (or

other Hamiltonians with undecidable properties) which is able to truncate the local

Hilbert space to a greater degree, without using explicit a priori knowledge of the

ground state, for which it is still possible to prove this rigorously.

The Hamiltonian and RG scheme constructed here could also be used to prove

rigorous results for chaotic (but still computable) RG flows. Indeed, if we modify the

Hamiltonian 𝐻 (𝜑) so that tead of running a universal Turing Machine on input 𝜑, it

carries out a computation of a (classical) chaotic process (e.g. repeated application
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of the logistical map), then two inputs which are initially very close may diverge

to completely different outputs after some time. By penalising this output qubit

appropriately, the Hamiltonian will still flow to either the gapped or gapless fixed

point depending on the outcome of the chaotic process under our RG map, but the

RG flow will exhibit chaotic rather than uncomputable dynamics.

Given the RG scheme here, it is also relevant to ask is whether we can apply a

similar scheme to the Hamiltonians designed in [Bau+18b] or chapter 3. Although

we do not prove it here, we expect to be able to apply the modified BRG developed in

this work to these Hamiltonians in an analogous way.



Chapter 6

Complexity of Measuring Local

Observables for Systems with

Circuit-to-Hamiltonian Mappings

6.1 Introduction

Given that much of condensed matter physics is devoted to determining the low-energy

properties of materials, a natural question to ask is whether one can easily compute

expectation values of observables at low temperatures. Since local measurements

are the primary tools available to experimentalists for examining these systems, this

is an extremely important problem. With this in mind, we consider the problem

Approximate Simulation (APX-SIM), which asks how difficult it is to estimate the

expectation of a local measurement against the low energy subspace of a local

Hamiltonian.

Introduced in [Amb14], APX-SIM was shown to be PQMA[log]-complete for O(1)-

local Hamiltonians with 1-local measurements (with inverse polynomial precision)

in [Amb14; GY19]. Here, PQMA[log] is the class of decision problems decidable by

a polynomial time (deterministic) Turing machine with access to logarithmically

many adaptive queries to a QMA oracle (this is believed to be strictly larger class

than QMA). More recently [GPY20] showed PQMA[log]-completeness for APX-SIM

on physically motivated 2D models, such as for the Heisenberg interaction, and on
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(non-translationally invariant) 1D chains.

The more realistic a system the Hamiltonian describes while retaining hard-to-

compute properties, the more insight about the intrinsic complexity of the system

one gains. For instance, a local spin dimension of 2 is often seen in nature (e.g. an

electron spin up/down); a spin dimension of 212 less so. Furthermore, condensed

matter systems in real life often feature symmetries, such as a regular lattice structure

with nearest-neighbour couplings that are both isotropic and translationally invariant.

A goal of Hamiltonian complexity theory is thus to find increasingly “simple” systems

that retain hard-to-compute properties. This renders claims more generic, and the

resulting implications stronger.

Beyond their relevance for real-world systems, translationally-invariant Hamil-

tonians in particular are widely believed to be simpler than general Hamiltonians.

Intuitively, due to the spatial invariance of the system, the degrees of freedom

available to encode complex behaviour are limited; and less information can be

encoded into the couplings throughout the system (assuming they are specified to the

same precision).

As for spatial structure, the most basic lattice model is the one-dimensional spin

chain, for which any hardness results often immediately imply respective hardness

results for two- or higher-dimensional systems (by simply repeating the system

along the extra dimensions). And just like translational symmetry, having only one

dimension often renders systems more tractable, which is supported by empirical and

theoretical evidence [LSM61; Aff+87; Fra17]. For instance, algorithms like DMRG

[Whi92] to approximate ground state energies have long been known to work well in

practice in 1D. Indeed, this eventually led to rigorous polynomial-time algorithms to

solve ground state energy problems for gapped one-dimensional spin chains [LVV15].

Beyond that, there often exist closed form solutions in 1D, such as for fermionic 1D

systems described by the Fermi-Hubbard model or 1D Heisenberg model [Bet31];

similar systems are notoriously difficult to simulate in higher dimensions.

So are one-dimensional, nearest neighbour, translationally-invariant (TI) systems

tractable, or at least “more tractable” than their higher-dimensional counterparts?
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Alas, results such as [GI09] show that finding the ground state of a 1D spin chain

is QMAEXP-complete (QMAEXP is a quantum analogue of NEXP), and the question

of existence of a spectral gap in one spatial dimension—even for couplings with

translational invariance—remains undecidable [Bau+18b]. Yet for other natural

questions, such as APX-SIM, the verdict is still open.

Here, motivated by the goal of showing hardness of APX-SIM in the even

simpler setting of 1D TI systems, we give a much more general framework for

“lifting” hardness results about ground state energies (i.e. for LH) to hardness results

for APX-SIM. Formally, these are given via the Lifting Lemma (lemma 6.4) and

applications in section 6.3.5; here, we informally state the general premise as follows.

Theorem 6.1 (LH to APX-SIM (informal)). If the family of Hamiltonians F admits

a circuit-to-Hamiltonian mapping such that approximating the ground state energy is

C-hard, then the APX-SIM problem for F is either PC[log] or PC-complete, depending

on how the input is encoded.

In contrast to previous approaches for showing hardness for APX-SIM, which were

custom-designed based on the circuit-to-Hamiltonian constructions in mind, here

we obtain a black-box mapping (lemma 6.4) which requires minimal assumptions,

and which automatically preserves structural properties of F , such as locality,

geometry, translational invariance, etc. This demonstrates that the Local Hamiltonian

problem fundamentally characterises the complexity of computing properties (such

as simulating measurements) of the low energy states of a family of Hamiltonians.

6.2 Preliminaries

6.2.1 Approximate Simulation (APX-SIM)
The approximate simulation problem (APX-SIM) is concerned with the properties of

ground states. However, it is usually more natural to consider a low-energy subspace.

With this in mind we follow [GPY20] and define a more symmetric variant of the

above problem APX-SIM which concerns itself with the low-energy subspace rather

than the ground state:
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Definition 6.1 (∀-APX-SIM(𝐻, 𝐴, 𝑘, 𝑙, 𝑎, 𝑏, 𝛿) [GPY20]). Given a 𝑘-local Hamilto-

nian 𝐻 =
∑
𝑖𝐻𝑖 acting on 𝑁 qubits, an 𝑙-local observable 𝐴, and real numbers 𝑎, 𝑏,

and 𝛿 such that 𝑏− 𝑎 ≥ 𝑁−𝑐 and 𝛿 ≥ 𝑁−𝑐′ , for 𝑐, 𝑐′ > 0 constant, decide:

YES. If for all |𝜓⟩ satisfying ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 𝛿, it holds that ⟨𝜓 | 𝐴 |𝜓⟩ ≤ 𝑎.

NO. If for all |𝜓⟩ satisfying ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 𝛿, it holds that ⟨𝜓 | 𝐴 |𝜓⟩ ≥ 𝑏.

The difference between APX-SIM and ∀-APX-SIM is that one requires all states

below a threshold energy 𝛿 above the ground state energy to have expectation value

upper-bounded by 𝑎. Throughout this work we consider the translationally invariant

version of ∀-APX-SIM which simply for translationally invariant Hamiltonians:

Definition 6.2 (∀-TI-APX-SIM). Defined analogously to∀-APX-SIM, except the input

Hamiltonian is specified via local term ℎ of a translationally invariant Hamiltonian

𝐻 =
∑
ℎ acting on 𝑁 qubits, where N is specified in binary, and each local term is

describable in O(log(𝑁)) bits.

6.2.2 Useful Lemmas

We now state the Extended Projection Lemma, which consists of three claims, the

first of which was given in [KKR06]. The lemma was later extended to include the

second and third claims [GY19].

Lemma 6.1 (Extended Projection Lemma ([KKR06; GY19])). Let 𝐻 = 𝐻1 +𝐻2 be

the sum of two Hamiltonians operating on some Hilbert space H = S +S⊥. The

Hamiltonian 𝐻1 is such that S is a zero eigenspace and the eigenvectors in S⊥ have

eigenvalue at least 𝐽 > 2∥𝐻2∥∞. Let 𝐾 B ∥𝐻2∥∞. Then, for any 𝛿 ≥ 0 and |𝜓⟩

satisfying ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 𝛿, there exists a |𝜓′⟩ ∈ S such that:

• (Ground state energy bound)

_min(𝐻2 |S) −
𝐾2

𝐽 −2𝐾
≤ _min(𝐻) ≤ _min(𝐻2 |S),

where _min(𝐻2 |S) denotes the smallest eigenvalue of 𝐻2 restricted to space S.
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• (Ground state deviation bound)

|⟨𝜓 |𝜓′⟩|2 ≥ 1−
(
𝐾 +

√︁
𝐾2 + 𝛿(𝐽 −2𝐾)
𝐽 −2𝐾

)2

.

• (Energy obtained by perturbed state against 𝐻)

⟨𝜓′|𝐻 |𝜓′⟩ ≤ _min(𝐻) + 𝛿+2𝐾
𝐾 +

√︁
𝐾2 + 𝛿(𝐽 −2𝐾)
𝐽 −2𝐾

.

Next, we state a quantum analogue of the union bound for commuting operators

(see, e.g. [SKO19]).

Lemma 6.2 (Commutative Quantum Union Bound). Let {𝑃𝑖}𝑚𝑖=1 be a set of pairwise

commuting projectors, each satisfying 0 ⪯ 𝑃𝑖 ⪯ 𝐼. Then for any quantum state 𝜌,

1− tr(𝑃𝑚 · · ·𝑃1𝜌𝑃1 · · ·𝑃𝑚) ≤
𝑚∑︁
𝑖=1

tr((𝐼 −𝑃𝑖)𝜌).

The following is a standard fact (see, e.g., Equation 1.33 [Gha13] for a proof):

∥|𝑣⟩⟨𝑣 | − |𝑤⟩⟨𝑤 |∥tr = 2
√︃

1− |⟨𝑣 |𝑤⟩|2 ≤ 2∥|𝑣⟩ − |𝑤⟩∥2. (6.1)

6.2.3 Relevant (Oracle) Complexity Classes
As discussed extensively in [Koh+20, Sec. 4], the natural complexity class for

the local Hamiltonian problem for a translationally-invariant system is QMAEXP.

Intuitively, this is because for translationally invariant system, the only parameter is

the system size 𝑁 . If 𝑁 is the input, then it can be encoded in a string which has

length 𝑂 (log(𝑁)). Together with a promise gap which closes ∝ 1/𝑇2, where 𝑇 is the

run-time of the embedded computation, and a 1/poly(𝑁) promise gap allowed in the

definition of the local Hamiltonian problem, this means that we can only saturate

this bound if we allow 𝑇 = poly(𝑁)—i.e., the encoded computation runs in time

exponential in the input size (poly(log𝑁)), which naturally gives QMAEXP.1

1We take care to distinguish this from the class QMAexp of [FL16] which is for an exponentially
small promise gap in the input size, but polynomial length run time, also called PreciseQMA.
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In [GPY20], the authors prove that APX-SIM is PQMA[log]-complete by showing

that APX-SIM is P| |QMA-complete, and in a second step that P| |QMA = PQMA[log] . For

the translationally invariant version of APX-SIM, we are essentially dealing with

the same encoded computation, yet with exponentially input less information (i.e.

the problem is succinctly encoded), just like in the case for the local Hamiltonian

problem. Here, the base class now has a runtime poly(𝑁), but an input of length

𝑂 (log(𝑁)) and hence is an exponential time computation. The right class for which

TI-APX-SIM is complete is thus PQMAEXP . Technically, this class comes out of

the EXP∥QMA-completeness result, but it is also motivated in another way. Since

QMAEXP has verification time poly(𝑁), its circuit-to-Hamiltonian construction will

have norm poly(𝑁). Thus, the number of adaptive queries to the QMAEXP oracle

to estimate the ground state energy within 1/poly(𝑁) error is log(𝑁) =𝑂 (poly(𝑛)),

which is polynomial in the input size. So the P machine, which runs in time

poly(log(𝑁)) =𝑂 (poly(𝑛)), makes poly(log(𝑁)) =𝑂 (poly(𝑛)) queries to the oracle,

which yields QMAEXP.

Oracle complexity classes. The classes PQMA[log], P∥QMA, and PQMA denote the set of

languages decidable by a polynomial-time deterministic Turing machine with access

to, respectively, logarithmically many adaptive queries to a QMA oracle, polynomially

many parallel queries to a QMA oracle, and polynomially many adaptive queries to a

QMA oracle, respectively. It is known that PQMA[log] = P∥QMA [GPY20]. The classes

EXP∥QMA and PQMAEXP are defined analogously, except the former has an exponential-

time deterministic Turing machine as its base (and hence can make exponentially

many parallel queries), and where the oracle is for QMAEXP, respectively.

6.3 Encoding Computation into Measurement Prob-

lems on Low Energy Spaces

6.3.1 Overview and Circuit-to-Hamiltonian Mappings
We point the reader to chapter 1 for an introduction to history states and circuit-

to-Hamiltonian mappings. We consider an abstract route. More precisely, we will

offload the question of proving EXP∥QMA-hardness of TI-APX-SIM to a quantum
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universal
for

scaling
of 𝑇 (𝑁)

symmetry interaction
graph

locality local
dimension

instance ℓ
encoded in

[KSV02]

QMA
1

poly
none

arbitrary 5 2

local terms
[KR03b] arbitrary 3 2
[KKR06] arbitrary 2 2

[OT08] 2D planar 2 2
[Aha+07] 1D line 12 2

[BBT06] StoqMA
1

poly
none arbitrary 2 2 local terms

[GI09]
QMAEXP

1
poly

translational
1D line 2 huge

system size[BCO17] 1D line 2 42
[BP17b] 3D fcc lattice 4 4

[FL16]† PreciseQMA
1

exp
none arbitrary 3 2 local terms

[Koh+20]‡ translational 1D line 2 42 system size

Table 6.1: History state Hamiltonians from existing literature that satisfy definition 6.4 with
varying characteristics. Shown the complexity class for which they encode a
witness in the ground state energy, size 𝑇 of history state in terms of the system
size 𝑁 , further properties of the Hamiltonian, as well as their dependence on the
problem instances ℓ.
† references [KR03b] as the underlying construction; ‡ references [BCO17].

circuit that simulates the oracle calls. Starting from a rigorous definition of this type

of computation we wish to encode, we will then require two mild assumptions on the

type of circuit-to-Hamiltonian mapping used to translate the circuit to a ground state

(the ability to access two outputs of the computation locally). Given the mapping has

these two properties, EXP∥QMA-hardness will follow.

6.3.2 Hamiltonians with a Universal Ground State

The specifics of the Hamiltonian used to encode computation is, for our purposes,

irrelevant: whether it takes the shape of a history state Hamiltonian, features a more

complicated clock construction such as in [Aha+07; GI09; BT14; BCO17], or is

something completely different is not important.

More concretely, what we require of the circuit-to-Hamiltonian mapping is

the ability to single out a low-energy subspace that encodes valid computations.

This valid low-energy subspace needs to be separated from the rest of the spectrum,

which may include states which do not encode a valid computation. Beyond this
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fundamental requirement, and in order to translate a circuit that simulates oracle

queries into a ground state energy problem, the circuit-to-Hamiltonian mapping

needs to have two high-level properties (formal requirements in definition 6.4):

1. The possibility to inflict an energy penalty onto the output of a computation,

which means that we can break the low-energy subspace of valid computations

into a space𝑉Yes and𝑉No that correspond to computations that evolve correctly

and incorrectly, respectively; and such that the largest eigenvalue of 𝑉Yes is

below the smallest eigenvalue of 𝑉No.

2. Locality in the encoding, in the sense that neighbouring qubits in the circuit at

some time-step need to map to neighbouring spins in the many-body system.

Both these assumptions are mild, and readers familiar with circuit-to-Hamiltonian

mappings will immediately recognise that both of these are generally satisfied.

Definition 6.3 (Conformity). Let𝐻 be a Hamiltonian with some well-defined structure

𝑆 (such as 𝑘-local interactions, all constraints drawn from a fixed finite family, with

a fixed geometry such as 1D, translational invariance, etc). We say a Hermitian

operator 𝑃 conforms to 𝐻 if 𝐻 +𝑃 also has structure 𝑆.

For example, if 𝐻 is a 1D translationally invariant Hamiltonian on qubits, then 𝑃

conforms to 𝐻 if 𝐻 +𝑃 is also 1D translationally invariant.

We now define an abstract notion of local circuit-to-Hamiltonian mappings;

intuition given subsequently. The combination of an input penalty and history state

Hamiltonian we denote with 𝐻w B 𝐻prop +𝐻𝑖𝑛.

Definition 6.4 (Local Circuit-to-Hamiltonian Mapping). Let X = (C2)⊗𝑚 and Y =

(C2)⊗𝑛. A map 𝐻w : U (X) ↦→ Herm (Y) is a local circuit-to-Hamiltonian mapping

if, for any 𝑇 > 0 and any sequence of 2-qubit unitary gates 𝑈 =𝑈𝑇𝑈𝑇−1 · · ·𝑈1, the

following hold:

1. (Overall structure)𝐻w(𝑈) ⪰ 0 has a non-trivial null space, i.e. Null (𝐻w(𝑈)) ≠

∅. This null space is spanned by (some appropriate notion of) “correctly

initialized computation history states”, i.e. with ancillae qubits set “correctly”

and gates in𝑈 “applied” sequentially.
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2. (Local penalization and measurement) Let 𝑞1 and 𝑞2 be the first two output

wires of 𝑈 (each a single qubit), respectively. Let 𝑆pre ⊆ X and 𝑆post ⊆ Y

denote the sets of input states to𝑈 satisfying the structure enforced by 𝐻w(𝑈)

(e.g. ancillae initialized to zeroes), and null states of 𝐻w(𝑈), respectively.

Then, there exist projectors 𝑀1 and 𝑃𝑇 , projector 𝑀2 conforming to 𝐻w(𝑈),

and a bijection 𝑓 : 𝑆pre ↦→ 𝑆post, such that for all 𝑖 ∈ {1,2} and |𝜙⟩ ∈ 𝑆pre, the

state |𝜓⟩ = 𝑓 ( |𝜙⟩) satisfies

Tr
(
|0⟩⟨0|𝑖 (𝑈𝑇𝑈𝑇−1 . . .𝑈1) |𝜙⟩⟨𝜙 | (𝑈𝑇𝑈𝑇−1 . . .𝑈1)†

)
= Tr

(
|𝜓𝑇 ⟩⟨𝜓𝑇 |𝑀𝑖

)
,

(6.2)

where |𝜓𝑇 ⟩ = 𝑃𝑇 |𝜓⟩ /∥𝑃𝑇 |𝜓⟩∥2 is |𝜓⟩ postselected on measurement outcome

𝑃𝑇 (we require 𝑃𝑇 |𝜓⟩ ≠ 0). Moreover, there exists a function 𝑔 : N×N ↦→ R

such that

∥𝑃𝑇 |𝜓⟩∥22 = 𝑔(𝑚,𝑇) for all |𝜓⟩ ∈ Null (𝐻w(𝑈)) , (6.3)

𝑀𝑖 = 𝑃𝑇𝑀𝑖𝑃𝑇 . (6.4)

The map 𝐻w, and all operators/functions above (𝑀1,𝑀2,𝑃𝑇 , 𝑓 ,𝑔) are computable

given𝑈.

Intuition. We stress the following about definition 6.4:

1. It places no restrictions on the efficiency of computing 𝐻w, 𝑀1, 𝑀2, 𝑃𝑇 , 𝑓 , 𝑔.

Any such resource-restriction will later be application-dependent.

2. The term “local” in “local circuit-to-Hamiltonian mapping” is not referring to

the locality of 𝐻w(𝑈). Rather, it refers to the fact that local measurements on

the output qubits of𝑈 can be simulated via local measurements on the ground

space of 𝐻w(𝑈) (up to postselection) via bijection 𝑓 and eq. (6.2). Also, there

is no restriction a priori on 𝑔(𝑚,𝑇), other than 𝑔(𝑚,𝑇) ≠ 0 for all 𝑚,𝑇 ≥ 0.

3. For our applications, we only require simulation of local measurements on

output qubits 1 and 2 of 𝑈; hence the phrasing of Point 2 in definition 6.4
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(which, we note, makes this notion of local simulation milder than that used

in universality results such as [CMP18; Koh+20; PB20]). Intuitively, the first

qubit will encode whether𝑈 accepts or rejects (i.e. outputs 1 or 0, respectively).

In the setting of APX-SIM, 𝑀1 will play the role of observable 𝐴 from

definition 6.1; as such, 𝑀1 need not necessarily conform to 𝐻w(𝑈). In contrast,

𝑀2 will be used to penalize a certain “flag qubit” in our construction of

lemma 6.3, and will be part of the Hamiltonian 𝐻 from definition 6.1; as such,

we require 𝑀2 to conform to 𝐻w(𝑈). Finally, there is nothing particular about

the choice of |0⟩⟨0|𝑖 in eq. (6.2); any fixed single-qubit projector would suffice.

4. Eq. (6.3) says all null states of 𝐻w(𝑈) have the same weight on the final time

step, 𝑇 . This is used, for example, in lemma 6.7 when we wish to exchange

one |𝜙′⟩ ∈ 𝑆post with another state |𝜙⟩ ∈ 𝑆post, and say something meaningful

about the computation encoded in |𝜙′⟩ versus |𝜙⟩.

5. For the case of Kitaev’s circuit-to-Hamiltonian construction [KSV02], 𝑃𝑇
projects the clock register down to |𝑇⟩, and is 3-local since there the clock is

encoded in unary. In all history state Hamiltonians, 𝑔(𝑚,𝑇) = ∥𝑃𝑇 |𝜓⟩∥22 =

1/(𝑇 +1) for |𝜓⟩ a uniform history state.2 Finally, eq. (6.4) captures the fact

that 𝑀𝑖 has a clock register projecting onto |𝑇⟩⟨𝑇 |, and so is supported solely

on the Hilbert space corresponding to time 𝑇 (i.e. projected onto by 𝑃𝑇 ).

6.3.3 Oracle Queries as Subroutines

Reducing P∥QMA to a single quantum verification circuit. We now give a generic

construction for embedding an arbitrary P∥QMA circuit into a single quantum verifica-

tion circuit (i.e. an “un-sound QMA circuit”). In doing so, as explained in [GY19],

we must allow for the possibility that QMA oracle queries may be invalid, in that

they might violate the QMA promise gap. This entails accounting for two potential

obstacles: first, from an “oracle query” perspective, a QMA oracle fed an invalid

QMA query may output 0 or 1 arbitrarily. Second, from a “QMA verification circuit”

2Modified history state Hamiltonians with non-uniform superpositions over the time steps such as
in [BC18b] scale accordingly with the weight on the last timestep.
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perspective, we cannot assume anything about the acceptance probability of the

verifier when fed the optimal proof for an invalid instance, even after standard error

reduction. Specifically, for a valid YES (resp., valid NO) QMA instance, standard

error reduction implies the optimal proof is accepted with probability exponentially

close to 1 (resp., 0); for an invalid instance, this optimal probability may still be

1/2. The first of these obstacles requires one to define a valid P∥QMA machine’s final

output bit to be independent of how invalid queries are answered [Gol06] (otherwise,

the output of the P∥QMA machine is not necessarily well-defined on a given input).

We now give the construction in lemma 6.3. Since the aim of this paper is

generic reductions for lifting hardness results for one class of problems to another, we

state the following lemma rather abstractly. For this, we first require two definitions,

the first of which is standard.

Definition 6.5. (Deterministic class) A set 𝐶 of languages is a deterministic class if,

for any language 𝐿 ∈ 𝐶, there exists a deterministic Turing machine 𝑀 which can

decide 𝐿 under the resource constraints specified by 𝐶. Formally, given any input

𝑥 ∈ {0,1}𝑛, 𝑀 halts after using 𝑅(𝑛) resources (where 𝑅 may specify bounds on time

or space), and accepts if 𝑥 ∈ 𝐿 or rejects if 𝑥 ∉ 𝐿.

Standard examples of deterministic classes include P, PSPACE, and EXP.

Definition 6.6. (Existentially quantified quantum verification class (QVClass)) A set

𝐶 of promise problems is an existentially quantified quantum verification class if

any promise problem 𝐴 = (𝐴yes, 𝐴no, 𝐴inv) in 𝐶 satisfies the following. There exist

computable functions 𝑓 , 𝑔, ℎ : N ↦→ N, as well as a deterministic Turing machine

𝑀 which, for any input 𝑥 ∈ {0,1}𝑛, uses 𝑅(𝑛) resources to produce a quantum

verification circuit 𝑉 (consisting of 1- and 2-qubit gates) and thresholds 𝑐, 𝑠 ∈ R+

such that 𝑐− 𝑠 > 1/ℎ(𝑛). Here, 𝑅(𝑥) refers to resources such as time, space, etc,

as required by 𝐶. The circuit 𝑉 takes in a quantum proof |𝜓⟩ on 𝑓 (𝑛) qubits, 𝑔(𝑛)

ancilla qubits initialized to all zeroes, and has a designated output qubit, such that:

• (YES case) If 𝑥 ∈ 𝐴yes, there exists a quantum proof |𝜓⟩ on 𝑓 (𝑛) qubits such

that measuring the output qubit of 𝑉 |𝜓⟩ |0 · · ·0⟩ in the standard basis yields 1

with probability at least 𝑐.
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• (NO case) If 𝑥 ∈ 𝐴no, for all quantum proofs |𝜓⟩ on 𝑓 (𝑛) qubits, measuring

the output qubit of 𝑉 |𝜓⟩ |0 · · ·0⟩ in the standard basis yields 1 with probability

at most 𝑠.

Without loss of generality, we assume the output qubit of 𝑉 is the first wire exiting 𝑉 .

For example, for QMA, 𝑅(𝑛) denotes a polynomial bound (with respect to 𝑛) on the

number of time and space steps taken by 𝑀, while 𝑓 and 𝑔 are fixed polynomials,

𝑐 = 2/3 and 𝑠 = 1/3. In this way, classes such as NP, NEXP, QCMA, QMA, and so

forth are examples of a QVClass.

We are now ready to state the following abstract lemma. As a concrete guiding

example, consider D = P and Q = QMA below.

Lemma 6.3. Let 𝑥 ∈ {0,1}𝑛 be an instance of a problem in D∥Q, where D is a

deterministic class (such as P) and Q is a QVClass (such as QMA). Let𝑈 be a D∥Q

machine (we will typically think of 𝑈 as a circuit with access to an oracle for Q)

making 𝑚 parallel queries to a Q-oracle to decide 𝑥. Then, there exists a quantum

circuit 𝑉 with the following properties:

1. Given 𝑥 and 𝑈, 𝑉 can be computed in time polynomial in the sizes of 𝑈 and

the verifier for Q (both of which may be viewed as quantum circuits consisting

of 1- and 2-qubit gates).

2. 𝑉 takes as input 𝑚 +2 registers: n input register 𝐴 containing 𝑥 ∈ {0,1}𝑛, 𝑚

proof registers 𝐵𝑖 containing a joint quantum proof |𝑤1···𝑚⟩ (where ideally

|𝑤1···𝑚⟩ = |𝑤1⟩ |𝑤2⟩ · · · |𝑤𝑚⟩), with register 𝐵𝑖 to be verified by a Q-circuit 𝑉𝑖

(see fig. 6.1), and an ancilla register 𝐶 which is assumed to be initialized to

the all-zeroes state. Without loss of generality, we assume each verifier 𝑉𝑖 has

the same completeness and soundness parameters 𝑐 and 𝑠, respectively.

3. 𝑉 has two designated output wires: 𝑞out is supposed to encode the output of

𝑈, and 𝑞flag the number of Q queries made by 𝑈 which were YES instances.

(Without loss of generality, these are the first and second wires exiting 𝑉 ,

respectively.) Formally, suppose 𝑉 is fed the joint proof |𝑤1···𝑚⟩, and let |𝜓⟩

denote the output state of 𝑉 .
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Let sets 𝑆0 and 𝑆1 partition {0,1}𝑚 such that the D machine underlying 𝑈

rejects (resp. accepts) when given a string of query responses 𝑦 ∈ 𝑆0 (resp.

𝑦 ∈ 𝑆1). Define

𝑝𝑦,𝑤 B Pr

(
𝑚∧
𝑖=1
𝑉𝑖 outputs 𝑦𝑖

���� |𝑤1···𝑚⟩
)
.

Note that in the ideal case |𝑤1···𝑚⟩ = |𝑤1⟩ · · · |𝑤𝑚⟩, 𝑝𝑦,𝑤 simplifies to

𝑝𝑦,𝑤 =

𝑚∏
𝑖=1

Pr(𝑉𝑖 outputs 𝑦𝑖 | |𝑤𝑖⟩).

In both cases,

tr
(
|𝜓⟩⟨𝜓 | · |1⟩⟨1|𝑞out

)
=

∑︁
𝑦∈𝑆1

𝑝𝑦,𝑤 (6.5)

tr
(
|𝜓⟩⟨𝜓 | · |1⟩⟨1|𝑞flag

)
=

∑︁
𝑦∈{0,1}𝑚

𝑝𝑦,𝑤 · sin2

(√
3

2𝑚
·HW(𝑦)

)
. (6.6)

where 𝐻𝑊 (𝑦) is the Hamming weight of 𝑦.

Proof. As depicted in fig. 6.1, 𝑉 is constructed by translating the D machine

underlying𝑈 into a quantum circuit𝑈′, and then “simulating” the 𝑚 (parallel) oracle

calls𝑈 makes as sub-routines, in the sense of executing their Q-verification circuits𝑉𝑖
on the relevant subset of |𝑤1···𝑚⟩ given by |𝑤𝑖⟩⟨𝑤𝑖 | = Tr𝐵 𝑗≠𝐵𝑖 [|𝑤1···𝑚⟩⟨𝑤1···𝑚 |]. Note

that𝑈′ is diagonal in the standard basis, i.e. is a classical circuit, and computes the

inputs to the Q-verification circuits 𝑉𝑖 on-the-fly; the lanes |𝑞𝑖⟩ in fig. 6.1 indicating

the inputs to the respective verification subroutines are product states diagonal in the

computational basis, i.e. |𝑞1⟩ |𝑞2⟩ · · · |𝑞𝑚⟩.

The gate 𝑅(\) in fig. 6.1 denotes the rotation matrix

𝑅(\) = ©«
cos\ −sin\

sin\ cos\
ª®¬ .

To formally state the action of the overall circuit 𝑉 , let 𝑋,𝑌, 𝑍 denote the input
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. . .

. . .

. . .

. . .

𝑛

|𝑞1⟩
verifier 𝑉1

𝑈′

|𝑤1⟩

|𝑞𝑚⟩
verifier 𝑉𝑚

|𝑤𝑚⟩

|𝑥⟩ |𝑞out⟩

|0⟩ 𝑅(
√

3/(2𝑚)) 𝑅(
√

3/(2𝑚))
��𝑞flag

〉

out1

out𝑚

...
...

Figure 6.1: The circuit 𝑉 constructed in lemma 6.3. The 𝑉𝑖 are the Q-verifiers, each taking
input |𝑞𝑖⟩ and proof/witness |𝑤𝑖⟩. (In principle, states |𝑤𝑖⟩ can be entangled as
one joint state |𝑤1· · ·𝑚⟩; this is dealt with in the proof of lemma 6.7.) 𝑈′ denotes
the host postprocessing circuit in the original D∥Q circuit 𝑈, which takes the
Q-query responses and outputs𝑈’s final answer. The gates 𝑅(

√
3/(2𝑚)) denote

a rotation in the standard basis of angle
√

3/(2𝑚). For simplicity, we have not
depicted any preprocessing needed by 𝑈 to compute the inputs |𝑞𝑖⟩ to the Q
verifiers 𝑉𝑖, nor have we depicted the ancilla register 𝐶. For clarity, as a black
box, the circuit 𝑉 takes in the input to the𝑈 circuit, the joint proof |𝑤1· · ·𝑚⟩, and
the ancilla register 𝐶.

registers to 𝑈′ holding input 𝑥 ∈ {0,1}𝑚, query response string 𝑦 = 𝑦1 · · · 𝑦𝑚, and

ancilla (initialized to all zeroes), respectively. Since𝑈′ is a classical circuit, without

loss of generality it maps any

|𝑥⟩𝑋 |𝑦⟩𝑌 |0 · · ·0⟩𝑍 ↦→ |𝑥⟩𝑋 |𝑦⟩𝑌 |0 · · ·0 𝑓 (𝑦)⟩𝑍 ,

where 𝑓 (𝑦) is the output of𝑈′ (i.e. the D machine) given query response string 𝑦. If

we now let 𝐹 denote the flag qubit register, the output |𝜓⟩ of 𝑉 is given by

|𝜓⟩ =
∑︁

𝑦∈{0,1}𝑚
𝛼𝑦 |𝑥⟩𝑋 |𝑦⟩𝑌 |0 · · ·0 𝑓 (𝑦)⟩𝑍

(
cos

(√
3

2𝑚
·HW(𝑦)

)
|0⟩ + sin

(√
3

2𝑚
·HW(𝑦)

)
|1⟩

)
𝐹

,

(6.7)

where for succinctness we omit registers such as those containing proof |𝑤1···𝑚⟩,

since𝑈′ does not act on these registers. Here, HW(𝑦) is the Hamming weight of 𝑦,
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and where ��𝛼𝑦��2 = Pr

(
𝑚∧
𝑖=1
𝑉𝑖 outputs 𝑦𝑖

���� |𝑤1···𝑚⟩
)
.

This immediately yields Equations (6.5) and (6.6). □

Remarks. We now make several remarks regarding lemma 6.3, including for the case

when Q is a class of promise problems. For concreteness, in our discussion here

we set D = P and Q = QMA, in which case the construction of lemma 6.3 runs in

polynomial-time in 𝑛.

1. The construction of lemma 6.3 and fig. 6.1 says nothing about valid versus

invalid QMA queries (i.e. when 𝑞𝑖 is an invalid QMA query string in fig. 6.1).

This will be dealt with in section 6.3.4.

2. When we later use lemma 6.3, we will penalize the flag qubit register 𝐹

carefully so as to force all valid queries to be answered correctly. This is, in a

nutshell, the purpose of the flag qubit.

6.3.4 Generic Hardness Constructions via a Lifting Lemma
We now proceed by encoding a family of D∥Q instances into a local circuit-to-

Hamiltonian construction and penalise the flag qubit (not the output qubit!) to

encourage the ground space of 𝐻w(𝑉) to encode correct query answers. We now

comment on outstanding issues following lemma 6.3.

How to fix soundness for lemma 6.3. The reduction of lemma 6.3 is not sound,

meaning a NO instance of P∥QMA was not necessarily mapped to a “NO QMA circuit”

𝑉 . This is because, intuitively, each of the verifiers 𝑉𝑖 in fig. 6.1 has a potentially

different implicit quantifier for its proof register |𝑤𝑖⟩ (namely, ∃ for YES queries |𝑞𝑖⟩

and ∀ for NO queries |𝑞𝑖⟩).

By penalising the flag qubit, any Yes query |𝑞𝑖⟩ which incorrectly has 𝑉𝑖
outputting |0⟩ is assigned an additional “unnecessary” energy penalty, lifting any

such history state above the true ground state energy. (Crucially, we have no

knowledge of the actual ground state energy itself, and this value encodes the number

of Yes and No queries.) In short, adding the flag penalty will have the effect of
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ensuring that the ground space will be spanned by states encoding computation for

which as many “good” witnesses |𝑤𝑖⟩ as possible are fed into 𝑉 .3

The Lifting Lemma. The main lemma of this section which encompasses all of the

open points raised is as follows.

Lemma 6.4 (Lifting Lemma for APX-SIM). Let 𝑥 ∈ {0,1}𝑛 be an instance of an

arbitrary D∥Q problem,𝑈 a D∥Q machine deciding 𝑥, and 𝑉 the verification circuit

output by lemma 6.3. Fix a local circuit-to-Hamiltonian mapping 𝐻w, and assume

the notation in definition 6.4. Suppose, there exists a computable function 𝛼 :N ↦→N,

such that, for any 𝜖 satisfying

0 ≤ 𝜖 ≤ 1
𝛼

(
1
𝛼
+ 12∥𝑀2∥2

Δ(𝐻w(𝑉))

) (
8𝑚2

3𝑔(𝑚,𝑇)

)
, (6.8)

Then the Hamiltonian 𝐻 B 𝛼(𝑛)𝐻w(𝑉) +𝑀2 satisfies:

• If 𝑥 is a YES instance, then for all |𝜓⟩ with ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 1
𝛼2 ,

⟨𝜓 |𝑀1 |𝜓⟩ ≤ 𝑔(𝑚,𝑇) ·𝑚 ·max(1− 𝑐+ 𝜖, 𝑠) + 12∥𝑀2∥
𝛼Δ

.

• If 𝑥 is a NO instance, then for all |𝜓⟩ with ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 1
𝛼2 ,

⟨𝜓 |𝑀1 |𝜓⟩ ≥ 𝑔(𝑚,𝑇) (1−𝑚 ·max(1− 𝑐+ 𝜖, 𝑠)) − 12∥𝑀2∥
𝛼Δ

.

Remarks.

1. The Lifting Lemma’s sole degree of freedom is the function 𝛼. All other

quantities appearing, ∥𝑀2∥ (flag penalty, lemma 6.3), Δ (spectral gap of

𝐻w(𝑉)), 𝑔(𝑚,𝑇) (weight of final time step 𝑇 in history state, eq. (6.3)),

𝑐 (completeness) and 𝑠 (soundness), 𝑚 (number of Q-queries), are fixed

functions stemming from the choice of circuit-to-Hamiltonian construction

(definition 6.4) and classes D and Q.

3While we generally call states of the form definition 2.14 history states, adding a penalty will
result in a ground state as superposition of the same vectors, but with weights biased away from the
location of the penalty in the time register.



6.3. Encoding Computation into Measurement Problems on Low Energy Spaces231

2. If we think of 𝑀1 as playing the role of observable 𝐴 from definition 6.1 (where

we follow the notation from definition 6.4), the Lifting Lemma brings us very

close to obtaining D∥Q-hardness of APX-SIM for the class of Hamiltonians

produced by 𝐻w. To formally “instantiate” such a hardness result for a fixed

class D∥Q, it remains to choose an appropriate function 𝛼(𝑛) (𝑛 the input size)

so that 𝜖 is sufficiently small so as to create an appropriate promise gap between

the YES and NO thresholds.

3. Note that for 𝑚 ∈ 𝜔(1), the standard completeness/soundness parameters of

2/3 and 1/3 will not suffice to create a promise gap in the Lifting Lemma.

Thus, error reduction for the QVClass Q to completeness 1 − 1/poly(𝑛)

versus soundness 1/poly(𝑛) appears necessary. This, in particular, means our

construction cannot a priori be applied with Q = StoqMA, since the latter is

not known to have error reduction.

Proof of the Lifting Lemma. Step i. Low energy states of 𝐻 are close to uniform

history states. We first show that for a suitably-chosen function 𝛼, any low energy

state with respect to 𝐻 has a ground state of 𝐻w(𝑉) which is nearby. (For clarity, we

define the spectral gap as difference between the two smallest distinct eigenvalues of

𝐴.)

Lemma 6.5. For brevity, define shorthand Δ for Δ(𝐻w(𝑉)). Fix any function

𝛼 : N ↦→ N such that

𝛼 > max
(
4∥𝑀2∥

Δ
,

Δ

3∥𝑀2∥2
,1

)
, (6.9)

and any 𝛿 ≤ 1/𝛼2. Then, for any |𝜓⟩ such that ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 𝛿, there exists

a uniform history state |𝜙⟩ ∈ Null (𝐻w(𝑉)) such that

∥|𝜓⟩⟨𝜓 | − |𝜙⟩⟨𝜙 |∥tr ≤
12∥𝑀2∥
𝛼Δ

(6.10)

and where |𝜙⟩ has energy

⟨𝜙 |𝐻 |𝜙⟩ ≤ _min(𝐻) + 𝛿+
12∥𝑀2∥2

𝛼Δ
. (6.11)
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Proof. The ground state deviation bound of the Extended Projection Lemma

(lemma 6.1), and Equations (6.1) and (6.9) imply the first claim via

∥|𝜓⟩⟨𝜓 | − |𝜙⟩⟨𝜙|∥tr ≤ 2

(
∥𝑀2∥ +

√︃
∥𝑀2∥2 + Δ

𝛼

)
𝛼Δ−2∥𝑀2∥

≤ 6∥𝑀2∥
𝛼Δ−2∥𝑀2∥

≤ 12∥𝑀2∥
𝛼Δ

.

Here we have used eq. (6.9) to go from the second last to last expression in this chain

of inequalities.

A similar calculation using the third claim of lemma 6.1 yields the second claim

of this lemma. □

Step ii. All valid queries answered correctly. So far we have shown that all low-energy

states with respect to 𝐻 are close to unbiased history states, i.e. the states in the

kernel of 𝐻w(𝑉). Yet 𝑀2 penalizes the flag qubit, as formalized in lemma 6.3. What

does this imply for the witness |𝑤1···𝑚⟩? We now show that given a sufficiently small

𝛿, the history state close to |𝜓⟩ encodes a series of queries such that as many of the

valid queries as possible are answered as Yes.

Lemma 6.6. Assume the notation of lemma 6.3, which showed

tr
(
|𝜓⟩⟨𝜓 | · |0⟩⟨0|𝑞flag

)
=

∑︁
𝑦∈{0,1}𝑚

𝑝𝑦,𝑤 · cos2
(
HW(𝑦)

√
3/(2𝑚)

)
,

where |𝜓⟩ denoted the output of 𝑉 given joint proof |𝑤1···𝑚⟩, and 𝑝𝑦,𝑤 =

Pr
(∧𝑚

𝑖=1𝑉𝑖 outputs 𝑦𝑖 | |𝑤1···𝑚⟩
)
. Suppose there exists an 𝑖 ∈ {1, . . . ,𝑚} and 𝜖 > 0

such that |𝑤1···𝑚⟩ is “𝜖-suboptimal on proof 𝑖”, meaning there exists a local proof��𝑤′
𝑖

〉
such that

Pr(𝑉𝑖 outputs 1 | |𝑤1···𝑚⟩) = Pr
(
𝑉𝑖 outputs 1 | |𝑤′𝑖⟩

)
− 𝜖 . (6.12)

Then there exists a proof
��𝑤′1···𝑚〉

=
��𝑤′1〉 ⊗ · · · ⊗ ��𝑤′𝑚〉

which causes 𝑉 to output |𝜓′⟩

satisfying

tr
(
|𝜓⟩⟨𝜓 | · |0⟩⟨0|𝑞flag

)
≥ tr

(
|𝜓′⟩⟨𝜓′| · |0⟩⟨0|𝑞flag

)
+ 3

8𝑚2 𝜖 .
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Proof. The proof of this lemma is long as was primarily proved by Sevag Gharibian.

As a result we omit it from this thesis and instead refer the reader to version in the

paper [WBG20]. □

We now translate lemma 6.6, which held for circuits, to the following main

lemma of Step ii, which gives us the corresponding desired statement for Hamiltonians

(i.e. after the circuit-to-Hamiltonian construction is applied).

Lemma 6.7. Suppose history state |𝜙⟩ ∈Null (𝐻w(𝑉)) has preimage |𝜓in⟩ = 𝑓 −1( |𝜙⟩)

(for bijection 𝑓 from definition 6.4), where |𝜓in⟩ has proof |𝑤1···𝑚⟩. If there exists 𝜖 ≥ 0

and 𝑖 ∈ [𝑚] such that |𝑤1···𝑚⟩ is 𝜖-suboptimal on proof 𝑖 (as defined in lemma 6.6),

then

⟨𝜙 |𝐻 |𝜙⟩ ≥ _min(𝐻) +
3𝑔(𝑚,𝑇)

8𝑚2 𝜖, (6.13)

for 𝑔(𝑚,𝑇) defined in definition 6.4.

Proof. Let |𝜓out⟩ =𝑉 |𝜓in⟩ and
��𝜓′out

〉
denote the output of𝑉 (fig. 6.1) when all proofs

are proofs are optimal (i.e. set to
��𝑤′
𝑖

〉
in the terminology of lemma 6.6). Recall

eq. (6.2) in the definition 6.4 of a local circuit-to-Hamiltonian mapping, which said

𝑀2 simulates the projector |0⟩⟨0|𝑞flag via

Tr
(
|0⟩⟨0|2 (𝑈𝑇𝑈𝑇−1 . . .𝑈1) |𝜓in⟩⟨𝜓in | (𝑈𝑇𝑈𝑇−1 . . .𝑈1)†

)
= Tr

(
|𝜙𝑇 ⟩⟨𝜙𝑇 |𝑀𝑖

)
, (6.14)

(since we assumed in lemma 6.3 that the second output qubit of 𝑉 is the flag qubit),

where |𝜙𝑇 ⟩ is the history state |𝜙⟩ projected down onto time step 𝑇 , which succeeds
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with probability 𝑔(𝑚,𝑇) (definition 6.4). We thus have

⟨𝜙|𝐻 |𝜙⟩ = ⟨𝜙|𝑀2 |𝜙⟩ (6.15)

= 𝑔(𝑚,𝑇) ⟨𝜙𝑇 |𝑀2 |𝜙𝑇 ⟩ (6.16)

= 𝑔(𝑚,𝑇) tr
(
|𝜓out⟩⟨𝜓out | · |0⟩⟨0|𝑞flag

)
(6.17)

≥ 𝑔(𝑚,𝑇)
(
tr

(��𝜓′out
〉〈
𝜓′out

�� · |0⟩⟨0|𝑞flag

)
+ 3

8𝑚2 𝜖

)
(6.18)

= ⟨𝜙′|𝑀2 |𝜙′⟩ +𝑔(𝑚,𝑇)
(

3
8𝑚2 𝜖

)
(6.19)

≥ _min(𝐻) +
3𝑔(𝑚,𝑇)

8𝑚2 𝜖, (6.20)

where the second statement follows from Equation eq. (6.4), the third from eq. (6.14),

fourth from lemma 6.6, fifth from eq. (6.14) and defining |𝜙′⟩ = 𝑓 (𝑉†
��𝜓′out

〉
), and

the last since |𝜙′⟩ ∈ Null (𝐻w(𝑉)) by the definition of 𝑓 in definition 6.4 being a

bijection. □

Step iii. Sufficiently high overlap with computation. We now argue that any low

energy state of 𝐻 must correctly encode the original D∥Q computation, and hence

an appropriate measurement of a ground state will read off the D∥Q computation’s

answer.

Lemma 6.8. Consider any |𝜓⟩ satisfying ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min+𝛿. If 𝛿 ≤ 1/𝛼2 and

𝜖 <

(
𝛿+ 12∥𝑀2∥2

𝛼Δ

) (
8𝑚2

3𝑔(𝑚,𝑇)

)
, (6.21)

then

• if 𝑥 is a YES instance for D∥Q, then

Tr( |𝜓⟩⟨𝜓 |𝑀1) ≤ 𝑔(𝑚,𝑇) ·𝑚 ·max(1− 𝑐+ 𝜖, 𝑠) + 12∥𝑀2∥
𝛼Δ

. (6.22)

• if 𝑥 is a NO instance for D∥Q, then

Tr( |𝜓⟩⟨𝜓 |𝑀1) ≥ 𝑔(𝑚,𝑇) (1−𝑚 ·max(1− 𝑐+ 𝜖, 𝑠)) − 12∥𝑀2∥
𝛼Δ

. (6.23)
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Proof. We first use lemma 6.5 to map, assuming 𝛿 ≤ 1/𝛼2, |𝜓⟩ to a history state

|𝜙⟩ ∈ Null (𝐻w(𝑉)) such that

∥|𝜓⟩⟨𝜓 | − |𝜙⟩⟨𝜙|∥tr ≤
12∥𝑀2∥
𝛼Δ

and ⟨𝜙|𝐻 |𝜙⟩ ≤ _min(𝐻) +𝛿+
12∥𝑀2∥2

𝛼Δ
. (6.24)

We next use lemma 6.7 to obtain that, for any 𝜖 satisfying

𝜖 <

(
𝛿+ 12∥𝑀2∥2

𝛼Δ

) (
8𝑚2

3𝑔(𝑚,𝑇)

)
,

the preimage |𝜙in⟩ = 𝑓 −1( |𝜙⟩) contains proof |𝑤1···𝑚⟩ which is not 𝜖-suboptimal on

any proof 𝑖 ∈ [𝑚]. In words, for any 𝑖 ∈ [𝑚], if 𝑉𝑖 has optimal acceptance probability

𝑝∗
𝑖
, then

Pr(𝑉𝑖 outputs 1 | |𝜙in⟩) ≥ 𝑝∗𝑖 − 𝜖 .

Now, by lemma 6.3, if 𝑞𝑖 is a YES query, 𝑝∗
𝑖
≥ 𝑐, if 𝑞𝑖 is a NO query, 𝑝∗

𝑖
≤ 𝑠, and if

𝑞𝑖 is invalid, then 𝑝∗
𝑖

can only be said to satisfy the trivial bounds 0 ≤ 𝑝∗
𝑖
≤ 1. Letting

𝑆yes, 𝑆no, 𝑆inv denote the partition of [𝑚] corresponding to YES, NO, and INVALID

queries, it follows via the commutative quantum union bound (lemma 6.2) that

Pr©«
∧
𝑖∈[𝑚]

𝑉𝑖 outputs correct answer | |𝜙in⟩
ª®¬ ≥ 1−

(��𝑆yes
��(1− 𝑐+ 𝜖) + |𝑆no |𝑠

)
=: 𝑝good

where note |𝑆inv | does not appear since any answer to an invalid query is considered

correct.

Finally, since by definition 6.5,𝑈′ in fig. 6.1 is a deterministic computation, it

follows that 𝑉 correctly accepts (respectively, correctly rejects) with probability at

least 𝑝good, given |𝜙in⟩, when the D∥Q instance 𝑥 is a YES instance (respectively, NO

instance). Recall from eq. (6.2) that measuring 𝑀1 on a history state |𝜙⟩ = 𝑓 ( |𝜙in⟩)

simulates a measurement on the output qubit of 𝑉 (fig. 6.1) via

Tr
(
|0⟩⟨0|1𝑉 |𝜙in⟩⟨𝜙in |𝑉†

)
= Tr

(
|𝜙𝑇 ⟩⟨𝜙𝑇 |𝑀1

)
, (6.25)
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for |𝜙𝑇 ⟩ = 𝑃𝑇 |𝜙⟩ /∥𝑃𝑇 |𝜙⟩∥2. Thus, if 𝑥 is a YES instance,

𝑝good ≤ tr
(
𝑉 |𝜙in⟩⟨𝜙in |𝑉† · |1⟩⟨1|𝑞out

)
= 1− tr

(
𝑉 |𝜙in⟩⟨𝜙in |𝑉† · |0⟩⟨0|𝑞out

)
= 1−Tr( |𝜙𝑇 ⟩⟨𝜙𝑇 |𝑀1)

= 1− 1
𝑔(𝑚,𝑇) Tr( |𝜙⟩⟨𝜙 |𝑀1),

where the third/fourth statements follow from definition 6.4 and Equations (6.3) and

(6.4). Via an analogous argument for the NO case, we conclude:

• If 𝑥 is a YES instance for D∥Q, then

Tr( |𝜙⟩⟨𝜙|𝑀1) ≤ 𝑔(𝑚,𝑇) (1− 𝑝good) ≤ 𝑔(𝑚,𝑇) ·𝑚 ·max(1− 𝑐+ 𝜖, 𝑠).

• If 𝑥 is a NO instance for D∥Q, then

Tr( |𝜙⟩⟨𝜙 |𝑀1) ≥ 𝑔(𝑚,𝑇) (1−𝑚 ·max(1− 𝑐+ 𝜖, 𝑠)) .

This was for history state |𝜙⟩. The claim now follows for the original state |𝜓⟩ in the

claim by combining eq. (6.24) with Hölder’s inequality. □

The Lifting Lemma now follows; we restate it below for convenience.

Lemma 6.4 (Lifting Lemma). Let 𝑥 ∈ {0,1}𝑛 be an instance of an arbitrary D∥Q

problem, 𝑈 a D∥Q machine deciding 𝑥, and 𝑉 the verification circuit output by

lemma 6.3. Fix a local circuit-to-Hamiltonian mapping 𝐻w, and assume the notation

in definition 6.4. Then, there exists a computable function 𝛼 : N ↦→ N such that, for

any 𝜖 satisfying

0 ≤ 𝜖 ≤ 1
𝛼

(
1
𝛼
+ 12∥𝑀2∥2

Δ(𝐻w(𝑉))

) (
8𝑚2

3𝑔(𝑚,𝑇)

)
, (6.26)

the Hamiltonian 𝐻 B 𝛼(𝑛)𝐻w(𝑉) +𝑀2 satisfies:
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• If 𝑥 is a YES instance, then for all |𝜓⟩ with ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 1
𝛼2 ,

⟨𝜓 |𝑀1 |𝜓⟩ ≤ 𝑔(𝑚,𝑇) ·𝑚 ·max(1− 𝑐+ 𝜖, 𝑠) + 12∥𝑀2∥
𝛼Δ

.

• If 𝑥 is a NO instance, then for all |𝜓⟩ with ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) + 1
𝛼2 ,

⟨𝜓 |𝑀1 |𝜓⟩ ≥ 𝑔(𝑚,𝑇) (1−𝑚 ·max(1− 𝑐+ 𝜖, 𝑠)) − 12∥𝑀2∥
𝛼Δ

.

Proof. Follows immediately from lemma 6.8 by setting 𝛿 = 1/𝛼2. □

As mentioned earlier, to apply lemma 6.4 to particular classes D∥Q, it remains

to select 𝛼 appropriately so that lemma 6.4 creates the desired promise gap between

YES and NO cases.

6.3.5 Applying the Lifting Lemma
We now employ the Lifting Lemma (lemma 6.4) to obtain hardness results for various

complexity classes and types of circuit-to-Hamiltonian constructions. For clarity, the

lemma applies for any local circuit-to-Hamiltonian construction (definition 6.4) and

class D∥Q for deterministic class D (definition 6.5) and QVClass Q (definition 6.6).

What is required to apply it is to set 𝛼 (relative to the other fixed quantities, which

are ∥𝑀2∥ (flag penalty, lemma 6.3), Δ (spectral gap of 𝐻w(𝑉)), 𝑔(𝑚,𝑇) (weight of

final time step 𝑇 in history state, eq. (6.3)), 𝑐 (completeness) and 𝑠 (soundness), 𝑚

(number of Q-queries)) so that the desired problem gap is obtained in lemma 6.4.

For a given QVClass we must be able to choose the completeness and soundness

bounds must satisfy

𝑚 ·max(1− 𝑐+ 𝜖, 𝑠) =𝑂
(

1
poly(𝑛)

)
. (6.27)

Application 1: Translationally-invariant systems.

Corollary 6.1. ∀-TI-APX-SIM (and hence APX-SIM) is EXP∥QMA-hard for a nearest

neighbour, translationally invariant Hamiltonian on qudits of local dimension 44,

for a 1-local observable 𝐴, and 𝛿 = 1/exp(𝑛), 𝑏− 𝑎 = Ω(1/exp(𝑛)).
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circuit-to-Ham.
construction

interaction topology measurement
precision

APX-SIM variant hardness

[OT08] 2D planar, n-n, local dim 2 1
poly

APX-SIM P∥QMA
[Aha+07] 1D line, n-n, local dim 12

[FL16] 3-local, local dim 2 1/exp APX-SIM PSPACE

[BCO17] t-i, 1D line, n-n, local dim 44† 1
poly

TI-APX-SIM EXP∥QMA

[BP17b] t-i, 3D fcc lattice, 4-local, local dim 4 EXP∥QMA

[Koh+20] t-i, 1D line, n-n, local dim 42 1/exp TI-APX-SIM PSPACE

Table 6.2: Hardness of APX-SIM variants for various families of many-body systems.
Measure precision is in terms of the system (Hamiltonian) size, not the input
size. n-n stands for 2-local nearest-neighbour interactions, and t-i abbreviates
translationally-invariant systems. Since PreciseQMA = PSPACE, and the latter
is low for itself, P∥PreciseQMA = PSPACE.
† By corollary 6.1, two extra symbols are necessary as compared to the raw
construction in table 6.1, increasing the local dimension from 42 to 44.

Proof sketch. Let 𝑥 ∈ {0,1}𝑛 be the input given to the EXP machine.

• First note that the circuit 𝑉 constructed in lemma 6.3 takes in as input 𝑥, and

proof |𝑤1···𝑚⟩. Since the EXP machine can produce QMA queries |𝑞𝑖⟩ of

length exponential in 𝑛, this means that although 𝑥 is 𝑛 bits, the proof |𝑤1···𝑚⟩

is on exp(𝑛) qubits and the verifiers 𝑉𝑖 are exponential-time. This exactly

matches what is expected for a “QMAEXP”-setup.

• Apply [GI09] as our local circuit-to Hamiltonian construction (where the local

terms for this construction are describable in O(1) bits). However, if we were

to write out the full circuit of lemma 6.3 during the reduction, it would take

exp(𝑛) time (since recall 𝑉 has exp(𝑛) size). This is not an issue: [GI09]

implements the action of 𝑉 from lemma 6.3, not as an explicit circuit, but via a

Quantum Turing Machines (QTM) (i.e. each 𝑉𝑖 is given via a QTM, and these

are called as subroutines by a global QTM taking in 𝑥 and |𝑤1···𝑚⟩).

As per [GI09], 𝐴 = 𝑀1 and 𝑀2 can now be chosen as constant-norm 2-local

observables. Since, however, the length of the computations in EXP and verifiers 𝑉𝑖
are exponential, we now require Δ, 𝑔(𝑚,𝑇) scaling as 1/exp(𝑛) (since 𝑚 and 𝑇 are

in O(exp(𝑛))). Similarly, since 𝑚 ∈ exp(𝑛), we use standard error reduction on the
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verifiers 𝑉𝑖 to ensure 𝑐 ≥ 1−1/poly(𝑁) (i.e. 1−1/exp(𝑛)) and 𝑠 ≤ 1/poly(𝑁) (i.e.

𝑠 ≤ 1/exp(𝑛)). Setting 𝛼 to be a sufficiently large fixed polynomial in 𝑁 (i.e. a fixed

exponential in 𝑛), we obtain a 1/poly(𝑁) (i.e. 1/exp(𝑛)) promise gap in lemma 6.4.

Finally, due to our use of QTMs rather than explicit circuits, the reduction runs in

time polynomial in 𝑛.

The reduced local dimension can be obtained by using [BCO17]’s translationally-

invariant construction instead of [GI09]; the rest of the argument is the same. We

obtain a 1-local observable 𝐴 by incrementing the local dimension slightly (from

42 to 44; two extra letters for the quantum Thue system suffice to signal that the

computation halted, as can be seen easily). □

Results for higher-dimensional lattices can be trivially obtained by repeating the

Hamiltonian in a translationally-invariant fashion; a qualitatively different result for a

3D crystal lattice is the following:

Corollary 6.2. ∀-TI-APX-SIM (and hence APX-SIM) is EXP∥QMA-hard for a 4-local,

translationally invariant Hamiltonian on qudits of local dimension 4 on a 3D fcc

lattice, for a 1-local observable 𝐴, 𝛿 = 1/exp(𝑛), 𝑏− 𝑎 = Ω(1/exp(𝑛)).

Proof idea. Follows as in corollary 6.1, but using [BP17b]. □

Application 2: Exponential Precision.

Corollary 6.3. ∀-TI-APX-SIM (and hence APX-SIM) is PSPACE-hard for a nearest-

neighbour translationally invariant Hamiltonian on qudits of local dimension 44, for

a 1-local observable 𝐴, 𝛿 = 1/exp(𝑛), 𝑏− 𝑎 = Ω(1/exp(𝑛)).

Proof idea. Use [Koh+20] (translationally invariant) as the circuit-to-Hamiltonian

construction. As PreciseQMA = PSPACE by [FL16], we know that P∥PreciseQMA =

P∥PSPACE = PSPACE = PreciseQMA. We encode the circuit from lemma 6.3, but

modify it so that only a single query to a PreciseQMA oracle is made and have it

such that the flag qubit and the output qubit are the same. We note that while we

cannot generally amplify a PreciseQMA completeness-soundness gap polynomially

close to 1 and 0 in polynomial time (otherwise PreciseQMA = QMA), respectively,
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we can attain such amplification in exponential time in “circuit-world”. Namely, we

can apply the Marriott-Watrous strong error reduction technique [MW05], which

will blow up the runtime of the circuit to exponential, but crucially keep the space

usage polynomial. We can thus augment lemma 6.3 such that it performs such an

amplification manually, so we can assume that the single oracle subquery has an

output which, for valid queries, gives a probability polynomially close to 1 and 0.

We add a projector 𝑃 which penalises the output/flag qubit. Finally, let the

observable we wish to measure in APX-SIM also be the observable 𝑃. Then

equivalents of lemma 6.5, lemma 6.5, and lemma 6.7 can be proven where the 1/poly

factors are replaced by 1/exp, and in lemma 6.7 is applies to just a single query. It is

then possible to prove lemma 6.8 where the measurement 𝑀1 = 𝑃. Since PreciseQMA

has an exponentially small promise gap, and is a polynomial time computation, then

measuring 𝑃 with promise gap 𝑏− 𝑎 = Ω(1/exp(𝑛)) is PreciseQMA-hard. □

6.3.6 Containment Results

In this section, we speak of the 1/poly-gap and 1/exp-gap regimes to mean the

settings in which all promise gaps in LH and APX-SIM are at least inverse polynomial

and at least inverse exponential, respectively, in the input size, 𝑛.

Lemma 6.9. Let F be a family Hamiltonians and Q a QVClass (definition 6.6) such

that LH(𝑔) for F is in Q. In the 1/poly-gap regime, APX-SIM ∈ PQ[log] , and in the

1/exp-gap regime, APX-SIM ∈ PQ.

Proof. This is a straightforward application of the algorithm given in Section A.2 of

[Amb14]. The algorithm first uses the Q-oracle to conduct a binary search in order

to obtain an additive error [ estimate of the ground state energy of 𝐻. (This is where

the containment of LH(𝑔, 𝑁) in Q is used, for example.) With [ in hand, we run

one final Q-query to check if there is a low-energy state (relative to [) of 𝐻 whose

expected value for the observable 𝐴 satisfies the YES-criteria for APX-SIM.

The only question is the level precision required, i.e. how should [ scale? In the

1/poly-gap regime, it suffices to use logarithmically many adaptive queries to the

Q-oracle to obtain [ ∈ O(1/poly(𝑛)), as required to distinguish inverse polynomial
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promise gaps. In the 1/exp-gap regime, we need polynomially many adaptive queries

to obtain [ ∈ O(1/exp(𝑛)). This yields the claim. □

A similar, but not quite identical result is

Corollary 6.4. APX-SIM where 𝑄 = PreciseQMA in corollary 6.3 is contained in

PSPACE.

Proof. The proof follows as for lemma 6.9 in the 1/exp-gap regime; we need

1/poly𝑁 many queries to obtain [ ∈ O(1/exp(𝑁)). As PPreciseQMA = PSPACE the

claim follows. □

Finally, corollary 6.1 showed∀-TI-APX-SIM (and hence APX-SIM) is EXP∥QMA-

hard (in the 1/exp-gap regime). This is a somewhat odd-looking complexity class;

the following theorem shows it is actually equal to something “closer to PQMA in

appearance”.

Theorem 6.2. EXP∥QMA = PQMAEXP .

Proof. For EXP∥QMA ⊆ PQMAEXP , corollary 6.1 showed ∀-TI-APX-SIM (and hence

APX-SIM) is EXP∥QMA-hard in the 1/exp-gap regime. But since the family of

Hamiltonians in TI-APX-SIM can be verified in the 1/exp-gap regime in QMAEXP,

lemma 6.9 says APX-SIM ∈ PQMAEXP .

The reverse containment, PQMAEXP ⊆ EXP∥QMA is similar to Beigel’s original

proof [Bei91] that PNP[log] ⊆ P∥NP: the EXP machine makes all possible queries

within the decision tree of the P machine up front and in parallel, then simulates

the P machine, along the way selectively using the results of whichever queries the

adaptive nature of the P machine would have needed. The only catch is that normally,

Hamiltonians verified in QMAEXP act on exp(𝑛) qubits, whereas those in QMA act on

poly(𝑛) qubits. However, since an EXP Turing Machine can write exponentially long

queries to the oracle, it can simply take the TI Hamiltonian 𝐻 the P machine would

have fed to the QMAEXP oracle (here we are using that the TI-local Hamiltonian

problem is QMAEXP-complete [GI09]), and explicitly write it out fully (i.e. write

out all exp(𝑛) local terms 𝐻𝑖), and feed it to the QMA oracle (which, being fed an

exp(𝑛)-size input, is allowed an exp(𝑛)-size proof by definition). □
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Corollary 6.5. ∀-TI-APX-SIM and TI-APX-SIM are both PQMAEXP-complete for

families of Hamiltonians for which the Local Hamiltonian problem is QMAEXP-

complete.

Proof. Follows from corollary 6.1, lemma 6.9, and theorem 6.2. □

Corollary 6.6. ∀-TI-APX-SIM is PQMAEXP-complete for a 1D, nearest neighbour,

translationally invariant Hamiltonian for a 2-local observable 𝐴, and 𝛿 = 1/exp(𝑛),

𝑏− 𝑎 = Ω(1/exp(𝑛)).

Proof. From corollary 6.5. □

6.4 Discussion
A higher-level goal is to “unify” the complexities of other computational problems

with the hardness of the Local Hamiltonian problem, such that the completeness

of the latter for a family of Hamiltonians (relative to, e.g., QMA, QCMA etc)

immediately implies completeness of APX-SIM, GSCON, and potentially other low

energy properties for the appropriate related complexity classes. Furthermore, the

relation between the complexity of determining low energy properties and universality

properties for classes Hamiltonians should be investigated.

Finally, a minor point to be addressed is how to make the lifting construction

generalise to complexity classes for which we are unable to run error reduction:

e.g. StoqMA (see section 6.3.4 for a discussion). The complexity of APX-SIM

for Hamiltonian for which LH is StoqMA-complete is known to be PStoqMA[log]-

complete, but we cannot simply include this at present as a consequence of our lifting

construction.



Chapter 7

Complexity of Finding Critical Points

7.1 Introduction

In chapter 3 and chapter 5 we emphasised the importance of quantum phase transitions

to modern physics, and in chapter 3 we demonstrated that determining the phase

diagram of a Hamiltonian is uncomputable in general. However, it is clearly the

case that there are subsets of materials for which we can compute the phase diagram

including the classic example of the 1D quantum Ising model and frustration free,

qubit Hamiltonians on a line [BG15]. Indeed one might expect that most Hamiltonians

which are not perversely complicated have computable phase diagrams.

A necessary condition for a phase transition to take place is the closing of the

spectral gap. A key tool in addressing the question of whether a system is gapped in

the infinite-size limit that is the so-called “Knabe bound” [Kna88]. Loosely speaking,

the Knabe bound is a “finite-size criterion” saying that, given a frustration-free

Hamiltonian, if the spectral gap of the Hamiltonian decays slowly enough with the

system size, then it is necessarily gapped in the thermodynamic limit. Over time,

multiple improvements and variations of the Knabe bound have been derived [BG15;

GM16; LM19; Lem20; Ans20]. Indeed, the Knabe bound has been used extensively

to determine phases and spectral gaps of frustration-free systems, including variants

of the AKLT model [AR+20; LSW20], to characterise the phases of translationally

invariant Hamiltonians on 1D chains of qubits [BG15; GM16], and characterising

gaps for Product Vacua with Boundary States (PVBS) models [LN19].
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Finite-size criteria similar to this are often (implicitly) assumed in condensed

matter physics when performing numerical studies: the idea that the phase (or gap) at

finite lattice sizes allows us to extrapolate to the phase (or gap) in the thermodynamic

limit [FS93; Tot+95; Yam97; GSMW13]. This is a very natural property — the idea

that once a system that is “large enough” to reflect the thermodynamic limit, that the

phase at that system size should reflect the phase in the thermodynamic limit.

Beyond the Knabe method, there exist other techniques for determining whether

spectral gaps close or remain open, including the commonly-used Martingale Method

[Nac96] and variants thereof [SS03; KL18]. The Martingale Method says that given

an absorbing sequence of increasingly large sections of a lattice which tend towards

the full lattice, there are three extra conditions placed on the local terms of the

Hamiltonian which must be uniformly satisfied along the sequence. If so, there is a

lower bound on the spectral gap. Furthermore, several numerical algorithms have

been developed to compute spectral gaps, including variational algorithms [HWB19;

Jon+19] and using density matrix renormalisation group techniques [CM17]

However, as shown in [CPGW15a; Bau+18b] and in chapter 3, we cannot resolve

the phase/spectral gap question in general. Nonetheless, these undecidability and

uncomputablity results only imply that it is impossible to study the phase diagrams

or spectral gap of models in full generality; no claims are made regarding more

restricted sub-types, which may well be solvable. By considering restricted families

of Hamiltonians (e.g. frustration-free 1𝐷 qubit Hamiltonians as above), we can still

hope to determine useful properties about these families.

Here we focus our attention on either one-parameter or two-parameter continuous

family of Hamiltonian which satisfy a computable “finite-size criterion” similar in

spirit to the Knabe bound, which gives an avenue to extrapolate to the infinite-size

limit, given conditions on how the local gap scales. Furthermore, the family of

many-body systems we include are promised to have a single critical boundary; either

a single critical point for the one-parameter case or a critical line in the two-parameter

setting. The two phases we delineate are a gapped and gapless phase, but can, in

principle, be any other type of phase of interest (e.g. topological).
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The finite size criterion assumes that if the gap decays sufficiently slowly

(resp. quickly) for increasing lattice sizes, then the overall Hamiltonian must be gapped

(resp. gapless) in the thermodynamic limit. This finite-size criterion immediately

implies that the system cannot have an uncomputable phase in the thermodynamic

limit, as solving for its phase on some finite-sized region is always a computationally

bounded task (if intractable, and where we exclude pathological cases of uncomputable

matrix entries or threshold sizes).

As a first contribution, we show that these finite size conditions place an upper

bound on the computational complexity of approximating critical lines, by placing

them within the class PQMAEXP—i.e. solvable by a polynomial-time Turing Machine

with a QMAEXP oracle—and which is deemed “slightly harder” than just QMAEXP

[Amb14].

For these restricted sets of one or two-parameter Hamiltonians, we show that

the problem of determining the critical boundary in parameter space to even constant

precision is QMAEXP (for the one-parameter case) resp. PQMAEXP-hard (for the

two-parameter case).

Loosely speaking, we prove the two following theorems (the rigorous versions

are given in section 7.3).

Theorem 7.1 (Informal). Let {𝐻𝑁 } be a family of local translationally invariant

Hamiltonians on an infinite lattice, indexed by 𝑁 ∈ N, and such that 𝐻𝑁 = 𝐻𝑁 (𝜑)

depends on an external parameter 𝜑 ∈ [0,1]. Suppose the following promises hold

for Hamiltonians in this family: i. For all 𝜑, the phase in the thermodynamic limit

can be extrapolated from the order parameter obtained from a finite lattice size; and

ii. There exists precisely one critical parameter 𝜑∗ such that for 𝜑 < 𝜑∗, the system

is in phase A; otherwise in phase 𝐵. Then the problem of determining 𝜑∗ to even

constant precision is QMAEXP-hard; and determining 𝜑∗ up to polynomial precision

(in 𝑁) is contained in PQMAEXP .

And the two-parameter case reads as follows.

Theorem 7.2 (Informal). Let the setup be as in theorem 7.1, but such that now

𝐻𝑁 = 𝐻𝑁 (𝜑, \) depends on two parameters 𝜑 ∈ [0,poly𝑁] and \ ∈ [0,1]. Suppose
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the following promises hold for all Hamiltonians in this family: i. For all 𝜑 and \,

the phase in the thermodynamic limit can be extrapolated from the order parameter

obtained from a finite lattice size; and ii. There exists precisely one critical boundary

𝜑∗(\) such that on one side the system is in phase A; on the other side in phase B. Then

determining the critical boundary 𝜑∗(\) to constant precision is PQMAEXP-complete.

We emphasise that in theorem 7.2, the precision to which 𝜑∗(\) is to be resolved

in the 𝜑-direction is constant, but over a poly𝑁 parameter range, in contrast to the

\-direction, and the theorem 7.1 case. The two phase diagram cases that are hard to

differentiate between are shown in fig. 7.4 for the 1-parameter case and fig. 7.1 for

the 2-parameter case.

This means that even for systems satisfying the finite size criterion and a

promise of a single phase transition within the parameter range, there is unlikely to

be an efficient analytic method or efficient computational algorithm to determine

gapped/gaplessness—or, more generally, phase diagrams (unless QMAEXP is effi-

ciently solvable). In other words, even if we restrict to the set of Hamiltonians

which are known to be gapped/gapless in the thermodynamic limit based on some

finite-size scaling criteria, and even if we know that the regions within which the

system is gapped or gapless are delineated in a smooth manner, determining the

critical boundary between these regions is generally computationally intractable.

Alternatively, any efficiently-computable condition cannot fully characterise the set

of all many-body phase diagrams, even if the phase diagrams are simple, and even if

the many-body systems satisfy finite-size scaling criteria.

Furthermore, this implies that for nearest-neighbour, translationally invariant

Hamiltonians which have exactly two phases and a single critical boundary, de-

termining the phase diagram to O(1) precision is computationally difficult. In

particular, we show that there exists a Hamiltonian with two parameters (𝜑, \) with

a phase diagram which looks like one of the cases illustrated in fig. 7.1; however

determining which one of the two is PQMAEXP-complete. We contrast this with the

undecidability/uncomputability results which require an infinite number of phases,

and which only satisfy a local-global promise for an uncomputably large system.
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Overview of the Chapter. This chapter is organised as follows. In section 7.2 we set

up necessary notation, give basic definitions and summarise some results derived

elsewhere that our construction relies on. Furthermore, we formally define the

local-global conditions (definitions 7.3 and 7.4), as well as the critical parameter

problems 1-CRT-PRM and 2-CRT-PRM in definitions 7.5 and 7.6. In section 7.3, we

summarise the two main results, leading up to the containment proof in section 7.4,

and the two explicit hardness constructions in sections 7.5 and 7.6. In section 7.7, we

finally give a fairly extensive discussion of further implications and open questions.

7.2 Preliminaries

7.2.1 Notation

We denote the evaluation of logical formula as with square brackets. For example, for

𝑥, 𝑦 ∈ R, [𝑥 > 𝑦] is equal to 1 if 𝑥 > 𝑦 and 0 if 𝑥 ≤ 𝑦. For 𝑧 ∈ {0,1}, then [[𝑥 > 𝑦] ∧ 𝑧]

is then the logically AND of [𝑥 > 𝑦] and 𝑧. We further abbreviate the integer set

[𝑛] B {0, . . . , 𝑛−1} for 𝑛 ∈ N (context should make clear what the square brackets

mean). For sums in large expressions we will often write
∑
𝑦<𝑥 to represent a sum over

all 𝑦 and 𝑥 such that 𝑦 < 𝑥, instead of
∑
𝑥

∑
𝑦<𝑥 . The domain and running variables in

these cases will be clear from the context. Finally, in this chapter we will also be

using the definitions of gapped and gapless used in definition 3.1 and definition 3.2.

7.2.2 Quantum Phase Transitions

We formally define one- and two- critical parameter problems rigorously in this

section; to this end, we first need to rigorously introduce what we mean by the term

critical parameter for a local Hamiltonian in the thermodynamic limit. We use the

definition of quantum phase transition given in definition 2.1 (which is the definition

given by Sachdev).

Definition 7.1 (Critical Parameter/Critical Point, 𝜑∗). Let 𝐻 (𝜑, {\𝑖}𝑖) be a Hamil-

tonian defined in the thermodynamic limit which undergoes a phase transition as

a function of 𝜑. Then a critical parameter is a point at which the phase transition

happens when all other parameters are held constant. We denote this point with 𝜑∗.
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7.2.3 Finite Systems and Relation to the Thermodynamic Limit
For experimentalists with access to only finite-sized systems and finite precision

measurements, it may not be possible to determine where non-analyticities occur

in the ground state energy, and thus to determine where the phase transitions take

place. Instead of pinpointing the critical point itself, measurements that indicate

which phase one is currently in are often used instead; multiple such observations

then allow bounding the exact location where a phase transition is likely to occur.

Order Parameters. Commonly an order parameter is an observable which charac-

terizes a certain property of a phase and is used to distinguish phases for a system.

One possible definition is given as follows.

Definition 7.2 (Efficiently Computable Local Order Parameter). Assume a transla-

tionally invariant Hamiltonian 𝐻Λ(𝐿) (𝜑) = ∑
⟨𝑖, 𝑗⟩ ℎ𝑖, 𝑗 (𝜑) has two phases 𝐴 and 𝐵,

and let ℎ𝑖, 𝑗 (𝜑) be describable in 𝑛 bits. A local order parameter 𝑂𝐴/𝐵 is a projector

𝑂𝐴/𝐵 that is 𝑂 (1)-local and computable in poly(𝑛) time, if ⟨𝑂𝐴/𝐵⟩ undergoes a

non-analytic change between phases 𝐴 and 𝐵 at a critical parameter 𝜑∗.

All order parameters we will use will trivially fall into this category, as can be easily

verified. We note that compared to our definitions of order parameters used in

previous chapters, here we have a constraint on how easily the order parameter is

computable. For the most part, this is just a technicality.

For a finite system, examining how the order parameter of the systems changes

could yield insight over the phase that the system is in when approaching the

thermodynamic limit, assuming that for a particular set of parameter values 𝜑, \, . . . ,

and a sufficiently large systems size the system is in the same phase as in the

limit. While this is not generically the case [CPW15; Bau+18b; BCW19], many

Hamiltonians studied in nature do have this property: for sufficiently large but finite

sizes, the order parameter indicates the same phase as it would in the thermodynamic

limit [PT81; BZJ85; HB88].

We formalise this notion of being able to extrapolate from a finite-size system

to the thermodynamic limit with the following definitions.
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Definition 7.3 (Local-Global Phase Condition). A translationally invariant Hamilto-

nian 𝐻Λ(𝐿) (𝜑) = ∑
⟨𝑖, 𝑗⟩ ℎ𝑖, 𝑗 (𝜑) defined on a square lattice Λ(𝐿) is defined to have

the locally-globally phase property if in the thermodynamic limit it has two phases

𝐴 and 𝐵 distinguished by an order parameter 𝑂𝐴/𝐵. If ℎ𝑖, 𝑗 (𝜑) is describable in 𝑛

bits, then there exists an integer 𝐿0 = O(exp(poly(𝑛))), an 𝜔 = Ω(1/poly(𝐿)) and

polynomials 𝑝, 𝑞 with 1/𝑝(𝐿) −1/𝑞(𝐿) = Ω(1/poly(𝐿)) such that for the states |𝜓⟩

satisfying ⟨𝜓 |𝐻Λ(𝐿) (𝜑) |𝜓⟩ ≤ _min(𝐻Λ(𝐿) (𝜑)) +𝜔 the following holds:

Phase A: if for 𝐿 = 𝐿0 and |𝜑−𝜑∗ | ≥ 1/poly(𝐿), such that ⟨𝜓 |𝑂𝐴/𝐵 |𝜓⟩ ≤ 1/𝑝(𝐿), then

𝐻Λ(𝐿) (𝜑) is in phase 𝐴 for all 𝐿 ≥ 𝐿0 and in the thermodynamic limit.

Phase B: if for all 𝐿 = 𝐿0 and |𝜑− 𝜑∗ | ≥ 1/poly(𝐿), such that ⟨𝜓 |𝑂𝐴/𝐵 |𝜓⟩ ≥ 1/𝑞(𝐿),

then 𝐻Λ(𝐿) (𝜑) is in phase 𝐵 for all 𝐿 ≥ 𝐿0 and in the thermodynamic limit.

Furthermore, 𝐿0 is independent of 𝜑 and is computable in time poly(𝑛).

We note that this condition is fulfilled by many Hamiltonians. For example,

for the transverse quantum Ising model in 1D, a phase transition occurs in terms of

the ratio of magnetic field strength to coupling strength. In this case, we see that

magnetization along the 𝑍 direction acts as an order parameter and satisfies the above

condition [Sac11].

The Spectral Gap. Treating the Local-Global phase condition in a more generic

sense, i.e. as a property that holds locally and lets you deduce thermodynamic

properties, unveils other familiar conditions that allow a similar picture. One such

set of conditions are Knabe bounds [Kna88]. In brief, Knabe bounds treat the case

where one phase has is gapped while the other is gapless, and the gapped case can be

discriminated by the gap behaviour on finite-sized systems.

More concretely, the condition is such that the spectral gap remains open—i.e.

lower-bounded by a constant—in the thermodynamic limit if it closes sufficiently

slowly at finite lattice sizes. In other words, if we take a Hamiltonian restricted to

a finite but growing region of the interaction graph, and if the spectral gap on this

restricted graph closes slowly enough then the system is guaranteed to be gapped in
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the thermodynamic limit. Such a Local-Global gap bound has been shown to exist

for the unfrustrated case [Kna88].

In particular, Knabe proved that if the local gap on 𝑁 spins is larger than the

threshold value 1/(𝑁 −1) for some 𝑁 > 2 the system is gapped in the thermodynamic

limit [Kna88]. Recently improvements to this bound have been made such that the

threshold value is 6/𝑁 (𝑁 +1) which is known to be asymptotically optimal [GM16].

Another well-known method of bounding spectral gaps is given by Nachtergaele

[Nac96], successively improved by [SS03; KL18]. Based on relations between

ground space projectors, it says that if a model is gapless then the spectral gap cannot

decay too slowly with system size.

We define a “finite-size criterion” which states that provided the spectral gap

decays sufficiently quickly/slowly as the lattice size increases above some computable

lattice size 𝐿0, then the Hamiltonian is gapless/gapped in the thermodynamic limit.

Given this criterion, we examine the complexity of Hamiltonians which satisfy it:

Definition 7.4 (Local-Global Gap Condition). A translationally invariant Hamilto-

nian𝐻Λ(𝐿) (𝜑) =∑
⟨𝑖, 𝑗⟩ ℎ𝑖, 𝑗 (𝜑) defined on a square latticeΛ(𝐿) is defined to be locally-

globally gapped if there exist polynomials 𝑝, 𝑞 with 1/𝑝(𝐿) −1/𝑞(𝐿) =Ω(1/poly(𝐿))

and 𝐿0 ∈ N such that

Gapped: if Δ(𝐻Λ(𝐿) (𝜑)) ≥ 1/𝑝(𝐿) for some 𝐿 = 𝐿0, then there exists a constant 𝑐 > 0

such that in the thermodynamic limit the spectral gap lim𝐿→∞Δ(𝐻Λ(𝐿) (𝜑)) ≥ 𝑐.

Gapless: if Δ(𝐻Λ(𝐿) (𝜑)) ≤ 1/𝑞(𝐿) for some 𝐿 = 𝐿0, then the Hamiltonian is gapless in

the thermodynamic limit.

Furthermore, 𝐿0 is independent of 𝜑. Let ℎ𝑖, 𝑗 (𝜑) be describable in 𝑛 bits, then 𝐿0 is

computable in time poly(𝑛) and 𝐿0 = O(exp(poly𝑛)).

This is in part motivated by Knabe’s bound: if we consider the gapped case as

providing a lower bound (and ignoring the gapless case with its 1/𝑞(𝐿) bound) then

we get a version of Knabe’s bound where it is explicitly promised that the system

size for which the “gappedness” can be verified at is poly-time computable.
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Knabe’s bound states that provided for some system size 𝑁 > 2 if the spectral

gap is greater than 1/(𝑁 −1) then the Hamiltonian is gapped in the thermodynamic

limit. However, the point at which this happens can be at any 𝑁 . As such this does

not necessarily conflict with the possibility of undecidability results for frustration-

free Hamiltonians (similar to those proved in [CPW15]). Instead, the size of the

systems for which the Knabe bound holds would be uncomputable (and thus actually

implementing the bound is uncomputable). The Local-Global gap we have assumed

to hold in definition 7.4 is explicitly computable and 𝐿0 is assumed to be computable

in polynomial time, thus forcing the problem of determining the spectral gap to be

decidable for systems satisfying definition 7.4.

As such our promise is strictly stronger than the regular Knabe bound. It is

further worth noting that the polynomials that bound the gaps will vary between

different classes of Hamiltonians and that by standard padding arguments the exact

scaling of these polynomials is not overly relevant: if, for instance, the gapped/gapless

property of the many-body system is determined by patches distributed across the

system, where the density of the patches goes as ∼ 1/
√
𝐿 in the system size 𝐿, the

polynomials 𝑝(𝐿) and 𝑞(𝐿) can effectively be replaced by 𝑝(
√
𝐿) and 𝑞(

√
𝐿). This

argument is the same as for the local Hamiltonian problem, where the 1/poly promise

gap can be magnified with the same technique—naturally without any interesting

implications regarding the problems’ complexity, or the resulting phenomenology

exhibited by the system.

In this work, we shall consider different classes of Hamiltonians that have

distinct polynomial scalings; the exact form of which is irrelevant, but crucially all of

them obey the finite size criteria as per definition 7.4.

7.2.4 Critical Parameter Problem Definitions

With the notion of phase transitions and Local-Global properties clarified within the

last two sections, we can now define the Critical Parameter Problem (1-CRT-PRM)

as follows.

Definition 7.5 (1-CRT-PRM 𝑓 ).
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Input: 𝑁 ∈ N. A constant-size set of 𝑘-local interaction terms ℎ(𝑙) (𝜑) ∈ B((C𝑑)⊗𝑆𝑙 ),

for 𝑙 ∈ 𝐼, and such that 𝑆𝑙 ⊂ Λ, and |𝑆𝑙 | ≤ 𝑘 ∀𝑙. Two positive numbers 𝛼 < 𝛽

which satisfy 𝛽−𝛼 = Ω(1/ 𝑓 (𝑁)). 𝛼, 𝛽 and the matrix entries of each of the

{ℎ(𝑙) (𝜑)} are specified to |𝑁 | B ⌈log2𝑁⌉ bits of precision.

Promise: Let 𝑆+ (𝑖, 𝑗) B {(𝑎+ 𝑖, 𝑏+ 𝑗) : (𝑎, 𝑏) ∈ 𝑆}. Define the translationally-invariant

Hamiltonian on Λ via

𝐻 B
∑︁
𝑙∈𝐼

∑︁
(𝑖, 𝑗)∈Λ

ℎ𝑆𝑙+(𝑖, 𝑗) (𝜑). (7.1)

H has two phases A and B, and satisfies a Local-Global property as per

definition 7.3 or definition 7.4, for some 𝐿0 = poly𝑁 , independent of 𝜑. There

is precisely one critical parameter 𝜑∗ ∈ [0,1] \ [𝛼, 𝛽] as per definition 7.1. If

𝜑 < 𝜑∗ the system is in phase A, and for 𝜑 > 𝜑∗ it is in phase B.

Output: Yes if 𝜑∗ ≤ 𝛼.

No if 𝜑∗ ≥ 𝛽.

This problem characterises the hardness of estimating the point at which there is a

phase transition (e.g. from gapped to gapless), for a one-parameter translationally-

invariant Hamiltonian which is promised to have precisely one such transition; the

input is the specification of the Hamiltonian to precision 𝑁 , and the input size (given

in, say, binary) is thus linear in |𝑁 |.

We kept the precision to which the critical point has to be estimated as a

parameter, denoted by the function 𝑓 subscript to the problem definition; in brief,

1-CRT-PRMpoly denotes the case where we wish to approximate it to precision

Ω(1/poly), and we define the “precise” version of the problem to be Precise-1-

CRT-PRM = 1-CRT-PRMexppoly. For ease of notation, we let 1-CRT-PRM =

1-CRT-PRMΘ(1) be the case where the phase transition has to be estimated to

constant precision.

We emphasise that while the subscript determines the precision to which we

wish to compute the critical point, the Local-Global property as per definitions 7.3
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and 7.4 is still required with polynomial precision throughout. Natural extensions of

definition 7.5 where either scalings are given as parameters are of course possible.

A two-parameter variant of 1-CRT-PRM can be defined analogously as follows.

Definition 7.6 (2-CRT-PRM 𝑓 ).

Input: 𝑁 ∈ N. A finite set of 𝑘-local interactions ℎ(𝑙) (\, 𝜑) ∈ B((C𝑑)⊗𝑆𝑙 ), for 𝑙 ∈ 𝐼,

and such that 𝑆𝑙 ⊂ Λ, and |𝑆𝑙 | ≤ 𝑘 ∀𝑙. Four positive numbers 𝛼1 < 𝛽1 and

𝛼2 < 𝛽2, such that the rectangle [𝛼1, 𝛽1] × [𝛼2, 𝛽2] covers an Ω(1/ 𝑓 (𝑁)) area.

𝛼1, 𝛽1, 𝛼2, 𝛽2 and the matrix entries of each of the {ℎ(𝑙) (\, 𝜑)} are specified to

poly( |𝑁 |) bits of precision.

Promise: 𝐻 is defined as in eq. (7.1), and satisfies a Local-Global property for two phases

A and B, as per definition 7.3 or definition 7.4 for 𝐿0 = poly𝑁 , independent of

\ and 𝜑. The critical line \∗(𝜑) is a function of 𝜑—i.e. for each 𝜑, there exists

exactly one critical parameter \∗ as per definition 7.1 such that 𝐻 (\, 𝜑) is in

phase 𝐴 if \ < \∗, and in phase 𝐵 if \ > \∗. The critical line \∗(𝜑) is either

such that the rectangle 𝑅 B [𝛼1, 𝛽1 + 𝑦] × [𝛼2, 𝛽2 + 𝑦] lies completely in phase

𝐴, or completely in phase 𝐵, where

𝑦 B max{𝜑∗ : 𝐻 (\, 𝜑) is in phase 𝐵 ∀𝜑 < 𝜑∗,∀\}.

is promised to be well-defined, and that 𝐻 (0, 𝜑) is in phase 𝐴 for all 𝜑 > 𝑦,

and in phase 𝐵 for all 𝜑 < 𝑦.

Output: Yes if the critical line is such that rectangle 𝑅 lies in phase 𝐴.

No otherwise.1

We emphasise that this definition is a direct analogue of the 1-CRT-PRM case,

where the rectangle’s role was taken by the one-dimensional interval [𝛼, 𝛽]; the

offset 𝑦 is necessary to obtain a well-defined problem definition, and is analogous to

how APX-SIM (definition 6.1) is defined with respect to a “natural reference point”,

1This order is switched compared to the 1-CRT-PRM case, matching the bounds for APX-SIM,
whereas the bounds for 1-CRT-PRM match those of the Local Hamiltonian problem.
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Figure 7.1: The two possible phase diagrams for the family of 2-parameter Hamiltonians we
construct. The critical line 𝜑∗(\) is continuous, and there is a Ω(1)-sized area
which in the first case is guaranteed to be completely in phase 𝐴 (e.g. a gapped
phase), and in the second case completely in phase 𝐵 (e.g. a gapless phase), for
parameters \ ×𝜑 ∈ [0,1] × [0,poly𝑁]. We prove that determining which of the
two cases holds is a PQMAEXP-complete problem.

i.e. the Hamiltonian’s ground state energy. The “natural reference point” for phase

diagrams we choose is simply a point along one of the parameter axes below which

the system is completely in one of the two phases, as shown in fig. 7.1.

Other equivalently well-motivated definitions can of course be given. We give

the following variant of 2-CRT-PRM, which reads more akin to the way 1-CRT-PRM

is formulated, but which is otherwise identical in meaning to definition 7.6.

Definition 7.7 (2-CRT-PRM 𝑓 , alternative formulation).

Input: 𝑁 ∈ N. A finite set of 𝑘-local interactions ℎ(𝑙) (\, 𝜑) ∈ B((C𝑑)⊗𝑆𝑙 ), for 𝑙 ∈ 𝐼,

and such that 𝑆𝑙 ⊂ Λ, and |𝑆𝑙 | ≤ 𝑘 ∀𝑙. Positive numbers 𝜑,𝛼1, 𝛽1, such that

𝛽1−𝛼1 = Ω(1). 𝛼1, 𝛽1, 𝜑 and the matrix entries of each of the {ℎ(𝑙) (\, 𝜑)} are

specified to poly( |𝑁 |) bits of precision.

Promise: 𝐻 is defined as in eq. (7.1), and satisfies a Local-Global property for two phases

A and B, as per definition 7.3 or definition 7.4 for 𝐿0 = poly𝑁 , independent

of \ and 𝜑. The critical line \∗(𝜑) is a function of 𝜑—i.e. for each 𝜑, there

exists exactly one critical parameter \∗ as per definition 7.1 such that 𝐻 (\, 𝜑)
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is in phase 𝐴 if \ < \∗, and in phase 𝐵 if \ > \∗. It is promised that

𝑦 B max{𝜑∗ : 𝐻 (\, 𝜑) is in phase 𝐵 ∀𝜑 < 𝜑∗,∀\}

is well-defined, and that 𝐻 (0, 𝜑) is in phase 𝐴 for all 𝜑 > 𝑦, and in phase

𝐵 otherwise. Furthermore, there is an interval 𝑆^ B [𝑦 + ^, 𝑦 + 2^] for ^ =

Ω(1/ 𝑓 (𝑁)), such that if 𝜑 ∈ 𝑆^, then for all 𝜑 ∈ 𝑆^ either \∗(𝜑) > 𝛽1 or

\∗(𝜑) < 𝛼1 .

Output: Yes \∗(𝜑) > 𝛽1 for all 𝜑 ∈ 𝑆^.

No \∗(𝜑) < 𝛼1 for all 𝜑 ∈ 𝑆^.2

While definitions 7.6 and 7.7 sound somewhat contrived, we emphasise that

the core idea behind it is analogous to how APX-SIM is defined. The latter asks:

if I take a low-energy state, what’s the expectation value with respect to a given

observable? It is natural, in this context, to imply the ground state within the problem

definition, and not to demand it to be given as input in first place. In a similar fashion,

to approximate a critical line in a phase diagram to some desired precision it is

conceivable that one knows a region below which the phase diagram is entirely in

one phase; and to draw the critical line from this reference point onward to some

desired precision.

Just as the precision to which we wish to approximate the ground state energy

dictates how hard a problem it will be, the Local-Global properties are in place

to ensure we can prove containment of the problems, i.e. to place them within a

complexity class that solely depends on how hard it is to solve the Local-Global

property. Example variants—and the ones we will focus on in this paper—are when

phase A and B are gapped vs. gapless states; the Local-Global property is then given

by definition 7.4.

When proving complexity results, we will be interested in the class QMAEXP,

which is to QMA what NEXP is to NP; its use over QMA is a technicality based

2This order is switched compared to the 1-CRT-PRM case, matching the bounds for APX-SIM,
whereas the bounds for 1-CRT-PRM match those of the Local Hamiltonian problem.
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on how the input for a translationally-invariant system is specified (i.e., as a single

interaction term repeated over the lattice).

7.2.5 APX-SIM

To prove the hardness result for the two-parameter case, we will prove a reduction to

the hardness of simulating measurements on local Hamiltonians.

As we aim to establish the hardness of 2-CRT-PRM for translationally-invariant

Hamiltonians, we will consider the following variant of APX-SIM discussed in

chapter 6. We put it in a form more comparable to the definitions of CRT-PRM, but

it is essentially the same as definition 6.1:

Definition 7.8 (∀-TI-APX-SIM(𝐻, 𝐴, 𝑎, 𝑏, 𝛿) [GPY20]).

Input: Local term ℎ of a translationally invariant Hamiltonian 𝐻 =
∑
ℎ, and a local

observable 𝐴, and real numbers 𝑎, 𝑏 such that 𝑏−𝑎 ≥ 𝑁−𝑐′ , for 𝑁 the number

of qubits 𝐻 acts on and 𝑐, 𝑐′ > 0 some constants.

Promise: Let 𝑆𝛿 be the set of all states |𝜓⟩ satisfying ⟨𝜓 |𝐻 |𝜓⟩ ≤ _(𝐻) + 𝛿 for 𝛿 ≥ 𝑁−𝑐.

For any |𝜓⟩ ∈ 𝑆𝛿, we have either ⟨𝜓 | 𝐴 |𝜓⟩ ≥ 𝑏 or ⟨𝜓 | 𝐴 |𝜓⟩ ≤ 𝑎.

Output: Yes ⟨𝜓 | 𝐴 |𝜓⟩ ≥ 𝑏 for all |𝜓⟩ ∈ 𝑆𝛿.

No ⟨𝜓 | 𝐴 |𝜓⟩ ≤ 𝑎 for all |𝜓⟩ ∈ 𝑆𝛿.

Thus the problem promises that all states within energy 𝛿 of the ground state (i.e.

low-energy states) have similar expectation values when measured relative to 𝐴.

(Note we have switched the yes and no instances from those defined in [GPY20],

however, this choice is arbitrary and does not change any results). We will also make

use of corollary 6.1.

7.2.6 The Gottesman-Irani Hamiltonian and the Local Hamilto-

nian Problem

We will make direct use of Gottesman and Irani’s constructive hardness proof showing

that the translationally-invariant Local Hamiltonian problem is QMAEXP-complete,
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in the sense of utilising the ability to encode quantum computation into the ground

state of a Hamiltonian, and summarize their result in the following statement.

Theorem 7.3 (Gottesman and Irani [GI09]). A Gottesman-Irani Hamiltonian 𝐺𝑁 B∑𝑁
𝑖=1 ℎ𝑖 is a translationally-invariant nearest neighbour Hamiltonian on a one-

dimensional spin chain with finite local dimension 𝑑 ∈ N, and with open boundary

conditions; 𝐺𝑁 has the following properties:

1. For all 𝑁 ≥ 10, the ground state of𝐺𝑁 is a history state which encodes a binary

counter with output 𝑁 −2 in binary; and then takes this as input to a universal

quantum Turing machineM. Part of the input toM remains unconstrained.

2. If 𝑁 describes a QMA verifier and a valid problem instance for it—as e.g.

shown in [BCO17, Fig. 11]—then there exist two polynomials 𝑝, 𝑞 such that

1/𝑝(𝑁) −1/𝑞(𝑁) = Ω(1/poly𝑁), and

_min(𝐺𝑁 )


≥ 1/𝑝(𝑁) ifM outputs No

≤ 1/𝑞(𝑁) ifM outputs Yes.

Determining which case occurs is QMAEXP-complete.

The existence and construction of 𝐺𝑁 is a by-now standard technique; aside

from Gottesman and Irani’s original construction there also exists a lower local

dimension variant with local dimension 𝑑 = 42 [BCO17]. Other nondeterministic

computations can be encoded in a similar fashion, and we will make use of this fact

in section 7.6 (as seen in chapter 6).

7.3 Main Results
Now that we have introduced the necessary technical background, we can give

rigorous statements of our two main results, theorems 7.1 and 7.2.

Theorem 7.4. 1-CRT-PRM is QMAEXP-hard and contained in PQMAEXP for Hamilto-

nians satisfying either definition 7.3 or definition 7.4.
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In fact, we prove a slight bit more than this; we show that 1-CRT-PRM is

QMAEXP-hard, even if the parameter is only to be inferred to constant precision (as

stated in the informal theorem 7.1).

Theorem 7.5. 2-CRT-PRM is PQMAEXP-complete for Hamiltonians satisfying either

definition 7.3 or definition 7.4.

Containment within some complexity class for the two cases hinges, as afore-

mentioned, on how hard it is to answer the respective local-global properties; the

corresponding reductions are proven in section 7.4; for us, we will constrain the

threshold system size for the local-global promises to be polynomial in the input

size, which in both cases will result in a containment within PQMAEXP . Whether

containment for the 1-CRT-PRM case can be made tighter (e.g. prove containment

within QMAEXP) is an open question (see the extended discussion in section 7.7).

We prove the two hardness results in sections 7.5 and 7.6, respectively, by explicitly

constructing translationally-invariant nearest neighbour families of Hamiltonians

which encode the answer of a QMAEXP resp. PQMAEXP-hard problem within the

decision problem of whether the system is in phase A or B.

Each Hamiltonian will be defined on a lattice Λ, {𝐻𝑁 (𝜑)}𝑁∈N, where 𝐻𝑁 (𝜑) =∑
𝑖∼ 𝑗 ℎ

(𝑖, 𝑗)
𝑁
(𝜑) +∑𝑖∈Λ ℎ

(𝑖)
𝑁
(𝜑) for neighbouring sites 𝑖 ∼ 𝑗 , 𝑖, 𝑗 ∈ Λ. All local terms

ℎ(𝑖) B ℎ1
{𝑖} ⊗1Λ\{𝑖}, and analogously for ℎ(𝑖, 𝑗) constructed from a constant two-site

matrix ℎ2. Furthermore, all the matrix entries of ℎ1 and ℎ2 will be specified

to 𝑂 ( |𝑁 |) = 𝑂 (log2𝑁) bits of precision; and naturally we allow the local terms

to depend on the family parameter 𝑁 in a trivially-computable fashion (i.e. we

demand the matrix entries have to be computable classically from 𝑁 in time

poly |𝑁 |), where we do however require a constant-bounded interaction strength

∥ℎ1∥, ∥ℎ2∥ ≤ 1. As aforementioned, containment in PQMAEXPis a corollary of the

local-global phase/gappedness promise imposed on the systems.

7.4 Containment of 1- and 2-CRT-PRM in PQMAEXP

Lemma 7.1. Consider a Hamiltonian 𝐻Λ(𝐿) (𝜑) such that the local terms are

describable in 𝑛 bits, and that satisfies the global-local gap condition (definition 7.4)
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. Then for 𝑛 =𝑂 (log(𝐿)) determining whether Δ(𝐻Λ(𝐿) (𝜑)) ≥ 1/𝑞(𝐿) or ≤ 1/𝑝(𝐿)

for any point in parameter space is in PQMAEXP .

Proof. The algorithm showing containment of SPECTRAL GAP (as defined in

[Amb14]) in PQMA[log] can be used. However, now the Hamiltonian is promised

to be translationally invariant, we need exponentially less information to input the

Hamiltonian; the only input is now 𝐿 which only requires 𝑛 = O(log(𝐿)) bits to

express. As the required precision, on the other hand, is still 1/poly𝐿, the relevant

complexity class is now PQMAEXP . □

Lemma 7.2. Consider a Hamiltonian 𝐻Λ(𝐿) (𝜑) such that the local terms are describ-

able in 𝑛 bits, and that satisfies the global-local phase condition (definition 7.3). Then

for 𝑛 =𝑂 (log(𝐿)) and all states ⟨𝜓 |𝐻Λ(𝐿) (𝜑) |𝜓⟩ ≤ _min(𝐻Λ(𝐿) (𝜑)) +𝜔 determining

whether ⟨⟨𝜓 |𝑂𝐴/𝐵 |𝜓⟩⟩ ≥ 1/𝑞(𝐿) or ≤ 1/𝑝(𝐿) for any point in parameter space

such that |𝜑−𝜑∗ | ≥ 1/poly(𝐿) is in PQMAEXP .

Proof. Follows directly from corollary 6.5 in the following way. Set 𝛿 from the

definition of ∀-TI-APX-SIM in definition 7.8 to be equal to the energy parameter

𝜔 from definition 7.3. Let the order parameter 𝑂𝐴/𝐵 be the local observable to be

measured (i.e. 𝐴 in the definition of ∀-TI-APX-SIM), and let the polynomials 𝑝, 𝑞

correspond to the bounds 𝑎, 𝑏. Then finding ⟨𝜓 |𝑂𝐴/𝐵 |𝜓⟩ for a state with energy

⟨𝜓 |𝐻Λ(𝐿) (𝜑) |𝜓⟩ ≤ _min(𝐻Λ(𝐿)) +𝜔 is just an instance of ∀-TI-APX-SIM. □

Theorem 7.6. Let 𝐻 be a translationally invariant Hamiltonian with local terms

describable in 𝑛 bits, and on a lattice of size 𝐿 = exp(poly𝑛)). Further let 𝐻 satisfy

either the global-local gap property in definition 7.4 or the global-local phase

property in definition 7.3, and have a critical point at 𝜑∗. Then the 1-CRT-PRM and

2-CRT-PRM are contained in PQMAEXP .

Proof. We start with the more general case.

Local-Global Phase Assumption. For 1-CRT-PRM, we must show it is possible to

find an approximation �̃�∗ such that for 𝑛 = O(log(𝐿))

|�̃�∗−𝜑∗ | < O(1/poly𝐿) = O(1/exp𝑛).
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with an algorithm in PQMAEXP .

The algorithm is as follows:

• Calculate 𝐿0. By definition 7.3, this can be calculated in poly(𝑛) time.

• Take a 𝐿0 × 𝐿0 region of the lattice. Using the algorithm in lemma 7.1,

determine ⟨𝑂𝐴/𝐵⟩ = ⟨𝜓 |𝐻 |𝜓⟩ for states satisfying ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐻) +𝜔 to

precision 1/𝑟 (𝐿)), where 𝑟 (𝐿) ≫ 𝑞(𝐿) > 𝑝(𝐿). As per lemma 7.2, this can

be done using poly(𝑛) many calls to a QMAEXP oracle.

• If ⟨𝑂𝐴/𝐵⟩ < 1/𝑝(𝐿) +1/𝑟 (𝐿) then by the global-local phase condition defini-

tion 7.3, the Hamiltonian must be in phase 𝐴. If ⟨𝑂𝐴/𝐵⟩ > 1/𝑞(𝐿) −1/𝑟 (𝐿),

then we know it must globally be in phase 𝐵. Due to the earlier promise, we

are guaranteed that it satisfies one of these conditions.

• Perform a binary search through the parameter space of 𝜑. Using O(poly(𝑛)) =

O(log(𝐿)) runs of the algorithm we can identify the point at which the order

parameter from ⟨𝑂𝐴/𝐵⟩ < 1/𝑝(𝐿) +1/𝑟 (𝐿) to ⟨𝑂𝐴/𝐵⟩ > 1/𝑞(𝐿) −1/𝑟 (𝐿) or

visa-versa to within 𝑂 (1/poly(𝐿)) precision. The interval in which the

expectation ⟨𝑂𝐴/𝐵⟩ changes must contain the critical parameter 𝜑∗.

• The result is we get an estimate �̃�∗ such that

|�̃�∗−𝜑∗ | < O(1/poly𝐿) = O(1/exp𝑛).

Finally we note that running the algorithm to compute the ⟨𝑂𝐴/𝐵⟩ takes poly(𝑛) =

O(log(𝐿)) QMAEXP queries at each point in parameter space. To do the binary

search procedure, we choose poly(𝑛) points, each of which runs this algorithm.

Thus, overall we make poly(𝑛) = O(log(𝐿)) queries to the QMAEXP oracle and hence

1-CRT-PRM is in PQMAEXP .

For the 2-CRT-PRM case, the extra ingredient is the offset 𝑦 = 𝜑∗ along the \ = 0

axis in definition 7.6. As we are promised that there is a unique such critical point,

we can use binary search for the special case 𝐻 (0, 𝜑) to approximate 𝑦 to precision
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O(1/exp𝑛) which takes at most poly(𝑛) oracle queries. Using definition 7.7 as our

definition of 2-CRT-PRM, we choose some 𝜑 ∈ [𝑦 + ^, 𝑦 +2^] and query the order

parameter for that point as above. This can all be done in PQMAEXP .

Spectral Gap Assumption. The proof for containment in the case that the Hamiltonian

satisfies the global-local spectral gap condition is almost identical. This is because the

algorithm to determine the spectral gap to precision O(1/exp𝑛) = 1/poly𝐿 precision

is also contained in PQMAEXP , as shown in lemma 7.1. □

7.5 QMAEXP Hardness of 1-CRT-PRM
In order to prove QMAEXP-hardness of 1-CRT-PRM, we explicitly construct a 1-

parameter family of Hamiltonians 𝐻𝑁 (𝜑) on a qudit lattice Λ, where 𝑁 ∈ N and

𝜑 ∈ [0,1] are encoded into phases of a local term, and with all matrix entries specified

to bit precision of at most |𝑁 |.

Proof Outline. The local terms ℎ𝑁 (𝜑) will be a function of two parameters: 𝑁 and 𝜑

(both encoded into the phase of a local term). Here 𝑁 encodes the problem instance

and should be thought of as changing the form of the Hamiltonian. This point is

subtle, but important: in the thermodynamic limit, where the lattice size is infinite,

the only term that encodes the instance is the local coupling terms ℎ𝑁 (𝜑). For every

such ℎ𝑁 , we now ask: is the critical point 𝜑∗ above or below some threshold? This is

entirely analogous to the local Hamiltonian problem, where say the size of the spin

chain 𝑁 determines the instance, and we ask whether the ground state is above or

below some threshold. So what does 𝑁 encode? It is an integer that encodes the hard

problem that we reduce to the phase decision; as such, not all 𝑁 might be valid (as the

hard classes we use in the reduction are promise problems; as such, there might be

invalid 𝑁 too for which we cannot say anything). When making reductions between

promise problems we need only show that if the promise of the initial problem is

satisfied, then the promise of the problem we are mapping it to much also be satisfied.

We will not be concerned with the case where 𝑁 corresponds to an invalid instance.

In contrast to the LH Problem, or the question of whether a system is gapped or

not in the thermodynamic limit, we know by construction that the system will be in
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phase A or B for various choices of 𝜑. This means 𝜑 is the parameter of interest: we

ask whether the critical point 𝜑∗ is above or below some threshold—just as we could

have asked for the spectral gap to be larger or smaller than some threshold, or the

ground state energy for that manner—or the colour of the resulting material. This,

in turn, means that every instance, indexed by 𝑁 , is itself a family of Hamiltonians,

parameterised by 𝜑, and 1-CRT-PRM asks questions about families of Hamiltonians.

The complexity scaling will then be in terms of |𝑁 |, i.e. the number of bits required

to encode 𝑁 , as the input size, or precision to which we describe the matrix elements

of the local terms. This is entirely natural: we would expect the problem to be

ever harder the more precise we specify the local terms; and the precision to which

we want to resolve a critical point to be related to the precision to which the local

Hamiltonian is specified as well.

Proof Outline. 𝐻𝑁 (𝜑) is constructed so that its ground state partitions the lattice

into checker board grids of varying side length (motivated by the idea in [BCW19]).

Within each square of the checker board there is a QTM-to-Hamiltonian mapping,

which means that its ground state is a so-called “history state”; for the particular

Turing machine we choose to encode, the ground state represents the following

procedure:

1. Perform QPE to extract 𝑁 from local terms.

2. Perform a phase comparator QPE on the unitary encoding 𝜑 and exp(i𝑡𝐺𝑁 ),

where 𝐺𝑁 is a translationally-invariant local spin Hamiltonian with QMAEXP-

hard local Hamiltonian problem (on a spin chain of length 𝑁). This computation

is performed with an unconstrained input state. Assuming said input state is an

eigenstate of 𝐺𝑁 with eigenvalue _, the phase comparator QPE extracts the

difference _−𝜑 to bit precision ∼ |𝑁 |.

3. If 𝜑 < _ we set an output flag to |0⟩. If 𝜑 > _ we set it to |1⟩.

We can then give an energy penalty to the |0⟩ state of the flag qubit at the output

of this computation, which ensures that the hitherto unconstrained input state to

the phase comparator QPE assumes 𝐺𝑁’s ground state; we can thus assume that
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_ = _min(𝐺𝑁 ). Adding an unconditional bonus on the square size that the history

computation runs on (using a 2D Marker Hamiltonian), this combination of history

state and Marker Hamiltonian results in a ground space energy

_min(𝐻𝑁 (𝜑)) =


< 0 if _min(𝐺𝑁 ) < 𝜑, and

≥ 0 otherwise.

As 𝐺𝑁 satisfies a promise gap, there will also be a promise gap on _min(𝐻𝑁 (𝜑)) with

respect to 𝜑.

We will describe this construction outlined above in rigorous detail in the

following sections; we start with the construction of the quantum Turing machine

performing the listed operations in section 7.5.1, and under the assumption of

having access to all necessary gates directly. In section 7.5.2, we do away with

this assumption and replace the execution of exp(i𝑡𝐺𝑁 ) with a variant based on

performing Hamiltonian simulation; as well as using Solovay-Kitaev to replace all

remaining gates by a fixed gate set.

We then embed the resulting quantum Turing machine into a history state

Hamiltonian in section 7.5.3, combine this construction with a 2D Marker Tiling in

section 7.5.4, lift the phase comparison ground state energy to a phase transition in

section 7.5.5, prove that our construction has a unique phase transition in section 7.5.6,

and show the reduction QMAEXP −→ 1-CRT-QTM in section 7.5.7. Finally, in

section 7.5.8, we prove that this constructed family of Hamiltonians indeed satisfies

the local-global gap property from definition 7.4.

7.5.1 A Phase Comparator Quantum Turing Machine
In this section we consider a multi-tape QTM which will take as input two different

numbers 𝑁 ∈ N and 𝜑 ∈ [0,1] 3 as well as an input state |a⟩ ∈ (C𝑑)⊗𝑁 . Rather

than straightforwardly inputting 𝑁,𝜑 on the tape, we will give the QTM access to

particular gates such that when it performs quantum phase estimation on these gates,

the resulting string will be an encoding of 𝑁 and 𝜑.

3Some of the previous theorems are stated for 𝜑 ∈ [0,poly(𝑁)]. We will actually prove a result for
𝜑 ∈ [0,1] first and then extend it to a larger interval.



264 Chapter 7. Complexity of Finding Critical Points

As we require both numbers to be extracted from the complex phase of a unitary,

we need to encode them into the fractional part of the phase in some fashion. To this

end, we devise the following encoding map for 𝑁:

Definition 7.9 (Encoding). Let (· , ·) represent the string concatenation operation,

let 𝑘 be a fixed integer, and let 𝑛 = |𝑁 |. Let a string 𝑤 ∈ [4]2𝑛 ≡ ([4]𝑛, [4]𝑛) be valid

if 𝑤 ∈ ([2]𝑛,2×𝑛), and denote the set of all valid strings of length 2𝑛 as 𝑉2𝑛, where

further 𝑉 B
⋃∞
𝑛=1𝑉2𝑛. For 𝑁 ∈ N, we define

enc : N −→𝑉 where enc(𝑁) = (𝑁1𝑁2 · · ·𝑁𝑛,

𝑛 times︷ ︸︸ ︷
22 · · ·2)

where 𝑁 has binary expansion 𝑁 = 𝑁1𝑁2 · · ·𝑁𝑛. For 𝑧 ∈ N, we set enc−1(𝑧) to be

the number 𝑧 truncated to the first half (rounded down) of the base-4 digits of 𝑧.

We remark that the encoding is in base 4 and hence the number of bits required

for enc(𝑁) is | enc(𝑁) | = 4|𝑁 |. We note that for the inverse map in definition 7.9, we

have that enc−1 enc(𝑁) = 𝑁 for all 𝑁 ∈ N, and such that if 𝑧 has 𝑚 base-4 digits (i.e.

𝑚 ≤ 4𝑚), it always holds that enc−1(𝑧) ≤ 2𝑚.

In this section we loosely speak of performing QPE to base four; this is of course

simply a shorthand for performing base 2 QPE with twice the number of bits; it is

straightforward to verify that the following derivation is well-defined in this context.

In order to assess how well-suited said encoding is to get a precise handle on the

QPE error, we formulate the following technical lemma:

Lemma 7.3 (Encoded QPE Extraction). Denote with 𝑉 the set of all valid strings

from definition 7.9. Consider the map

𝑉 −→ R where 𝑉 ∋ 𝑦 ↦−→ 0.𝑦 (in base 4)

and set 𝑈𝑦 B diag(exp(i𝜋0.𝑦),1). Denote with |𝑦 | the length of 𝑦 in base 4. Let

the output of performing quantum phase estimation on the unitary 𝑈𝑦 (wrt. to the

eigenstate |0⟩) with a perfect gate set (i.e. all gates are performed without error) on

𝑡 ∈ 2N, 𝑡 ≥ 2 qudits be
∑
𝑚∈[4]𝑡 𝛽𝑚 |𝑚⟩. Then if 𝑡 ≥ |𝑦 |, 𝛽𝑦 = 1 and all other 𝛽𝑖 = 0; if
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𝑡 < |𝑦 | the total probability amplitude on valid strings is bounded as

∑︁
𝑚∈𝑉𝑡
|𝛽𝑚 |2 <

1
2𝑡/2

.

Proof. We consider QPE on 𝑡 qudits for two cases: 𝑡 < |𝑦 |, 𝑡 ≥ |𝑦 |. The fact that we

work with base 4 numbers bears no significance since we indirectly treat the setup as

a base-2 QPE of twice the length, and it is useful to view the following proof through

this lens.

Case t ≥ |y|. In this case the quantum phase estimation can be done exactly; this

means the probability amplitude on states which are not 𝑦 is precisely zero [NC10,

Sec. 5.2].

Case t < |y|. In this case the QPE is not performed exactly and the output is some

superposition clustered around the best 𝑡 digit estimates of 𝑦; the following analysis

closely follows the QPE error analysis in [NC10, Sec. 5.2]. As QPE is done in little

Endian order, if we denote with 𝑏 ∈ [4]𝑡 the string such that 𝑏/4𝑡 is the best 𝑡 digit

approximation to 𝑦 less than 𝑦, we know that 𝑏 is simply 𝑦 truncated on the right hand

side to 𝑡 digits. We note that 𝑏 ∉𝑉𝑡 as the truncation means that 𝑏𝑡/2 ≠ 2 (remember

that we assumed 𝑡 even, so 𝑡/2 ∈ N).

Denote with 𝑏′ ∈ 𝑉𝑡 the closest valid string to 𝑦, in the same sense as 𝑏 (i.e.

such that 𝑏′/4𝑡 is closest to 𝑦 amongst all 𝑏′ ∈ 𝑉𝑡). Since 𝑏′
𝑡/2 = 2, we clearly have

|𝑏− 𝑏′| ≥ 4𝑡/2, as the two strings have to differ by at least 1 at the (𝑡/2)th position.

By [NC10, Eq. 5.27] we see that the probability of measuring an outcome 𝑚

further than 𝑒 ∈ N away from 𝑏 is bounded by

𝑝( |𝑏−𝑚 | > 𝑒) ≤ 1
2(𝑒−1) . (7.2)

As 𝑏′ was the closest valid string to 𝑦, we know that all other valid strings 𝑚 ∈ 𝑉𝑡
also satisfy |𝑏−𝑚 | ≥ 4𝑡/2. This means

∑︁
𝑚∈𝑉𝑡
|𝑏𝑚 |2 ≤

∑︁
𝑚∈𝑉𝑡

1
2(4𝑡/2−1)

≤ 2𝑡/2

2(4𝑡/2−1)
≤ 1

2𝑡/2
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as |𝑉𝑡 | = 2𝑡/2 by definition 7.9. The claim follows. □

QPE extracts the phase _ of some unitary𝑈 with respect to an eigenstate |𝑢⟩—i.e.

such that𝑈 |𝑢⟩ = 𝑒i_ |𝑢⟩. This means the algorithm assumes that there exists a “black

box” capable of preparing the register |𝑢⟩ to be the correct eigenstate. More often

than not we do not have such a state: obtaining an eigenstate for an operator is

generally at least as hard as estimating the associated eigenvalue.4 On the other hand,

this allows us to form a nondeterministic variant of QPE, in the sense that if we leave

|𝑢⟩ unconstrained, we can ask questions like “does there exist a state |𝑢⟩ for which

_𝑢 is less than a certain quantity?” This notion of a nondeterministic QPE has been

employed in different contexts before, e.g. in the context of Hamiltonian simulation

[Koh+20].

In the following lemma we will thus assume that the eigenstate |𝑢⟩ is an

external quantity to be supplied to the procedure, where we keep in mind that we

translate the algorithm to a history state Hamiltonian in due course. As history state

Hamiltonians allow for an unconstrained section (which can later be filtered by a

suitable penalty addition), the above decision problem of existence of a state |𝑢⟩ for

which _𝑢 is below or above some threshold then maps naturally to the eigenspectrum

of the Hamiltonian. More concretely, as the particular unitary we are interested

in performing nondeterministic QPE on is itself a local Hamiltonian with a hard

ground state energy problem, the notion of existence/non-existence of an eigenstate

|𝑢⟩ with a phase _𝑢 below a certain threshold can be analysed precisely as in the

case of encoding a (nondeterministic) QMA verifier in hardness proofs of the local

Hamiltonian problem [KSV02].

In the remainder of this section, we will leave the number of bits to which

QPE is performed (generally called 𝑡 in the following) vs. the length of the chain on

which the Hamiltonian-to-be-analysed sits (generally called 𝑁 , or an integer 𝑧 ≤ 𝑁

depending on the context) independent; yet in order to prove hardness, we will later

on require the number of bits large enough to resolve the promise gap of the encoded

Hamiltonian to high enough precision.

4Generally, it is as “cheap” to calculate ⟨𝑢 |𝑈 |𝑢⟩ as it is to write out |𝑢⟩, modulo polynomial
overhead.
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|𝑎⟩
phase gradient

of𝑈𝑎

|𝑎⟩

|+⟩⊗𝑡 phase gradient
of𝑈†

𝑏

QFT−1
𝑡 |out⟩

|𝑏⟩ |𝑏⟩

Figure 7.2: Phase comparator circuit. For two unitaries 𝑈𝑎 and 𝑈𝑏 with eigenstates |𝑎⟩,
|𝑏⟩ and associated eigenvalues _𝑎, _𝑏, the output register |out⟩ contains a 𝑡-bit
approximation to the phase _𝑎 −_𝑏, as can be seen by writing out the phase
gradient operations as given in [NC10, Fig. 5.2].

In order to compare two phases extracted via QPE, there is two options: extract

each phase individually and perform a binary comparison, or perform QPE on the

first unitary and the second unitary’s inverse and compare against 0. We opt for the

latter, as it will be easier to prove that a single critical point exists. Details in due

course.

We now describe the QTM we will utilise for the rest of the 1-CRT-PRM

hardness proof.

Lemma 7.4 (Multi-QPE QTM). Let 𝐺𝑧 be a Gottesman-Irani Hamiltonian on a

chain of length 𝑧, defined in theorem 7.3. Let 𝑁 ∈ N. Denote by𝑈𝜑,𝑈𝑁 ∈ 𝑆𝑈 (2) and

𝑈𝐺𝑧
the unitaries

𝑈𝐺𝑧
= 𝑒i𝜋𝐺𝑧 𝑈𝜑 =

©«
𝑒i𝜋𝜑 0

0 1
ª®¬ 𝑈𝑁 =

©«
𝑒i𝜋0.enc(𝑁) 0

0 1
ª®¬

where enc(𝑁) is given in definition 7.9. Let |a⟩ ∈ (C𝑑)⊗𝑁 .

Then there exists a quantum Turing Machine, denoted M(𝑁,𝜑, 𝑡, |a⟩), with

access to the unitary gates 𝑈𝜑, 𝑈𝑁 , and 𝑈𝐺𝑧
for all 𝑧 ∈ [𝑁], all powers 2,4, . . . ,2𝑡

of the 𝑈𝐺𝑧
gates, as well as 𝑅𝑘 B diag(1, 𝑒2𝜋i/2𝑘 ) for all 𝑘 = 1, . . . , 𝑡 in addition to

the standard gate set; such thatM acts on a Hilbert space of 2+4𝑡 + 𝑡 qubits and 𝑁

qudits, plus a slack space of size at most poly 𝑡 (left implicit in the following); and

such thatM performs the following operations:

1. Initialise the first 2 + 4𝑡 + 𝑡 registers to zero, and assume the last 𝑁 qudit

registers are in state |a⟩.
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2. Execute QPE on𝑈𝑁 on 4𝑡 qubits to get a state

|𝜒′⟩ = |00⟩ 𝑓 ⊗
©«

∑︁
𝑧∈[4]𝑡

𝛾𝑧 |𝑧⟩ª®¬⊗ |0⟩⊗𝑡 ⊗ |a⟩
where the 𝛾𝑧 are the amplitudes from quantum phase estimation of𝑈𝑁 .

3. For any basis state |𝑧⟩ in |𝜒′⟩ that is invalid,M places a marker on the first

qubit of the tape (the flag space, labelled with subscript 𝑓 ), such that the first

qubit is flipped to 1 if 𝑧 ∈ 𝑉𝑡 . This gives

|𝜒′′⟩ =
(∑︁
𝑧∈𝑉𝑡
|10⟩ 𝑓 𝛾𝑧 |𝑧⟩ +

∑︁
𝑧∉𝑉𝑡

|00⟩ 𝑓 𝛾𝑧 |𝑧⟩
)
⊗ |0⟩⊗𝑡 ⊗ |a⟩

4. Let 𝑧′ B min{𝑁,enc−1(𝑧)} as per definition 7.9, such that always 𝑧′ ≤ 2𝑡 . On

|a⟩, the QTM performs a phase comparator QPE as shown in fig. 7.2 with

the two unitaries𝑈𝐺𝑧′ (on the |a⟩ register) and𝑈†𝜑 (on a |0⟩ ancilla register).

More concretely, for the Hamiltonian 𝐺𝑧′ , let its eigenstates be {|𝑔𝑧′⟩} and

let |a⟩ = ∑
𝑔 ^𝑔 (𝑧′) |𝑔𝑧′⟩

��b𝑧′,𝑔〉 be a decomposition with respect to a bipartition

into 𝑧′ and 𝑁 − 𝑧′ qubits; as we chose the basis of the first subsystem, the
��b𝑧′,𝑔〉

are not necessarily orthogonal, but can be assumed normalised. Then the

input to this step can be written as

|𝜒′′⟩ =
∑︁
𝑧∈[4]𝑡

𝛾𝑧 | [𝑧 ∈ 𝑉𝑡]0⟩ 𝑓 |𝑧⟩ ⊗ |0⟩⊗𝑡 ⊗
∑︁
𝑔

^𝑔 (𝑧′) |𝑔𝑧′⟩
��b𝑧′,𝑔〉 ,

where [𝑧 ∈ 𝑉𝑡] is equal to 1 iff 𝑧 ∈ 𝑉𝑡 and is otherwise 0 (cf. section 7.2.1 for

notation). The output of the total QTM after this stage is then

|𝜒′′′⟩ =
∑︁
𝑧∈[4]𝑡

𝛾𝑧 | [𝑧 ∈ 𝑉𝑡]0⟩ 𝑓 |𝑧⟩
∑︁
𝑥∈[2]𝑡

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)^𝑔 (𝑧′) |𝑥⟩ |𝑔𝑧′⟩ |b𝑧′,𝑔⟩

The 𝛼𝑥 (𝑧′, 𝑔) are the coefficients obtained from the comparator QPE routine

for operator 𝐺𝑧 and𝑈𝜑 on eigenstate |𝑔𝑧′⟩.
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5. The flag qubit is updated via |𝑏0⟩ 𝑓 ↦−→ |𝑏[𝑥 ≤ 0]]⟩ 𝑓 , which corresponds to the

comparison _min(𝐺𝑧) ≤ 𝜑 to 𝑡 digits of precision. The resulting state is

|𝜒⟩ =
∑︁
𝑧∈𝑉𝑡

∑︁
𝑥≤0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |11⟩ 𝑓 |𝑧⟩ |𝑥⟩ |𝑔𝑧′⟩
��b𝑧′,𝑔〉+ (7.3)∑︁

𝑧∈𝑉𝑡

∑︁
𝑥>0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |10⟩ 𝑓 |𝑧⟩ |𝑥⟩ |𝑔𝑧′⟩
��b𝑧′,𝑔〉+∑︁

𝑧∉𝑉𝑡

∑︁
𝑥≤0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |01⟩ 𝑓 |𝑧⟩ |𝑥⟩ |𝑔𝑧′⟩
��b𝑧′,𝑔〉+∑︁

𝑧∉𝑉𝑡

∑︁
𝑥>0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |00⟩ 𝑓 |𝑧⟩ |𝑥⟩ |𝑔𝑧′⟩
��b𝑧′,𝑔〉 .

The QTMM runs for time 𝑇 = O(24𝑡).

Proof. This QTM can be implemented by dovetailing a set of QTMs which perform

QPE on 4𝑡 qubits for 𝑈𝑁 , as well as 𝑡 qubits for 𝑈𝐺𝑧′ and 𝑈†𝜑, where the last one

implementing the conditional QPE for 𝐺𝑧′ can be trivially implemented by adding

additional control lanes. QPE without gate approximation to 𝑡 bits of precision

normally takes O(𝑡2) calls to𝑈𝐺𝑧′ (which we assumed to have access to as a single

gate for now) [NC10, Sec. 5.2]. Implementing the up to 24𝑡-powers of the three phase

gates𝑈𝑁 ,𝑈𝐺𝑧′ and𝑈†𝜑 takes time ∝ 24𝑡 . All other operations take time poly 𝑡, and it

is clear that the QTM does not need in excess of poly 𝑡 of slack work space. Hence

we have an overall runtime of O(24𝑡). □

For the next set of lemmas we define the following quantity: for the output state

|𝜒⟩ ofM(𝑁,𝜑, 𝑡) from lemma 7.4, we set

[(𝑁,𝜑, 𝑡, |a⟩) B Tr
(
( |11⟩⟨11| 𝑓 ⊗1) |𝜒⟩⟨𝜒 |

)
=
∑︁
𝑧∈𝑉𝑡

∑︁
𝑥≤0

∑︁
𝑔

|𝛼𝑥 (𝑧′, 𝑔) |2 |𝛾𝑧 |2 |^𝑔 (𝑧′) |2 (7.4)

where as in lemma 7.4 we have 𝑧′ = min{𝑁,enc−1(𝑧)}. This is the total probability

that |𝜒⟩ will have an accepted flag—i.e. the first qubit will be in the |11⟩ 𝑓 state as

given in eq. (7.3). It will later be shown that when the above QTM is encoded in a

circuit-to-Hamiltonian mapping, then the ground state energy depends on [.
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Figure 7.3: ¯̄[(𝜒, 𝑡) (red line) for 𝑡 = 4 from lemma 7.5, vs. 𝜒 ∈ (−1/4,1/4). The interval
between the black dashed vertical lines denote the region within which we prove
¯̄[ to be strictly monotonously falling, and hence [ from eq. (7.4) to be strictly
monotonously increasing; within the grey dashed areas the slope of the red line
is ≥ 1, as shown in lemma 7.5. The shaded green region marks the interval
[1/3,2/3], which lemma 7.5 proves ¯̄[(𝜒, 𝑡) to be bounded away from.

As a first step, we present a monotonicity argument for the value of [ around

the point where 𝜑 equals the eigenvalue associated to an eigenstate |a⟩ of 𝐺𝑁 .

Lemma 7.5. Let |a⟩ be an eigenvector of 𝐺𝑁 with eigenvalue _, 𝑡 ≥ |𝑁 |, and let

[(𝑁,𝜑, 𝑡, |a⟩) be defined as in eq. (7.4). Then for 𝑡 ≥ |𝑁 | and 𝜑 ∈ (_−2−𝑡 +2−3𝑡/2,_−

2−3𝑡/2)
𝜕[(𝑁,𝜑, 𝑡, |a⟩)

𝜕𝜑
≥ 1.

Furthermore, for all 𝜑 < _−2−𝑡 +2−3𝑡/2, [ ≤ 𝜋2/24 and 𝜑 > _−2−3𝑡/2, [ ≥ 1−𝜋2/24.

Proof. We guide the reader to fig. 7.3 to aid in an intuitive understanding of the

proof. As a first step, we abbreviate b B _−𝜑. By [NC10, Eq. 5.26] and eq. (7.4),

and relabelling 𝐿 = 𝑥 to follow the notation in [NC10] closely, we can write

[(𝑁,𝜑, 𝑡, |a⟩) =
∑︁
𝑧∈𝑉𝑡

∑︁
𝑥≤0

∑︁
𝑔

|𝛼𝑥 (𝑧′, 𝑔) |2 |𝛾𝑧 |2 |^𝑔 (𝑧′) |2
∗
=

0∑︁
𝐿=−2𝑡−1+1

|𝛼𝐿 |2

for 𝛼𝐿 B 2−𝑡
1− exp

(
2𝜋i(2𝑡b − 𝐿)

)
1− exp(2𝜋i(b −2−𝑡𝐿)) = 2−𝑡

sin
(
2𝑡𝜋b

)
sin(𝜋(b −2−𝑡𝐿)) (7.5)
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where in the step marked with ∗= we have used the fact that for 𝑡 ≥ |𝑁 |, precisely one

of the 𝛾𝑧 and ^𝑔 (𝑧′) equal 1, and all others are zero; so 𝛼𝐿 ≡ 𝛼𝑥 (𝑧′, 𝑔) for those 𝑧 and

𝑔 for which 𝛾𝑧 = ^𝑔 (𝑧′) = 1. We set [̄(b, 𝑡) B [(𝑁,𝜑, 𝑡, |a⟩). As

[̄(b, 𝑡) =
∑︁
𝐿≤0
|𝛼𝐿 |2 = 1−

∑︁
𝐿>0
|𝛼𝐿 |2, (7.6)

we can calculate the midpoint where [̄(b, 𝑡) = 1/2; this happens at b = 2−𝑡−1, as can

be confirmed by explicit calculation.

Set 𝜒 B b −2−𝑡−1 and define ¯̄[(𝜒, 𝑡) B [̄(𝜒 +2−𝑡−1, 𝑡), such that ¯̄[(0, 𝑡) = 1/2,

and

¯̄[(−𝜒, 𝑡) = [̄(−𝜒+2−𝑡−1, 𝑡) =
0∑︁

𝐿=−2𝑡−1+1
2−2𝑡 sin2(2𝑡𝜋(−𝜒+2−𝑡−1))

sin2(𝜋((−𝜒+2−𝑡−1) −2−𝑡𝐿))

∗
=

0∑︁
𝐿=−2𝑡−1+1

2−2𝑡 sin2(2𝑡𝜋(−𝜒−2−𝑡−1 +2−𝑡))
sin2(𝜋(−𝜒−2−𝑡−1−2−𝑡 (𝐿−1)))

=

0∑︁
𝐿=−2𝑡−1+1

2−2𝑡 sin2(2𝑡𝜋(𝜒+2−𝑡−1) − 𝜋)
sin2(𝜋(𝜒+2−𝑡−1−2−𝑡 (1− 𝐿)))

=

2𝑡−1∑︁
𝐿=1

2−2𝑡 sin2(2𝑡𝜋(𝜒+2−𝑡−1))
sin2(𝜋(𝜒+2−𝑡−1−2−𝑡𝐿))

∗∗
= 1− ¯̄[(𝜒, 𝑡), (7.7)

where in the line with ∗=we added 2−𝑡−1−2−𝑡−1 = 0 in the enumerator and denominator,

and in the last step ∗∗= we made use of eq. (7.6).

Gradient Bound: Note that we can now write:

|𝛼𝐿 |2 = 2−2𝑡 cos2(2𝑡𝜋𝜒)
sin2(𝜋(𝜒−2−𝑡−1(2𝐿−1)))

.
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From the above we see that:

¯̄[(𝜒, 𝑡) =
0∑︁

𝐿=−2𝑡−1+1
2−2𝑡 cos2(2𝑡𝜋𝜒)

sin2(𝜋(𝜒−2−𝑡−1(2𝐿−1)))

=

2𝑡−1−1∑︁
𝐿=0

2−2𝑡 cos2(2𝑡𝜋𝜒)
sin2(𝜋(𝜒+2−𝑡−1(2𝐿 +1)))

=

2𝑡−1−1∑︁
𝐿=0
|𝛼−𝐿 |2,

where we have just relabelled 𝐿→−𝐿. Differentiating this expression wrt. 𝜒 gives

22𝑡 𝜕 ¯̄[(𝜒, 𝑡)
𝜕𝜒

=

2𝑡−1−1∑︁
𝐿=0

[
−

2𝑡+1𝜋 sin
(
2𝑡𝜋𝜒

)
cos

(
2𝑡𝜋𝜒

)
sin2(𝜋(𝜒+2−𝑡−1(2𝐿 +1)))

−2𝜋 cos
(
𝜋(𝜒+2−𝑡−1(2𝐿 +1))

) cos2(2𝑡𝜋𝜒)
sin3(𝜋(𝜒+2−𝑡−1(2𝐿 +1)))

]
.

Now note that for 𝑡 ≥ 1, 𝜒 ∈ (0,2−𝑡−1) and 0 ≤ 𝐿 ≤ 2𝑡−1−1 we have that 2𝑡𝜋𝜒 ≤ 𝜋/2

and 0 ≤ 𝜋(𝜒 +2−𝑡−1(2𝐿 +1)) ≤ 𝜋/2. Thus all of the sine and cosine terms in the

above expression are individually positive, and hence both the terms in the summand

are individually negative, for all 0 ≤ 𝐿 ≤ 2𝑡−1−1.

We now focus on the 0th coefficient, i.e. 𝛼0. For 0 ≤ 𝑥 ≤ 𝜋/2 the following

holds: 1/sin(𝑥) ≥ 1/𝑥, thus giving:

22𝑡
����𝜕 |𝛼0 |2
𝜕𝜒

���� ≥2𝑡+1𝜋 sin
(
2𝑡𝜋𝜒

)
cos

(
2𝑡𝜋𝜒

)
(𝜋(𝜒+2−𝑡−1))2

(7.8)

+ 2𝜋 cos2(2𝑡𝜋𝜒)
|𝜋(𝜒+2−𝑡−1) |3

cos
(
𝜋(𝜒+2−𝑡−1)

)
(7.9)

Now we consider the interval 𝜒 ∈ (0,2−𝑡−1−2−3𝑡/2). Within this interval, and for

𝑡 ≥ 1, cos
(
2𝑡𝜋𝜒

)
has its minimum value at the rightmost limit, cos2(𝜋/2− 𝜋2−𝑡/2) =

sin2(𝜋2−𝑡/2) ≥ 2−𝑡 . Similarly, we have that

2−3𝑡/2𝜋 ≤ 𝜋
��𝜒+2−𝑡−1�� ≤ 2−𝑡−1𝜋,

and hence cos
(
𝜋(𝜒+2−𝑡−1)

)
≥ cos(𝜋/4) ≥ 1/

√
2. Together with eq. (7.9) and

dropping the term with sin
(
2𝑡𝜋𝜒

)
in the denominator (which vanishes for 𝜒→ 0),

the 0th coefficient 𝛼0 thus satisfies
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22𝑡
����𝜕 |𝛼0 |2
𝜕𝜒

���� ≥ 2𝜋2−𝑡

(𝜋2−𝑡−1)3
× 1
√

2
=

8
√

2
𝜋2 ×22𝑡 ≥ 22𝑡 , (7.10)

Hence 𝜕 |𝛼0 |2/𝜕𝜒 ≤ −1. Since 𝜕 |𝛼𝐿 |2/𝜕𝜒 < 0 for all 0 ≤ 𝐿 ≤ 2𝑡−1 − 1, then

𝜕 |𝛼0 |2/𝜕𝜒 > 𝜕 ¯̄[/𝜕𝜒 for 𝜒 ∈ (0,2−𝑡−1−2−3𝑡/2).

Thus
𝜕 ¯̄[(𝜒, 𝑡)
𝜕𝜒

≤ −1.

Using the antisymmetry of the function ¯̄[(𝜒, 𝑡) − 1/2 around the point 𝜒 = 0, we

see the same bounds on the derivative hold for the whole interval 𝜒 ∈ (−2−𝑡−1 +

2−3𝑡/2,2𝑡−1−2−3𝑡/2). Finally, noting that 𝜕𝜒/𝜕𝜑 = −1

𝜕[(𝑁, 𝑡, 𝜑, |a⟩)
𝜕𝜑

≥ 1,

for the interval 𝜑 ∈ (_−2−𝑡 +2−3𝑡/2,_−2−3𝑡/2).

Bounds Outside Interval. To address the bounds when 𝜒 is outside of the monotonic-

ity interval 𝜒 ∈ [−1/4,1/4] \ (−2−𝑡/2+2−3𝑡/2,2−𝑡/2−2−3𝑡/2), we again by eq. (7.7)

we only have to consider the right half of the interval. There we have

¯̄[(𝜒, 𝑡) =
∑︁
𝐿≤0
|𝛼𝐿 |2

∗
=

0∑︁
𝐿=−2𝑡−1+1

2−2𝑡 cos2(2𝑡𝜋𝜒)
sin2(𝜋(𝜒+2−𝑡−1−2−𝑡 (𝐿 +1)))

≤
2𝑡−1−1∑︁
𝐿=0

2−2𝑡

sin2(𝜋(𝜒+2−𝑡−1 +2−𝑡 (𝐿−1)))

=

2𝑡−1∑︁
𝐿=1

2−2𝑡

sin2(𝜋(𝜒+2−𝑡−1 +2−𝑡𝐿))
. (7.11)

where in the step ∗= we again added and subtracted 2−𝑡−1 in the denominator. For

𝜒 ∈ [2−𝑡−1−2−3𝑡/2,1/4] and 𝐿 = 1, . . . ,2𝑡−1, we can bound

𝜋(𝜒+2−𝑡−1 +2−𝑡𝐿) ≥ 𝜋2−𝑡 (𝐿 +1) − 𝜋2−3𝑡/2
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and thus

sin
(
𝜋(𝜒+2−𝑡−1 +2−𝑡𝐿)

)
≥ sin

(
𝜋(2−𝑡 (𝐿 +1) −2−3𝑡/2)

)
≥ 1

2
×𝜋(2−𝑡 (𝐿+1) −2−3𝑡/2).

(7.12)

Combining eqs. (7.11) and (7.12), we get

¯̄[(𝜒, 𝑡) ≤ 4
𝜋2

2𝑡−1∑︁
𝐿=1

1
(𝐿 +1−2−𝑡/2)2

≤ 4
𝜋2

∞∑︁
𝐿=2

1
𝐿2

(
1− 2−𝑡/2

𝐿

)−2

=
4
𝜋2

∞∑︁
𝐿=2

1
𝐿2

(
1+ 2×2−𝑡/2

𝐿
+O

(
2−𝑡

𝐿2

))
(7.13)

=
4
𝜋2

∞∑︁
𝐿=2

1
𝐿2 +

8
𝜋2

∞∑︁
𝐿=2

2−𝑡/2

𝐿3 +O
(
2−𝑡

)
(7.14)

=
4
𝜋2 ×

(
𝜋2

6
−1

)
+O(2−𝑡/2) (7.15)

≤ 𝜋
2

24
.

Here for eq. (7.13) we have used a binomial expansion and for eq. (7.15) we have

used the well known identity
∑∞
𝑛=1 𝑛

−2 = 𝜋2/6. The bound for negative 𝜒 follows by

eq. (7.7). □

Lemma 7.5 puts bounds on [ for a specific input state |a⟩. Here we consider the

maximum value [ can take: this corresponds to the maximum acceptance probability

thatM can have when the input state |a⟩ is unconstrained.

Corollary 7.1. Let [ be as defined in eq. (7.4), and |𝑁 | be the number of base-2

digits5 of 𝑁 .

• If 𝑡 ≥ |𝑁 | and if 𝜑 ≤ _min(𝐺𝑁 ) −2−𝑡 +2−3𝑡/2, we have

max
|a⟩

[(𝑁,𝜑, 𝑡, |a⟩) ≤ 𝜋
2

24
.

5𝑁 is expressed in binary, but enc(𝑁) in quaternary, hence | enc(𝑁) | = 4|𝑁 |; note that we expand
to 4𝑡 bits in lemma 7.4, hence the statement “𝑡 ≥ |𝑁 |” implies we expanded enough digits to see all of
enc(𝑁) exactly.



7.5. QMAEXP Hardness of 1-CRT-PRM 275

• If 𝑡 ≥ |𝑁 | and 𝜑 ≥ _min(𝐺𝑁 ) −2−3𝑡/2, we get

max
|a⟩

[(𝑁,𝜑, 𝑡, |a⟩) ≥ 1− 𝜋
2

24
.

• If 𝑡 < |𝑁 |, then irrespective of the value of 𝜑,

max
|a⟩

[(𝑁,𝜑, 𝑡, |a⟩) = O
(

1
2𝑡/2

)
.

Proof. We address each case individually.

Case t < |N|. We do not expand enough bits to expand enc(𝑁) in full: by lemma 7.3,

the probability mass on valid strings (none of which are enc(𝑁)) is ≤ 1/2𝑡/2.

Case t ≥ |N|. Again by lemma 7.3 we know that 𝛾enc(𝑁) = 1 and all other 𝛾𝑧 = 0. If

𝜑 ≥ _min(𝐺𝑁 ) −2−3𝑡/2, then choose input state |𝜓0⟩ = |𝑔min⟩ |b0⟩ where |𝑔min⟩ is the

ground state of 𝐺𝑁 (and |b0⟩ is just the state resulting from the bipartition of |𝜓0⟩’s

state space in the proof of lemma 7.4). By applying lemma 7.5, we see that

[(𝑁,𝜑, 𝑡, |𝜓0⟩) ≥ 1− 𝜋
2

24
.

The result for 𝜑 ≥ _min(𝐺𝑁 ) −2−3𝑡/2 follows.

If 𝜑 ≤ _min(𝐺𝑁 ) − 2−𝑡 + 2−3𝑡/2, then consider any eigenstate |𝜓𝑖⟩ of 𝐺𝑁 . We

see that if 𝜑 ≤ _min(𝐺𝑁 ) −2−𝑡 +2−3𝑡/2, then for any
��𝜓𝑔〉 = |𝑔⟩ ��b𝑔〉, where |𝑔⟩ is an

eigenstate of𝐺𝑁 with corresponding eigenvalue _𝑔, 𝜑 ≤ _𝑔−2−𝑡 +2−3𝑡/2. As a result,

for any energy eigenstate
��𝜓𝑔〉, by lemma 7.5,

[(𝑁,𝜑, 𝑡, |𝜓𝑖⟩) ≤
𝜋2

24
.

Any state |a⟩ ∈ (C𝑑)⊗𝑁 can be written as |a⟩ = ∑
𝑔 ^𝑔 (𝑁) |𝑔𝑁⟩

��b𝑁,𝑔〉; hence by

convexity of eq. (7.4) in the coefficients of |a⟩ we have

max
|a⟩

[(𝑁,𝜑, 𝑡, |a⟩) ≤ 𝜋
2

24
. □
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7.5.2 An Approximate Phase Comparator QTM

So far we have assumed that the QTMs can implement the algorithms without error,

by providing them with all the necessary gates required. In this section we relax

these assumptions and show that the error in the output is bounded sufficiently small

for our purposes, even if the QTM only has access to a fixed universal gate set.6

If we wish our QTM to have a fixed predetermined number of gates available for

an arbitrary track length 𝑡 and arbitrary length inputs 𝑁,𝜑, the gate powers of𝑈𝐺𝑧′ ,

as well as the controlled rotations 𝑅𝑘 necessary for the Fourier transform subroutine

for QPE in lemma 7.4 cannot be given explicitly; we need to approximate them. The

𝑅𝑘 = diag(1, 𝑒−i𝜋2𝑘 ) gates can be approximated via the Solovay-Kitaev algorithm to

the necessary precision. For 𝑈𝐺𝑧′ , however, such a simple compilation argument

does not work: we need to perform Hamiltonian simulation in order to implement

𝑈𝐺𝑧′ itself, for any given spin chain length 𝑧′ ∈ [𝑁]; to this end, we include the

following result.

Lemma 7.6 (Hamiltonian Simulation QTM). Let 𝑆 B {ℎ(𝑙)}𝑙∈𝐼 be a constant and

finite set of local interactions of a translationally-invariant Hamiltonian 𝐻 =
∑𝑧
𝑖=1 ℎ𝑖,

ℎ𝑖 ∈ 𝑆, defined on a spin chain of length 𝑧 ∈ N, and let 𝜖 > 0. Then there exists a

QTM which, on input 𝑆 and 𝑧, simulates the time evolution𝑈 (𝑇) B exp(i𝐻𝑇) as a

circuit �̃� (𝑇) to precision ∥�̃� (𝑇) −𝑈 (𝑇)∥ ≤ 𝜖 in spectral norm, in time Õ(𝑇2𝑧2/𝜖).7

Proof. This is a straightforward application of a second order Trotter formula (see e.g.

[CS19]). We first assume that we can implement the local time evolution operators

𝑈𝑖 (𝑇) = exp(i𝑇ℎ𝑖) for 𝐻 =
∑
𝑖 ℎ𝑖 exactly. For time 𝛿 > 0, a second order Trotter

formula (e.g. [Ber+06]) breaks up :

�̃� (𝛿) =
𝑧∏
𝑖=1
𝑈𝑖 (𝛿/2)

1∏
𝑖=𝑧

𝑈𝑖 (𝛿/2),

6The motivation for this is that when the QTM is encoded in a Hamiltonian, in order to have a
fixed local Hilbert space dimension for all 𝑁,𝜑, and 𝑡, the QTM must have a gate set which does not
depend on 𝑁,𝜑 or 𝑡.

7As per convention, Õ hides polylogarithmic factors in the argument.
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which requires O(𝑧) gates, and has an error bound

∥�̃� (𝛿) −𝑈 (𝛿)∥ = O
(
𝑧𝛿2

)
.

As we require a simulation to time 𝑇 , the overall error will be

∥�̃� (𝑇) −𝑈 (𝑇)∥ ≤ 𝑇
𝛿
∥�̃� (𝛿) −𝑈 (𝛿)∥ = O (𝑇𝛿𝑧) ,

requiring O(𝑧𝑇/𝛿) gates. Demanding 𝑇𝛿𝑧 ≤ 𝜖 means 𝛿 = Θ(𝜖/𝑇𝑧); the Trotter

simulation thus requires Θ(𝑧2𝑇2/𝜖) gates overall.

In case we cannot implement the local Trotter operators 𝑈𝑖 (𝛿) exactly, we

have to approximate them with a sequence of elementary gates �̃�𝑖 (𝛿), e.g. using

Solovay-Kitaev [DN05b]: as errors in a circuit accumulate at most linearly, the

approximation has to be precise to

∥�̃�𝑖 (𝛿) −𝑈𝑖 (𝛿)∥ = 𝜖/Θ(𝑧2𝑇2/𝜖) = Θ(𝜖2/𝑧2𝑇2) =: 𝜖′

where 𝜖′ is now the precision we must approximate each �̃�𝑖 (𝛿) . Now we know that

Solovay-Kitaev can approximate any unitary operation to within precision 𝜖′ within

O(log4 1/𝜖′) many steps. The claim follows. □

Since we will be encoding our QTMs in a Hamiltonian where part of the ground

state is chosen in a nondeterministic manner, approximating gates leads not only to

slight errors in the gates, but also since the gates no longer have the same eigenvalues,

it may lead to differences between which eigenvalue is nondeterministically chosen

when the unconstrained input state |a⟩ is nondeterministically chosen. In the following

two lemmas we characterise this error.

Lemma 7.7. Let 𝑉 (𝑠) = 𝑒i𝐻𝑠 for a Hamiltonian 𝐻 such ∥𝐻∥∞ ≤ 𝜋/4𝑠, and let �̃� (𝑠)

satisfy ∥𝑉 (𝑠) − �̃� (𝑠)∥∞ ≤ 𝜖 . Then there exist an effective Hamiltonian 𝐻′ such that

�̃� (𝑠) = 𝑒i𝐻′𝑠, and a constant ^ = O(1) such that

∥𝐻′−𝐻∥∞ ≤
^𝜖

𝑠
.
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Proof. See supplementary information of [PW09]. □

The following lemma shows that even when the Hamiltonian simulation regime

is used (to sufficient accuracy) the new value of [ maximised over all input states,

has similar bounds to the value obtained without Hamiltonian simulation.

Lemma 7.8 (Hamiltonian Simulation Error). LetM(𝑁,𝜑, 𝑡, |a⟩) be the QTM de-

scribed in lemma 7.4 with all gates done without error. Then there exists a QTM

M′(𝑁,𝜑, 𝑡, |a⟩) performing the same algorithm, except where the phase estimation

for𝑈𝐺𝑧′ is instead performed by a Hamiltonian simulation algorithm in lemma 7.6,

and such thatM′ satisfies the following:

1. Let [′(𝑁,𝜑, 𝑡, |a⟩) be defined in the same way as [(𝑁,𝜑, 𝑡, |a⟩) from eq. (7.4),

but corresponding to the output ofM′. The following bounds are satisfied:

• If 𝑡 ≥ |𝑁 | and if 𝜑 ≤ _min(𝐺𝑁 ) −2−𝑡 +O(2−3𝑡/2), we have

max
|a⟩

[′(𝑁,𝜑, 𝑡, |a⟩) ≤ 𝜋
2

24
.

• If 𝑡 ≥ |𝑁 | and 𝜑 ≥ _min(𝐺𝑁 ) −O(2−3𝑡/2), we get

max
|a⟩

[′(𝑁,𝜑, 𝑡, |a⟩) ≥ 1− 𝜋
2

24
.

• If 𝑡 < |𝑁 |, then irrespective of the value of 𝜑,

max
|a⟩

[′(𝑁,𝜑, 𝑡, |a⟩) = O
(

1
2𝑡/2

)
.

2. The runtime overhead relative toM is at most poly(𝑁,2𝑡).

Proof. We first note that the largest power of 𝑒i𝜋𝐺𝑁 to be performed in the QPE in

lemma 7.4 is 𝑇 = 2𝑡 . Writing 𝐺′
𝑁
B 4𝐺𝑁/𝜋𝑁 , we have

𝑒i𝜋𝐺𝑁𝑇 = 𝑒i𝐺′
𝑁
𝜋2𝑁𝑇/4 =

(
𝑒i𝐺′

𝑁

)𝜋2𝑁𝑇/4
.
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We set 𝑉 (𝑠) B 𝑒i𝐺′
𝑁
𝑠, and note that 𝑉 (𝑠) satisfies the conditions of lemma 7.7 for

𝑠 ≤ 1. Let 𝐻′ be the effective Hamiltonian generated in the Hamiltonian simulation

scheme given in lemma 7.6 for the short pulse 𝑉 (1), such that �̃� (𝑠) = 𝑒i𝐻′𝑠 and

∥𝑉 (𝑠) − �̃� (𝑠)∥∞ ≤ 𝜖′ is the precision to which we want to perform Hamiltonian

simulation of the small time step 𝑉 (1); we leave 𝜖′ implicit for now, and determine

its scaling in due course. By lemma 7.7 it holds that ∥𝐻′−𝐺′
𝑁
∥∞ ≤ ^𝜖′ for some

constant ^. Set 𝐻′′ B 𝜋𝑁
4 𝐻

′, then

∥𝐻′′−𝐺𝑁 ∥∞ =

𝜋𝑁4 𝐻′− 𝜋𝑁
4
𝐺′𝑁

 ≤ 𝜋𝑁4 ^𝜖′ ≤ ^𝜖

𝜋𝑇

where we have chosen

𝜖′ ≤ 4𝜖
𝜋2𝑁𝑇

,

and consequently

|_min(𝜋𝐺𝑁 ) −_min(𝜋𝐻′′) | ≤ ^𝜖/𝑇

|_min(2𝜋𝐺𝑁 ) −_min(2𝜋𝐻′′) | ≤ 2^𝜖/𝑇
...

|_min(𝜋𝑇𝐺𝑁 ) −_min(𝜋𝑇𝐻′′) | ≤ ^𝜖 .

This immediately implies that the deviation for QPE even in the highest Endian bit is

upper-bounded by ^𝜖 .

Let �̃� (𝑇) B �̃� (1)𝜋2𝑁𝑇/4. Then by an iterative expansion we have

∥𝑈 (𝑇) −�̃� (𝑇)∥∞ = ∥𝑉 (1)𝜋2𝑁𝑇/4− �̃� (1)𝜋2𝑁𝑇/𝑁 ∥∞

≤ 𝜋
2𝑁𝑇

4
∥𝑉 (1) − �̃� (1)∥∞

≤ 𝜋
2𝑁𝑇

4
𝜖′ = 𝜖 .

Now we would like this deviation of QPE to be less than the smallest digit of

precision of the exact QPE, which is satisfied for 𝜖 = o(2−2𝑡). We thus know

that if 𝜑 > _min(𝐺𝑧′) −2−3𝑡/2 or 𝜑 < _min(𝐺𝑧′) −2−𝑡 +2−3𝑡/2, then 𝜑 > _min(𝐻′′) −
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^𝜖/𝜋 or 𝜑 < _min(𝐺𝑧′) −2−𝑡 +2−3𝑡/2 + ^𝜖/𝜋, respectively. Thus, by lemma 7.5 and

corollary 7.1, the same bounds as in corollary 7.1 hold if we choose 𝜖 = O(2−2𝑡).

The runtime overhead is then determined by an outer loop of applying 𝑉 (𝑠)

𝜋2𝑁𝑇/4 = poly2𝑡 times, and by the cost of approximating 𝑉 (𝑠) to precision 𝜖′ in

spectral norm, which by lemma 7.6 takes Õ(𝑁2/𝜖′) = O(𝑁3𝑇/𝜖) = O(𝑁323𝑡𝑡), which

is O(poly(𝑁,2𝑡). The claim follows. □

We now fully characterise the output of the QTM when non-determinism and

approximate gate sets are taken into account. That is, the QTM only has access to a

standard universal gate set and the gates𝑈𝜑,𝑈𝑁 .

Lemma 7.9 (Gate Approximation Error). LetM′(𝑁,𝜑, 𝑡, |a⟩) be the QTM described

in lemma 7.8 with the Hamiltonian simulation subroutine performed, but all other

gates still done exactly. Then there exists a QTMM′′(𝑁,𝜑, 𝑡, |a⟩) that satisfies the

following.

1. M′′ only has access to a fixed universal gate set and the gates𝑈𝜑,𝑈𝑁 .

2. Let [′′(𝑁,𝜑, 𝑡, |a⟩) be defined in the same way as [(𝑁,𝜑, 𝑡, |a⟩) from eq. (7.4),

but corresponding to the output ofM′′. Then max|a⟩ [′′(𝑁,𝜑, 𝑡, |a⟩) satisfies

the same bounds as max|a⟩ [′(𝑁,𝜑, 𝑡, |a⟩) in lemma 7.8.

3. The additional runtime overhead relative to M′ is at most a factor

poly log
(
𝑁,2𝑡

)
.

Proof. By lemma 7.6, we already know that the Hamiltonian simulation subroutine

utilises a fixed gate set. We approximate all other gates (apart from𝑈𝑁 and𝑈𝜑, which

are given explicitly)—of which there are at most #𝑔B poly(𝑁,2𝑡)many by combining

the runtime ofM from lemma 7.4 and runtime overhead ofM′ from lemma 7.8.

We know that in order to approximate a const-local gate 𝑈 to precision 𝜖 using

Soloay-Kitaev, an overhead O(log4 1/𝜖) is introduced. Choosing 𝜖 = 1/poly(𝑁,22𝑡)

small enough such that #𝑔𝜖 = 2−2𝑡/𝑡 suffices to satisfy both claims. □

We need one final property of [′′: we will need to show that it is monotonically

increasing within a certain region. This doesn’t follow straightforwardly from the
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monotonicity of [ proved in lemma 7.5 as the approximation using Solovay-Kitaev

and the Hamiltonian simulation routine may change the gradient 𝜕[′′/𝜕𝜑 to negative

at some point. We show this is not the case for a sufficiently large precision.

Lemma 7.10 (Approximate [′′ Monotonicity). Let |a⟩ be an eigenvector of 𝐺𝑁 with

eigenvalue _, and let [′′(𝑁,𝜑, 𝑡, |a⟩) be defined as in lemma 7.9. Then, provided

the gates are approximated to precision 𝜖 ≤ 2−2𝑡 , [′′(𝑁,𝜑, 𝑡, |a⟩) is monotonically

increasing for 𝜑 ∈
(
_−2−𝑡 +O(2−3𝑡/2),_−O(2−3𝑡/2)

)
.

Proof. We can express [ = ⟨𝜓 |𝑈 (𝜑) |𝜙⟩ for some initial states |𝜙⟩, and some appro-

priate state |𝜓⟩, respectively, and𝑈 (𝜑) =𝑈1𝑈PG(𝜑)𝑈2, where𝑈PG(𝜑) denotes the

phase gradient part dependent on 𝜑, and𝑈1 and𝑈2 collect all the unitary operations

before and after (and are independent of 𝜑). We then have

𝜕[

𝜕𝜑
= ⟨𝜓 |𝑈1

(
𝜕𝑈PG(𝜑)
𝜕𝜑

)
𝑈2 |𝜙⟩ .

This means the deviation is entirely dependent on the gradient of the phase gradient

matrix (as expected).

Denote with �̃�1,�̃�2 the circuits 𝑈1 and 𝑈2 circuits with the Solovay-Kitaev

approximation used for any gates which cannot be performed exactly, which we

assume to be implemented to accuracy 𝜖 , i.e. such that ∥𝑈𝑖−�̃�𝑖∥∞ ≤ 𝜖 for 𝑖 = 1,2. We

emphasise our assumption that no gate in𝑈PG has to be approximated. Analogously

to before, we then have

𝜕[̃

𝜕𝜑
= ⟨𝜓 | �̃�1

(
𝜕𝑈PG(𝜑)
𝜕𝜑

)
�̃�2 |𝜙⟩ .

Consequently,���� 𝜕[̃𝜕𝜑 − 𝜕[𝜕𝜑 ���� ≤ ����Tr
(
𝜕𝑈PG(𝜑)
𝜕𝜑

(
�̃�1 |𝜙⟩⟨𝜓 | �̃�2−𝑈1 |𝜙⟩⟨𝜓 |𝑈2

) )����
≤

𝜕𝑈PG(𝜑)
𝜕𝜑


∞

�̃�1�̃�2−𝑈1𝑈2

∞ . (7.16)

The dependence of 𝑈PG(𝜑) only comes from the controlled 𝑈𝜑 operations, and
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𝑈PG(𝜑) = 𝑐𝑈𝜑𝑈2
𝜑 . . . 𝑐𝑈

2𝑡−1
𝜑 (𝑈PG(𝜑) actually has a set of 𝑡 Hadamards, however, we

can absorb these into 𝑈1 for convenience). All controlled gate powers within the

phase gradient circuit are of the form

diag
(
1,1,1,exp

(
2𝜋i𝜑2𝑘

))
with derivative 2𝜋i×2𝑘 diag

(
0,0,0,exp

(
2𝜋i𝜑2𝑘

))
.

Thus using the product formula we can write𝜕𝑈PG(𝜑)
𝜕𝜑


∞
≤

𝜕𝑐𝑈𝜑𝜕𝜑
𝑐𝑈2

𝜑 . . . 𝑐𝑈
2𝑡−1
𝜑


∞

+
𝑐𝑈𝜑 𝜕𝑐𝑈2

𝜑

𝜕𝜑
𝑐𝑈22

𝜑 . . . 𝑐𝑈
2𝑡−1
𝜑


∞

...

+
𝑐𝑈𝜑𝑐𝑈2

𝜑 . . .
𝜕𝑐𝑈2𝑡−1

𝜑

𝜕𝜑


∞

≤ 𝑡
𝜕𝑐𝑈2𝑡−1

𝜑

𝜕𝜑


∞

From this standard product formula for the derivative of a sequence of gates and

using eq. (7.16) this means ���� 𝜕[̃𝜕𝜑 − 𝜕[𝜕𝜑 ���� ≤ 2𝜋× 𝑡2𝑡 ×2𝜖 .

By lemma 7.5, 𝜕[/𝜕𝜑 within the interval 𝜑 ∈ (_ − 2𝑡 +O(23𝑡/2),_ −O(23𝑡/2)) is

≥ 1; it thus suffices to demand 2𝜋× 𝑡2𝑡 ×2𝜖 ≤ 2−𝑡; a choice of 𝜖 = 2−2𝑡 proves the

claim. □

The results within this section then culminate in a result proving that important

properties which hold for [ hold for the approximated version [′′; in particular

montonicity in a particular interval and bounds on the energy outside of this interval.

Theorem 7.7 (Phase Comparator QTM). Let 𝑁 ∈ N, 𝜑 ∈ [0,1]. For any Gottesman-

Irani Hamiltonian 𝐺𝑁 there exists a quantum Turing machine M̃(𝑁,𝜑, 𝑡, |a⟩) with

access to special gates𝑈𝑁 and𝑈𝜑 as in lemma 7.4 which, on input 𝑡 ∈N, |a⟩ ∈ (C𝑑)⊗𝑁 ,
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and in time poly(2𝑡 , 𝑁) produces an output state asM′′ in lemma 7.9. Abbreviating

[̃(𝑁,𝜑, 𝑡) B max
|a⟩

[′′(𝑁,𝜑, 𝑡, |a⟩), (7.17)

where [′′(𝑁,𝜑, 𝑡, |a⟩) is defined in in lemma 7.9, we have that

[̃(𝑁,𝜑, 𝑡)


≥ 1− 𝜋2

24 𝑡 ≥ |𝑁 | and 𝜑 ≥ _min(𝐺𝑁 ) −O(2−3𝑡/2)

≤ 𝜋2

24 𝑡 ≥ |𝑁 | and 𝜑 ≤ _min(𝐺𝑁 ) −2−𝑡 +O(2−3𝑡/2)

= O(2−𝑡/2) 𝑡 < |𝑁 |.

Furthermore, [̃(𝑁,𝜑, 𝑡) is monotonically increasing in the interval

𝜑 ∈
[
_min(𝐺𝑁 ) −O(2−3𝑡/2) ,_min(𝐺𝑁 ) −2−𝑡 +O(2−3𝑡/2)

]
.

Proof. We takeM′′ from lemma 7.9, and leave the input for the |a⟩ section uncon-

strained. The rest follows by corollary 7.1 and lemma 7.9. The fact [̃ is monotonically

increasing in the given region is proven in lemma 7.10. □

One fact that we have glossed over is that we can assume that the QTM in

theorem 7.7 is well-formed as defined in [BV97, Def. 3.3]—as its evolution is trivially

unitary—and well-behaved as in [BV97, Def. 3.12]; the latter condition simply means

that the QTM halts in a final state such that the halting head state is in the same cell.

Moreover, we can assume further “good” properties we wish: unidirectionality

(meaning each state is only ever entered from one direction) which Bernstein and

Vazirani show can be simulated if not originally present ([BV97, Lem. 5.5]).

7.5.3 A Phase Comparator History State Hamiltonian

In this section we translate the QTM designed in section 7.5.1 into a history state

Hamiltonian. This technique is by now standard [KSV02; GI09] and used ubiquitously

throughout literature (see e.g. [Bau20, Sec. 4.1], or [BC18a, Sec. 1], for an overview).

We start with the following refinement regarding standard form Hamiltonians (those

with an initial and final penalty at the start and end of the computation).
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Theorem 7.8 (Adaptation of Theorem 3.4 from [Wat19]). Let 𝐻 (`) be standard-from

Hamiltonian with minimum output penalty ` on the final time step, such that the

encoded QTM has runtime 𝑇 . Then if ` = 𝑘
256𝑇 for 0 ≤ 𝑘 ≤ 1, the following bound

holds:
0.99𝑘
256𝑇2 ≤ _min

(
𝐻

(
𝑘

256𝑇

))
≤ 1.05𝑘

256𝑇2

Following from this, we take the arguably shortest rigorous route, and directly

formulate the following theorem.

Theorem 7.9 (Phase Comparator Hamiltonian). Let 𝑁 ∈ N, and 𝜑 ∈ [0,1]. For

any Gottesman-Irani Hamiltonian 𝐺𝑁 there exists a constant 𝑑 > 0, and Hermitian

operators ℎ(1) ∈ B(C𝑑), ℎ(2) ∈ B(C𝑑 ×C𝑑), such that

1. ℎ(1) , ℎ(2) ≥ 0, with matrix entries in Z.

2. ℎ(2) = 𝐴+ 𝑒i𝜋𝜑𝐵+ 𝑒−i𝜋𝜑𝐵† + 𝑒i𝜋0.enc(𝑁)𝐶 + 𝑒−i𝜋0.enc(𝑁)𝐶†, where

• 𝐵,𝐶 ∈ B(C𝑑) with coefficients in Z, and

• 𝐴 ∈ B(C𝑑) is Hermitian and with coefficients in Z+Z/
√

2+ 𝑒i𝜋/4Z.

Define a translationally-invariant nearest-neighbour Hamiltonian on a spin chain of

length 𝐿 via

𝐻QTM(𝐿) B
𝐿∑︁
𝑖=1
ℎ
(1)
𝑖
+
𝐿−1∑︁
𝑖=1
ℎ
(2)
𝑖,𝑖+1.

Denote with |■⟩ and | ⟩ two special basis states of C𝑑 , and for 𝑚 ∈ N, denote the

bracketed subspace

Sbr(𝑚) B | ⟩ ⊗(C𝑑)⊗𝑚⊗ |■⟩ ⊗(C𝑑)⊗(𝐿−𝑚) | ⟩ . (7.18)

Then 𝐻QTM(𝐿) has the following properties.

3. 𝐻QTM(𝐿) =
⊕𝐿−1

𝑚=1𝐻 (𝐿,𝑚) ⊕ 𝑅, where 𝐻 (𝐿,𝑚) B 𝐻QTM(𝐿) |Sbr (𝑚); i.e.

𝐻QTM(𝐿) is block-diagonal with respect to the subspaces spanned by Sbr(𝑚),

and 𝑅 captures the remaining block.

4. 𝑅 ≥ 1.
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5. _min(𝐻 (𝐿,𝑚)) ≥ 1 if 𝑚 = 0,1.

6. There exist 𝐿𝑁 = poly𝑁 and 𝑚𝑁 = poly log2𝑁 and an integer constant 𝑏, such

that the ground state energy _min(𝐻 (𝐿,𝑚)) of the other blocks satisfies

_min(𝐻 (𝐿,𝑚))


≤ 1.05

256𝐿𝑏
𝜋2

24 (𝑚, 𝐿) = (𝑚𝑁 , 𝐿𝑁 ) ∧𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶)

≥ 0.99
256𝐿𝑏

(
1− 𝜋2

24

)
(𝑚, 𝐿) = (𝑚𝑁 , 𝐿𝑁 ) ∧𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶)

≥ 0.99
256𝐿𝑏

(
1− 𝜋2

24

)
𝑚 < |𝑁 | ∨ (𝑚, 𝐿) ≠ (𝑚𝑁 , 𝐿𝑁 ),

where 𝑇 (𝐿) = 𝐿𝑏/2 is the runtime of the encoded computation.

7. If (𝑚, 𝐿) = (𝑚𝑁 , 𝐿𝑁 ), then _min(𝐻 (𝐿,𝑚)) is monotonically decreasing with 𝜑

for

𝜑 ∈
[
_min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶) ,_min(𝐺𝑁 ) −O(𝑁−6𝐶)

]
.

Proof. A QTM can be translated into a 2-local quantum Thue system [BCO17]; its

associated Hamiltonian is then a 2-local nearest-neighbour translationally-invariant

Hamiltonian. Classical QTS transition rules yield integer matrix entries; the only

nontrivial matrix entries stem from transition rules involving quantum letters (i.e.

those that label sites where the quantum state is encoded, and transitions between

those are unitary)—which in turn are simply the quantum gates available to the

computation we will encode; as the phase gradient gates 𝑈𝑁 , 𝑈𝜑, and a universal

gate set comprising CNOT, Hadamard and T will suffice for our purposes, the first

two claims follow.

It is furthermore clear that one can statically penalise all but the bracketed

configurations, such that 𝑅 ≥ 1, and all bracketed states in Sbr(0) and Sbr(1) (see

[GI09, Sec. 5] for how this can be done). Moreover, the QTM we will construct will

treat |■⟩ as a passive state, i.e. it will never move the block; as such, on the bracketed

states themselves, the Hamiltonian is block-diagonal with respect to the position of

the |■⟩ marker state, which is assumed to be at distance 𝑚 along the spin chain. The

next three claims follow.

Let 𝑁−𝐶 be the promise gap of the local Hamiltonian problem _min(𝐺𝑁 ) for
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some constant 𝐶 ∈ N.8 In order to resolve this promise gap with the given precision

of 𝑡 bits, we would require

2−𝑡 ≤ 𝑁−𝐶 ⇐= 𝑡 ≥ 2×4𝐶 ⌈log2𝑁⌉ C 𝑚𝑁 (7.19)

where the extra factor of 4 was added such that at least four times as many bits than

necessary are resolved. The computation we encode then performs the following

steps.

1. Translate the segment length 𝐿 into binary onto a track, and do the same with

𝑚.

2. Perform M̃ from theorem 7.7, using 𝑡 = 𝑚 as precision input.

3. Verify that

(a) 𝐿 = 𝐿𝑁 B 2+4𝑡 + 𝑡 +𝑁 , and

(b) 𝑡 = 𝑚 = 𝑚𝑁 as defined in eq. (7.19), and

(c) 𝑡 is large enough such that [̃(𝑁,𝜑, 𝑡) ≤ 𝜋2/24 even in case 𝑡 < |𝑁 |

(i.e. O(2−𝑡/2) ≤ 𝜋2/24 in theorem 7.7).

If any of the above conditions do not hold, set a penalty flag.

It is a standard exercise to ensure that in all computational branches the size of the

history state (i.e. the length of the computation) has the same length; this is usually

done by introducing a global clock and idling steps (we point the reader to [CPW15,

Sec. 4]). We can assume that the runtime of all of the above computation is precisely

𝑇 (𝐿) = 𝐿𝑏/2 for some even integer constant 𝑏 > 0.

We assume our history state Hamiltonian features a single in- and output penalty,

as in section 3.6; it is straightforward to show that 𝐻 (𝐿,𝑚) is also standard form as

in [Wat19, Sec. 5]. We choose the output penalty to penalise the complement of the

accepting subspace defined by the projector Π = (1− |11⟩⟨11| 𝑓 ) on the final time step

of the computation, as well as the case where 𝐿 ≠ 𝐿𝑁 (this can both be done locally

8We can always shrink the promise gap to obtain this scaling for some integer 𝐶.
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for standard form Hamiltonians); the penalty will have strength 1/256𝑇2 = 1/256𝐿𝑏.

Since we do not want our Hamiltonian to have another explicit dependence on 𝐿, we

remark that this can be done by rotating an ancilla

|0⟩𝑎 ↦−→ 𝛿 |0⟩𝑎 +
√︁

1− 𝛿2 |1⟩𝑎 for 𝛿 =
1

256𝐿𝑏
(7.20)

as 𝐿 and 𝑏 are both known; then the penalty can be conditioned onto |0⟩⟨0|𝑎 ⊗Π C Π′.

Then for a valid history state |𝜒⟩ and by using theorem 7.8, we have that

Tr[|𝜒⟩⟨𝜒 |Π′] = 1
256𝑇2 (1−𝐸 (𝐿,𝑁, 𝜑)),

where 𝐸 (𝐿,𝑁, 𝜑) is the weight on the accepting subspace of the computation, which

is the product of [̃ (i.e. M̃’s output) and the test that 𝐿 = 𝐿𝑁 and 𝑚 = |𝑁 |.9

The case where 𝑚 = 𝑡 is too short to expand 𝑁 in full is captured by the output

of the QTM M̃, i.e. by theorem 7.7 we have that [̃(𝑁,𝜑, 𝑡) = O(2−𝑡/2) in this case,

and hence also 𝐸 (𝐿,𝑁, 𝜑) = O(2−𝑡/2).

Let us thus focus on the case when 𝑡 is large enough (i.e. 𝑡 ≥ |𝑁 |). If 𝐿 ≠ 𝐿𝑁 or

𝑚 ≠ 𝑚𝑁 , 𝐸 (𝐿,𝑁, 𝜑) = 0 by construction, so we only need to analyse the remaining

case of 𝐿 = 𝐿𝑁 and 𝑚 = 𝑚𝑁 . By theorem 7.7 the accepting state overlap is then

[̃(𝑁,𝜑, 𝑡)


≥ 1− 𝜋2

24 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶)

≤ 𝜋2

24 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶).

where we made use of the fact that 2−𝑡 = 2−𝑚𝑁 = 𝑁−4𝐶 and 2−3𝑡/2 = 2−3𝑚𝑁 /2 = 𝑁−6𝐶 ,

and thus overall

𝐸 (𝐿,𝑁, 𝜑)


≥ 1− 𝜋2

24 (𝐿,𝑚) = (𝐿𝑁 ,𝑚𝑁 ) ∧𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶)

≤ 𝜋2

24 (𝐿,𝑚) = (𝐿𝑁 ,𝑚𝑁 ) ∧𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶)

≤ 𝜋2

24 𝑡 = 𝑚 < |𝑁 | ∨ (𝐿,𝑚) ≠ (𝐿𝑁 ,𝑚𝑁 ).

(7.21)

9We note that the last test can fail to produce the right result if 𝑡 = 𝑚 was too small to begin with to
expand enough bits of 𝑁; but in this case, the output of the QTM M̃ already asserts a small acceptance
probability, by theorem 7.7.
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The bounds in the statement then follow from combining eq. (7.21) with theorem 7.8.

Finally, to prove _min(𝐻 (𝐿,𝑚)) is monotonically decreasing with 𝜑, we note

that 1− [̃(𝑁,𝜑, 𝑡) is monotonically decreasing ( since theorem 7.7 shows [̃(𝑁,𝜑, 𝑡)

is monotonically increasing). Since the Hamiltonian is standard form, this acts

as a penalty of the form 1
256𝑇 (1− [̃(𝑁,𝜑, 𝑡)), which is monotonically decreasing,

and which can be shown by standard techniques to be equivalent to adding on a

positive semi-definite projector [Wat19]. As adding a positive semi-definite matrix

to another matrix can never lead to a decrease in the combined eigenvalues, the claim

follows. □

7.5.4 Combining the Comparator Hamiltonian with a 2D Marker

Tiling

We import the 2D Marker Hamiltonian from section 3.8, which describes a checker-

board pattern for which each checkerboard square of size 𝐿×𝐿, with a special marker

offset at position 𝑚 < 𝐿 on one of the edges, has a net negative energy contribution

∝ 1/4 𝑓 (𝐿,𝑚) .

To do this, we introduce a special marker state |★⟩ 10 which interacts with the

Marker Hamiltonian. The function 𝑓 is then defined by the placement of |★⟩, and so

we can use the placement of |★⟩ (controlled by a classical tiling pattern within each

of the squares) to define 𝑓 to have the appropriate properties for our proof.

We paraphrase the following result, tightening the bounds on the Marker

Hamiltonian’s ground state energy as we go.

Theorem 7.10 (Adjustment from Theorem 3.5). LetH = (C𝑑)⊗Λ be a square spin

lattice Λ with spins of dimension 𝑑, and let 𝑐 > 0. Further let 𝑓 (𝐿) be a function

such that 𝑓 (𝐿) ≤ 𝐿 is an integer and computable in time and space ≤ 𝑘𝐿, for some

constant 𝑘 ∈ N. Then there exists a translationally-invariant nearest-neighbour

Hamiltonian 𝐻 (⊞, 𝑓 ) =
∑
⟨𝑖, 𝑗⟩ ℎ

(⊞, 𝑓 )
𝑖, 𝑗

with the following properties:

1. 𝐻 (⊞, 𝑓 ) =
⊕

𝐿>0𝐻
(⊞, 𝑓 ) (𝐿) ⊕ 𝑅′.

10Not to be confused with the bracketing state |■⟩ in eq. (7.18); and note we also re-use the letter 𝑚
here to indicate the offset of |★⟩. This is not necessarily the same offset as the offset for |■⟩.
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2. 𝑅′ ≥ 0.

3. 𝐻 (⊞, 𝑓 ) (𝐿) has a unique ground state corresponding to a checkerboard tiling.

Let 𝐻 (⊞, 𝑓 ) (𝐿) |𝑆 be the restriction of the Hamiltonian to a single checkerboard

square, then for all 𝐿 ≥ 2,

− 9/4
4 𝑓 (𝐿)

≤ _min(𝐻 (⊞, 𝑓 ) (𝐿) |𝑆) ≤ −
9/4−9/4 𝑓 (𝐿)

4 𝑓 (𝐿)
. (7.22)

Proof. We construct an augmented checkerboard tiling as in section 3.7 which places

the a special marker |★⟩ offset at 𝑓 (𝐿), using a classical tiling within the checkerboard

square; as 𝑓 (𝐿) was computable within time and space ≤ 𝑘𝐿 for some constant 𝑘 ∈ N

the existence of such a tiling follows by lemma 3.13.

Following theorem 3.4 and theorem 3.5 and the notation therein, the bounds for

a Marker Hamiltonian of length 𝐿 to be found are denoted

−1
2
− lwr(𝑤) ≤ _min(Δ′𝑤) ≤ −

1
2
−upr(𝑤)

where Δ′𝑤 denotes precisely one segment of the Marker Hamiltonian, encoding a

computation of length 𝑤—which is 𝐿 here, but to follow the notation of the lemmas

we will amend we stick to 𝑤: this computation runtime can then be augmented to

𝑓 (𝑤).

Lower Bound. Note that in the proof of lemma 3.16, the lower bound was obtained

by realising
𝑎−1
𝑎 +1

≤ 1 ∀𝑤 ⇐= lwr(𝑤) = 3
4𝑤
.

Analysing eq. (3.28) of section 3.8 more carefully, we note the same bound also holds

for lwr(𝑤) = 9/4×4−𝑤.

Upper Bound. In [Bau+18b, Lem. 8], it is easy to check that the inequality

𝑎−1
𝑎 +1

≤ 4−𝑤
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also holds when starting with 𝑝𝑤 (−1/2− (9/4− 𝛿) ×4−𝑤), for any

𝛿 ≥ 9(5×42−2)
4(2+21+4𝑤 −4×4𝑤)

≥ 9
4𝑤
.

Thus upr(𝑤) = (9/4+9/4𝑤) ×4−𝑤 suffices.

Finally, the −1/2 offset are removed as in [Bau+18b, Th. 10]. □

7.5.5 From Phase Comparison to Phase Transition

Following section 3.9, we will now combine the QTM Hamiltonian 𝐻QTM with

the 2D Marker Hamiltonian 𝐻 (⊞, 𝑓 ) , to translate the outcome of the comparison

𝜑 ≶ _min(𝐺𝑁 ), where 𝐺𝑁 is the Gottesman-Irani Hamiltonian simulated by 𝐻QTM,

into the question of existence of a negative eigenstate within one square of the 2D

Marker Hamiltonian. We will assume 𝐻 (⊞, 𝑓 ) is such that all checkerboard squares

have square sizes 𝐿 ∈ 4N; this can always be achieved by adding a fixed-dimensional

tiling, which we leave implicit in the following.

The aim is to produce an overall Hamiltonian which has negative energy density

when the encoded computation is accepting, but a positive energy density when

the encoded computation rejects. The checkerboard structure allows us to create a

repeated structure across the lattice; as each square will contribute a finite amount of

either positive or negative energy, the density will follow suit.

Lemma 7.11. Let 𝐻 B 𝐻QTM ⊗ 1+1⊗𝐻 (⊞, 𝑓 ) on a spin lattice. Then its ground

state is a product state |𝜓⟩ ⊗ |𝑇⟩𝑐, where |𝑇⟩𝑐 is the checkerboard tiling from 𝐻 (⊞, 𝑓 ) ,

and |𝜓⟩ the ground state of 𝐻QTM. Consider an 𝐿×𝐿 square denoted 𝑆(𝐿) within the

tiling and let 𝐻 |𝑆(𝐿) be the Hamiltonian restricted to such a square. Then, adopting

the notation from eq. (7.21),

_min(𝐻 |𝑆(𝐿))


< 0 if (𝐿,𝑚) = (𝐿𝑁 ,𝑚𝑁 ) ∧𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶)

≥ 0 if (𝐿,𝑚) = (𝐿𝑁 ,𝑚𝑁 ) ∧𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶)

≥ 0 if (𝐿,𝑚) ≠ (𝐿𝑁 ,𝑚𝑁 ).

Furthermore, if 𝐿 = 𝐿𝑁 and 𝑚 = 𝑚𝑁 , then there is exactly one point in 𝜑 where
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_min(𝐻 |𝑆(𝐿)) changes from < 0 to = 0 which occurs in the interval

𝜑 ∈
[
_min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶) ,_min(𝐺𝑁 ) −O(𝑁−6𝐶)

]
.

Proof. We choose the Marker falloff 𝑓 (𝐿) such that

9
4

4− 𝑓 (𝐿) =
9

16
1

256𝐿𝑏
=⇒ 𝑓 (𝐿) = 5+ log4(𝐿𝑏).

We now compare the energy (given by theorem 7.10) with the energy of the

Hamiltonian encoding the QTM (given in theorem 7.9) and see the following bounds

hold for sufficiently large 𝐿:

0.99
256𝐿𝑏

(
1− 𝜋

2

24

)
≥ 9

4
4− 𝑓 (𝐿) and 4− 𝑓 (𝐿)

(
9
4
− 90

4×2𝐿

)
≥ 1.05

256𝐿𝑏
𝜋2

24

where 𝑏 is the runtime exponent of 𝑇 = 𝑇 (𝐿) = 𝐿𝑏/2, as given in theorem 7.9. Note

𝑓 (𝐿) is trivially computable in time and space 𝑘𝐿 for some constant 𝑘 .11 This yields

a Marker Hamiltonian with a ground state energy as in theorem 7.10, such that the

ground state energy is “sandwiched” with ample margins between the upper and lower

bounds of the ground state energy of the Hamiltonian encoding the computation.

As the spectrum is product by construction, the joint spectrum is then spec(𝐻) =

spec(𝐻QTM) + spec(𝐻 (⊞, 𝑓 )), and the rest follows from lemma 3.18.

Finally the fact there is exactly one point where _min(𝐻 |𝑆(𝐿)) changes from

< 0 to = 0 is due to the fact that (as per point 7 of theorem 7.9) _min(𝐻QTM(𝐿)) is

strictly decreasing for 𝜑 ∈ [_min(𝐺𝑁 )−𝑁−4𝐶 +O(𝑁−6𝐶)),_min(𝐺𝑁 )−O(𝑁−6𝐶)]. As

per the above analysis, the point at which |_min(𝐻QTM(𝐿)) | = |_min(𝐻 (⊞, 𝑓 ) (𝐿) |𝑆) |

occurs for energy values corresponding to 𝜑 in this interval, hence this point

at which |_min(𝐻QTM(𝐿)) | < |_min(𝐻 (⊞, 𝑓 ) (𝐿) |𝑆) | changes to |_min(𝐻QTM(𝐿)) | =

|_min(𝐻 (⊞, 𝑓 ) (𝐿) |𝑆) | can only happen at a single point. □

Since we want the trivial ground state in the gapped phase to have eigenvalue

11Indeed: define a tiling pattern that counts in base 4, and does so 𝑏 times; then counts another 5
steps. Penalise tile configurations indicating that the base-4 expansion of 𝐿 is not of the form 100...,
corresponding to a number 𝐿 = 4𝑥 for some integer 𝑥. This can all be done with 𝑘 = 1.
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zero, we want to shift the Hamiltonian 𝐻 B 𝐻QTM⊗1+1⊗𝐻 (⊞, 𝑓 ) constructed above

by 1; this is a standard trick, summarised in the following lemma.

Lemma 7.12. There exists a Hamiltonian 𝐻′, with the same properties as 𝐻′ B

𝐻 +∑𝑖 𝑃𝑖, where 𝑃𝑖 is a projector, such that on a lattice Λ(𝐿)

_min(𝐻′(𝜑))


= 1+

⌊
𝐿
𝐿𝑁

⌋2
_min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) if 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶)

≥ 1 if 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶),

where 𝐻 B 𝐻QTM ⊗1+1⊗𝐻 (⊞, 𝑓 ) .

Proof. From lemma 7.11 we know the energy of a single square 𝑆(𝐿𝑁 ). If the

ground state _min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) < 0, then the overall ground state of the lattice

becomes a checkerboard of these squares. As per corollary 3.7 in chapter 3, it can

be shown that incomplete squares contribute zero energy, giving a total energy of⌊
𝐿
𝐿𝑁

⌋2
_min(𝐻 (𝜑) |𝑆(𝐿𝑁 )). If _min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) ≥ 0, then the lattice has ≥ 0.

Finally, by using the energy shift trick of [Bau20, Lem. 23], we can add on an

energy shift of 1 to the Hamiltonian, giving the bounds stated in the lemma. □

The final step is then to combine 𝐻′ from lemma 7.12 with a trivial, a dense,

and a guard Hamiltonian, to lift the ground state energy to a ground state energy

density statement — this is exactly what was done in theorem 7.5. This modifies

the Hamiltonian so that phase transitions can occur between the ground state of the

checkerboard Hamiltonian and the ground state of a trivial zero energy state.

Theorem 7.11 (Existence of Two Phases). Let𝐺𝑁 be a Gottesman-Irani Hamiltonian

with promise gap ∼ 𝑁−𝐶 for some constant 𝐶. Then there exists a Hamiltonian

𝐻Λ(𝑁,𝜑) =∑
⟨𝑖, 𝑗⟩ ℎ

𝑁
𝑖, 𝑗
(𝜑) +∑𝑖∈Λ ℎ

𝑁
𝑖

, and an order parameter𝑂𝐴/𝐵 acting on a subset

𝐹 ⊂ Λ of lattice sites, |𝐹 | constant, such that, as Λ→∞ the following holds.

• if 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶), then

i 𝐻Λ is gapped with spectral gap ≥ 1/2.

ii product ground state.
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iii has order parameter expectation value ⟨𝑂𝐴/𝐵⟩ = 1.

• if 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶), then

i 𝐻Λ is gapless.

ii has a ground state with algebraically decaying correlations.

iii has order parameter expectation value ⟨𝑂𝐴/𝐵⟩ = 0.

Proof. Take 𝐻dense to be a Hamiltonian that has an asymptotically dense spectrum

in [0,∞) onH2. For convenience we choose 𝐻dense to be the 1D critical XY-model

[LSM61]. 𝐻trivial to be diagonal in the computational basis, with a single product

ground state |0⟩⊗Λ, minimum eigenvalue 0 and spectral gap 1 acting on H3, and

𝐻guard acting onH =H1 ⊗H2 ⊕H3 via

𝐻guard B
∑︁
𝑖∼ 𝑗

(
1
(𝑖)
1,2 ⊗1

( 𝑗)
3 +1

(𝑖)
3 ⊗1

( 𝑗)
1,2

)
.

Take 𝐻′ from lemma 7.12, and set

𝐻Λ(𝑁,𝜑) B 𝐻′⊗12 ⊕ 03 +11 ⊗𝐻dense ⊕ 03 +01,2 ⊕𝐻trivial +𝐻guard.

Then

spec(𝐻Λ) = {0} ∪ (spec(𝐻′) + spec(𝐻dense)) ∪𝐺

for some 𝐺 ⊂ [1,∞), as in the proof of theorem 7.5. From lemma 7.12 we can

assume that for lattice sizes going to infinity,

_min(𝐻′)


≥ 1 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶)

−→ −∞ 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶),

as eventually there will exist a checkerboard square size such that 𝐿 = 𝐿𝑁 and

𝑡 = 𝑚𝑁 ≥ |𝑁 | is satisfiable; the only differentiating condition left in lemma 7.11

is then 𝜑 ≤ _min(𝐺𝑁 ) − 𝑁−4𝐶 +O(𝑁−6𝐶). Then if _min(𝐻) ≥ 0, we have that

spec(𝐻) + spec(𝐻dense) ⊆ [1,∞). The ground state of 𝐻Λ is the trivial ground state
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with spectral gap 1. Otherwise, if _min(𝐻) −→ −∞, 𝐻Λ becomes asymptotically

gapless and dense via 𝐻dense.

The order parameter is then defined as

𝑂𝐴/𝐵 =
1
|𝐹 |

∑︁
𝑖∈𝐹

(
01,2 ⊕ |0⟩⟨0|3

) (𝑖)
which makes it clear that in case the ground state is determined by 𝐻trivial, the

expectation value ⟨𝑂𝐴/𝐵⟩ = 1; otherwise zero.

The claim of the algebraically decaying correlation functions follows from the

fact that the critical XY-model has algebraically decaying correlations functions

[LSM61]. □

It is clear that for our construction we could choose 𝐹 to only contain a single

spin, but we leave the statement in its generic form.

7.5.6 Existence of Exactly One Critical Point
The following lemma shows that there is exactly one critical point between the two

phases of the Hamiltonian. We will give the statement of the lemma here, but defer

its proof to the two-parameter case (which is the more generic setting).

Lemma 7.13 (Existence of Exactly One Critical Point). Consider the Hamiltonian

𝐻Λ(𝑁,𝜑) from theorem 7.11. This has exactly one critical point in the interval

𝜑∗ ∈
[
_min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶) ,_min(𝐺𝑁 ) −O(𝑁−6𝐶)

]
.

Proof. As per lemma 7.11 there is exactly one 𝜑 within the given interval where

_min(𝐻 |𝑆(𝐿)) goes from < 0 to ≥ 0, which (as per the proof of theorem 7.11)

corresponds to the phase transition from gapped to gapless. □

7.5.7 Reduction of Translationally Invariant Local Hamiltonian

to 1-CRT-PRM
We first remark that the parameter range for 𝜑 where the critical point can possibly be

found is shrinking polynomially, due to the shrinking promise gap of the Gottesman-
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Figure 7.4: The two YES and NO cases (left resp. right) of phase diagrams, for the
Hamiltonian in theorem 7.11. By lemma 7.14, the difference between the two
dashed vertical lines can be scaled up to Ω(1). The light blue area indicates a
1/poly(𝑁)-sized interval of uncertainty; yet in either case, by lemma 7.13, there
exists precisely one critical point 𝜑∗ therein. The red region indicates an interval
(of up to size Ω(1), by lemma 7.14) which is either entirely in phase 𝐴 or 𝐵;
determining which of the two cases holds is QMAEXP-hard.

Irani Hamiltonian that we encode, and the associated comparison of its ground state

energy _ ≶ 𝜑. There is now two approaches to scaling up the 𝜑 parameter, so that we

can get an O(1)-area within the phase diagram where we cannot locate the critical

point. This is summarised in the following remark.

Remark 7.1. Let 0 ≤ 𝑥 < 𝑡. There exists a modification to the phase comparator

QTM in section 7.5.1 that allows one to perform the rescaled phase comparison

𝑎 ≶ 2−𝑥𝑏 for the two unitaries𝑈𝑎 and𝑈𝑏, where we assumed 1/10 ≤ 𝑏 ≤ 1, with an

error (in the amplitudes of the resulting QPE output) upper-bounded by 2−2𝑡 , and

with overhead poly(2𝑡).

Proof. By [SMM09], we know that for an unknown “black-box” unitary 𝑈, we

can implement any power 𝑈𝑦 for 𝑦 > 0 of it to precision 𝜖 (in trace norm) in time

O(⌊𝑦⌋ + log(1/𝜖)/𝜖) (i.e. with that many calls to𝑈), as long as the phase 𝜑 we want

to estimate in𝑈 is not too close to 0, and no other phase lies in (0, 𝜑) (a gappedness

constraint).

For us, we want to implement𝑈𝑦

𝑏
for 𝑦 = 2−𝑥×2𝑚 for𝑚 = 0, . . . , 𝑡. By assumption,

𝑏 satisfies the gappedness condition (as 0 and 𝜑 are the only eigenphases of𝑈, and
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𝜖 ≤ 𝜑). Since𝑈𝑏 acts on a single qubit only and 0 ≤ 𝑥 < 𝑡, we know that a precision

of 𝜖 = 2−4𝑡 suffices to implement 𝑈𝑦

𝑏
such that each controlled rotation gate is off

(in operator norm) by at most 𝜖 ×2𝑚 ≤ 2−3𝑡 ∀𝑚. As we have 𝑡 controlled rotation

gates, the overall deviation is at most 𝑡 × 2−3𝑡 ≤ 2−2𝑡 . All amplitudes within the

rescaled phase comparator thus at most deviate by 2−2𝑡 , and the overhead is poly2𝑡 ,

as claimed. □

Lemma 7.14 (Existence of Two Phases with O(1) YES/NO Threshold). Let 𝑝, 𝑞

be the polynomials defined in theorem 7.3 such that 1/𝑝(𝑁) −1/𝑞(𝑁) = Ω(𝑁−𝐶).

There exists a variant of the Hamiltonian 𝐻Λ(𝑁,𝜑) such that the two cases for 𝜑 in

theorem 7.11 read

1. if 𝜑∗ ≤ 𝐴(𝑁) = 𝑁𝐶 (1/𝑞(𝑁) −O(𝑁−6𝐶)), and

2. if 𝜑∗ ≥ 𝐵(𝑁) = 𝑁𝐶 (1/𝑝(𝑁) −𝑁4𝐶 +O(𝑁−6𝐶)).

The two bounds satisfy 𝐵(𝑁) − 𝐴(𝑁) = Ω(1).

Proof. Follows immediately from remark 7.1, by scaling 𝜑 down to be within Θ(1)

of 𝐺𝑁’s promise gap (which is a factor 1/poly𝑁 ≥ 2−𝑡 for a polynomial we can

compute efficiently, proportional to 𝑝(𝑁)). □

Corollary 7.2. 1-CRT-PRM is QMAEXP-hard for an Ω(1) gap.

Proof. Immediate from lemma 7.14. □

The fact that we can rescale the range of 𝜑 to lie within an Ω(1) region is, in a

sense, unsurprising: the same could be said to hold for the local Hamiltonian problem,

where one can scale the overall Hamiltonian by a factor to have a Ω(1) promise gap

as well. Note, however, that this is a meaningless transformation: the precision to

which one wants to obtain the ground state energy is relative to the norm of the

Hamiltonian (cf. “relative promise gap” or “relative UNSAT penalty”, [BC18a]).

There are thus two scale choices for the local Hamiltonian problem: i. the norm of

the local terms, or ii. the norm of the overall (finite-sized) Hamiltonian. Naturally,

in the first case, one could obtain a stronger local interaction without increasing the



7.5. QMAEXP Hardness of 1-CRT-PRM 297

individual coupling’s norm by increasing the interaction degree (see e.g. [CN15]).

The safer definition is thus the second one—or by limiting the interaction degree of

the Hamiltonian to some constant.

In our case, there is no natural “finite size” Hamiltonian relative to which one

can define a meaningful precision; the arguably right scale with respect to which

one thus has to define 𝜑’s order of magnitude is either the local coupling strength

(which is constant in our case), or relate it to the parameter 𝑁 itself. In either case,

and after the scaling has been applied, it makes sense to speak of 𝜑 to be hard to

approximate to Ω(1) precision, even if that means that 𝜑 is now indeterminate in

a range [0,poly𝑁], as stated in theorem 7.1. It is also clear that if we know the

polynomial 𝑝(𝑁) in lemma 7.14, and we know that it is tight for NO instances of

the embedded Hamiltonian 𝐺𝑁 , then it would suffice to scan 𝜑 within a constant

region.12

7.5.8 Verifying the Local-Global Promise
Finally, we need to check that the Hamiltonian used to prove hardness—defined

above—satisfies the local-global promises as per definition 7.3 and definition 7.4.

Lemma 7.15. Consider an instance of the Hamiltonian𝐻Λ(𝐿) (𝑁,𝜑) =∑
⟨𝑖, 𝑗⟩ ℎ

𝑁
𝑖, 𝑗
(𝜑) +∑

𝑖∈Λ ℎ
𝑁
𝑖

, as defined in theorem 7.11, with local terms describable in |𝑁 | bits. Then

the Hamiltonian satisfies the global-local phase assumption definition 7.3 for the

order parameter

𝑂𝐴/𝐵 =
1
|𝐹 |

∑︁
𝑖∈𝐹

(
01,2 ⊕ |0⟩⟨0|3

) (𝑖)
defined in theorem 7.11, and for 𝐿0 = 𝑁

2+𝑎+𝑏. It also satisfies the global-local gap

promise in definition 7.4 for the same 𝐿0.

Proof. Consider an 𝐿 > 𝐿𝑁 = 2+4𝑡 + 𝑡 +𝑁 . Then, by lemma 7.12, we see that

_min(𝐻′(𝜑))


= 1+ ⌊ 𝐿

𝐿𝑁
⌋2_min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶)

≥ 1 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶).

12We remark that this does not work for 2-CRT-PRM in section 7.6, as there the ground state energy
is not determined by a single QMAEXP query.
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Thus, when _min(𝐻 (𝜑)) ≥ 0 the ground state of 𝐻′(𝜑) that of 𝐻trivial, i.e. |0⟩Λ(𝐿) ,

and ⟨𝑂𝐴/𝐵⟩ = 1. On the other hand, when _min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) < 0, then eventually the

ground state is a highly complex quantum plus classical state with ⟨𝑂𝐴/𝐵⟩ = 0.

Thus, when _min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) < 0, for the highly quantum ground state to appear

the lattice size 𝐿 must meet the following condition:⌊
𝐿

𝐿𝑁

⌋2
_min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) < 1. (7.23)

Otherwise the ground state is the zero energy state |0⟩Λ(𝐿) .

From theorem 7.10, when _min(𝐻 (𝜑) |𝑆(𝐿𝑁 )) < 0 and 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +

O(𝑁−6𝐶), then the ground state energy is⌊
𝐿

𝐿𝑁

⌋2 (
_min(𝐻QTM(𝐿𝑁 )) +_min(𝐻 (⊞, 𝑓 ) (𝐿𝑁 ) |𝑆

)
≤

⌊
𝐿

𝐿𝑁

⌋2
(
−−𝑐1

𝐿𝑏
𝑁

)
,

where we have used that_min(𝐻QTM(𝐿𝑁 ))+_min(𝐻 (⊞, 𝑓 ) (𝐿𝑁 ) |𝑆 =−Ω(𝑇−2) =−𝑐1𝐿
−𝑏

for some constant 𝑐1 (this can be seen by combining theorem 7.8 and lemma 7.11).

Thus by for 𝐿 > 𝐿0, where

𝐿0 ≥ 𝑐1/2
1 𝐿

1+𝑏/2
𝑁

,

eq. (7.23) will be satisfied. Since 𝐿𝑁 = O(𝑁), we choose 𝐿0 = O(𝑁2+𝑏).

For all 𝐿 ≥ 𝐿0 the expectation value of 𝑂𝐴/𝐵 is then constant, regardless of

whether 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶) or 𝜑 ≤ _min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶). Thus the

Hamiltonian satisfies the global-local phase promise in definition 7.3.

Global-Local Gap Promise: The proof for the global-local gap promise is almost

the same. For the 𝐿0 above, we see that if 𝜑 ≥ _min(𝐺𝑁 ) −O(𝑁−6𝐶), then the

system has a very negative energy and a spectral gap Δ(𝐿) = 𝑂 (1/𝐿2). If 𝜑 ≤

_min(𝐺𝑁 ) −𝑁−4𝐶 +O(𝑁−6𝐶), then the ground state is |0⟩Λ(𝐿) with zero energy and

has the same gap as 𝐻trivial: Δ ≥ 1. □
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7.6 PQMAEXP Hardness of 2-CRT-PRM
In this section sketch an outline of the proof of PQMAEXP-completeness of 2-CRT-PRM.

We only sketch the proof for the purposes of brevity, noting that conceptually the

proof is conceptually similar to the 1-CRT-PRM case. The full proof can be found in

[WB21].

To prove this we will make a reduction from ∀-TI-APX-SIM, as defined

definition 7.8, which was proved to be PQMAEXP-complete in chapter 6.

Proof Outline. The proof method here will be similar to the 1-parameter case, but

instead of a reduction to the Local Hamiltonian problem, we perform a reduction to

∀-TI-APX-SIM, which is the question of approximating the expectation value of all

low-energy states of a Hamiltonian with respect to a local observable. This means

we construct—just as described in section 7.5—a Hamiltonian 𝐻𝑁 (𝜑) which, in its

ground state, encodes the following computation.

1. Perform QPE to extract 𝑁 from local terms.

2. Perform a phase comparison QPE on the unitary encoding 𝜑 and exp(i𝑡𝐾𝑁 ),

where 𝐾𝑁 is a translationally-invariant local spin Hamiltonian with a PQMAEXP-

complete ∀-TI-APX-SIM problem (on a spin chain of length 𝑁). The joint

witness stems from an unconstrained input state. If this input state was an

eigenstate of 𝐾𝑁 with eigenvalue _, the phase comparator QPE extracts the

difference _−𝜑 to bit precision ∼ |𝑁 |.

3. If 𝜑 < _, an output flag is set to |0⟩; otherwise it is set to |1⟩.

4. Another flag qubit captures the output bit of the PQMAEXPcomputation performed

within the history state of 𝐻𝑁 (𝜑).

An energy penalty is then given to the joint energy eigenvalue comparison and output

bit of the PQMAEXPcomputation, in the sense that

1. All eigenstates of 𝐾𝑁 that are not considered “low energy” are penalised.

2. Those eigenstates of 𝐾𝑁 that fall below the “low energy” cutoff are not

inflicted with a penalty; but they are subject to a penalty from the observable
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operator (𝐵−\1) for some scalar offset \ > 0. Here 𝐵 is the operator for which

determining the expectation of on low energy states of 𝐾𝑁 is PQMAEXP-complete.

The result is that the low-energy eigenspace of 𝐻𝑁 (𝜑) plus penalties is greater

or smaller than some polynomial falloff we can calculate to high precision, and

which will depend on the scalar expectation value offset \ that serves as the second

parameter.

As in the one-parameter case, we can combine this energy penalty with a bonus

of a Marker Hamiltonian to obtain a joint 1D spin Hamiltonian with the property

that it has a negative ground state energy if we have a Yes-instance—i.e. expectation

values of low-energy states lie below some threshold—and the scalar offset is below

a cutoff; and a positive ground state energy for a No instance, or for a too-small scalar

offset \. With standard techniques this dichotomy is then amplified to a gapless

resp. gapped phase in the thermodynamic limit.

In order to understand why this two-parameter family of Hamiltonians has a

PQMAEXP-hard-to-compute phase diagram, note that to figure out the relevant 𝜑 region

within which a phase transition can occur takes multiple queries to a QMA oracle,

as we need to identify _min(𝐾𝑁 ) to sufficient precision; and then we don’t yet know

whether the output is a Yes or No case, so there is two possible \-regions around

which to explore the phase diagram.

7.6.1 Additional Preliminaries
It was shown in corollary 6.1 that ∀-TI-APX-SIM is PQMAEXP-complete for a Hamil-

tonian which we label 𝐾𝑁 ∈ B(C𝑑)⊗𝑁 . For ease of reading, we restate the lemma

(and modify it slightly):

Lemma 7.16 (From corollary 6.1). There exists a fixed one-local observable 𝐴 and

interaction terms 𝑘𝑖,𝑖+1 ∈ B(C𝑑 ⊗C𝑑) acting between pairs of nearest neighbour

qudits, which define a Hamiltonian on a 1D chain of length 𝑁 , 𝐾𝑁 =
∑𝑁−1
𝑖=1 𝑘𝑖,𝑖+1 such

that for all states |𝜓⟩ that satisfy ⟨𝜓 |𝐾𝑁 |𝜓⟩ ≤ _0(𝐾𝑁 ) + 𝛿 for 𝛿 = Ω(1/poly(𝑁))

either of the following holds:

Yes: 1−1/poly(𝑁) ≤ ⟨𝜓 | 𝐴 |𝜓⟩ ≤ 1, or
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No: 0 ≤ ⟨𝜓 | 𝐴 |𝜓⟩ ≤ 1/poly(𝑁).

Determining which case is true is PQMAEXP-complete.

This is not quite what was proven in corollary 6.1, where e.g. the overlap with

the observable in the first case was 1/𝑇𝐾𝑁
−O(2−poly(𝑁)) ≤ ⟨𝜓 | 𝐴 |𝜓⟩ ≤ 1/𝑇𝐾𝑁

, for

𝑇𝐾𝑁
the length of the encoded computation. However, we can adjust the construction

using an idling technique from [CLN18] which increases the weight on the output

bit of the computation (such that the encoded computation has its runtime increased

to 𝑃1(𝑁)𝑇𝐾𝑁
, for some polynomial 𝑃1(𝑁) we are free to choose). Furthermore, we

ask that there be some marker flag, placed next at or next to the output qubit, which

indicates when the first part of the computation—before the idling—has finished (this

allows us to keep 𝐴 as a 1-local operator). These techniques are by now standard,

and we will not go into details.

We denote the set of eigenstates of 𝐾𝑁 for which the energy expectation value is

below the cutoff as

𝑆𝛿 B
{
𝜓 : 𝐻 |𝜓⟩ = _ |𝜓⟩ where _ ≤ _min(𝐾𝑁 ) + 𝛿

}
, (7.24)

which means ⟨𝜓 |𝐻 |𝜓⟩ ≤ _min(𝐾𝑁 ) + 𝛿 for all |𝜓⟩ ∈ Span(𝑆𝛿). We also define the

shifted observable

𝐵 B 𝐴+1, (7.25)

which if 𝐴 is a projector has eigenvalues in the set {1,2}, which we label as _0(𝐵) = 1

and _1(𝐵) = 2. This offset merely simplifies some of the maths in due course.

Together with lemma 7.16, this choice of 𝐵 in eq. (7.25) immediately yields the

following corollary.

Corollary 7.3. We use the notation of lemma 7.16, for an observable 𝐴 that is

a one-local projector, and 𝐵 as defined in eq. (7.25). Any state |𝜓⟩ ∈ 𝑆𝛿 for

the Hamiltonian 𝐾𝑁 then has expectation value either ≤ _0(𝐵) +O(1/𝑃1(𝑁)), or

≥ _1(𝐵) −O(1/𝑃1(𝑁)) for a polynomial 𝑃1(𝑁) we are free to choose.
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7.6.2 A Modified Phase Comparator QTM

The following lemma follows the same setup as lemma 7.4.

Lemma 7.17 (Multi-QPE QTM). Let 𝐾𝑧 be the translationally invariant Hamiltonian

on chain of length 𝑧 described in lemma 7.16. Take the same setup as in lemma 7.4, but

where the Hamiltonian 𝐺𝑧 is replaced by 𝐾𝑧. The output of this QTMM(𝑁,𝜑, 𝑡, |a⟩)
will then be

|𝜒⟩ =
∑︁
𝑧∈𝑉𝑡

∑︁
𝑥≤0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |11⟩ 𝑓 |𝑧⟩ |𝑥⟩
∑︁
𝑗

𝜎𝑗 (𝑔, 𝑧′) | 𝑗⟩
��𝑔𝑧′ , 𝑗〉 ��b𝑧′ ,𝑔〉+ (7.26)∑︁

𝑧∈𝑉𝑡

∑︁
𝑥>0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |10⟩ 𝑓 |𝑧⟩ |𝑥⟩
∑︁
𝑗

𝜎𝑗 (𝑔, 𝑧′) | 𝑗⟩
��𝑔𝑧′ , 𝑗〉 ��b𝑧′ ,𝑔〉+∑︁

𝑧∉𝑉𝑡

∑︁
𝑥≤0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |01⟩ 𝑓 |𝑧⟩ |𝑥⟩
∑︁
𝑗

𝜎𝑗 (𝑔, 𝑧′) | 𝑗⟩
��𝑔𝑧′ , 𝑗〉 ��b𝑧′ ,𝑔〉+∑︁

𝑧∉𝑉𝑡

∑︁
𝑥>0

∑︁
𝑔

𝛼𝑥 (𝑧′, 𝑔)𝛾𝑧^𝑔 (𝑧′) |00⟩ 𝑓 |𝑧⟩ |𝑥⟩
∑︁
𝑗

𝜎𝑗 (𝑔, 𝑧′) | 𝑗⟩
��𝑔𝑧′ , 𝑗〉 ��b𝑧′ ,𝑔〉 ,

where we have expanded |𝑔𝑧′⟩ =
∑
𝑗 𝜎𝑗 (𝑔, 𝑧′) | 𝑗⟩

��𝑔𝑧′, 𝑗 〉 such that the | 𝑗⟩ denote the

eigenvectors of 𝐵 defined in eq. (7.25).

Proof. Follows from the output state given in lemma 7.4 and the form of the

unconstrained state taken as “input”. □

We now need an equivalent expression to eq. (7.4) which captures the expected

output penalty that we wish to inflict later on. Here, we will modify the flag projector

slightly; instead of using |11⟩⟨11| 𝑓 that just singles out those eigenstates of 𝐾𝑧 that

have low energy, we also add in the observable 𝐵 as defined in eq. (7.25), which

acts on the output of the computation.13 As 𝐾𝑧 encodes a PQMAEXP-hard computation,

this output bit is a single qubit; and can be assumed to satisfy the bounds given in

corollary 7.3.

Taking the output state |𝜒⟩ ofM(𝑁,𝜑, 𝑡, |a⟩) from lemma 7.17, and letting 𝐵

13This penalty can be made 1-local using standard methods. We omit this here.
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be the local observable from eq. (7.25) & corollary 7.3, we set

[(𝑁,𝜑, \, 𝑡, |a⟩) BTr
( [
|11⟩⟨11| 𝑓 ⊗ (𝐵− \1) ⊗1

]
|𝜒⟩⟨𝜒 |

)
=

∑︁
𝑧∈𝑉𝑡

|𝛾𝑧 |2
∑︁
𝑥≤0

∑︁
𝑔

|𝛼𝑥 (𝑧′, 𝑔) |2 |^𝑔 (𝑧′) |2
(∑︁

𝑗

_ 𝑗 (𝐵) |𝜎𝑗 (𝑧′, 𝑔) |2− \
)
.

(7.27)

Here, as before, 𝛾𝑧 represents the amplitudes of QPE on 𝑈𝑁 , while 𝛼𝑥 (𝑧′, 𝑔)

represent the amplitudes of QPE over 𝜑 and 𝐾𝑧 on eigenstate |𝑔⟩, and 𝜎𝑗 (𝑧′, 𝑔) are

the coefficients of the eigenstates of 𝐵. ^𝑔 (𝑧′) are coefficients of basis expansions of

|a⟩ in the energy eigenbasis of 𝐾𝑧.

We further define

[max(𝑁,𝜑, \, 𝑡) B max
|a⟩

[(𝑁,𝜑, \, 𝑡, |a⟩). (7.28)

This is the maximum acceptance probability that the computation can output for a

given 𝑁,𝜑, \, 𝑡, maximised over all states |a⟩.

Remark 7.2. For 𝑡 ≥ |𝑁 |, [(𝑁,𝜑, \, 𝑡, |a⟩) assumes its maximum for an eigenstate

|a⟩ = |𝑔⟩ of 𝐾𝑁 .

Proof. For 𝑡 ≥ |𝑁 |, 𝛾𝑁 = 1 and all other 𝛾𝑧 = 0 for 𝑧 ≠ 𝑁 . Hence

argmax|a⟩ [(𝑁,𝜑, \, 𝑡, |a⟩)

=argmax|a⟩
∑︁
𝑔

|^𝑔 (𝑁) |2
(∑︁
𝑥≤0
|𝛼𝑥 (𝑁,𝑔) |2

(∑︁
𝑗

_ 𝑗 (𝐵) |𝜎𝑗 (𝑁,𝑔) |2− \
))

=argmax|a⟩
∑︁
𝑔

|^𝑔 (𝑁) |2
(∑︁
𝑥≤0
|𝛼𝑥 (𝑁,𝑔) |2

)
Γ(𝑔, \).

where |a⟩ = ∑
𝑔 ^𝑔 (𝑁) |𝑔⟩ and Γ(𝑔, \) B

(∑
𝑗 _ 𝑗 (𝐵) |𝜎𝑗 (𝑁,𝑔) |2− \

)
. Thus

[(𝑁,𝜑, \, 𝑡, |a⟩) is a convex combination of the
(∑

𝑥≤0 |𝛼𝑥 (𝑁,𝑔) |2
)
Γ(𝑔, \), and

its maximum is assumed at an extremal point. The claim follows. □
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Thus, for energy eigenstates {|𝑔⟩}𝑔 we can write:

max
|a⟩

[(𝑁,𝜑, \, 𝑡, |a⟩) =
(∑︁
𝑥≤0
|𝛼𝑥 (𝑁,𝑔) |2

(∑︁
𝑗

_ 𝑗 (𝐵) |𝜎𝑗 (𝑁,𝑔) |2− \
))

(7.29)

We see that [max is dependent on Γ(𝑔, \) B
(∑

𝑗 _ 𝑗 (𝐵) |𝜎𝑗 (𝑁,𝑔) |2− \
)

which is

proportional to the expectation value of 𝐵 on the input state. If this state is a low

energy state, then ⟨𝜓 | 𝐵 |𝜓⟩ is promised to satisfy ⟨𝜓 | 𝐵 |𝜓⟩ ≈ 1 or ≈ 2.

We then go through roughly the same proof as the 1-CRT-PRM proof: we

encode the QTM in a circuit-to-Hamiltonian mapping, then combine this with a tiling

Hamiltonian and a negative energy Hamiltonian. Except now [max depends on both

𝜑 (in the same way as it did in the 1-CRT-PRM proof) and \, such that \ changes the

value of [max in a linear fashion. Since [max determines the ground state energy of

the circuit-to-Hamiltonian mapping, we see that the energy varies roughly linearly

with \ provided 𝜑 and the input state are fixed.

Analogous to theorem 7.11, we obtain the following central result:

Theorem 7.12. Let 𝐾𝑁 ∈ (C𝑑)⊗𝑁 be a the Hamiltonian from corollary 6.1 and

lemma 7.16 such that 𝛿 = Ω(𝑁−𝐷) for some constant 𝐷. Define the order parameter

𝑂𝐴/𝐵 acting on a const-sized subset of the lattice as in theorem 7.11. We can

explicitly construct a Hamiltonian 𝐻Λ(𝑁,𝜑, \) = ∑
⟨𝑖, 𝑗⟩ ℎ

𝑁
𝑖, 𝑗
(𝜑, \) +∑

𝑖∈Λ ℎ
𝑁
𝑖

such

that, in the infinite lattice size limit the following conditions hold. For any 𝜑 ∈

[_min(𝐾𝑁 ) + 𝛿/3,_min(𝐾𝑁 ) + 2𝛿/3] and supposing for the _ 𝑗∗ (𝐵) ∈ {1,2} which

satisfies | ⟨𝜓0 | 𝐵 |𝜓0⟩ −_ 𝑗∗ (𝐵) | = O(1/𝑃1(𝑁)), where |𝜓0⟩ is the ground state of 𝐾𝑁 ,

then:

• if \ ≥ _ 𝑗∗(𝐵) − 2
5 +1/𝑃2(𝑁):

i 𝐻Λ is gapped with spectral gap 1.

ii product ground state.

iii has order parameter expectation value ⟨𝑂𝐴/𝐵⟩ = 1.

• if \ ≤ _ 𝑗∗(𝐵) − 1
2 −1/𝑃2(𝑁):



7.6. PQMAEXP Hardness of 2-CRT-PRM 305

Figure 7.5: The YES case two-parameter phase diagram. The shaded white area shows an
uncertainty region (of size 1/poly𝑁); its inner extent indicates the minimal area
circumscribed by the critical line \∗(𝜑); it can be shown that the true critical
line has precisely one critical point whenever 𝜑 is fixed and \ is varied, as well
as vice versa; i.e., the critical line \∗(𝜑) is a function, and monotonous, within
an Ω(1) area of the phase space. It encompasses an Ω(1) area (given 𝜑 is scaled
such that effecively 𝛿 = Ω(1), as explained in corollary 7.4) of the phase space
for which the system is guaranteed to be completely in phase 𝐴 in this case. The
location of the rectangle is efficiently computable relative to the point along the
𝜑 axis below which the system is completely in phase 𝐵, irrespective of \. The
NO case phase diagram is shown in fig. 7.6.

i 𝐻Λ is gapless.

ii has a ground state with algebraically decaying correlations.

iii has order parameter expectation value ⟨𝑂𝐴/𝐵⟩ = 0.

Furthermore, for any 𝜑 in the given interval, this Hamiltonian has exactly one

critical point in terms of \, which we denote \∗. This occurs in the interval

\∗ ∈
[
_ 𝑗∗(𝐵) −

1
2
−1/𝑃2(𝑁) ,_ 𝑗∗(𝐵) −

2
5
+1/𝑃2(𝑁)

]
.
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Figure 7.6: The NO case two-parameter phase diagram. The shaded white area shows an
uncertainty region (of size 1/poly𝑁); its outer extent indicates the maximal
area circumscribed by the critical line \∗(𝜑) It encompasses an Ω(1) area of the
phase space for which the system is guaranteed to be completely in phase 𝐵 in
this case, and its location is efficiently computable relative to the point along the
𝜑 axis below which the system is completely in phase 𝐵, irrespective of \. The
YES case phase diagram is shown in fig. 7.5.

7.6.3 Reduction of ∀-TI-APX-SIM to 2-CRT-PRM
As per the 1-CRT-PRM case, we will find it useful to rescale the QPE process

implemented 𝜑 as per remark 7.1. This has the effect of mapping 𝜑→ 𝑁−𝐷𝜑. This

allow us to write the following corollary:

Corollary 7.4 (𝜑-Rescaled Hamiltonian). Theorem 7.12 holds for a modified Hamil-

tonian if 𝜑 ∈ [𝑁𝐷 (_min(𝐾𝑁 ) + 𝛿/3), 𝑁𝐷 (_min(𝐾𝑁 ) +2𝛿/3)] such that 𝑁𝐷𝛿 = Ω(1).

Having introduced this rescaling of 𝜑, we now show that determining the phase

transition point \∗(𝜑) is PQMAEXP-hard by showing that determining \∗(𝜑) for a

specific O(1) interval of 𝜑 is gives the answer to a ∀-TI-APX-SIM instance.

Theorem 7.13 (PQMAEXP-hardness). There is a polynomial time Turing reduction

from ∀-TI-APX-SIM to 2-CRT-PRM, and hence 2-CRT-PRM is PQMAEXP-hard.

Proof. We refer the reader to fig. 7.5 and fig. 7.6 to aid this proof.
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From lemma 7.16 it is known that determining whether ⟨𝜓 | 𝐵 |𝜓⟩ > 𝛽 or

⟨𝜓 | 𝐵 |𝜓⟩ < 𝛼 for states |𝜓⟩ ∈ 𝑆𝛿 is PQMAEXP-hard. From theorem 7.12 we know that

for all 𝜑 ∈ [𝑁𝐷 (_min(𝐾𝑁 ) + 𝛿/3), 𝑁𝐷 (_min(𝐾𝑁 ) + 2𝛿/3)] it holds that the critical

point \∗(𝜑) is determined by whether ⟨𝜓 | 𝐵 |𝜓⟩ > 𝛽 or ⟨𝜓 | 𝐵 |𝜓⟩ < 𝛼 for states |𝜓⟩ ∈ 𝑆𝛿
and 𝛽−𝛼 = Ω(1). □

Corollary 7.5. 2-CRT-PRM is PQMAEXP-complete.

Proof. Hardness and containment follow from theorems 7.6 and 7.13, respectively.

□

The two phase diagrams in the YES and NO cases are shown in figs. 7.5 and 7.6.

It can then be verified that the Local-Global promise is satisfied by the Hamiltonian.

7.7 Discussion
Comparison to Undecidability and Uncomputability Results. We also take care to

distinguish our results from the size driven quantum phase transitions [Bau+18a].

Here we are promised that in the thermodynamic we are always in a particular phase,

but that the transition takes place at some uncomputably large lattice size. Our result

differs significantly in that the spectral gap and phase are explicitly computable for

some finite size lattice, and the system can be gapped or gapless in the thermodynamic

limit.

We also emphasise the differences to the previous undecidability results [CPW15;

Bau+18b; BCW19]. There are two key differences here: the promise of the global-

local gap/phase means that the gap/phase are computable. The previous works prove

results for systems with an infinite number of phase transitions14, and although this is

not totally unphysical, it is be no means a common property. The systems studied in

this chapter contain either only a single phase transition, or a small finite number,

which arguably better reflects the systems we see in nature.

14For various technical reasons it is not possible to define phases for the systems studied in [CPW15;
Bau+18b], and we refer the reader to section 3.1 for a more extended discussion. Instead the authors
remark that there are an uncountably infinite number of points where the system changes from being
gapped to gapless.
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Containment of the 1-CRT-PRM Case. In the 1-CRT-PRM result, we prove that

determining the gap/phase 1-CRT-PRM for an Ω(1) region of the 𝜑 ∈ [0,1] parameter

space is QMAEXP-hard. It is natural to ask whether we can prove containment in

QMAEXP or at least PQMAEXP [const]? In particular, the fact that for the Hamiltonian

constructed, the spectral gap is actually either ≥ 1/2 or ≤ 1/poly𝑁 suggests we

might be able to distinguish the two cases by estimating the spectral gap to only

constant precision in section 7.4 rather than the 1/poly𝑁 precision we currently

perform the algorithm to. However, both of the local-global algorithms (used for

determining the spectral gap or the order parameter at a given point, respectively)

require knowledge about the ground state to the relevant precision. In case we

promise that the Hamiltonian’s ground state energy can be resolved within a constant

number of bits, containment in aforementioned stricter classes follows. Naturally,

this leaves open the question whether an algorithm exists that can answer the spectral

gap or order parameter problems to constant precision without knowing the ground

state energy to the same precision.

Precise Variant. As mentioned below the definition of 1-CRT-PRM, definition 7.5,

there is a natural “precise” variant, Precise-1-CRT-PRM, where we want to ap-

proximate the critical point to exponential precision. As explained in [Koh+20,

Th. 4.1], for exponential precision one can allow the embedded computation to

run for time exppoly(𝐿) in the size of the spin chain segment 𝐿; as such, one can

extract exponentially many bits of the parameter 𝑁 , and the distinction between

translationally invariant and non-translationally-invariant models vanish. In this

case, as detailed in [WBG20, Cor. 29&31], the APX-SIM variant is simply PSPACE-

complete, by simulating a PSPACE computation within the history state. As such,

it follows that the Precise-1-CRT-PRM problem—and by a similar argument also

Precise-2-CRT-PRM—are PSPACE-hard. Containment in PSPACE, for a suitable

definition of a local-global gap (that is now allowed to shrink exponentially in the

system size), follows from a precise variant of Ambainis’s algorithm to determine

spectral gap; and because PPreciseQMA = PPSPACE = PSPACE. [DGF20].

Open Questions. The following points are natural continuations of this line of work.
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1. One major open question is to pin down the exact hardness of the 1-CRT-PRM

problem, as we could show QMAEXP hardness, but only an upper bound

of PQMAEXP , mostly because it is not obvious a priori how to reduce the

algorithm that decides the Local-Global promise to constant precision with

only constantly-many queries without negating them (as one would, otherwise,

require co-QMAEXP queries). In all likelihood, a problem variant as formulated

in 1-CRT-PRM with the promise parameters 𝛼 and 𝛽 provided as input is indeed

contained in QMAEXP, but that a more physically-motivated variant that just

asks about the approximation to some precision (i.e., the non-decision variant;

or a variant that just asks for the last bit of a poly-precision approximation to

be 0 or 1) to be PQMAEXP-hard.

2. The Knabe and Martingale methods for determining the spectral gap apply

to frustration free Hamiltonians, but the Hamiltonians used to prove our

results here are not. Can we prove a similar result to ours for frustration free

Hamiltonians, for the classes QMA1EXP or similar? The class QMA1 naturally

characterises the Local Hamiltonian problem in where YES case correspond

to frustration free Hamiltonians [Bra11; BT10].





Chapter 8

General Conclusions

For the past 20 years Hamiltonian complexity has been an enormously vibrant area

of research, drawing on a wide range of techniques across physics, mathematics and

computer science. We discuss some open problems related to the work in this thesis.

A key problem which has been noted for all of the results in thesis thesis, is the

condition of naturalness and simplicity. The Hamiltonians studied here are generally

highly unnatural, consisting of highly-tuned interactions on qudits with large local

Hilbert space dimension. Is there any way of reducing the apparently unnaturalness

of these Hamiltonians to find ones similar to which occur in the physical world? Some

authors have argued that we should expect undecidability and uncomputability results

to occur in almost all systems, with the exceptions of those which are extremely

simple [Cue20], but how to prove this is not clear. The fact that (for example)

proving gappedness appears to be difficult in all but the very constrained systems (e.g.

frustration free) lends credence to this hypothesis. Indeed, how one should “measure”

the complexity of inherent in a Hamiltonian in terms of its spatial and algebraic

locality, local Hilbert space dimension, interaction terms, system size, interaction

graph, etc is not clear, if it is possible at all.

Another major, related problem this author remains interested in is stability

of complexity or uncomputability phenomena under perturbations. It has been

shown that the spectral gap of a frustration-free Hamiltonian (satisfying some

other conditions) is stable under local perturbations [MZ13]. If complexity and

uncomputability results are to be relevant to real condensed matter systems — which
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in reality have imperfections and external fields — we should expect them to still

occur even after these local perturbations have been introduced. As far as this author

is aware, it is an open problem whether any complexity/computability result retains

its properties under local perturbations. We note, however, that such stability results

are hard to come by and have only been proven for very limited systems [NYS18].

All the results in this paper have been proven for systems at zero temperature.

Yet in reality we are always at some small but non-zero temperature. How hard is

it to predict properties of such system, and in particular to any of the results in the

thermodynamic limit survive? As mentioned in the introduction, classical hardness

result are known for free energies/partition functions at non-zero temperature. Fur-

thermore, for finite systems of size 𝑁 , if one goes to temperatures 𝑇 =𝑂 (1/poly(𝑁))

then one will be close enough to the ground state such that predicting properties

is QMA-hard. However, if we take a quantum system at non-zero temperature in

the thermodynamic limit, its complexity is not clear. This problem is relevant for

predicting phenomena such as phase transition, correlation functions etc. This is

closely related to the quantum PCP conjecture, which if true, would imply that for

a finite system predicting the properties of at non-zero temperature is QMA-hard

[AAV13]. Some partial progress has been made on this question with the proof of

the NLTS conjecture [ABN22].



Appendix A

Appendix

In this section we prove some properties of the Hamiltonian used in chapter 3.

Importantly that it is a so-called “standard-form” Hamiltonian, and that this implies

certain properties.

A.1 Standard Form Hamiltonians and the Clairvoy-

ance Lemma
We begin with the following definition for a 1D chain of spins:

Definition A.1 (Standard Basis States, from Section 4.1 of [CPGW15a]). Let the

single site Hilbert space beH = ⊗𝑖H𝑖 and fix some orthonormal basis for the single

site Hilbert space. Then a Standard Basis State forH⊗𝐿 are product states over the

single site basis.

We now define standard-form Hamiltonians – extending the definition from

[CPGW15a]:

Definition A.2 (Standard-form Hamiltonian, from [Wat19], extended from

[CPGW15a]). We say that a Hamiltonian 𝐻 = 𝐻𝑡𝑟𝑎𝑛𝑠 +𝐻𝑝𝑒𝑛 +𝐻𝑖𝑛 +𝐻𝑜𝑢𝑡 acting

on a Hilbert space H = (C𝐶 ⊗C𝑄)⊗𝐿 = (C𝐶)⊗𝐿 ⊗ (C𝑄)⊗𝐿 =:H𝐶 ⊗H𝑄 is of stan-

dard form if 𝐻𝑡𝑟𝑎𝑛𝑠,𝑝𝑒𝑛,𝑖𝑛,𝑜𝑢𝑡 =
∑𝐿−1
𝑖=1 ℎ

(𝑖,𝑖+1)
𝑡𝑟𝑎𝑛𝑠,𝑝𝑒𝑛,𝑖𝑛,𝑜𝑢𝑡

, and ℎ𝑡𝑟𝑎𝑛𝑠,𝑝𝑒𝑛,𝑖𝑛,𝑜𝑢𝑡 satisfy the

following conditions:

1. ℎ𝑡𝑟𝑎𝑛𝑠 ∈ B
(
(C𝐶 ⊗C𝑄)⊗2) is a sum of transition rule terms, where all the
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transition rules act diagonally on C𝐶 ⊗C𝐶 in the following sense. Given

standard basis states 𝑎, 𝑏, 𝑐, 𝑑 ∈ C𝐶 , exactly one of the following holds:

• there is no transition from 𝑎𝑏 to 𝑐𝑑 at all; or

• 𝑎, 𝑏, 𝑐, 𝑑 ∈C𝐶 and there exists a unitary𝑈𝑎𝑏𝑐𝑑 acting onC𝑄 ⊗C𝑄 together

with an orthonormal basis {
��𝜓𝑖
𝑎𝑏𝑐𝑑

〉
}𝑖 for C𝑄 ⊗C𝑄 , both depending only

on 𝑎, 𝑏, 𝑐, 𝑑, such that the transition rules from 𝑎𝑏 to 𝑐𝑑 appearing in

ℎ𝑡𝑟𝑎𝑛𝑠 are exactly |𝑎𝑏⟩
��𝜓𝑖
𝑎𝑏𝑐𝑑

〉
→ |𝑐𝑑⟩𝑈𝑎𝑏𝑐𝑑

��𝜓𝑖
𝑎𝑏𝑐𝑑

〉
for all 𝑖. There is

then a corresponding term in the Hamiltonian of the form ( |𝑐𝑑⟩ ⊗𝑈𝑎𝑏𝑐𝑑 −

|𝑎𝑏⟩)(⟨𝑐𝑑 | ⊗𝑈†
𝑎𝑏𝑐𝑑
− ⟨𝑎𝑏 |).

2. ℎ𝑝𝑒𝑛 ∈ B
(
(C𝐶 ⊗C𝑄)⊗2) is a sum of penalty terms which act non-trivially

only on (C𝐶)⊗2 and are diagonal in the standard basis, such that ℎ𝑝𝑒𝑛 =∑
(𝑎𝑏) 𝐼𝑙𝑙𝑒𝑔𝑎𝑙 |𝑎𝑏⟩𝐶 ⟨𝑎𝑏 | ⊗1𝑄 , where (𝑎𝑏) are members of a disallowed/illegal

subspace.

3. ℎ𝑖𝑛 =
∑
𝑎𝑏 |𝑎𝑏⟩ ⟨𝑎𝑏 |𝐶 ⊗Π𝑎𝑏, where |𝑎𝑏⟩ ⟨𝑎𝑏 |𝐶 ∈ (C𝐶)⊗2 is a projector onto

(C𝐶)⊗2 basis states, andΠ (𝑖𝑛)
𝑎𝑏
∈ (C𝑄)⊗2 are orthogonal projectors onto (C𝑄)⊗2

basis states.

4. ℎ𝑜𝑢𝑡 = |𝑥𝑦⟩ ⟨𝑥𝑦 |𝐶 ⊗Π𝑥𝑦, where |𝑥𝑦⟩ ⟨𝑥𝑦 |𝐶 ∈ (C𝐶)⊗2 is a projector onto (C𝐶)⊗2

basis states, and Π
(𝑖𝑛)
𝑥𝑦 ∈ (C𝑄)⊗2 are orthogonal projectors onto (C𝑄)⊗2 basis

states.

We note that although ℎ𝑜𝑢𝑡 and ℎ𝑖𝑛 have essentially the same form, they will

play a conceptually different role.

Lemma A.1. 𝐻QTM is a standard form Hamiltonian.

Proof. Comparing with definition A.2, we see that all terms fall into one of the four

classifications, and hence it is standard form. □

We now introduce the following definition.

Definition A.3 (Legal and Illegal Pairs and States, from [CPGW15a]). The pair 𝑎𝑏

is an illegal pair if the penalty term |𝑎𝑏⟩ ⟨𝑎𝑏 |𝐶 ⊗ 1𝑄 is in the support of the 𝐻𝑝𝑒𝑛
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component of the Hamiltonian. If a pair is not illegal, it is legal. We call a standard

basis state legal if it does not contain any illegal pairs, and illegal otherwise.

Then the following is a straightforward extension of Lemma 42 of [CPGW15a]

with 𝐻𝑖𝑛 and 𝐻𝑜𝑢𝑡 terms included.

Lemma A.2 (Invariant subspaces, extended from Lemma 42 of [CPGW15a]).

Let 𝐻𝑡𝑟𝑎𝑛𝑠, 𝐻𝑝𝑒𝑛, 𝐻𝑖𝑛 and 𝐻𝑜𝑢𝑡 define a standard-form Hamiltonian as defined in

definition A.2. Let S = {𝑆𝑖} be a partition of the standard basis states of H𝐶 into

minimal subsets 𝑆𝑖 that are closed under the transition rules (where a transition

rule |𝑎𝑏⟩𝐶𝐷 |𝜓⟩ → |𝑐𝑑⟩𝐶𝐷𝑈𝑎𝑏𝑐𝑑 |𝜓⟩ acts on H𝐶 by restriction to (C𝐶)⊗2, i.e. it

acts as 𝑎𝑏→ 𝑐𝑑). ThenH = (
⊕

𝑆K𝑆𝑖 ) ⊗H𝑄 decomposes into invariant subspaces

K𝑆𝑖 ⊗H𝑄 of 𝐻 = 𝐻𝑝𝑒𝑛 +𝐻𝑡𝑟𝑎𝑛𝑠 +𝐻𝑖𝑛 +𝐻𝑜𝑢𝑡 where K𝑆𝑖 is spanned by 𝑆𝑖.

Lemma A.3 (Clairvoyance Lemma, extended from Lemma 43 of [CPGW15a]).

Let 𝐻 = 𝐻𝑡𝑟𝑎𝑛𝑠 +𝐻𝑝𝑒𝑛 +𝐻𝑖𝑛 +𝐻𝑜𝑢𝑡 be a standard-form Hamiltonian, as defined in

definition A.2, and let K𝑆 be defined as in Lemma A.2. Let _0(K𝑆) denote the

minimum eigenvalue of the restriction 𝐻 |K𝑆⊗H𝑄
of 𝐻 = 𝐻𝑡𝑟𝑎𝑛𝑠 +𝐻𝑝𝑒𝑛 +𝐻𝑖𝑛 +𝐻𝑜𝑢𝑡 to

the invariant subspace K𝑆 ⊗H𝑄 .

Assume that there exists a subsetW of standard basis states forH𝐶 with the

following properties:

1. All legal standard basis states forH𝐶 are contained inW.

2. W is closed with respect to the transition rules.

3. At most one transition rule applies in each direction to any state in W.

Furthermore, there exists an ordering on the states in each 𝑆 such that

the forwards transition (if it exists) is from |𝑡⟩ → |𝑡 +1⟩ and the backwards

transition (if it exists) is |𝑡⟩ → |𝑡 −1⟩.

4. For any subset 𝑆 ⊆ W that contains only legal states, there exists at least

one state to which no backwards transition applies and one state to which no

forwards transition applies. Furthermore, the unitaries associated with the

transition |𝑡⟩ → |𝑡 +1⟩ are𝑈𝑡 = 1𝑄 , for 0 ≤ 𝑡 ≤ 𝑇𝑖𝑛𝑖𝑡 −1 and 𝑇𝑖𝑛𝑖𝑡 < 𝑇 , and that



316 Appendix A. Appendix

the final state |𝑇⟩ is detectable by a 2-local projector acting only on nearest

neighbour qudits.

Then each subspace K𝑆 falls into one of the following categories:

1. 𝑆 contains only illegal states, and 𝐻 |K𝑆⊗H𝑄
≥ 1.

2. 𝑆 contains both legal and illegal states, and

𝑊†𝐻 |K𝑆⊗H𝑄
𝑊 ≥

⊕
𝑖

(
Δ( |𝑆 |) +

∑︁
|𝑘⟩∈𝐾𝑖

|𝑘⟩ ⟨𝑘 |
)

(A.1)

where
∑
|𝑘⟩∈𝐾𝑖

|𝑘⟩ ⟨𝑘 | := 𝐻𝑝𝑒𝑛 |K𝑆⊗H𝑄
and 𝐾𝑖 is some non-empty set of basis

states and𝑊 is some unitary.

3. 𝑆 contains only legal states, then there exists a unitary 𝑅 =𝑊 (1𝐶 ⊗ (𝑋 ⊕𝑌 )𝑄)

that puts 𝐻 |K𝑆⊗H𝑄
in the form

𝑅†𝐻 |K𝑆⊗H𝑄
𝑅 =

©«
𝐻𝑎𝑎 𝐻𝑎𝑏

𝐻
†
𝑎𝑏

𝐻𝑏𝑏

ª®¬ , (A.2)

where, defining 𝐺 := supp
(∑𝑇𝑖𝑛𝑖𝑡−1

𝑡=0 Π
(𝑖𝑛)
𝑡

)
and 𝑠 := dim𝐺,

• 𝑋 : 𝐺→ 𝐺.

• 𝑌 : 𝐺𝑐→ 𝐺𝑐.

• 𝐻𝑎𝑎 is an 𝑠× 𝑠 matrix.

• 𝐻𝑎𝑎, 𝐻𝑏𝑏 ≥ 0 and are rank 𝑟𝑎, 𝑟𝑏 respectively.

• 𝐻𝑎𝑎 has the form

𝐻𝑎𝑎 =
⊕
𝑖

(
Δ( |𝑆 |) +𝛼𝑖 | |𝑆 | −1⟩ ⟨|𝑆 | −1|

)
+
𝑇𝑖𝑛𝑖𝑡−1∑︁
𝑡=0
|𝑡⟩ ⟨𝑡 | ⊗ 𝑋†Π𝑡 |𝐺𝑋.

(A.3)
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• 𝐻𝑏𝑏 is a tridiagonal, stoquastic matrix of the form

𝐻𝑏𝑏 =
⊕
𝑖

(Δ( |𝑆 |) + 𝛽𝑖 | |𝑆 | −1⟩ ⟨|𝑆 | −1|). (A.4)

• 𝐻𝑎𝑏 = 𝐻𝑏𝑎 is a real, negative diagonal matrix with rank min{𝑟𝑎, 𝑟𝑏}.

𝐻𝑎𝑏 = 𝐻𝑏𝑎 =
⊕
𝑖

𝛾𝑖 | |𝑆 | −1⟩ ⟨|𝑆 | −1| . (A.5)

where either we get pairings between the blocks such that

©«
𝛼𝑖 𝛾𝑖

𝛾𝑖 𝛽𝑖

ª®¬ = ©«
1− `𝑖 −

√︁
`𝑖 (1− `𝑖)

−
√︁
`𝑖 (1− `𝑖) `𝑖

ª®¬ 𝑜𝑟
©«
1 0

0 1
ª®¬ , (A.6)

for 0 ≤ `𝑖 ≤ 1, or we get unpaired values of 𝛼𝑖 = 0,1 or 𝛽𝑖 = 0,1 for which we

have no associated value of 𝛾𝑖.
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