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Abstract

Prostate cancer (PCa) is the second most frequently diagnosed cancer in men world-

wide and the fifth leading cause of cancer death in men, with an estimated 1.4

million new cases in 2020 and 375,000 deaths. The risk factors most strongly asso-

ciated to PCa are advancing age, family history, race, and mutations of the BRCA

genes. Since the aforementioned risk factors are not preventable, early and accurate

diagnoses are a key objective of the PCa diagnostic pathway.

In the UK, clinical guidelines recommend multiparametric magnetic resonance

imaging (mpMRI) of the prostate for use by radiologists to detect, score, and stage

lesions that may correspond to clinically significant PCa (CSPCa), prior to con-

firmatory biopsy and histopathological grading. Computer-aided diagnosis (CAD)

of PCa using artificial intelligence algorithms holds a currently unrealized poten-

tial to improve upon the diagnostic accuracy achievable by radiologist assessment

of mpMRI, improve the reporting consistency between radiologists, and reduce re-

porting time.

In this thesis, we build and evaluate deep learning-based CAD systems for the

PCa diagnostic pathway, which address gaps identified in the literature. First, we

introduce a novel patient-level classification framework, PCF, which uses a stacked

ensemble of convolutional neural networks (CNNs) and support vector machines

(SVMs) to assign a probability of having CSPCa to patients, using mpMRI and clin-

ical features. Second, we introduce AutoProstate, a deep-learning powered frame-

work for automated PCa assessment and reporting; AutoProstate utilizes bipara-

metric MRI and clinical data to populate an automatic diagnostic report containing

segmentations of the whole prostate, prostatic zones, and candidate CSPCa lesions,
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as well as several derived characteristics that are clinically valuable. Finally, as

automatic segmentation algorithms have not yet reached the desired robustness for

clinical use, we introduce interactive click-based segmentation applications for the

whole prostate and prostatic lesions, with potential uses in diagnosis, active surveil-

lance progression monitoring, and treatment planning.



Impact statement

The work presented in this thesis has the potential to encourage further research and

development within academia and provide benefits outside of academia.

Within the academic environment, an immediate next step will be to conduct

multi-center external validation studies to evaluate the computer-aided diagnosis

(CAD) systems presented in Chapters 4, 5, and 6 of this thesis. Multi-centre external

validation is important for revealing the extent to which CAD systems can gener-

alise beyond the data used to train them. Pleasingly, planning has already begun on

a multi-center study to validate the patient classification framework, PCF, presented

in Chapter 4, using the PROMIS trial dataset and to validate AutoProstate, presented

in Chapter 5, in an international study comparing CAD systems for prostate cancer

(PCa) tumour detection.

Another benefit to academia will be to encourage research groups to build upon

the topics explored in this thesis that feature scarcely in the current PCa CAD lit-

erature, in particular, patient classification, automatic diagnostic report generation,

and interactive segmentation. Furthermore, the introduction of technical enhance-

ments to the CAD systems presented in Chapters 4, 5, and 6 can form the basis

of academic scholarships; several possible technical enhancements are outlined in

Chapter 7. Beyond enhancements and extensions of the work presented in this

thesis, effort can be allocated to the creation of a unified platform composed of the

CAD systems presented in this thesis, and extensions thereof; active learning should

feature in the platform to facilitate continuous improvement over time.

Outside of academia, deployments to the PCa diagnostic pathway can be en-

visioned: PCF, presented in Chapter 4, can be deployed to triage patients by their
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probability of having clinically significant PCa (CSPCa) or to rule out patients with

the lowest risk of CSPCa; AutoProstate, presented in Chapter 5, can be deployed

as a companion system for radiologists to improve their diagnostic accuracy and re-

porting quality; and the click-based interactive segmentation applications for whole

prostate and prostatic lesion segmentation presented in Chapter 6 have various ap-

plications in diagnosis, active surveillance, and treatment. The work presented

in the thesis was a collaboration between University College London (UCL) and

King’s College London (KCL). At KCL in particular, there is a considerable oppor-

tunity to deploy tools for clinical use through the London Medical Imaging & AI

Centre for Value Based Healthcare; a key aim of the centre is to provide the infras-

tructure required for building, deploying, and evaluating AI algorithms in health-

care. Prior to deployment into the PCa diagnostic pathway, prospective validation

studies should be conducted by a multi-disciplinary team of algorithm developers

and clinicians. Prospective validation studies are critical for understanding how

CAD would fit into the clinical workflow and factors outside of the research setting

which may adversely impact performance. During prospective validation, substan-

tive efforts must be placed on understanding which cases fail and why, by both

algorithm developers and clinical experts, to guide further algorithmic development

and training data collection.
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Chapter 1

Introduction

Cancer is among the leading causes of death in every country of the world; in 2020

there were an estimated 19.3 million new cancer cases and 10 million cancer deaths

[10]. Unfortunately, the global cancer burden is projected to rise quite substantially

over the next two decades, reaching an estimated 28.4 million cases by 2040 [10].

In order to cope with the increased demand on healthcare services posed by the

rising case incidence, healthcare systems across the world are working to build

more sustainable cancer management infrastructures based foremost on prevention

and early diagnosis [10].

Artificial intelligence (AI) has been earmarked as a disruptive technology that

will cause a major transformation in the way healthcare is delivered [11]. In the UK,

the National Health Service’s (NHS) digital transformation unit, NHSX, has setup

the NHS Artificial Intelligence Laboratory which is bringing together the govern-

ment, healthcare providers, academics, and technology companies to build an in-

frastructure for the safe and ethical deployment of AI-driven technologies at scale

[12]. A priority area for NHSX is diagnostic support in radiology due to pressures

caused by an increased demand for radiology services and a shortage of radiologists

to meet the demand [13]. According to the Royal College of Radiologists (RCR),

there was a 33% shortfall in clinical radiology consultants in the UK in 2020, which

is projected to grow to 44% by 2025 [14]. Through providing triage as a service,

supporting diagnoses, or additional insights, AI deployed into radiology workflows

may improve radiologist productivity and decision-making, leading to quicker di-
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agnoses and improved patient outcomes [11].

The prostate cancer (PCa) diagnostic pathway has been identified by research

groups globally as a cancer pathway that would benefit from the deployment of AI-

driven technologies, due to pressures caused by rising case incidence, the increased

use of multiparametric magnetic resonance imaging (mpMRI) for diagnosis, and a

shortage of specialist radiologists to review mpMRI [15]. Motivated by the afore-

mentioned pressures, we present novel works on the development and evaluation of

deep learning-based computer-aided diagnosis (CAD) systems for the PCa diagnos-

tic pathway, in this thesis. The remainder of this chapter is structured as follows:

first, we introduce PCa; next, we describe the PCa diagnostic pathway; we conclude

by describing the specific motivations of the work presented in this thesis and by

providing a thesis overview.

1.1 Prostate cancer

1.1.1 Prostate anatomy and function

The prostate is an accessory gland belonging to the male reproductive system [16].

The prostate is located inferiorly to the neck of the bladder and superiorly to the

external urethral sphincter, and lies adjacent to the rectum. The primary function

of the prostate is to secrete proteolytic enzymes into the semen, which act to break

down clotting factors in the ejaculate. In addition, the muscles of the prostate con-

tract during ejaculation to push seminal fluid into the urethra.

The structure of the prostate is described using a regional division and a zonal

division, as shown in Figure 1.1, which in combination with anatomical directions,

can be used to accurately describe the location of prostate pathologies. The regional

division describes the base, midgland, and apex. The base is the upper portion of the

prostate closest to the bladder, the apex is the lower portion of the prostate closest

to the external urethral sphincter, and the midgland is the remaining middle portion.

Alternatively, the zonal structure of the prostate describes the peripheral zone (PZ),

anterior fibromuscular stroma (AFMS), central zone (CZ), transition zone (TZ), and

the thin layer of surrounding connective tissue and muscle fibres called the capsule.
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Figure 1.1: Regional and zonal division of the prostate.

The PZ is located at the posterior of the prostate, the AFMS is located at the anterior

of the prostate, the TZ surrounds the prostatic urethra, and the CZ sits posterior to

the TZ and surrounds the ejaculatory ducts. The AFMS, CZ, and TZ are often

grouped into the central gland (CG).

1.1.2 What is prostate cancer?

Cancers occur due to genetic mutations which cause uncontrollable and uninhibited

cell growth, forming tumours. A designation of PCa is made if the cancer originates

in the prostate. Most cancers that develop in the prostate are adenocarcinomas [17].

These are cancers that develop in glandular tissue, found predominantly in the PZ

and TZ of the prostate. Early stage PCa may be asymptomatic [18]. Should tumours

grow large enough to put pressure on the urethra or bladder, symptoms may include

trouble urinating due to constriction of the urethra or the need to urinate more often

due to pressure on the bladder, as well as blood in the urine and/or blood in the

semen [18].

Cancer confined within the prostate is referred to as localised PCa. However,

PCa can spread to other parts of the body in a process called metastasis. Typically,
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PCa spreads to the bones, lymph nodes, liver and/or lungs [17]. Following metasta-

sis, the designation of localised PCa will be replaced by advanced PCa; at this stage,

the cancer can be significantly more difficult to control and may lead to a shortening

of life [17].

1.1.3 Causes and risk factors

The foremost risk factor for PCa is advancing age [19]. The risk of developing

PCa rises dramatically with age due to deoxyribonucleic acid (DNA) damage that

accumulates over time. According to Cancer Research UK, incidence rates for PCa

are highest in males aged 75-79 [19].

Ethnicity is also a known risk factor for PCa. Black men in the United States

and the Caribbean have the highest incidence rates globally [10], and in the UK,

PCa risk is higher in Black men compared to White men and Asian men [19].

Inherited factors account for 5-9% of PCa cases [19]. PCa risk is 2.1-2.4 times

higher in men whose father has/had the disease, 2.9-3.3 times higher in men whose

brother has/had the disease, and 1.9 times higher in men with a second-degree rel-

ative (grandfather, uncle, nephew, or half-sibling) who has/had the disease [19]. In

addition, studies have shown that PCa risk is 19-24% higher in men whose mother

has/had breast cancer, though PCa risk is not associated with breast cancer in a sister

[19].

A smaller number of PCa cases can be explained by mutations to the BRCA1

and BRCA2 tumour suppressor genes, inherited Lynch syndrome, and higher than

normal levels of insulin-like growth-factor-1 (IGF-1) [19].

1.1.4 Incidence, mortality, and survival

PCa is the second most frequently diagnosed cancer in men worldwide and the fifth

leading cause of cancer death; there were an estimated 1.4 million new diagnoses

of PCa in 2020 and 375,000 deaths [10]. In 112 of 185 countries, PCa is the most

frequently diagnosed cancer in men, including in the Americas, Northern/Western

Europe, Australia/New Zealand, and much of Sub-Saharan Africa [10]. In 48 of

185 countries, PCa is the leading cause of cancer death in men, particularly in the
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Caribbean, sub-Saharan Africa, and Micronesia/Polynesia [10]. Survival rates vary

globally, likely reflecting differences in diagnostic and treatment practices. The

CONCORD-2 study [20], which aims to inform global policy on cancer control,

compiled survival statistics for PCa from 61 countries; five-year survival rates var-

ied between less than 40% and greater than 95%. In the UK, Cancer Research UK

has reported a 86.6% five-year survival rate overall [19]. Furthermore, they report

that men diagnosed with early-stage PCa have a five-year survival rate of 100%,

compared to a five-year survival rate of 49% for men diagnosed with late-stage PCa

[19].

1.2 Prostate cancer diagnostic pathway
In the UK, National Institute of Health and Care Excellence (NICE) guidelines rec-

ommend a pathway composed of the following core tests: first, a prostate-specific

antigen (PSA) blood test and/or a digital rectal exam (DRE); if suspicion persists,

mpMRI; and if suspicion remains, MR-guided targeted biopsy and/or systematic

biopsy [9] with histopathological analysis of biopsy samples. Test findings will

be discussed at a multidisciplinary team (MDT) meeting to determine whether pa-

tients can be discharged, require radical treatment, or require an alternative dis-

ease management approach such as active surveillance (AS) or watchful waiting. A

schematic representation of the pathway is shown in Figure 1.2.

Prostate specific
antigen blood

test and/or
digital rectal
exam (1.2.1)

Multiparametric
MRI, scoring,
and staging

(1.2.2)

Prostate biopsy 
and Gleason

scoring (1.2.3)

Multidisciplinary 
team meeting

(1.2.4)

Radical
treatment, active
surveillance, or

watchful waiting
(1.2.5)

Figure 1.2: Schematic representation of the PCa diagnostic pathway, with section numbers
shown in brackets.
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1.2.1 Prostate-specific antigen blood test and/or digital rectal

exam

A PSA blood test is typically carried out in men presenting with symptoms concor-

dant with PCa. The PSA blood test is a well-established test for PCa, first intro-

duced in the late 1980s and early 1990s in the United States, Canada, and Australia

[10]. PSA is a protein produced by both cancerous and non-cancerous prostate cells,

however, elevated PSA is a marker for PCa [9]. According to NICE guidelines, a

PSA less than 10 ng/ml may be indicative of low risk disease, a PSA of 10-20 ng/ml

may be indicative of intermediate risk disease, while a PSA greater than 20 ng/ml

may be indicative of high risk disease. However, several benign conditions can also

cause a rise in PSA, such as prostatitis and benign prostatic hyperplasia (BPH) [21].

According to the NHS, about 3 in 4 men with a raised PSA level will not have PCa

and PSA can miss about 15% of PCa cases [21].

An alternative test which may be used to detect PCa is a digital rectal exam

(DRE). A DRE involves a doctor inserting a lubricated finger into the rectum to feel

for hard, lumpy, or abnormal areas in the posterior prostate. However, since DRE

cannot achieve complete gland coverage, findings from DRE may be inconclusive.

DRE has been shown to be a less effective test for detecting PCa; a meta-analysis

found a sensitivity of 51% and a specificity of 59% for PCa detection using DRE

[22].

1.2.2 Multiparametric magnetic resonance imaging

MRI is a highly flexible medical imaging technique that can be used to produce

detailed anatomical or functional images of parts of the body. The inclusion of

MRI in the PCa diagnostic pathway for PCa localisation, grading, and staging is

becoming increasingly widespread [23]. In the UK, NICE guidelines recommend

mpMRI for men with suspected clinically significant localised PCa [9]. MpMRI of

the prostate is a combination of T2-weighted imaging (T2WI), diffusion-weighted

imaging (DWI), and dynamic contrast-enhanced imaging (DCEI) [23]. Radiolo-

gists interpret the information presented in mpMRI to determine the likelihood of
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clinically significant PCa (CSPCa), where CSPCa refers to cancers which carry a

heightened mortality risk. While there is no general agreement on the clinical def-

inition of CSPCa, the two most widely used mpMRI reporting guidelines [24, 25]

suggest CSPCa should be defined as histopathological Gleason score≥ 7 (including

3 + 4 with prominent but not predominant Gleason 4 component), and/or volume >

0.5 cc, and/or extraprostatic extension (EPE).

The inclusion of mpMRI in the PCa diagnostic pathway has increased CSPCa

detection sensitivity. On a cohort of 576 men, the “Prostate MRI Imaging Study”

(PROMIS) [26] reported a sensitivity of 93% and a specificity of 41% for the detec-

tion of CSPCa by an experienced radiologist reading mpMRI, compared to a sen-

sitivity of 48% and a specificity of 96% for transrectal ultrasound-guided (TRUS)

biopsy. However, the low specificity of CSPCa detection on mpMRI currently leads

to a large number of unnecessary biopsies [26].

1.2.2.1 T2-weighted imaging

In T2WI, contrast is achieved through tissue T2 relaxation time differentials; T2 is

a specific physical constant unique to tissues that can be exploited by certain MRI

pulse sequences to produce an image. The contrast produced allows the typically

higher signal intensity PZ to be differentiated from the typically lower signal inten-

sity TZ and CZ. In addition, there is a clear differentiation between the prostate and

background tissues on T2WI. In the PZ, PCa tumours can appear as areas of low

signal intensity against the higher signal intensity background PZ [27]. An example

T2WI for a patient with a tumour in the PZ is shown in Figure 1.3.

However, there are limitations in using T2WI alone for PCa diagnosis. In par-

ticular, areas of low signal intensity in the PZ do not always represent cancer. Be-

nign abnormalities such as prostatitis, atrophy, scars, post-irradiation or hormonal

treatment effects, hyperplasia, and post-biopsy hemorrhage can mimic PCa [27]. In

addition, PCa in the TZ and CZ can be difficult to discern from benign prostatic hy-

perplasia (BPH); BPH occurs naturally with age and may have a similar low signal

intensity to PCa [27].
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Figure 1.3: Transverse T2WI slice through the prostate showing a Gleason 3+4 tumour in
the PZ.

1.2.2.2 Diffusion-weighted imaging

In DWI, contrast is based on the local motion of water molecules. Water diffusion

in tissue can be intracellular, within the interstitial space, and between cellular and

interstitial spaces. Diffusion sensitising gradients can be applied to produce images

that reflect the water diffusion in a voxel. The strength and timing of the diffusion

sensitising gradients is determined using the “b-value”; increasing the b-value gives

greater sensitivity to water motion, but decreases signal-to-noise ratio (SNR) [27].

By varying the amount of diffusion weighting, a quantitative measure that

reflects tissue microstructure can be obtained: the apparent diffusion coefficient

(ADC). By solving for the ADC at every voxel, an ADC map is produced. ADC

values in healthy prostate tissue can be relatively high due to the presence of gland

tubules in the glandular tissue of the prostate [27]. However, PCa can destroy the

normal glandular structure of the prostate, which will reduce the motion of water

[27]. In addition, tumours have a higher cellular density than healthy tissue, which

again restricts water motion. As a result, lower than typical ADC values may be

indicative of PCa [27]. Radiologist reporting guidelines recommend a threshold of

750-900 mm2/sec below which ADC values may correspond to CSPCa [24]. An
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example ADC map for a patient with a tumour in the PZ is shown in Figure 1.4.

Figure 1.4: Transverse ADC map slice through the prostate showing Gleason 3+4 tumour
in the PZ.

In addition to ADC maps, “high b-value” (b ≥ 1400 [24]) DWI is typically

collected. Tumours on high b-value DWI appear as hyperintensities against the

low signal intensity background due to preservation of signal in areas of restricted

diffusion. Recent evidence has suggested that high b-value DWI is advantageous

for highlighting index tumours, tumours adjacent to or invading the AFMS, and

tumours at the base and apex of the prostate [24, 28].

While high b-value DWI and ADC maps are a valuable component of mpMRI,

there are limitations in their use. Due to the use of fast imaging echo-planar se-

quences for acquisition, DWI has a lower spatial resolution than T2WI. In addition,

fast imaging echo-planar sequences are very sensitive to magnetic field inhomo-

geneities, which can cause magnetic susceptibility artifacts at tissue-air interfaces

[27]. In particular, air in the rectum can cause a dome-like distortion of the PZ,

which can obscure PZ tumours. An ADC map impacted by a severe magnetic sus-

ceptibility artifact is shown in Figure 1.5.

An issue specific to high b-value DWI is diminishing signal-to-noise ratio, which

can cause distortion and ghosting artifacts [28]. A method of circumventing the
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Figure 1.5: Transverse ADC map slice through the prostate showing a severe magnetic
susceptibility artifact.

image quality limitations of acquired high b-value imaging is to use lower b-value

images to extrapolate a high b-value image [24], which has been shown to achieve

higher signal-to-noise ratios [29]. A final limitation of using DWI alone for PCa

diagnosis is the presence of benign abnormalities that can mimic PCa on DWI, in

particular prostatitis in the PZ [24].

1.2.2.3 Dynamic contrast-enhanced imaging

DCE images are acquired following rapid injection of a bolus of low molecular-

weight gadolinium chelate [27]. Gadolinium is paramagnetic, therefore it causes

local signal changes as it traverses the vascular system. In particular, the gadolinium

chelate contrast agent causes a shortening of the T1 relaxation time, where T1, like

T2, is a specific physical constant unique to tissues. Importantly, a T1-weighted

pulse sequence will show increased signal where the Gadolinium contrast agent

accumulates.

A lack of oxygen and/or nutrients at a PCa tumour site will promote the re-

lease of growth factors that induce the formation of new blood vessels [27]. The

new vessels are thin, highly permeable, and irregular in shape, structure, and organ-

isation. As a result, the contrast agent washes in and washes out of the tumour more
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rapidly than in healthy prostate tissue. This can be observed through a series of fast

T1-weighted pulse sequences with a 1-4 second time interval [27].

Through post-processing using compartmental mathematical models, param-

eters like “washout”, “integral area under gadolinium-concentration-time curve”,

“wash-in gradient”, “maximum signal intensity”, “time to peak enhancement”, and

“start of enhancement” can be calculated. A k-trans curve can also be estimated

as a measure of capillary permeability by estimating how much contrast agent has

accumulated in the extravascular-extracellular space [27].

The main limitation of diagnosing PCa using DCEI is specificity. It is difficult

to discriminate PCa from prostatitis in the PZ and BPH nodules in the TZ, both of

which can be highly vascularised and can show increased and early enhancement

on DCEI [27]. In addition, DCEI has become a subject of clinical debate due to the

costs and risks associated to gadolinium injection, and unclear evidence that DCEI

improves diagnostic accuracy [30]. A recent systematic review and meta-analysis

by Woo et al. [30] sought to investigate whether a performance benefit is obtained

from the use of DCEI. Strikingly, their study showed that the performance of radi-

ologists with biparametric MRI (bpMRI) was similar to the performance of radiol-

ogists with mpMRI, for the diagnosis of PCa. However, a case may be made for the

use of DCEI to support T2WI if DWI contains an obscuring magnetic susceptibility

artifact.

1.2.2.4 Radiologist review: scoring

Radiologists score prostate mpMRI for the likelihood of CSPCa. Globally, the most

popular scoring system used by radiologists is the Prostate Imaging-Reporting and

Data System (PI-RADS). The first version of PI-RADS was an attempt to create a

standardised mpMRI reporting structure, following recommendations from a Euro-

pean consensus meeting [31]. Since the release of PI-RADS v1, several modifica-

tions have been made in the subsequently released PI-RADS v2 [23] and PI-RADS

v2.1 [24]. However, an alternative scoring system is advocated in the UK by NICE.

NICE guidelines recommend the Likert scoring system for mpMRI reporting based

on multicentre studies that have demonstrated its effectiveness within the NHS [9].
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There are a number of similarities and differences between the two scoring systems.

Both PI-RADS and Likert use a five-point scoring scale and utilise similar features

on mpMRI. The main differences between the two systems are that PI-RADS advo-

cates a sequential read, lesion-level scoring only, and an assignment of scores based

on imaging features only, while Likert does not mandate a sequential read, allows

the use of clinical data in addition to imaging, and allows scoring of lesions and the

whole prostate.

1.2.2.5 Radiologist review: staging

In addition to scoring mpMRI for the likelihood of CSPCa, radiologists use mpMRI

for staging PCa. TNM staging is a globally recognised staging methodology used to

describe the extent of cancer spread, where T stands for tumour, N stands for node,

and M stands for metastasis [32].

The T component of the stage describes the area of the cancer [32]. There are

four subdivisions of the T component: T1 means the cancer is too small to be seen

on mpMRI or felt during DRE; T2 indicates the cancer can be seen on mpMRI and is

completely confined within the prostate; T3 indicates the cancer has broken through

the prostate’s capsule; and T4 means the cancer has spread to nearby organs, such

as the back passage, bladder, or the pelvic wall.

The N component of the stage describes whether the cancer has spread to the

lymph nodes [32]. There are two subdivisions of the N component: N0 indicates

that the cancer has not spread to the lymph nodes, while N1 indicates that the cancer

has spread to the lymph nodes.

The M component describes whether the cancer has metastasised to other parts

of the body. There are two subdivisions of the M component: M0 means the cancer

has not metastasised to other parts of the body, while M1 means the cancer has

spread to other parts of the body outside of the pelvic region.

1.2.3 Prostate biopsy and Gleason scoring

Biopsy remains the only non-surgical method for confirming a PCa diagnosis,

though due to sampling error, PCa cannot be ruled out if cancer tissue is not present
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in the biopsy sample. NICE guidelines in the UK recommend MRI-guided biopsy

of lesions scored greater than or equal to Likert 3 and biopsy omission for patients

with mpMRI scored Likert 1 or 2 [9], while PI-RADS v2.1 recommends MRI-

guided biopsy of lesions scored PI-RADS 4 or 5, biopsy omission for lesions scored

PI-RADS 1 or 2, and the use of other information sources to determine whether a

PI-RADS 3 lesion should be biopsied [24].

MRI-guided biopsies are typically performed under local anaesthetic. An al-

ternative biopsy method is transperineal template prostate-mapping (TTPM) biopsy.

TTPM biopsy is typically performed under general anaesthetic, and involves taking

multiple cores from multiple sites using a grid system. Approximately 20 sites

may be systematically sampled, with two or three cores per site. TTPM biopsy is

accurate and avoids the image bias associated to MRI-guided biopsy and reduces

the sampling error associated to random or systematic transrectal ultrasound-guided

(TRUS) biopsy [33]. However, TTPM biopsy does carry a greater potential for side-

effects due to the need for general anaesthesia [33]. Therefore, TTPM biopsy is not

used routinely in clinic, but has featured in clinical trials of mpMRI to provide a

robust reference standard [33, 26].

A Gleason score is given to tissue samples collected from biopsy to estab-

lish PCa aggressiveness through microscopic analysis [34]. Gleason grades range

from 1-5, with grade 5 indicating the most aggressive tumour cells. By convention,

grades are assigned for the two most common patterns seen under the microscope

across all the biopsy samples taken from a tumour. The term Gleason score refers

to the summation of the two grades. For example, a Gleason score written 3 + 4,

indicates that most of the cancer cells observed are grade 3 and a smaller proportion

are grade 4. They are added together for a Gleason score of 7. Gleason scores will

range from 6 (3+3) to 10 (5+5) for PCa. A further categorisation into Gleason Grade

Groups with associated histopathological definitions has been outlined by Epstein

et al. [35]:

• Group 1 (Gleason score ≤ 6): Only individual discrete well-formed glands.

• Group 2 (Gleason score 3 + 4 = 7): Predominantly well-formed glands with
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lesser component of poorly-formed/fused/cribriform glands.

• Group 3 (Gleason score 4+3 = 7): Predominantly poorly-formed/fused/cribriform

glands with lesser component of well-formed glands.

• Group 4 (Gleason score 4 + 4 = 8, 3 + 5 = 8, 5 + 3 = 8): Only poorly-

formed/fused/cribriform glands or predominantly well-formed glands and

lesser component lacking glands or predominantly lacking glands and lesser

component of well-formed glands.

• Group 5 (Gleason scores 9-10): Lacks gland formation (or with necrosis) with

or without poorly-formed/fused/cribriform glands.

1.2.4 Multidisciplinary team meeting

Following diagnostic tests, biopsy, and histopathological analysis, the multidisci-

plinary team (MDT) involved in patient care will meet to discuss clinical, imaging,

and histopathological findings. NICE guidelines in the UK recommend that each

patient should be assigned a risk rating by the MDT [9]; risk categories are shown

in Table 1.1.

Level of risk PSA Gleason score Clinical stage

Low Less than 10 ng/ml and 6 or below and T1 to T2a
Medium 10 to 20 ng/ml or 7 or T2b
High Higher than 20 ng/ml or 8 to 10 or T2c or higher

Table 1.1: Risk stratification for patients with localised prostate cancer as described by UK
NICE guidelines [9].

The main aim of the MDT meeting is to determine whether patients should be

treated, and if so, the most appropriate treatment option, or whether patients should

be placed on active surveillance or watchful waiting. Patient preferences will be

taken into account prior to the MDT meeting and following the MDT meeting [9].

1.2.5 Radical treatment, active surveillance, or watchful waiting

UK NICE guidelines recommend radical treatment for patients with high risk lo-

calised or advanced PCa, while patients with low or intermediate risk localised PCa
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may be offered a choice between active surveillance, watchful waiting, and radical

treatment [9].

The most common radical treatments for PCa are prostatectomy and radiother-

apy [36]. Prostatectomy is a surgical procedure to remove the prostate gland and

tissues surrounding it - this usually includes the seminal vesicles and some nearby

lymph nodes. Radical prostatectomy can cure prostate cancer in men whose can-

cer is limited to the prostate, though a 20-40% rate of biochemical recurrence has

been reported [37]. In addition, common side-effects of prostatectomy are the in-

ability to get an erection and urinary incontinence [36]. Alternatively, radiotherapy

uses high energy radiation to kill cancer cells rather than surgical removal of the

prostate. External beam radiotherapy uses X-rays administered from outside the

body, while brachytherapy is an alternative that uses small radioactive seeds placed

within the prostate [36]. For external beam radiotherapy and brachytherapy, bio-

chemical recurrence rates of 30-50% have been reported [38]. Radiotherapy also

carries side-effects including diarrhoea, bleeding, discomfort, cystitis, and inability

to get an erection [36].

Active surveillance refers to monitoring a patient’s PCa over time using PSA

testing, DRE, mpMRI, and biopsy. Should there be a marked change in a patient’s

risk classification, patients on active surveillance may transition to radical treat-

ment. As radical treatment carries risks and potential side-effects, active surveil-

lance presents a viable option for those patients with slow-growing PCa. Studies

have shown a 98% ten-year survival rate for patients offered active surveillance and

that only 21% of patients offered active surveillance show signs of disease progres-

sion [9]. Alternatively, watchful waiting is a less intensive monitoring regime that

involves managing symptoms as they arise, whose aim is to not transition patients

to radical treatment.

1.3 Motivation of this work and thesis overview

In this work, we build and evaluate deep learning-based CAD systems for the PCa

diagnostic pathway. The work in this thesis is motivated by challenges faced in
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uroradiology, the growth of deep learning for medical image analysis tasks, and

current gaps identified in the PCa CAD literature.

1.3.1 Rationale

Earlier in this chapter, we described the growing global cancer burden and a short-

fall of radiologists to meet the projected demand on diagnostic radiology services.

In the UK, PCa incidence is projected to rise by 12% between 2014 and 2035 to

233 cases per 100,000 [19]. In addition to the growth in PCa incidence, there is

a growing use of mpMRI in the PCa diagnostic pathway. Studies have shown a

considerable increase in sensitivity from a pathway that includes mpMRI over a

pathway containing TRUS biopsy only [26, 33]. The diagnostic accuracy of radi-

ologists interpreting mpMRI was reported by the PROMIS study [26]; on the task

of identifying CSPCa (Gleason score≥ 3+4), radiologist Likert scoring (threshold:

Likert≥ 3) had a sensitivity of 88% and specificity of 45% compared to a sensitivity

of 48% and a specificity of 99% for TRUS biopsy. While the increase in sensitivity

made possible by the introduction of mpMRI is paramount to early diagnosis, im-

provements are needed to reduce the small proportion of men with CSPCa who are

missed by mpMRI, to reduce the large number of men who undergo unnecessary

biopsies, and to increase the inter-observer agreement between readers of varying

experience and expertise [39]. In summary, the projected growth in PCa incidence,

the projected shortfall in the radiology workforce, the increasing use of mpMRI,

and the need for greater diagnostic accuracy and inter-observer agreement between

radiologists has created the necessary motivation for the research and development

of CAD systems for PCa diagnosis.

Deep learning has permeated the entire field of medical image analysis [40]. A

review by Litjens et al. [40] summarizing over 300 contributions of deep learning

in medical image analysis found successful applications in abdomen, brain, breast,

heart, lung, prostate, and retina; tasks included patient classification, lesion classifi-

cation, organ detection, lesion detection, organ segmentation, lesion segmentation,

image registration, image generation, and image enhancement.

Deep learning-based CAD systems can be introduced into the PCa diagnostic
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pathway to interpret mpMRI for varied applications. Prior to radiologist assessment

of mpMRI, CAD systems can be deployed to perform patient triage using image and

clinical data. CAD systems for patient triage could rank patients by disease sever-

ity or likelihood of having CSPCa, and potentially identify the lowest risk patients

who do not require a clinical read, reducing radiologist workload. Alternatively,

CAD systems can be used to provide an independent diagnosis in a second reader

setting, which may be used to meet the double reporting recommendation outlined

by the Likert assessment guidelines [25]. Rather than provide an independent di-

agnosis, CAD systems can also be designed to be companion systems for radiol-

ogists to help them identify and/or score lesions; several CAD system works have

been published to evaluate the companion system paradigm where CAD-generated

voxel-level probability maps were used by radiologists to identify and score lesions

[15].

In addition to lesion assessment, radiologists use prostate mpMRI to estimate

prostate volume and lesion volume using the ellipsoid formula [41]. Primarily,

prostate volume is required for calculating the PSA density (PSAd), while lesion

volume provides additional information for initial diagnosis, progression monitor-

ing during active surveillance, and radical treatment planning. However, the ellip-

soid formula is an approximation that ignores exact prostate and lesion morphol-

ogy [41], therefore more accurate volume estimation methods are sought. As deep

learning algorithms have achieved state-of-the-art performance for medical image

segmentation [42], they may be used for prostate and lesion segmentation, from

which volume estimates can be derived.

A further use of CAD systems deployed into the clinical workflow can be to

enhance reporting quality. In accordance with PI-RADS and Likert guidelines, radi-

ologists typically produce a text-based report of mpMRI findings [43]. Using CAD

tools, there is potential for enhanced reporting with pictorial elements, automatic

extraction of prostate and lesion characteristics, and automatic generation of report

text using natural language processing (NLP).
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1.3.2 Thesis overview

In this chapter, we introduced PCa and the PCa diagnostic pathway, which are

the pathology and diagnostic pathway that motivate the development of the deep

learning-based CAD systems presented in this thesis. Chapter 2 presents a litera-

ture review. The literature review explores various automatic and semi-automatic

methods for medical image analysis, followed by an in-depth exploration of meth-

ods developed for and applied to PCa tasks, namely whole prostate and prostatic

zones segmentation, PCa lesion detection, classification, and segmentation, and pa-

tient classification. Chapter 3 introduces the prostate datasets used to train and

evaluate the CAD systems presented in this thesis, namely the publicly available

PROSTATEx dataset [44] and the “Prostate Imaging Compared to Transperineal

Ultrasound-guided biopsy for significant prostate cancer Risk Evaluation” (PIC-

TURE) trial dataset [33]. Chapter 4 presents a novel patient classification frame-

work, PCF, that assigns a probability of having CSPCa to patients based on mpMRI

and clinical features, with applications in patient triage or as a second reader. In

PCF, features are extracted from three-dimensional mpMRI and derived parame-

ter maps using convolutional neural networks (CNNs) and subsequently combined

with clinical features by a multi-classifier support vector machine (SVM) scheme.

Chapter 5 presents AutoProstate, a deep-learning powered framework for automated

MRI-based PCa assessment. AutoProstate uses bpMRI and clinical data to populate

an automatic report, which can provide radiologists with useful information at the

point of diagnosis, with the aim of increasing diagnostic accuracy and improving

reporting quality. Chapter 6 explores interactive click-based segmentation of the

whole prostate and prostatic lesions. Fully-automatic segmentation methods can

fail under certain circumstances e.g., due to domain shifts between training and test

data, image artifacts, and unseen pathologies [45], therefore, clinicians should have

the ability to edit segmentations output by deep learning algorithms if clinical de-

ployment is desired. Interactive segmentation has applications in prostate volume

and PSA density calculation, diagnosis, active surveillance progression tracking,

and radical treatment planning. Finally, Chapter 7 summarises the work presented
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in this thesis and presents avenues of future research.



Chapter 2

Literature review

2.1 Machine learning for medical image analysis

Medical image analysis describes a field of research concerning automatic and semi-

automatic methods for extracting information from medical images, primarily for

diagnostic, treatment, and/or monitoring purposes. In a review article by Litjens et

al. [40], over 300 machine learning contributions to the field of medical image anal-

ysis were described, predominantly for image classification, organ/lesion detection,

organ/lesion classification, organ/lesion segmentation, image generation, and image

denoising.

Machine learning is rooted in the idea that algorithms can make decisions by

“learning” from data rather than being explicitly programmed to do so. Mitchell

[46] provides a formal definition of learning: “A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure

P, if its performance at tasks in T, as measured by P, improves with experience E.”

Generally speaking, machine learning algorithms can be divided into “supervised”

and “unsupervised” learning algorithms [47]. In supervised learning, input-label

pairs are available to the algorithm during the training stage during which the algo-

rithm’s parameters are optimised, while in unsupervised learning, the algorithm will

attempt to find patterns in the input data, during training, without the use of labels

[47]. Common supervised learning algorithms include linear regression, logistic re-

gression, support vector machine, random forest, naive Bayes, k-nearest neighbour,
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and discriminant analysis, while common unsupervised algorithms include k-means

clustering and fuzzy c-means clustering.

Over the last decade, there has been a rapid growth in the use of a particular

subclass of machine learning, known as deep learning [40]. Deep learning algo-

rithms typically refer to neural networks with three or more layers [48]. In image

analysis, convolutional neural networks (CNNs) are achieving state-of-the-art per-

formance in several tasks [40]. The watershed moment for deep learning was the

contribution of Krizhevsky et al. [49] to the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) in 2012. Their CNN, “AlexNet”, won the challenge by a

large margin, prompting interest and advances in the use of deep learning for com-

puter vision and medical image analysis applications in the years following. The

success of AlexNet was attributed to increased network depth compared to previ-

ous architectures and the use of novel deep learning components such as rectified

linear unit (ReLU) activation [50], local response normalisation [49], overlapping

pooling [49], and data augmentation. Critically, training AlexNet would not have

been possible without the use of modern GPUs [49]. Since AlexNet, further CNN

architectures have been developed that have pushed natural image classification ac-

curacy beyond that of humans [51]. In 2014, “GoogLeNet” [52] won the ILSVRC

classification challenge using a CNN architecture featuring “inception units” which

allowed feature extraction at multiple scales [52]. In 2015, a “ResNet” CNN with

152 layers won the challenge using “residual units”, which solved the degradation

problem previously observed with increasing network depth [5]. A further improve-

ment in classification accuracy was made by “SENet”; SENet won the ILSVRC

challenge using newly proposed “squeeze-and-excitation” blocks [53], to achieve a

a top 5 error rate of just 2.3%. The current state-of-the art for image classification is

a family of models known as “EfficientNets” [54]. In their work, neural architecture

search (NAS) was used to design a new baseline network, and a new scaling method

was proposed to adjust network depth, width, and resolution for different tasks.

We now proceed to discuss classification and segmentation as these are the

pertinent medical image analysis tasks explored in this thesis.
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2.1.1 Classification

Classical machine learning algorithms have been used to classify patients with

suspected mild cognitive impairment (MCI) or Alzheimer’s disease (AD) e.g.,

[55, 56, 57]. In general, discriminant features were extracted from medical im-

ages. Extracted features were processed by a machine learning classifier to produce

the classification output: Khan et al. [55] used twin SVMs [58] for patient clas-

sification using cortical and curvature features extracted from T1-weighted MRI;

Jonkreangkrai et al. [56] used a SVM to classify patients using cortical volume

and thickness measurements; and Casanova et al. [57] compared several machine

learning classifiers for patient classification using T1-weighted MRI voxel values

directly.

Several works have investigated the use of deep learning for patient classifi-

cation e.g., [59, 60, 61, 62]. In Hosseini et al. [59], a 3D CNN was presented to

classify patients with suspected MCI/AD using T1-weighted MRI; Shi et al. [62]

proposed a deep polynomial network (DPN) to perform the same task as Hosseini

et al., but using a combination of MRI and positron emission tomography (PET)

images; Antony et al. [60] used a combination of CNN and SVM to classify

knee osteoarthritis severity using X-ray images; and Pinaya et al. [61] proposed

a deep belief network (DBN) for differentiating healthy controls and patients with

schizophrenia. Rather than classifying patients, several works have investigated the

use of deep learning for lesion classification e.g., [63, 64, 65]. Setio et al. [63] pro-

posed a multi-stream 2D CNN architecture to classify individual pulmonary nodules

on computerised tomography (CT) scans; Harangi [64] presented an ensemble of

CNNs with varying architecture to classify skin lesions on dermoscopy images; and

Cullell-Dalmau et al. [65] used a pre-trained ResNet-50, subsequently fine-tuned

for skin lesions, to perform the same task as Harangi.

2.1.2 Segmentation

Segmentation is a highly relevant task in medical imaging for the delineation of

structures, organs, and lesions on medical images [40]. Several methods have been

developed for automatic/interactive segmentation of medical images.
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2.1.2.1 Automatic segmentation algorithms

Clustering is a type of unsupervised machine learning that can be used to segment

medical images, by organising voxels into groups based on image features e.g.,

intensity, texture, patterns, and shapes [66], and then assigning a class label to each

group. A popular and relatively simple clustering algorithm is k-means [67]. The k-

means clustering algorithm, in the context of medical image segmentation, assigns

voxels to the nearest of k clusters, while keeping the clusters as compact as possible.

As an example, in Ng et al. [68] the k-means clustering algorithm was used to

segment brain MRI into bone, soft tissue, fat, and background. However, while the

k-means algorithm is relatively simple, it does have a tendency to terminate at local

optima [66]. On the other hand, the expectation-maximisation clustering algorithm

[69] is more robust to local optima [70]. The idea is to assign voxels partially to

different clusters instead of assigning them to only one cluster by modelling each

cluster using a probability distribution. As an example, in Kwon et al. [71], the EM

clustering algorithm was used to segment brain MRI into grey matter, white matter,

and cerebrospinal fluid.

Deep learning methods based on CNNs are the current state-of-the-art for

automatic 2D and 3D medical image segmentation [8, 72, 73], due in large part

to the landmark contributions of Ronneberger et al. [6] (2D U-Net), Çiçek et

al. [7] (3D U-Net), and Milletari et al. [74] (V-Net). The Medical Seg-

mentation Decathlon (MSD) [75] is driving current methodological innovations

and performance improvements. The MSD challenge asks participants to de-

velop a machine learning algorithm that performs well on 10 different med-

ical image segmentation tasks. At the time of writing, second position on

the live leaderboard (https://decathlon-10.grand-challenge.org/

evaluation/challenge/leaderboard/) is held by nnU-Net by Isensee

et al. [8], which is a segmentation pipeline based on U-Net that automatically con-

figures to any new medical image segmentation task, and first place is held by the

Differentiable Network Topology Search (DiNTS) scheme, developed by He et al.

[72], which allows architectures not confined to pre-defined topologies to be applied

https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
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to different medical image segmentation tasks. A recent work by Hatamizadeh et al.

[73] introduces UNETR, which utilises a transformer [76] as the encoder, achieving

favorable benchmarks on the MSD brain tumour and spleen segmentation tasks.

2.1.2.2 Interactive segmentation algorithms

Despite state-of-the-art performance on several medical image segmentation tasks,

automatic segmentation algorithms have not yet reached the desired robustness for

clinical use [45]. Interactive segmentation methods accept user-guidance to enable

an improved segmentation [45]. Graph-cuts [77], normalised cuts [78], geodesics

[79], and random walks [80] have been proposed for interactive segmentation using

bounding box or scribble interactions. However, these methods succeed in simple

settings with clear structural boundaries, but require extensive user interaction for

more complex segmentation tasks [45].

Deep learning-based interactive segmentation methods have been proposed for

robust segmentation of digital images [81, 82]. In Xu et al. [81], user foreground

and background clicks were converted into euclidean distance maps, and subse-

quently added as additional input channels to a CNN, while in Agustsson et al.

[82], users were expected to provide extreme point clicks and corrective scribbles.

Inspired by the aforementioned works and other incremental works, deep learning-

based interactive segmentation methods for medical image segmentation have been

proposed [83, 45, 84]. In Wang et. al [83], a bounding box and scribble-based CNN

segmentation pipeline was proposed, whereby an initial segmentation is obtained

within a user-provided bounding box, followed by image-specific fine-tuning using

user-provided scribbles. On the tasks of 2D segmentation of multiple organs on fe-

tal MRI and 3D segmentation of brain tumour core and whole tumor using multiple

MR sequences, their method proved more robust than state-of-the-art CNNs for seg-

menting previously unseen objects and more accurate with fewer user-interactions

than traditional interactive segmentation methods. In contrast, Sakinis et al. [45]

proposed a click-based interactive segmentation method, motivated by the work

of Xu et al. [81]. In their work, Gaussian-smoothed user foreground and back-

ground clicks were added as input channels to an encoder-decoder CNN. Experi-
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ments on multiple organ segmentation on CT showed that their method generated

2D segmentations in a fast and reliable manner, generalised well to unseen struc-

tures, and produced accurate results with few clicks. An alternate method that first

performs an automatic CNN segmentation, followed by optional refinement through

user clicks/scribbles, is proposed by Wang et al. [84]. Their method, DeepIGeoS,

achieved substantially improved performance compared to automatic CNNs on 2D

placenta and 3D brain tumour segmentation, and higher accuracy with fewer inter-

actions compared to traditional interactive segmentation methods.

2.2 Machine learning for prostate MRI analysis
Machine learning methods are being used for whole prostate segmentation, pro-

static zones segmentation, clinically significant prostate cancer (CSPCa) lesion de-

tection/classification/segmentation, and the classification of patients with suspected

CSPCa [15].

2.2.1 Whole prostate segmentation

Several automatic whole prostate segmentation methods have been presented in the

literature [74, 85, 86, 87, 88, 89, 90]. Above all, the PROMISE12 Challenge has

played a key role in ensuring consistent improvements in the performance of whole

prostate segmentation algorithms over the past decade [91]. A notable submission

to the challenge was made by Milletari et al. [74] in 2016, when they presented a

novel encoder-decoder CNN architecture named V-Net for volumetric image seg-

mentation, which was optimised using a novel Dice coefficient loss function. On

the PROMISE12 challenge test set, V-Net achieved a mean Dice score of 0.87 for

whole prostate segmentation. While the challenge originally took place at the MIC-

CAI conference in 2012, the leaderboard remains active for online entries to the

present day; at the time of writing, at least the top seven positions in the leader-

board are held by deep learning algorithms (the individual/team occupying position

eight in the leaderboard has not disclosed the details of the algorithm they used),

with the top ranking algorithm, named MSD-Net, achieving a mean Dice score of

0.92 on the PROMISE12 challenge test set. Recent works by Aldoj et al. [87] and



2.2. Machine learning for prostate MRI analysis 49

Cuocolo et al. [88] have achieved similar mean Dice scores on the publicly avail-

able PROSTATEx dataset [44]. Aldoj et al. presented a novel CNN architecture

named Dense-2 U-Net, which was inspired by DenseNet [92] and U-Net. Four-fold

cross-validation of 188 patients from the PROSTATEx training dataset yielded a

mean Dice score of 0.92. In Cuocolo et al. [88], the previously proposed ENet [93]

was evaluated on 105 patients from the PROSTATEx training dataset, on which a

mean Dice score of 0.91 was achieved.

Segmentation of the whole prostate can be used to obtain an estimate of

prostate volume. To the best of our knowledge, only the work by Lee et al. [94] has

compared prostate volume estimation using an automatic segmentation method to

the clinically utilised ellipsoid formula. On a 70-patient test set, their 3D CNN for

whole prostate segmentation achieved a mean Dice coefficient of 0.87 and a mean

volume absolute percentage error (Abs%Err) of 11.78%, while the mean volume

Abs%Err of the ellipsoid formula was 11.92%.

2.2.2 Prostatic zones segmentation

Several automatic methods for prostatic zones segmentation have been presented in

the literature [8, 72, 87, 88, 95]. Makni et al. [95] used evidential C-means clus-

tering to segment prostatic zones on T2WI; on a 31-patient test set, their algorithm

achieved mean Dice scores of 0.78 for the peripheral zone (PZ) and 0.88 for the

central gland (CG). The zonal segmentation task is included in the Medical Seg-

mentation Decathlon; on a test set of size 16, nnU-Net, introduced by Isensee et al.

[8], achieved mean Dice scores of 0.77 and 0.90 for the PZ and CG respectively,

while the DiNTS framework, presented by He et al. [72], achieved mean Dice

scores of 0.75 and 0.89. Alternatively, on the PROSTATEx dataset, the Dense-2

U-Net CNN presented by Aldoj et al. [87] achieved mean Dice scores of 0.78 and

0.91 for the PZ and CG respectively, for four-fold cross-validation of 188 patients,

while E-Net evaluated by Cuocolo et al. [88] achieved mean Dice scores 0.71 and

0.87 for the PZ and CG respectively, on 105 held-out patients.
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2.2.3 Computer-aided diagnosis of prostate cancer

A systematic review of CAD systems that use AI for MRI-based PCa diagnosis was

published by Syer and Mehta et al. in July 2021 [15]. The key selection criteria

for including studies in the systematic review was the need for CAD system perfor-

mance to be measured against a histopathological reference standard and compared

to radiologist interpretation. Since radiologist interpretation of mpMRI is current

clinical practice, a comparison to radiologist interpretation provides valuable in-

sight into the utility of the CAD system being evaluated if it were to be deployed

into the clinical workflow.

The review of CAD systems for PCa diagnosis presented in this chapter follows

from the systematic review by Syer and Mehta et al. The study selection criteria

defined by Syer and Mehta et al., is as follows: studies were included if (i) they

evaluated CAD for PCa detection or classification on MRI, (ii) CAD performance

was compared to radiologist interpretation and against a histopathological reference

standard, (iii) the evaluation patient cohort was treatment-naı̈ve, and (iv) a full-text

article was available; and studies were excluded if (i) MRI sequences other than

T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted

imaging (DWI), or dynamic contrast-enhanced imaging (DCEI) were used, (ii) the

comparator radiologist(s) did not have access to at least axial T2WI and DWI with

apparent diffusion coefficient (ADC) map for reporting, and (iii) the patient cohort

used for testing was less than thirty patients.

Twenty-seven studies met the selection criteria [96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,

119, 120, 121, 122]. Two further studies of relevance, published after the systematic

review search date (25 March 2021), are included in this chapter [123, 124].

2.2.3.1 Study characteristics

All studies were published between 2013 and 2021 from groups spanning Asia,

Europe, and the USA. A retrospective study design was followed by all studies. The

size of patient cohorts used for evaluation varied substantially. The smallest patient

cohort used for evaluation was 30 patients, used in the work of Niaf et al. [105].
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In contrast, the recent work by Saha et al. [123] used institutional scans from 486

patients and external scans from 296 patients for evaluation. Notably, the work by

Saha et al. also featured the largest training cohort of size 1950. Histopathological

reference standards used in studies also varied substantially. Studies used one or

a combination of the following: transperineal template prostate-mapping (TTPM)

biopsy, in-bore targeted biopsy, TRUS targeted biopsy, TRUS saturation biopsy,

TRUS systematic biopsy, or radical prostatectomy. The majority of studies collected

scans using 3T MR scanners, while fewer studies used 1.5T MR scanners [99, 105,

106, 114]. Few studies evaluated CAD systems using multicenter MRI data [96,

113, 117], and few studies used multivendor MRI data for evaluation [96, 100,

113]. Notably, work by Gaur et al. [113] evaluated CAD performance against

reader performance on a multicenter external test cohort featuring scans from five

institutions based in four countries spread over three continents.

2.2.3.2 Computer-aided diagnosis system taxonomy

CAD system studies, and by extension the CAD systems presented within them, are

described as patient classification (PAT-C), region of interest (ROI) Classification

(ROI-C), and lesion localisation and classification (LL&C). PAT-C refers to studies

where CAD systems classified patients directly, ROI-C refers to studies where CAD

systems classified pre-defined ROIs, e.g., manually contoured lesions, and LL&C

refers to studies where CAD systems performed simultaneous lesion localisation

and classification. The typical workflow of each type of CAD system is shown in

Figure 2.1.

2.2.3.3 Patient classification (PAT-C) systems

The work by Deniffel et al. [122] is the only study of type PAT-C among the in-

cluded studies. Deniffel et al. presented a 3D CNN that classified patients as hav-

ing clinically significant disease (Gleason score ≥ 3 + 4) or not, using T2WI, ADC

map, and b1600 DWI. CAD system and radiologist sensitivity and specificity was

presented at several probability thresholds. At a probability threshold of≥ 0.2, their

CAD system achieved a per-patient sensitivity and specificity of 100% and 52% re-

spectively, which exceeded the joint performance of two radiologists with 3 and 15
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Figure 2.1: Taxonomy of CAD systems for PCa diagnosis. CAD systems are categorized as
Patient Classification (PAT-C), ROI Classification (ROI-C), or Lesion Localiza-
tion and Classification (LL&C). Blue indicates mpMRI/bpMRI input, yellow
indicates manual processes, white indicates automated processes, and green
indicates intermediate or final outputs. ROI = region of interest. CNN = con-
volutional neural network. ML = machine learning. ML* here refers to ML
algorithms exclusive of CNNs, such as support vector machines, random for-
est, logistic regression, and artificial neural networks.

years of experience each, who read a subset of cases; the joint radiologist sensitivity

and specificity was 95% and 35% respectively. However, since the threshold for the

probabilistic output of the CNN was not pre-specified or determined using training

data, the performance may not be a true reflection of how the CAD system would

perform prospectively.

2.2.3.4 Region of interest classification (ROI-C) systems

Several studies of type ROI-C have been published. Algorithms used for ROI classi-

fication include, but are not limited to: logistic regression [99, 102, 103, 104, 106],

support vector machine [105, 108], random forest [98, 109], generalised linear

mixed model [100, 107], quadratic discriminant analysis [96], linear discriminant
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analysis [101], and CNN [111].

Few ROI-C studies have reported superior diagnostic accuracy for CAD com-

pared to radiologist interpretation. In Wang et al. [108], a novel SVM classifier was

trained using radiomic features extracted from T2WI, ADC map, b1500 DWI, and

DCEI, to classify index lesions using a clinical endpoint of Gleason score ≥ 3 + 3

and lesion size ≥ 0.5cm3. Using leave-one-patient-out (LOPO) cross-validation

(CV) of 54 patients who had undergone radical prostatectomy, the SVM classifier

achieved a sensitivity of 90% and a specificity of 88%, compared to a sensitivity

of 76% and a specificity of 91% for the consensus view of two readers with over

10 years’ experience in reading prostate MRI; the difference in sensitivity was sta-

tistically significant. In Dinh et al. [100], a GLMM classifier was trained using

radiomic features extracted from ADC map and DCEI. Using a clinical endpoint of

Gleason score ≥ 3 + 4, their GLMM classifier achieved a sensitivity of 96% and a

specificity of 44% on a temporally separated cohort of 129 patients with combined

TRUS and targeted biopsy reference standard, compared to a sensitivity of 100%

and a specificity of 14% for nine radiologists of varying experience who read a sub-

set of cases each; only the difference in specificity between the GLMM classifier

and radiologists was statistically significant. In Niu et al. [106], zone-specific lo-

gistic regression models were trained using T2WI and ADC maps. CAD and reader

performance was assessed on 184 patients with combined TRUS biopsy and tar-

geted biopsy reference standard, using a clinical endpoint of Gleason score ≥ 3 + 4.

For lesions in the PZ, logistic regression achieved a sensitivity of 87% and a speci-

ficity of 89%, while radiologist interpretation yielded a sensitivity of 79% and a

specificity of 75%, and for lesions in the TZ, logistic regression achieved a sensi-

tivity of 88% and a specificity of 81%, while radiologist interpretation yielded a

sensitivity of 73% and a specificity of 77%; in both zones, logistic regression was

found to be statistically better than radiologist interpretation in terms of both sensi-

tivity and specificity. In contrast, the work by Transin et al. [107] showed inferior

sensitivity for a GLMM classifier compared to a radiologist with 20 years of expe-

rience in prostate imaging, with statistical significance; unlike the aforementioned
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works, the work by Transin et al. performed an evaluation using externally-obtained

test data. In other studies, there were no statistically significant differences between

CAD systems and radiologists [96, 97, 98, 99, 109, 111, 103].

CAD systems which accept the radiologist’s reporting score as input alongside

MRI features have been investigated [108, 110, 104, 103], three of which showed

significant improvement upon the radiologist’s score alone. Li et al. [103] com-

bined a CAD likelihood score with a PI-RADS v2.1 score and a prostate-specific

antigen (PSA) value, using a logistic regression classifier, reporting an increased

area under the receiver operating characteristic curve (AUC) compared to radiolo-

gist PI-RADS v2.1 assessment alone, with statistical significance. In Litjens et al.

[104], a CAD likelihood score was combined with a PI-RADS v1 score, using a

logistic regression classifier; they reported an increased specificity over radiologist

assessment using PI-RADS v1, with statistical significance. In Wang et al. [108],

a support vector machine classifier was used to combine radiomic features and a

PI-RADS v2 score; they found an increase in sensitivity over radiologist PI-RADS

v2 assessment alone, with statistical significance. A further two studies compared

radiologist interpretation with and without knowledge of CAD scores [101, 105],

for which no significant differences were demonstrated.

2.2.3.5 Lesion localisation and classification (LL&C) systems

Several CAD systems that perform lesion localisation and classification using clas-

sical machine learning algorithms have been published in the literature. A com-

prehensive work, evaluated on a large patient cohort of size 347, is by Litjens at

al. [116]. They presented a two-stage CAD system featuring a radiomic feature

extraction and classification stage, to generate a voxel probability map for each

patient, followed by candidate selection, candidate feature extraction, and classifi-

cation of each candidate using a random forest classifier, such that a likelihood of

PCa is obtained for each candidate. After excluding biopsy-proven low-grade tu-

mours (Gleason score = 6), they computed a voxel-level AUC of 0.89 and a patient-

level AUC of 0.81 for high-grade PCa (Gleason score ≥ 7) vs normal/benign, using

leave-one-patient-out (LOPO) cross-validation, computed against a targeted biopsy
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reference standard. At a high specificity threshold for both CAD system and ra-

diologist (> 20 years’ experience in reading prostate MRI), performance did not

differ significantly, however, radiologist performance was superior at a high sen-

sitivity threshold. Giannini et al. [114], Greer et al. [115], and Zhu et al. [121]

compared CAD system and radiologist performance on independent internal test

cohorts. In Giannini et al. [114], quantitative features were extracted from T2WI,

ADC map, and DCEI at the voxel level. An SVM classifier was trained to clas-

sify voxels as GS ≥ 3 + 4 or not. On 89 patients with scans acquired using 1.5T

scanners and targeted biopsy or saturation biopsy (at least 28 cores taken from each

patient) reference standard, the CAD system achieved a sensitivity of 81%, while

the average sensitivity of three radiologists with 2-4 years’ experience in reading

prostate MRI was 72%; the difference between CAD system and radiologist sen-

sitivity was not statistically significant. In addition, Giannini et al. considered the

performance of radiologists using the CAD system output probability map as an aid,

where readers were restricted to choose from CAD system highlighted areas only;

significant differences in performance were not observed between radiologist per-

formance with and without CAD-assistance. Rather than restrict readers to choose

from CAD system highlighted areas only, Zhu et al. [121] compared the uncon-

strained performance of readers before and after seeing the CAD system’s output;

they found that CAD-assisted diagnosis increased per-patient sensitivity from 84%

to 93%, with statistical significance, compared to readers alone, on an 153-patient

independent internal test cohort with combined TRUS and targeted biopsy refer-

ence standard. The works by Gaur et al. [113] and Mehralivand et al. [117] must

be highlighted for conducting multicenter/multivendor studies; both works evalu-

ated CAD using images acquired from five centers based across multiple countries.

Such studies have a large role to play in providing supporting evidence for the clin-

ical translation of CAD systems. In their reader study, Gaur et al., found the use of

CAD improved reader specificity with statistical significance and reduced reading

time, however a statistically significant drop in reader sensitivity was observed, on

a patient cohort of size 216. The study by Mehrilivand reached a somewhat contra-
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dictory conclusion, reporting a minimal improvement in reader sensitivity, without

statistical significance, a drop in specificity, with statistical significance, and an in-

crease in reading time, for CAD-assistance, on a patient cohort of size 236.

Recent studies have investigated deep learning for simultaneous lesion local-

isation and classification. Cao et al. [112] presented a novel multi-class CNN

named “FocalNet” to jointly detect PCa lesions and predict their aggressiveness.

Using five-fold cross-validation of a 417-patient dataset with radical prostatectomy

reference standard, FocalNet demonstrated comparable detection sensitivity to a

radiologist with over 10 years’ experience in reading prostate MRI, for index le-

sions (89.7%) and clinically significant lesions (87.9%), at one false positive per

patient. In the work of Schelb et al. [118], a U-Net CNN was shown [6] to produce

similar CSPCa detection performance to PI-RADS v2 scoring by eight radiologists

who read a subset of cases each. On the held-out test cohort of 62 men sampled

from the same study cohort as the training data, with combined TRUS and targeted

biopsy reference standard, their method obtained a patient-level sensitivity of 92%

and specificity of 47%, while radiologist assessment yielded a sensitivity of 88%

and a specificity of 50%; differences in sensitivity and specificity between the CNN

and radiologist assessment were not statistically significant. A recent work by Saha

et al. [123] presented a multi-stage 3D CAD system based on CNNs. Deep atten-

tion mechanisms in the detection network target structures salient to distinguishing

CSPCa from indolent/benign abnormalities, while a residual CNN is used in a novel

false-positive reduction step. Notably, they trained the CAD system using a large

training cohort of 1950 patients, which was made possible by relaxing the need

for biopsy-confirmed ground-truth for training. They tested their CAD system on

486 institutional patient cases without biopsy-confirmation and 296 external patient

cases with biopsy-confirmation. On the 486 institutional cases, the CAD system

achieved sensitivities of 84% and 93% at 0.50 and 1.46 false-positives per patient

respectively. On the external cases, the CAD system achieved a 91% sensitivity

at 1.29 false-positives per patient, while radiologists achieved a 91% sensitivity at

0.30 false-positives per patient.
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2.3 Gaps in the literature addressed by this thesis

This chapter highlights the extensive efforts of research groups globally who are

seeking to address known issues in the PCa diagnostic pathway through the develop-

ment of AI technologies. However, there are gaps in the literature, which the work

presented in the remaining chapters of this thesis seek to address. CAD systems that

perform patient classification can be deployed into the PCa diagnostic pathway to

perform triage or to provide a second read, following the radiologist’s first read. In

a triage deployment, a CAD system that performs patient classification can rank pa-

tients by likelihood of CSPCa, to ensure the patients with the highest likelihood of

harbouring CSPCa are assessed first by a radiologist, providing a smarter alternative

to the first-in-first-out approach to assessing patient cases used currently. Ranking

patients by likelihood of having CSPCa may also allow ruling-out of the lowest risk

patients, alleviating radiologist workload. Further motivation for triage/rule-out is

provided by the potential introduction of MRI-based PCa screening programmes

for men, which would increase the demand on prostate radiology services quite

considerably [125]. As demonstrated, a compelling case can be made for the devel-

opment of CAD systems for patient classification. As a result, Chapter 4 presents a

novel deep learning-based patient classification system, PCF, that uses both mpMRI

and clinical features, to output a patient-level probability of CSPCa (Gleason score

≥ 3 + 4). The work presented in Chapter 4 departs from the patient classification

work by Deniffel et al. [122] in three important ways. First and foremost, PCF

considers clinical features such as PSA density (PSAd) alongside MRI features to

perform classification, in line with the Likert assessment guidelines for radiologists

[25]. Second, our work on PCF includes a methodology for including DCEI as an

input, if collected, while the work by Deniffel et al. considers bpMRI only. In PCF,

contrast-enhanced images collected over multiple timepoints are converted into pa-

rameter maps that reflect characteristics of the enhancement profile of each voxel.

Finally, the performance of PCF is evaluated by picking operating thresholds using

the training data, which are used to measure performance on the test data used for

evaluation. In contrast, Deniffel et al. calculated sensitivity and specificity on the
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test data at multiple arbitrary risk thresholds, and therefore we cannot interpret how

their system would perform prospectively on unseen test data.

The work in Chapter 5 seeks to address two gaps identified in the literature.

Firstly, current studies do not feature CAD systems that can produce an automatic

diagnostic report output. Automatic diagnostic reports would provide useful infor-

mation to radiologists at the time of diagnosis and enhance reporting quality beyond

the textual findings recorded by radiologists currently [43]. In Chapter 5, we present

AutoProstate, a deep learning-powered framework for PCa assessment and report-

ing. Importantly, AutoProstate is a complete framework that takes raw image and

clinical data as input to output an automatic web-based diagnostic report. The sec-

ond gap addressed by the work in Chapter 5 is to perform a thorough external vali-

dation of our presented system. At present, only the work by Saha et al. [123] has

performed an external validation of a deep learning-based CAD system. However,

their external dataset does not contain scans acquired from a scanner manufactured

by a different vendor to the scans used for training; the need to evaluate CAD sys-

tems using multivendor MRI has been outlined in the key considerations for authors,

reviewers, and readers of AI Manuscripts in radiology by Bluemke et al. [126]. In

our work, AutoProstate is trained using the publicly available PROSTATEx dataset

[44] collected using Siemens scanners, and the external validation is performed

using the “Prostate Imaging Compared to Transperineal Ultrasound-guided biopsy

for significant prostate cancer RISK Evaluation” (PICTURE) dataset [127] which is

collected using Phillips scanners. Furthermore, our external validation uses a com-

bined targeted and transperineal template prostate-mapping (TTPM) biopsy refer-

ence standard, which avoids biases associated to other reference standards such as

prostatectomy, targeted biopsy alone, and TRUS random/systematic biopsy [33].

In addition, our evaluation ensures that the CAD system probability threshold used

to segment CSPCa lesions is set without reference to the external validation data,

which is a pitfall seen in some studies in the literature [108, 111, 112, 120].

Interactive segmentation methods are vitally important if clinical deployment

of CAD systems is desired, to allow robustness to failure cases [45] and to allow for
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continuous optimisation of CAD systems through active learning. At present, there

are no works in the literature that have investigated interactive segmentation of the

whole prostate or lesions within the prostate. Both applications have a diagnostic

utility e.g., for computing accurate prostate and lesion volumes, and beyond diag-

nosis e.g., for monitoring progression in patients placed on active surveillance and

for treatment planning. Therefore, in Chapter 6, we build and evaluate applications

for click-based interactive whole prostate and prostatic lesion segmentation.



Chapter 3

Patient datasets for training and

evaluation

Computer-aided diagnosis (CAD) systems that are based on machine learning algo-

rithms require data for training, validation, and testing. Usually, the training data is

used to tune the algorithm’s learnable parameters, validation data is used to select

hyperparameters, while the testing data (sometimes referred to as “holdout data”)

is used to obtain an estimate of performance on data that has not been used during

parameter/hyperparameter optimisation. Two datasets were used to train, validate,

and test the CAD systems presented in this thesis. The first is the publicly avail-

able PROSTATEx Challenges data [44] and the second is the “Prostate Imaging

Compared to Transperineal Ultrasound-guided biopsy for significant prostate can-

cer Risk Evaluation” (PICTURE) study dataset [33].

3.1 PROSTATEx dataset
In this thesis, the PROSTATEx dataset refers to the union of the data released for the

PROSTATEx Challenge and PROSTATEx-2 Challenge. The PROSTATEx dataset

was originally used to train and evaluate the CAD system in a work by Litjens et

al. [116], prior to its subsequent release for the two challenges. A total of 346

consecutive patient studies are available for download from the PROSTATEx Chal-

lenges database [44], which is hosted by The Cancer Imaging Archive (TCIA). The

database features multiparametric MRI (mpMRI) and histopathological findings for
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men examined at Radboud University Medical Center between 2011 and 2012. The

PROSTATEx dataset is described in detail in the subsections to follow, and a tabular

summary is provided in Table 3.1.

3.1.1 Multiparametric MRI protocol

MpMRI was acquired using two 3-Tesla magnetic field scanners (Magnetom

Trio and Skyra, Siemens) and a pelvic-phased array coil. All studies included

T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced imaging (DCEI). T2WI was acquired using a turbo spin echo

sequence, at a median in-plane resolution of 0.5 mm and a median slice thickness

of 3 mm. DWI was acquired using a single-shot echo planar imaging sequence,

at a median in-plane resolution of 2 mm and a median slice thickness of 3 mm.

Three b-values were collected (50, 400, and 800); DWI collected at these b-values

were used to generate an apparent diffusion coefficient (ADC) map using scanner

software. DCEI was acquired using a 3D turbo flash gradient echo sequence, at a

median in-plane resolution 1.5 mm, a median slice thickness of 4 mm, and a median

temporal resolution of 3.5 seconds. All images were acquired without the use of an

endorectal coil, as per Prostate Imaging-Reporting and Data System (PI-RADS)

guidelines.

3.1.2 Multiparametric MRI review

All mpMRI studies were reported by an experienced radiologist with over 20 years’

experience in reading prostate mpMRI, who highlighted areas of suspicion per

modality with a point marker and scored them using PI-RADS v1.

3.1.3 Histopathological reference standard

MR-guided targeted biopsies of marked points with PI-RADS v1 score ≥ 3 were

performed, while marked points with PI-RADS v1 score < 3 were assumed clini-

cally insignificant (< 5% incidence of clinically significant prostate cancer (CSPCa)

in PI-RADS v1 < 3 lesions at Radboud University Medical Center) and therefore

not biopsied; here, clinically significant refers to Gleason score ≥ 3 + 4 disease.

Subsequently, biopsy specimens were graded by a histopathologist to determine a
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Gleason score for each marked lesion. The marked point coordinate and a ground-

truth label (clinically significant equal to true or false) for each marked lesion was

released publicly for 204 of the 346 patients (PROSTATEx Challenges training set),

while for the remaining 142 patients (PROSTATEx Challenges test set) the marked

point coordinate was released publicly, but the ground-truth label was not. In to-

tal, 330 lesions were present in the 204 training set patients, while 208 lesions were

present in the 142 test set patients; a breakdown of marked lesions by zonal location

and Gleason score is shown in Table 3.1.

3.1.4 Contours

Whole prostate, peripheral zone (PZ), central gland (CG), and lesion contours for

the 204 PROSTATEx training set patients were performed by an external group

at the University of Naples [88]. In summary, contours were produced by a team

consisting of two radiology residents (> 2 years’ experience in reading prostate

mpMRI) and two board-certified radiologists (> 5 years’ experience in reading

prostate mpMRI). Radiology residents and board-certified radiologists worked in

pairs for quality control and annotation of each case. Two hundred and four whole

prostate and zonal contours were drawn, while a total of 299 lesion contours were

drawn, including 76 CSPCa lesions and 223 low-grade or benign lesions (nCSPCa);

a breakdown of annotated lesions by Gleason score and zonal location is shown in

Table 3.2.

3.2 PICTURE dataset
Full details of the PICTURE study have previously been reported [127, 33]. The

PICTURE study was a paired-cohort validating confirmatory study designed to

measure the diagnostic accuracy of mpMRI in men who had undergone an initial

standard transrectal ultrasound-guided (TRUS) biopsy, but were advised to have

further biopsies as part of standard care. Men were examined at University Col-

lege London Hospital between 2012 and 2014. Inclusion criteria for the PICTURE

study were: (i) men who had undergone an initial standard TRUS biopsy, but con-

cern remained over the accuracy of the subsequent diagnosis; and (ii) men suitable
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Variable PROSTATEx
Challenges train set

PROSTATEx
Challenges test set

No. of patients 204 142
Total marked lesions 330 208

Per-lesion marked point zone

Peripheral zone 191 113
Central gland 137 93
Seminal vesicle 2 2

Per-lesion Gleason score

Not biopsied or
benign following biopsy

218

Data not available
Gleason score ≤ 6 36
Gleason score 3+4 41
Gleason score 4+3 20
Gleason score 8 8
Gleason score 9-10 7

Per-patient maximum Gleason score

Not biopsied or
only benign findings following biopsy

105

Data not available
Gleason score ≤ 6 29
Gleason score 3+4 38
Gleason score 4+3 19
Gleason score 8 7
Gleason score 9-10 6

Table 3.1: PROSTATEx Challenges dataset characteristics.

for further characterisation using transperineal template prostate-mapping (TTPM)

biopsy. Exclusion criteria were: (i) previous history of prostate cancer treatment;

and (ii) lack of complete gland sampling or inadequate sampling density at TTPM.

A breakdown of patient characteristics is shown in Table 3.3.

3.2.1 Multiparametric MRI protocol

MpMRI was acquired using a 3-Tesla magnetic field scanner (Achieva, Philips

Healthcare) and a pelvic-phased array coil. All studies included T2WI, DWI, and

DCEI. T2WI was acquired using a turbo spin echo sequence, at a median in-plane

resolution of 0.4 mm and a median slice thickness of 3 mm. DWI was acquired us-

ing a spectral attenuated inversion recovery (SPAIR) sequence, at a median in-plane
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Variable #

No. of patients with annotated lesions 200
No. of patients without annotated lesions 4
Total annotated lesions 299

Per-lesion zone

Peripheral zone 157
Central gland 122
Both zones 20

Per-lesion Gleason score

Not biopsied or
only benign findings following biopsy

187

Gleason score ≤ 6 36
Gleason score 3+4 41
Gleason score 4+3 20
Gleason score 8 8
Gleason score 9-10 7

Table 3.2: PROSTATEx training dataset annotations.

resolution of 1.25 mm, and a median slice thickness of 5 mm. DWI was acquired

at four b-values (0, 150, 500, and 1000); DWI collected at these b-values were used

to generate an ADC map using scanner software. In addition, DWI with a higher

b-value (2000) was collected using a spectral inversion recovery (SPIR) sequence,

with the same resolution and slice thickness as the lower b-value images. DCEI was

acquired using a SPAIR sequence, at a median in-plane resolution 1 mm, a median

slice thickness of 3 mm, and a median temporal resolution of 13 seconds.

3.2.2 Multiparametric MRI review

All mpMRI studies were reported by an experienced radiologist with over 10 years’

experience in reading prostate mpMRI, using a five-point Likert impression scale

for the likelihood of CSPCa [31]. Three definitions of clinical significance were

used in the PICTURE study. The primary outcome was Gleason score ≥ 4 + 3 or

cancer core length (CCL) ≥ 6 mm of any Gleason score, the secondary outcome

was Gleason score ≥ 3 + 4 or CCL ≥ 4 mm of any Gleason score, and the tertiary

outcome was Gleason score ≥ 3 + 4 of any CCL. Scoring was completed at the

lesion, sector, and patient-levels. All definitions of clinical significance were scored
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against at the patient-level, while the third definition only was scored against at the

sector and lesion levels also. Referral prostate-specific antigen (PSA) was available

to the radiologist during scoring to reflect clinical practice. A breakdown of Likert

scores at the lesion and patient levels is shown in Table 3.3.

3.2.3 Histopathological reference standard

Men underwent MR-guided targeted biopsy of focal index lesions and TTPM

biopsy of the whole gland as the reference standard. For TTPM biopsy, core nee-

dles were inserted via a brachytherapy grid with 5 mm spacing, fixed on a stepper.

TTPM biopsy was used to overcome the inaccuracies of TRUS biopsy [26] and the

selection bias towards men with aggressive disease associated with radical prostate-

ctomy [128]. Altogether, 249 men completed mpMRI and TTPM biopsy. All biopsy

samples were reported by one of two expert histopathologists with over 20 years of

experience each, who were blinded to mpMRI reports. Furthermore, all negative

biopsies were double-reported for quality control. A breakdown of Gleason scores

at the patient level is shown in Table 3.3.

3.2.4 Contours

Whole prostate, PZ, and CG contours were drawn by a board-certified radiologist

(3 years’ experience in the quantitative analysis of prostate mpMRI) for 80 pa-

tients. Lesions were delineated by two board-certified radiologists (4 and 5-years’

experience in scoring prostate mpMRI using Likert assessment and PI-RADS v2,

respectively) who annotated a subset of cases each. First, histopathology reports

from MR-guided targeted and TTPM biopsies were reviewed alongside mpMRI to

locate the highest Gleason grade focal lesion; if there were multiple focal lesions

with the maximum Gleason grade, the highest scoring focal lesion according to

Likert or PI-RADS v2 was identified. Next, a single axial T2WI slice was selected

corresponding to the center of the identified lesion. Then, all focal lesions on the

selected slice were contoured. Additionally, focal benign lesions that were scored

Likert or PI-RADS v2≥ 4 were contoured in patients that were biopsy-negative for

cancer. A total of 210 lesions were delineated (147 CSPCa lesions and 63 nCSPCa
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lesions). A breakdown of Likert scores, Gleason scores, and zonal locations for

annotated lesions is shown in Table 3.3.

3.3 Bias in prostate datasets

Sources of bias in prostate datasets should be reduced where possible and at mini-

mum, carefully understood in order to comment on the limitations of experiments

conducted.

A large source of bias relates to patient selection. Patient selection methods

include, but are not limited to, consecutive enrolment, random selection, or selec-

tion according to some criteria related to a clinical question to be answered. The

PROSTATEx dataset features consecutive patient studies from Radboud University

Medical Centre, while the PICTURE dataset features patients who had undergone

an initial standard TRUS biopsy, but opted for repeat evaluation due to concerns

over the initial diagnosis; as a result, the risk profiles of the PROSTATEx and PIC-

TURE datasets will likely vary. In addition, the patient selection methodology may

create class imbalance problem, as can be observed for the PICTURE dataset; of

249 total patients, only 34 patients are without PCa, which is in contrast to the

the PROSTATEx dataset, where a larger proportion of patients were found to have

benign conditions only following biopsy or were deemed too low-risk to undergo

biopsy. Notably, patients can be selected from a single centre or from multiple

centres. For the purposes of training and evaluating an AI algorithm, multi-centre

datasets, such as those used by Gaur et al. [113] and Mehralivand et al. [117] allow

a more comprehensive evaluation of the generalisability of an algorithm, however

multi-centre datasets are harder to collect, and the motivation may only arise fol-

lowing strong indications from single-centre evaluations. Both the PROSTATEx

and PICTURE datasets are single-centre datasets.

Bias also stems from the acquisition protocol used to collect MRI. A large

point of difference between centres concerns the inclusion of DCE imaging in the

acquisition protocol. While the PI-RADS and Likert guidelines continue to incorpo-

rate DCE into reader guidelines, there is a growing movement towards biparametric
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MRI (bpMRI) [30]. Both the PROSTATEx and PICTURE datasets include DCE.

Other factors to consider include, but are not limited to, scanner manufacturer, field

strength, specific sequence settings, and the type of receiver coil used.

The reference standard can also introduce bias. Reference standards vary sub-

stantially across studies and datasets [15]. Prostatectomy achieves complete gland

coverage, but includes a selection bias towards men with aggressive disease [33].

Targeted biopsy as a reference standard includes a bias towards the radiologist who

scored candidate tumours, relying on their expertise to identify which tumours

should and should not undergo biopsy. The PROSTATEx dataset uses a targeted

biopsy reference standard, with lesions scored by a radiologist with over 20 years

of experience in reading prostate MRI, increasing confidence in the lesions chosen

for targeting. Alternatively, the PICTURE study used a reference standard that com-

bines TTPM biopsy and targeted biopsy. TTPM biopsy avoids the biases associated

to prostatectomy and targeted biopsy, though is usually reserved for trials [9].

Bias towards a radiologist can also be introduced during lesion contouring if

curating a dataset for the task of lesion detection or segmentation. An inter-observer

variability has been observed for lesion contouring as reported by Steenbergen et al.

[129]. Steps were taken to account for the variability when contouring PROSTA-

TEx dataset lesions by completing lesion contouring in pairs composed of a radiol-

ogy resident and a board-certified radiologist (see Section 3.1.4). In the PICTURE

dataset however, each lesion contour was produced by a single board-certified radi-

ologist only, due to resource constraints (see Section 3.2.4).
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Variable #

No. of patients 249
Median age (years) 62 (IQR: 58 - 67)
Median PSA (ng/ml) 6.85 (IQR: 5.07 - 9.60)
Median PSA density (ng/ml/ml) 0.18 (IQR: 0.13 - 0.28)

Per-patient Likert score (any Gleason score ≥ 3 + 4)

Likert 2 22
Likert 3 83
Likert 4 49
Likert 5 95

Per-patient maximum Gleason score

No prostate cancer 34
Gleason score 3+3 61
Gleason score 3+4 114
Gleason score 4+3 34
Gleason score 8 5
Gleason score 9-10 1

MRI-detected lesions

No. of patients without MRI-detected lesions 68
No. of patients with MRI-detected lesions 181
Total annotated lesions 210

Per-annotated-lesion Likert score (any Gleason score ≥ 3 + 4)

Not identified prospectively 33
Likert 2 1
Likert 3 29
Likert 4 47
Likert 5 100

Per-annotated-lesion Gleason score

Benign 9
Gleason score 3+3 54
Gleason score 3+4 113
Gleason score 4+3 29
Gleason score 8 4
Gleason score 9-10 1

Per-annotated-lesion zone

Peripheral zone 134
Central gland 57
Both zones 19

Table 3.3: PICTURE dataset characteristics.



Chapter 4

Patient-level classification framework

for triage

The work presented in this chapter has been published by Mehta et al. [130] in the

paper entitled, “Computer-aided diagnosis of prostate cancer using multiparametric

MRI and clinical features: A patient-level classification framework”.

4.1 Introduction
Computer-aided diagnosis (CAD) systems that use multiparametric magnetic res-

onance imaging (mpMRI) for prostate cancer (PCa) diagnosis are actively being

investigated [15]. CAD systems that classify patients into those with and with-

out clinically significant PCa (CSPCa) can be deployed into the PCa diagnostic

pathway to perform patient triage, prior to radiologist assessment of mpMRI, or to

provide a second read following the radiologist’s first read. In a triage deployment,

a CAD system that performs patient classification can rank patients by likelihood

of CSPCa, to ensure the patients with the highest likelihood of having CSPCa are

assessed first by the radiologist, providing a smarter alternative to the first-in-first-

out approach to caseload management. Ranking patients by likelihood of having

CSPCa may also allow ruling-out of the lowest risk patients, alleviating radiolo-

gist workload. Further motivation for triage/rule-out is provided by the potential

introduction of MRI-based PCa screening programmes for men in the future, which

would increase the demand on prostate radiology services quite considerably [125].
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As seen in Chapter 2, the majority of PCa CAD systems, including those that

are capable of producing a patient-level classification output, require lesion annota-

tions for training. However, producing lesion annotations on mpMRI can be chal-

lenging and/or time-consuming for a number of reasons. First and foremost, pro-

ducing lesions annotations on mpMRI, following prostatectomy or a MRI-blinded

biopsy technique such as systematic biopsy, saturation biopsy, or transperineal tem-

plate prostate-mapping (TTPM) biopsy is not clinical routine and therefore, must be

performed retrospectively [112]. Second, cognitive matching of biopsy or prostate-

ctomy findings to mpMRI may be required, which is not trivial. Third, once location

on mpMRI is determined, the contour will typically be drawn on T2-weighted MRI

(T2WI) (due to its high spatial resolution and superior tissue contrast), in-plane and

on all other slices containing the lesion. Should registration issues arise between

mpMRI modalities, lesion contours or lesion centroids may be required on the other

modalities also. A further challenge is posed by diffuse non-focal tumours and MRI

invisible tumours [131]; it is unclear how these tumours should be annotated. Fourth

and finally, to account for inter-observer variability [129], lesion annotations should

be made by more than one radiologist, which can increase the overall time taken to

perform annotations multiplicatively. Due to the annotation difficulties described,

CAD systems for PCa are typically trained on small, carefully prepared datasets.

In this chapter, we introduce a novel patient-level classification framework,

denoted PCF, that is trained using patient-level labels only, therefore avoiding the

need for lesion annotations. In PCF, feature vectors are extracted from three-

dimensional T2WI, apparent diffusion coefficient (ADC) map, computed high b-

value diffusion-weighted MRI (DWI), and four semi-quantitative parameter maps

extracted from dynamic contrast-enhanced MRI (DCEI) using convolutional neu-

ral networks (CNNs), where each CNN is a modified 3D ResNet architecture pro-

posed in this work. During the training phase of PCF, feature selection is applied

to select the optimal subset of CNN feature vectors and available clinical features

for patient classification. Subsequently, selected CNN feature vectors and clinical

features are combined for classification using a two-level multi-classifier support
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vector machine (SVM) scheme. The output of PCF is a patient probability asso-

ciated to the presence of CSPCa in the patient’s prostate; here, CSPCa is defined

as Gleason score ≥ 3 + 4 disease. Utilizing features extracted from the full-breadth

of mpMRI and available clinical features in combination to enhance classification

performance is in line with the guidance provided by the Likert assessment system

for radiologists [25]. We envision PCF being applied as a triage tool or as a second

reader during routine diagnosis; both applications could help alleviate the workload

of radiologists who are an increasingly stretched resource [14].

This chapter is organised as follows: In Section 4.2, we describe the techni-

cal details of PCF. In Section 4.3, we describe the subsets of the PROSTATEx and

PICTURE datasets, introduced in Chapter 3, that were used to evaluate the per-

formance of PCF, the classification tasks performed, the evaluation measures used,

and the experimental settings employed. Section 4.4 presents the results for patient

classification. In Section 4.5, we conclude by discussing the implications of our

results.

4.2 Method
PCF is visualised schematically in Figure 4.1. First, mpMRI and clinical features

are pre-processed. This involves automated prostate region segmentation, calcu-

lation of high b-value DWI and semi-quantitative DCEI parameter maps, and fi-

nally, normalisation/standardisation of images, parameter maps, and clinical fea-

tures. Second, CNN encoders are employed to extract feature vectors from three-

dimensional MR images and parameter maps. Third, forward feature selection is

used to select the CNN feature vectors and clinical features that are most pertinent

for classification. Fourth and finally, a two-level SVM scheme is used to output the

patient’s probability of having CSPCa.

4.2.1 Pre-processing

4.2.1.1 Automated prostate region segmentation

As a first step, the prostate is segmented on T2WI. Segmentation of the prostate

creates a simpler classification task, unsullied by excess background information.
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In PCF, we use HighRes3DNet [132] to segment the prostate on T2WI. High-

Res3DNet is a high-resolution compact CNN for volumetric image segmentation.

Given a three-dimensional T2WI, IT2WI, HighRes3DNet outputs a prostate mask,

ST2WI, with the same spatial dimensions as IT2WI. The prostate mask for DWI,

SDWI, is obtained by transforming ST2WI from T2WI space into DWI space using

a registration-driven transformation T such that T : ST2WI→ SDWI, which accounts

for resolution differences between T2WI and DWI, as well as voluntary/involuntary

patient movement between acquisitions, and distortions on DWI caused by air in

the rectum [133]. Here, T = Tnrd ◦ Taff, where Taff is the transformation given

by the affine registration of IT2WI to the three-dimensional ADC map, IADC, us-

ing the symmetric block-matching algorithm [134] and Tnrd is given by the subse-

quent non-rigid registration using the free-form deformation (FFD) algorithm [135].

The convolution-based fast local normalised correlation coefficient (LNCC) [136]

is used as similarity measure for FFD to enable robustness to bias field inhomo-

geneity. The same approach is used to obtain the prostate mask in DCEI space,

SDCEI; in this case driven by the registration of T2WI to the first DCEI timepoint.

The prostate masks, ST2WI, SDWI, and SDCEI obtained for each patient are used to

crop a sub-volume containing the prostate in corresponding imaging.

4.2.1.2 Computed high b-value DWI

High b-value images with b-value ≥ 1400 are a key component of mpMRI [24].

Computed high b-value DWI has been shown to achieve superior image quality

and lesion conspicuity than acquired high b-value DWI [28]. In PCF, we compute

high b-value DWI using a monoexponential model [29] for the per-voxel observed

signal:

s(b) = s(0)exp(–b ·ADC). (4.1)

Non-linear least squares is used to fit Equation 4.1 to the observed points given by

low b-value DWI intensities, giving per-voxel estimates of s(0) and ADC: s∗(0) and

ADC∗. High b-value images are then computed using the equation:
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s(bc) = s∗(0)exp(–b ·ADC∗), (4.2)

where bc is the high b-value being extrapolated to.

4.2.1.3 Semi-quantitative DCEI parameter maps

Semi-quantitative analysis of DCEI has been shown to provide good discrimina-

tion between benign and malignant lesions [137], while avoiding the challenging

estimation of the arterial input function needed for computing pharmacokinetic pa-

rameters. In PCF, semi-quantitative analysis of DCEI is used to compute parameter

maps in an automated manner.

First, per-voxel signal intensity-versus-time curves are normalised to a stan-

dard pre-contrast level using a mean baseline computed from the first three signal

values from T timepoints:

ŝt =
st
k

, t = 1, · · · ,T, k =
3

∑
t=1

st
3

. (4.3)

Then, four voxel-wise variables are extracted: initial slope of enhancement (IS),

maximum enhancement (ME), time to maximum enhancement (TM), and final

slope (FS); originally defined in [137] and [138], but we are the first to use them to

construct three-dimensional parameter maps and in addition, to later extract spatial

features from the parameter maps using CNNs. An illustration of the variables is

given in Figure 4.2.

IS is assumed to be the gradient of the steepest portion of the normalised sig-

nal intensity-versus-time curve. First, an averaging window of length lIS is passed

over the normalised signal {ŝt}Tt=1 in steps of one timepoint as in [138]. The gra-

dient of the linear best fit in each window is computed, giving the set of gradients

{gt}
T–lIS+1
t=1 . Subsequently, IS is computed by taking the maximum of the gradients:

IS = max({gt}
T–lIS+1
t=1 ), (4.4)

where lIS is determined empirically based on the temporal resolution of the DCEI.
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Figure 4.2: Normalised signal intensity-versus-time curve corresponding to voxel at the
center of a Gleason score 3+4 lesion of a patient from the PROSTATEx dataset.

ME is calculated as the maximum value of the normalised signal:

ME = max({ŝt}Tt=1). (4.5)

TM is calculated as the difference between onset time, denoted tOS, and the

time of ME, denoted tME, in minutes, where tOS is defined as the first time point in

the averaging window to which IS corresponds:

TM = tME – tOS. (4.6)

FS is defined as the gradient of the normalised signal over the wash-out phase

of the contrast agent. Here, we compute it as the the gradient gFS of the linear best

fit over the final mFS minutes of the normalised signal, where mFS is determined

empirically based on the length of the wash-out phase of the contrast agent.

4.2.1.4 Normalisation/standardisation

Histogram-based standardisation is applied to the prostate region in each patient’s

T2WI to homogenise tissue intensities across patients in line with the work by

Toivonen et al. [139]. Images are transformed by matching their intensity his-

tograms to a mean histogram calculated using training data. The algorithm, includ-
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ing pseudo-code, is presented in the work by Nyul et al. [140]. A simple per-

patient z-score normalisation is then applied to each patient’s standardised T2WI,

computed high b-value DWI, and DCEI parameter maps in line with the work by

Isensee et al. [8], who showed this to be an effective strategy for MRI as CNN

input. ADC maps are not normalised since ADC is a quantitative measurement.

Each clinical feature included in PCF is standardised to have zero mean and

unit standard deviation, using mean and standard deviation computed from training

data.

4.2.2 Convolutional neural network feature extraction

ResNet CNN architectures have demonstrated good performance in several image

classification tasks [141, 142]. In PCF, seven identical 3D ResNet CNN architec-

tures, denoted {ResNet3D-i}7i=1, are employed to extract features from T2WI, ADC

map, computed high b-value DWI, and each of the four DCEI parameter maps.

ResNet3D is a modified 3D implementation of the standard 2D ResNet. Our im-

plementation is composed of a convolutional layer C1, followed by four bottleneck

blocks B1,B2,B3, and B4, and a fully-connected layer FC. A network diagram is

shown in Figure 4.3a. Bottleneck blocks reduce the computational load of 3D con-

volutional layers by performing a channel reduction and restoration operation either

side of the core convolution operation as shown in Figure 4.3b. Preactivation [142]

(batch normalisation and rectified linear unit activation prior to weight layer compu-

tation) is used to ease optimisation and regularise the networks. The last bottleneck

block, B4, outputs a set of feature maps to which global average pooling is applied

to transform each feature map fj into a feature value vj.

During the training phase of PCF, each ResNet3D-i is trained end-to-end. The

feature values vj are linearly combined in the FC layer, followed by softmax to

produce a classification output, followed by loss computation, backpropagation,

and weight updates.

During inference, the feature values vj, corresponding to ResNet3D-i, are

grouped into a feature vector Vi = {vj}128
j=1 . Subsequently, each feature vector Vi

corresponding to each ResNet3D-i is passed to a two-level SVM scheme where the
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(a)

block operation  
conv 33, k/4

restore channels 
conv 33, k

XL

XL+1

reduce channels 
conv 13, k/4 

BN / RELU

BN / RELU

BN / RELU

(b)

Figure 4.3: (a) Proposed ResNet3D CNN used to extract features from volumetric images.
(b) A bottleneck block, where k = #kernels.

final patient classification is made.

4.2.3 Forward feature selection

The optimal subset of ResNet3D feature vectors V = {Vi}7i=1 and normalised clin-

ical features F = {Fj}Nj=1, for some quantity of clinical features N, is found during

the training phase of PCF using forward feature selection (FFS) [143]. FFS is used

to remove features that are acting as noise; removing noise is especially important

when training classification algorithms using small datasets. In our implementation

of FFS, each ResNet3D feature vector Vi is considered a feature. We denote the

total feature set ALL = V∪F. We begin by assuming the null set of selected fea-

tures SEL = ∅. At each iteration we induct the feature into SEL which maximises

an evaluation metric M computed over SEL. The FFS procedure is summarised as

follows:

1. Initialise SEL = {∅};

2. For each feature Xk ∈ ALL, k = 1, . . . ,N + 7, compute M(Xk) and select the

feature X̂k that maximises M;

3. Remove X̂k from the set ALL and add X̂k to the set SEL; thus ALL :=



4.3. Experimental setup 78

ALL\{X̂k} and SEL := {X̂k};

4. Repeat until a decrease in M is observed:

(a) For each Xk in ALL, compute M(SEL∪{Xk}) and select the feature X̂k

that maximises M;

(b) Remove X̂k from the set ALL and add X̂k to the set SEL; thus ALL :=

ALL\{X̂k} and SEL := SEL∪{X̂k};

4.2.4 Support vector machine classification

A two-level multi-classifier SVM scheme is used to combine the selected ResNet3D

feature vectors and normalised clinical features to produce a final patient classifi-

cation. Two SVMs, denoted SVM-1 and SVM-2, are included in the first layer

and a third SVM, denoted SVM-3, is included in the second layer. First, SVM-1

takes the ResNet3D feature vectors Vi ∈ SEL as input and outputs a patient classi-

fication probability ŷ1. Concurrently, SVM-2 takes the normalised clinical features

Fj ∈ SEL as input and outputs a patient classification probability ŷ2. Since SVMs

do not naturally output a probability, Platt scaling [144] is used to obtain probability

estimates. Then, SVM-3 accepts ŷ1 and ŷ2 as input to output a final classification

probability ŷ associated to the positive class i.e., probability that the patient has

CSPCa. It should be noted that if clinical features are either not available or not se-

lected by FFS, the final classification is made by SVM-1, and SVM-2 and SVM-3

will be omitted.

4.3 Experimental setup
In this section we describe the patient datasets used in this work, the classification

tasks completed, the validation measures used to evaluate PCF, and the method-

ological settings employed for conducting experiments.

4.3.1 Patient data

The performance of PCF was evaluated using the “Prostate Imaging Compared to

Transperineal Ultrasound-guided biopsy for significant prostate cancer Risk Eval-
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uation” (PICTURE) trial dataset [127] and the the publicly available PROSTATEx

dataset [44]. A detailed description of both datasets is given in Chapter 3.

The PICTURE dataset patient-level ground truth used for training and evaluat-

ing PCF was established as follows: a patient was allocated to the CSPCa class if

any core sampled during transperineal template prostate-mapping (TTPM) biopsy

or targeted biopsy was positive for Gleason score ≥ 3 + 4. Five patient studies were

removed due to one or more missing MRI sequences and 34 patient studies were

removed due to severe magnetic susceptibility artifacts on DWI. Characteristics of

the included patients are shown in Table 4.1.

Total patients following exclusions 210
Median age (years) 62 (58-67)
Median PSA (ng) 7 (5-10)
Median TPV (ml) 40 (28-51)
Median PSAd (ng/ml) 0.18 (0.13-0.28)
Breakdown by max Gleason score # of patients
Normal/Benign 30
GS 3+3 50
GS 3+4 96
GS 4+3 30
GS > 8 4

Table 4.1: Characteristics of the PICTURE dataset patients used to evaluate PCF. Interquar-
tile range shown in brackets for age, PSA, total prostate volume (TPV), and PSA
density (PSAd).

The PROSTATEx dataset patient-level ground truth used for training and eval-

uating PCF was established as follows: a patient was allocated to the CSPCa class

if the patient’s prostate contained any lesion with Gleason score ≥ 3 + 4. 64 patient

studies were removed due to missing ground-truth labels; of these, two patients

belonged to the PROSTATEx Challenges training set and 62 patients belonged to

the PROSTATEx Challenges test set. Characteristics of the remaining 282 patient

studies are shown in Table 4.2.
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Total patients following exclusions 282
Breakdown by max Gleason score # of patients
No CSPCa* 212
GS 3+4 38
GS 4+3 19
GS > 8 13

*Either GS ≤ 6, benign, or PI-RADS = 2. PI-RADS = 2 lesions were
not biopsied; assumed not CSPCa, CSPCa occurrence in PI-RADS = 2
lesions at Radboud Medical Center less than 5%.

Table 4.2: Characteristics of the PROSTATEx dataset patients used to evaluate PCF.

4.3.2 Experiments

PCF was trained to classify patients into those with CSPCa and those without

CSPCa, where CSPCa refers to the presence of max Gleason score ≥ 3 + 4 tis-

sue, as determined through histopathological analysis. In the PICTURE dataset a

total of 130 patients with CSPCa and 80 patients without CSPCa were available for

analysis, while in the PROSTATEx dataset a total of 70 patients with CSPCa and

212 patients without CSPCa were available for analysis. The following experiments

were conducted:

• Intra-dataset evaluation: The following classifiers were trained: (i) ResNet3D

with individual MRI modalities or parameter maps (ResNet3D-x, where x ∈

X = {T2WI, ADC, Cb2000, IS, ME, TM, FS}); (ii) SVM with the individual

clinical features prostate-specific antigen (PSA), total prostate volume (TPV),

and PSA density (PSAd) (SVM-y, where y ∈ Y = {PSA, TPV, PSAd}); (iii)

PCF with the set of available MRI modalities and parameter maps (PCF-ALL-

MR); (iv) PCF with the set of MRI modalities and parameter maps selected by

FFS (PCF-SEL-MR); (v) PCF with the set of available MRI modalities, pa-

rameter maps, and clinical features (PCF-ALL); and (vi) PCF with the set of

MRI modalities, parameter maps. and clinical features selected by FFS (PCF-

SEL). The performance of classifiers was evaluated using a five-fold cross-

validation on the PICTURE and PROSTATEx datasets separately. The mean

receiver operating characteristic (ROC) curve, precision-recall (PR) curve,
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and respective areas under the curve (AUC) were calculated in each instance.

The Wilcoxon-signed rank test for pairwise comparison [145] was applied to

statistically validate the comparison between different classifiers.

• Inter-dataset evaluation: ResNet3D classifiers, PCF-ALL-MR classifiers, and

PCF-SEL-MR classifiers, obtained from the PICTURE dataset intra-dataset

five-fold cross-validation were used to perform inference on the PROSTATEx

dataset and vice versa. The mean and standard deviation of the ROC and PR

AUCs of the five cross-validation models is presented.

• Clinical evaluation: The PICTURE dataset alone was used for clinical evalua-

tion as radiologist PI-RADS v1 scores associated to the PROSTATEx dataset

have not been released publicly. The PICTURE dataset was divided tempo-

rally into 170 patients for training (scan dates: 11/01/2012 to 25/06/2013)

and 40 patients for testing (scan dates: 26/06/2013 to 29/01/2014). The test

set comprised of 20 patients with CSPCa and 20 patients without CSPCa.

PROSTATEx scans were used to augment the training set. PCF-SEL was

used in the clinical evaluation. The probabilistic output of PCF-SEL was bi-

narised by selecting a cutoff that matched the sensitivity of the radiologist on

the PICTURE training set at two cutoffs: Likert ≥ 3 and Likert ≥ 4. The

sensitivity, specificity, precision, and negative predictive value (NPV) were

computed; 95% confidence intervals (CI) were calculated using bootstrap-

ping. McNemar’s test [146] was used to statistically compare the sensitivity

and specificity of the radiologist and PCF-SEL, while the weighted gener-

alised score (WGS) test statistic [147] was used to compare the precision and

NPV of the radiologist and PCF-SEL.

4.3.3 Experimental settings

In this section we describe the methodological settings used for conducting experi-

ments with PCF.
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4.3.3.1 Pre-processing settings

HighRes3DNet was trained using the T2WI of 82 patients from the PICTURE

dataset for which manual contours of the whole prostate were available, and 50

training cases from the publicly available PROMISE12 dataset [91]. All images

were whitened and resampled to isotropic 1mm resolution as preprocessing, and

resampled to original voxel resolution as post-processing. During training subvol-

umes of size 643 were sampled to maintain a 50:50 ratio of foreground to back-

ground voxels. Flip and rotation augmentations were applied on-the-fly. Training

was conducted using Dice loss [74], Adam optimisation [148], learning rate equal

to 0.001, and batch size 4. The network was trained until we observed a plateau

in performance on the validation set. The trained network was used to segment the

remainder of the PICTURE dataset and the entirety of the PROSTATEx dataset.

A mean Dice score of 0.90 was achieved on a ten-fold cross-validation of the 82

PICTURE dataset patients.

Registration of T2WI to ADC map and first timepoint of DCEI, used to ob-

tain the transformation of prostate masks into DWI and DCEI space, used default

parameters for affine registration via symmetric block-matching [134]. The sub-

sequent non-rigid FFD registration used a Gaussian kernel with standard deviation

equal to 5mm for LNCC calculation, control point spacing equal to 10mm, and

bending energy constraint equal to 0.1.

A high b-value, bc = 2000, was selected for computing high b-value DWI as in

Verma et al. [28]. We refer to computed high b-value DWI with a b-value of 2000

as computed b2000 DWI (Cb2000).

The DCEI parameter IS was calculated using an averaging window of length

lIS = 3 for the PICTURE dataset and lIS = 5 for the PROSTATEx dataset. DCEI

parameter FS was calculated over the final mFS = 2 minutes of the normalised signal

for the PICTURE dataset and mFS = 1 minutes of the normalised signal for the

PROSTATEx dataset.

As recommended in Nyul et al. [140], deciles were used as landmarks for

histogram standardisation of T2WI.
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4.3.3.2 Training settings

For each experiment, training data was further subdivided 80:20 into training and

validation sets. The training set was used for training constituent ResNet3D and

SVM classifiers, while the validation set was used for selecting feature vectors and

normalised clinical features during FFS.

All images were resized to a common size of 65×65×45 prior to ResNet3D

training. Each ResNet3D in PCF was trained using cross-entropy loss, Adam opti-

misation, learning rate equal to 0.00001, and batch size 8. In-plane flip and random

deformation augmentations were applied to the training set to balance classes and

reduce overfitting.

The following metric M is proposed for observation during FFS:

M =
ROCAUC + PRAUC

2
, (4.7)

as it maximises both model evaluation metrics of interest.

A radial basis kernel was used in SVM-1, SVM-2, and SVM-3 as there existed

no reason to assume linear separability of data. The misclassification penalty was

set to C = 0.1 for SVM-1 and SVM-2, and C = 1 for SVM-3, in all experiments.

4.4 Results
In this section we present the results obtained from the intra-dataset and inter-

dataset evaluations of PCF, as well as the clinical evaluation of PCF using a tempo-

rally separated patient cohort from the PICTURE dataset.

4.4.1 Intra-dataset model evaluation

The mean ROC and PR AUCs averaged over five-fold cross-validation for

ResNet3D, SVM, and PCF classifiers are shown in Table 4.3 for both the PIC-

TURE and PROSTATEx datasets. Figure 4.4a, 4.4b, 4.4c, and 4.4d show the mean

ROC and PR curves calculated for PCF-SEL for both datasets. Reliability diagrams

for PCF-SEL are shown in Figure 4.4e for both datasets.

For the PICTURE dataset, ResNet3D-ADC had the best performance among
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(a) (b)

(c) (d)

(e)

Figure 4.4: Intra-dataset evaluation of PCF-SEL. Graphs (a, b) show the mean ROC and
PR curves, averaged over five-fold cross validation, for the PICTURE dataset,
while graphs (c, d) correspond to the PROSTATEx dataset. Reliability dia-
grams for PCF-SEL are shown in (e), for both datasets.

ResNet3D and SVM classifiers that were trained using a single MRI modality, pa-

rameter map, or clinical feature. PCF-ALL did not improve the result. However,

PCF-SEL did improve upon the result of ResNet3D-ADC, with an increase in ROC

AUC from 0.74 to 0.79 (p < 0.05) and an increase in PR AUC from 0.83 to 0.86

(p = 0.08); during the five-fold cross-validation of PCF-SEL, FFS selected ADC

map, PSAd, Cb2000 DWI, and TM map in the majority of fold experiments run.
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For the PROSTATEx dataset, ResNet3D-Cb2000 had the best performance

among ResNet3D classifiers that were trained using a single MRI modality of pa-

rameter map. PCF-ALL did not improve the result. However, PCF-SEL did im-

prove upon the result of ResNet3D-Cb2000, with an increase in ROC AUC from

0.82 to 0.86 (p = 0.07) and an increase in PR AUC from 0.66 to 0.72 (p = 0.07);

during the five-fold cross-validation of PCF-SEL, FFS selected Cb2000 DWI, ADC

map, and ME map in the majority of fold experiments run.

In addition to the ability to discriminate between classes, it is desirable for

models to produce well-calibrated probability estimates. For output probability P̂,

perfect calibration is defined as:

P(CSPCa | P̂ = p) = p, ∀p ∈ [0,1], (4.8)

i.e., P̂ should represent a true probability [149]. Figure 4.4e shows reliability dia-

grams for PICTURE and PROSTATEx dataset patient probabilities output by PCF-

SEL. Perfect calibration is represented by the identity diagonal. As observed for

both datasets, the identity diagonal is broadly tracked indicating reasonable calibra-

tion. For the PICTURE dataset we observe better calibration at the higher probabil-

ity end, while for the PROSTATEx dataset we observe better calibration at the lower

probability end. This may be explained by the higher prevalence of patients with

CSPCa in the PICTURE dataset and the higher prevalence of patients with benign

conditions or low-grade PCa in the PROSTATEx dataset.

An additional analysis was completed to investigate the relationship between

the predicted probability of CSPCa and lesion volume. The distribution of patient

probabilities output by PCF-SEL by maximum cancer core length (MCCL) (PIC-

TURE dataset) and lesion volume (PROSTATEx dataset) is shown in Figure 4.5;

lesion volume could not be computed for the PICTURE dataset, therefore MCCL is

used as a surrogate measure. As may be expected, for both datasets, we observe a

lower median probability of CSPCa and a higher variability, for patients with a low

MCCL/total lesion volume.
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(a)

(b)

Figure 4.5: Intra-dataset evaluation of PCF-SEL. Figure (a) shows the probability of
CSPCa for PICTURE dataset patients with biopsy-proven CSPCa, separated
by maximum cancer core length (MCCL). Figure (b) shows the probability of
CSPCa for PROSTATEx dataset patients with biopsy-proven CSPCa, separated
by total CSPCa lesion volume. In both boxplots, the limits represent the mini-
mum and maximum values, while the middle line represents the median.

4.4.2 Inter-dataset model evaluation

ResNet3D classifiers, PCF-ALL-MR classifiers, and PCF-SEL-MR classifiers, ob-

tained from the PICTURE dataset intra-dataset five-fold cross-validation, were used

to perform inference on the PROSTATEx dataset and vice versa. The mean and

standard deviation of the ROC and PR AUCs of the five cross-validation models is

presented in Table 4.4. Clinical features were not considered since they were not

available for the PROSTATEx dataset.

ResNet3D-ADC trained using the PROSTATEx dataset and applied to the PIC-

TURE dataset maintained a similar performance level to ResNet3D-ADC trained

with the PICTURE dataset. Similarly, ResNet3D-Cb2000 trained using the PIC-

TURE dataset and applied to the PROSTATEx dataset maintained a similar perfor-

mance level to ResNet3D-Cb2000 trained with the PROSTATEx dataset. For both
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(a) (b)

Figure 4.6: Graph (a) shows the ROC curve and graph (b) shows the PR curve for PCF-SEL
on the temporally separated PICTURE dataset test cohort. Radiologist perfor-
mance at Likert cutoffs (≥ 3 and≥ 4) and PCF-SEL performance at probability
cutoffs (≥ 0.17 and ≥ 0.75) are shown, where probability cutoffs for PCF-SEL
were selected using the PICTURE dataset training cohort.

datasets we observed a decrease in the performance of ResNet3D classifiers trained

using DCEI parameter maps likely due to the differences in temporal resolution of

the DCEI between the PICTURE and PROSTATEx datasets (13s vs. 3.5s). Notably,

for both datasets we observed a drop in the performance of PCF-SEL-MR as com-

pared to its performance in the intra-dataset evaluation, primarily as the datasets do

not share the same optimal modalities and due to the reduction in performance of

constituent ResNet3D classifiers trained using DCEI parameter maps.

4.4.3 Clinical evaluation

In this section we present the results of the clinical evaluation of PCF-SEL. To simu-

late prospective use, we temporally split the PICTURE dataset into 170 patients for

training and 40 patients for testing (20 patients with CSPCa and 20 patients without

CSPCa). The performance of PCF-SEL was compared to the performance of an

experienced radiologist (10 years of experience in reading prostate mpMRI) who

assigned a Likert score to each patient. To enable calculation of sensitivity, speci-

ficity, precision, and NPV for PCF-SEL, the probabilistic output of PCF-SEL was

thresholded to match the sensitivity of the radiologist on the training set. The results

of the clinical evaluation are shown in Table 4.5. Figure 4.6 shows the training and

test set ROC and PR curves calculated for PCF-SEL, as well as the performance of

the radiologist and PCF-SEL at two operating thresholds.
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FFS selected SEL = {T2WI, ADC map, Cb2000 DWI, PSAd}. Using the

training cohort a probability threshold equal to 0.17 was selected for PCF-SEL to

match the sensitivity of the radiologist at Likert threshold ≥ 3, while a probability

threshold equal to 0.75 was selected to match the sensitivity of the radiologist at

Likert threshold ≥ 4. On the test cohort, PCF-SEL achieved sensitivities of 95%

and 75%, compared to the radiologist who achieved sensitivities of 100% and 75%

and PCF-SEL achieved specificities of 35% and 55%, compared to the radiologist

who achieved specificities of 20% and 75%.

While differences in specificity can be observed in favour of PCF-SEL at the

higher sensitivity setting and in favour of the radiologist at the lower sensitivity

setting, McNemar’s test did not find statistically significant differences between

PCF-SEL and the radiologist on the test cohort.

4.5 Discussion

In this work we proposed a patient-level classification framework, denoted PCF, that

uses volumetric mpMRI, derived parameter maps, and clinical features, jointly, to

classify patients into those with and without CSPCa. PCF is trained using patient-

level labels only, thus avoiding the need for lesion annotations, which can be chal-

lenging and time-consuming to obtain. The performance of PCF was evaluated

using the PICTURE and PROSTATEx datasets. We performed an intra-dataset five-

fold cross-validation, an inter-dataset generalisation experiment, and a clinical eval-

uation of PCF on a temporally separated patient cohort from the PICTURE dataset.

In the intra-dataset five-fold cross-validation, the performance of PCF with fea-

ture selection enabled (PCF-SEL) was compared to the performance of PCF with

feature selection disabled (PCF-ALL), to assess whether feature selection in PCF

has a performance benefit. Further comparison was made to ResNet3D and SVM

classifiers trained using individual MRI modalities, parameter maps, and clinical

features. On both the PICTURE and PROSTATEx datasets, PCF-SEL outperformed

all other classifiers. On the PICTURE dataset, PCF-SEL achieved a mean ROC

AUC of 0.79 and mean PR AUC of 0.86; ADC map, PSAd, Cb2000 DWI and
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TM map were selected for inference in at least three out of five folds during the

five-fold cross-validation. On the PROSTATEx dataset, PCF-SEL achieved a mean

ROC AUC of 0.86 and mean PR AUC of 0.72; for this dataset, Cb2000 DWI, ADC

map, and ME map were selected for inference in at least three out of five folds dur-

ing the five-fold cross-validation. Three observations are made based on the results

of the intra-dataset evaluation. First, we observe that the inclusion of feature selec-

tion during the training stage of PCF yields a performance benefit, as shown by the

superior performance of PCF-SEL as compared to PCF-ALL. The feature selection

step improves generalizability to unseen data by removing MRI modalities, param-

eter maps, and clinical features that are acting as noise; removing sources of noise

is especially important when training classification algorithms with small datasets

which are common in PCa CAD works primarily due to the need for a consistent

and accurate reference standard. Second, we observe that PCF-SEL successfully

uses clinical features alongside MRI to improve patient classification performance.

Our method uses a stacked ensemble of SVMs, where MRI features and clinical fea-

tures are processed by separate dedicated SVMs, whose outputs are combined by

a third SVM, to produce to final patient classification. Using both clinical features

and MRI features for improved classification performance is in line with works by

Antonelli et al. [85] and Woznicki et al. [110] who showed the utility of PSAd

in lesion classification tasks. Third, we observed a performance benefit from us-

ing DCEI parameter maps. The semi-quantitative DCEI parameters calculated in

this work avoid the challenging estimation of the arterial input function needed for

computing pharmacokinetic parameters [150]. However, prior to clinical adoption

it would be important to consider whether the gain in performance from using DCEI

justifies the additional costs and risks associated to gadolinium injection. The costs

of DCEI include the cost of injection, the administering nurses time, and increased

scanner-time, while the risks include minor side effects such as injection site pain,

nausea, headaches, and dizziness, and rare side effects include gadolinium toxic-

ity and nephrogenic systemic fibrosis. For the reasons mentioned, and systematic

review evidence suggesting a lack of performance improvement from using DCE
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[30], there is an increasing sentiment towards the omittance of DCEI from prostate

cancer imaging protocols.

In the intra-dataset evaluation we considered the ability of PCF to generalise

to unseen patient data from the same distribution as the training patient data. How-

ever, it is also of interest to consider the ability of CAD systems to generalise to

external patient cohorts, since this type of generalisability, if observed, would allow

for wider deployment of a trained system. However, our inter-dataset evaluation re-

vealed a generalisation gap. More precisely, for the PICTURE dataset we observed

a drop in the performance of PCF-SEL-MR as compared to its performance in the

intra-dataset evaluation, from a ROC AUC of 0.77 to 0.72. As the feature selection

step uses validation data from the same distribution as the training data, it does not

guarantee selection of the optimal modalities in the external dataset. However, a

small increase in ROC AUC was observed for PCF-ALL-MR from 0.72 to 0.73.

On the PROSTATEx dataset, both PCF-SEL-MR and PCF-ALL-MR had dimin-

ished performance, again as the datasets do not share the same optimal modalities

and additionally due to the reduction in the performance of constituent ResNet3D

classifiers. Our findings suggest that training CAD systems with data from the insti-

tution in which deployment is intended is the optimal strategy and should be sought

where possible.

It is important to clinically evaluate prostate CAD systems. Central to this is

the need to compare CAD system performance to the performance of radiologists

who are the current clinical standard. Moreover, clinical evaluations should con-

sider how CAD systems may perform prospectively which can be simulated using

a temporally separated patient cohort or an external patient cohort. Furthermore,

an effective clinical evaluation requires the probabilistic output of the CAD system

to be thresholded, allowing measures such as sensitivity, specificity, precision, and

NPV to be reported as opposed to ROC AUC or PR AUC, which allow model com-

parison, but are less useful measures clinically. We compared the performance of

PCF-SEL to the performance of a radiologist with 10 years of experience in read-

ing prostate mpMRI, who gave a Likert score to each patient’s prostate indicating
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the likelihood of CSPCa. On a temporally separated cohort of 40 patients from the

PICTURE dataset, the radiologist achieved a sensitivity of 100% and a specificity

of 20% at Likert threshold≥ 3, while PCF-SEL achieved a sensitivity of 95% and a

specificity of 35% at a probability threshold equal to 0.17. At Likert threshold ≥ 4,

the radiologist achieved a sensitivity of 75% and a specificity of 75%, whereas PCF-

SEL achieved a sensitivity of 75% and specificity of 55% at a probability threshold

equal to 0.75. The differences in performance between the radiologist and PCF-

SEL were not found to be statistically significant, providing initial evidence for

PCF-SEL to be evaluated in a larger clinical trial.

There were four main limitations in our study. Firstly, our training data was

limited. In the temporal validation of PCF, ResNets were trained using 452 patients

(170 patients from the PICTURE dataset and 282 patients from the PROSTATEx

dataset), while the SVM trained with PSAd input was trained with 170 patients from

the PICTURE dataset only, as PSA was not available for the PROSTATEx dataset.

Secondly, due to the lack of PSA availability for the PROSTATEx dataset, we were

not able to include PSA or PSAd in the inter-dataset model evaluation. Third, cases

with severe magnetic susceptibility artifact on DWI were removed. Finally, PCF

was not evaluated in any specific clinical setting e.g., as a triage system or as a

second reader.



Chapter 5

Towards automated reporting:

AutoProstate

The work presented in this chapter has been published by Mehta et al. [151] in the

paper entitled, “AutoProstate: Towards Automated Reporting of Prostate MRI for

Prostate Cancer Assessment using Deep Learning”.

5.1 Introduction
Radiologists use prostate multiparametric magnetic resonance imaging (mpMRI) to

detect, score, and stage lesions that may correspond to clinically significant prostate

cancer (CSPCa), whose status can later be confirmed using MR-guided targeted

biopsy and histopathological grading [26]. However, the current diagnostic ap-

proach must be improved to reduce the small proportion of men with CSPCa who

are missed by mpMRI, to reduce the large number of men who undergo unneces-

sary biopsies, and to increase the inter-observer agreement between readers [39]. In

addition to lesion assessment, radiologists use prostate mpMRI to estimate prostate

volume using the ellipsoid formula [152]. Primarily, prostate volume is needed for

calculating prostate-specific antigen (PSA) density (PSAd), which has been shown

to be a useful predictor of CSPCa [153]. However, the ellipsoid formula is an

approximation which ignores exact prostate morphology [152], therefore more ac-

curate volume estimation methods are sought. Computer-aided diagnosis (CAD)

systems that use mpMRI for prostate volume estimation and CSPCa lesion detec-
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tion and/or segmentation may provide the desired performance improvements over

current clinical practice.

CAD systems for lesion detection and segmentation are actively being inves-

tigated, as demonstrated by a vast and growing literature [112, 113, 114, 115, 118,

120, 121]. In addition, several automatic segmentation algorithms have been pro-

posed for whole prostate segmentation, driven largely by the PROMISE12 Chal-

lenge [91]; an accurate automatic segmentation of the whole prostate can enable a

more accurate prostate volume and PSAd calculation. However, the CAD system

studies to-date have not considered prostate volume and PSAd estimation, along-

side CSPCa lesion detection and segmentation, in a combined system for PCa as-

sessment. Furthermore, CAD system studies to-date have not considered automatic

diagnostic report generation, which can improve reporting quality beyond the text

findings currently recorded by radiologists [43], as well as providing timely infor-

mation at the point of diagnosis to improve the diagnostic accuracy of radiologists.

In addition, there are a lack of studies which present a robust external validation of

their presented CAD systems [15], particularly using data acquired from scanners

that were not used to acquire the training data.

The primary aim of this chapter is to introduce AutoProstate: a deep learning-

powered framework for automated MRI-based prostate cancer (PCa) assessment

and reporting. In particular, AutoProstate segments the prostatic zones on T2-

weighted MRI (T2WI), detects and segments CSPCa lesions using biparametric

MRI (bpMRI), and generates a novel automatic web-based report containing four

sections: Patient Details, Prostate Size and PSA Density, Clinically Significant Le-

sion Candidates, and Findings Summary, which posits it close to clinical deploy-

ment. Notably, AutoProstate uses up-to-date deep learning techniques for training

and inference, such as hybrid losses [154], test-time dropout [155], test-time aug-

mentation [156], and model ensembling, to enhance performance. The second aim

of the work presented in this chapter is to perform a high-quality single-center ex-

ternal validation of AutoProstate, as a first step towards clinical deployment, ahead

of multicenter external validation and prospective validation in a clinical setting.



5.2. Method 97

In our experiment, AutoProstate is trained using the publicly available PROSTA-

TEx dataset [44], and externally validated using the “Prostate Imaging Compared to

Transperineal Ultrasound-guided biopsy for significant prostate cancer Risk Evalu-

ation” (PICTURE) trial dataset [33]. The external validation follows the key con-

siderations for authors, reviewers, and readers of AI Manuscripts in radiology by

Bluemke et al. [126]. In particular, the external test set contains MRI acquired us-

ing scanners manufactured by a different vendor to the scanners used to acquire

the training set and is confirmed using transperineal template prostate-mapping

(TTPM) biopsy, which avoids the biases associated to MR-guided targeted biopsy

and prostatectomy [33]. Furthermore, we compare the performance of AutoProstate

to the performance of an experienced radiologist who at the time of the PICTURE

trial had 10 years’ experience of reading prostate mpMRI; since radiological as-

sessment of prostate mpMRI is current clinical practice, preliminary evidence of

CAD system efficacy can be gained through comparing CAD system performance

to radiologist performance.

This chapter is organised as follows: in Section 5.2, we describe the techni-

cal details of AutoProstate; in Section 5.3, we explain how the PROSTATEx and

PICTURE datasets were used to train and evaluate AutoProstate, the experimental

settings employed, the experiments performed, and the evaluation measures used;

in Section 5.4, we present the results of the external validation; and in Section 5.5,

we conclude by discussing the implications of our results.

5.2 Method

AutoProstate, visualised schematically in Figure 5.1, consists of three modules:

Zone-Segmenter, CSPCa-Segmenter, and Report-Generator. Methodological as-

pects of each module are described in detail in the subsections to follow, while

specific experimental parameters used to collect results are described in Section

5.3.
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5.2.1 Zone-Segmenter module

The Zone-Segmenter module segments peripheral zone (PZ), central gland (CG),

and background tissues on T2WI.

5.2.1.1 Pre-processing

T2W images are first resampled to a common in-plane resolution and cropped to a

common in-plane shape, and then normalised by whitening of image voxel intensi-

ties.

5.2.1.2 Zone-U-Net-E

After pre-processing, each T2WI slice is segmented by an ensemble of 2D U-Nets

[6] with hyperparameters taken from the work by Isensee et al. [8] on the nnU-Net

framework, modified for the task of zone segmentation where required; we refer

to each constituent 2D U-Net as Zone-U-Net and the ensemble of Zone-U-Nets as

Zone-U-Net-E. Specifically, each Zone-U-Net features six encoding blocks and five

decoding blocks. Each encoding block consists of two convolutional layers with

stride one 3×3 convolutions with zero padding, leaky rectified linear unit (LReLU)

activation (neg. slope 1e-2) and instance normalisation [157], followed by a stride

two 2× 2 max pooling operation in the first five encoding blocks. Thirty-two fea-

ture maps are output by convolutional layers in the first encoding block, with feature

maps doubling in each subsequent encoding block. Upsampling deconvolution op-

erations are used in the decoding blocks, which receive semantic information from

the last encoding block and higher resolution feature maps from encoder-to-decoder

skip connections. The output of each Zone-U-Net is slice-wise PZ, CG, and back-

ground probability maps. Per-voxel averaging is used to combine the probability

map outputs of each Zone-U-Net ∈ Zone-U-Net-E, followed by restacking of slices

to form PZ, CG, and background probability map volumes.

5.2.1.3 Post-processing

The PZ, CG, and background probability maps output by Zone-U-Net-E are trans-

formed to the original T2WI size and voxel resolution using padding and resampling

operations. As a final step, a zonal segmentation map is obtained from PZ, CG, and
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background probability maps using a per-voxel argmax operation.

5.2.2 CSPCa-Segmenter module

The CSPCa-Segmenter module detects and segments CSPCa lesions using each

patient’s T2WI, apparent diffusion coefficient (ADC) map, low b-value diffusion-

weighted MRI (DWI), and PZ and CG probability maps output by Zone-Segmenter.

5.2.2.1 Pre-processing I: computed high b-value DWI

AutoProstate generates computed high b-value DWI from available DWI corre-

sponding to low b-values (typically b ∈ [0,1000] s/mm2 [28]) using a monoex-

ponential model for the per-voxel observed signal [29]:

s(bc) = s∗(0) · exp(–b ·ADC∗), (5.1)

where bc is the high b-value being extrapolated to.

5.2.2.2 Pre-processing II: registration

Image registration is used to align ADC maps and computed high b-value DWI to

T2WI to account for voluntary/involuntary patient movement between T2WI and

DWI acquisitions and differences in resolution. First, ADC maps are affinely regis-

tered to T2WI using the symmetric block matching algorithm [158]. Next, a non-

rigid registration is applied to the transformed ADC map using the free-form de-

formation (FFD) algorithm [135], with the convolution-based fast local normalised

correlation coefficient (LNCC) similarity measure to enable robustness to bias field

inhomogeneity [136]. Finally, the transformation obtained from the composition of

both types of registration is used to register computed high b-value DWI to T2WI.

5.2.2.3 Pre-processing III: resampling, cropping, and normalisation

T2WI, registered ADC map and computed high b-value DWI, and PZ and CG prob-

ability maps are resampled to a common in-plane resolution and cropped to a com-

mon in-plane shape, centered on the prostate; image cropping is used for memory

efficiency. Then, T2WI and computed high b-value DWI are normalised by dividing

voxel intensities by the interquartile mean of CG voxel intensities. Our approach is
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a modification of the normalisation approach suggested by Bonekamp et al. [98],

where voxel intensities were divided by the mean of PZ voxel intensities. We opt

for normalisation using CG voxel intensities since CG segmentations are typically

more reliable than PZ segmentations [8], and we opt for the interquartile mean of

CG voxel intensities as opposed to the mean of all CG voxel intensities, to remove

extremes that may correspond to abnormalities unique to a patient. ADC maps were

not normalised as they contain a quantitative measurement.

5.2.2.4 CSPCa-U-Net-E

After pre-processing, each slice of a patient’s T2WI, ADC map, computed high

b-value DWI, and PZ and CG probability maps are input channel-wise to an ensem-

ble of 2D U-Nets with hyperparameters taken from the the nnU-Net framework,

modified for the task of CSPCa lesion segmentation where required; the addition

of PZ and CG guidance as input to a CNN alongside MRI has been shown to in-

crease CSPCa lesion detection performance as the occurrence and appearance of

PCa is dependent on its zonal location [159]. We refer to each constituent 2D U-

Net as CSPCa-U-Net and the ensemble of CSPCa-U-Nets as CSPCa-U-Net-E. Each

CSPCa-U-Net is further modified to account for prediction uncertainty. CSPCa-

U-Net features five encoding blocks and four decoding blocks. Each encoding

block features two convolutional layers with stride one 3×3 convolutions with zero

padding, LReLU activation (neg. slope 1e-2) and instance normalisation, followed

by a stride two 2×2 max pooling operation in the first four encoding blocks; 64 fea-

ture maps are output by convolutional layers in the first encoding block, with feature

maps doubling in each subsequent encoding block. Upsampling deconvolution op-

erations are used in the decoding blocks, which receive semantic information from

the last encoder block and higher resolution feature maps from encoder-to-decoder

skip connections. In each CSPCa-U-Net, we model epistemic uncertainty using

test-time dropout, following the approach in Kendall et al. [160] i.e., dropout lay-

ers are inserted after the central three encoder units and two decoder units, with

dropout probability equal to some value P. We model aleatoric uncertainty using

test-time augmentation as in Wang et al. [156]. The output of each CSPCa-U-
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Net is slice-wise CSPCa probability maps. Per-voxel averaging is used to combine

the probability map outputs of each CSPCa-U-Net ∈ CSPCa-U-Net-E, followed by

restacking of slices to form a probability map volume.

5.2.2.5 Post-processing

The CSPCa probability map output by CSPCa-U-Net-E is transformed to the origi-

nal T2WI size and voxel resolution using padding and resampling operations. Next,

probabilities are calibrated using an isotonic regression calibration module [161], to

allow more interpretable CSPCa likelihoods. CSPCa lesion segmentations are ob-

tained by thresholding CSPCa probability maps using a cut-off value C; C is chosen

during experimentation using training data to match AutoProstate’s detection sen-

sitivity and specificity to that of an experienced radiologist. Finally, a false-positive

reduction step is applied to remove connected components smaller than MinSize

mm2.

5.2.3 Report-Generator module

The Report-Generator module generates an automatic report using input bpMRI

and clinical data, and the outputs of the Zone-Segmenter and CSPCa-Segmenter

modules; the report template is shown in Figure 5.2.

The left-hand pane contains interactive report elements including a patient se-

lector and transverse, frontal, and sagittal views of zone and CSPCa lesion segmen-

tation outputs overlaid on T2WI, with associated widgets for slice selection.

The topmost section of the main report interface is named Patient Details. This

section includes Patient Name, Hospital Number, Date of Birth, Scan Date, Age

(years), and PSA (ng/mL).

The second report section is named Prostate Size and PSA Density. This sec-

tion presents calculated prostate lengths and volumes, and the PSAd. The Trans-

verse, Anterior–Posterior, and Cranio–Caudal lengths of the prostate, in cm, are

calculated using the maximum extents of the prostate on the whole prostate seg-

mentation, where the whole prostate segmentation is the union of the PZ and CG

segmentations. Prostate Volume, Peripheral Zone Volume, and Central Gland Vol-



5.2. Method 103

Figure 5.2: AutoProstate Report template, where xx denotes an automatically populated
field.
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ume, in cm3, are calculated by multiplying voxel counts by voxel volume. The PSA

Density (ng/mL2) is calculated by dividing PSA by the calculated whole prostate

volume.

The third report section is named Clinically Significant Lesion Candidates.

This section presents a listing of all detected CSPCa lesions, sorted in descending

order of Probability of CSPCa. The Centroid Slice, Centroid Zone (PZ or CG), and

Centroid Region (base, midgland, or apex) are determined based on the location

of the lesion centroid; our region determination follows the methodology outlined

by Litjens et al. [91] for evaluating the PROMISE12 Challenge, where the apex is

defined as the caudal-most third of the prostate, the base is the cranio-most third of

the prostate, and the midgland is the remaining portion. The Min ADC (mm2/s) is

calculated as the minimum ADC value inside the predicted CSPCa lesion contour.

As in the Prostate Size and PSA Density report section, Volume (cm3) is calculated

by multiplying voxel counts by voxel volume. Finally, the flag Extra-Capsular?

is set to true if the lesion contour protrudes beyond the whole prostate contour,

otherwise it is set to false.

The last section of the report is named Findings Summary, where key infor-

mation (denoted xx in Figure 5.2) from other report sections is used to populate a

template paragraph.

Following patient selection, the report is built using Streamlit (version 0.75.0;

Available online: https://streamlit.io (accessed on 21 January 2021).

Streamlit is an open-source Python library for creating shareable interactive web

applications.

5.3 Experimental setup

In this section, we describe the datasets used for training and testing AutoProstate,

the methodological settings employed, and the evaluation measures used to assess

performance.

https://streamlit.io
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5.3.1 Patient datasets

AutoProstate was trained using the publicly available PROSTATEx challenges train-

ing dataset [44], and externally validated using the “Prostate Imaging Compared to

Transperineal Ultrasound-guided biopsy for significant prostate cancer Risk Evalua-

tion” (PICTURE) study dataset [33]. A detailed description of both datasets is given

in Chapter 3, including details of mpMRI protocol, radiologist scoring, histopathol-

gical reference standard, and manually-drawn contours used as ground-truth in this

work. In this work, two PICTURE dataset patients were removed due to missing

MRI data.

5.3.2 Methodological settings

In this section, we describe the training and inference settings used for conducting

experiments with AutoProstate.

5.3.2.1 Zone-Segmenter Module

T2WI were resampled to a common in-plane resolution of 0.4018 mm × 0.4018

mm and cropped to a common in-plane shape of 320 × 320.

A ten-fold cross-validation analysis of Zone-U-Net was conducted using the

PROSTATEx dataset to optimise training hyperparameters, loss function, and aug-

mentations. Zone-U-Net performed optimally when trained for 50 epochs with

learning rate equal to 0.0001, batch size equal to eight, Adam optimisation [148],

an equally-weighted hybrid loss composed of Dice loss [74] and Focal loss [162],

and horizontal flip (probability 0.5), rotation (–20◦, 20◦), and scaling (-10%, 20%)

augmentations.

Following the ten-fold cross-validation, the ten trained Zone-U-Nets were used

to construct Zone-U-Net-E; cross-validation ensembles have been shown to be an

effective ensembling strategy [8].

5.3.2.2 CSPCa-Segmenter Module

A high b-value, bc = 2000, was selected for computing high b-value DWI as in

Verma et al. [28]. The registration of ADC maps to T2WI employed default param-

eters for affine registration via symmetric block-matching. The subsequent non-
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rigid FFD registration used a Gaussian kernel with standard deviation equal to 5

mm for LNCC calculation, control point spacing equal to 10 mm, and bending en-

ergy constraint equal to 0.1. Registrations were run using NiftyReg (version 1.3;

https://github.com/KCL-BMEIS/niftyreg). Through visual inspec-

tion, we observed that the degree of misregistration was inconsequentially small

for all PROSTATEx and PICTURE dataset cases. Therefore, no manual steps were

taken to correct any instances of misregistration, and cases with misregistration

were not excluded from our analysis.

T2WI, registered ADC maps and computed b2000 (Cb2000) DWI, and PZ and

CG probability maps, were resampled to a common in-plane resolution of 0.4018

mm× 0.4018 mm and cropped to a common in-plane shape of 256× 256, centered

on the prostate.

Like Zone-U-Net, the training settings for CSPCa-U-Net were determined

through ten-fold cross-validation using the PROSTATEx dataset. CSPCa-U-Net

performed optimally when trained for 50 epochs with learning rate equal to 0.0001,

batch size equal to 12, Adam optimisation, a dropout probability of P = 0.2 for cen-

tral dropout, a hybrid loss composed of the sum of Dice loss multiplied by 0.5 and

Focal loss multiplied by 1.0, and horizontal flip (probability 0.5), rotation (–20◦,

20◦), and scaling (-10%, 20%) augmentations. The same dropout probability and

augmentation settings were used for test-time dropout and test-time augmentation.

CSPCa probability maps output by CSPCa-U-Net for each fold were calibrated

using separate isotonic calibration modules for each fold. Following calibration,

CSPCa probability maps were thresholded using cut-off values determined for each

fold, corresponding to a lesion-level sensitivity of 93% and specificity of 37%, in

the fold’s training set. The aforementioned sensitivity and specificity correspond to

reference radiologist performance at PI-RADS v1 cut-off ≥ 4 on a separate patient

cohort from Radboud Medical Center, reported on in Litjens et al. [104], which was

used since prospective radiologist performance was not available for the PROSTA-

TEx dataset. As a final post-processing step, connected components smaller than 40

mm3 were removed. UK National Institute for Health and Care Excellence (NICE)

https://github.com/KCL-BMEIS/niftyreg
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guidelines recommend a minimum size of 200 mm3 for CSPCa lesions [9]; we

picked a minimum size of 40 mm3 (20% of 200 mm3) considering some CSPCa

lesions may only be partially segmented.

Following the ten-fold cross-validation, the ten trained CSPCa-U-Nets were

used to construct CSPCa-U-Net-E. CSPCa-U-Net-E was calibrated using isotonic

calibration. For thresholding, a cut-off value C = 4.5% was determined to match

radiologist performance in the training set for CSPCa-U-Net-E i.e., the entire

PROSTATEx dataset. For false-positive reduction, connected components smaller

than 40 mm3 were removed, as in the cross-validation analysis.

5.3.3 External validation evaluation measures

Whole prostate and zonal segmentations were evaluated using the Dice coeffi-

cient. Prostate size measurements (transverse, anterior-posterior, and cranio-caudal

lengths), as well as whole prostate and zonal volumes, were evaluated using ab-

solute percentage error (Abs%Err); the ground-truth lengths and volumes used in

the calculation of Abs%Err were derived from the manually-drawn whole prostate

and zonal contours. The PSAd estimated by AutoProstate was evaluated using ab-

solute error (AbsErr), since the absolute value of PSAd has a meaning relative to

risk definitions [9]; the ground-truth PSAd value used in the calculation of AbsErr

was obtained by dividing PSA by the whole prostate volume calculated using the

manually-drawn whole prostate contour. The aforementioned evaluation metrics

were calculated over 80 patients from the PICTURE dataset for which manually-

drawn whole prostate and zonal segmentations were available.

Receiver operating characteristic (ROC) area under the curve (AUC) and

precision-recall (PR) AUC were calculated to quantify AutoProstate’s ability to

differentiate between CSPCa lesions and nCSPCa lesions. After thresholding

and false-positive reduction, we calculated sensitivity, specificity, and precision at

lesion-level and average false-positives at patient-level. For the PICTURE dataset,

the calculation of average false-positives was made using 93 patients who were

biopsy-negative for CSPCa, due to limitations in the ground-truth prohibiting false-

positive determination in biopsy positive patients. In addition, CSPCa lesion Dice
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and Abs%Err of lesion area were calculated on contoured slices only.

Prostate volume, PSAd, and lesion detection metrics computed for Auto-

Prostate were compared to the same metrics calculated for an experienced radiol-

ogist (10 years’ experience in reading and scoring prostate mpMRI) who prospec-

tively filled out a case report for each patient. Prostate volume was estimated using

the ellipsoid formula and lesions were scored using a five-point Likert scale [31].

Statistical tests were used to compare the performances of AutoProstate and the

experienced radiologist. The Wilcoxon’s signed-rank test [145] was used to statis-

tically compare prostate volume and PSAd estimates, DeLong’s test was used to

statistically compare lesion ROC AUC, McNemar’s test [146] was used to statisti-

cally compare sensitivity and specificity, the weighted generalized score (WGS) test

statistic [147] was used to statistically compare precision, and Wilcoxon’s signed-

rank test was used to statistically compare average false-positives.

5.4 Results
AutoProstate, trained using the PROSTATEx dataset, was externally validated us-

ing the PICTURE dataset. This section presents the results of the cross-validation

of Zone-U-Net and CSPCa-U-Net which are building blocks of AutoProstate, a

detailed analysis of the external validation of AutoProstate using the PICTURE

dataset, with comparisons made to the performance of an experienced radiologist

with 10 years’ experience in reading prostate mpMRI, where possible.

5.4.1 Zone-U-Net and CSPCa-U-Net ten-fold cross-validation

Using the settings described in Section 5.3.2.1, Zone-U-Net achieved mean Dice

coefficients of 0.78, 0.86, and 0.91 for PZ, CG, and whole prostate segmentation,

respectively.

Using the settings described in Section 5.3.2.2, CSPCa-U-Net achieved a mean

ROC AUC of 0.85 and a mean PR AUC of 0.70. After thresholding, CSPCa-U-Net

achieved a mean sensitivity of 93%, a mean specificity of 37%, a mean precision

of 34%, and a mean false-positive count per-patient of 6.9. Following false-positive

reduction, mean sensitivity dropped marginally to 92%, mean specificity increased
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to 46%, mean precision increased to 37%, and mean false-positives per-patient

dropped significantly to 3.3 (p < 0.01). Furthermore, CSPCa-U-Net achieved a

mean Dice coefficient of 0.39 for CSPCa lesion segmentation.

5.4.2 AutoProstate external validation analysis: whole prostate

and zonal segmentation, prostate size measurements, and

PSA density

Table 5.1 and Figure 5.3 present summaries of the distribution of Dice coefficients

for whole prostate and zonal segmentations, the distribution of Abs%Err for prostate

size measurements, and the distribution of AbsErr for PSAd calculation, for 80 pa-

tients from the PICTURE dataset for which ground-truth segmentations were avail-

able.

Mean Dice coefficients of 0.75, 0.80, and 0.89 were obtained for the PZ, CG,

and whole prostate, respectively. AutoProstate’s Zone-Segmenter module found

PZ segmentation a more difficult task than CG segmentation, while whole prostate

segmentation had a higher mean Dice coefficient than both zonal segmentations,

suggesting an ease of distinguishing prostate tissue from background tissues, but

a difficulty in distinguishing between PZ and CG tissue. As expected, the mean

Dice coefficients for the PZ, CG, and whole prostate segmentations were lower

than those obtained on the PROSTATEx dataset during the ten-fold cross-validation

of Zone-U-Net (0.78, 0.86, and 0.91 for PZ, CG, and whole prostate segmenta-

tion, respectively) which may be indicative of a generalization gap due to acquisi-

tion/population differences.

The transverse, anterior-posterior, and cranio-caudal lengths of the prostate

were estimated using the whole prostate segmentation output by Zone-Segmenter.

A mean Abs%Err of 3%, 5%, and 20% were obtained for transverse, anterior-

posterior, and cranio-caudal lengths, respectively. In addition to the lowest mean

Abs%Err, the transverse length had a smaller standard deviation than anterior-

posterior and cranio-caudal lengths. Through visual inspection of segmentation

outputs, we attribute the variability in the accuracy of the anterior-posterior mea-
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surement to the difficulty of determining prostate extent in the anterior fibromuscu-

lar stroma, and similarly, we attribute the variability in the accuracy of the cranio-

caudal measurement to the difficulty of determining prostate extent at the base and

apex regions of the prostate. Strikingly, a large maximum Abs%Err of 100% was

observed for the cranio-caudal measurement, which was found to be due to under-

segmentation of the base region in the ground-truth.

PZ, CG, and whole prostate volumes were calculated using PZ, CG, and whole

prostate segmentations output by Zone-Segmenter. A mean Abs%Err of 12%, 18%,

and 9% were obtained for PZ, CG, and whole prostate volumes, respectively. Strik-

ingly, a large maximum Abs%Err of 112% was observed for the CG, which was

found to be due to over-segmentation of the CG in the base region. We compare

the Abs%Err of the whole prostate volume calculated by AutoProstate to the same

calculated by the experienced radiologist who used the ellipsoid formula, which is

clinically advocated. AutoProstate had a mean Abs%Err of 9%, while the experi-

enced radiologist’s mean Abs%Err was 13%; the difference was statistically signif-

icant (p < 0.05). Using the whole prostate volumes computed by AutoProstate and

the experienced radiologist, PSAd was calculated. AutoProstate achieved a mean

AbsErr of 0.019, while the experienced radiologist’s mean AbsErr was 0.031; the

difference was statistically significant (p < 0.05).

5.4.3 AutoProstate external validation analysis: clinically signif-

icant prostate cancer lesion detection and segmentation

CSPCa lesion detection performance for AutoProstate and the experienced radiol-

ogist are shown in Table 5.2, while Figure 5.4 shows the ROC and PR curves for

AutoProstate and the experienced radiologist.

AutoProstate achieved a mean ROC AUC of 0.70 and a mean PR AUC of

0.84, calculated using output CSPCa probability maps prior to thresholding. After

thresholding the CSPCa probability maps using a cut-off value equal to 4.5%, the

following were obtained: a sensitivity of 78%, a specificity of 49%, a precision of

78%, and a mean false-positive count of 6.1. Following false-positive reduction,

mean sensitivity dropped marginally to 76%, mean specificity increased to 57%,
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mean precision increased marginally to 80%, and the mean false-positive count per-

patient dropped to 2.5. The relationship between detection accuracy and lesion size

was investigated. CSPCa lesion detection accuracy varied by lesion area (lesion

area is used as a surrogate measure for lesion size since a single slice only was

contoured for each identified lesion). We found an overall CSPCa lesion detection

accuracy of 79% over the total 147 CSPCa lesions contoured. For CSPCa lesions

with an in-slice area of less than 50 mm3, the detection accuracy was found to be

70%, which increases to 75% for CSPCa lesions with an in-slice area greater than

or equal to 50 mm3 and less than 100 mm3, and increases further to 94% for CSPCa

lesions with an in-slice area greater than or equal to 100 mm3.

Likert scores assigned to suspicious lesions by the experienced radiologist

were used to calculate ROC and PR curves; radiologist Likert scoring gave a ROC

AUC of 0.64 and PR AUC 0.78. After thresholding at cut-off score Likert ≥ 4, the

following were obtained: a sensitivity of 78%, a specificity of 48%, a precision of

78%, and a mean false-positive count of 0.3. Differences between the ROC AUC,

PR AUC, sensitivity, specificity, and precision of AutoProstate and the experienced

radiologist were not statistically significant. However, the difference between mean

false-positives was statistically significant (p < 0.001).

A further analysis was completed to assess the level of agreement between

AutoProstate and the radiologist’s Likert scores, on annotated lesions, as shown in

Table 5.3. For CSPCa lesions, there was a 78% (114/147) concordance between Au-

toProstate and the radiologist, while for nCSPCa lesions, there was a 62% (39/63)

concordance.

CSPCa lesion segmentation accuracy, evaluated using the Dice coefficient, was

calculated using slices containing a corresponding ground-truth CSPCa lesion con-

tour. The following Dice coefficient metrics were obtained: a mean of 0.46 (SD:

0.32), a median of 0.58 (IQR: 0.10 - 0.72), and a min-max range of 0.00 – 0.90.

Example CSPCa lesion segmentations are shown in Figure 5.5, Figure 5.6, and Fig-

ure 5.7. Furthermore, an example automatic report generated by AutoProstate is

shown in Figure 5.8.
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Figure 5.8: AutoProstate report for a 64-year-old man with PSA equal to 10.53 ng/ml who
participated in the PICTURE study. LESION 1 (probability of CSPCa equal to
95%) corresponds to a biopsy-proven Gleason score 3+4 lesion, while LESION
2 and LESION 3 (probabilities of CSPCa equal to 46% and 7%, respectively)
are false-positives.
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5.5 Discussion

In this work, we introduced AutoProstate, a deep learning-powered framework for

automated MRI-Based PCa assessment. AutoProstate consists of three modules:

Zone-Segmenter, CSPCa-Segmenter, and Report-Generator. The output of Auto-

Prostate is an automatic web-based report that presents patient details, prostate size

measurements and PSAd, a listing of candidate CSPCa lesions with derived charac-

teristics, and a findings summary. AutoProstate, trained using the publicly available

PROSTATEx dataset, was externally validated using the PICTURE dataset. Dur-

ing the external validation, the performance of AutoProstate was compared to the

performance of an experienced radiologist with 10 years’ experience in reading

prostate mpMRI, who prospectively estimated prostate volume and PSAd using the

ellipsoid formula, and scored lesions using a five-point Likert scale.

PZ, CG, and whole prostate segmentations are output by AutoProstate’s Zone-

Segmenter module. During the experimental setup phase, we tested Zone-U-Net,

prior to ensembling of Zone-U-Nets to form Zone-U-Net-E. Zone-U-Net achieved

mean Dice coefficients of 0.78, 0.86, and 0.91 for PZ, CG, and whole prostate seg-

mentation, respectively, in ten-fold cross-validation using the PROSTATEx dataset.

Our result compares well to recent works by Aldoj et al. [87], where their proposed

Dense-2 U-Net CNN was evaluated using four-fold cross-validation of a 188-patient

subset from the PROSTATEx dataset, and to a recent work by Cuocolo et al. [88],

where the previously proposed ENet CNN [93] was evaluated using a 105-patient

test set from the PROSTATEx dataset. Aldoj et al. obtained mean Dice coeffi-

cients of 0.78, 0.91, and 0.92, and Cuocolo et al. obtained mean Dice coefficients

of 0.71, 0.87, and 0.91, for PZ, CG, and whole prostate segmentation, respectively.

However, direct comparisons between our work and the works of Aldoj et al. and

Cuocolo et al. is not possible due to the use different subsets of data for testing.

During the external validation of AutoProstate using the PICTURE dataset, where

Zone-U-Net-E was used for PZ, CG, and whole prostate segmentation, AutoProstate

achieved mean Dice coefficients of 0.75, 0.80, and 0.89, respectively, on 80 patients

for which ground-truth segmentations were available. Antonelli et al. [85] previ-
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ously reported segmentation results for the PICTURE dataset. A multi-atlas seg-

mentation approach featuring a novel genetic atlas selection strategy was proposed;

mean Dice coefficients of 0.72 and 0.83 were reported for PZ and CG segmentation,

using leave-one-out cross-validation, and a mean Dice coefficient of 0.83 was re-

ported for whole prostate segmentation, using atlases from the PROMISE12 dataset

[91].

As Ghavami et al., [163] have shown it is not sufficient to evaluate an au-

tomatic whole prostate segmentation algorithm using Dice score alone; the per-

formance gain, or lack thereof, in downstream tasks must also be considered, in

this case downstream calculations of prostate volume and PSAd. AutoProstate’s

estimate of prostate volume was compared to an estimate obtained using the ellip-

soid formula, which is clinically advocated [152]. AutoProstate achieved a mean

Abs%Err of 9%, while the radiologist computed ellipsoid formula estimate had a

mean Abs%Err of 13%. Notably, the difference in mean Abs%Err was statisti-

cally significant (p = 0.0051 < 0.05). Furthermore, we compared PSAd estimates

obtained using the volume estimates; we found a mean AbsErr of 0.019 for Auto-

Prostate and a mean AbsErr of 0.031 for the radiologist; again, the difference was

statistically significant (p = 0.0018 < 0.05). Since PSAd is used clinically to inform

the decision to biopsy or to discharge patients [9] and furthermore, to monitor pa-

tients on active surveillance, as recommended by NICE guidelines in the UK [9],

we believe a case exists for replacement of the ellipsoid formula with automated

methods such as ours.

AutoProstate’s foremost purpose is to detect and segment CSPCa lesions. Dur-

ing the experimental setup phase, we tested CSPCa-U-Net, prior to ensembling

of CSPCa-U-Nets to form CSPCa-U-Net-E. Markedly, CSPCa-U-Net achieved

a lesion-level mean ROC AUC of 0.85 in ten-fold cross-validation using the

PROSTATEx dataset, while previous studies have reported a lesion-level mean ROC

AUC of 0.81 on the same subset of PROSTATEx data used in this study, using the

same input modalities. During the external validation of AutoProstate using the

PICTURE dataset, where CSPCa-U-Net-E was used to segment CSPCa lesions,
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AutoProstate achieved a lesion-level ROC AUC of 0.70. Notably, we observed a

large reduction in ROC AUC on the PICTURE dataset from that seen during the

PROSTATEx dataset ten-fold cross-validation. We believe that the main reason for

the reduction in ROC AUC was the use of TTPM biopsy in the PICTURE dataset

reference standard, which allowed lesions that were not prospectively identified by

the radiologist, to be retrospectively contoured using TTPM biopsy findings. Other

reasons may include a high occurrence of magnetic susceptibility artifacts on DWI

in the PICTURE dataset and a possible generalization gap between training data and

external testing data due to population/acquisition differences. On the PICTURE

dataset, radiologist Likert assessment achieved a lesion-level ROC AUC of 0.64; the

difference in ROC AUC between AutoProstate and the radiologist was not statisti-

cally significant. Following thresholding and false-positive reduction, AutoProstate

achieved a lesion-level sensitivity of 76%, a lesion-level specificity of 57%, and 2.5

false-positives per-patient (calculated over patients without CSPCa, only). In com-

parison, radiologist Likert assessment thresholded at Likert ≥ 4, achieved a lesion-

level sensitivity of 78%, a lesion-level specificity of 48%, and 0.3 false-positives

per-patient (calculated over patients without CSPCa, only); only the difference be-

tween the number of false-positive detections by AutoProstate and the radiologist

was statistically significant (p < 0.001). While AutoProstate has demonstrated an

ability to differentiate between CSPCa lesions and low-grade/benign lesions at the

level of an experienced radiologist, further work is needed to reduce the number

of false-positives produced. Interestingly, AutoProstate achieved a similar sensitiv-

ity and improved specificity compared to the radiologist on annotated CSPCa and

low-grade/benign (nCSPCa) lesions but had a higher overall false-positive count.

Therefore, it’s possible that the additional false-positives produced by AutoProstate,

that were not prospectively scored by the radiologist, may be easy for radiologists

to rule-out.

Several aspects of this study have been guided by the set of nine key con-

siderations for authors, reviewers, and readers of artificial intelligence studies in

radiology by Bluemke et al. [126]. As recommended, we maintained a clear sep-
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aration between training data and testing data. In particular, we avoided a com-

mon pitfall observed in previous studies [120, 112], by determining the probability

cut-off value using training data, rather than a biased approach involving the test

data itself. In line with further recommendations by Bluemke et al., we were able

to externally validate AutoProstate using the PICTURE dataset. Furthermore, the

PICTURE dataset was acquired using Phillips’ scanners, while the PROSTATEx

dataset, used to train AutoProstate, was acquired using Siemens’ scanners, meaning

a further recommendation on using multivendor data for evaluation was met. More-

over, we compared AutoProstate to an expert radiologist who prospectively reported

PICTURE dataset patients, and both AutoProstate and the radiologist were com-

pared to an accepted reference standard which combined TTPM and MR-guided

targeted biopsies; TTPM biopsy is highly accurate and avoids biases associated

to MR-guided targeted biopsy, transrectal ultrasound-guided (TRUS) biopsy, and

prostatectomy [33].

CAD system studies should describe how the CAD system will be deployed

clinically, so future prospective trials can be planned accordingly. Our goal in this

study was to understand the strengths, weaknesses, and idiosyncrasies of Auto-

Prostate through a comparison against an experienced radiologist. In the clinical

workflow, we envision AutoProstate as a radiologist companion system during clin-

ical reads to allow enhanced clinical reporting. It should be acknowledged that

current CAD systems for MRI-based PCa diagnosis contain varying degrees of er-

ror in terms of producing too many false-positives, false-negatives, or both. Since

the automatic report produced by AutoProstate presents visual segmentation out-

puts, as well as derived measurements, all outputs produced by AutoProstate can

be rapidly verified by the radiologist. In particular, automatic report information

deemed to be accurate can be used to prepare the patient’s clinical report, while er-

roneous information can be recalculated using current clinical methods or ignored

if not required. However, prior to deployment, focus groups must be held with

radiologists to refine all aspects of the report, followed by prospective validation

in the clinical workflow. Particular attention must be given to the “Probability of
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CSPCa” computed by AutoProstate for each CSPCa lesion candidate. Probabili-

ties are subject to human interpretation, which itself is dependent on several factors

such as clinical experience, technical understanding, and level of confidence in the

system. Furthermore, it has been shown that clinicians can struggle to correctly

interpret diagnostic information to make decisions, particularly when this involves

probabilistic reasoning [164]. Successful clinical adoption may hinge on the provi-

sion of a study-backed guide on how to use data provided from the system to make

decisions. In the longer term, as the number of AI-based systems for PCa diagno-

sis, such as ours, proliferates, there may need to be a careful adaption of radiologist

reporting guidelines.

There were three limitations in our study. Firstly, our training data was limited

to 76 CSPCa lesions and 223 nCSPCa lesions; we may expect improved detection

sensitivity and reduced false-positives if a bigger training dataset with more lesions

is available. Secondly, our external validation was limited to a single external site.

Thirdly, lesion contours for each PICTURE dataset patient were drawn by a single

radiologist only. While the location and Gleason score of lesions was confirmed

by a combination of TTPM and MR-guided targeted biopsies, we were not able to

overcome the inter-reader variation known to exist in lesion boundary determination

[129].



Chapter 6

Click-based interactive segmentation

of the whole prostate and prostatic

lesions: a preliminary study

The results presented in this chapter have been published by Diaz-Pinto et al. [165]

in the conference paper entitled, “DeepEdit: Deep Editable Learning for Interac-

tive Segmentation of 3D Medical Images”, in which the author of this thesis is the

second author.

6.1 Introduction
Obtaining accurate segmentations of the whole prostate and prostatic lesions, on

magnetic resonance imaging (MRI), is of interest clinically for prostate cancer

(PCa) diagnosis, active surveillance, and treatment. In particular, accurate seg-

mentations can enable more precise calculations of prostate and lesion volume.

Prostate volume is needed for calculating prostate-specific antigen (PSA) density

(PSAd), which is a predictor of clinically significant PCa (CSPCa) [153], while le-

sion volume is required for lesion scoring, as per Prostate Imaging-Reporting and

Data System (PI-RADS) guidelines [24], and for monitoring disease progression

in patients placed on active surveillance [166]. In addition to volume estimation,

accurate segmentation allows better determination of prostate and lesion extent.

Prostate and lesion boundaries are important for planning/conducting whole-gland
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or partial prostatectomy [167], for planning/conducting whole-gland or focal radio-

therapy [168], for brachytherapy radioactive seed placement [169], and for plan-

ning/conducting whole-gland or focal cryotherapy [170]. However, due to the com-

plexity and time-cost of producing segmentations of the prostate and lesions within

the prostate, they are not produced by radiologists as part of the clinical routine

[112].

Several methods have been described in the literature for the automatic seg-

mentation of organs and lesions on medical images [40]. In particular, deep

learning-based segmentation algorithms are producing state-of-the-art performance

on medical image segmentation tasks [8, 72, 73]. However, as automatic segmenta-

tion approaches have not reached the required robustness for clinical use [45], inter-

active segmentation methods for medical images are being developed [83, 45, 84].

In this work, we built and evaluated interactive segmentation applications for

whole prostate segmentation and prostatic lesion segmentation. The work is based

on an interactive segmentation method that uses deep learning introduced by Saki-

nis et al. [45], named DeepGrow, in which mouse-clicks provided by a user e.g., a

radiologist, are used to correct areas of under- or over-segmentation; experiments

on multiple organ segmentation on computerised tomography (CT) scans of the

abdomen showed that their method generated segmentations in a fast and reliable

manner with few clicks and generalised well to unseen structures. Both whole

prostate and prostatic lesion segmentation applications are built using MONAI La-

bel (https://github.com/Project-MONAI/MONAILabel), which is an

open-source repository that enables researchers to build medical image segmen-

tation applications using automatic and interactive segmentation methods. Both

segmentation tasks were performed in 3D to ensure user clicks apply in-plane and

across slices; a 3D implementation of DeepGrow is available in MONAI Label,

building on DeepGrow for 2D segmentation, as presented by Sakinis et al. The

whole prostate segmentation task was performed using T2-weighted MRI (T2WI)

using the standard MONAI Label application for performing training and infer-

ence with DeepGrow, while for prostatic lesion segmentation, the standard MONAI

https://github.com/Project-MONAI/MONAILabel
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Label application was extended to accept multimodal input, in this case T2WI,

apparent diffusion coefficient (ADC) map, and computed high b-value diffusion-

weighted MRI (DWI). In our experiments, we compared the use of Dice loss [74]

for training, as used in the work by Sakinis et al., to a hybrid loss composed of

Dice loss and Focal loss [154]. In a further experiment, we proposed and evaluated

a new click-simulation strategy for training DeepGrow which uses the magnitude

of the prediction error associated to false-positive and false-negative regions to de-

termine click-placement, as opposed to the size of false-positive and false-negative

regions, as suggested by Sakinis et al. A final experiment compares DeepGrow with

DeepEdit, where DeepEdit is a modification of DeepGrow available in MONAI La-

bel. While DeepGrow, as presented by Sakinis et al., requires at least one mouse-

click to initiate the generation of a segmentation, DeepEdit is trained to perform

click-free segmentation at first, followed by click-based segmentation editing if re-

quired. Provided sufficient performance, DeepEdit can reduce the number of mouse

clicks required, saving time and effort.

This chapter is organised as follows: In Section 6.2, we describe the technical

details of DeepGrow and DeepEdit. In Section 6.3, we describe the pipeline con-

figurations of the whole prostate and prostatic lesion segmentation applications, the

training settings, the experiments conducted, and the evaluation methods employed.

In Section 6.4, we present the results for segmentation. Finally, in Section 6.5, we

conclude by discussing the implications of our results.

6.2 Methods
In this section, we describe the technical details of DeepGrow and DeepEdit. In ad-

dition to the standard training strategy for DeepGrow and DeepEdit, a new training

strategy is also described.

6.2.1 DeepGrow

DeepGrow refers to the click-based interactive segmentation method proposed by

Sakinis et al. [45]. DeepGrow uses an encoder-decoder CNN to segment med-

ical images, using a stacked channel input composed of the image, a foreground
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click map, and a background click map; the foreground click map contains the lo-

cations of mouse-clicks placed in false-negative regions of the segmentation, while

the background click map contains the locations of mouse-clicks placed in false-

positive areas of the segmentation. While the original method published by Sakinis

et al. segmented 2D images only, MONAI Label has extended DeepGrow for seg-

mentation of 3D images.

6.2.1.1 CNN architecture

The CNN architecture used in the original DeepGrow method published by Sakinis

et al. is an encoder-decoder CNN inspired by U-Net [6], while the DeepGrow im-

plementation in MONAI Label uses a dynamic U-Net [6, 7], configured by nnU-Net

[8]; nnU-Net reduces the design choices to the very essential ones and automatically

infers these choices using a set of heuristic rules.

The U-Net CNN architecture configured by nnU-net follows a U-shaped topol-

ogy with N + 1 encoding blocks and N decoding blocks. Each encoding block con-

sists of two convolutional layers with leaky rectified linear unit (LReLU) activation

(neg. slope 1e-2), and instance normalisation [157]. In all but the first encoder

block, strided convolutions are used to perform downsampling. Thirty-two feature

maps are output by convolutional layers in the first encoding block, with feature

maps doubling in number in each subsequent encoding block. To limit the final

model size, the number of feature maps are capped at a maximum of 320. The

number of encoder blocks and the sizes and strides of the kernels in each encoder

block are determined automatically based on the size and voxel spacing of the input

image. Downsampling is terminated at the point at which further downsampling

would reduce feature maps to less four voxels in any dimension. For anisotropic

3D data, high resolution axes are downsampled separately until their voxel resolu-

tion is within a factor of two of the lower resolution axis. Subsequently, all axes

are downsampled simultaneously. Upsampling deconvolution operations are used

in the decoding blocks, which receive semantic information from the last encoding

block and higher resolution feature maps from skip connections that join encoder

blocks to decoder blocks with feature maps of the same spatial size.
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6.2.1.2 Inference with user mouse-clicks

In DeepGrow, a user e.g., a radiologist, can click in an area of the predicted seg-

mentation where the CNN has made an error. Mouse-clicks can be placed in false-

negative areas of the CNN prediction (henceforth referred to as “foreground clicks”)

to encourage prediction of the foreground class and mouse-clicks can be placed in

false-positive areas of the CNN prediction (henceforth referred to as “background

clicks”) to discourage prediction of the foreground class in background regions.

Foreground and background clicks are converted into foreground and background

click maps, which are concatenated with the input image, in the channel dimension,

prior to CNN processing. Foreground and background click maps have the same

spatial size as the input image and are zero everywhere except voxels correspond-

ing to a click, which take the value one. Prior to CNN processing, the foreground

and background click maps are smoothed using a Gaussian filter and normalised to

[0,1] range as in the work by Maninis et al [171]. A schematic representation of

inference using DeepGrow is shown in Figure 6.1.

6.2.1.3 Training strategies

DeepGrow can be trained with mouse-clicks provided by a user or using simulated

clicks that mimic user mouse-clicks. While training DeepGrow with mouse-clicks

provided by a user would incorporate clicks during training that are the most rep-

resentative of clicks that are likely to be provided during inference, training with

mouse-clicks would substantially increase the time required for training, therefore

a strategy for simulating clicks was utilised by Sakinis et al. for training DeepGrow.

In summary, for each training iteration, an initial simulated click is placed within the

structure of interest, to initiate the generation of a segmentation by the CNN. Then,

up to K further simulated clicks are added in foreground or background regions to

correct false-negative or false positive voxels, respectively. Finally, a backpropaga-

tion step is used to update CNN parameters.

When training DeepGrow, the first simulated click is always applied, while

the subsequent K simulated clicks happen according to a probability, pi, which de-

creases linearly:



6.2. Methods 131

Fi
gu

re
6.

1:
Sc

he
m

at
ic

re
pr

es
en

ta
tio

n
of

in
te

ra
ct

iv
e

se
gm

en
ta

tio
n

us
in

g
D

ee
pG

ro
w

.
T

he
us

er
,w

ho
po

ss
es

se
s

do
m

ai
n

kn
ow

le
dg

e,
ob

se
rv

es
th

e
cu

rr
en

t
se

gm
en

ta
tio

n
w

hi
ch

m
ay

co
nt

ai
n

fa
ls

e-
po

si
tiv

e
an

d/
or

fa
ls

e-
ne

ga
tiv

e
re

gi
on

s.
Su

bs
eq

ue
nt

ly
,f

or
eg

ro
un

d
cl

ic
ks

an
d

ba
ck

gr
ou

nd
cl

ic
ks

ar
e

ap
pl

ie
d

as
ne

ce
ss

ar
y

to
pr

od
uc

e
an

up
da

te
d

se
gm

en
ta

tio
n.



6.2. Methods 132

pi =
K + 1 – i

K + 1
, i = 1, . . . ,K. (6.1)

Therefore, the actual number of simulated clicks beyond the first simulated click

will be equal to some value t, such that 1≤ t≤ K.

After each simulated click, an intermediate prediction, P, will be output by the

CNN through a forward pass with no backpropagation step. P is used to determine

the location of the next simulated click, through the computation of a disparity map,

D, which is the difference between P and the ground-truth segmentation G:

D = G – P =


+1 if G = 1 and P = 0,

–1 if G = 0 and P = 1,

0 otherwise.

(6.2)

The disparity map D can be decomposed into a positive disparity map, D+, which

considers only false-negative regions of D and a negative disparity map, D–, which

considers only false-positive regions of D. The decision of whether a simulated

click is placed within a false-negative region or a false-positive region is based on

the voxel sums of D+ and D–. A simulated click is placed in a false-negative region

if the voxel sum of D+ ≥ D–, while a simulated click is placed in a false-positive

region if the voxel sum of D– > D+.

The exact voxel location of a simulated click within a false-negative or false-

positive region is determined probabilistically. The approach outlined by Sakinis et

al., which we denote “Click-Loc-Method-I”, determines the probability of a voxel

in a false-negative or false-positive region to receive a simulated click using the

volume of the false-negative or false-positive region and the centrality of the voxel

within the false-negative or false-positive region. An alternative to “Click-Loc-

Method-I” is proposed in this work, hereby referred to as “Click-Loc-Method-II”,

in which the prediction error is used to inform the voxel location of the simulated

click.

• Click-Loc-Method-I: The approach taken by Sakinis et al. assigns the high-
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est probability of receiving a simulated click to the voxels at the centre of large

false-negative or false-positive regions. Using the positive disparity map D+

and the negative disparity map D–, Chamfer distance maps, C+ and C–, are

computed, where the Chamfer distance value for a voxel is the minimum dis-

tance to a voxel whose value is zero i.e., the centre of the largest false-negative

or false-positive region will have the highest distance value. Assuming 3D in-

put, the probability of a voxel with coordinate (x,y,z) receiving a simulated

foreground click or background click is described by R+ and R–, respectively,

where:

R+(x,y,z) =
exp(C+(x,y,z)) – 1

ΣxΣyΣz exp(C+(x,y,z)) – 1
, (6.3)

R–(x,y,z) =
exp(C–(x,y,z)) – 1

ΣxΣyΣz exp(C–(x,y,z)) – 1
. (6.4)

It should be noted that the first simulated click is generated assuming an ini-

tial intermediate prediction P that is zero everywhere. This gives a positive

disparity map D+ ≡ G, whose Chamfer distance map C+ will be greatest at

the centre of the foreground object to be segmented.

• Click-Loc-Method-II: Rather than using the size of false-negative or false-

positive regions to direct simulated click placement, it may be beneficial to

direct simulated clicks towards the false-negative or false-positive regions that

have the highest prediction error. In this training paradigm, clicks will be

directed towards regions in the training set images that are most difficult to

classify, which may be representative of difficult-to-classify regions in the test

set images/new images to be inferred. Assuming 3D input, the probability of a

voxel with coordinate (x,y,z) receiving a simulated foreground or background

click is described by R+ and R–, respectively, where:
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R+(x,y,z) = |G – S|, (6.5)

R–(x,y,z) = |S – G|, (6.6)

where G is the ground-truth segmentation and S is the sigmoid probability

map output by the CNN, prior to binarisation.

6.2.2 DeepEdit

As described earlier, during each training iteration of DeepGrow, t clicks are sim-

ulated, where 1 ≤ t ≤ K + 1. As a result, DeepGrow is tuned to perform inference

optimally when the user makes at least one mouse-click. However, it would be de-

sirable to perform inference fully-automatically initially i.e., without mouse-clicks,

followed by “editing” of the segmentation using mouse-clicks, only if required.

Therefore, “DeepEdit” has been proposed in MONAI Label. DeepEdit follows

DeepGrow in every aspect, except the following during training: for each training

iteration, backpropagation will be invoked with zero simulated clicks with some

probability pDE or with t simulated clicks with probability 1 – pDE, where pDE is

a hyperparameter to be optimised through experimentation. It should be noted that

setting pDE = 0 is a special case in which DeepEdit and DeepGrow are equivalent.

6.3 Experimental setup
In this section, we describe the experimental details for the two segmentation tasks

investigated in this work, namely, whole prostate segmentation and prostatic lesion

segmentation. Experiments were run using the PROSTATEx Challenges training

dataset, [44], hereby referred to as the PROSTATEx dataset; a detailed description

of the PROSTATEx dataset is given in Chapter 3.

The whole prostate segmentation task concerns the segmentation of the

prostate on T2WI. Eleven patients from the PROSTATEx dataset were excluded

due to inconsistencies between T2WI and the ground-truth segmentations, leaving

a total of 193 patients for use in experiments. The prostatic lesion segmentation
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task concerns the segmentation of lesions within the prostate using T2WI, ADC

map, and computed high b-value DWI. Since our experiments were conducted us-

ing the PROSTATEx dataset, we used the PROSTATEx definition of a lesion i.e., a

prostatic lesion is defined as any area of suspicion attributed a PI-RADS score by

the expert radiologist (Jelle Barentz) who read and reported PROSTATEx dataset

cases; all lesions in the PROSTATEx dataset were scored PI-RADS ≥ 2. Four pa-

tients from the PROSTATEx dataset were excluded as they contained no contoured

lesions in the ground-truth, leaving a total of 200 patients for use in experiments.

6.3.1 Experiments

For both tasks, experiments were conducted to choose between the following train-

ing settings: (i) Dice loss [74] vs a hybrid loss composed of Dice loss and Focal

loss [154], (ii) Click-Loc-Method-I vs Click-Loc-Method-II, and (iii) DeepGrow vs

DeepEdit with pDE = 0.25 (DeepEdit-0.25) vs DeepEdit with pDE = 0.5 (DeepEdit-

0.5).

Ten-fold cross-validations were performed for both tasks. Segmentation qual-

ity was assessed using the Dice coefficient. As in the work of Sakinis et al., seg-

mentation performance at inference time was assessed using simulated clicks, as

opposed to user mouse-clicks, to objectively assess how segmentation quality im-

proves as clicks are added; segmentation performance was assessed at 0, 1, 2, 5, 10,

and 15 simulated inference clicks. To account for variability in simulated inference

click placement, the presented results are an average of three repetitions.

6.3.2 Experimental pipeline and settings

6.3.2.1 Whole prostate segmentation task

T2WI were pre-processed by resampling to a common resolution of 0.5 mm × 0.5

mm × 3.0 mm, normalisation using per-image whitening, and cropping/padding

to a common size of 320 × 320 × 32. Using the common size and resolution

described above, nnU-Net configured a 3D U-Net with seven encoding blocks and

six decoding blocks for use in DeepGrow and DeepEdit. Kernel sizes and strides

were determined automatically by nnU-Net, as shown in Table 6.1.
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Encoding block Kernel size Stride

1 (3,3,1) (1,1,1)
(3,3,1) (1,1,1)

2 (3,3,1) (2,2,1)
(3,3,1) (1,1,1)

3 (3,3,3) (2,2,1)
(3,3,3) (1,1,1)

4 (3,3,3) (2,2,2)
(3,3,3) (1,1,1)

5 (3,3,3) (2,2,2)
(3,3,3) (1,1,1)

6 (3,3,3) (2,2,2)
(3,3,3) (1,1,1)

7 (3,3,3) (2,2,1)
(3,3,3) (1,1,1)

Table 6.1: Kernel size and stride settings configured by nnU-Net for 3D U-Net.

Following CNN processing, the CNN output was transformed to the original

T2WI size and resolution using padding and resampling. Subsequently, the raw

activations were converted into probabilities using a sigmoid function, followed by

binarisation using a threshold equal to 0.5.

DeepGrow and DeepEdit were trained with a learning rate equal to 0.0001,

batch size equal to one, and Adam optimisation [148]. During training, in-plane

rotation (range: -1 rad to 1 rad), scaling (range: -30% to 40%), and horizontal

flip (probability: 0.5) augmentations were applied on-the-fly. In addition, Gaus-

sian noise (μ = 0, σ = 0.05, probability: 0.15) and intensity scaling (range: -30% to

30%) were also applied on-the-fly. All training runs used a maximum of 10 simu-

lated clicks per training iteration. Simulated clicks were smoothed with a Gaussian

kernel with (σx,σy,σz) = (4,4,2/3) to account for anisotropic voxel resolution; the

kernel settings were determined with reference to the work of Sakinis et al., where

a Gaussian kernel with (σx,σy) = (2,2) was used for 2D images with 1 mm isotropic

voxel resolution.

DeepGrow was trained for 75 epochs, DeepEdit-0.25 was trained for 100

epochs, and DeepEdit-0.5 was trained for 150 epochs. The maximum epochs for
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DeepEdit-0.25 and DeepEdit-0.5 were set to allow the same number of total sim-

ulated clicks during training as DeepGrow. Model parameters were saved at an

interval of five epochs. The model parameters used for inference were those that

gave the highest mean Dice coefficient at five simulated clicks on a validation set;

the validation set was chosen at random from the set of nine folds not set-aside for

inference.

6.3.2.2 Prostatic lesion segmentation task

For prostatic lesion segmentation, three input modalities were concatenated as in-

put, namely, T2WI, ADC map, and computed high b-value DWI.

A b-value, b = 2000, was selected for computing high b-value DWI as in

Verma et al. [28]; computed b2000 (Cb2000) DWI were generated using DWI

acquired at lower b-values, extrapolated by assuming a monoexponential model for

the per-voxel observed signal [29]. ADC map and Cb2000 DWI were registered

to T2WI to account for voluntary/involuntary patient movement between acquisi-

tions and differences in resolution. Registrations were run using NiftyReg (ver-

sion 1.3; https://github.com/KCL-BMEIS/niftyreg), following the

approach described in [151]: the registration of ADC map to T2WI employed de-

fault parameters for affine registration via symmetric block-matching [158]; subse-

quently, non-rigid free-form deformation (FFD) registration [135] used a Gaussian

kernel with standard deviation equal to 5 mm for local normalised correlation co-

efficient (LNCC) calculation, control point spacing equal to 10 mm, and bending

energy constraint equal to 0.1; following ADC map registration, Cb2000 DWI were

registered to T2WI using the same transformation.

T2WI and Cb2000 DWI were normalised by dividing voxel intensities by the

interquartile mean of central gland (CG) voxel intensities [151]; CG masks used to

identify CG voxels were generated by AutoProstate (see Chapter 5). ADC maps

were not normalised as they contain a quantitative measurement.

T2WI, ADC map and Cb2000 DWI, and whole prostate and CG masks output

by AutoProstate (see Chapter 5) were resampled to a common resolution of 0.5 mm

× 0.5 mm × 3 mm. Then, whole prostate masks were used to crop the prostate

https://github.com/KCL-BMEIS/niftyreg
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region on all MR modalities; a margin was applied in each direction to reduce the

likelihood of prostate tissue being discarded. Next, a cropping/padding transforma-

tion was used to ensure a common spatial size of 256 × 256 × 32.

Using the common size and resolution described above, nnU-Net configured

the same 3D U-Net architecture as described by Table 6.1. The hyperparameters

used to train DeepGrow and DeepEdit in the whole prostate segmentation task were

also used in the prostatic lesion segmentation task, apart from training epochs which

were increased through observation of the training and validation set losses. For

prostatic lesion segmentation, DeepGrow was trained for 150 epochs. The same

heuristic as used in the whole prostate segmentation task was used to determine the

maximum training epochs for DeepEdit-0.25 and DeepEdit-0.5. As in the whole

prostate segmentation task, model parameters were saved at an interval of five

epochs. The model parameters used for inference were those that gave the high-

est mean Dice coefficient at five simulated clicks on a validation set; the validation

set was chosen at random from the set of nine folds not set-aside for inference.

As in the whole prostate segmentation task, the CNN output was transformed to

the original T2WI size and resolution with padding and resampling. Subsequently,

the raw activations were converted into probabilities using a sigmoid function, fol-

lowed by binarisation using a threshold equal to 0.5.

6.4 Results
This section presents the results for whole prostate segmentation and prostatic lesion

segmentation. Examples of the 3D Slicer interface for the whole prostate segmenta-

tion application and prostatic lesion segmentation application are shown in Figures

6.2 and 6.3, respectively; the 3D Slicer interface for MONAI Label applications

is enabled through an extension that is available for download from the 3D Slicer

extension server.

6.4.1 Whole prostate segmentation task

A comparison of DeepGrow trained using Dice loss and a hybrid loss composed

of Dice loss and Focal loss is shown in Table 6.2. DeepGrow trained using Dice
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loss and the hybrid loss achieved click-free mean Dice scores of 0.907± 0.041

and 0.908± 0.052, respectively; the difference was not statistically significant.

However, at 1 to 15 simulated inference clicks, DeepGrow trained with Dice loss

achieved consistently higher mean Dice scores with statistical significance.

A comparison of DeepGrow trained using Click-Loc-Method-I and Click-Loc-

Method-II is shown in Table 6.3. The comparison was unanimous in that Click-

Loc-Method-I achieved consistently higher mean Dice scores at each number of

simulated inference clicks. However, statistically significant differences were only

observed at 5 and 15 simulated inference clicks.

A comparison of DeepGrow, DeepEdit-0.25, and DeepEdit-0.5 is shown in

Table 6.4. Furthermore, the distributions of Dice scores are shown in Figure 6.4.

DeepEdit-0.5 gave the highest click-free mean Dice score of 0.908, while Deep-

Grow gave the highest mean Dice scores at 1 to 15 simulated inference clicks. While

the Friedman test showed a significant difference between models for each number

of simulated clicks, the pairwise comparison showed superiority of a model above

both other models, for DeepGrow at 10 and 15 simulated inference clicks only.

Alongside the increase in mean Dice with the increase in simulated inference clicks,

the minimum Dice also increased, as seen in Figure 6.4. For DeepGrow, DeepEdit-

0.25, and DeepEdit-0.5, the Dice score the minimum Dice score increased from

0.554, 0.339, and 0.417 to 0.763, 0.456, and 0.551, to 0.799, 0.706, and 0.783, for

0, 5, and 15 simulated inference clicks, respectively.

6.4.2 Prostatic lesion segmentation task

A comparison of DeepGrow trained using Dice loss and a hybrid loss composed

of Dice loss and Focal loss is shown in Table 6.5. DeepGrow trained using Dice

loss and the hybrid loss achieved click-free mean Dice scores of 0.166±0.254 and

0.177± 0.266, respectively; the difference was not statistically significant. At 1 to

15 simulated inference clicks, DeepGrow trained with Dice loss achieved consis-

tently higher mean Dice scores, though statistical significance was only observed at

10 and 15 simulated inference clicks.

A comparison of DeepGrow trained using Click-Loc-Method-I and Click-Loc-
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Method-II is shown in Table 6.6. For training DeepGrow, Click-Loc-Method-II

outperformed Click-Loc-Method-I for 0 simulated clicks, and vice-versa for 1 to 25

simulated clicks. However, a statistically significant difference was only observed

at 10 simulated inference clicks.

A comparison of DeepGrow, DeepEdit-0.25, and DeepEdit-0.5 is shown in Ta-

ble 6.7. Furthermore, the distributions of Dice scores are shown in Figure 6.5. At 0

simulated inference clicks, DeepGrow, DeepEdit-0.25, and DeepEdit-0.5 achieved

mean Dice scores of 0.166±0.254, 0.268±0.271, and 0.272±0.266, respectively.

The Friedman test indicated a significant difference between model performances,

while the pairwise test showed that the increase in Dice score from DeepGrow

to DeepEdit-0.25 was statistically significant, but the increase in Dice score from

DeepEdit-0.25 to DeepEdit-0.5 was not. For 1 to 15 simulated inference clicks,

DeepGrow consistently achieved the highest mean Dice scores with 0.527±0.166,

0.592± 0.135, 0.670± 0.111, 0.723± 0.095, and 0.749± 0.089 at 1, 2, 5, 10, and

15 simulated inference clicks, though the differences in Dice as compared to the

DeepEdit models were only statistically significant at 2, 5, 10, and 15 simulated

inference clicks, as shown by the pairwise test. A wide distribution of Dice scores

was observed for all models at 0 simulated inference clicks, as shown in Figure 6.5;

all models had a minimum Dice score of 0.000 and maximum Dice scores of 0.820,

0.816, and 0.810 were observed for DeepGrow, DeepEdit-0.25, and DeepEdit-0.5,

respectively. While there was a narrowing of the distribution of Dice scores with

the addition of simulated inference clicks, low Dice scores of 0.190, 0.257, and

0.053 for DeepGrow, DeepEdit-0.25, and DeepEdit-0.5, respectively, remained at

15 simulated inference clicks.

6.5 Discussion

Fully-automatic segmentation methods for medical image segmentation have not

yet reached the desired robustness for clinical use [45]. Therefore, interactive

segmentation methods are being developed [45, 83]. In this work, we investi-

gated interactive segmentation of the whole prostate and prostatic lesions. Click-
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based interactive segmentation applications for both tasks were built using MONAI

Label (https://github.com/Project-MONAI/MONAILabel). Experi-

ments were run using DeepGrow, which is a click-based interactive segmentation

method presented in a work by Sakinis et al. [45], and DeepEdit which is a modifi-

cation of DeepGrow, available in MONAI Label, which intends to improve the ini-

tial click-free segmentation, whilst retaining good click-based segmentation editing

performance. For both tasks, ten-fold cross-validations were run using the publicly

available PROSTATEx dataset.

For both tasks, experiments were run to choose between the following training

settings: (i) Dice loss vs a hybrid loss composed of Dice loss and Focal loss, (ii)

Click-Loc-Method-I vs Click-Loc-Method-II, and (iii) DeepGrow vs DeepEdit-0.25

vs DeepEdit with DeepEdit-0.5.

For whole prostate segmentation, the optimal training paradigm was found to

be DeepGrow trained with Dice loss and Click-Loc-Method-I. DeepGrow achieved

a click-free mean Dice score of 0.907±0.041, which increased to 0.926±0.024 at

5 simulated inference clicks and to 0.936±0.018 at 15 simulated inference clicks.

In addition, at 0, 5, and 15 simulated inference clicks, the minimum Dice score

increased from 0.554, to 0.763, to 0.799. On inspection, the case with the lowest

Dice score at 0 simulated inference clicks, PROSTATEx0192, was found to have

bias field corruption on T2WI. Pleasingly, despite the bias field corruption, the Dice

score for PROSTATEx0192 increased to 0.791 with 5 simulated clicks, and to 0.879

with 15 simulated clicks. At 15 simulated inference clicks, the case with the lowest

Dice score changed to PROSTATEx0200, where a Dice score of 0.799 was ob-

served. On inspection, bladder infiltration of the prostate was found to be reason for

limited segmentation quality despite a high number of simulated inference clicks.

The MONAI Label application for click-based interactive whole prostate seg-

mentation has uses in diagnosis, active surveillance, and treatment planning. An

accurate whole prostate segmentation can be used to compute prostate volume, as

an alternative to the ellipsoid formula which is a crude approximation that is used

clinically [152]. Improvements in the accuracy of the calculated prostate volume

https://github.com/Project-MONAI/MONAILabel
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will be reflected in downstream calculation of the PSAd, which is an important

biomarker for diagnosing CSPCa [24, 25], as well as for monitoring patients placed

on active surveillance [172]. An accurate whole prostate segmentation also allows

better determination of the prostate boundary. Knowledge of the prostate bound-

ary, including areas of extraprostatic extension (EPE), is important for planning and

conducting whole-gland prostatectomy, radiotherapy, and cryotherapy, as well as

for determining seed placement for brachytherapy.

For prostatic lesion segmentation, Dice loss and Click-Loc-Method-I were

found to be optimal for training DeepGrow. In the comparison of DeepGrow to

DeepEdit-0.25 and DeepEdit-0.5, a performance trade-off was observed. DeepEdit-

0.5 produced the highest click-free mean Dice score of 0.272, followed by

DeepEdit-0.25 with 0.268, followed by DeepGrow with 0.166. However, Deep-

Grow produced the highest mean Dice scores at 1 to 15 simulated inference clicks

with mean Dice scores of 0.527, 0.670, and 0.749 at 1, 5, and 15 simulated infer-

ence clicks. It can be observed that the performance difference between DeepGrow

and DeepEdit is more pronounced for the prostatic lesion segmentation task than for

the whole prostate segmentation task. We postulate that this is due to the increased

difficulty of prostatic lesion segmentation as compared to whole prostate segmen-

tation, due to the variability in size and conspicuity of prostatic lesions. The choice

of DeepGrow or DeepEdit should be made with the performance trade-off between

DeepGrow and DeepEdit in mind.

The MONAI Label application for click-based interactive prostatic lesion seg-

mentation also has potential uses in diagnosis, active surveillance, and treatment

planning. Firstly, lesion segmentation is a common first-step in CAD systems for

CSPCa lesion classification [15]. Typically, such systems require a manual seg-

mentation of lesions by a radiologist, which can be improved by our interactive

approach by reducing the time and effort required to segment lesions. A second use

of the interactive prostatic lesion segmentation application is in volume estimation

of lesions. Like whole prostate volume estimation, radiologists use the ellipsoid

formula to estimate lesion volume, which ignores exact lesion morphology [152].
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Determination of lesion volume is important at the time of diagnosis for lesion scor-

ing [24, 25], and for monitoring progression in patients placed on active surveillance

[166]. Thirdly, accurate lesion segmentation is important for planning focal treat-

ments e.g., partial prostatectomy [167], focal boosted radiotherapy [173], and focal

cryotherapy [170].

This work has some limitations. Firstly, while several different clinical uses

of the click-based interactive whole prostate and prostatic lesion segmentation ap-

plications have been described, those clinical uses were not examined or evaluated

due to the preliminary nature of this work. Another limitation is the lack of external

validation, and beyond that, multicenter external validation and prospective valida-

tion, all of which should be addressed in future work. A final limitation is the lack

of investigation into how active learning impacts performance over time, again due

to the preliminary nature of this work; all MONAI Label applications for interactive

segmentation contain the functionality to allow active learning.



Chapter 7

Summary and future work

The rise in prostate cancer (PCa) incidence [19], the increasing use of multipara-

metric magnetic resonance imaging (mpMRI) to identify, score, and stage PCa [26],

and a shortfall of specialist radiologists to meet prostate radiology demand is putting

significant pressures on the PCa diagnostic pathway [14]. Furthermore, the cur-

rent diagnostic approach must be improved to reduce the small proportion of men

with clinically significant PCa (CSPCa) who are missed by mpMRI, to reduce the

large number of men who undergo unnecessary biopsies, and to increase the inter-

observer agreement between radiologists [39].

Artificial intelligence (AI) algorithms are being investigated for numerous

medical image analysis applications [40]. Notably, the number of AI products for

radiology with a CE mark or Food and Drug Administration (FDA) approval has

rapidly expanded over the past few years [174, 175]. The work in this thesis in-

vestigated applications of a subclass of AI, known as deep learning, to the PCa

diagnostic pathway, with a view towards future clinical deployment.

In Chapter 4, we introduced a novel patient classification framework, PCF,

that assigns a probability of having CSPCa to patients based on mpMRI and clin-

ical features. PCF extracts features from volumetric mpMRI and derived parame-

ter maps using convolutional neural networks (CNNs) and subsequently, combines

imaging features with clinical features through a multi-classifier support vector ma-

chine (SVM) scheme. The chief strength of PCF is that it can be trained using

patient-level labels only rather than requiring lesion annotations; patient-level la-
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bels that indicate the cancer status of patients can be inferred from biopsy findings

with minimal additional effort, while drawing lesion contours requires substantial

additional effort from radiologists outside of the clinical routine [112]. Another

strength of PCF is its ability to combine clinical features with imaging features ef-

fectively for enhanced classification performance. In particular, we found that the

inclusion of prostate-specific antigen (PSA) density (PSAd) improved classification

performance, with statistical significance. On temporal validation using a subset

of the “Prostate Imaging Compared to Transperineal Ultrasound-guided biopsy for

significant prostate cancer Risk Evaluation” (PICTURE) dataset [33], PCF achieved

comparable sensitivity and specificity to a highly experienced radiologist with 10

years’ experience of reading and scoring prostate mpMRI. Therefore, deployments

of PCF as a triage tool or as a second reader were suggested, following multi-centre

and prospective validation.

Prior to multi-centre and prospective validation, technical enhancements to

PCF can be made. Firstly, PCF can be enhanced to provide a measure of uncertainty

associated to the patient-level probability of having CSPCa output by PCF. In partic-

ular, it is important for PCF to be able to indicate when its output may be uncertain

due to input data which is outside of the distribution of the data used for training.

Several methods have been proposed to capture the epistemic (model-based) and

aleatoric (data-based) uncertainty of deep learning systems [155, 176, 177, 84]. A

further technical enhancement that may improve performance involves replacing the

use of feature selection and SVMs for selection and combination of CNN extracted

image features and clinical features, with a transformer-based approach with self-

attention [76]. Transformers have gained popularity over the past few years for nat-

ural language processing (NLP) tasks in particular, with Google’s Bidirectional En-

coder Representations from Transformers (BERT) [178] and OpenAI’s Generative

Pre-trained Transformer 3 (GPT-3) [179] achieving state-of-the-art performance for

language translation and sentence prediction tasks. In PCF, a transformer-based

approach can improve performance by giving spatial and modality context to each

MRI feature and giving context to MRI features using clinical features and vice
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versa; this is analogous to context attribution to words in a sentence using neigh-

bouring words, as seen in NLP tasks.

In Chapter 5, we introduced AutoProstate, a deep learning-powered framework

for automatic MRI-based PCa assessment and reporting. AutoProstate performs

segmentation of the peripheral zone (PZ) and central gland (CG) on T2-weighted

MRI (T2WI), and performs segmentation of CSPCa lesions using T2WI, appar-

ent diffusion coefficient (ADC) map, and computed b2000 (Cb2000) diffusion-

weighted MRI (DWI). In addition, PZ and CG guidance is provided for CSPCa

segmentation since lesion occurrences and appearances depend on their zonal lo-

cation [159]. Subsequently, patient meta-data and automatic segmentation out-

puts are used to generate a novel automatic web-based report containing four sec-

tions: Patient Details, Prostate Size and PSA Density, Clinically Significant Lesion

Candidates, and Findings Summary. AutoProstate was trained using the publicly

available PROSTATEx dataset [44], and externally validated using the PICTURE

dataset [33]. Moreover, the performance of AutoProstate was compared to the per-

formance of an experienced radiologist who prospectively read PICTURE dataset

cases. In comparison to the radiologist, AutoProstate showed statistically signifi-

cant improvements in prostate volume and PSAd estimation. Furthermore, Auto-

Prostate matched the CSPCa lesion detection sensitivity of the radiologist, which

is paramount, but produced more false-positive detections. AutoProstate’s intended

clinical deployment is as a companion system for radiologists to improve diagnostic

accuracy and reporting quality, following multi-centre and prospective validation.

Prior to multi-centre and prospective validation, technical enhancements to

AutoProstate can be made. First and foremost, the number of false-positive de-

tections must be reduced. False positive detections can lead to unnecessary biop-

sies and reduced confidence in the system. Increasing the size of the training

dataset will likely reduce the number of false-positive detections, while at the same

time increasing CSPCa detection sensitivity. The addition of a dedicated false-

positive reduction stage to the CSPCa-Segmenter module may also reduce false-

positives. For example, in Saha et al. [123], a decoupled residual CNN clas-
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sifier was applied to the output of their CSPCa lesion detection CNN, to reduce

false-positives by identifying parts of the image unlikely to contain a CSPCa le-

sion. Alternatively, a dedicated lesion classification system that classifies patches

containing CSPCa lesion candidates, detected by CSPCa-U-Net-E, could also re-

duce false positives; several lesion classification systems have been published

[96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 109, 110, 111]. Lesion clas-

sification systems do not require training data with a complete histopathological

characterisation of the whole prostate through prostatectomy or transperineal tem-

plate prostate-mapping (TTPM) biopsy, but instead can be trained using patches

containing a lesion that has been confirmed using targeted biopsy. Targeted biop-

sies are performed at a greater frequency in clinical routine [9], therefore lesion

classification systems can be trained using a greater number of lesion examples. A

further solution for false-positive reduction (and increased CSPCa lesion detection

sensitivity) may be replacement of the standard U-Net architecture with a UNEt

TRansformers (UNETR) architecture [73]. In UNETR, the U-Net encoder is re-

placed with a transformer encoder, which the authors claim allows UNETR to cap-

ture global multi-scale dependencies, overcoming the locality of convolutions. UN-

ETR has achieved favourable benchmarks on volumetric brain tumour segmentation

using multimodal MRI and spleen segmentation using computed tomography (CT).

A second enhancement to AutoProstate involves replacing the binary CSPCa lesion

segmentation task with a multi-class lesion segmentation task whereby PCa lesions

are detected and classified according to a Gleason score, as in the work of Cao et

al. [112]. An automatic Gleason score prediction may eradicate the need for biopsy

provided sufficient accuracy, and would inform patient selection for treatment, ac-

tive surveillance, and watchful waiting. A third enhancement to AutoProstate would

replace the automatically generated template paragraph in the Findings Summary

section of the automatic report with automatically generated text from a generative

model trained using image and clinical findings text pairs, as in the work of Xue

et al. [180], where a multimodal recurrent model with attention was presented for

generating high-level conclusive impressions from medical images.
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In Chapter 6, we built interactive segmentation pipelines for whole prostate

segmentation and prostatic lesion segmentation using MONAI Label. Interactive

segmentation methods provide a route to clinical deployment by overcoming the

reported lack of robustness associated to automatic segmentation algorithms [45]

and allow for continuous optimisation through active learning. Whole prostate seg-

mentation was performed using T2WI, while prostatic lesion segmentation used

T2WI, ADC map, and Cb2000 DWI. In both segmentation tasks, a 3D implemen-

tation of DeepGrow was used as the baseline framework for click-based interactive

segmentation; DeepGrow for 2D segmentation tasks was proposed by Sakinis et

al. [45]. Three experiments were run to optimise performance. The first exper-

iment considered whether performance could be improved through a hybrid Dice

and Focal loss, as in our work on AutoProstate, as opposed Dice loss which was

used by Sakinis et al. in their work. The second experiment investigated a new

training strategy in which simulated training clicks were directed to false-negative

or false-positive regions with the highest prediction error as opposed to the largest

false-negative or false-positive regions, as in the work by Sakinis et al. The third ex-

periment compared the performances of DeepGrow and DeepEdit, where DeepEdit

is an alternative to DeepGrow available in MONAI Label for improving the trade-

off between click-free and with-click segmentation performance. In our results for

whole prostate segmentation, we found that DeepGrow trained using Dice loss and

the original training click simulation strategy outlined by Sakinis et al. produced

the best overall segmentation performance; the mean Dice score for automatic seg-

mentation was 0.907, which increased to 0.915, 0.919, 0.926, 0.932, and 0.936

with the addition of 1, 2, 5, 10, and 15 simulated inference clicks. For prostatic

lesion segmentation, training with Dice loss and the original training click simula-

tion strategy outlined by Sakinis et al. again produced the best overall segmentation

performance. However, the comparison of DeepGrow and DeepEdit revealed a per-

formance trade-off. DeepEdit with parameters pDE = 0.25 and pDE = 0.5 gave

superior click-free segmentation performance compared to DeepGrow, in terms of

mean Dice score, with statistical significance; mean Dice scores of 0.268 and 0.272
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were achieved, respectively. However, with one or more simulated inference clicks,

DeepGrow achieved higher mean Dice scores than DeepEdit with mean Dice scores

of 0.527, 0.592, 0.670, 0.723, and 0.749 at 1, 2, 5, 10, and 15 clicks, though statis-

tical significance was not consistently observed.

As the work on click-based interactive segmentation presented in this thesis

was a preliminary study only, several opportunities for future work exist. Firstly,

the prostatic lesion segmentation application can be evaluated as the first stage in a

lesion classification CAD system, whereby lesions segmented by the interactive ap-

plication are attributed a Gleason score by a second-stage classification algorithm.

Secondly, an extension of the current prostatic lesion segmentation application can

be made for segmenting lesions over multiple timepoints, in patients enrolled in ac-

tive surveillance. In particular, the prostatic lesion segmentation application can un-

dergo patient-specific fine-tuning using all MRI scans acquired to-date (t = 1, . . . ,n)

and their associated lesion segmentations (also generated with the interactive appli-

cation), to allow a more accurate segmentation at time t = n + 1. Thirdly, extensions

of the current whole prostate and prostatic lesion segmentation applications can be

developed for whole prostate and focal treatment planning. Finally, work should

be undertaken to investigate active learning in the context of the two interactive

segmentation applications developed in this thesis. In particular, work can be un-

dertaken to understand the impact of imperfect or “noisy” segmentations, generated

in a prospective setting, on active learning. While interactive segmentation meth-

ods such as DeepGrow and DeepEdit allow improvements upon an initial automatic

segmentation through user-provided clicks, it is likely that the segmentations ob-

tained will not reach the level of accuracy of a manual segmentation produced by a

clinician. Rather, user-clicks may be added until the segmentation is “good enough”

for its clinical purpose. Therefore, active learning training strategies will need to be

developed that are robust to noisy segmentations as ground-truth; several strategies

for dealing with noisy ground-truth labels when training deep learning algorithms

have been outlined by Karimi et al. [181].

The CAD systems presented in this thesis assume the availability of at least
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T2WI and DWI. However, MRI modalities may be missing in clinical practice

[182, 183]. Therefore, future development should incorporate strategies to deal

with missing modalities. Havaei et al. [182] and Dorent et al. [183] have pro-

posed approaches for segmentation that are robust to missing modalities. Havaei

et al. proposed HeMIS: Hetero-Modal Image Segmentation. HeMIS learns, for

each modality, an embedding of the modality into a single latent vector space,

trained using modality dropout to enable robustness to missing modalities. Points

in the latent space are averaged over modalities available at inference time to yield

the desired segmentation. Evaluation on neurological MRI datasets revealed state-

of-the-art performance when all modalities were available and most importantly,

a smooth decline in performance when modalities were removed. Alternatively,

Dorent et al. proposed a hetero-modal variational autoencoder (VAE), which learns

a shared latent representation, rather than combining latent vectors using averaging,

as in Havaei et al. On the task of brain tumour segmentation, their method outper-

formed the method presented by Havaei et al. and achieved similar performance

to subset-specific equivalent networks. A related problem concerns modalities that

are acquired with distortion/artifacts, which may be unusable for PCa diagnosis. In

this case, rather than missing modality completion, a modality correction problem

can be formulated; previous works have looked at correcting MRI motion artifacts

[184, 185, 186].

The methodological chapters in this thesis (4, 5, and 6) present CAD systems

with varying application suggested. In future, efforts can be allocated to combining

the distinct CAD systems into a single modular platform for PCa triage, diagnosis,

active surveillance monitoring, and treatment planning. For example, PCF can per-

form an initial triage of patients who have undergone MRI to rank patients by like-

lihood of CSPCa/rule-out patients with a low-risk for CSPCa. Subsequently, Auto-

Prostate can perform an automatic assessment of MRI which can be referred to by

the diagnostic radiologist to determine a consensus view on biopsy targets. Finally,

click-based interactive segmentation can be used to improve the segmentations of

the whole prostate and biopsy-confirmed lesions, for the purposes of generating
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new training data for AutoProstate for use in active learning, treatment planning, or

active surveillance monitoring.

Prior to clinical deployment, the CAD systems introduced in this thesis or a

integrated modular platform, as described above, should undergo multi-centre ex-

ternal validation and prospective validation, as recommended in the review by Syer

and Mehta et al. [15]. Multi-centre external validation studies reveal the extent to

which CAD systems can generalise beyond the data used to train them. A multi-

centre external validation of a machine learning-based CAD system was presented

by Gaur et al. [113]. In their study, CAD performance was evaluated using im-

ages acquired from four countries across three continents, and CAD-assisted ra-

diologist interpretation was compared to CAD-unassisted radiologist interpretation

using radiologists from six countries spread across five continents. Unfortunately,

evaluation studies of this rigour are rare and to the best of our knowledge, have

not been performed for CAD systems that use deep learning. Unlike CAD system

validation studies that consider retrospective data in a research setting, prospec-

tive validation studies consider performance in the deployment setting. To the best

of our knowledge, prospective validation studies for PCa CAD have not been per-

formed. However, an interesting and informative study was published by Beede

et al. [187], concerning the prospective validation of a deep learning system for

diabetic retinopathy. Screening systems were deployed in 11 clinics across Thai-

land. They found several human and socio-economic factors that impacted the per-

formance of their deep learning system, which require ample consideration before

deployment. Notably, multi-centre external validations and prospective validations

may be performed with greater ease in the near future due to the substantial efforts

of groups that are working to develop federated learning infrastructures for health-

care [188, 189].



Appendix A

Background theory: magnetic

resonance imaging

Magnetic resonance imaging (MRI) is a highly flexible medical imaging technique

that can be used to produce detailed anatomical or functional images of parts of the

body. MRI relies on the fundamental theory of nuclear magnetic resonance (NMR)

and Fourier theory. Using a powerful static magnetic field, a perturbing radiofre-

quency (RF) field and spatially localising gradient fields, a localised signal can be

collected, predominantly from hydrogen nuclei within the body. The signal col-

lected is transformed into the image domain using Fourier transforms. Importantly,

through specific pulse sequences and acquisition parameters, images of different

contrast are produced.

Figure A.1: T1-weighted, T2-weighted, and Flair MRI contrasts for a transverse slice
through the brain [1].
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A.1 Fundamental nuclear magnetic resonance the-

ory
MRI is based on NMR, which is a physical phenomenon in which nuclei in a mag-

netic field absorb and re-emit electromagnetic radiation. It was first observed in

1946, separately, by research groups led by Felix Bloch and Edward Purcell. NMR

can be described from both quantum and classical physics perspectives. Most of

NMR can be described by classical physics, since we consider the bulk effect of

many nuclei in tissues, however quantum theory is required to explain some of

what is observed.

A.1.1 Spin, magnetic moment, and Larmor precession

Atomic nuclei possess an intrinsic quantum property called spin. The dominant

nucleus in MRI is the proton of hydrogen nuclei, due to the abundance of water, fat,

and other organic molecules in the human body. The classical interpretation of spin

is a particle rotating about its own axis. Extending the classical picture, a rotating

charged proton will have a magnetic moment~μ = γ~L where γ is the gyromagnetic

ratio associated with a proton and~L is the angular momentum. The rotating charge

produces a small magnetic field. MRI is based on the interaction of the nuclear spin

with an external magnetic field, ~B0.

When a magnetic moment is exposed to an external magnetic field ~B0, a torque

is produced, causing a circular motion about ~B0, known as “precession”. This is

described by the following differential equation [2][Eq. 2.24]:

d~μ
dt

= γ~μ× ~B0. (A.1)

The solution for the above differential equation describes~μ precessing about ~B0 at

an angular frequency ω0 where [2][Eq. 1.1]:

ω0 = γB0. (A.2)

This precession frequency is referred to as the Larmor frequency, named after physi-
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Figure A.2: Clockwise precession of a magnetic moment about an external magnetic field
~B0 [2][Fig 1.1].

cist Joseph Larmor. The gyromagnetic ratio γ for the hydrogen proton in water is

roughly 2.68× 108 rad/s/Tesla or alternatively,
γ

2π
is 42.58 MHz/Tesla. The solu-

tion to the equation of motion can be shown to be [2][Eq. 2.32]:

~μ(t) = μx(t)x̂ +μy(t)ŷ +μz(t)ẑ, (A.3)

where [2][Eq. 2.33],

μx(t) = μx(0)cos(ω0t) +μy(0)sin(ω0t), (A.4)

μy(t) = μy(0)cos(ω0t) –μx(0)sin(ω0t), (A.5)

μz(t) = μz(0). (A.6)

A.1.2 Magnetisation

In section A.1.1 above, a single proton was considered in the ~B0 field. However, in

MRI, it is the bulk effect of many spins that gives a detectable signal.

Consider a volume element (“voxel”) with volume V that contains a large num-

ber of protons. The magnetisation is defined as the sum of the individual magnetic

moments divided by the total volume [2][Eq. 4.1]:
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~M =
1
V ∑

i=protons inV
~μi. (A.7)

In the absence of an external magnetic field, the magnetic moments will be ran-

domly aligned. Therefore, the net magnetisation vector sum will be approximately

0.

To consider what happens to the net magnetisation when the external magnetic

field ~B0 is turned on, the quantum view is useful. In a static external magnetic

field, protons take up defined energy states. Spin
1
2

protons have two energy levels

and therefore, two possible alignments. Parallel / “spin up” or anti-parallel / “spin

down”. The parallel alignment is at the lower energy level, so there exists a small

“spin excess” in the parallel alignment [2][Eq. 1.2]:

spinexcess' N
h̄ω0
2kT

, (A.8)

where N is the total number of spins present in the sample, h̄ ≡ h
2π

in terms of

Plank’s quantum constant h, k is the Boltzmann’s constant and T is the absolute

temperature. For typical MRI scanner strengths, the spin excess is millions of times

smaller than the total number of spins [2][Pg. 5]. However, sufficient signal can

be detected from tissue due to the Avogadro number of spins present. As a result,

rather than considering individual spins, a net magnetisation vector ~M, representing

the spin excess is considered, aligned with the ~B0 field.
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Figure A.3: Net magnetisation vector ~M. There is a spin excess in the parallel alignment,
giving rise to ~M. ~M has no transverse component as the spins lack phase
coherence.

A.1.3 Resonance

Since the magnetisation ~M at equilibrium is very small compared to ~B0, it cannot be

detected. Therefore, to get a signal from the sample, ~M needs to be “tipped” away

from the ẑ direction into the transverse plane. The solution is to apply energy to the

system through a rotating RF magnetic field ~B1 [2][Eq 3.24]:

~B1 = B1(x̂ cos(ωt) – ŷ sin(ωt)), (A.9)

where ω is the oscillation frequency of the RF field. To excite spins, the requirement

is [2][Eq 3.30]:

ω = ω0 (on-resonance condition). (A.10)

The ~B1 field is transmitted through RF coils, which are part of the scanner hardware.
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Figure A.4: Block diagram of the key hardware components found in a MRI scanner.

The angle of the flip depends on the strength of the ~B1 field and the time it is on, τ.

The formula for the flip-angle is [2][Eq. 3.31]:

Δθ = γB1τ. (A.11)

In MRI, a 90◦ flip is typically considered, so that all the magnetisation is tipped

into the x-y plane. However, a later discussion will show that some pulse sequences

utilise flip angles smaller or larger than 90◦ to increase signal.

The expression for ~B1 given above assumes a cartesian coordinate frame. How-

ever, considering a rotating frame can simplify the discussion. The rotating frame

rotates clockwise around the z-axis at the Larmor frequency. The coordinate system

can be expressed as:

x̂′ = x̂cos(ω0t) – ŷsin(ω0t), (A.12)

ŷ′ = x̂sin(ω0t) + ŷcos(ω0t), (A.13)

ẑ′ = ẑ. (A.14)

In the rotating frame, the ~B1 field can be expressed [2][Eq. 3.32]:

~B1 = B1x̂′. (A.15)
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The magnetisation vector is now seen to rotate about the x̂′ axis under the influence

of the ~B1 field.

Figure A.5: 90◦ flip of the net magnetisation vector into the transverse plane [2][Fig. 4.2]
.

A.2 The Bloch equation and relaxation
Following excitation by the rotating ~B1 field, the net magnetisation vector ~M will

precess in the transverse plane, giving a signal that is detected by receiver coils.

However, due to the interactions of spin magnetic moments with each other and their

surroundings, there will be an independent decay of the transverse magnetisation

and a recovery of the longitudinal magnetisation back towards equilibrium. This

behaviour is summarised by the Bloch equation, which includes the relaxation and

decay parameters T1, T2, and T∗2 which are later shown to be important in generating

image contrast.

A.2.1 Spin-lattice relaxation

Through collisions, rotations, and electromagnetic interactions, magnetic moments

lose their magnetic energy to their surroundings (sometimes called the “lattice”).

This will facilitate a return to the lower energy equilibrium state of the system

(in quantum terms, a small “spin up” excess). As energy leaves the system, the

longitudinal magnetisation component Mz will grow towards the equilibrium mag-

netisation M0 at a rate dictated by relaxation parameter T1. To be precise, T1 is

the empirically determined time it takes for Mz to reach approximately 63% of its

maximal value M0. T1 can vary quite significantly by tissue from hundreds of ms
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to a few seconds. The recovery of longitudinal magnetisation can be modelled by a

differential equation containing the time constant T1 [2][Eq. 4.11]:

dMz
dt

=
1

T1
(M0 – Mz), (A.16)

whose solution can be found to be [2][Eq. 4.12]:

Mz(t) = Mz(0)exp(–
t

T1
) + M0(1 – exp(–

t
T1

)), (A.17)

where Mz(0) is the initial value following the RF pulse.

Figure A.6: Longitudinal magnetisation recovery to equilibrium value M0 [2][Fig. 4.1a].

A.2.2 Spin-spin interaction and transverse decay

Spins experience local fields influenced by the fields of their neighbouring spins.

Therefore, the effective field experienced by spins will vary, altering their preces-

sion frequency and causing dephasing. This loss of phase coherence can be pictured

as a fanning out of spins as they precess at different frequencies. This dephasing

leads to a decay of the net transverse magnetisation M⊥, according to the decay

parameter T2. T2 is the time it takes for M⊥ to fall to approximately 37% of its

initial value.
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Figure A.7: Transverse magnetisation decay from initial value following 90◦ flip [2][Fig.
4.1b].

M⊥ can be modelled with the following rotating frame differential equation [2][Eq.

4.14]:

dM⊥
dt

= –
1

T2
M⊥, (A.18)

with the rotating frame solution [2, eq 4.16][Eq. 4.16]:

M⊥(t) = M⊥(0)exp(–
t

T2
). (A.19)

In liquids, molecules are rapidly tumbling and the magnetic effect of the neigh-

bouring molecules may be cancelled out on the time scale of the MR measurement.

This leads to long T2 values and enables MRI to be performed. Solids on the other

hand have very short T2 values, explaining why bone does not give much signal in

MRI.

A.2.3 Magnetic field inhomogeneity

The main magnetic field ~B0 is never perfectly uniform. Therefore, in practice, there

is an additional dephasing of the magnetisation. The effect of spin-spin dephasing

and external field inhomogeneity is represented by the combined decay parameter

T∗2. This will usually replace T2 in discussion, however, T2 is recoverable using

“spin-echo” sequences which are discussed in section A.3.2.
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A.2.4 The Bloch Equation

The differential equations describing the longitudinal magnetisation recovery and

transverse magnetisation decay can be combined into a single differential equation

called the Bloch equation [2][Eq. 4.21]:

d~M
dt

= γ~M×B0ẑ +
1

T1
(M0 – Mz)ẑ –

1
T2

~M⊥. (A.20)

The complete set of solutions (cartesian coordinate frame) is [2][Eq. 4.25, 4.26,

4.27]:

Mx(t) = exp(–
t

T2
)(Mx(0)cos(ω0t) + My(0)sin(ω0t)), (A.21)

My(t) = exp(–
t

T2
)(My(0)cos(ω0t) – Mx(0)sin(ω0t)), (A.22)

Mz(t) = Mz(0)exp(–
t

T1
) + M0(1 – exp(–

t
T1

). (A.23)

Note: T∗2 may replace T2 depending on the pulse sequence used.

A.3 Signal acquisition
By the action of the rotating ~B1 field, the magnetisation is tipped into the trans-

verse plane. As time evolves, there will be a transverse magnetisation decay and

a longitudinal recovery. While the magnetisation has a transverse component, the

detection of its precession about ~B0 can be considered through Faraday’s law of in-

duction. The bore of the MRI scanner contains receiver coils. As the magnetic field

lines of the transverse magnetisation from the sample being imaged sweep across

the receiver coils, an electromotive force is induced in the receiver coils. This is

referred to as signal.

A.3.1 Free induction decay

After excitation by a 90◦ (or otherwise) RF pulse, ~B1 is turned off and the RF re-

ceiver coil is used to detect the MR signal. The simplest signal from a homogeneous

sample is known as a Free Induction Decay (FID). The FID signal is a damped sine
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wave, oscillating at the Larmor frequency (ω0), of the following form:

s0 exp(–
t

T∗2
) sin(ω0t), (A.24)

where s0 is the initial signal after the flip.

At this point, the notion of a sequence diagram is introduced. These will later

become very useful to understand more complex imaging sequences.

Figure A.8: Sequence diagram for a repeated FID experiment [2][Fig. 8.2].

The sequence diagram is a visual representation of the acquisition process. It shows,

in chronological order, the RF pulses used, the sampling time, and for more complex

imaging sequences, the gradient fields used to localise (more on this in section

A.4.2). Typically, one repeat of the experiment will be shown where TR is the

repeat time.

A.3.2 Spin-echo sequence

The spin-echo sequence is used to reverse the effects of T∗2 decay; T∗2 decay can

severely limit the measurable signal. The spin-echo sequence is based on the ap-

plication of two RF pulses. The usual 90◦ pulse is followed by a refocusing 180◦

pulse. Essentially, the dephasing caused by field inhomogeneity is reversed by this

additional pulse, so that the spins rephase. When the spins rephase as much as pos-

sible, an echo is formed at time TE (the “echo time”). Spin-echoes allow T2 to be

measured as the effect of field inhomogeneity is removed, but the effect of spin-spin

interaction is not.
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Figure A.9: Sequence diagram and signal representation for a spin-echo sequence [2][Fig.
8.3].

Spin-echo sequences are used extensively in MRI. Another way to form an echo is

through the use of gradient echoes which will be introduced during the discussion

on spatial localisation in section A.4.2.

A.3.3 Demodulation

MRI returns a signal in the MHz range. By the Nyquist theorem, to prevent aliasing,

signals must be sampled at least twice per cycle i.e., the sampling frequency must

be greater than 2×ω0. This is not practical as samples would have to collected in

the nanosecond range. The solution is to sample the demodulated signal, which is

similar to viewing the signal in the rotating frame [2][Pg.104] i.e., without the rapid

Larmor frequency oscillations.

A.4 Imaging (spatial localisation)
To this point, there has been discussion of the physical principles of NMR and

how a signal is generated and collected, but not how signal can be used to form an

image. To form an image, spins must be “phase-encoded” using linearly varying

gradient fields. For the discussion to follow, the collection of a 2D transverse slice

through the body is assumed, though the principles can be extended for other slice

orientations or 3D volume imaging.
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A.4.1 K-space and Fourier imaging

To produce an image from the collected signal, “k-space” is utilised. K-space is an

array of numbers representing the spatial frequencies in an image. In the case of

2D imaging, the k-space array will be a 2D array. The inverse Fourier transform of

the k-space produces a MRI image. This relationship is expressed by the Fourier

transform pair [2][Eq. 10.7, 10.8]:

s(kx,ky) =
∫ ∫

dxdyρ(x,y,z)exp(–i2π(kxx + kyy)), (A.25)

ρ̂(x,y) =
∫ ∫

dkx dky s(kx,ky)exp(i2π(kxx + kyy)). (A.26)

In practice, the discrete Fourier transform is used since k-space is discretely sam-

pled.

(a) Image space object (b) k-space signal (magnitude)

Figure A.10: 2D Fourier transform.

To form an image, k-space must be sampled adequately. Different imaging pulse

sequences provide different ways of achieving k-space coverage.

A.4.2 Gradient-echo with spatial encoding

The gradient-echo sequence uses echoes induced by gradient fields to collect spa-

tially localised signal. The gradient-echo imaging sequence is shown below and its

key features are discussed:
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Figure A.11: 2D gradient-echo sequence [2][Fig. 10.14].

• Gz,SS is the slice-select gradient. In the case of a transverse slice through

the body, the slice-select gradient is applied in the z-direction. By using a

sinc RF pulse, only spins in the slice of interest are excited. In the frequency

domain, a sinc pulse will give a rectangular distribution of frequencies to

excite the spins through a slice orthogonal to the z-axis of thickness TH given

by [2][Eq. 10.20]:

TH =
BWrf2π
γGz

. (A.27)

Gz,SS is active during the sinc pulse. Following the sinc pulse, a negative gra-

dient is applied to reverse the phase accumulation of the slice-select gradient.

• Gx,R is the read (or frequency encoding) gradient in the x-axis direction. The

read gradient features a dephasing lobe followed by a rephasing lobe, at the
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centre of which an echo forms. The read gradient frequency encodes the spins

in the slice. The read gradient allows the collection of one line of k-space data

in the kx direction, with points determined by the formula [2][Eq. 10.9]:

Δkx =
γGxΔt

2π
, (A.28)

whereΔkx is a step in the kx direction. Only samples s(k) during the sampling

time TS are collected.

• Gy,PE is the phase-encoding gradient in the y-axis direction. The phase-

encoding gradient allows traversal of k-space in the ky direction by stepping

through a series of gradient steps at each repeat TR. The traversal of k-space

in the ky direction through the action of phase encoding gradients is described

the formula [2][Eq. 10.10]:

Δky =
γΔGyτy

2π
, (A.29)

where Δky is a step in the ky direction.

Figure A.12: Traversal of k-space for a typical gradient-echo experiment [2][Fig. 10.15b].

The total acquisition time for a 2D imaging experiment is [2][Eq. 10.12]:
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Tacq = NyTR, (A.30)

where Ny is the number of phase-encoding steps and TR is the repeat time.

A.4.3 Spin-echo with spatial encoding

To boost the signal that is collected, a 180◦ pulse can also be incorporated into the

imaging sequence. This is referred to as a spin-echo experiment as the requirement

of gradients for imaging is implicit.

Figure A.13: 2D spin-echo sequence [2][Fig. 10.17].

A.5 Image contrast

MRI is capable of producing multiple different structural and functional contrasts

through adjustment of acquisition parameters. A brief description of some of the

different image contrasts possible is given below. In addition to those described

below, other image contrasts are possible.
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A.5.1 Conventional structural contrasts

Contrast Brief Description Acquisition

Proton density Contrast based on den-
sity of protons in tis-
sue.

Standard spin-echo (long TR, short TE),
Fast spin-echo (long TR, short effective
TE), Gradient-echo (short TR, short TE,
small flip angle)

T1-weighted Contrast based on T1
relaxation times differ-
ential.

Progressive saturation (short TR/TE spin-
echo sequence), Inversion recovery (Inver-
sion pulse preceding short TE, long TR
spin-echo sequence)

T2-weighted Contrast based on T2
relaxation times differ-
ential.

Standard spin-echo (long TR, long TE),
Fast spin-echo (long TR, long effective
TE), Echo-planar imaging with 180◦ refo-
cusing pulse

T2*-weighted Contrast based on T2*
relaxation times differ-
ential.

Echo-planar imaging without 180◦ refo-
cusing pulse

Table A.1: A brief description of conventional structural MRI contrasts.

A.5.2 Diffusion-weighted MRI

In diffusion-weighted imaging (DWI), contrast is due to the motion (or lack of mo-

tion) of water molecules. Water diffusion in tissue can be intracellular, extracellular,

and between intracellular and extracellular spaces. A key equation used to under-

stand the motion of water molecules is given by the Einstein relation:

< r2 >= 6Dt, (A.31)

where < r2 > is the mean square displacement of water molecules, D is a diffusion

coefficient and t is the time from observation start. For free water at room tem-

perature, D = 2× 10–3 mm2s–1. However, in tissue, water motion is impeded, so

the measured diffusion coefficient is reduced, giving rise to the apparent diffusion

coefficient (ADC), where (ADC < D). The magnitude of the ADC is a reflection of

tissue microstructure. Since tissue microstructure can change with pathology, this

can be extremely useful.

DWI is possible using a spin-echo sequence with diffusion sensitising gradients
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determined by a “b” value.

Figure A.14: Spin-echo sequence with diffusion sensitising gradients Gdiff.

If during period 1, a molecule is in a position x1 under the influence of Gdiff and

during period 2, the molecule is in a position x2, again under the influence of Gdiff,

then the net phase accumulated is equal to:

φ = γGdiffδ(x2 – x1). (A.32)

From this, it can be seen that water with less mobility will give a higher signal,

as motion of water molecules causes dephasing of the transverse magnetisation.

Quantitatively, the spin-echo signal magnitude is given by:

s = s0 · exp(–b ·ADC), (A.33)

where S0 is the signal magnitude without applying diffusion sensitising gradients

and b is the diffusion weighting (units s/mm2):

b = γ2G2
diffδ

2(Δ–
δ

3
). (A.34)

By repeating the acquisition with different values of b, an ADC map can be cal-

culated, which is clinically useful. For example, ADC maps can be used to image

cancerous growths, in which increased cell density will impede the motion of water,

giving higher signal than background tissue.
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A.5.3 Dynamic contrast-enhanced MRI

In dynamic contrast-enhanced (DCE) MRI, a contrast agent is injected that causes

relaxation changes in the surrounding tissue. This has many clinical applications

including in cancer diagnosis where angiogenesis of “leaky” vessels around a tu-

mour will cause contrast agent accumulation. The most common contrast agent

is Gadolinium, which is paramagnetic. The dominant relaxation effect is T1-

shortening, so using a T1-weighted imaging sequence will give increased signal

where the Gadolinium contrast agent accumulates.



Appendix B

Background material: machine

learning and deep learning basics

Machine learning is based on the idea that algorithms can recognise patterns and

make decisions by “learning” from data rather than being explicitly programmed to

do so. Mitchell [46] provides a formal definition of learning: “A computer program

is said to learn from experience E with respect to some class of tasks T and perfor-

mance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.”

B.1 Machine learning theory

B.1.1 Supervised and unsupervised learning

Generally, machine learning algorithms can be divided into “supervised” and “un-

supervised” learning algorithms. Both are mechanisms by which experience is

gained through interaction with a dataset. In supervised learning both the input

x and associated label y are available to the algorithm during optimisation. Gener-

ally speaking, the algorithm will have parameters Θ, which are updated, such that

the prediction ŷ = f(x;Θ) minimises a loss function L(y, ŷ). Popular examples of

supervised machine learning algorithms include logistic regression, support vector

machine (SVM), random forest, neural network, and convolutional neural network

(CNN). In contrast, unsupervised learning algorithms learn patterns in the training

data without the use of labels. Common applications of unsupervised learning in-
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clude clustering and anomaly detection [46]. The advantages of supervised learning

and unsupervised learning are combined by intermediate approaches between the

two. For example, semi-supervised learning approaches combine a small quantity

of labelled data and a larger quantity unlabelled data for training [190] and self-

supervised learning approaches initialise algorithm parameters using a pseudo-task,

followed by fine-tuning using labelled training data [191].

B.1.2 Evaluating a learning algorithm

Typically, learning algorithms require a dataset to be split into training, validation,

and test (sometimes called inference).

• Training dataset: The portion of the dataset used to update the trainable

parameters of the algorithm e.g., for a neural network classifier, the trainable

parameters are the weights and biases of the neural network.

• Validation dataset: The portion of the dataset used to update/tune the hyper-

parameters of the algorithm e.g., for a neural network classifier, the number

of hidden layers is a hyperparameter. Following each training run, the al-

gorithm is evaluated on the validation set. By considering an accuracy or

loss-based evaluation measure on the validation set, optimal hyperparameters

can be found in an iterative manner.

• Test dataset: The portion of the dataset used to obtain an unbiased measure

of performance for the trained algorithm on data not used during the training

or validation stages. Ultimately, the test dataset is used to measure the ability

of the trained algorithm to generalise beyond the data it was trained with.

B.1.3 K-fold cross-validation

A single partitioning of a dataset into training, validation, and test is biased towards

the particular partitioning applied. In K-fold cross-validation, the dataset is split

into K equally sized portions or “folds”. Each of the folds is used as the test set in

turn, while the remaining K – 1 folds are used for training and validation. Values

of five or ten for K are typical. There still exists a partitioning bias, as a particular
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split into K folds is considered, though this can be reduced by repeating the cross-

validation using different partitions into K folds.

B.1.4 Bias and variance

Bias and variance are terms used in statistical theory to describe the properties of a

parameter estimator:

Bias = B(θ̂) = E(θ̂) –θ (B.1)

Variance = V(θ̂) = E[(θ̂– E(θ̂)2] (B.2)

For machine learning algorithms, bias and variance can be thought of in terms of

underfitting and overfitting:

highbias↔ underfitting (B.3)

highvariance↔ overfitting (B.4)

Underfitting refers to the situation where the machine learning algorithm cannot

model the training data or generalise to new data. High error on the training set is

indicative of underfitting. On the contrary, overfitting refers to the situation when

a machine learning algorithm models the training data too closely i.e., the machine

learning algorithm learns both the target function and the noise in the training data,

negatively impacting the ability of the trained algorithm to generalise to data unseen

during training.

B.2 Deep learning theory

“Deep learning” is a term typically used to describe a subclass of machine learning

based on neural networks with multiple layers of processing for extracting progres-

sively higher features from data.
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B.2.1 Neural networks representation

The notation used in this section, as well as the next sections on “Training a neu-

ral network” and “Optimisation” are from Andrew Ng’s “Deep Learning Spe-

cialization” on Coursera (https://www.deeplearning.ai/program/

deep-learning-specialization/).

The basic idea of a neural network is to stack and connect multiple simple

nonlinear functions to create a complex nonlinear function. For classification tasks,

this will allow us to approximate the complex functional relationship that exists

between the inputs and associated labels in a dataset. A neural network is comprised

of “neurons” (also called “nodes” or “units”), arranged in “layers”. The first layer

of a neural network is called the “input layer”, while the last layer is called the

“output layer”. All layers in between the input layer and output layer are referred to

as “hidden layers”. Several hidden layers constitute a “deep” neural network, giving

rise to the term “deep learning”. Multilayer perceptrons (MLPs), are the most well-

known type of neural network. MLPs have several layers where each neuron in a

hidden layer is connected to all neurons in the preceding and following layer.

Figure B.1: Diagram of a simple MLP with two hidden layers [3].

In general, for a hidden layer neuron, we can write:

https://www.deeplearning.ai/program/deep-learning-specialization/
https://www.deeplearning.ai/program/deep-learning-specialization/
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z = wTx + b, (B.5)

a = σ(z), (B.6)

where x is the input to the neuron in vector form, w are the weight parameters that

connect the inputs to the neuron in vector form, b is a bias parameter, and σ(·) is a

activation function. The output of the neuron, a, is called the “activation”. It is the

weight and bias parameters that are tuned iteratively during the optimisation process

called “training”.

Figure B.2: Operations performed by a neuron with two inputs x1 and x2, two weight pa-
rameters w1 and w2, a bias parameter b, and an activation function σ(·).

Rather than considering individual neuron computations, it is desirable to con-

sider layer computations; layer computations are easier to codify. For a hidden layer

l, we can write:

z[l] = W[l]x + b[l], (B.7)

a[l] = σ(z[l]), (B.8)

where:

• W[l] is a matrix of weight parameters of dimension (n[l],n[l–1]) and n[l] is the
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number of neurons in layer l;

• b[l] is a vector biases of dimension (n[l],1);

• z[l] is a vector of linear combinations of dimension (n[l],1);

• a[l] is a vector of nonlinear activations of dimension (n[l],1).

When describing the depth of a neural network, layers with tuneable parame-

ters are typically considered i.e., hidden layers and the output layer. For a network

with L layers, there will be a total of L – 1 hidden layers. Using the notation estab-

lished above, we can write a general expression for the function computed by the

hidden layers:

f(x;W[1],b[1], ...,W[L–1],b[L–1]) = σ(W[L–1] ...σ(W[1]x + b[1])... + b[L–1]) (B.9)

Following the hidden layer operations, a softmax function is used in the output

layer to map the activations a from the final hidden layer to class probabilities:

P(y = i|a;w1,b1, ...,wk,bk) = softmax(a;w1,b1, ...,wk,bk) =
exp(wT

i a + bi)

∑
K
k=1 exp(wT

k a + bk)
,

(B.10)

where wi is a vector of weight parameters and bi is a bias parameter associated with

the output neuron that corresponds to class i of K classes. The above formulation is

specifically for classification tasks.

B.2.2 Training a neural network

“Training” in the context of neural networks refers to the process of iteratively up-

dating the weight and bias parameters of the neural network to improve the neural

networks current functional approximation. The key steps in the training process

are:

1. Parameter initialisation
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2. Forward propagation

3. Loss computation

4. Backward propagation and gradient descent

Steps 2 to 4 are repeated in a loop for some number of iterations. The number of

training iterations may be set or based on some stopping criteria. At the end of each

iteration, the weight and bias parameters are updated.

B.2.2.1 Initialisation

Initial values must be assigned to weight and bias parameters. These initial values

will be updated during training. A simple method is random initialisation, where pa-

rameters are set to small random values. However, He initialisation [51] and Xavier

initialisation [192] are used in the best performing modern neural networks. In both

He and Xavier initialisation, parameters are drawn from a Gaussian distribution, but

the variance is adjusted to suit either rectified linear unit (ReLu) activation or hyper-

bolic tangent (TanH) activation, respectively (see table B.1). For ReLu activation, it

has been shown that the variance of the initialised Gaussian distributed weights in a

layer l should be equal to
2

n[l–1] , whereas for TanH activation, the optimal variance

has been shown to be
1

n[l–1] , where n[l–1] is the number of neurons in layer l – 1 .

B.2.2.2 Forward propagation

Forward propagation is the process of passing input data through the network to

produce a network output (a distribution of class probabilities). The forward propa-

gation step is necessary in order to produce a network output at the current estimate

of the network parameters, which can be compared to ground truth labels to com-

pute a loss.

Vectorised operations can be used to pass the entire dataset through the network

at once. However, if the dataset is large, training can be slow even with vectorisa-

tion, hence the dataset is typically split into “mini-batches” of size m.

In Section B.2.1 above, we established notation to describe the two operations

performed by a hidden layer l of a neural network for a single example in the dataset.
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We now extend that notation for a mini-batch of size m. We can write:

Z[l] = W[l]A[l–1] + b[l], (B.11)

A[l] = σ[l](Z[l]), (B.12)

where:

• W[l] is a matrix of weight parameters of dimension (n[l],n[l–1]), where n[l] is

the number of neurons in layer l;

• b[l] is a vector bias parameters of dimension (n[l],1);

• Z[l] is matrix of linear combinations of dimension (n[l],m), where m is the

mini-batch size;

• A[l] is a matrix of nonlinear activations of dimension (n[l],m);

• σ(·) is some nonlinear activation function (see table B.1 for activation func-

tions typically used in neural networks).

Activation function Formula

Linear σ(x) = x

Sigmoid σ(x) = 1/(1 + e–x)

Hyperbolic tangent (TanH) σ(x) = 2/(1 + e–2x) – 1

Rectified linear unit (ReLu) σ(x) = max(0,x)

Leaky ReLu σ(x) = 1(x < 0)(αx) + 1(x >= 0)(x) where
α is a small constant

Table B.1: Common activation functions used in neural networks.

At the output layer, the activations are mapped to class probabilities using a

softmax function. For a mini-batch of size m, a matrix Ŷ of shape (K,m) will be

output, where K is the number of classes.
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B.2.2.3 Loss and backward propagation

The loss is a measure of how well the trained network approximates the true func-

tion that maps the input data to the output labels. The total loss is defined:

J(W[1],b[1], ...,W[L],b[L]) =
1
m

m

∑
i=1

L(ŷ(i),y(i)), (B.13)

where m is the mini-batch size, y(i) is the label for training example i and ŷ(i) is the

network output for training example i. Here the function L computes the loss for a

single training example. Two common loss functions used for classification tasks

are the squared error loss:

J(W[1],b[1], ...,W[L],b[L]) =
1
m

m

∑
i=1

(ŷ(i) – y(i))
2
, (B.14)

and the cross-entropy loss:

J(W[1],b[1], ...,W[L],b[L]) = –
1
m

m

∑
i=1

[y(i) ln ŷ(i) + (1 – y(i)) ln(1 – ŷ(i))]. (B.15)

Backpropagation is an optimisation technique for loss minimisation by updat-

ing the weight and bias parameters based on the derivative of the loss function. This

is called “gradient descent”. For gradient descent in a layer l, the parameter update

rule is defined:

W[l] := W[l] –α
dJ

dW[l] , (B.16)

b[l] := b[l] –α
dJ

db[l] . (B.17)

where α is a learning rate hyperparameter which dictates the size of the updates

at each iteration. Intuitively, the parameters are being updated in the direction that

reduces the loss J. Following each forward propagation of data through the network,

backpropagation and parameter update will take place.
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B.2.3 Optimisation

B.2.3.1 Gradient descent optimisation

There are three common variations of gradient descent that are used for training

neural networks. An illustration of the three variations is shown in Figure B.3.

• Batch gradient descent: The parameter update rules (B.16) and (B.17) re-

quire calculation of the derivative of the loss function with respect to the

parameters of the network. If the loss function (B.15) is calculated over ALL

training examples rather than a mini-batch, then the derivatives in the param-

eter update rules are calculated over ALL training examples. This is called

batch gradient descent. The advantage of batch gradient descent is stable pa-

rameter updates that will approach the minimum of the loss function more

directly. However, if the training set is large, the computation of this deriva-

tives is computationally expensive.

• Online gradient descent: If the mini-batch size is m = 1, then the loss func-

tion (B.15) and its derivative are calculated over a single training example at

each iteration. This is called online gradient descent. The advantage of online

gradient descent is low computational expense. The disadvantage is unstable

parameter updates.

• Mini-batch gradient descent: This is the most commonly used form of gra-

dient descent and sits between batch gradient descent and online gradient de-

scent. In mini-batch gradient descent, the loss function (B.15) and its deriva-

tive are calculated over a mini-batch of some size m > 1. It offers medium

stability and medium computational expense.
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Figure B.3: An illustration of the trajectory of gradient descent towards the minimum of an
error function. red: batch, green: mini-batch, purple: online.

B.2.3.2 Alternative optimisers

Alternative optimisers, based on exponentially-weighted moving averages, have

been developed to improve upon standard gradient descent. An exponentially-

weighted moving average is defined:

vt = βvt–1 + (1 –β)θt, (B.18)

where β is a hyperparameter that controls the number of terms over which the mov-

ing average is calculated and θt is the t-th term in the sequence. Roughly,
1

1 –β
equals the number of the past data points being averaged over e.g., if β = 0.9, then

the moving average is computed over the past ten points.

• Gradient descent with momentum: The idea is to take an exponentially-

weighted moving average of the gradients and use the exponentially-weighted

average in the update rule. Using momentum, oscillations in the gradient de-

scent are dampened, providing a more stable, faster, direct path to the mini-

mum. For a training iteration, gradient descent with momentum is computed

as follows:
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– Compute
dJ

dW
and

dJ
db

on the current mini-batch

– Compute vdW = βvdW + (1 –β)
dJ

dW

– Compute vdb = βvdb + (1 –β)
dJ
db

– Compute W := W –αvdW and b := b –αvdb

In the above description, the superscript indicating layer l has been omitted to

simplify notation.

• Root Mean Squared Propagation (RMSprop): The idea of RMSprop is

to scale the learning rate α based on the recent history of the squared gra-

dients. This will dampen large oscillations early in the training by reducing

the gradient descent step size and will aid convergence by increasing the step

size as the gradient update becomes small when the minimum is approached.

RMSprop for an iteration is computed:

– Compute
dJ

dW
and

dJ
db

on the current mini-batch

– Compute sdW = βsdW + (1 –β)
dJ

dW

2

– Compute sdb = βsdb + (1 –β)
dJ
db

2

– Compute W := W –α

dJ
dW√

sdW + ε
and b := b –α

dJ
db√

sdb + ε

Here, ε is a small number to ensure numerical stability in division.

• Adaptive Moment (ADAM) optimisation algorithm: ADAM combines

gradient descent with momentum and RMSprop. ADAM for an iteration is

computed:

– Compute
dJ

dW
and

dJ
db

on the current mini-batch

– Compute vdW, sdW, vdb, sdb as above in the descriptions of momentum

and RMSProp
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– Apply bias correction, so that:

vcorrected
dW =

vdW
1 –βt1

, vcorrected
db =

vdb
1 –βt1

,

scorrected
dW =

sdW
1 –βt2

, scorrected
db =

sdb
1 –βt2

.

Above, β1 is the momentum β parameter, β2 is the RMSProp β parame-

ter, and t is the iteration number

– Compute W := W –α
vcorrected

dW√
scorrected
dW + ε

and b := b –α
vcorrected

db√
scorrected
db + ε

B.2.4 Batch normalisation

“Batch normalisation” [193] is an innovation that helps to optimise deep neural net-

work architectures. The main motivating factor for batch normalisation is “internal

covariate shift”, which is defined in [193] as a “change in the distribution of net-

work activations due to a change in network parameters during training”. Batch

normalisation reduces internal covariate shift by applying a normalisation to layer

inputs that fixes the mean and variance of the layer inputs.

In subsection B.2.2.2, we described a matrix Z[l] of linear combinations of

dimension (n[l],m) where l is the layer, n[l] is the number of neurons in layer l, and

m is the mini-batch size. In batch normalisation, for a layer l, we compute a mean

and variance over the columns of this matrix, z(1), ...,z(m):

μ =
1
m ∑

i
z(i), (B.19)

σ
2 =

1
m ∑

i
(z(i) –μ)2, (B.20)

where μ and σ2 are both vectors of dimension (n[l],1). We can then define a nor-

malised quantity and a transformed quantity:

z(i)
norm =

z(i) –μ√
σ2 + ε

, (B.21)

z̃(i) = γz(i)
norm +β, (B.22)
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where ε is a small constant for numerical stability and β and γ are learnable pa-

rameter vectors that allow a distribution for the layer input that is not necessarily

zero mean and unit variance. The column vectors z̃(1), ..., z̃(m) form the matrix Z̃[l],

which is passed through an activation function σ(·) to give the output of layer l and

the input to layer l + 1. β and γ are of both of dimension (n[l],1) and updated by the

rule:

β
[l] := β[l] –α

dJ

dβ[l]
, (B.23)

γ
[l] := γ[l] –α

dJ
dγ[l] . (B.24)

B.2.5 Hyperparameter selection in neural networks

One of the biggest challenges faced by practitioners of neural networks is hyperpa-

rameter selection. Hyperparameters are aspects of the neural network that are not

“learned” during the neural network training process, but rather must be chosen by

the practitioner. The key hyperparameters are:

• Number of hidden layers

• Number of nodes in each hidden layer (number of input and output nodes are

defined by the problem)

• Activation function

• Initialisation regime

• Learning rate

• Mini-batch size

• Loss function

• Optimiser

• Parameters in the optimisation algorithm e.g., β in momentum
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• Parameters in the explicit regularisation approach (see Section B.2.6)

• Parameters associated with other regularisation approaches e.g., dropout

probability or data augmentation scaling percentage or rotation angle (see

Section B.2.6)

Typically, practitioners will use a combination of experience and grid search to se-

lect hyperparameters. In grid search, values of each hyperparameter of interest will

be defined along a unique axis. Neural networks will be evaluated with hyperpa-

rameters based on each intersecting point of the grid formed by the axes.

B.2.6 Regularisation

Above, we considered the problem of overfitting, where a network fits the training

data too well, negatively impacting its ability to generalise. Goodfellow et al. [4]

define regularisation as “any modification we make to a learning algorithm that is

intended to reduce its generalisation error but not its training error.” Several regu-

larisation strategies exist, the most popular of which are described below.

B.2.6.1 Parameter norm penalties

A type of regularisation that involves adding a penalty to the loss J [4]:

J(W[1],b[1], ...,W[L],b[L]) +λΩ(W[1], ...,W[L]), (B.25)

where λ ∈ [0,∞) is a hyperparameter to be set and Ω is a function of the network

weights. It should be noted that the regularisation term only contains the weights

and not the biases, as regularising bias parameters will cause significant underfitting

[4]. One of the most common forms of penalty is the L2 norm penalty, also known

as “weight decay”, where Ω =
1
2

wTw and w is a 1D vector of all the weights in the

neural network. The goal of the L2 norm penalty is to keep the network weights

small as overfitting often manifests as some weights in the neural network becoming

too large.
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B.2.6.2 Dataset augmentation

Neural networks and other machine learning algorithms are less likely to overfit

if trained on a large dataset. However, the reality is that data is limited and it is

not always possible to have more data. A possible solution that seems to work quite

well is to augment the real data to create additional data. The augmented data would

be given the same label as its unaugmented counterpart. There are many strategies

to augment data e.g., for image data some typical augmentations are flipping the

image along its axes, rotation, translation, scaling, and random deformation.

B.2.6.3 Early stopping

Early stopping is the most common form of regularisation in deep learning [4].

Generally, the error J on the training set will tend to decrease the longer the network

trains. However, there will be a point at which the generalisability of the network

will start to diminish i.e., overfitting. The point at which overfitting begins can be

found by monitoring the error on the validation set. Using early stopping, training

can be stopped at the point at which overfitting begins.

B.2.6.4 Dropout

As mentioned in Section B.2.6.1, overfitting can be due to some weights in the

network becoming very large. Therefore, to reduce overfitting, the magnitude of

the weights can be made smaller and more evenly distributed across the network.

Dropout is a regularisation strategy that helps to achieve this by removing input

and hidden neurons during each training iteration with some probability. Typically,

an input unit is removed with probability 0.2 and a hidden unit is removed with

probability 0.5 [4]. The input units and hidden units that are omitted are recalculated

at every training iteration.

B.2.7 Convolutional neural networks

Convolutional neural networks (CNNs) are neural networks which are specialised

for processing image data. CNNs use convolution operations to “learn” the most

discriminative features from images rather than requiring “handcrafting” of fea-

tures. They have been incredibly successful in recent years on a variety of computer
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vision tasks.

B.2.7.1 Building blocks

A neural network is a CNN if at least one of its layers is a convolutional layer. A

convolution is a mathematical operation of two functions f1 and f2, defined as the

integral of the product of the two functions where one of the functions is reversed

and shifted:

f1 ∗ f2(x) =
∫

∞

–∞

f1(τ)f2(x – τ)dτ (B.26)

=
∫

∞

–∞

f1(x – τ)f2(τ)dτ. (B.27)

In the terminology of CNNs, the first argument (the function f1 in this case) is

called the “input” and the second argument (the function f2 in this case) is called

the “kernel”, while the output is sometimes called a “feature map” [4]. Considering

a 2D image input, we must consider discrete 2D convolutions. For a 2D image X

and a 2D kernel W, a convolution operation between them is written [4]:

X∗W(i, j) =
∞

∑
m=–∞

∞

∑
n=–∞

X(m,n)W(i – m, j – n). (B.28)

Similarly, a 3D convolution operation is written:

X∗W(i, j,k) =
∞

∑
m=–∞

∞

∑
n=–∞

∞

∑
o=–∞

X(m,n,o)W(i – m, j – n,k – o). (B.29)

Convolution kernels are composed of weight parameters, which through train-

ing, will learn to detect a feature.



B.2. Deep learning theory 198

Figure B.4: An illustration of a 2D convolution operation using a single 2×2 kernel [4].

In each convolutional layer, several convolution kernels will be used to learn and

detect features. More formally, the input to a layer is convolved with a set of K

kernels {W1,W2, ...,WK} and added biases {b1, ...,bk} [4]. Each kernel generates

a new feature map Xk. Then, a non-linear function σ(·) e.g., ReLu operates on each

feature map in an element-wise manner. The same process is repeated for every

convolutional layer l:

X[l]
k = σ(X[l–1] ∗W[l]

k + b[l]
k ). (B.30)

For K convolutional kernels, K feature maps are produced. The feature maps are

concatenated to produce the output of the layer.

A common point of confusion is whether 2D convolutions or 3D convolutions

should be used for a CNN with 2D input and a CNN with 3D input. 2D convolutions

are used for CNNs with 2D input and 3D convolutions are used for CNNs with 3D
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input. 2D convolution kernels have dimension f× f×d where d is the depth of the

layer input. The output of such a convolution will have depth equal to one i.e., the

output will be a 2D feature map. 3D convolution kernels have dimension f× f× f

where f < d. The output of such a convolution will have depth > 1 i.e., a 3D feature

map.

Another non-trivial consideration is computing the size of the output of a con-

volutional layer. It is dependent on the number of kernels, kernel size, and two

items that not yet covered, “stride” and “padding”:

• The stride s dictates how many units/pixels/voxels to shift the kernel as the

kernel makes its way across the layer input along each of its dimensions.

Typically, a stride of 1 or 2 will be used. A stride of one will maintain input

size and a stride of two will downsample the input by a factor of two.

• The padding p refers to a border of zeros placed around the layer input.

Padding is used to ensure that units/pixels/voxels at the edge of an input get

the same kernel exposure as units/pixels/voxels away from the edge.

We formulate the size of the layer output as a function of number of kernels, kernel

size, stride, and padding. For a layer l, where the input to the layer has dimensions

n[l–1]
h × n[l–1]

w × n[l–1]
d × n[l–1]

c , the output of the layer will have dimensions n[l]
h ×

n[l]
w ×n[l]

d ×n[l]
c , where:

n[l]
h,w,d =

n[l]
h,w,d + 2p[l] – f[l]

s[l] + 1

 , (B.31)

and n[l]
c is the number of kernels, f[l] is the kernel size along its height, width and

depth, p[l] is the amount of padding, and s[l] is the kernel stride.

Pooling layers are commonly included in the convolutional portion of a CNN

to progressively reduce the size of the input, so that higher-level features can be

learnt, though convolutional layers with a stride > 1 can also be used to achieve

a similar purpose. Pooling layers are placed intermittently between convolutional

layers. For CNNs with a 2D input, where the input to the pooling layer consists of
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2D feature maps, the most common form of pooling is “max pooling”, whereby a

max operation with a neighbourhood of size 2× 2 is applied with a stride of two

to the feature maps, downsampling the height and width of each feature map by a

factor of two. In the case described, every max operation would be taking a max

over four values. Another common pooling operation is “average pooling”, where

the average of each item in the neighbourhood is taken rather than the max.

Figure B.5: An illustration of a 2D max pooling operation using a 2×2 neighbourhood and
stride 2.

For CNNs with a 3D input, where the input to the pooling layer consists of

3D feature maps, the pooling operation would consider a neighbourhood of size

2×2×2 and the max or average operation would be over eight values.

B.2.8 Convolutional neural network architectures

In this section, we describe two popular CNN architectures that feature in this the-

sis, namely ResNet [5] and U-Net [6], for classification and segmentation tasks

respectively.

B.2.8.1 Residual Networks

Motivated by the observation that the performance of CNNs degrades as network

depth is increased, He et al. [5] proposed Residual Networks (ResNets). In their

paper, they showed that ResNets are easier to optimise and can gain accuracy from

increased network depth. In their paper, He et al. present ResNets of increasing

layer depth, from an 18-layer ResNet (ResNet-18) to a 152-layer ResNet (ResNet-

152); ResNet-152 layers won the ImageNet classification challenge in 2015.
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The degradation problem was explained as a difficulty in learning the identity

mapping. Rather than learn a target function H (x) directly using a set of nonlinear

layers, He et al. hypothesised that it is easier to fit the residual mapping F (x) :=

H (x) – x. The target function is recast into F (x) + x, which can be realised by the

addition of shortcut connections. A residual network building block is shown in

Figure B.6. The shortcut connection skips over two layers in this case, to perform

the identity mapping.

Figure B.6: Residual learning building block [5].

B.2.8.2 U-Net

In 2015, Ronneberger et al. introduced U-Net for biomedical image segmentation

[6]. U-Net won the ISBI cell tracking challenge in 2015 by a large margin.
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Figure B.7: U-Net architecture [6].

The network architecture is shown in Figure B.7. U-Net consists of an encoder

path, a bottleneck block, and a decoder path, with skip connections joining encoder

blocks to decoder blocks. The encoder path features four encoder blocks, where

each encoder block is a set of two 3× 3 convolutional layers, each followed by

ReLU, followed by a stride two 2×2 max pooling operation for downsampling. At

each downsampling, the number of feature maps are doubled. At the bottom of the

U-shape is a bottleneck block which follows the structure of an encoder block with

downsampling omitted. The decoder path features four decoder blocks, where each

decoder block features an upsampling transposed convolution with a 2× 2 kernel

that halves the number of feature maps. Skip connections concatenate feature maps

from the symmetric encoder block to the corresponding decoder block, followed

by two 3×3 convolutional layers, each followed by ReLU. The final layer features

1×1 convolutions to map to output classes, followed by softmax. The idea behind

U-Net is to encode the image into feature representations at multiple resolutions,

and to decode the feature representations back to pixel space to produce a dense

segmentation.

A 3D U-Net was later presented by Cicek et al. [7].
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Figure B.8: 3D U-Net architecture [7].

The network architecture is shown in Figure B.8. Like U-Net, 3D U-Net has an

encoder and decoder path. However, instead of 3× 3 convolutions and 2× 2 max

pooling in the encoder blocks, 3D U-Net uses 3×3×3 convolutions and 2×2×2

max pooling. Furthermore, in the decoder blocks, 2× 2× 2 kernels are used for

upsampling, followed by 3× 3× 3 convolutions, and in the final layers, 1× 1× 1

convolutions for class mapping. A further change in 3D U-Net was the addition of

batch normalisation [193] before ReLU.

Following the publications of Ronneberger et al. and Cicek et al., both 2D

U-Net and 3D U-Net have been adapted either in pre-processing, network archi-

tecture, training methodology, or post-processing, for adaption to new tasks and

hardware limitations. However, introducing bespoke changes requires high levels

of experience, expertise, and manual effort, and does not guarantee optimal results

[8]. As a result, Isensee et al. [8] published nnU-Net: a self-configuring method

for deep learning-based biomedical image segmentation. A diagram of the nnU-Net

framework is shown in Figure B.9.
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Figure B.9: nnU-Net framework [8].

Given a new segmentation task, properties of the dataset are extracted to give

a “dataset fingerprint”. The dataset fingerprint is used to inform the choice of pre-

processing, model, and post-processing “rule-based parameters”. However, some

parameters are dataset-agnostic, referred to as “fixed parameters”. Then, 2D, 3D,

and/or 3D Cascade U-Nets are trained in a five-fold cross-validation. Finally, an

empirical selection stage selects the best combination of models based on cross-

validation performance. Without manual intervention, nnU-Net surpassed most ex-

isting approaches, including highly specialised solutions on 23 public datasets used

in international biomedical segmentation competitions [8].
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M. Daoulas, J. Clavel, S. Le Guyader-Peyrou, A. Monnereau, B. Trétarre,

M. Colonna, S. Delacour-Billon, F. Molinié, S. Bara, D. Degré, O. Ganry,
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[140] László G. Nyúl, Jayaram K. Udupa, and Xuan Zhang. New variants of a

method of MRI scale standardization. IEEE Transactions on Medical Imag-

ing, 19(2):143–150, 2000.

[141] Kaiming He, Xiangyu Zhang, Ren Shaoqing, and Jian Sun. Deep Residual

Learning for Image Recognition. arXiv, 1512.03385, 2015.

[142] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-

pings in deep residual networks. arXiv, 1603.05027, 2016.

[143] M Efroymson. Stepwise regression—a backward and forward look. Eastern

Regional Meetings of the Institute of Mathematical Statistics, 1966.

[144] John Platt. Probabilistic outputs for support vector machines and compar-

isons to regularized likelihood methods. Advances in large margin classi-

fiers, 10(3):61–74, 1999.

[145] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics

Bulletin, 1(6):80–83, 1945.

[146] Quinn McNemar. Note on the sampling error of the difference between cor-

related proportions or percentages. Psychometrika, 12(2):153–157, 1947.

[147] Andrzej S. Kosinski. A weighted generalized score statistic for comparison

of predictive values of diagnostic tests. Statistics in Medicine, 32(6), 2013.



Bibliography 230

[148] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-

mization. In International Conference on Learning Representations, 2015.

[149] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration

of Modern Neural Networks. In Proceedings of Machine Learning Research,

2017.

[150] N F Haq, P Kozlowski, E C Jones, S D Chang, S L Goldenberg, and

M Moradi. A data-driven approach to prostate cancer detection from dy-

namic contrast enhanced MRI. Computerized Medical Imaging & Graphics,

41:37–45, 2015.

[151] Pritesh Mehta, Michela Antonelli, Saurabh Singh, Natalia Grondecka, Ed-

ward W. Johnston, Hashim U. Ahmed, Mark Emberton, Shonit Punwani, and

Sébastien Ourselin. AutoProstate: Towards Automated Reporting of Prostate

MRI for Prostate Cancer Assessment Using Deep Learning. Cancers, 13(23),

2021.

[152] Arnaldo Stanzione, Andrea Ponsiglione, Gianluca Armando Di Fiore, Ste-

fano Giusto Picchi, Martina Di Stasi, Francesco Verde, Mario Petretta, Mas-

simo Imbriaco, and Renato Cuocolo. Prostate Volume Estimation on MRI:

Accuracy and Effects of Ellipsoid and Bullet-Shaped Measurements on PSA

Density. Academic Radiology, 28(8):219–226, 2021.

[153] Florian A Distler, Jan P Radtke, David Bonekamp, Claudia Kesch, Heinz-

Peter Schlemmer, Kathrin Wieczorek, Marietta Kirchner, Sascha Pahernik,

Markus Hohenfellner, and Boris A Hadaschik. The Value of PSA Density in

Combination with PI-RADS™ for the Accuracy of Prostate Cancer Predic-

tion. The Journal of urology, 198(3):575–582, sep 2017.

[154] Wentao Zhu, Yufang Huang, Liang Zeng, Xuming Chen, Yong Liu, Zhen

Qian, Nan Du, Wei Fan, and Xiaohui Xie. AnatomyNet: Deep learning

for fast and fully automated whole-volume segmentation of head and neck

anatomy. Medical Physics, 46(2):576–589, 2019.



Bibliography 231

[155] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation:

Representing model uncertainty in deep learning. In 33rd International Con-

ference on Machine Learning, ICML 2016, volume 48, pages 1651–1660,

2016.

[156] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin,

and Tom Vercauteren. Aleatoric uncertainty estimation with test-time aug-

mentation for medical image segmentation with convolutional neural net-

works. Neurocomputing, 338:34–45, 2019.

[157] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normal-

ization: The Missing Ingredient for Fast Stylization. arXiv, 1701.02096,

2016.

[158] S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache. Reconstructing

a 3D structure from serial histological sections. Image and Vision Computing,

19:25–31, 2001.

[159] Matin Hosseinzadeh, Patrick Brand, and Henkjan Huisman. Effect of Adding

Probabilistic Zonal Prior in Deep Learning-based Prostate Cancer Detection.

In Medical Imaging with Deep Learning (MIDL) 2019, 2019.

[160] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian SegNet

: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures

for Scene Understanding. In Proceedings of the British Machine Vision Con-

ference (BMVC), 2017.

[161] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into ac-

curate multiclass probability estimates. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages

694–699, 2002.

[162] Tsung-yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.

Focal Loss for Dense Object Detection. In IEEE International Conference

on Computer Vision (ICCV), 2017.



Bibliography 232

[163] N Ghavami, Y Hu, E Gibson, E Bonmati, M Emberton, C M Moore, and D C

Barratt. Automatic segmentation of prostate MRI using convolutional neural

networks: Investigating the impact of network architecture on the accuracy

of volume measurement and MRI-ultrasound registration. Medical Image

Analysis, 58, 2019.

[164] Daniel J. Morgan, Lisa Pineles, Jill Owczarzak, Larry Magder, Laura

Scherer, Jessica P. Brown, Chris Pfeiffer, Chris Terndrup, Luci Leykum,

David Feldstein, Andrew Foy, Deborah Stevens, Christina Koch, Max Mas-

nick, Scott Weisenberg, and Deborah Korenstein. Accuracy of practitioner

estimates of probability of diagnosis before and after testing. JAMA Internal

Medicine, 181:747–755, 6 2021.

[165] Andres Diaz-Pinto, Pritesh Mehta, Sachidanand Alle, Muhammad Asad,

Richard Brown, Vishwesh Nath, Alvin Ihsani, Michela Antonelli, Daniel

Palkovics, Csaba Pinter, Ron Alkalay, Steve Pieper, Holger R. Roth,

Daguang Xu, Prerna Dogra, Tom Vercauteren, Andrew Feng, Abood Quraini,

Sebastien Ourselin, and M. Jorge Cardoso. Deepedit: Deep editable learning

for interactive segmentation of 3d medical images. volume 13567. Springer

Nature Switzerland, 2022.

[166] Vasilis Stavrinides, Francesco Giganti, Mark Emberton, and Caroline M.

Moore. MRI in active surveillance: a critical review. Prostate Cancer and

Prostatic Diseases, 2018.

[167] Jose Marenco, Clement Orczyk, Tom Collins, Caroline Moore, and Mark

Emberton. Role of MRI in planning radical prostatectomy: what is the added

value? World Journal of Urology, 37(7):1289–1292, 2019.

[168] Luke Nicholls, Yae-eun Suh, Ewan Chapman, Daniel Henderson, Caro-

line Jones, Kirsty Morrison, Aslam Sohaib, Helen Taylor, Alison Tree, and

Nicholas Van As. Clinical and Translational Radiation Oncology Stereotactic

radiotherapy with focal boost for intermediate and high-risk prostate cancer



Bibliography 233

: Initial results of the SPARC trial. Clinical and Translational Radiation

Oncology, 25:88–93, 2020.

[169] Alexandru Patriciu, Doru Petrisor, Michael Muntener, Dumitru Mazilu,

Michael Schar, and Dan Stoianovici. Automatic Brachytherapy Seed Place-

ment Under MRI Guidance. IEEE Transactions on Biomedical Engineering,

54(8):1499–1506, 2007.

[170] M J Connor, M A Gorin, H U Ahmed, and R Nigam. Focal therapy for

localized prostate cancer in the era of routine multi-parametric MRI. Prostate

Cancer and Prostatic Diseases, 23:232–243, 2020.

[171] K. K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool. Deep Extreme

Cut: From Extreme Points to Object Segmentation. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, pages 616–625, 2018.

[172] Alberto Briganti, Nicola Fossati, James W.F. Catto, Philip Cornford,

Francesco Montorsi, Nicolas Mottet, Manfred Wirth, and Hendrik Van Pop-

pel. Active Surveillance for Low-risk Prostate Cancer: The European As-

sociation of Urology Position in 2018. European Urology, 74(3):357–368,

2018.

[173] Linda G. W. Kerkmeijer, Veerle H. Groen, Floris J. Pos, Karin Hauster-

mans, Evelyn M. Monninkhof, Robert Jan Smeenk, Martina Kunze-Busch,

Johannes C. J. de Boer, Jochem van der Voort van Zijp, Marco van Vulpen,

Cédric Draulans, Laura van den Bergh, Sofie Isebaert, and Uulke A. van der

Heide. Focal boost to the intraprostatic tumor in external beam radiother-

apy for patients with localized prostate cancer: Results from the flame ran-

domized phase iii trial. Journal of Clinical Oncology, 39(7):787–796, 2021.

PMID: 33471548.



Bibliography 234

[174] Stan Benjamens, Pranavsingh Dhunnoo, and Bertalan Mesko. The state of

artificial intelligence-based FDA-approved medical devices and algorithms:

an online database. npj Digital Medicine, 3(118), 2020.

[175] Kicky van Leeuwen, Steven Schalekamp, Matthieu Rutten, Bram van Gin-

neken, and Maarten de Rooij. Artificial intelligence in radiology: 100 com-

mercially available products and their scientific evidence. European Radiol-

ogy, 31:3797–3804, 2021.

[176] Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep

learning for computer vision? Advances in Neural Information Processing

Systems (NIPS 2017), pages 5575–5585, 2017.

[177] Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, Sébastien Ourselin, and
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