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Abstract

In many real-world applications, including traffic control, robotics and web system

configurations, we are confronted with real-time decision-making problems where

data is limited. Reinforcement Learning (RL) allows us to construct a mathematical

framework to solve sequential decision-making problems under uncertainty. Under

low-data constraints, RL agents must be able to quickly identify relevant informa-

tion in the observations, and to quickly learn how to act in order attain their long-

term objective. While recent advancements in RL have demonstrated impressive

achievements, the end-to-end approach they take favours autonomy and flexibility

at the expense of fast learning. To be of practical use, there is an undeniable need

to improve the data-efficiency of existing systems.

Ideal RL agents would possess an optimal way of representing their environ-

ment, combined with an efficient mechanism for propagating reward signals across

the state space. This thesis investigates the problem of data-efficiency in RL from

these two aforementioned perspectives. A deep overview of the different represen-

tation learning methods in use in RL is provided. The aim of this overview is to

categorise the different representation learning approaches and highlight the impact

of the representation on data-efficiency. Then, this framing is used to develop two

main research directions. The first problem focuses on learning a representation that

captures the geometry of the problem. An RL mechanism that uses a scalable fea-

ture learning on graphs method to learn such rich representations is introduced, ul-

timately leading to more efficient value function approximation. Secondly, ET (l ),

an algorithm that improves credit assignment in stochastic environments by prop-

agating reward information counterfactually is presented. ET (l ) results in faster
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learning compared to traditional methods that rely solely on temporal credit assign-

ment. Overall, this thesis shows how a structural representation encoding the geom-

etry of the state space, and counterfactual credit assignment are key characteristics

for data-efficient RL.



Impact Statement

Undeniably, Artificial Intelligence (AI) has the potential to help towards wide-

ranging aspects of human society. In fact, there are already existing efforts in this

direction with promising results, such as the development of machine learning mod-

els for quickly and accurately forecasting floods in India and Bangladesh to keep

people safe and informed [97], or the use of machine learning for automatic moni-

toring of viral cassava disease in Uganda to help farmers contain the spread of the

disease [65]. As it happens, with the growing concerns surrounding the global cli-

mate crisis, the field of climate informatics has emerged in the past decade from

collaborations between climate scientists and machine learning experts and is de-

voted to leveraging machine learning to develop tools to analyse complex climate

data [105, 127].

While these directions are necessary and should be celebrated, there is an im-

portant aspect of AI that remains under-explored: the sustainability and accessibil-

ity of AI. Studies have shown that training and running certain types of AI systems

requires enormous amounts of data and can lead to large amounts of carbon emis-

sions [140, 50]. Deep Reinforcement Learning (RL) algorithms in particular, while

having attained impressive super-human performances on some tasks [102, 135],

are not particularly energy nor data efficient. This results in unequal access to AI

research, due to the financial cost it incurs, as well as limited impactful deployment

of AI systems on complex real-world problems characterised as small-data (such

personalised healthcare or education). There is therefore a crucial need for more

data-efficient, hence more accessible, AI systems capable of learning in complex

domains without requiring large quantities of data.
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Over the past four years, I have conducted research towards improving the

data-efficiency of reinforcement learning algorithms from different angles. The

central claims of this work is that

data-efficiency in reinforcement learning can be achieved through

structural representation learning and counterfactual credit as-

signment.

In this document, I support my thesis statement with an extensive literature review

and analysis, different novel algorithms, theoretical justifications and experimental

results.

Ultimately, the findings of this research led to more efficient and accessible

reinforcement learning. Indeed, the new RL systems are equipped with the ability

to process data more effectively, to propagate relevant information quicker, and to

adapt faster to new tasks with minimal additional compute or data. This research

will not only help to reduce carbon emissions of RL agents by replacing existing

energy-hungry systems by the more efficient agents, but it will also make it possible

to find solutions for problems where data is limited and exploration is constrained,

thus directly contributing to improving the sustainability and accessibly of AI.

My research outcomes have resulted in conference publications and workshop

presentations in highly competitive venues (AISTATS, AAAI and ICML), as well

as a prestigious Distinguished Paper Award at AAAI 2021.
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Chapter 1

Introduction

Artificial Intelligence (AI) is the theory and development of digital computer sys-

tems to perform tasks normally associated with natural intelligence displayed by

animals including humans, such as visual perception, natural language understand-

ing, and decision-making. The field of AI emerged in the 1950’s, with the successful

development of the first known AI programs capable of learning checkers strategies,

solving word problems in algebra and proving logical theorems [99]. However, it is

not until the 2010’s that AI systems developed by researchers started to gain main-

stream attention and became of wide practical use. This shift was made possible

not only through algorithmic improvements, but primarily by the evolution of faster

computers and access to large amounts of data: data-hungry deep learning methods

enjoyed a significant rise and continue to dominate accuracy benchmarks to this

day. The combination of deep learning and access to large data sets unlocked solu-

tions for complex problems such as machine translation, text-to-speech conversion,

information retrieval, object detection and recognition, recommender systems and

game playing.

The research undertaken in this thesis is motivated towards creating artificial

learners capable of learning from experience with limited data. Data-efficient agents

have the potential to benefit wide-ranging aspects of human society, in a way that

is presently not attainable due to the exorbitant compute and data requirements of

current AI systems. Studies have shown that training and running certain types of

AI systems can lead to large amounts of carbon emissions [140, 50]. Deep Rein-
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forcement Learning (RL) algorithms in particular, while having attained impressive

super-human performances on some tasks [102, 135], are not particularly energy

efficient. For example, it has been estimated that first artificial intelligent system

to beat the world champion at the ancient game of Go [135] generated 96 tonnes

of CO2 over 40 days of training, the equivalent of approximately 1000 hours of

air travel [168]. Not only does this pose a serious sustainability issue in terms of

energy consumption, but it also means that this type of research is only accessible

to a very limited portion of the machine learning community, due to the financial

cost it incurs, and can only be used on problems with practically unlimited data.

However, a vast range of problems that human societies face, such as personalised

healthcare and education, are characterised as small-data problems and necessitate

sample-efficient solutions. There is therefore a crucial need for more data-efficient,

hence more accessible, AI systems capable of learning in complex domains without

requiring large quantities of data.

Machine Learning (ML) is a fundamental concept in AI. It refers to the study

of computer algorithms that automatically learn from data and experience with min-

imal human intervention. Supervised learning is the branch of ML which learns a

mapping from input to a desired output using labeled data. The two main vari-

eties of supervised learning are classification (used to determine what category, or

class, a data point belongs to) and numerical regression (used to learn a function

that describes the relationship between inputs and output). On the other hand, un-

supervised learning makes sense of data by finding patterns in unlabeled data sets.

However, at the heart of learning and intelligence, there is the idea that our

interactions with our environment give us knowledge about the environment itself

and about ourselves. For example, an infant learns to stand up and walk by trying to

move body parts and receiving negative sensorimotor feedbacks when falling down

and positive feedbacks from adults around when a step forward is taken. Similarly,

a chess player learns winning tactics and strategies by playing multiple games and

observing the consequences of making specific moves in different scenarios. The

same reasoning applies for an artificial learner, such as an adaptive routing sys-
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Figure 1.1: Example of RL for dynamic treatment. The agent must determine the course of
actions (treatment type) based on the current health status and prior treatment
history of patients to design the best long-term care plan.

tems which has to decide where to send packets in a large network to minimise the

number of lost packets without knowing a priori where the weak or congested links

are. Reinforcement Learning (RL) is the field of machine learning that constructs

a mathematical framework for solving sequential decision-making problems under

uncertainty. An agent, or decision maker, must learn how to act in an environment

in order to achieve a long term goal (see example in Figure 1.1). This thesis makes

contributions to the field of RL from a data-efficiency perspective.

Although in the past few years many hardware improvements have been made

to lessen the compute load and to make data processing more time-efficient (with

the emergence of efficient parallel processing units such as GPUs and TPUs), the

fact remains that the main efficiency bottleneck of reinforcement learning is the

sample size and the inability to generalise beyond unseen data: RL agents require a

large number of samples in order to learn a task, even when slightly different tasks

have already been previously solved successfully. This type of learning contradicts

human learning, where learning happens extremely efficiently and necessitates min-

imal experience. This suggests that current RL agents lack the ability to abstract

information, to reason, and to generalise. Not only does this result in unsustain-

able training, but it also greatly restricts the possible applications, as real world data,

contrary to synthetic data, is often limited.
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1.1 Main Challenges
This thesis pioneers a timely research area revolving around the question:

How can we improve the design of reinforcement learning algorithms

in such a way that the data requirements remain reasonable while re-

taining high performances?

When acting in an environment, the agent takes sequential actions and observes

consequent rewards and future states. These sequences of observations improve the

agent’s knowledge of the environment, which must be leveraged to find the strategy

that will lead to the highest long-term reward (i.e. the optimal policy). In most

real world applications, the environment often has a large (possibly continuous)

state space. In such cases, the current methods for finding the optimal policy are

slow and require an extraordinary amount of data [135]. This is partly due to the

following limitations:

Agents do not understand their environment. Artificial agents, contrarily to hu-

mans, do not have a clever way of interpreting features in the observations. An

ideal RL algorithm would be able to efficiently extract the relevant features of the

environment (i.e. the appropriate representation) in order to speed up the learning.

Agents lack reasoning capability. In complex decision-making problems, the ef-

fect of certain key decisions is not necessarily observed immediately, but can be

considerably delayed. Ideally, despite the time delay between actions and outcomes,

an agent would be able to reason about the links between the decisions that lead to

specific outcomes, and assign credit accordingly to the relevant decisions.

Agents do not adapt past knowledge to new situations. Humans are exceptionally

good at retaining information for later use, even when future tasks are yet unknown.

This ability to effortlessly reuse skills has not been demonstrated in artificial agents

as of yet. The data-efficiency of RL could be improved if agents were capable

of generalising knowledge learned previously, instead of tackling new tasks from

scratch.

This thesis makes important contributions towards understanding and improv-

ing data-efficiency by studying mainly the first two limitations listed above.
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1.2 Contributions
The research efforts in this thesis are towards building more data-efficient and gen-

eralisable RL via representation learning eligibility traces. The main contributions

of this thesis can be summarised as follows:

1. Understanding the importance of representations learning in RL. The

field of representation learning in RL is growing rapidly, and the lack of clar-

ity regarding advantageous representational properties hinders measurable

progress towards more efficient representation in RL. This shortcoming is

addressed in Chapter 3, where a review of the current state of the field of rep-

resentation learning is provided, and a new categorisation of representational

properties is introduced. Important links between existing representations are

identified and new perspectives on desirable representational properties are

proposed.

2. Leveraging graph representation in RL. An important limitation of state-

of-the-art graph-based techniques in RL is identified in Chapter 4, and alter-

native graph-based approaches are successfully applied to RL problems for

the first time. This work is published in [89].

3. Analysis of a graph representation learning method for RL. In Chapter 4,

a graph representation learning method—which was not initially designed for

RL applications—is proven to be powerful in efficiently solving RL problems.

Chapter 5 presents key experimental and theoretical analysis of this method

when applied to RL.

4. Graph-inspired representation learning method for data-efficient RL.

Building on the finding of adopting graph-based representation for improv-

ing RL algorithms (Chapter 4), a novel graph-inspired algorithm, called

state2vec, is developed and empirically proven to improve on previous find-

ings. This work is published in [91].

5. Data-efficient RL via counterfactual credit assignment. Chapter 6 intro-
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duces a novel concept, called expected eligibility traces, which enables fast

and reliable credit assignment in RL. Expected eligibility traces are the key

element in a newly proposed algorithm for counterfactual credit assignment.

This work is published in [159].

1.3 Publications
Central parts of the research presented in this thesis resulted in conference and
workshop publications. In particular, Chapter 4, parts of Chapter 5, and Chap-
ter 6 are based on the following conference papers, including a Distinguished Paper
Award:

• S. Madjiheurem and L. Toni. Representation learning on graphs: A rein-
forcement learning application. In Proceedings of the Twenty-Second In-

ternational Conference on Artificial Intelligence and Statistics, volume 89
of Proceedings of Machine Learning Research, pages 3391–3399. PMLR,
16–18 Apr 2019. URL https://proceedings.mlr.press/v89/

madjiheurem19a.html

• H. van Hasselt, S. Madjiheurem, M. Hessel, D. Silver, A. Barreto, and
D. Borsa. Expected eligibility traces. In Thirty-Fifth AAAI Conference

on Artificial Intelligence, Virtual Event, February 2-9, 2021, pages 9997–
10005. AAAI Press, 2021. URL https://ojs.aaai.org/index.

php/AAAI/article/view/17200/ Distinguished Paper Award.

• S. Madjiheurem and L. Toni. Disentangled predictive representation for meta-
reinforcement learning. In ICML 2021 Workshop on Unsupervised Reinforce-

ment Learning, 2021. URL https://openreview.net/forum?id=

VbLGbcdz16-

The contributions in Chapters 1 and 3, and the first part of Chapter 5 are original to
this thesis. The following preprints are also a direct result of the work undertaken
in in this thesis.

• S. Madjiheurem and L. Toni. State2vec: Off-policy successor features ap-
proximators. CoRR, abs/1910.10277, 2019. URL http://arxiv.org/

abs/1910.10277

https://proceedings.mlr.press/v89/madjiheurem19a.html
https://proceedings.mlr.press/v89/madjiheurem19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17200/
https://ojs.aaai.org/index.php/AAAI/article/view/17200/
https://openreview.net/forum?id=VbLGbcdz16-
https://openreview.net/forum?id=VbLGbcdz16-
http://arxiv.org/abs/1910.10277
http://arxiv.org/abs/1910.10277
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• S. Madjiheurem, M. Bellemare, and L. Toni. On the importance of represen-
tation learning in reinforcement learning. Pending publication, 2022

1.4 Document Organisation
This thesis is organised in seven chapters. Following this introductory chapter, the

rest of this document is as follows

• Chapter 2 introduces the notation adopted throughout the document and

presents the related background.

• Chapter 3 contains discussions around the importance of representation

learning in RL. A categorisation of representations in RL is proposed, and

the existing representation learning methods in RL are reviewed and classi-

fied according to the newly introduced formalism. An extensive and critical

discussion on the current state of the art of representation learning in RL is

carried out.

• Chapter 4 presents a new line of research that leverages graph data struc-

tures to learn representations capturing the structural geometry of underlying

reinforcement learning problems. A novel algorithm, General Representation

Policy Iteration, is proposed and experiments are conducted.

• Chapter 5 contains an analysis of node2vec, a representation learning algo-

rithm on graphs. The usefulness of node2vec in RL is studied through exper-

iments and visualisations, and theoretical links are drawn between node2vec

and state-of-the-art graph-based representation in RL. Additionally, a novel

graph-inspired representation learning method for RL, called state2vec, is de-

veloped and supported by experiments and analysis.

• Chapter 6 introduces a new approach to credit assignment, based on the con-

cept of expected eligibility traces. A family of algorithms that use expected

traces to update their predictions is presented, theoretically analysed and eval-

uated on various domains.
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• Chapter 7 concludes the thesis with a compact summary of these contribu-

tions and discusses important potential directions for future research.



Chapter 2

Reinforcement Learning

This thesis situates itself in the field of machine learning called Reinforcement

Learning (RL). In essence, RL is the computational approach to learning from in-

teraction. Similarly to some mechanisms observed in the human brain [104, 107],

an RL agent discovers which actions yield the highest numerical reward by inter-

acting with the environment. Consequently, the goal of RL is to learn how to act, i.e

which sequential actions (which policy) an agent should take in specific situations

in order to achieve a long term goal. RL problems are typically modelled as Markov

Decision Processes (MDPs), which we describe in details in the following section.

Figure 2.1: Illustration of agent-environment interaction in an MDP. At any given time t,
an agent (here a robot) in a state St interacts with its environment (the world)
by taking actions At and observes subsequent state St+1 and reward Rt .
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In addition to the agent, the environment, the reward signal and the policy,

another essential element of RL is the value function. The problem of finding an

optimal policy is quantified with value functions, which describe the long-term de-

sirability of states, taking into account the predicted future states and the rewards

available in those states. Given a good value function, the MDP is solved: the agent

chooses the sequence of actions that maximises the value of each sequent state.

2.1 Notation
For consistency with prior literature, the following convention is used throughout

this thesis: capital letters indicate scalar-valued random variables (e.g. St , At , Rt),

non-bold lowercase letters are used for the value of random variables (e.g. s, a), bold

lowercase letters indicate vectors (e.g. qqq , fff ), bold capital letters indicate matrices

(e.g. III, MMM), scalar functions are indicated by non-bold lowercase and uppercase

letters (e.g. f , V , Q, ), a calligraphic font is used for finite sets (e.g. S , A, E), and

the blackboard bold typeset letters R, E, V, and P indicate the set of real numbers,

the expected value of random variables, the variance of random variables and a

probability density function respectively.

2.2 Markov Decision Processes
Markov Decision Processes (MDPs) [9] are discrete time stochastic control pro-

cesses that provide a widely-used mathematical framework for modelling sequen-

tial decision making strategies under uncertainty, where actions not only influence

immediate rewards but subsequent situations as well. The decision maker is called

the agent. At each decision opportunity (or time step t), the environment char-

acteristics identify the state st 2 S . The agent can choose any feasible action at

from a set of actions A. As a consequence of the action taken, the agent finds

itself in a new state st+1 according to p(st ,a,st+1) and observes an instantaneous

reward Rt 2 R, where p : S⇥A⇥S 7! [0,1] defines state-transition probabilities.

The expected immediate reward function is given by r : S ⇥A 7! R, defined as

r(s,a) .
= E[Rt |St�1 = s,At�1 = a].

A discrete MDP can be fully described by the tuple M = (S,A, p,r,g), where
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S is a finite set of discrete states, A a finite set of actions, p describes the transition

model—with p(s,a,s0) giving the conditional probability P(s0|s,a) of moving from

state s to s0 given action a, r is the expected reward function and g 2 (0,1] is a

discount factor. In the context of this thesis, we consider finite MDPs, in which the

sets of states and actions have a finite number of elements. The random variable R

and S have well defined discrete probability distributions that only depend on the

previous state and action, hence having the Markovian property.

2.3 Policies and Value Functions
A value function defines how promising a state is towards achieving maximum re-

ward. Formally, the value function of state s, denoted by V (s), defines the expected

cumulative reward experienced over time starting from state s. Because the ex-

pected reward depends on the choice of actions, a value function is defined with

respect to a policy. A policy p 2 P is a mapping from states to probabilities of

selecting actions in A, and P denotes the set of all possible policies. Formally, for

a stochastic policy, p(a|s) defines the probability that the agent takes action a when

the agent is in state s.

p(a|s) = P(A = a,S = s) . (2.1)

We write deterministic policies by p(s), which is equal to the action that the agent

takes from state s. The goal of reinforcement learning is to find a policy p⇤ 2 P

which maximises the expected discounted sum of future reward, or expected return

G, defined as

G = R0 + gR1 + g2R2 + . . .=
•

Â
t=0

g tRt . (2.2)

Given a policy p 2P, a value function is a mapping V p : S 7!R that describes

the expected long-term discounted cumulative reward observed by the agent in any

given state s 2 S when following policy p . It is formally defined as follows:

V p(s) .
= Ep

⇥
G
��� S0 = s

⇤
= Ep

h •

Â
k=0

g tR(st)
��� S0 = s

i
. (2.3)
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The value function can also be written in recursive form,

V p(s) = Â
a2A

p(a|s)
⇥
r(s,a)+ g Â

s02S
p(s,a,s0)V p(s0)

⇤
, (2.4)

where r(s) = Âa2A p(a|s)R(s,a) defines the expected immediate reward at state s.

The formulation in (2.4) represents the Bellman equation [10]. An alternative to the

state value function V p , is the Q-value function which considers state action pairs.

Under a policy p , the Q-value function is a mapping Qp : S⇥A 7! R defining the

value of taking action a in state s under policy p as follows

Qp(s,a) .
= Ep

⇥
G
��� S0 = s,A0 = a

⇤
= Ep

h •

Â
k=0

g tR(st)
��� S0 = s,A0 = a

i
(2.5)

The relationship between value functions and Q-value functions can be described

as follows:

V p(s) = Â
a2A

p(a|s)Qp(a,s). (2.6)

Solving an MDP requires to find a policy p⇤ that leads to the optimal value

function V ⇤ and the optimal Q-value function Q⇤, defined as

V ⇤(s) = max
p

V p(s), 8s 2 S (2.7)

Q⇤(s,a) = max
p

Qp(s,a), 8s,a 2 S⇥A (2.8)

The optimal value function and Q-value function satisfy the following respective

constraints

V ⇤(s) = max
a

⇣
r(s,a)+ g Â

s02S
p(s,a,s0)V ⇤(s0)

⌘
(2.9)

Q⇤(s,a) = r(s,a)+ g Â
s02S

p(s,a,s0)max
a0

Q⇤(s0,a0) (2.10)

These recursive equations are known as the Bellman’s optimality equations [10] for

V ⇤ and Q⇤ respectively. The optimal policy p⇤ which can be written as

p⇤(s) = argmax
a

Q⇤(s,a) . (2.11)
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is deterministic and is the unique solution to the Bellman’s optimality equations.

The optimal Q-value function Q⇤ gives the expected return for taking action a in

state s an subsequently following an optimal policy. Therefore, V ⇤ can be written

in terms of Q⇤ as follows

V ⇤(s) = max
a

Q⇤(s,a) . (2.12)

Here, we have introduced the main RL concepts with the notation used

throughout this thesis. Additional concepts and notations specific to each chapters

will be introduced when necessary. In the following, we present the main techniques

for solving the RL problems of prediction (computation of the value function under

a fixed policy) and control (search for an optimal policy). We first introduce funda-

mental model-based and model-free algorithms in tabular settings (where the state

action space is small enough such that the agent can maintain a set of values in a

lookup table with random access). We then explain how to go beyond tabular RL

by using function approximation.

2.4 Model-Based RL
In model-based RL, it is assumed that the agent has access to the transition dynam-

ics p, the reward function r, and the state and action spaces S and A which define

the model of the environment. This model can be either given or learned from expe-

rience. Model-based RL then consists in interacting with the model (this interaction

is called planning) to recommend an action.

Policy Evaluation

In the tabular case, given a model of the environment, the Bellman equation (2.9)

can be computed by dynamic programming DP, iteratively evaluating the value

functions for all states. This approach is called iterative policy evaluation [146].

Initially, V0 is chosen arbitrarily, and iterative approximations are obtained using

the following update rule

Vk+1(s)
.
= Â

a2A
p(a|s)

⇥
r(s,a)+ g Â

s02S
p(s,a,s0)Vk(s0)

⇤
, (2.13)
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for all s 2 S . The sequence of approximations {V0,V1, . . .} can be proven to con-

verge to V p .

Policy Iteration

Policy evaluation is used in policy iteration, where the goal is to find an optimal

policy p⇤. In policy iteration, we iterate between evaluating the current policy p

according to (2.13) (policy evaluation) and computing a new policy p 0 that improves

on the current policy (policy improvement), according to

p 0(s) .
= argmax

a
Â
s02S

⇥
r(s,a)+ g p(s,a,s0)V p(s0)

⇤
, (2.14)

for all s 2 S until the policy is stable, e.g. no further improvement is attainable and

the optimal policy is found.

2.5 Model-Free RL

When the agent does not have complete knowledge of the environment, it has to

rely solely on past experience. RL methods relying only on experience to predict

value functions or learn the optimal policy are referred to as model-free methods.

Monte Carlo Methods

Monte Carlo (MC) methods learn value estimates by averaging returns of sampled

episodes. When the environment is episodic, i.e. when all episodes eventually

terminate regardless of the sequence of actions, Monte Carlo evaluation solve the

RL prediction problem by updating current value estimates towards sample episodes

returns, according to

V (St) V (St)+a[Gt�V (St)] , (2.15)
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for all St in sampled trajectories t = {S0,A0,R1,S1, . . . ,St ,At ,Rt+1,St+1, . . . ,ST},

where a > 0 is a step size and Gt denotes the return at time step t

Gt
.
= G(tt:T ) = Rt+1 + gRt+2 + g2Rt+3 + . . .+ gT�1RT (2.16)

=
T

Â
i=1

g(i�1)Rt+i , (2.17)

where tt:T denotes the truncated trajectory t , starting at time step t and ending at

the end of the episode at the terminating time step T .

Monte Carlo policy iteration finds an optimal policy by alternating between

Monte Carlo evaluation and policy improvement (2.14) on an episode-by-episode

basis.

Temporal-Difference Learning

Temporal-Difference (TD) learning provides a way of learning the value function

from experience, in the absence of a model and without requiring to sample full tra-

jectories. TD learning achieves such online learning via bootstrapping, by updating

the current value estimates towards a predicted return based on the current value

estimates. The TD prediction update is as follows

V (St) V (St)+a
⇥

TD targetz }| {
Rt+1 + gV (st+1)�V (St)| {z }

TD-error

⇤
. (2.18)

The update is made immediately upon transitioning to St+1. Comparing with the

update in (2.15), we notice some similarity: the target for Monte Carlo evaluation

is the return Gt , whereas TD evaluation uses the TD target Rt+1 + gV (St+1). The

difference between the TD target and the current estimate at time t is called the

TD-error and is often denoted by dt . This TD learning algorithm is called TD(0) or

one-step TD, because only considers the one-step temporal difference. With a step

size a > 0 sufficiently small, one-step TD converges deterministically to a single

answer under batch updates [143].

A variant of TD learning, TD(l ) [143, 146] enables online multi-step updates



2.6. Approximation Methods 33

by leveraging a memory variable associated with each state, known as eligibility

trace. Given the current state st , the eligibility trace is defined as

et(s) =

8
><

>:

glet�1(s) if s 6= st ,

glet�1(s)+1 if s = st

(2.19)

with e0(s) = 0 for all s 2 S , and l 2 [0,1] is the trace-decay, controlling “how far

back” in time the eligibility traces should accumulate state visitations. The update

to the value estimate is then done at each time step by propagating the TD-error

dt = Rt+1 + gV (St+1) to all recently visited states, as informed by their nonzero

eligibility traces:

V (St) V (St)+adtet(St) . (2.20)

Each time an episode terminates, the eligibility traces are reset to zero. This al-

gorithm is known as the backward view of T D(l ), because it propagates reward

information backward in time.

An important TD method for control is Q-learning [170]. It is a way of directly

approximating the optimal Q-value function. The update is quite simple

Q(St ,At) Q(St ,At)+a
⇥
Rt+1 + g max

a
Q(St+1,a)�Q(St ,At)

⇤
(2.21)

If all pairs continue to be updated, the estimates are guaranteed to converge.

2.6 Approximation Methods
The methods described in the previous sections suffer from the curse of dimen-

sionality as the learning speed scales polynomially with the state and action space

dimension. In addition to time complexity, the curse of dimensionality also affects

the memory requirements. Indeed DP, tabular MC, and tabular TD methods update

value estimates using a lookup table, with one entry for each state (or state-action

pair). The size of the lookup table is therefore proportional to the cardinality of

the state space (or state-action space), leading to unreasonably large lookup tables

in high-dimensional problems. MC methods have the additional constraint of re-
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quiring to store complete episodes, which slows the learning of problems with long

episodes.

The aforementioned limitations have been addressed with function approxima-

tion [11]. Namely, instead of learning a direct mapping s 7! V (s), we can learn a

function which approximates this mapping: V (s) ⇡ Ṽq (s), where the elements in

vector qqq are the approximator’s parameters. In the following, we review a selection

of approximation methods.

2.6.1 Linear Value Function Approximation

A popular approach is to estimate the value function as a weighted sum of a set of

features fff = [f1,f2, . . . ,fd] (called basis functions) [104, 93, 71, 73], as follows

Ṽq (s) =
d

Â
i=1

qifi(s) ⇡ V (s),

where d is the dimension of the feature space and qqq is an unknown weight vector.

The basis functions fff can be hand-crafted [145] or automatically constructed [95],

and the model parameters qqq = [q1,q2, . . . ,qd] are typically learned via standard pa-

rameter estimation methods such as least-square temporal difference (LSTD) [18]

or least-square policy iteration (LSPI) [73], as described in the following subsec-

tions. The accuracy of the approximation highly depends on the choice of the basis

functions. How to properly select the set of basis functions for a data-efficient value

function approximation process is still an open question. The main objective is

to find the set of basis fff that is low-dimensional (to ensure a data-efficient learn-

ing) and yet a meaningful representation of the MPD (to limit deviation from the

true value function). Part of the efforts in this thesis is focused on answering this

question. In Chapter 3, we review techniques for constructing or learning compact

representation of MDPs, in Chapter 4 we investigate the use of graph-base repre-

sentation in RL, and Chapter 5 introduces a novel graph-inspired mechanism for

learning low-dimensional state features.
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TD learning with linear function approximation

Under linear value approximation, given the basis functions fff , the parameters qqq

which project the true value function onto the space spanned by the basis function

need to be estimated from data. This can be achieved using sample-based methods

seen in Section 2.4 generalised to function approximation. For instance, beyond

lookup tables, TD learning can update arbitrary prediction functions, such as a linear

function Ṽ p
q (s) = qqq>fff(s). The T D(0) update rule (2.18) with linear function

approximation is given by

qqq  qqq +a
⇥
Rt+1 + gqqq>fff(St+1)�qqq>fff(St)

⇤
fff(St) . (2.22)

It can be shown that if the system converges, it converges to the fixed point qqq T D =

MMM�1bbb, where

bbb .
= E[Rfff(s)] 2 Rd and

MMM .
= E

⇥
fff(s)

�
fff(s)� gfff(s0)

�>⇤ 2 Rd⇥Rd.
(2.23)

Least-Square Temporal Difference

Least-Square Temporal Difference (LSTD) learning [18] learns an approximation

Ṽ p given a fix set of basis fff by computing the natural estimates of the matrix MMM

and the vector bbb of the fix-point solution in (2.23):

b̂k =
i�1

Â
k=0

Rk+1fff(Sk) and

M̂MMk =
i�1

Â
k=0

fff(sk)
�
fff(Sk)� gfff(sk+1)

�>
+ eI,

(2.24)

where I denotes the identity matrix, and eI ensures that M̂MMk is invertible. Compared

to TD(0) which “wastes” data by computing the solution iteratively, LSTD is more

data efficient [15] but also more expensive computationally, as the matrix M̂MMk needs

to be inverted.
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Least-Square Policy Iteration

For control problems with function approximation, Least-Square Policy Iteration

(LSPI) [73] learns an optimal policy by alternating between LSTDQ (the Q-function

version of LSTD), and policy improvement according to (2.14). LSTDQ learns a

linear action-value approximation of the form

Q̃p
q (s,a) =

d

Â
i=1

qifi(s,a) ⇡ Qp(s,a), (2.25)

where the fff(s,a) 2 Rd are state action basis functions.

While LSTD approximates the value function of a fixed policy (policy evalu-

ation), LSPI iteratively refines the policy such that at each iteration, the policy is a

better approximation.

2.6.2 Kernel-based Function Approximation

Another type of function approximation technique used in reinforcement learning is

based on the use of Kernels [110, 63]. The main idea of kernel methods is that inner

products in a high-dimensional feature space can be represented by a (nonlinear)

kernel function. That way, usual learning algorithms in linear domains become

nonlinear algorithms without explicitly computing the inner products in the high-

dimensional feature spaces. These methods are popular in various kernel-based

supervised and unsupervised learning problems [129, 130].

Kernel-based reinforcement learning uses a set D of sample outcomes

{st ,at ,st+1,rt}. The value function is approximated as a kernel weighted aver-

age of the targets of all samples stored in D:

Ṽ (s) = Â
s02D

k(s,s0)g(s0). (2.26)

where k : S⇥ S 7! R is a kernel function and g(s0) denotes the sampled outcome

for state s0. Kernel functions can be thought as numerical metrics that express how

relevant the knowledge about a state is to another state.

Kernels allow to place problems in a high-dimensional space without having
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to explicitly calculate the corresponding features. For example, the kernel-based

approach leads to the same approximation as the linear parametric method when

the kernel function is k(s,s0) = fff(s)>fff(s0) [14]. However, these methods have a

computational complexity that is quadratic in the number of samples, making it

impractical when the state space is large.

2.6.3 Deep Reinforcement Learning

Artificial Neural Networks (NNs) are powerful models for nonlinear function ap-

proximation. An artificial NN consists of layers of interconnected units that have

activation functions, as to mimic some of the properties of biological neurons. They

offer great flexibility in their architecture in terms of the number of units, number

of layers and the type of activation functions. Given sufficient amount of data, NNs

enable automatic feature extraction. In RL, a deep NN (DNN) can be used to ap-

proximate the Q-value function Q̃p
q (s,a). Semi-gradient Q-learning is then used to

update the NN parameters qqq according to

qqq  qqq +a
⇥

Rt+1 + g max
a

Qq (St+1,a)
| {z }

TD target

�Qq (St ,At))]—q Qq (St+1,At+1) , (2.27)

where the gradient —q Qq (St+1,At+1) is the vector of the first partial derivatives.

The deep NN approximating the Q-value is called DQN [102]. Various tactics have

been adopted in practice to make the training of the DQN stable. For example, the

network is not trained completely online as transitions come in. Rather, sampled

transitions are saved into a replay buffer, and at each training step, the agent samples

a minibatch of transitions at random and executes the update in (2.27). In addition,

an additional NN, the target network Qq̄ , is used to infer the TD target in the update.

The weights of the target network are updated periodically with the weights of the

main network (q̄qq  qqq ).

Advances in the design and training of DNNs have contributed to the achieve-

ment of remarkable performances in reinforcement learning [102, 135]. The use

of DNNs to solve reinforcement learning problems is commonly known as deep
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reinforcement learning. DQN was one of the first successful application of deep

learning to RL. Since then, some improvement to original DQN architecture have

been made. For instance, Hasselt et al. [51] introduced DDQN, whereby the greedy

policy is evaluated according to the online network, but the target network is used

to estimate its value. This helped improve the over-estimation limitation that stan-

dard DQN faces. Another improvement to DQN is known as Prioritized Experience

Replay [128], which identifies important experience transitions using the TD error,

and replay them more frequently, to learn more efficiently.

DNNs have been implemented in RL algorithms beyond Q-learning, such as

policy gradient [173, 147]. In this case, a DNN is used to directly model the policy

ptheta(s), parameterised with weights q . The parametrised policy is then optimised

with respect to the expected return (long-term cumulative reward) by gradient de-

scent. Alternatively, DNNs can model both the values and policy. This approach

is known as actor-critic, where the actor decides on the action (based on the pol-

icy network) and the critic informs on how good an action is (based on the value

network). Deep RL actor-critic methods include A3C [103] and Q-Prop [46].

Although deep reinforcement learning has lead to impressive performances,

the training of deep neural networks remains data-hungry and requires a great

amount of compute power [80, 168].

2.7 Credit Assignment
The credit assignment problem has long been a major research topic in artificial

intelligence [101]. It refers to fact that in order to learn the optimal behaviour in

a given situation, we need to accurately associate events, like rewards or penalties,

to relevant earlier decisions or situations. This is important both for learning accu-

rate predictions, and for making good decisions. Appropriate credit assignment is

a challenging problem, as rewards can occur terribly temporally delayed. For ex-

ample, in the game of chess, the individual moves do not generate any immediate

reward until the last move, when the final outcome of the game is revealed. In this

case, appropriate credit assignment would identify key moves in the game.
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TD learning methods assign credit temporally. One-step TD updates (2.18)

propagate information slowly: when a surprising value is observed, the state im-

mediately preceding it is updated, but no earlier states or decisions are updated.

Multi-step updates propagate information faster over longer temporal spans, speed-

ing up credit assignment and learning. As seen previously, multi-step updates can

be implemented online using eligibility traces [143], without incurring considerable

additional computational expense, even if the time spans are long; these algorithms

have computation that is independent of the temporal span of the prediction [161].

With temporal credit assignment, many steps must be performed for credit to

eventually trickle backwards, however this can take many iterations. In Chapter 6,

we investigate an alternative, more data-efficient way of assigning credit.



Chapter 3

The Importance of Learning

Representations in RL

A major open problem in reinforcement learning (RL) is the curse of dimensional-

ity, whereby a large state and action space makes the learning of the value function

and the search for an optimal policy hard problems. When the state and action

space is very large—which is the case in most real-world problems—we need to

resort to function approximation as all state-action values cannot be stored in mem-

ory. The state, or observation, summarises the current situation of the environment

accessible to the agent. This information is often high-dimensional and may contain

information that is not useful for solving the task, or it might contain redundant in-

formation that could be represented in a more compact form. For this reason, a new

choice of state (and action) representation is necessary to improve the performance

of the learning process. Good representations exist to re-shape the state and action

space to handle larger problems, and increase efficiency.

For illustration, consider the Atari game Space Invaders, which is wildly used

in RL research [6, 102, 51, 54] and is depicted in Figure 3.1. In Space Invaders, the

agent, or player, moves a laser cannon horizontally across the bottom of the screen

and fires at aliens overhead, while the aliens randomly shoot towards the cannon.

The goal is to eliminate all of the aliens by shooting them. The player starts with

three lives and the game ends immediately if the invaders reach the bottom of the

screen, or the player loses all their lives.
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Figure 3.1: A random frame of the Atari game Space Invaders.1

In this environment, the observation is an RGB image of the screen, which

is a 2D array of 7-bit pixels, 160 pixels wide by 210 pixels high. Because pixel

encoding is partly random, no semantic or symbolic information can be inferred

directly from pixel values. To make sense of the image observation, the agent must

thus learn to map pixels to meaningful information relating to the game. Instead, if

the observation held symbolic information (for example if a state observation was

a small vector with entries relating to number of aliens, their locations, whether or

not they have fired, the location of the player and the number of lives left), the agent

would be able to use this observation as it is to quickly learn optimal behaviours.

A symbolic representation is ideal in this scenario as it contains only information

that is relevant for the game. The need for a good representation is thus undeniable.

However, the questions “What exactly is good representation for RL?” and “How

to learn such representations?” remain unanswered.

Prior works have made different design choices when it comes to shaping a

good representation. Some works suggest that a good representation is one that

allows to linearly approximate value functions with high accuracy [95, 111, 76,

152, 8], while others have focused on representations that help throughout the pol-

1Image credit: OpenAI [109]
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icy learning process [42, 24]. Additionally, recent efforts have introduced ways of

learning representations that will adapt, or transfer, to similar tasks [3, 56, 4, 89].

Other representational properties have also been deemed desirable, such as captur-

ing specific aspect of the environment [61, 56, 131, 33] or improving exploration

[85, 87, 86, 88]. Some of these properties are in direct contradiction (e.g. a repre-

sentation that is good at evaluating a policy with high accuracy will not naturally

transfer to other policies), and there is no generally accepted consensus on which

necessary properties a representation must hold in order to improve the overall ef-

ficiency of RL algorithms. The field of representation learning for RL is growing

rapidly, and the lack of clarity regarding advantageous representational properties

hinders measurable progress towards more efficient representations for RL.

With this review, we address this shortcoming by providing an understanding

of the current state of the field of representation learning in RL. We categorise exist-

ing representation learning methods for RL, highlighting what purposes they serve

and what properties they hold. We identify four commonly accepted categories of

representations, and discuss when representations are consistent or in conflict with

one another.

The key contributions of this chapter can be summarised as follows:

• We introduce a categorisation of representations in RL with respect to their

representational properties. We clearly define the class of problems implicitly

referred to as representation learning in RL in the literature.

• We review and classify existing representation learning methods according to

the newly introduced formalism.

• We carry out an extensive and critical discussion on the current state of the

art of representation learning in RL, identifying contradictions, limitations

and pitfalls.

• We provide recommended directions for future work to address the identified

limitations.
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This chapter is organised as follows. The notation we use in this chapter as

well as the relevant background are presented in Section 3.1. Section 3.2 describes

the four main approaches to representation learning in RL. The principal repre-

sentational properties captured by existing methods are identified and explained in

Section 3.3 and we categorise prior works according to their main properties. In

Section 3.4, we identify similarities and contradictions in the different representa-

tion learning methods and discuss the main limitations of existing systems. Finally,

we critically discuss the question of what a good representation for RL is, and rec-

ommend future work in Section 3.5.

3.1 Notation and Background
Discrete RL environments described by Markov Decision Processes (MDPs) are

defined by a tuple M = (S,A, p,r), where S is a finite set of discrete states, A

a finite set of actions, p denotes the transition model—with p(s,a,s0) giving the

probability of moving from state s 2 S to state s0 2 S given action a 2 A—and r

denotes the reward function. We denote by PPPp 2 [0,1]|S|⇥|S| the transition matrix

under policy p . The element in the i-th row and j-th column of PPPp is the probability

of transitioning from state si to s j when behaving according to policy p .

In the context of this chapter, we consider representations for model-free re-

inforcement learning. The notion of representation in RL is formally defined as

follows:

Definition 1. A d-dimensional state representation is a mapping f : S 7! Rd; f(s)

is the feature vector for state s. F 2 R|S|⇥d denotes the matrix whose rows are

f(S).

Definition 2. A d-dimensional state-action representation is a mapping f :S⇥A 7!

Rd; f(s,a) is the feature vector for state action pair (s,a). F 2 R|S||A|⇥d denotes

the matrix whose rows are f(S,A).

Representations have been constructed or learned and used in various ways

in reinforcement learning as shown in Figure 3.2. For example, a representation
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Figure 3.2: Illustrative example of the use of representations in RL and their different
methodologies and properties. Given an MDP, a representation can be com-
puted or learned using different methods to capture different properties.

can be used in policy evaluation [8, 95], to approximate the value function with a

parametric function

V̂ p
q (f(s))⇡V p(s) , (3.1)

where q is the vector of parameters to optimise. Often, a linear approximation is

adopted

V̂ p
q (s) = f(s)>q ⇡V p(s) . (3.2)

When the dimensionality of the representation d is small compared to the state space

size (d << |S|), the size of the problem is reduced (fewer parameters to learn). As

a result, efficiency is improved (sometimes at the expense of accuracy, depending

on the quality of the representation).

Representations can also be used in policy improvement [43, 24], for example

by modeling consecutively improving policies based on state action representations

p(s) = argmax
a

Q̂p
q (f(s,a)) (3.3)

where Q̂p
q (f(s,a)) is an approximation function for the current state action value

function parameterised by q .
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Another way representations have been used in RL is to promote better explo-

ration [85, 87], for example by designing an intrinsic reward function ri : S⇥S 7!

R based on the variation in the representation space. For example

ri(s,s0) = |f(s)�f(s0)| . (3.4)

By learning to maximise such intrinsic reward functions, the agent is encouraged to

explore different regions of the state space, ultimately increasing knowledge about

the environment (depending on the quality of the representation).

Representations have also been used to facilitate generalisation [56, 3, 4] in

RL. For example, if a representation captures information about the environment

dynamics but is independent of the reward function, then the same representation

can generalise across different tasks under common dynamics.

Fixed representations, or handcrafted representations, have been successfully

deployed in the aforementioned different ways on problems with relatively small

state-action space. Such methods include typical linear approximation architec-

tures such as polynomial basis function and radial basis function [73], tile-coding

[145], Fourier basis [71] and diffusion wavelets [94]. Existing fixed representation

methods and their application to RL are discussed in detail in Section 3.3. The ad-

vantage of fixed representations is that their properties are interpretable and their

performance can often be theoretically analysed. On the other hand, fixed represen-

tations make strong assumptions about the structure of the MDP (such as assuming

that the state space is Euclidean, or that the value function is smooth on the state

space [73, 95]) which might not hold in practice, resulting to poor learning perfor-

mance. As a result, the need for more flexible representations has become further

obvious, and representation learning for RL has emerged as a new field.

3.2 Representation Learning
In recent years, the field has evolved towards discovering representations that can

capture information about the MDP. The problem of learning a useful representation

f is known as representation learning and it can be achieved via multiple different
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methodologies. In the following, we describe those diverse representation learning

methods, highlighting the key differences. For example, we show that the represen-

tation learning phase can be disentangled from the the reinforcement learning phase,

or it can be learned jointly while solving the problem. We also demonstrate that the

learning process can be either supervised or unsupervised. In total, we identify five

main methods for generating representations in RL (fixed representation, state ab-

straction, auxiliary tasks, contrastive learning and unsupervised learning). Then in

Section 3.3, we show how those representation methods lead to different RL agent

behaviours or properties. Specifically, we identify four representational properties

(a support for policy evaluation, policy search, exploration and generalisation) and

we review the representation learning methods that have been used to learn repre-

sentations with these different properties. In Section 3.4, we classify the reviewed

works according to both the method they adopt, and the property they exhibit.

3.2.1 State Abstraction

An intuitive strategy to address the curse of dimensionality consists in reducing

the size of the state space by grouping states into clusters, and assigning a sim-

ilar representation for states within the same cluster. This method is known as

clustering, and is a classical approach in data processing for downstream machine

learning tasks. In RL, state abstractions have been proposed as a form of represen-

tation where the raw state space is mapped to a smaller finite abstract state space.

By reducing the state space in this way, policy learning can be speed up substan-

tially [79]. Figure 3.3(a) illustrates a case of state abstraction in a version of the

four-room environment [141], where states within the same room are assigned an

equivalent representation. Once the abstraction is computed (or learned), standard

reinforcement learning techniques can be used to learn a value function and/or a

policy (Figure 3.3(b)). The abstraction can also be improved online while solving

the reinforcement learning problem [176, 83]. Different types of state abstractions

have been proposed in RL. For example, bisimulation [76] is the strictest form of

abstraction, grouping states that are indistinguishable with respect to reward se-

quences output given any action sequence. Temporal abstraction groups states such
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(a)

(b)

Figure 3.3: (a) Example of state abstraction on the four-room environment. Here, states are
abstracted with respect to their room assignment. (b) Simplified RL system, in
which the RL agent repetitively uses transition observations to improve on its
current estimate of the value function and/or its policy. In this example, the
state abstraction mechanism is done outside of the reinforcement learning, and
the agent uses the abstraction function to preprocess state observations.

that their time scale is preserved [120]. We review the existing state abstraction

methods in detail in Section 3.3. State abstractions can be powerful when the ab-

straction is well-aligned with the tasks at hand, and when constructing, or learning,

the abstraction is feasible with a reasonable amount of data. On the other hand, if

the abstraction is not aligned with the task, it can in fact harm the learning process.

For example, considering the abstraction in Figure 3.3(a), if the goal is to collect

objects in all corners of all the rooms, the room assignment abstraction cannot help

in distinguishing between states that are corner states from those that are not, and

the corresponding value function could not be accurately approximated. Learning

relevant states abstractions thus requires some a priori knowledge about the task,

which is not always available in practice.
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3.2.2 Auxiliary Tasks

Instead of imposing a type of abstraction, some recent works have hypothesised that

a good representation will emerge if we avoid optimising specific properties. These

works let the system dictates the shape of the representation by training a model

to optimise some additional loss along the solving of the reinforcement learning

problem. This methodology is known as auxiliary tasks.

In classical deep RL, the representation FFF is learned jointly while solving the

task; the last layer of the deep neural network is the state action feature vector f . As

described in Chapter 2.6.3, many reinforcement algorithms have been implemented

with deep neural networks. For example, one of the first successful deep RL agent,

uses a Deep Q-Network (DQN) to learn to approximate its current value function

while updating its policy greedily with respect to the current value function estimate

[102]. Concretely, at each time step, a gradient step is performed with respect to the

network’s parameters q towards minimising the following loss function

`q = (Qq (St ,At)� (Rt+1 + g max
a

Qq (St+1,a)))2 . (3.5)

We can see the DQN as having two parts: a core and a linear head (the last hidden

dense layer) each with its own parameters qc and qh respectively. We can then write

the approximated value function as:

Qq (st ,at) = fqc(st ,at)
>qh ,

where fqc(s,a) is the state action feature vector modeled by the core of the DQN.

Figure 3.4 depicts a simple DQN.

While basic DQNs have achieved strong performances, they require an exces-

sive amount of data and have shown to be extremely sensitive to minor perturbation

in the observations (for example, an optimal policy for Atari games does not transfer

to the same games when pixel colours are inverted [61]). Recent empirical findings

in deep RL revealed that in order to capture rich information in a representation,

the agent must learn about many aspects of the world in addition to learning a good
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Figure 3.4: DQN pipeline. The main DQN block (the core) is typically a very deep neural
network architecture, and the last layer (the head) is a fully connected layer.

policy [61, 42, 24]. As a result, much of the representation learning efforts in deep

RL have been achieved through auxiliary tasks, whereby the agent uses its represen-

tation to learn other functions of the state such as visual reconstruction of observed

states [61], inverse kinematics [113], and predicting other policies, value functions

or the reward function [8, 42, 24]. The approach is similar to that of classical deep

RL, where the policies and/or value functions are learned with a deep neural net-

work. The main difference is that the RL learning objective is augmented with one

or more supervised or unsupervised losses corresponding to auxiliary tasks. For

example, an auxiliary loss `aux can be added to the loss in Equation (3.5):

`q = (Qq (st ,at)� (r(st ,at)+ g max
a

Qq (st+1,at+1)))
2 + `aux . (3.6)

Figure 3.5 illustrates the RL pipeline using auxiliary tasks. Several previous works

that used various auxiliary tasks to learn rich representation in RL are discussed in

Section 3.3. Auxiliary losses can take many forms, they can be supervised, unsu-

pervised or semi-supervised. A particularly interesting class of loss functions have

gained special attention in the RL community: contrastive losses, which we discuss

next.
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Figure 3.5: Representation learning for RL using auxiliary tasks. The RL component can
be any function approximator. Typically it is a deep neural network, often made
of layers of different architectures (e.g. convolutional or recurrent). The output
layer of this module is the input of a dense layer, the representation. In addition
to the RL objective (policy and/or value optimisation), auxiliary targets are
jointly optimised end-to-end, shifting the representation.

3.2.3 Contrastive Learning

Contrastive learning allows to acquire knowledge about data in the absence of la-

bels or external reward signal, by self-supervision. It has been developed specifi-

cally to learn rich representations of high dimensional data for use in various tasks,

such as computer vision tasks, or natural language processing. The goal of con-

trastive learning is to learn a representational latent space in which data points that

are close in the original space (e.g. the states s and s+) with respect to a specific

metric remain close to each other in the latent space (f(s) and f(s+)). This is often

implemented by minimising a contrastive loss, where the distance between close

points (positive samples (s, s+)) is minimised and the distance between far apart

points (negative samples (s, s�)) is maximised. As the latent space projects the data

points into a embedding vectors, the similarities between the anchor s and targets

s+ are often modeled with dot products (f(s)>f(s+)) or cosine similarity metric

(f(s)>f(s+)/kf(s)kkf(s+)k) [175, 52]. On way of modelling the contrastive loss

function is with a softmax [45, 175]:

`s,s+ =� log
exp
�

sim(f(s),f(s+)
�

Âsk2D exp
�

sim(f(s),f(sk)))
� , (3.7)
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where D is the data set of labelled samples and sim is the similarity function. Intu-

itively, minimising this loss incites the similarity between positive vectors to be as

close to 1 as possible, while negative examples to be close to 0.

In RL settings, contrastive learning can be done as a preprocessing step when

data is available, or it can be performed online while solving the task. In the latter

case, a mechanism for generating positive and negative samples must be in place.

Figure 3.6 depicts the online RL pipeline with contrastive learning.

Figure 3.6: Representation learning for RL via contrastive learning. In this simplified
schema, it is assumed that a positive sample s+ and a negative sample s� can
be generated for each observed transition. The first block is the representation
learning phase, which learns to maximise the agreement between the current
state s and the positive sample s+ given their respective representation while
maximising the disagreement between the current state s and the negative sam-
ple s�. The representation of the current state is simply the head of the repre-
sentation learning module, and is used by the RL agent to learn a policy and/or
a value function.

3.2.4 Unsupervised Learning

As discussed previously, representation learning can be performed as a separate

step, prior to solving the RL task. When done in this manner, and when the learning

of the representation is agnostic of the task, it is a form of unsupervised learning.

Unsupervised learning has seen promising progress in different AI fields, such

as natural language processing and computer vision. Pre-training unsupervised

models with large amount of data has enabled fine-tuning to downstream supervised

learning tasks with limited labeled data, such as machine translation and image seg-

mentation. This is particularly promising for real world RL applications, where it

is often impossible to explore the entire state action space. Another motivation for
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unsupervised representation learning in RL is that when the representation learning

is performed online, it is susceptible to changes in the input distribution as the pol-

icy evolves. As a results, the representation needs to adapt continuously, resulting

in poor learning efficiency. Figure 3.7 shows how the outputs of an unsupervised

model can be used as the input of a RL model.

The representations that unsupervised algorithms yield are often referred to as

disentangled representations, as they are disentangled from the reinforcement learn-

ing. For example, an unsupervised representation might capture information about

the structure of the environment (the underlying dynamics), but will not embed any

reward information: the representation is said to disentangle the reward from the

transition dynamics.

Beyond unsupervised contrastive losses, recent works have introduced several

methods for learning representations in an unsupervised way. We review such works

in detail in Section 3.3.

Figure 3.7: Unsupervised representation learning in RL. The interrupted arrow between
the unsupervised module and the RL module signifies that the unsupervised
module does not receive any feedback from the RL module (in deep learning,
this equates to a stop-gradient).

3.3 Categorisation of Representational Properties
Having described methods for learning representations for RL, we now identify and

present the four main representational property categories.

3.3.1 Representations supporting Policy Evaluation

We first consider the value prediction problem, where the goal is to find a good

linear approximation V̂ p
f ,q : S 7! R for the true value function under a policy p ,
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using a representation f and parameters q :

V̂ p
f ,q (s) = f(s)>q ⇡V p(s) . (3.8)

We review state-of-the art representations, which aim to solve the following linear

value function approximation objective

argmin
f

Â
s2S

�
V̂ p

f (s)�V p(s)
�2
, (3.9)

where V̂ p
f denotes the projection of V p onto the linear subspace H = {Fq : q 2Rd}.

In the following, the works presented in the literature aimed at learning representa-

tions supporting policy evaluation, or value function approximation, are described

against the different properties listed in Figure 3.2.

Fixed Representation. Much of the earlier representation efforts in reinforcement

learning focused on constructing fixed basis architectures with different character-

istics.

Proto-value functions (PVFs) [95] are representations that are constructed from

the graph of states. The MDP’s topology is captured in the graph of states, where

each node corresponds to a state s, and is connected to another state s0 by an edge if

there is an action that can take the agent from s to s0. The weight on the edge usually

corresponds to the transition probability Âa P(s,a,s0). Then, the value function can

be viewed as a signal on the nodes of the graph. Figure 3.8 depicts the graph of

state corresponding to a four-room environment [141].

The main characteristic of PVFs is that they capture the underlying dynam-

ics of the environment. This property is motivated by the fact that value func-

tions can be seen as smooth functions on the graph of states (see Figure 3.8), or in

other words, value functions can be seen as the result of rewards diffusing through

the state space under the environment dynamics [93]. Formally, PVFs are the first

eigenvectors of a diffusion operator on the graph, such as the combinatorial graph

Laplacian matrix
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Figure 3.8: Example of a graph of states capturing the topology of a four-room environment
and the value function as a function on the graph.

L= D�A , (3.10)

where A denotes the adjacency matrix of the graph of state, and D is the diago-

nal matrix whose entries are the row sums of A. The graph Laplacian is related

in structure to the random walk diffusion model D�1A [see 95]. The normalised

graph Laplacian L = D�1/2(D�A)D�1/2 can also be used to generate PVFs. The

eigenvectors of the graph Laplacian associated with different eigenvalues capture

different temporal properties. By definition, the PVFs are reward agnostic and only

capture information about the transition dynamics. The diagnolisation of the graph

Laplacian, which is an essential operation to compute the PVFs, does not scale to

large state spaces. Methods to mitigate this issue have been proposed but remain

constraining as strong assumptions are required [174].

Krylov methods [116] have been proposed as an alternative way of computing

basis functions for RL. The Krylov basis are powers of the transition matrix, mul-

tiplied by the reward vector {Pk�1r : 1  k  d}, where d denotes the number of

basis functions. Krylov basis form a standard solution systems of linear equations

and can be computed iteratively (by computing successive powers of the transition

matrix). The relevance of Krylov methods to RL is shown in Petrik [116]. In par-

ticular, computing Krylov basis is less computationally demanding than computing

the PVFs, as no spectral decomposition is needed.

Other iterative feature generation works have based their basis function con-
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struction upon the current residual error. The basis functions yielded by these meth-

ods are known as Bellman Error Basis Functions (BEBF) [111]. Formally, starting

with an arbitrary representation F0 of dimension d, if the current estimate of the

value function is given by Fkwk, where wk is the weight vector in the linear func-

tion approximation, the next BEBF is given by the Bellman error

Fk+1 = BE(Fk) = r+ gPFkwk�Fkwk (3.11)

The space spanned by the sequence of BEBFs is orthogonal to the real value func-

tion space. Therefore, any value function can be represented exactly with sufficient

number of BEBFs.

Whereas PVFs are reward-insensitive, Krylov and BEBFs methods dilate the

reward information geometrically through the transition space. Petrik [116] pro-

poses a method for augmenting reward-specific Krylov basis with PVFs as a way of

integrating localised high-frequency reward-specific features with the more global

long-term information embedded in the eigenvector of the graph Laplacian.

State Abstraction. Bisimulation abstraction in MDPs is used to group states that

have the same long-term behaviour [44]. It was developed from the notion of prob-

abilistic bisimulation from process algebra [76]. Bisimulation is an equivalence

relation that relates two states when (1) they produce the same immediate reward,

and (2) they have precisely the same probability of transitioning to a class of equiv-

alent states.

Definition 3. (From Givan et al. [44]) Let (S,A,P,r) be a finite Markov decision

process. A stochastic bisimulation relation E is an equivalence relation on S if

whenever sEt (s is equivalent to t with respect to equivalence relation E), the fol-

lowing properties are satisfied:

1. 8a 2A, r(s,a) = r(t,a)

2. 8C 2 S/E Âs02C p(s,a,s0) = Âs02C p(t,a,s0)
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where S/E is the set of all equivalence classes in S with respect to equivalence

relation R. Two states s and t are said to be bisimilar if there exists a bisimulation

relation E such that sEt.

This strict notion of equivalence is problematic, as small numerical perturba-

tions in the transition probabilities can make two equivalent states non equivalent.

A bisimulation metric, a less sensitive way of defining behavioural similarity than

bisimulation, was introduced by Ferns et al. [38].

Definition 4. (From Ferns et al. [40]) A bisimulation metric is a distance d between

states defined as

d(si,s j) = max
a2A

(1� c) · |r(si,a)� r(s j,a)|+ c ·W1(p(si,a, ·), p(s j,a, ·);d). (3.12)

with c 2 [0,1) and W1 the Wasserstein-1 metric.

Bisimulation metrics have been shown to be quantitatively analogous to

stochastic bisimulation, and efficient ways of calculating bisimulation metrics were

introduced [39, 20].

The bisimulation notion does not take into account action similarity, thus MDP

homomorphisms were introduced to address this limitation [123]. An MDP homo-

morphism is a transformation from an MDP M with some redundancy within the

state action space to a reduced MDP M0, where equivalent states in M are mapped

to the same state in M0, and equivalent actions in M to the same action in M0. A

solution to M0 yields a solution to the original MDP. Similarly to bisimulations, ho-

momorphisms are brittle; small perturbations introduced by estimation errors will

result in equivalent state-action pairs to become non equivalent. Approximate ho-

momorphisms were proposed to allow for more flexibility in the aggregation [124],

and an alternative metric, the lax bisimulation metric, was introduced to construct

approximate homomorphism [152]. Taylor et al. [152] showed that the difference

in the optimal value function of different states can be more tightly upper-bounded

by the value of lax bisimulation than by that of bisimulation.
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Auxiliary Tasks. DeepMDP [42] is a parameterised latent space model based on

two auxiliary losses that are closely connected to bisimulation. Recall that bisimu-

lation metrics define behavioural similarity between two states if they produce the

same immediate reward and transition to states that are behaviourally similar. The

auxiliary losses on which DeepMDP is trained directly relates to these two proper-

ties: predicting the rewards and predicting the distribution of next latent states. This

relation to bisimulation allows DeepMDP to enjoy interesting guarantees. First, the

minimisation of the losses guarantees that two non-bisimilar states can never col-

lapse into a single representation. Secondly, the value functions in the DeepMDP

are good approximations of value functions in the original MDP.

Bellemare et al. [8] call a representation optimal if it is a solution to an opti-

misation problem whose objective is to best approximate the value function of all

stationary policies for a given MDP. That is, a representation f that minimises the

following min-max problem:

min
f

max
p

||V̂ p
f �V p ||22 . (3.13)

By looking at the geometry of the problem, and noting that the value function space

is a polytope [25], Bellemare et al. [8] show that an expected-error relaxation of

the representation learning problem in (3.13) can be restricted to a special subset

of value functions, named adversarial value functions (AVFs), which correspond

to the extremal vertices of the value function polytope. AVFs are the deterministic

policies that either minimise or maximise the expected return at each state, based

on the solution of the network-flow optimisation derived from an interest function.

Authors show that predicting AVFs gives rise to optimal representation (in terms of

value function approximation of arbitrary policies).

3.3.2 Representations supporting Policy Search

While ensuring accurate value function approximation is sufficient for prediction

problems, this condition only might not be sufficient for control (the search of an

optimal policy). Indeed, in control settings, the goal of the agent is not to evaluate
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an arbitrary policy, rather to iteratively improve on the current policy, in order to

uncover an optimal policy p⇤ associated with an optimal value function:

Qp⇤(s,a) = r(s,a)+ g Â
s02S

p(s,a,s0)max
a0

Qp⇤(s0,a0) .

Standard RL algorithms solve the control problem by alternating policy evaluation

with policy improvement, where a better policy p 0 is derived from the current value

function Qp according to

p 0(s) = argmax
a

Qp(s,a) . (3.14)

A representation that is optimised for specific value functions, even for the optimal

ones, may be inadequate for representing the sequence of value functions leading

to the optimal solution as the difference in value functions for different policies can

be high [98, 79]. Standard value based RL methods such as TD(0) and Q-learning

do not provide any convergence guarantees under linear function approximation,

bootstrapping and off-policy data. This problem is known in reinforcement learn-

ing theory as the deadly triad [146]. Therefore, successful control requires having a

mechanism for accurately approximating value functions corresponding to the po-

lices in the sequence of improved policies. This section reviews the representation

learning methods that aim at facilitating or improving the search for an optimal

policy.

Fixed Representations. To help understand the conditions under which TD(0) can

be trusted to converge, Ghosh and Bellemare [43] defined the following notion of

stability of TD(0):

Definition 5. (From Ghosh and Bellemare [43]) TD(0) is stable if there is a step-

size h > 0 such that when starting from any q0 2 Rd and taking updates according

to

qk+1 = qk�h—Qqk(s,a)(Qqk(s,a)� (r(s,a)+ gQqk(s
0,a0))) ,
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we have that

limk!•qk = q ⇤T D ,

where q ⇤T D denotes the fixed-point solution of TD(0).

With respect to this notion of stability, authors found that TD(0) with linear

value approximation is affected by the space of value functions that the represen-

tation can express and how the space is parametrised. In their analysis, they found

that representations whose corresponding linear subspace is invariant of value func-

tions that are closed under the transition dynamics of the policy are always stable.

The Schur representation—a representation made of the first d Schur basis vectors

in the Schur decomposition [78] of the transition matrix—is shown to span invariant

subspaces, and therefore is stable under TD(0).

Auxiliary tasks. While guaranteed to be stable under TD(0), the Schur represen-

tation can only be constructed exactly through Schur decomposition or orthogonal

iteration when the transition matrix is known. Ghosh and Bellemare [43] demon-

strate how the orthogonal iteration scheme can be approximated using an auxiliary

loss function and a target network: at each step, the algorithm predicts the future

feature values given by a fixed target representation network, and infrequently re-

freshes the target representation network with the current one.

To study the problem relating to value-based methods having to handle shifts

in the distribution of states and hence in their values while the policy improves,

Dabney et al. [24] introduced a characterisation of value functions produced by the

policy improvement process of RL algorithms:

Definition 6. (From Dabney et al. [24]) A sequence {Qp0 ,Qp1 , . . . ,Qp⇤} is called a

value-improvement path (VIP) if Qpi+1 ⌫ Qpi for i = 0,1, . . . .

Because solving a control task via policy iteration involves traversing the space

of value functions in the value-improvement path, Dabney et al. [24] suggest that a

good representation should allow for good approximations of all values in the algo-

rithm’s value-improvement path. They used this intuition to design auxiliary tasks
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that learn to predict the value functions of past policies in the trajectory of improv-

ing policies seen during training. Authors show that this leads to a representation

that spans past policies and also provide an accurate value approximation for future

policies in the value improvement path.

The auxiliary task of predicting future states was proven to be successful for the

policy evaluation problem as we have seen with DeepMDP [42]. Schwarzer et al.

[131] proposed a similar idea to augment deep RL algorithms for control tasks. The

key idea is to learn Self-Predictive Representations (SPR) by training agents to pre-

dict their own latent state representation multiple steps in the future in addition to

maximising future reward. This auxiliary loss, combined with data augmentation

to the future prediction loss result in a representation that is temporally predictive

and consistent across different views of observations. The empirical results demon-

strate that augmenting deep RL agents with SPR results in strong data-efficiency

improvements on 26 Atari games [6].

DeepMDP [42] was discussed in the previous section as a latent space model

with theoretical guarantees for good approximations of value functions. However,

it is worthwhile to note that learning a DeepMDP as an auxiliary task in a standard

deep RL algorithm for control (agent C51 [7]) leads to experimental improvement

as well.

State Abstraction. Zhang et al. [176] proposed Deep Bisimulation for Control

(DBC), another representation learning method based on the bisimulation metric,

but specifically designed for control. Where the DeepMDP representation upper

bounds the bisimulation distance, the distance in the latent space learned by DBC

is exactly the bisimulation distance. DBC learns a bisimulation metric with gra-

dient decent jointly while learning to solve the control task. This approach leads

to a learned representation that improves as the policy improves online, making it

suitable for control tasks. Authors demonstrate that DBC learns representations that

capture task-relevant elements of the state and is in fact invariant to task-irrelevant

information by evaluating the performance on a modified MuJoCo task [155], where

the background is replaced with moving distractors and natural videos.
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A recent form of state-action abstraction called Zp -irrelevance was formalised

in [83] and shown to be coarser than bisimulation or homomorphism. The Zp -

irrelevance abstraction aggregates state-action pairs with similar return distributions

under policy p . Authors showed that this novel abstraction can reduce the size of the

state-action space as well as approximate the state-action value functions arbitrarily

accurately. Because Zp -irrelevance cannot be used in practice when the full distri-

bution is not known, Liu et al. [83] proposed Z-learning, a method approximate a

Zp -irrelevance abstraction from sampled returns.

Contrastive Representations. Contrastive Predictive Coding (CPC) [158] is a rep-

resentation learning method designed to learn representations by predicting the fu-

ture in latent space using a probabilistic contrastive loss. CPC can be summarised

as follows: First, the input data in the original observational space is compressed

into a compact latent embedding space. Then, an autoregressive model is used in

this latent space to make prediction many steps ahead with a loss based on Noise-

Contrastive Estimation [48]. Augmenting the A3C deep RL agent [103] with CPC

empirically shows strong performance in five of the DeepMind Lab [5] 3D RL en-

vironments.

Contrastive Unsupervised Representation for Reinforcement Learning (CURL)

[137] is a framework for learning semantic representations from visual high dimen-

sional observations that combines contrastive learning with model-free RL. CURL

trains an encoder from pixel based observations by enforcing that the representa-

tions of augmented versions of the original observations are in agreement using

a contrastive loss. The positive and negative samples are constructed from the

minibatch sampled for the RL update. CURL uses random cropping as data aug-

mentation for generating positive samples, and other random images for negatives.

Plugging the CURL framework into the Soft-Actor-Critic (SAC) agent [49] results

in higher performance on DeepMind Control [151] and 16 Atari games [6]. How-

ever, a follow-up work suggests that the improvement brought by CURL comes

from the data-augmentation only, and not from the contrastive loss [77].

Liu et al. [83] proposed Return-based Contrastive representation learning for
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Reinforcement Learning (RCRL), a method that takes into account reward signals

in a contrastive loss in an effort to learn state-action representations that capture

only return-relevant features to accelerate RL algorithms. Given a state-action pair,

RCRL selects a state-action pair with the same or similar return as positive sample

and a pair with different return as negative sample. A discriminator is then trained

to classify between positive and negative samples based on their representation.

Empirical results demonstrate that RCRL combined with the Rainbow agent [54]

achieves improved performance in Atari games [6].

Unsupervised Representations. Prior to the emergence of DQNs [102], Lange and

Riedmiller [74] proposed Deep Fitted Q-Iteration (DFQ), a method for learning

compact features for RL using deep learning. They integrate a deep auto-encoder

[57] into RL for learning visual navigation tasks. The auto-encoder is an unsuper-

vised mechanism that is trained to reconstruct the image observations. The agent

uses the encoder to translate the collected observations into the compact feature

space and applies Fitted Q-Iteration [35] to learn a policy. DFQ was shown to per-

form better than an experienced human player on a visual racing slot car task [75].

In addition to predicting reward signals (similarly to Liu et al. [83]), the UN-

supervised Reinforcement and Auxiliary Learning (UNREAL) [61] method intro-

duced an additional unsupervised loss for visual control tasks: predicting changes

in pixel values of different regions of the input. The UNREAL agent is trained on-

policy with the AC3 loss [103], and the auxiliary tasks are learned with data from a

replay buffer collected while solving the task. UNREAL outperformed the vanilla

A3C agent on the challenging Labyrinth task [103].

3.3.3 Representations supporting Generalisation

A natural way of thinking about data-efficient representations for RL is through

the lens of generalisation. Intuitively, a representation that is able to generalise

across similar states, across similar tasks or across similar environments, will help

speed up the learning, as useful information can be spread to unseen states, tasks

or environments through generalisation. Additionally, generalisation is also key to
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designing RL agents that can be deployed in the real world, as the reality of the real

world is often different from controlled training settings. Typical RL methods are

trained and evaluated on the same environment, which does not reflect the reality of

the vast range of practical applications.

A recent survey on generalisation in deep RL [70] captures the different types

of generalisation using the notion of task distributions: Kirk et al. [70] identify In-

dependent and Identically Distributed (IID) Environments, where the training and

testing tasks are independently drawn from the same distribution (e.g. different in-

stances of the same Atari game), and Out Of Distribution (OOD) Generalisation

Environments, where training and testing tasks are drawn from different distribu-

tions (e.g. simulation vs. real world). In order for RL agents to be of practical

use in either of these scenarios, the policies they learn should be able to generalise

well to novel situations at deployment time. In this chapter, we review prior works

that have tackled the problem of representation learning for RL from a generali-

sation perspective. This includes efforts to learn representations with transferable

knowledge from one task to another, and representations that are tasks agnostic.

Fixed Representation Dayan [27] formalised a state representation based on tem-

poral succession that is completely independent of the reward. The Successor Rep-

resentation (SR) is a predictive representation in which states are represented by

the expected count of future occupancy of successor states under a fixed policy.

Formally, the SR with respect to a policy p is defined as

Yp(s,s0) = Ep
h •

Â
t=0

g tI{St=s0}

���S0 = s] , (3.15)

where I denotes the indicator function. The representation of state s is thus an |S|-

dimensional vector whose rows are expected discounted occupancies from s to each

state in the environment. The SR matrix can equivalently be written as

Yp =
•

Â
t=0

(gPp)
t = (I� gPp)

�1 , (3.16)
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where Pp is the transition matrix under policy p . With this notation, it is easy to see

that the SR disentangles the transition matrix from the reward in the computation of

the value function:

V p = (I� gPp)
�1r = Ypr . (3.17)

This makes the SR well suited for generalisation across tasks under the same tran-

sition dynamics and different reward functions. With the Bellman equations formu-

lation, the SR can be estimated from samples with TD learning, where the reward

function is replaced by state occupancy.

State Abstraction Castro and Precup [21] have used a modified version the lax-

bisimulation metric [152] to transfer knowledge from a policy computed on an MDP

M1 = (S1,A1, p1,r1) to a another MDP M2 = (S2,A2, p2,r2). Simply put, the pro-

posed method uses lax-bisimulation to determine a state-action distance mapping

dL between the MDPs. Then, given an optimal policy p⇤1 under M1, for t 2 S2,

pL(t) finds the closest state s 2 S1 to t under dL and chooses the action b from t that

is closest to p⇤1 (s). The loss incurred when using the transferred policy is tightly

bounded, as shown in [21]. Lax-bisimulation metrics are computationally expen-

sive to compute, and approximation strategies have been proposed to address the

inefficiency limitation.

Agarwal et al. [1] introduced a new metric suited for generalisation across

similar tasks built on the concept of bisimulation metric, called Policy Similarity

Metric (PSM). The core idea is to learn a metric that can inform on which states

result in similar behaviour, and which do not, without considering rewards as they

can be too restrictive or too permissive and do not generalise across tasks with

similar dynamics but different reward functions. PSM considers similarity between

policies themselves. In Equation (3.12), the absolute reward difference is replaced

by a probability pseudometric between policies, and use the optimal policy p⇤ as

the grounding policy to ensure that the metric captures the similarity in optimal

behaviour. PSM can be computed iteratively using dynamic programming, and an

approximation p̂⇤ can be used when the optimal policy is unknown. PSM gives
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an upper bound on suboptimality of policies transferred from one environment to

another [see 1, Theorem 1].

The Combined Reinforcement Leaning via Abstract Representations (CRAR)

[41] is a deep RL architecture based on the idea that learning a state abstraction by

integrating model-based principles into model-free learning will provide features

with good generalisation ability since they must perform well for both the model-

based and the model-free predictions. CRAR is made of several components; a

state encoder, a model-free component based on the double DQN architecture [51],

and a model-based component. The model-free learner updates current Q-value

estimates from past experiences stored in replay buffer, updating the parameters

of both the Q-network and the encoder at each step. The model-based learning is

trained to predict the reward function, the discount factor and the transition function,

updating the weights of both the model-based component and the encoder. Because

CRAR contains many moving parts, it makes it well suited for transfer learning.

Indeed, as the task changes, some elements of the architecture can be frozen to

allow only minimal re-training. Authors have shown some empirical evidence of

transfer learning using CRAR on labyrinths tasks [41].

Auxiliary Tasks The Successor Representation (SR) [27] discussed previously is

limited to the tabular case and cannot readily be applied to large state spaces. Bar-

reto et al. [3] have introduced a generalisation of the SR, called Successor Features

(SFs). Given a state-action representation f , the SFs under policy ppp are defined as

yp(s,a) = Ep
h •

Â
i=0

g if(St+i,At+i)|St = s,At = a
i
.

Similarly to the SR, following Bellman equations, the SFs can be learned by TD

learning. [3, 4] consider the multi-task setting in which all the tasks share common

dynamics and are defined by different reward functions. As the agent is learning

to solve a task, authors proposed to jointly learn the SFs corresponding to the task

as an auxiliary task. Then, when the agent is faced with a new task, it can use

the previously computed SFs to transfer knowledge before starting to improve the
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policy for the new task. Authors provide a theoretical guarantee for the notion that

an agent should perform well on a novel task if it has seen a similar task before,

and the experimental results show how the SFs can be used to promote this kind of

transfer.

Another generalisation of the SR has been proposed by Ma et al. [84]. Using

the assumption that reward functions are linear combinations of some state-action

features f 2 Rd and the definition of general value functions [149], the authors

derive the following:

V p
g (s) = Ep

h
f(St ,At)

t

’
k=0

gg(Sk)|S0 = s
i>

wg = yp
g (s)

>wg

where g defines a task identification, gg(s) 2 [0,1] is a pseudo-discount function for

task g (gg(s) could be zero when s is a terminal state for task g and a fixed value

gamma 2 (0,1] otherwise), yp
g (s) defines the Universal Successor Representation

(USR) of state s, and wg is a task specific weight vector. Ma et al. [84] propose

an deep neural network architecture to model yp(s,g;qqq y), an approximation of

the USR parameterised by qqq y , the policy p(s,g;qqq p) parameterised by qqq p , and

the weights w(g;qqq w) parameterised by qqq w. The network is such that the module

learning the policy and the module approximating the USR share some parameters

and are trained using an actor-critic method. The trained USR can then be used as

an initialisation for exploring unseen tasks and/or to directly compute a policy for a

new task.

Other types of predictive representations have been explored in the context of

general representation for multitask RL. Predictions of Bootstrapped Latents (PBL)

[47] learns a representation of the agent state by predicting the future latent em-

beddings of observation through two auxiliary tasks. The first prediction task is a

forward, action-conditional prediction from histories (agent states) to future latent

observations, and the sencod prediction task is a reverse prediction from latent ob-

servation to agent states. In this way, the agent states learn to predict future latent

observations and at the same time future latent observations learn to predict the cor-

responding future agent state. The intuition is that this bootstrapping effect may
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help capture contextual information about the dynamics of the environment. PBL

demonstrated strong performance on DeepMind Lab environments [5] in multitask

setting.

Contrastive Representation The Contrastive Metric Embeddings (CMEs) algo-

rithm [1] is a general procedure to learn an embedding given a state similarity metric

d. The set of positive and negative pairs are defined using d. The similarity metric

is also used to assign importance weights to the positive and negative pairs. A con-

trastive loss is then minimised on this data. Policy Similarity Embeddings (PSEs)

are CMEs learned with PSM as the similarity metric. PSEs can be learned jointly

by an RL agent while solving a task. PSEs shows better generalisation capability

than bisimulation transfer [21] on the Jumping Task [28] when evaluated on tasks

unseen during training. Agarwal et al. [1].

Unsupervised Representation. The DisentAngled Representation Learning Agent

(DARLA) [56] is an RL agent that was designed to generalise well under domain

adaptation challenges. In domain adaptation scenarios, the agent interacts with a

source domain during training, and is then deployed on a target domain. Both

domains correspond to different MDPs. Typically, the state spaces of each MDP

are considerably different, but the action space, transition and reward functions

share structural similarities (e.g. in robotics, computer simulation would be the

source domain and the real world would be the target domain). DARLA consists of

three steps: first the agent learns to see in an unsupervised manner, training a varia-

tional autoencoder (b -VAE [55]) on observation samples collected at random, then

it learns to act in the source domain, using any RL algorithm, and finally it transfers

its knowledge in the target domain by running the learned policy. DARLA demon-

strated robust zero-shot transfer on the DeepMind Lab 3D environment Beattie et al.

[5].
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3.3.4 Representations supporting Exploration

Contrary to supervised learning, the data used by reinforcement learning agents

must be gathered by the agent itself. Indeed, when the agent initially starts act-

ing in an environment, it has no prior knowledge of the environment dynamics and

reward signal, and must acquire information by interacting with the environment.

This induces the exploration-exploitation trade-off, a crucial open problem in RL,

whereby the agent must decide between relying on current knowledge and risking

sub-optimal decision making, or make the assumption that acquiring information

on parts of the environment that is currently unknown could help discovering better

rewards, risking losing the chance of gaining immediate reinforcement. Intuitively,

a good exploration strategy will depend on the structure of the MDP, as well the

information contained with the observation the agent has access to. For example,

consider a feature space in which a state’s representation contains information about

states in its immediate proximity (i.e. reachable with few steps). Then perhaps a

local exploration will not be necessary, and the agent would benefit more from ex-

ploring other regions of the state space. This motivates the study of representations

that can support optimal exploration. In this section, we give an overview of prior

works that have focused on designing, learning and utilising representations specif-

ically for the discovery of better exploration strategies.

We start by introducing the option framework, an important concept that pro-

vides a way to implement hierarchies and macro-action in RL and has been used in

the literature to design exploration strategies.

3.3.4.1 The Option Framework

Often, decision making problems involve interacting with the environment at dif-

ferent time scales (e.g. , the task of driving a car includes skills at different time

scales, such as changing gears, making a left turn, or navigating from a location

A to a location B). The option framework [141, 120] formalises the notion of rea-

soning in terms of interaction at different temporal scales; options defines actions

extended in time. An option w 2 W is a tuple w = (Iw ,pw ,bw), where Iw 2 S

denotes the option’s initiation set, pw : S⇥A 7! [0,1] denotes the option’s policy,
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and bw : S 7! [0,1] is the option’s termination condition (the probability that w will

terminate at a given state). The option framework is a particularly useful for ex-

ploration, as options can allow for temporally-extended exploration. Some of the

works review in the following have used this formalism to learn representations

supporting options discovery for temporally-extended exploration.

Fixed Representation. Eigenoptions [85] are options that emerged from using

PVFs [95] to discover options useful for exploration. Because PVFs capture the

large-scale geometry of the environment at different time-scales, Machado et al.

[85] proposed to use PVFs to define purposes for the agent: to maximise the dis-

counted sum of the different PVFs.

Definition 7. (From Machado et al. [85]) An eigenpurpose is the intrinsic reward

function re(s,s0) of a proto-value function e 2 R|S| such that

re(s,s0) = e>(f(s0)�f(s)) , (3.18)

where f(s) denotes the feature representation of state s.

Each eigenpurpose is then used to define an eigenoption, where the option’s

policy is a policy that is optimal with respect to the eigenpurpose, and the termina-

tion condition is when the purpose is achieved (when the agent reaches the state with

largest value in the eigenpurpose). Machado et al. [85] show how, in the traditional

four-room domain [141], eigenoptions improve exploration by reducing diffusion

time (the expected number of steps required to navigate between any two states

under a uniform policy).

Auxiliary Tasks. Another approach of using a representation for exploration in RL

is to use the norm of the SR as an exploration bonus. Inspired by the diffusion

properties exhibited by the SR, Machado et al. [86] suggest to incorporate the norm

of the SR as an exploration in the Sarsa [145] update. The new Sarsa+SR update is
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described by

Q̂(st ,at) Q̂(st ,at)+a
�
r(st ,at)+b 1

||Ŷ(st)||
+ gQ̂(st+1,at+1)� Q̂(st ,at)

�
,

(3.19)

where b is a scaling factor, and the learned SR Ŷ is updated at each time step

with a TD update prior to executing the Sarsa+SR update. Augmenting deep RL

agents with the SR based exploration bonus demonstrate goods performance on

Atari games [6] with sparse reward (thus hard exploration).

To benefit exploration, Pathak et al. [113] have taken an interesting approach to

learn a representation that is curiosity-driven. They argue that in order to incentivise

a type of curiosity that will help the agent explore its environment, a representation

should only model the things that can be controlled by the agent or that affect the

agent. The Intrinsic Curiosity Module (ICM) architecture was designed to learn a

representation with the aforementioned desired properties. ICM is a deep neural

network with two sub-modules. The first module encodes raw observations into

feature vectors f(s) (forward dynamics model), and the second module predicts

the action taken by the agent to move from one state to another (inverse dynamics

model). The ICM agent is capable of learning the exploration behavior of moving

along corridors and across rooms in the VizDoom environment [67], without any

external rewards from the environment. ICM is also able to achieve high external

reward in VizDoom when uncontrollable distractors are added to the observation,

suggesting that the representation learned by ICM are indeed robust to things that

the agent cannot control or is not affected by.

Contrastive Representation Exploration-Driven Representation Learning (EDRL)

was designed to address the problem that when the agent is not provided with a uni-

form prior over the state space (for example tasks where the initial state is always

fixed), learning meaningful contrastive representations is challenging, as the data

used to train the representations will most likely not reflect the entire state space.

The EDRL framework handles the exploration along with the representation learn-

ing in order to preserve the representational quality. It learns a skill-based covering
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strategy along with the representation. The representation is used to train direc-

tional skills as to cover the thus far explored area, while the skills discover unex-

plored parts of the state to provide new knowledge that will be used to refine the

representation. The EDRL agent is shown to progressively explore the state space

and extend the representation domain, even without a uniform prior over the state

space.

Unsupervised Representation. While having shown good performance in tabu-

lar environments and environments with a provided linear feature representation,

eigenoptions [85] do not naturally scale to stochastic environments with non-

enumarated states. Machado et al. [87] leverage the fact that the PVFs are equal

to the eigenvectors of the SR [see 139] and propose to learn SFs (as they constitute

a generalisation of the SR [3]), to discover eigenoptions. The SFs are learned in an

unsupervised way with a deep neural network. The neural network receives input

in its original observational space and learns to estimate the successor features of a

lower-dimension representation learned by the neural network. To prevent the net-

work to collapse to the zero fixed point, the additional task of predicting the next

state is added. Using this mechanism to discover eigenoptions on four Atari games

[6], led to agents exhibiting interesting exploratory behaviours, visiting corners and

other relevant parts of the state space.

3.4 Unifying Representations in RL

We arrange the works reviewed in Section 3.3 in Table 3.1 according to the main

methodology they adopt (rows) and the main property they target (column).

We start our discussion by observing that although distinct methods have

emerged from the existing body of work on representation learning for RL, the

different methods are not necessarily mutually exclusive. Then, we discuss the re-

lationship between the representational properties in the context of supporting the

RL problem as a whole.
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Table 3.1: Unifying representation approaches in RL. Columns discriminate the different
representational properties while rows differentiate between the methods for
computing or learning the representation. The row with blue header corre-
sponds to methods that compute fixed representations, whereas the rows with
green headers correspond to methods that learn representations from data.

The purple entries designate methods enjoying theoretical guarantees.
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3.4.1 Representation Methods Overlap
In Table 3.1, we categorise previous works based on their most obvious representa-

tion method and property, but it is important to note that there exists some overlap.

For instance, Section 3.2, we established that contrastive representations are a spe-

cial case of other learning methods, as they can be learned online using an auxiliary

loss, or in an unsupervised manner (Figure 3.9 visualises this overlap). However,

there exist other interesting links between the representation methods.

Figure 3.9: Visual depiction of the overlap between representations learned via auxiliary
tasks, unsupervised learning and contrastive learning.

For example, it is important to note that some fixed representations can be

approximated from data as opposed to constructed from the transition matrix and/or

the reward function when these elements are unknown. For instance, Ghosh and

Bellemare [43] show how the Schur representation can be learned by optimising the

auxiliary objective of predicting the feature values of a fixed target representation

network at the next time step (where the target network is periodically refreshed

with the current representation). Similarly, a d-dimensional Krylov representation

can be learned with the auxiliary task of predicting reward values at the next d

time-steps [43]. Furthermore, an approximation of the Successor Representation

[27] (considered fixed) can also be learned as an auxiliary task, using a version

of TD learning, where the reward function is replaced by an indicator function of

state occupancy. Another type of overlap worth noting is between unsupervised, or

disentangled, representations and fixed representations. The PVFs [95] and the SR
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[27] are a good examples of such overlap. They are constructed directly form the

transition matrix while being completely insensitive to the reward. In fact, the SR

can easily be shown to disentangle the reward from the transition dynamics in the

value function.

These overlaps suggest that there is a broad range of representation learning

methods, and that they can be highly flexible. Further investigation and compara-

tive studies between representations with similar goals but different methods is of

interest and left for future work.

3.4.2 Unifying State Abstractions

We now turn our attention to the interesting relationships between state abstraction

mechanisms in use in RL. We notice a pattern of methods that develop strict to more

flexible, and fine-grained to coarser abstractions. We visualise this phenomenon in

Figure 3.10: abstractions are sorted with respect to their level of granularity from

left to right: bisimulation equivalences and bisimulation metrics are abstraction that

consider only state similarity, MDP homomorphisms, lax-bisimulations and Zp -

equivalences also consider action similarity, while policy similarity metrics take a

step further and consider policy similarity. The vertical orientation represents the

abstraction rigidity: at the top, we show the strictest form of abstractions, bisimu-

lation equivalences and MDP homomorphisms, while their more flexible analogues

are shown at the bottom. The bubbles indicate representation learning algorithms

that learn the corresponding state abstraction.

The choice of state abstraction undoubtedly depends on the size and nature

of the original MDP. Evaluating state abstractions with respect to their rigidity and

granularity on different MDP is an interesting direction for future work.

3.4.3 Unifying Spectral and Predictive Representations

A representation equivalence that is interesting to note is between the PVFs (spec-

trum of the graph Laplacian) and the SR (predictive representation of future state

occurrence). As discussed in [139], the eigenvectors of the normalised graph Lapla-

cian are equal to the eigenvectors of the SR scaled by g�1D1/2:
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Figure 3.10: Unifying state abstractions in RL. From left to right, the abstractions are
coarser, while from top to bottom the abstractions allow for more flexibil-
ity. The representation learning methods shown in bubbles are algorithms that
learn to approximate the abstraction of the corresponding segment.

Theorem 1. (From Stachenfeld et al. [139]) Let 0 < g < 1 such that Y = (I �

gP)�1 denotes the SR matrix, and L= D�1/2(D�A)D�1/2 denotes the normalised

graph Laplacian matrix, both obtained under a uniform random policy. The j-th

eigenvalue lSR,i of Y and the j-th eigenvalue lPV F, j of L are related as follows

lPV F, j =
⇥
1� (1�l�1

SR,i)g
�1⇤ .

The i-th eigenvector eSR,i of the SR and the j-th eigenvector ePV F, j of the normalised

graph Laplacian, where i+ j = |S|+1, are equivalent up to scaling

ePV F, j = (g�1D1/2)eSR,i .

This equivalence is particularly interesting for two reasons. Fist, it implies

that the graph signal processing tools developed in the literature using the graph

Laplacian [134] can be effortlessly extended to the SR. Secondly, from this equiv-

alence arises the interpretation that working with the PVFs equates to working in

the spectral domain, whereas working with the SR equates to working in the tem-
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poral domain. Naturally, this raises the question of whether a method combining

both approaches would be beneficial. This idea was in fact explored by [138] for

supervised learning, yielding promising results.

Interestingly, concept of adversarial value functions (AVFs) [8] as auxiliary

tasks is also closely related to PVFs. Indeed, the PVFs can be interpreted as

defining a set of value-based auxiliary tasks, based on the set of value functions

{(I � gPp)�1rx}s2S , where rs(s0) := I{s0=s} defines an indicator reward function

and p is the uniformly random policy.

In Figure 3.11 depicts these equivalences and similarities, as well as hierar-

chical relationships between spectral representations and predictive representations

discussed in Section 3.3.

Figure 3.11: Visualising the relationship between spectral representations (pink) and pre-
dictive representations (blue) . (a) The PVFs are equivalent to the eigenvec-
tors of the SR up to a scaling factor. (b) The SFs generalises the SR from
tabular to state features. (c) and (d) The USR generalises both the SR and the
SF via the use of general value function, by allowing to model SRs and SFs
of different policies and different tasks. (e) Eigenoptions are derived directly
from the PVFs, or (f) can be computed from the SR. (g) AVFs share a sim-
ilarity with PVFs as they both are solutions to a set of value function based
auxiliary tasks.

3.5 What is a Good Representation for RL?
We now discuss open problems relating to representation learning in RL, highlight-

ing differences, contradictions, limitations and gaps in the current state of the art.
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3.5.1 Evaluating Representations in RL

To be able to answer the question of “What is a Good Representation for RL?”

we first need a systematic way of evaluating representations. However, assess-

ing the quality of any given representation for RL is difficult, since represen-

tation learning itself does not have a clearly defined objective beyond support-

ing the RL problem as a whole. As captured in this work, there are different

ways to understand what makes a representation desirable for RL. Some works

have sought to find a representation that will benefit value function approximation

[93, 116, 111, 44, 37, 152, 42, 8], and therefore use the value function approxi-

mation error as evaluation metric. Others aimed to uncover a representation that is

best suited for fast and stable control [43, 83, 22, 24, 131, 158, 137, 74, 75, 61],

and evaluate performance by looking at the learning curve of the expected long

term return. Representation learning efforts in RL that have investigated represen-

tations supporting generalisation [27, 21, 1, 3, 4, 84, 89, 47, 56] often use the long

term return on unseen tasks as the performance metric. On the other hand, prior

works focusing on learning or using a representation that will benefit exploration

[86, 87, 113, 85, 36, 88], do not agree on a unified way of measuring performance

(Machado et al. [85] proposed to adopt the diffusion time as an evaluation metric).

Although representation supporting different goals have respective (proposed)

ways of evaluating the performance of the representations, there remains a lack of

discussion on how the different properties relate to the overall performance.

3.5.2 What are the Desirable Representational Properties?

At a first glance, we might be tempted to think that the ideal representation would

have all four properties identified in this work (to support policy evaluation, control,

exploration and generalisation). However, some of these properties are in fact in

direct conflict. For instance, an optimal representation for policy evaluation can

harm control. Recall that given an MDP, the space of value functions (i.e. the set of

all value functions that are attained by some policy) forms a polytope [25]. Consider

the space of value functions of a two-state MDP shown in Figure 3.12. Assume we

know a representation F that is optimal for evaluating an initial policy p0, meaning
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that the value function under p0 lies directly on the representation space (i.e. zero

approximation error). If the goal is to improve p0 to reach the optimal p⇤ using a

representation F, we need to ensure that V p⇤ can be well approximated using F.

However, in the example of Figure 3.12, the approximation error of the optimal

value function is very large, which intuitively means that attempting to learn the

optimal policy starting from p0 with representation F will likely lead to poor results.

Figure 3.12: The value function polytope of a two-state MDP. Each point in the polytope
represents a value function with respect to a policy. The line FFF represents
a representation space onto which value function can be projected. The dot-
ted line corresponds to the projection of the optimal value function onto the
representation space.

On the other hand, there are cases where a representational property can ben-

efit another property. For example, a representation that enables efficient explo-

ration would ultimately help policy learning (by allowing to better negotiate the

exploration-exploitation trade-off in the early state of the policy learning). Simi-

larly, the goal of general representation is to help to solve unseen tasks, either to

evaluate a policy or to learn the optimal policy. Finally, it is interesting to note how

exploration is related to generalisation: because pure exploration does not have for

goal to maximise a specific extrinsic reward, the same exploration strategy can turn

out to be beneficial for learning about different tasks within the same domain. Fig-

ure 3.13 illustrates the links between the representational properties identified in
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Figure 3.13: Understanding the relationship between the different representational proper-
ties. An arrow from a box A to a box B signifies that representations sup-
porting A can also be beneficial for B. For example, a representation designed
to benefit exploration can also result in improved generalisation and/or policy
search [85].

this work.

While there seem to be a clear trade-off between representations supporting

policy evaluation versus policy search (see Figure 3.12), the relation between rep-

resentational properties bring up an important research question that has not been

clearly addressed: “Is there a single representation capable of simultaneously sup-

porting exploration, generalisation and policy search?”.

3.5.3 The Effect of Representation on Data-Efficiency
In the context of this thesis, we are particularly interested in the problem of data-

efficiency. We therefore give insight into link between data-efficiency in RL and

representation learning.

Firstly, theoretical analysis by Du et al. [31] have shown that, in the general

case, even a good representation (defined as one that allows to linearly approximate

the value function with approximation error e = W(
p

H/d), where H is the horizon

and d is the dimension of the representation, the agent still needs to sample an

exponential number of trajectories to find a near-optimal policy, for value-based

learning, policy based learning, and model-based learning alike. Moreover, even

if an optimal policy can be perfectly predicted by a linear function of the given

representation with a strictly positive margin, the agent still requires exponential

number of trajectories to find a near-optimal policy.
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However, data-efficiency can nonetheless be attained under some assumption.

In particular, Jin et al. [62] present LSVI-UCB, an efficient algorithm for linear

MDP (where the transition and reward functions are assumed to be linear). It is an

optimistic version of Least-Squares Value Iteration (LSVI) [18] based on the Up-

per Confidence Bound, where a regulariser term based on a given representation

f(s) 2 Rd encourages exploration. LSVI-UCB’s data-efficiency is bounded by d,

the dimension of the representation, and not by the size of state space. This result

is promising and demonstrates the importance of a good representation: if we pos-

sessed a way to learn a representation that linearise a given MDP without drastic

projection loss, then efficient reinforcement algorithm exists for that MDP.

Another work introduced a regret bound that is linear in d, the dimension

of some latent representation f(s,a) 2 Rd of the state action space [133]. It re-

quires assumptions that are less restrictive than the linear MDP assumption; it as-

sumes MDP Lipschitz continuity in the observational space with respect to the value

function (two points close to each other in the observational space have similar Q-

values), and a Bi-Lipschitz mapping between intrinsic and external metric spaces (if

two points are close in the observational space, they are close in the representational

space). This interesting finding suggests clearer criteria that a good representation

for data efficient RL in unrestricted MDPs must exhibit: low dimensional and Lip-

schitz continuous with respect to the value function.

As we have seen, there are theoretical efforts that have demonstrated that, un-

der some assumptions and given a low dimensional representation, we can in fact

achieve data-efficiency. However, they do not provide insights into how to learn

such representations. Therefore, an important direction for future work consists in

identifying how to construct, or learn, a representation with the key properties to

achieve the aforementioned benefits.

3.6 Conclusion
In this chapter, we brought clarity to the field of representation learning in RL. We

identified four main representational properties targeted by existing works in the
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literature: to support policy evaluation, policy search, exploration or generalisation.

Accordingly, we presented an overview of the current works, classifying them with

respect to their representational properties and learning methods. We carried out

critical discussions on the current state of the art, unifying the different represen-

tation learning approaches, identifying contradictions and limitation. From these

discussions, important questions have emerged and let to ideas that we formulated

as interesting future work directions.



Chapter 4

Graph-Based RL

In the context of data-efficiency in policy evaluation or policy search, exact algo-

rithms such as policy iteration [59] or value iteration [104] have space and time

complexities polynomial in the size of the state space |S|, making them intractable

in large state spaces. On the other hand, one could easily project a high-dimensional

value function V 2 R|S| on a low-dimensional basis space Rd where d << |S|, by

selecting a set of random vectors of length d. In this case, the computational cost of

constructing the basis is constant, and the cost of solving the MDP will be reduced.

However, the resulting solution will most likely be far from the optimal solution due

to the randomness of the vectors. There is therefore the need for meaningful basis

functions that are also low-dimensional, to achieve a good compromise between

accuracy and low computational cost. The problem of MDP dimensionality reduc-

tion consists of finding an “optimal” and “compact” representation F such that the

original MDP can be represented as “accurately” and “efficiently” as possible with

respect to F. Selecting a representation, or basis functions, requires handling the

trade-off between accuracy and efficiency.

Typical linear approximation architectures such as polynomial basis functions

(where each basis function is a polynomial term) and radial basis functions (where

each basis function is a Gaussian with fixed mean and variance) have been stud-

ied to address this issue [73]. These architectures make the assumption that the

underlying state space has Euclidiean geometry. However, in realistic scenarios,

the MDP’s state space is likely to exhibit irregularities. For instance, let’s consider
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Figure 4.1: (a) Maze environment. (b) Optimal value function computed using value itera-
tion [104].

the environment depicted in Figure 4.1 that depicts the floor plan of a maze where

dark grey squares are strict walls, light grey squares are difficult access room and

the read square is the goal room. From the corresponding value function shown in

Figure 4.1(b), we observe that neighboring states can have values that are far apart

(such as states on opposite sides of a wall). In such cases, basis functions built for

Euclidean spaces do not necessarily approximate value functions in a reliable way.

To address this issue, other basis functions have been studied with the aim

of preserving the geometry of the state space. Example of such methods include

Fourier basis [71], diffusion wavelets, [94], Krylov basis [117] and Bellman Error

Basis Function [111, 112]. While these methods take a step in the right direction for

attempting to learn rich representations in non-Euclidea domains, they have some

important limitations, such as requiring some a priori knowledge of the environment

(such as the transition matrix), and being computationally or data hungry.

In this chapter, we propose to go a step beyond by investigating how to au-

tomatically learn representations from an approximate graph, inferred with limited

data. We investigate graph-based methods for constructing (or learning) efficient

basis for solving discrete MDPs. The main contributions of this work can be sum-

marised as follows:
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• We present a new line of research that challenges the smooth assumption for

the value function, showing that the graph induced by the MDP can lead to

suboptimal linear value function approximations under current graph-based

representation.

• We propose a novel Generalized Representation Policy Iteration algorithm

that allows the use of arbitrary graph-based basis function for value function

approximation.

• We identify representation learning on graphs methods that are well suited for

linear value function approximation.

• We discuss suggestions for promising future works in the direction of graph-

based data-efficient RL.

4.1 Graphs
Many domains such as social networks, recommender systems and biological

protein-protein networks underpin complex and irregular structures. These struc-

tures can be modelled with graphs, as graphs allow us to store and access relational

knowledge about interacting entities. Various real world applications require to

make predictions, or discover new patterns within complex domains, therefore the

use of graphs becomes essential. In particular, signal processing or machine learn-

ing methods can be deployed to infer a sparse representation of relational data to

facilitate the manipulation of such complex data. A major challenge is then to find

an efficient way to represent, or encode, the graph structure such that downstream

tasks can easily exploit these embeddings. In this chapter, we demonstrate how

chapter signal processing and machine learning on graphs can help to provide tools

for learning sparse representations of data lying on complex relational domains, and

benefit reinforcement learning problems.

A graph G consists of a set V of nodes and a set E of edges that connect pairs

of nodes. G is said to be weighted if a non binary value (a weight) is assigned to

each edge. If all edges have unit cost, the graph is unweighted. An undirected graph
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is a graph in which edges have no orientation; that is, if there is an edge from node

i to node j, then there exists an identical edge from node j to node i. Otherwise, the

graph is directed.

The adjacency matrix A is a square matrix whose elements indicate whether

pairs of vertices are adjacent or not in the graph. For an unweighted graph, the

entry at the ith column and jth row, denoted Ai, j is equal to 1 if there exists an edge

connecting nodes i and j, and Ai, j = 0 otherwise. In the case of a weighted graph,

Ai, j equals the weight on the edge connecting i to j. If the graph is undirected, then

Ai, j = Ai, j, i.e. A is symmetric. The degree of a node i is defined as the number of

edges incident to node i. The degree matrix D is a diagonal matrix with diagonal

elements Di,i corresponding to the degree of the corresponding node i.

4.1.1 MDPs as Graphs

MDPs can be intuitively represented using graphs, with states being the nodes and

the transition probability being the adjacency matrix. For illustration, consider the

two room MDP as shown in Figure 4.2(a), which is a traditional RL environment,

often used as a case study in tabular RL [27, 141, 95]. This environment is a 2D

navigation task, whose state space is discretised such that a state is a specific unique

location in the domain, and actions are steps taking you from one location to an-

other. In this specific instance, there are 56 states in total, of which 30 states are

inaccessible since they represent interior and exterior walls (dark grey blocks). The

remaining 26 states are divided into 1 doorway state and 25 interior room states.

The agent can move freely in all for cardinal directions across accessible states and

is rewarded by +100 for reaching the last accessible state in the upper right-hand

corner of the second room (red block). The unweighted directed graph inferred

from this MDP is shown in Figure 4.2(b).

4.1.2 Diffusion on a Graph and Laplacian Eigenmaps

The notion of diffusion, widely used in many fields such as physics, chemistry, bi-

ology, sociology, and economics, is also useful to describe aspects of MDPs. The

concept of diffusion on a graph can be understood as how information will “flow”,
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(a) (b)

Figure 4.2: Two-room environment. (a) A two-room environment with 56 total states, di-
vided into 26 accessible states (including one doorway state), and 30 inaccessi-
ble states representing exterior and interior walls. (b) The equivalent environ-
ment represented as a graph of accessible states. Two states are connected by
an edge if the probability of getting from one state to the other in a single step
is non zero.

or diffuse, from one node in the graph into the rest of the graph. For example, the

random walk matrix Pr = D�1A is a diffusion model whose powers determine how

quickly a function on the graph will converge to the long term distribution under

the random walk [23]. This notion is naturally related to the value function: on

a graph induced by the MDP and a given policy, the value function looks like the

reward diffusing through the graph. Considering the two-room MDP [95] shown

in Figure 4.2(a), this phenomenon appears evident when visualising the true value

function of the random policy on the corresponding graph (Figure 4.3). Although it

is an informative diffusion operator for analysing MDPs, the matrix Pr is not nec-

essarily symmetric, therefore analysing its spectra can be computationally difficult.

Luckily, the graph Laplacian is a symmetric matrix and is fundamentally related to

the notion of diffusion on a graph, making it a good choice of diffusion operator.

The graph Laplacian is defined as L= D�A. The spectra of the graph Lapla-

cian reveal structural properties of undirected and directed graphs. In particular, the

eigenvectors of the graph Laplacian (Laplacian Eigenmaps) are important for con-

structing low-dimensional embeddings of graphs [23] and for understanding rep-

resentations for RL [95]. When multiplying a vector v by the Laplacian L, each

element of the vector Lv expresses how quickly v would be changing at each node
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Figure 4.3: True value function on the two-room environment computed using value itera-
tion [104].

under a time step of diffusion. In particular, for a function f : V 7! R on a graph,

the following is easy to show [72]:

L f (i) = Â
(i, j)2E

( f (i)� f ( j)), (4.1)

meaning that the Laplacian acts as a difference operator.

An additional key property of the graph Laplacian is that projections of value

functions on the eigenspace of the Laplacian produce the smoothest global approx-

imation respecting the underlying graph topology. This arises from the fact that the

Laplacian Eigenmaps yield a low-dimensional representation of a MDP, generating

an orthogonal basis that reflects the nonlinear geometry of the state space. As an

analogy to traditional signal processing, the eigenvectors of the graph Laplacian as-

sociated with the smaller and largest eigenvalues can respectively be seen as the low

and high frequencies of a signal. This is reflected in Figure 4.4 where we show the

values of the first few eigenvectors over the tworoom MDP. As it can be seen, the
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Figure 4.4: Eigenvectors 2 to 7 of the graph Laplacian induced by the tworoom MDP. The
first eigenvector, not shown here, is constant across the environment because
the Laplacian rows sum to 0.

second eigenvector partitions the environment into the two different rooms, while

others capture different structural symmetries in the graph. For example, eigenvec-

tor 3 and 4 identify the left and right halves of each room. Eigenvector 5 organises

the nodes by the distance to the bottleneck node, and eigenvector 6 captures a car-

dinal symmetry in the graph.

4.1.3 Representation Learning on Graph

In the majority of real world graph related applications, we are confronted with

very large graphs whose adjacency matrices cannot be fully stored in memory and

spectral analysis becomes infeasible. As a result, the recent years have seen in-

creasing effort in building systems to automatically learn to encode graph structure

into low-dimensional embeddings, as opposed to constructing features from the ad-

jacency matrix. Successful applications include node classification [13], node clus-

tering [29] and link prediction [81]. The potential of such graph embeddings tech-

niques remains widely under-explored in reinforcement learning. Consequently, we

propose to use node embedding models as basis functions for the value function
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approximation in order to automatically learn to encode the graph structure–hence

the MDP–into low-dimensional embeddings.

In the following, we identify existing node embedding methods that have

proven powerful in various applications and investigate how their performance

translates to RL.

4.1.3.1 Node2Vec

Node2vec [45] is an algorithmic framework for learning continuous feature rep-

resentations of nodes in networks. It is inspired by the powerful language model

Skip-gram [100] which is based on the hypothesis that words that appear in the

same context share semantic meaning. In networks, the same hypothesis can be

made for nodes, where the context of a node is derived by considering the nodes

that appear in the same random walk on the graph. Therefore, node2vec learns the

node embeddings based on random walk statistics. The key is to optimize the node

embeddings so that nodes have similar embeddings if they tend to co-occur on short

(biased) random walks over the graph. Moreover, it allows for a flexible definition

of random walks by introducing parameters that allow interpolation between walks

that are more breadth-first search or depth-first search.

Specifically, for a graph G = (V,E ,A) (where V is a set of nodes, E a set of

edges and A the weight matrix) and a set W of T biased random walks collected

under a specific sampling strategy on the graph G, node2vec seeks to maximize

the log-probability of observing the network neighbourhood of each node u 2 V

conditioned on its features representations, given by f (a matrix of size |V |⇥ d

parameters, where d is the dimension of the feature space):

max
f Â

w2W

T

Â
i=1

logP(Nw(ui)| f (ui)), (4.2)

where Nw(ui) describes the neighborhood of the ith node in the walk w. The proba-

bility of a the neighbourhood of a node occurring given the node’s representation is

modeled under the assumption of conditional independence between neighbouring



4.1. Graphs 90

nodes as follows

P(Nw(ui)| f (ui)) = ’
u j2Nw(ui)

P(u j| f (ui)) . (4.3)

The individual probabilities are modeled by a softmax, making the further assump-

tion that a node a neighbouring node have a symmetric effect over each other:

P(u j| f (ui)) =
exp( f (u j) · f (ui))

Âv2V exp( f (v) · f (ui))
. (4.4)

The set of random walks W is generated by sampling a fixed number of walks

of fix length from each node in the graph observing the following sampling strategy:

if the random walk just traversed edge (t,v) and now resides at node v, the next step

will be made according to the unnormalised transition probability of traversing edge

(v,x), defined by rxv = gpq(t,x) · Avx, with

gpq(t,x) =

8
>>>>><

>>>>>:

1
p if dtx = 0

1 if dtx = 1

1
q if dtx = 2

(4.5)

where dtx denotes the shortest path distance between nodes t and x. The hyperpa-

rameters p > 0 and q > 0 control the distance to the starting node and the tendency

to revisit nodes.

4.1.3.2 Struc2Vec

By introducing a bias in the sampling strategy, node2vec allows us to learn repre-

sentations that do not only focus on optimizing node embeddings so that nearby

nodes in the graph have similar embeddings, but also consider representations that

capture the structural roles of the nodes, independently of their global location on

the graph. Another node embedding approach, struc2vec, proposed by [125] ad-

dresses the problem of specifically embedding nodes such that their structural roles

are preserved. The model generates a series of weighted auxiliary graphs Gk (with
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k = 1,2, ...) from the original graph G, where the auxiliary graph Gk captures struc-

tural similarities between nodes k-hop neighborhoods. Formally, let Rk(ui) denote

the ordered sequence of degrees of the nodes that are exactly k-hops away from ui,

the edge-weights wk(ui,v j), in the auxiliary graph Gk are recursively represented by

the structural distance between nodes ui and v j defined as

wk(ui,v j) = wk�1(ui,v j)+d(Rk(ui),Rk(u j)), (4.6)

where w0(ui,v j) = 0 and d(Rk(ui),Rk(u j)) is the distance between the ordered de-

gree sequences Rk(ui) and Rk(u j) computed via dynamic time warping [125].

Once the weighted auxillary graphs Gk are computed, struc2vec runs biased

random walks over them and proceeds as node2vec, optimising the log-probability

of observing a network neighborhood based on these random walks.

4.1.3.3 GraphWave

The GraphWave algorithm as proposed by [30] takes a different approach to learn-

ing structural node embeddings. It learns node representations based on the diffu-

sion of a spectral graph wavelet centered at each node. For a graph G, L=D�A de-

notes the graph Laplacian, where A is the adjacency matrix and D is a diagonal ma-

trix, whose entries are row sums of the adjacency matrix. Let U denote the eigenvec-

tor decomposition of the graph Laplacian L=ULUT and L = diag(l1,l2, . . . ,l|V |)

denote the eigenvalues of L. Given a heat kernel gs(l ) = e�sl for a given scale s,

GraphWave uses U and gs to compute a vector yyyu representing diffusion patterns

for node u as follows:

yyyu =Udiag(gs(l1),gs(l2), . . . ,gs(l )|V |)UT du

where du is the one-hot indicator vector for node u. Then, the characteristic function

for each node’s coefficients yyyu is computed as

fu(t) =
1
|V |

|V |

Â
m=1

eitYmu
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Finally, to obtain the structural node embedding f (u) for node u, the paramatric

function fu(t) is sampled at d evenly spaced points t1, . . . , td:

f (u) =
⇥
Re(fu(ti), Im(fu(ti))

⇤
t1, . . . , td.

4.1.3.4 Variational Graph Auto-Encoder

An alternative is to adopt Variational Graph Auto-Encoder (VGAE) to learn graph

features. The Variational Graph Auto-Encoder proposed by [69] is a latent vari-

able model for graph-structure data capable of learning interpretable latent repre-

sentations for undirected graphs. Considering an undirected and unweighted graph

G = (V,E ,A) with N = |V| nodes and feature matrix X 2 RN⇥F with the ith row

representing the feature of node i, the VGAE inference model is given by

q(Z|X ,A) =
N

’
i=1

q(zi|X ,A), (4.7)

with q(zi|X ,A) = N (zi|µi,diag(s2
i )), wheare µ is the matrix of mean vec-

tors and s is the variance vector given respectively by µ = GCNµ(X ,A) and

logs = GCNs (X ,A). The parameters to the Graph Convolutional Neural Net-

works (GCNs) are denoted by qi. The matrix Z 2 RN⇥D is the matrix of latent

variables whose rows are the vectors zi. The generative model is given by

p(A|Z) =
N

’
i=1

N

’
j=1

p(Ai j|zi.z j) (4.8)

with p(Ai j = 1|zi,z j) = s(zT
i z j), where s(·) denotes the sigmoid function.

The learning phase optimises the following loss function w.r.t to the variational

parameters qi

L= Eq(Z|X ,A)[log p(A|Z)]�KL[q(Z|X ,A)||p(Z)], (4.9)

In the following chapter, we describe how we apply these graph features learn-

ing methodologies to reinforcement learning strategies.
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4.2 Generalized Representation Policy Iteration

Algorithm 1 Representation Policy Iteration
Input:
p0: sampling strategy,
N: number of random walks to sample,
T : length of each walk,
d: number of proto-value basis functions to use,
e: convergence condition for parameter estimation algorithm.
Output: e-optimal policy p
1. Sample Collection Phase
Collect a data set D of N episodes of successive samples {(si,ai,si+1,ri)} by
following sampling strategy p0 for maximum T steps (terminating earlier if it
results in an absorbing goal state).
2. Representation Learning Phase
Using samples in D, build an undirected graph G by connecting state si to s j with
a unit cost edge if the pair (i, j) appear successively. Compute the normalised
Laplacian L = D�

1
2 (D�W )D�

1
2 . Collect the d smoothest eigenvectors of L to

form the basis matrix F, a |S|⇥d matrix.
3. Control Learning Phase
Using a parameter estimation algorithm such as LSPI or Q-learning, find an e-
optimal policy p that maximizes the action value function Qp = fffq p within the
linear span of the basis fff .

The representation policy iteration algorithm (RPI) was introduced in [95] to

address the problem of jointly learning compact representations and an optimal pol-

icy. It is a three steps algorithm consisting of (1) a sample collection phase, (2)

a representation learning phase and (3) a parameter estimation phase. In RPI, the

representation learning phase is predefined. Namely, an undirected graph G is built

from the available data set D collected in the initial phase of the algorithm (data

collection). Then a diffusion operator, such as the normalised Laplacian L is com-

puted on graph G and the d-dimensional basis functions fff = [f1, . . . ,fd] are con-

structed from spectral analysis of the diffusion operator. Specifically, the fi’s are

the smoothest eigenvectors of the graph Laplacian and are known as proto-value

functions (PVFs). The notion of smoothness on a graph relates to a function, or

signal on the nodes of a graph, whose values between strongly connected nodes do

not vary much. Because the graph Laplacian is a diffusion operator, its eigenvec-

tor associated with the lowest eigenvalues are smoothest on the graph. The pseudo
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Figure 4.5: (a) Maze environment. The dark grey squares are strict walls, while the light
grey square are difficult access rooms. The red square is the goal room. (b)
Optimal value function computed using value iteration [104].

code of RPI is presented in Algorithm 1.

The key intuition is that given a state-graph that perfectly represents the MDP,

the value function is modelled as a diffusion process over the graph, and therefore

it is a smooth function on the graph (see Figure 4.3). Hence, given the spectral

properties of the Laplacian operator, PVFs are a good choice of basis functions for

preserving the smoothness of the value function. However, it is not guaranteed that

we can construct a graph from a limited number of samples such that its derived

PVFs reflect the underlying ground truth state space. In fact, we can show that

the value function is not as smooth on the estimated graph (constructed from sam-

ples) as it is on the ground truth MDP graph where the edges are weighted by the

transition probability.

We consider the environment depicted in Figure 4.5, where dark grey squares

are strict walls, light grey squares are difficult access room and the read square is

the goal room. To construct the estimated graph Ĝ, we first collect samples by

running 100 independent episodes starting at a random initial state and taking suc-

cessive random actions until the goal state or the maximum number of steps has

been reached. We then connect temporally consecutive states with a unit cost edge.

When the dynamics of the MDP is fully known, the environment can be represented
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by a graph G where the states are the nodes and the edges represent actual transition

probabilities (i.e. edges between accessible states have weight 1, edges between an

accessible state and a wall state have weight 0, and edges between an accessible or

difficult access state and a difficult access state have weight 0.2).

In order to study the smoothness of the value function on these two graphs, we

use the following function to measure the global smoothness of the value function

Â
(i, j)2E

wi j(V (si)�V (s j))
2 =VVV>LVVV ,

where L is the graph Laplacian and wi j is the weight on the edge connecting state

si to s j. In other words, if values V (si) and V (s j) from a smooth function reside

on two well connected nodes (i.e. wi j is large), they are expected to have a small

distance (vi� v j)2, hence VVV>LVVV is small overall. In Table 4.1, we provide the

smoothness factor measured for both the learned and ground truth graph. The anal-

ysis clearly shows a reduction of the value function smoothness when going from

the ideal weighted graph to the estimated and unweighted graph (usually considered

in realistic settings, when the transition probability is not known a priori)

VVV>LVVV
Estimated graph Ĝ 14831.72
Ground truth graph G 5705.65

Table 4.1: Analysis of the smoothness of the value function on different graphs.

It follows that the lowest eigenvectors of the graph Laplacian will not be an

ideal basis function for approximating the signal on the graph (i.e. ., the value

function) since the signal is not as smooth on the estimated graph Ĝ as it is on the

ground truth weighed graph G.

As results, it is expected that the smoothest PVFs of the estimated graph Ĝ on

which the value function is less smooth, will not allow to reconstruct the true value

function as well as the smoothest PVFs of the ideal graph. This phenomenon is

verified in Figure 4.6, where we show in both cases the mean squared error (MSE) of

the linear approximate value function computed in a least-square way using the true
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value function (computed via value iteration [104]) for the environment shown in

Figure 4.5. The figure clearly shows the loss in accuracy due to the non ideal support

Ĝ on which the smoothness assumption does not hold. This motivates us to depart

from constructing representation, and to instead resort to representation learning on

graphs frameworks that still exploit the key structural information captured in Ĝ.
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Figure 4.6: MSE between the approximate value function and the true value function when
using PVFs of the ground truth graph G (blue) and the estimated graph Ĝ
(pink) as basis functions. On the x axis we make the dimension of the basis
function (the number of PVFs) vary.

4.3 Framework
To overcome this limitation, we propose to generalize RPI to allow different repre-

sentation learning methods. In particular, we first observe that state space topologies

of MDPs can be intuitively modeled as (un)directed graphs, with the nodes being

the states and the transition probability matrix being the similarity matrix. When

the transition probabilities are unknown, we can construct a graph from collected

samples by connecting temporally consecutive states with a unit cost edge. There-

fore, similarly to [93], we propose to construct the graph from collected samples of

an agent acting in the environment given by the MDP. We then use the node em-

bedding methods described in Section 4.1.3 to automatically learn representations

on the graph induced by the MDP that preserves the underlying geometry of the

state space. Finally, we use the learned representations to linearly approximate the
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value function. We call this algorithm Generalized Representation Policy Iteration

(GRPI) as it generalises RPI by allowing any representation method. It is described

in Algorithm 1.

Algorithm 1 General Representation Policy Iteration
Input:
p0: sampling strategy,
N: number of random walks to sample,
T : length of each walk,
d: dimension of the basis functions,
embed(): representation learning method,
e: convergence condition for LSPI.
Output: e-optimal policy p
1. Sample Collection Phase
Collect a data set D of T successive samples
{(si,ai,si+1,ri),(si+1,ai+1,si+2,ri+1), . . .} by following sampling strategy
p0 for maximum T steps (terminating earlier if it results in an absorbing goal
state).
2. Representation Learning Phase
Build basis function matrix fff = embed(D,d).
3. Control Learning Phase
Using a parameter estimation algorithm such as LSPI or Q-learning, find an e-
optimal policy p that maximizes the action value function Qp = fffq p within the
linear span of the basis fff .

4.3.1 Experiments

We consider the 10⇥ 10 two-room environment used in [95], shown in Fig-

ure 4.7(a). It consists of 100 states in total, divided into 57 accessible states and

43 inaccessible states representing walls. There is one goal state, marked in red and

the agent is rewarded by +100 for reaching the goal state.

We also consider the obstacles-room environment depicted in Figure 4.7(b). In

this environment, there are 100 states in total, some of which are inaccessible since

they represent exterior walls and 14 of which are accessible from neighbouring

states with a fixed probability of 0.2 (they represent a moving obstacle or difficult

access space). All the other states are reachable with probability 0.9. The agent

is rewarded by +100 for reaching the state located at the upper-right corner. We

construct the corresponding graphs where each location is a node, and the transi-
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(a) (b)

Figure 4.7: Two different maze environments. The purple nodes represent strict walls,
while the blue nodes are difficult access rooms. All other nodes represent ac-
cessible rooms The node shown in red is the goal room.

tions (4 possible actions: left, right, up and down) are represented by the edges.

We run and evaluate the General Representation Policy Iteration (GRPI) algorithm

using embedding methods from Section 4.1.3 to compute the basis functions in the

second phase of the algorithm.

Concretely, we execute the following steps:

1. We first collect a set D of 100 sampled random walks, each of length 100 (or

terminating early when the goal state was reached). The number and length

of random walks collected is empirically chosen to construct the smallest

data set under which GRPI with proto-value-functions of dimension 70 (the

baseline) can solve the two-room environment. The sampling dynamic is

as follows: starting from a random accessible sate, the agent takes one of

the four possible actions (move up, down, left or right). If a movement is

possible, it succeeds with probability 0.9. Otherwise, the agent remains in the

same state. If the agent reaches the gold state, it receives a reward of 100, and

is randomly reset to an accessible interior state. We use off-policy sampling

(p0 = random policy) to collect the samples, except in the case of node2vec,

where we follow node2vec sampling strategy and generate samples under a

biased random walk defined by (4.5). We use grid search to find the optimal

hyperparameters p = 1 and q = 4 that guide the walk according to [45].
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2. Following Mahadevan and Maggioni [95], we then use sample transitions in

D to build an undirected graph where the weight matrix W is the adjacency

matrix and run embed(D,d) with embed 2 {Node2vec (n2v), struc2vec (s2v),

Variational Graph Auto-encoder (VGAE), GraphWave (GW)} for diffenrent

choices of d. In the case of node2vec, we reuse the samples set to derive the

node neighbourhoods used in the objective function.

3. We then learn the parameters of the linear value approximation from the set of

samples D using the parameter estimation method LSPI for its demonstrated

sample-efficiency [73].

4. Finally, to evaluate the performances of the different representations, we use

the policies learned by GRPI for each representation learning method to run

simulations starting from each accessible states. We compare the perfor-

mance of each representation learning method in terms of the average number

of steps required to reach the goal. We also compare to two baselines: the tra-

ditional PVF basis functions, and random vectors. The results for the two en-

vironments, averaged over 20 independent runs, are shown in Figures 4.8(a)

and 4.8(b). Each run consists of episodes of a maximum of 100 steps, where

each episode is terminated earlier if the agent reached the goal state.

4.3.2 Discussion
Figures 4.8(a) and 4.8(b) show the average number of steps to reach the goal as

a function of the dimension of the basis function. We first observe that the policy

learned via the GraphWave basis function lead to very poor performances regardless

of the dimension size. We investigate this phenomenon by looking at the approx-

imate value function learned under these basis. The approximate state values are

depicted in Figrue 4.9. Because GraphWave learns embeddings that are exclusively

structural by design, we hypothesise that they fail at capturing global network prop-

erties. In fact, the embeddings learned by GraphWave for the corner states in the

two-room environment are equals, making it obviously impossible to learn different

state values with linear approximation. This suggests that although the GraphWave
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(a)

(b)

Figure 4.8: Average number of steps required to reach the goal steps using the various basis
functions. On the x axis we make the dimension of the basis functions vary.
4.8(a) corresponds to the two-room environment, while 4.8(b) corresponds to
the obstacle-room environment.

is a powerful model for capturing structural information in networks, it is not a good

choice of basis function for approximating value function on a graph.

On the other hand, we notice that although struc2vec was also designed to cap-

ture structural similarities between nodes, it also preserves the local properties of

the graph by considering neighborhoods of different sizes [125]. Hence, struc2vec

is able to accurately approximate the value function even in graphs that have sym-



4.3. Framework 101

Figure 4.9: Approximate value function via GRPI using GraphWave basis function of di-
mension 70 on the two-room environment. Because GraphWave learns embed-
dings that are exclusively geometrically structural by design and fail at cap-
turing global network properties, GRPI with GraphWave learns similar state
values for states that are geometrically similar (e.g. corner sates), leading to
large value approximation error in the two-room environment where there is a
reward in one corner state only.

metrical structure such as the two-room environment.

Finally, the result show that VGAE and node2vec are good choices of basis

functions for approximating the value function in low dimension. Indeed, they lead

to good performances in terms of number of steps to reach the goal states with basis

functions of dimension as low as 20 for VGAE and 30 for node2vec. On the con-

trary, we observe that the PVFs require dimension of at least 70 to reach comparable

performances on the two-room domain and dimension of 50 on the obstacle-room

domain. The random baseline does not allow for consistently accurate enough value

approximation to solve neither the two-room or obstacle-room environment with

vectors of dimension smaller or equal to 70.

We observed that the sampling strategy used in node2vec has a important im-

pact on the performance of the learned policy. Using grid search, we find that the

optimal values for the hyperparameters p and q that guide the random walks (see

Equation (4.5)) are 1 and 4 respectively. We show the performances of node2vec

with selected values of p and q in Figure 4.10. When p< q and q> 1, the strategy is

biased to encourage walks to backtrack a step and to visit nodes that are close to the
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Figure 4.10: Average number of steps required to reach the goal steps using node2vec with
varying parameters p and q. On the x axis we make the dimension of the basis
functions vary.

current node in the walk. Therefore, it leads to walks that approximate a breadth-

first search behavior, gathering a local view of the underlying graph with respect

to the starting node. On the other hand, when p > q and q < 1, the walk approx-

imate a depth-first search behavior and lead to more outward exploration. Grover

and Leskovec [45] have shown that the former type of sampling strategy allows to

reflect structural equivalences of nodes whereas the second type allows to capture

homophily within the network. Our results depicted in Figure 4.10 suggests that for

maximising return in grid domains, structural equivalence plays a more important

role than homophily.

4.3.3 Additional Results

In order to investigate whether we can expect a similar behaviour in larger environ-

ments, we consider a 100⇥50 three-room environment. This environment is similar

to the two-room environment but with two interior walls, with the upper wall having

the opening more on the right and the lower wall having the opening more on the

left, as shown in Figure 4.11(a).

We construct the graph from 500 collected samples of length at most 100 and
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derive the PVFs and the node2vec embeddings. For each of these basis functions,

we solve the linear approximation problem in the least-square sense by minimizing

the following loss function with respect to the parameter qqq using the optimal value

function computed via value iteration [104]:

L(q) = 1
|S| Â

s2S

⇣
V (s)�

d

Â
i=1

qifi(s)
⌘2

. (4.10)

Figure 4.11(b) shows the gain of adopting node2vec feature learning in rein-

forcement learning in high dimensional state space, suggesting that node2vec is able

to capture rich information about the MDP in compact basis vectors, even in larger

state spaces.



4.3. Framework 104

(a)

0 50 100 150 200 250 300 350 400 450 500

Basis function dimension

6

7

8

9

10

11

12

13

14

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

n2v

pvf

(b)

Figure 4.11: (a) Three-room environment. The purple nodes represent strict walls, while
the blue nodes are difficult access rooms. All other nodes represent accessible
rooms The node shown in red is the goal room. (b) Mean squared error of
value function approximation. On the x axis we make the dimension of the
basis functions vary.



4.3. Framework 105

4.3.4 Conclusion and Future Work
In this work, we have generalised the representation policy iteration algorithm to

include a representation learning phase that allows to use any representation learn-

ing method for computing the basis functions in the linear value approximation.

We investigated several representation learning on graphs mechanisms for learning

high quality node embeddings that preserve the geometry (global and/or local) of

the graph induced by the Markov decision process. We compared the performance

of several representation learning methods with respect to value function approxi-

mation error and total return. Finally, we observe that models that are designed to

capture the global structural geometry of the graph while preserving local proper-

ties do well at approximating the value function in low feature space dimensions,

outperforming the commonly considered PVFs for this task.

The main findings of this work can be summarised as follows:

• Evidence that the smoothness assumption of the value function on an esti-

mated unweighted graph does not necessarily hold, which leads to poor value

function approximation when using smooth basis functions such as PVFs.

• Using basis functions that automatically learn to embed the geometry of the

graph induced by the MPD can lead to improved performance over the PVFs.

• Such embedding methods need to capture the structural equivalence of the

nodes while preserving the local properties of the graph.

• Under sampling strategies satisfying the requirements of the previous point,

node2vec [45] outperforms the commonly used PVFs.

• The Variational Graph Auto-Encoder, which is a more complex system than

node2vec and requires more training, leads to minor performance improve-

ment compared to node2vec.

These findings encourage the further study of representation learning on graphs

for achieving efficient and accurate policy learning for reinforcement learning. We

highlight in the following relevant open questions for future work.
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• Through this work, node2vec emerged as a promising and efficient represen-

tation learning algorithm for discovering rich basis function for approximat-

ing the value function. Certainly, it is therefore of great interest to conduct fur-

ther experimental and theoretical analysis of the embeddings node2vec yields.

Such a study will help to better understand to what extend node2vec could be

useful for RL, and how it relates to other graph-based and non graph-based

representations.

• Phase (1) of GRPI requires collecting data in order to construct a graph. This

involves storing the entire graph in memory, which is not feasible in very large

state spaces. This motivates further research on graph-inspired representation

learning systems that could capture the same structural information about the

MDP without necessitating a memory complexity that is linear in the state

space size.

• Another limitation emerges from GRPI. Indeed, in phase (2), learning a state

representation for all states requires having a graph with a node for all states,

meaning that in phase (1), it is assumed that all states were explored at least

once. This is an unpractical assumption to make when exploration is often

limited. As a result, strategies for generating representations for states that

have not been seen during exploration should be investigated.

• The graph representation learning mechanisms explored in this work were not

initially designed specifically for RL. The fact that generic graph representa-

tion learning algorithms like node2vec and VGAE have proven to be useful in

RL is a good motivation for designing similar systems with RL in mind. For

example, by considering other aspects of the MDP in addition to the transition

matrix, such as the discount factor or the reward function.

• This study focused on tabular environments, where all states are uniquely

identifiable. It remains unclear how the representation learning phase would

handle the case of environments with partially observable states, where the

agent receive states observations in the form of features (e.g. images). Investi-
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gating graph-based representation learning algorithm for partially observable

MDPs would make an interesting future research direction.

In the next chapter, we will address the first to points. We start by conducting

further analysis of node2vec, then, we derive a new graph-inspired representation

learning algorithm, that does not require storing a graph in memory.



Chapter 5

Designing Graph-Inspired

Representation for Data-Efficient RL

As seen in Chapter 4, graph-based representations can help to improve data-

efficiency in value function approximation, by capturing the geometry of the un-

derlying state space in compact low dimensional vectors. In particular, node2vec

[45] stood out as an efficient method that outperforms the state-of-the-art graph-

based representation PVFs [95] under limited data constraints. As a result, in this

chapter, in an effort to understand the potential and limitation of node2vec in RL,

we take a closer look at how node2vec performs in different types of environments,

we study the effect of the key hyperparameters and we study the objective func-

tion of node2vec. From the theoretical analysis emerges an interesting relationship

with PVFs, a relationship that is also reflected when we analyse visualisations of

node2vec representations with PVFs.

We then build on the node2vec system to develop state2vec, an efficient yet

reliable framework for learning representations that are explicitly designed for RL.

We are interested in learning features that capture the underlying geometry of the

state space. In particular, we seek the following properties for the features: (1) to be

learned from data rather than handcrafted—to avoid structural bias (see Chapter 4,

Section 4.2), (2) to have a computationally efficient learning process to scale to

large state spaces (3) to be low-dimensional—to ensure a fast adaptation when used

in different tasks within the same domain (i.e. MDPs with shared state and action
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spaces), and (4) to be geometry-aware rather than task-aware—to generalize across

optimal policies. To learn such features, we extend the well known node2vec al-

gorithm [45] to infer graph embeddings capturing temporal dependencies. In other

words, state2vec encodes states in low-dimensional embeddings, defining the simi-

larity of states based on the discounted future transitions. Moreover, we impose that

the data used for training is fully exploratory and independent of any specific task

so that it remains reward agnostic. This allows us to use the same representation

without any retraining of the features to solve tasks with varying reward functions.

To solve a specific task, the agent will need to simply learn a task-aware coefficient

vector to derive a value function approximation. The dimensionality of the coeffi-

cient vector is imposed by the embedding dimension, which we constraint to be low

to favor sample-efficiency. We show experimentally that state2vec captures with

high accuracy the structural geometry of the environment while remaining reward

agnostic. The experiments also support the intuition that off-policy state2vec rep-

resentations are robust low dimensional basis functions that allow to approximate

well the value function.

5.1 A Closer Look at Node2vec

A key aspect of node2vec resides in the ability to control the type of geometrical

information to be captured within the graph by inserting a bias in the sampling

strategy used to define the notion of neighbourhood on the graph. Indeed, node2vec

guides the random walks on the graph by taking a next step according to an un-

normalised transition probability which is derived using the adjencency matrix A.

Specifically, the probability of transitioning from state v to connected state x, when

having last visited state t is defined by rxv = gpq(t,x) · Avx, with

gpq(t,x) =

8
>>>>><

>>>>>:

1
p if dtx = 0

1 if dtx = 1

1
q if dtx = 2

(5.1)
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where dtx denotes the shortest path distance between nodes t and x. Effectively, p

acts as a return parameter, controlling the likelihood of immediately revisiting a

node in the walk. When p is chosen to by high ( > max(q,1)), the walk is less

likely to visit an already visited node in the following two steps (except when there

are no other neighbour available). This strategy results in moderate exploration that

prevents 2-hop redundancy. However, when p is set to a low value (< min(q,1)),

the walk is encouraged to stay local, backtracking more often. The parameter q on

the other hand acts as a in-out parameter, controlling a far away from the current

node the walk should go. When q is large, (> 1), the walk will tend to stay closer

to starting node, favouring local exploration, resulting in a strategy that resembles

breath-first search (BFS). On the contrary, when q < 1, the walk will distance itself

from the current node, leading to a search that is akin to depth-first search (DFS).

In a graph containing several clusters of highly interconnected nodes, Grover and

Leskovec [45] show that when sampling neighbourhoods using a BFS strategy, the

embeddings learned by node2vec capture structural equivalence, i.e. nodes that

have similar structural roles (such as acting as community hubs) are close in the

embedding space. On the other hand, when the neighbourhoods are sampled using

a DFS strategy, the homophily is captured in the embedding space, such that nodes

within the same interconnected cluster have similar embeddings.

In Chapter 4, we have found that a sampling strategy that encourages local

exploration and reflects BFS behaviour was most favourable for learning state em-

bedding or value function approximation in the two-room environment. In the fol-

lowing, we investigate whether this finding is consistent across environments with

different structures than the grid like structure of the two-room environment. To this

end, we design three different graphs with different topologies, we run node2vec on

each of these graphs using varying values for the parameter q, and we study the

performance of each embeddings in terms of value function approximation error.

The first environment (Figure 5.1(a)) is the four-room environment, which includes

169 states separated into four rooms connected by doorways, and there is a single

reward in the corner of one of the rooms. The second environment (Figure 5.1(c))
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is a low-strech spanning tree consisting of 64 nodes, where the degree of each node

is in {1,2,3}, with a reward at the center of the graph. The last environment (Fig-

ure 5.1(e)) is a 1-dimensional torus of 80 nodes with a single rewarding node. The

rewarding node in all the environment generates a reward of +1, all other nodes

have a reward of 0, and the discount factor is g = 0.9. Figures 5.1(a), 5.1(c) and

5.1(e) show the true value function under the uniform policy as a signal on the graph

corresponding to each environment.

On each environment, we run node2vec with a dimensionality d = |S|/2, walk

length of 10, a window size of 3, and a fixed value for the return parameter p =

1. We experiment with varying values of q, biasing the walks from adopting a

DFS behaviour to a more BFS behaviour. We then learn the parameters qqq that

best approximate the true value function using the node2vec state representations as

basis functions. We then evaluate the performance of the representations computing

the Mean Squared Error (MSE)

1
|S| Â

s2S

⇣
V (s)�fff(s)qqq>

⌘2
(5.2)

for varying values of the in-out parameter q. Figures 5.1(b), 5.1(d) and 5.1(d) depict

the average MSEs over 10 independent runs. Interestingly, it appears that a BFS

like sampling strategy is overall better for approximating value functions (the MSE

decreases as q increases). When the graph is not strongly connected, i.e. when the

expected shortest path between any two nodes is relatively large compared to the

size of the state space (like in the low-stretch tree domain or in the torus), the results

suggest that the type of walk does not have a strong impact on the performance (no

significant improvement from going to q= 0.5 to q= 4). On the other hand, in a grid

like environment, it is clearly better to favour locality over depth when sampling the

random walks.

To better understand whether the embedding learned by node2vec truly cap-

tures the geometry of the state space, we visualise the 2D PCA component of the

best node2vec embeddings for each environment (that is, with the hyperparame-

ters optimised to obtain the lowest approximation error). As seen in Figure 5.2,
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node2vec clearly captures the structural notion of a room in the four room domain,

and the concept of a chain in the 1-dimensional torus. Additionally, the notion of a

tree seems to persist in the node2vec embedding space of the low-strech tree.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Different MDP configurations with the value function shown with colours (left)
and corresponding MSEs with respect to the true value function when using
node2vec with varying values of the in-out walk bias parameter q (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Different MDP configurations with the value function shown with colours (left)
and their corresponding node2vec state embeddings projected into 2D PCA
space.
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5.2 Node2vec and PVFs

We now take a closer look at the objective function of node2vec to gain a better

understanding of how this representation compares to existing graph-based repre-

sentations used in RL.

We recall that node2vec maximises the log-probability of observing the net-

work neighbourhood of each node u2 V conditioned on its features representations,

given by FFF (a matrix of size |V |⇥ d parameters, where d is the dimension of the

feature space). Specifically, for a graph G = (V,E ,A) (where V is a set of nodes,

E a set of edges and A the weighted adjacency matrix) and a set Wr of T biased

random walks collected under sampling strategy r on the graph G,

max
fff Â

w2Wr

T

Â
i=1

log ’
u j2Nw(ui)

exp(fff(u j) ·fff(ui))

Âuk2V exp(fff(uk) ·fff(ui))

=max
fff Â

w2Wr

T

Â
i=1

Â
u j2Nw(ui)

log
exp(fff(u j) ·fff(ui))

Âuk2V exp(fff(uk) ·fff(ui))

=max
fff Â

w2Wr

T

Â
i=1

⇣
Â

u j2Nw(ui)

fff(u j) ·fff(ui)� log( Â
uk2V

exp(fff(uk) ·fff(ui)))
⌘

(5.3)

When the window size is set to be 1 (that is, neighbours are always directly con-

nected), we collect an infinitely long walk starting from each node (T = |V|), and

the walk strategy is uniformly random (equal chance of reaching any directly con-

nected node), the objective in (5.3) can be written as

max
fff Â

ui2V
Â

u j2E(i)

⇣
fff(u j) ·fff(ui)� log Â

uk2V
exp(fff(uk) ·fff(ui))

⌘
, (5.4)

where E(i) ✓ V denotes the subset of nodes reachable in one hop from node ui. If

we further enforce that the state representations have unit norm (i.e. |fff(u)|= 1 for

all u 2 V), we have that

fff(u j) ·fff(ui) = 1� 1
2
||fff(u j)�fff(ui)||22
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and (5.4) becomes

max
fff Â

ui2V
Â

u j2E(i)

⇣
1� 1

2
||fff(u j)�fff(ui)||22� log Â

uk2V
exp(1� 1

2
||fff(uk)�fff(ui)||22)

⌘

=max
fff

⇣
� Â

(i, j)2E

�1
2
||fff(u j)�fff(ui)||22

�
� Â

(i, j)2E
log Â

uk2V
exp(1� 1

2
||fff(uk)�fff(ui)||22)

⌘

=min
fff

⇣
Â

(i, j)2E

�1
2
||fff(u j)�fff(ui)||22

�
+ Â

(i, j)2E
log Â

uk2V
exp(1� 1

2
||fff(uk)�fff(ui)||22)

⌘

(5.5)

The first term can be written as

Â
(i, j)2E

||fff(u j)�fff(ui)||22 = Â
(ui,u j)2V⇥V

Ai j||fff(u j)�fff(ui)||22

=Tr(FFF>(D�A)FFF)

=Tr(FFF>LFFF)

(5.6)

where D is a diagonal matrix with degrees on the diagonal Duu = Âv2V Au,v and L

denotes the combinatorial graph Laplacian.

Thus, under the aforementioned constraints (window size of 1, uniform unbi-

ased sampling strategy and unit norm feature vectors), the node2vec objective is

min
FFF2Rn⇥d

⇣
Tr(FFF>LFFF)+ Â

(i, j)2E
log Â

uk2V
exp(1� 1

2
||FFFk�FFFi||22)

⌘
, (5.7)

where FFF is the representation matrix, whose ith column is the representation for

node ui, FFFi = fff(ui). Formulation (5.7) bears some resemblance with the objective

of another graph-based representation, as we show next. It is interesting to observe

that the nod2vec can be written as a smoothness problem (first term) augmented

with an auxiliary loss (second term).

Recall that the PVFs are defined as the eigenvectors of the graph Laplacian

L. The eigendecomposition of L is given by L = ULLLUT , where U is the |V|⇥ |V|

matrix whose columns are the eigenvectors of L, and LLL is the diagonal matrix whose

elements are the corresponding eigenvalues Lii = li. The PVFs are the columns of
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Figure 5.3: Features visualisation on the four room domains. The 4th and 9th PVFs are
depicted on the left, compared against the 22nd and 10th node2vec vectors,
shown on the right. More dimensions are depicted in Appendix A.4

U associated with the smallest eigenvalues. The following theorem emerged from

spectral graph theory:

Theorem 2. (Graph Drawing Objective, Koren [72])

PVFs are the solution of the following objective function.

min
U2Rn⇥d

Tr(UT LU) s.t. UUT = I (5.8)

where UUT = I ensures that columns of U form an orthonormal basis.

Interestingly, the first term in (5.7) is the main term in the graph drawing ob-

jective, which is the term that imposes smoothness. This overlap can be interpreted
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as follows: node2vec share a similar goal with the PVF, with an added component,

which acts as a regulariser over the entire graph. Indeed, while the graph drawing

objective (and the first term in (5.7)) seeks to maximise representation similarity be-

tween strongly connected nodes, the second term in (5.7) encourages to increase the

difference in the representation between all pairs (uk,ui) when uk 6= ui. This resem-

blance is also identified when visualising the values of the learned node2vec repre-

sentation against the value of the PVFs. In Figure 5.3, we show the values of se-

lected representation dimensions of node2vec and PVFs that have emerged has cap-

turing similar information. Additional visualisations are available in Appedix A.4

5.3 From Node2vec to State2vec
We have demonstrated that node2vec is a mechanism that is able to learn rich rep-

resentation for RL that allows to approximate the value function in low dimension

with better accuracy that state-of-the-art graph-based methods in limited data con-

straint. We now proceed to focus on the following limitation of this algorithm.

What if the graph is too large to be stored in memory? How can

we define state neighbourhoods that will capture the underlying

geometry of the state space?

We address these questions by designing a graph-inspired representation learning

method for RL. Our method draws inspiration from Grover and Leskovec [45]’s

node2vec, we hence refer to it as state2vec.

As usual, we are interested in solving an MDP M = (S,A, p,r,g), where S

is a finite set of discrete states, A a finite set of actions, p describes the transition

model, with p(s,a,s0) giving the probability of moving from state s to s0 given action

a, r describes the reward function, with r(s,a) expressing the immediate reward

observed when the agent is in state s and takes action a thereafter, and g 2 (0,1] is

a discount factor.

The key element of our method is that instead of sampling walks on a graph,

state2vec learns state action representations based on exploratory episodes statistics

(hence policy-dependent). It optimises the representations such that states that are
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successors in a exploratory trajectory have similar representation. Concretely, we

maintain a buffer D of exploratory trajectories L= {(s0,a0),(s1,a1), . . . ,(sn,an)} of

maximum length n+ 1 (terminating earlier if it results in an absorbing goal state).

Then, the following objective function is optimised using stochastic gradient de-

scent with repect to the representation matrix FFF:

max
FFF Â

L2D
Â

(s,a)2L
logP(N(s,a)|FFF(s,a)), (5.9)

where N(si,ai) = {(si+1,ai+1),(si+2,ai+2), . . .} is the neighbourhood of state action

pair (si,ai), defined as all the successors of (si,ai) in a trajectory. Similarly to

Grover and Leskovec [45], we make a conditional independence assumption and

model the conditional likelihood as

P(N(si,ai)|FFF(si,ai)) = ’
(s j,a j)2N(si,ai)

P(s j,a j|FFF(si,ai)) . (5.10)

Unlike the node2vec algorithm, we account for the fact that neighbours that are fur-

ther in time should be further discounted. We do so by modelling the the likelihood

of every source-neighbour pair as a sigmoid weighted by a discount factor

P(s j,a j|FFF(si,ai)) = g j�is(FFF(s j,a j) ·FFF(si,ai)) , (5.11)

where s denotes the sigmoid function.

Once the state2vec representations F are learned, we can use them as ba-

sis functions for solving the RL problem (GRPI, Chpater 4.2). In fact, since

the state2vec representations are learned from fully exploratory data, and reward-

agnostic, we can use the same representation to solve different tasks with shared

dynamics and varying reward functions. We thus consider the multi-task scenario,

consisting of multiple MDPs M = {M1,M2, . . .} where a task Mk = (S,A, p,rk,g)

is identifiable by its reward function rk.

The solving of task Mk 2M given the structural representation FFF reduces to
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learning parameter qk that best approximates the the following value function

Q̂pk(s,a) = FFF(s,a)>qw . (5.12)

This can be achieved using any parametric RL algorithm, such as fitted Q-learning

or LSPI [126, 73].

5.4 Experiments
We consider the four-room domain [141] shown in Figure 5.4. It is a two-

dimensional space quantized into 169 states, 4 of which are doorways. The agent

starts at a random location, and must collect a goal object at a location defined by

the task. Depending on the task, the environment also contains “dangerous” zones.

The goal object’s location is shown in green in Figure 5.4, while the dangerous

states are depicted in red. Collecting an object gives an instantaneous reward of

+100, and entering a dangerous state gives an instantaneous penalty of �10. The

the episode terminates when a goal object is collected.

(a) (b) (c) (d)

Figure 5.4: Four-room environment with different configurations. There are 169 states in
total. Goal objects are located in absorbing states shown in green (+100 re-
ward), while states to avoid are shown in red (-10 penalty).

5.4.1 Results

First, we learn the state space’s geometry by running state2vec. Note that state2 is

policy dependent, since the representations are learned from trajectories collected

under a policy. Choosing an exploratory policy (e.g. the uniform policy) allows us to

learn the overall geometry of the state space. In the feature learning phase, we col-
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lect 300 sample walks of length 100 and run state2vec with discount factor g = 0.8

for varying dimensions d. Figure 5.5 visualises the low dimensional (projection

onto the first two principal components) state2vec representation of original dimen-

sion d = 50. We can clearly see that the representations have clustered the states

within the same room together, while isolating the doorway states. The learned em-

bedding are shown to preserve the geometry of the state space and identify states

that have a special structural role (e.g. doorways).

Figure 5.5: Visualisation of the state2vec representation in feature space (2D PCA projec-
tion). The original state2vec has d = 50 dimensions.

We then use the learned state2vec features to learn the optimal policy of each

individual task in Figure 5.4 following the GRPI framework (Chapter 4.2). We

collect sampled realisations of the form (s,a,s0) by simulating 50 episodes of maxi-

mum length 200 (terminating earlier if the goal is reached) and run LSPI Lagoudakis

[73] with state2vec representations as basis vectors to learn the weights qk in (5.12).

Figure 5.7 shows the performance in terms of average cumulative reward for vary-

ing values of d. As it can be seen, we are able to achieve strong performance

(maximum reward) for all tasks when using the pre-computed state2vec represen-

tations of dimensionality 100. Figure 5.6 shows the performance when we make

the size of the data (number of simulated episodes) used to train state2vec. We

observe a fast reinforcement learning, with optimal policies learned with only 50

exploratory episodes collected. These results suggest that information captured in
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Figure 5.6: Average cumulative reward after running GRPI using pre-trained state2vec for
each of the environment in Figure 5.4. Average and standard deviation over 10
independent runs.

the state2vec representation greatly benefits policy learning, reducing the need for

extensive fruther exploration.

We compare the quality of state2vec embeddings against node2vec for lin-

ear value function approximation. Figure 5.8 shows an improved performance of

state2vec over node2vec in terms of average cumulative reward. We suspect that the

gain in performance comes for the fact that state2vec is designed for RL, whereas

node2vec is a generic graph embedding algorithm. Specifically, in the objective

function, the notion of neighborhood in state2vec is such that further states in time

are discounted more than the immediate successors, which resonates with the defi-

nition of the value function: the expected sum of discounted future rewards.

5.5 State2vec and the Successor Representation
By design, the state2vec representation of a state-action pair will be similar to that

of a successor state-action pair. This concept of predictivity relates to the Successor

Representation (SR) [27], where a state is represented by a vector of the expected

sums of discounted occupancy of future states. Formally, under a policy p , the SR
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Figure 5.7: Average cumulative reward using state2vec (with d = 100) and LSPI for envi-
ronment (5.4(a)). Average and standard deviation over 10 independent runs.
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Figure 5.8: Comparison between node2vec and state2vec on environment (5.4(a)) (one
goal at the corner). Average and standard deviation over 10 independent runs.

YYYp is defined, for g < 1, as:

YYYp(s,a,s0) = Ep
h •

Â
t=0

g tI(st = s0)|s0 = s,a0 = a
i
, (5.13)
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where I(st = s0) = 1 if st = s0 and 0 otherwise.

The SR is a predictive type of representation, which represents a state action

pair (s,a) as a feature vector YYYp
s,a such that, under policy p , the representation YYYp

s,a

is similar to the feature vector of successor states. Due to their predictive nature, we

investigate whether state2vec and the SR capture the same kind of information in

their representational spaces. By visualising the 2D PCA projection of the SR and

state2vec of the four-room environment side-by-side (Figure 5.9), it appears that

state2vec is a close approximation of the exact SR. In both cases, the representations

group states within the same room together, while isolating the doorway states. Both

embeddings preserve the geometry of the state space.

(a) (b)

Figure 5.9: Visualisation of the state representations in reduced feature space (2D PCA
projection). (a) The exact successor representation, each vector in the original
feature space has dimension 169. (b) State2vec representation with original
dimension d = 50.

5.6 Conclusion and Future Work
This chapter gave further analysis of the graph representation learning algorithm

node2vec when applied to RL problems. This analysis has provided a better un-

derstanding of the kind of structural information about the MDP that is needed for

approximating the value function in low dimension. We also established interesting

theoretical and visual links between node2vec representations and the PVFs. Build-
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ing on these promising findings, we designed state2vec, a novel graph-inspired rep-

resentation learning method, that is as computationally efficient as node2vec (lin-

ear in d, the dimension of the representation), has a considerably lower memory

complexity (linear in d ⇤ L, with L the length of the exploratory trajectories) and

learns representations that are more RL specific, while remaining task-agnostic.

We experimentally showed that state2vec is a good approximation of the succes-

sor feature. Additionally, we showed that training the state2vec in an unsupervised

way results in embeddings that capture the geometry of the state space and ensure

sample-efficiency when solving downstream RL tasks. While promising, our pro-

pose method has a few remaining limitations. The following highlights limitations

and proposes important directions for future work:

• In the current framework, state representations can only be learned for states

encountered during the exploratory trajectory collection phase. As a conse-

quence, if not enough exploration is allocated, it is likely that the agent will

come across unseen states for which no known representation exists. Conse-

quently, future work should focus on extending state2vec to generalise across

states (meaning we can compute good approximation of the state2vec vec-

tor for an unseen state). In the non tabular case, this could be achieved by

function approximation using state observational features.

• In single task settings, it would most likely be beneficial to fine tune the repre-

sentations such that they incorporate task specific information. For example,

future work could consider using reward information when learning to opti-

mise the representation, or fine-tune the representation using online data as

the policy improves over time.

• We have shown that state2vec is a close approximation of the successor rep-

resentation [27]. A comparative performance study between state2vec and

other SR approximation strategies (such as Successor Features [3]) would

help in understanding the unique advantages of state2vec.



Chapter 6

Towards Efficient Credit Assignment

Beyond the challenge of learning a rich representation of the environment, an impor-

tant bottleneck in the efficiency of RL algorithms is in the way reward information

is propagated through the state and action space. The problem of accurately and

efficiently assigning credit (or blame) to past decisions or situations is known as the

credit assignment problem. In Chapter 5, we have seen how a representation resem-

bling the successor representation enables efficient learning of the value function.

We now investigate how similar ideas can be beneficial to the credit assignment

problem in online learning. Consider the opposite view of the successor represen-

tation [26]; the predecessor representation, which describes the possible past of a

state, instead of its future. This notion appears to be important for credit assignment

in reinforcement learning. The intuition is that all possible predecessor states and

actions (the observed ones as well as the counterfactual ones) of a given reward-

ing event can contribute to observing that reward, and should therefore be assigned

some credit. Following this intuition, in this chapter, we focus on the following

question:

In online learning, while in state s, can credit assignment be made

efficient by propagating reward information through the predeces-

sor representation of state s?

Appropriate credit assignment has long been a major research topic in artificial in-

telligence [101]. To make effective decisions and understand the world, we need to

accurately associate events, like rewards or penalties, to relevant earlier decisions or
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Figure 6.1: A comparison of TD(0), TD(l ), and the new expected-trace algorithm ET(l )
(with l = 0.9). The MDP is illustrated on the left. Each episode, the agent
moves randomly down and right from the top left to the bottom right, where any
action terminates the episode. Reward on termination are +1 with probability
0.2, and zero otherwise—all other rewards are zero. We plot the value estimates
after the first positive reward, which occurred in episode 7. We see a) TD(0)
only updated the last state, b) TD(l ) updated the trajectory in this episode, and
c) ET(l ) additionally updated trajectories from earlier (unrewarding) episodes.

situations. This is important both for learning accurate predictions, and for making

good decisions.

Temporal credit assignment can be achieved with repeated temporal-difference

(TD) updates [143]. One-step TD updates propagate information slowly: when a

surprising value is observed, the state immediately preceding it is updated, but no

earlier states or decisions are updated. Multi-step updates [143, 146] propagate

information faster over longer temporal spans, speeding up credit assignment and

learning. Multi-step updates can be implemented online using eligibility traces

[143], without incurring important additional computational expense, even if the

time spans are long; these algorithms have computation that is independent of the

temporal span of the prediction [161].

Traces provide temporal credit assignment, but do not assign credit counter-

factually to states or actions that could have led to the current state, but did not do

so this time. Credit will eventually trickle backwards over the course of multiple

visits, but this can take many iterations. As an example, suppose we collect a key

to open a door, which leads to an unexpected reward. Using standard one-step TD

learning, we would update the state in which the door opened. Using eligibility

traces, we would also update the preceding trajectory, including the acquisition of

the key. But we would not update other sequences that could have led to the reward,

such as collecting a spare key or finding a different entrance.
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The problem of credit assignment to counterfactual states may be addressed

by learning a model, and using the model to propagate credit [144, 106]; however,

it has often proven challenging to construct and use models effectively in complex

environments [cf. 164]. Similarly, source traces [118] model full potential histo-

ries in tabular settings, but rely on estimated importance-sampling ratios of state

distributions, which are hard to estimate in non-tabular settings.

The main contributions of this chapter can be summarised as follows:

• We introduce a new approach to counterfactual credit assignment, based on a

concept inspired by the notion of predecessor features that we call expected

eligibility traces.

• We present a family of algorithms, which we call ET(l ), that use expected

traces to update their predictions. We provide a theoretical analysis of the

nature of these expected traces, and illustrate their benefits empirically in

several settings—see Figure 6.1 for a first illustration.

• We introduce a bootstrapping mechanism that provides a spectrum of algo-

rithms between standard eligibility traces and expected eligibility traces, and

also discuss ways to apply these ideas with deep neural networks.

• We discuss possible extensions and connections to related ideas such as suc-

cessor features.

6.1 Background
As usual, we model sequential decision problems as Markov decision processes1

(MDP) (S,A, p,r) [122], with state space S , action space A, and transition func-

tion p(s,a,s0) and an expected reward function r(s,a). An agent selects actions

according to its policy p , and observes random rewards and states generated ac-

cording to the MDP, resulting in trajectories tt:T = {St ,At ,Rt+1,St+1, . . . ,ST}. A

1The ideas extend naturally to POMDPs [cf. 64].
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central goal is to predict returns of future discounted rewards [146]

Gt ⌘ G(tt:T ) = Rt+1 + gt+1Rt+2 + gt+1gt+2Rt+3 + . . .

=
T

Â
i=1

g(i�1)
t+i Rt+i ,

where T is for instance the time the current episode terminates or T = •, and where

gt 2 [0,1] is a (possibly constant) discount factor and g(i)t = ’i
k=1 gt+k. The value

Vp(s) = E [Gt |St = s,p ] of state s is the expected return. Rather than writing the

return as a random variable Gt , it will be convenient to instead write it as an explicit

function G(t) of the random trajectory t . Note that G(tt:T ) = Rt+1+gt+1G(tt+1:T ).

We approximate the value with a function Vw(s)⇡Vp(s). This can for instance

be a table—with a single separate entry w[s] for each state—a linear function of

some input features, or a non-linear function such as a neural network with param-

eters w. The goal is to iteratively update w with

wt+1 = wt +Dwt

such that Vw approaches the true Vp . Perhaps the simplest algorithm to do so is the

Monte Carlo (MC) algorithm

Dwt ⌘ a(Rt+1 + gt+1G(tt+1:T )�Vw(St))—wVw(St) .

Monte Carlo is effective, but has high variance, which can lead to slow learning.

TD learning [143, 146] instead replaces the return with the current estimate of its

expectation V (St+1)⇡ G(tt+1:T ), yielding

Dwt ⌘ adt—wVw(St) , (6.1)

where dt ⌘ Rt+1 + gt+1Vw(St+1)�Vw(St) ,

where dt is called the temporal-difference (TD) error. We can interpolate between

these extremes, for instance with l -returns which smoothly mix values and sampled
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returns:

Gl (tt:T ) = Rt+1 + gt+1
�
(1�l )Vw(St+1)+lGl (tt+1:T )

�
.

‘Forward view’ algorithms, like the MC algorithm, use returns that depend on future

trajectories and need to wait until the end of an episode to construct their updates,

which can take a long time. Conversely, ‘backward view’ algorithms rely only on

past experiences and can update their predictions online, during an episode. Such

algorithms build an eligibility trace [143, 146]. An example is TD(l ):

Dwt ⌘ adteeet , with eeet = gtleeet�1 +—wVw(St) ,

where eeet is an accumulating eligibility trace. This trace can be viewed as a function

eeet ⌘ eee(t0:t) of the trajectory of past transitions. The TD update in (6.1) is known

as TD(0), because it corresponds to using l = 0. TD(l = 1) corresponds to an on-

line implementation of the MC algorithm. Other variants exist, using other kinds of

traces, and equivalences have been shown between these algorithms and their for-

ward view using l -returns: these backward-view algorithms converge to the same

solution as the corresponding forward view, and can in some cases yield equivalent

weight updates [143, 167, 161].

6.2 Expected Traces

The main idea is to use the concept of an expected eligibility trace, defined as

zzz(s)⌘ E [eeet | St = s ] ,

where the expectation is over the agent’s policy and the MDP dynamics. We intro-

duce a concrete family of algorithms, which we call ET(l ) and ET(l , h), that learn

expected traces and use them in value updates. We analyse these algorithms the-

oretically, describe specific instances, and discuss computational and algorithmic

properties.
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Algorithm 2 ET(l )

1: initialise w, qqq
2: for M episodes do
3: initialise eee = 000
4: observe initial state S
5: repeat for each step in episode m
6: generate R and S0

7: d  R+ gVw(S0)�Vw(S)
8: eee gleee+—wVw(S)
9: qqq  qqq +b ∂ zzzqqq (S)

∂qqq (eee� zzzqqq (S))
10: w w+ad zzzqqq (S)
11: until S is terminal
12: end for
13: Return w

6.2.1 ET(l )
We propose to learn approximations zzzqqq (St) ⇡ zzz(St), with parameters qqq 2 Rd (e.g.,

the weights of a neural network). One way to learn zzzqqq is by updating it towards the

instantaneous trace eeet , by minimizing an empirical loss `(eeet ,zzzqqq (St)). For instance,

` could be a component-wise squared loss, optimized with stochastic gradient de-

scent:

qqq t+1 = qqq t +Dqqq t , where

Dqqq t =�b ∂
∂qqq

1
2
(eeet� zzzqqq (St))

>(eeet� zzzqqq (St))

= b ∂ zzzqqq (St)

∂qqq
(eeet� zzzqqq (St)) ,

where ∂ zqqq (St)
∂qqq is a |qqq |⇥ |eee| Jacobian2 and b is a step size.

The idea is then to use zzzqqq (s)⇡ E [eeet | St = s ] in place of eeet in the value update,

which becomes

Dwt ⌘ dt zzzqqq (St) . (6.2)

We call this ET(l ). Below, we prove that this update can be unbiased and can have

lower variance than TD(l ). Algorithm 2 shows pseudo-code for a concrete instance
2Auto-differentiation can efficiently compute this update with comparable computation to the

loss calculation.
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of ET(l ).

6.2.2 Interpretation and ET(l ,h)

We can interpret TD(0) as taking the MC update and replacing the return from the

subsequent state, which is a function of the future trajectory, with a state-based

estimate of its expectation: V (St+1)⇡E [G(tt+1:T )|St+1 ]. This becomes most clear

when juxtaposing the updates

Dwt ⌘ a(Rt+1 + gt+1G(tt+1:T )�Vw(St))———t , (MC)

Dwt ⌘ a(Rt+1 + gt+1Vw(St+1)�Vw(St))———t , (TD)

where we used a shorthand ———t ⌘ —wVw(St).

TD(l ) also uses a function of a trajectory: the trace eeet . We propose replacing

this as well with a function state zzzqqq (St) ⇡ E [eee(t0:t)|St ]: the expected trace. Again

juxtaposing:

Dwt ⌘ adteee(t0:t) , (TD(l ))

Dwt ⌘ adt zzzqqq (St) . (ET(l ))

When switching from MC to TD(0), the dependence on the trajectory was

replaced with a state-based value estimate to bootstrap on. We can interpolate

smoothly between MC and TD(0) via l . This is often useful to trade off variance of

the return with potential bias of the value estimate. For instance, we might not have

access to the true state s, and might instead have to rely on features x(s). Then we

cannot always represent or learn the true values V (s)—for instance different states

may be aliased [172].

Similarly, when moving from TD(l ) to ET(l ) we replaced a trajectory-based

trace with a state-based estimate. This might induce bias and, again, we can

smoothly interpolate by using a recursively defined mixture trace yyyt , as defined
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as3

yyyt = (1�h)zzzqqq (St)+h
�
gtlyyyt�1 +—wVw(St)

�
. (6.3)

This recursive usage of the estimates zzzqqq (s) at previous states is analogous to boot-

strapping on future state values when using a l -return, with the important difference

that the arrow of time is opposite. This means we do not first have to convert this

into a backward view: the quantity can already be computed from past experience

directly. We call the algorithm that uses this mixture trace ET(l , h):

Dwt ⌘ adtyyy(St) . (ET(l , h))

Note that if h = 1 then yyyt = eeet equals the instantaneous trace: ET(l , 1) is equivalent

to TD(l ). If h = 0 then yyyt = zzzt equals the expected trace; the algorithm introduced

earlier as ET(l ) is equivalent to ET(l , 0). By setting h 2 (0,1), we can smoothly

interpolate between these extremes.

6.3 Theoretical Analysis
We now analyse the new ET algorithms theoretically. First we show that if we use

zzz(s) directly and s is Markov then the update has the same expectation as TD(l )

(though possibly with lower variance), and therefore also inherits the same fixed

point and convergence properties.

Lemma 1. If s is Markov, then

E [dteeet | St = s ] = E [dt | St = s ]E [eeet | St = s ] .

Proof. In Appendix A.1.

Proposition 1. Let eeet be any trace vector, updated in any way. Let zzz(s) =

E [eeet | St = s ]. Consider the ET(l ) algorithm Dwt = atdt zzz(St). For all Markov s

the expectation of this update is equal to the expected update with instantaneous

3While yyyt depends on both h and l we leave this dependence implicit, as is conventional for
traces.
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trace eeet , and the variance is lower or equal:

E [atdt zzz(St)|St = s ] = E [atdteeet |St = s ] and

V[atdt zzz(St)|St = s] V[atdteeet |St = s] ,

where the second inequality holds component-wise for the update vector, and is

strict when V[eeet |St ]> 0.

Proof. We have

E [atdteeet | St = s ]

= E [atdt | St = s ]E [eeet | St = s ] (Lemma 1)

= E [atdt | St = s ]zzz(s)

= E [atdt zzz(St) | St = s ] . (6.4)

Denote the i-th component of zzz(St) by zt,i and the i-th component of eeet by et,i. Then,

we also have

E
⇥
(atdt zt,i)

2|St = s
⇤
= E

⇥
a2

t d 2
t | St = s

⇤
z2
t,i

= E
⇥

a2
t d 2

t | St = s
⇤
E [et,i|St = s ]2

= E
⇥

a2
t d 2

t | St = s
⇤�
E
⇥

e2
t,i|St = s

⇤
�V[et,i|St = s]

�

 E
⇥

a2
t d 2

t | St = s
⇤
E
⇥

e2
t,i | St = s

⇤

= E
⇥
(atdtet,i)

2 | St = s
⇤
,

where the last step used the fact that s is Markov, and the inequality is strict when

V[eeet |St ] > 0. Since the expectations are equal, as shown in (6.4), the conclusion

follows.

Interpretation Proposition 1 is a strong result: it holds for any trace update,

including accumulating traces [142, 143], replacing traces [136], dutch traces

[167, 162, 161], and future traces that may be discovered. It implies convergence

of ET(l ) under the same conditions as TD(l ) [26, 114, 156] with lower variance
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when V[eeet |St ]> 0, which is the common case.

Next, we consider what happens if we violate the assumptions of Proposition

1. We start by analysing the case of a learned approximation zzzt(s)⇡ zzz(s) that relies

solely on observed experience.

Proposition 2. Let eeet an instantaneous trace vector. Then let zzzt(s) be the empirical

mean zzzt(s) = 1
nt(s) Ânt(s)

i eeets
i
, where ts

i -s denote past times when we have been in state

s, that is Sts
i
= s, and nt(s) is the number of visits to s in the first t steps. Consider

the expected trace algorithm wt+1 = wt +atdt zzzt . If St is Markov, the expectation

of this update is equal to the expected update with instantaneous traces eeet , while

attaining a potentially lower variance:

E [atdt zzzt(St) | St ] = E [atdteeet | St ] and

V[atdt zzzt(St) | St ] V[atdteeet | St ] ,

where the second inequality holds component-wise. The inequality is strict when

V[eeet | St ]> 0.

Proof. In Appendix.

Interpretation Proposition 2 mirrors Proposition 1 but, importantly, covers the case

where we estimate the expected traces from data, rather than relying on exact esti-

mates. This means the benefits extend to this pure learning setting. Again, the result

holds for any trace update. The inequality is typically strict when the path leading

to state St = s is stochastic (due to environment or policy).

Next we consider what happens if we do not have Markov states and instead

have to rely on, possibly non-Markovian, features x(s). We then have to pick a func-

tion class and for the purpose of this analysis we consider linear expected traces

zzzQQQ(s) = QQQx(s) and values Vw(s) = w>x(s), as convergence for non-linear values

can not always be assured even for standard TD(l ) [157], without additional as-

sumptions [e.g., 108, 19]. The following property of the mixture trace is used in the

proposition below.
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Proposition 3. The mixture trace yyyt defined in (6.3) can be written as yyyt = µyyyt�1+

xt with decay parameter µ = hgl and signal xt = (1�h)zzzqqq (St)+h —wVw(St),

such that

yyyt =
t

Â
k=0

(hgl )k [(1�h)zzzqqq (St�k)+h —wVw(St�k)] . (6.5)

Proof. In Appendix.

Recall yyyt = eeet when h = 1, and yyyt = zzzqqq (St) when h = 0, as can be verified by

inspecting (6.5) (and using the convention 00 = 1). We use this proposition to prove

the following.

Proposition 4. When using approximations zQQQ(s) = QQQx(s) and Vw(s) = w>x(s)

then, if (1� h)QQQ + hI is non-singular, ET(l , h) has the same fixed point as

TD(lh).

Proof. In Appendix.

Interpretation This result implies that linear ET(l , h) converges under similar

conditions as linear TD(l 0) for l 0 = l ·h . In particular, when QQQ is non-singular,

using the approximation zzzQQQ(s) = QQQx(s) in ET(l , 0) = ET(l ) implies convergence

to the fixed point of TD(0).

Though ET(l , h) and TD(lh) have the same fixed point, the algorithms are

not equivalent. In general, their updates are not the same. Linear approximations

are more general than tabular functions (which are linear functions of a indicator

vector for the current state), and we have already seen in Figure 6.1 that ET(l )

behaves quite differently from both TD(0) and TD(l ), and we have seen its variance

can be lower in Propositions 1 and 2. Interestingly, QQQ resembles a preconditioner

that speeds up the linear semi-gradient TD update, similar to how second-order

optimisation algorithms [2, 96] precondition the gradient updates.

6.4 Empirical Analysis
From the insights above, we expect that ET(l ) yields lower prediction errors be-

cause it has lower variance and aggregates information across episodes better.
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Figure 6.2: In the same setting as Figure 6.1, we show later value estimates after more
rewards have been observed. TD(0) learns slowly but steadily, TD(l ) learns
faster but with higher variance, and ET(l ) learns both fast and stable.

In this section we empirically investigate expected traces in several experiments.

Whenever we refer to ET(l ), this is equivalent to ET(l , 0).

6.4.1 An Open World

First consider the grid world depicted in Figure 6.1. The agent randomly moves

right or down (excluding moves that would hit a wall), starting from the top-left

corner. Any action in the bottom-right corner terminates the episode with +1 reward

with probability 0.2, and 0 otherwise. All other rewards are 0.

Figure 6.1 shows the value estimates after the first positive reward, which oc-

curred in the seventh episode. TD(0) updated a single state, TD(l ) updated earlier

states in that episode, and ET(l ) additionally updated states from previous episodes.

Figure 6.2 shows the values after the second reward, and after roughly 20, 200, and

2000 rewards (or 100, 1000, and 10,000 episodes, respectively). ET(l ) converged

faster than TD(0), which propagated information slowly, and than TD(l ), which

had higher variance. All step sizes decayed as a = b =
p

1/k, where k is the

current episode number.



6.4. Empirical Analysis 138

Figure 6.3: Multi-chain environment. Each episode starts in the left-most (white) state,
and randomly transitions to one of m parallel (blue) chains of identical length n.
After n steps, the agent always transitions to the same (orange) state, regardless
of the chain it was in. The next step the episode terminates. Each reward is
+1, except on termination when it either is +1 with probability 0.9 or �1 with
probability 0.1.

Figure 6.4: Prediction errors in the multi-chain. ET(l ) (orange) consistently outper-
formed TD(l ) (blue). Shaded areas depict standard errors across 10 seeds.

Figure 6.5: Comparing value error with linear function approximation a) as function of
the number of branches (left), b) as function of l (center two plots) and c) as
function of h (right). The left three plots show comparisons of TD(l ) (blue)
and ET(l ) (orange), showing ET(l ) attained lower prediction errors. The right
plot interpolates between these algorithms via ET(l , h), from ET(l ) = ET(l ,
0) to ET(l , 1) = TD(l ), with l = 0.9 (corresponding to a vertical slice indi-
cated in the second plot).

6.4.2 A Multi-Chain

We now consider the multi-chain shown in Figure 6.3. We first compare TD(l )

and ET(l ) with tabular values on various variants of the multi-chain, corresponding

n= 4 and m2 {1,2,4,8, ...,128}. The left-most plot in Figure 6.4 shows the average
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root mean squared error (RMSE) of the value predictions after 1024 episodes. We

ran 10 seeds for each combination of step size 1/td with d 2 {0.5,0.8,0.9,1} and

l 2 {0,0.5,0.8,0.9,0.95,1}.

The left plot in Figure 6.4 shows value errors for different m, minimized over

d and l . The prediction error of TD(l ) (blue) grew quickly with the number of

parallel chains. ET(l ) (orange) scaled better, because it updates values in multiple

chains (from past episodes) upon receiving a surprising reward (e.g., �1) on termi-

nation. The other three plots in Figure 6.4 show value error as a function of l for a

subset of problems corresponding to m2 {8,32,128}. The dependence on l differs

across algorithms and problem instances; ET(l ) always achieved lower error than

TD(l ).

To better understand the step-size sensitivity, we conduct a parameter study.

Figure 6.6 contains a comparison of the performance of TD(l ) and ET(l ) across

different step sizes. The data used for this figure is the same as used to generate the

plots in Figure 6.4, but now we look explicitly at the effect of the step size parameter.

We see that TD(0) performed best with a high step size, and that for high l lower

step sizes performed better—TD(0) with the highest step size (at = 1/
p

nt(St)) and

TD(1) with the lowest step size (at = 1/nt(St)) both performed poorly. In contrast,

ET(l ) here performed well for any combination of step size and trace parameter l .

Next, we encode each state with a feature vector x(s) containing a binary indi-

cator vector of the branch, a binary indicator of the progress along the chain, a bias

that always equals one, and two binary features indicating when we are in the start

(white) or bottleneck (orange) state. We extend the lengths of the chains to n = 16.

Both TD(l ) and ET(l ) use a linear value function Vw(s) = w>x(s), and ET(l ) uses

a linear expected trace zQQQ(s) = QQQx(s). All updates use the same constant step size

a . The left plot in Figure 6.5 shows the average root mean squared value error after

1024 episodes (averaged over 10 seeds). For each point the best constant step size

a 2 {0.01,0.03,0.1} (shared across all updates) and l 2 {0,0.5,0.8,0.9,0.95,1}

is selected. ET(l ) (orange) attained lower errors across all values of m (left plot),

and for all l (center two plots, for two specific m). The right plot shows results
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Figure 6.6: Comparison of prediction errors (lower is better) of TD(l ) and ET(l ) across
different l s and different step sizes in the multi-chain world 6.3. The data un-
derpinning these plots is the same as the data used for Figure 6.4, with 32 paral-
lel chains. In all cases the step size was a = nt(St)d , where nt(s) = Ât

i=0 I(Si =
s) is the number of visits to state s in the first t time steps, and where d is a
hyper-parameter. Note that the step size is lower when the exponent is higher.

Figure 6.7: Performance of Q(l ) (h = 1, blue) and QET(l ) (h = 0, orange) on Pong and
Ms.Pac-Man for various learning rates. Shaded regions show standard error
across 10 random seeds. All results are for l = 0.95.

for smooth interpolations via h , for l = 0.9 and m = 16. The full expected trace

(h = 0) performed well here, we expect in other settings the additional flexibility of

h could be beneficial.
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Figure 6.8: Learning curves of Q(l ) (h = 1, blue) and QET(l ) (h = 0, orange) on Box-
ing, Breakout and Seaquest. The Shaded regions show standard error across
10 random seeds. All results are for l = 0.95, and the step size leading to the
highest final score after 100M frames with QET(l ) was chosen for each game
(a = 0.0001 for Boxing and Seaquest and a = 0.00003 for Breakout).

6.4.3 Expected Traces in Deep Reinforcement Learning

(Deep) neural networks are a common choice of function class in reinforcement

learning [e.g., 171, 153, 154, 12, 121, 126, 160, 102, 51, 169, 135, 32, 54]. Eligibil-

ity traces are not very commonly combined with deep networks [but see 153, 34],

perhaps in part because of the popularity of experience replay [82, 102, 58].

Perhaps the simplest way to extend expected traces to deep neural networks is

to first separate the value function into a representation x(s) and a value V(w,xxx )(s) =

w>xxxx (s), where xxxx is some (non-linear) function of the observations s.4 We can

then apply the same expected trace algorithm as used in the previous sections by

learning a separate linear function zzzQQQ(s) = QQQx(s) using the representation which is

learned by backpropagating the value updates:

xxx t+1 = xxx t +adeeexxx
t and wt+1 = wt +ad zzzQQQ(St) ,

where eeexxx
t = gtleeexxx

t�1 +—xxxV(w,xxx )(St) ,

eeew
t = gtleeew

t�1 +—wV(w,xxx )(St) ,

and then updating QQQ by minimising the sum of component-wise squared differences

between eeew
t and zzzQQQt (St).

To apply these idea to control settings, we use an implementation of online

Q(l ) and its expected-trace variant QET(l ).

4Here s denotes observations to the agent, not a full environment state—s is not assumed to be
Markovian.
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Algorithm 3 Q(l )
1: initialise w
2: initialise eee = 000
3: observe initial state S
4: pick action A⇠ p(Qw(S))
5: V  maxa Qw(S,a)
6: g = 0
7: repeat
8: take action A, observe R, g 0 and S0 # g 0 = 0 on a terminating transition
9: V 0  maxa Qw(S0,a)

10: d  R+ gv0 � v
11: eee gleee+—wQw(S,A)
12: Dw deee+(V �Qw(S,A))—wQw(S,A)
13: Dw transform(Dw) # e.g., ADAM-ify
14: w w+Dw
15: until done

6.4.4 Deep Q(l )

We assume the typical setting [e.g., 102] where we have a neural network QQQw that

outputs |A| numbers, such that q(s,a) = Qw(s)[a]. That is, we forward the observa-

tion s through network Qw with weights w and |A| outputs, and then select the ath

output to represent the value of taking action a.

Algorithm 3 then works as follows. For each transition, we first compute a

telescoping TD error d = r+g 0v0 �v (line 5), where g 0 = 0 on termination (and then

S0 is the first observation of the next episode) and, in our experiments, g 0 = 0.995

otherwise. We update the trace eee as usual (line 11), using accumulating traces.

Note that the weights and, hence, trace will also have elements corresponding to

the weights of actions that were not selected. The gradient with respect to those

elements is considered to be zero, as is conventional.

Then, we compute a weight update Dw= deee+(v�Qw(S,A))—wQw(S,A). The

additional term corrects for the fact that our TD error is a telescoping error, and does

not have the usual ‘�q(s,a)’ term. This is akin to the Q(l ) algorithm proposed by

Peng and Williams [115].

Finally, we transform the resulting update, using a transformation exactly like

ADAM [68], but applied to the update Dw rather than a gradient. The hyper-
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parameters were b1 = 0.9, b2 = 0.999, and e = 0.0001, and one of the step sizes as

given in Figure 6.7. We then apply the resulting transformed update by adding it to

the weights (line 14).

6.4.5 Deep QET(l )

We now describe the expected-trace algorithm, shown in Algorithm 4, which was

used for the Atari experiments. It is very similar to the Q(l ) algorithm described

above, and in fact equivalent when we set h = 1.

The first main change is that we will split the computation of q(s,a) into two

separate parts, such that Q(w,xxx )(s,a) = w>a xxxx (s). This is equivalent to the previous

algorithm: we have just labeled separate subsets of parameters as (w,xxx ) rather than

merging all of them into a single vector w, and we have labeled the last hidden

layer as x(s). We keep separate traces for these subset (lines 11 and 12), but this is

equivalent to keeping one big trace for the combined set.

This split in parameters helps avoid learning an expected trace for the full trace,

which has millions of elements. Instead, we only learn expectations for traces corre-

sponding to the last layer, denoted eeew. Importantly, the function zzzqqq (s,a) should con-

dition on both state and action. This was implemented as a tensor qqq 2 R|A|⇥|A|⇥|x|,

such that its tensor multiplication with the features x(s) yields a |A|⇥ |A| matrix

ZZZ. Then, we interpret the vector zzza = [ZZZ]a as the approximation to the expected

trace E [eeet | St = s,At = a ], and update it accordingly, using a squared loss (and,

again, ADAM-ifying the update before applying it to the parameters). The step size

for the expected trace update was always b = 0.1 in our experiments, and the ex-

pected trace loss was not back-propagated into the feature representation. This can

be done, but we leave any investigation of this for future work, as it would present a

conflating factor for our experiments, because the expected trace update would then

serve as an additional learning signal for the features that are also used for the value

approximations.

Interesting challenges appear outside the fully linear case. First, the represen-

tation will itself be updated and will have its own trace eeexxx
t . Second, in the control

case we optimise behaviour: the policy will change. Both these properties of the
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Algorithm 4 QET(l )
1: initialise w, xxx , qqq
2: initialise eee = 000, y = 000
3: observe initial state S
4: pick action A⇠ p(q(S))
5: V  maxa Q(w,xxx )(S0,a) # Q(w,xxx )(s,a) = w>a xxxx (s), where w = (w1, . . . ,w|A|)
6: g = 0
7: repeat
8: take action A, observe R, g 0 and S0 # g 0 = 0 on any terminating transition
9: V 0  maxa Q(w,xxx )(S0,a)

10: d  R+ gv0 � v
11: eeew glyyy+—wQ(w,xxx )(S,A)
12: eeexxx  gleeexxx +—xxx Q(w,xxx )(S,A)
13: Dw deeew +(V �Q(w,xxx )(S,A))—wQ(w,xxx )(S,A)
14: Dxxx  deeexxx +(V �Q(w,xxx )(S,A))—xxx Q(w,xxx )(S,A)
15: Dqqq  —qqqkeeexxx � zzzqqq (S,A)k2

2
16: Dw transform(Dw) # e.g., ADAM-ify
17: Dxxx  transform(Dxxx )
18: Dqqq  transform(Dqqq)
19: w w+Dw
20: xxx  xxx +Dxxx
21: qqq  qqq +Dqqq
22: yyy = (1�h)zzzqqq (s,a)+heeew

23: until done

non-linear control setting imply that the expected traces must track a non-stationary

target. We found that being able to track this rather quickly improves performance:

the expected trace parameters QQQ in the following experiment were updated with a

step size of b = 0.1.

6.5 Experiments on Atari games
We compare online Q(l ) with QET(l ) on five Atari games. All the Atari exper-

iments were run with the ALE [6], exactly as described in Mnih et al. [102], in-

cluding using action repeats (4x), downsampling (to 84⇥ 84), and frame stacking.

These experiments were conducted using Jax [16].

In all cases, we used e-greedy exploration [cf. 146], with an e that quickly de-

cayed from 1 to 0.01 according to e0 = 1 and et = et�1 +0.01(0.01�et�1). Unlike

Mnih et al. [102], we did not clip rewards, and we also did not apply any target nor-
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malisation [cf. 163] or non-linear value transformations [119, 165]. We conjecture

that such extensions could be beneficial for performance, but they are orthogonal to

the main research questions investigated here and are therefore left for future work.

For the Atari experiments, we used the same preprocessing and network archi-

tecture as Mnih et al. [102], except that we used 128 channels in each convolutional

layer because we ran experiments on TPUs (version 3.0, using a single core per

experiment) which are most efficient when using tensors where one dimension is a

multiple of 128. The experiments were written using JAX [17] and Haiku [53].

We tested this idea on five canonical Atari games: Pong and Ms. Pac-Man,

Boxing, Breakout and Seaquest. The results in Figure 6.7 show that the expected

traces helped speed up learning compared to the baseline which uses accumulating

traces, for various step sizes. Unlike most prior work on this domain, which often

relies on replay [102, 128, 58] or parallel streams of experience [103], these algo-

rithms updated the values online from a single stream of experience. Further results

in Figure 6.8 show how expected traces allow for faster or more stable learning

compared to the baseline.

These experiments demonstrate that the idea of expected traces already extends

to non-linear function approximation, such as deep neural networks. We consider

this to be a rich area of further investigations. The results presented here are sim-

ilar to earlier results [e.g., 102] and are not meant to compete with state-of-the-art

performance results, which often depend on replay and much larger amounts of

experience [e.g., 58].

6.6 Discussion and Extensions

We now discuss various interesting interpretations and relations, and discuss

promising extensions.
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6.6.1 Predecessor Features

For linear value functions the expected trace z(s) can be expressed non recursively

as follows:

zzz(s) = E
"

•

Â
n=0

l (n)
t g(n)t xt�n | St = s

#
, (6.6)

where g(n)k ⌘ ’k
j=k�n g j. This is interestingly similar to the definition of the

successor features [3]:

y(s) = E
"

•

Â
n=1

g(n�1)
t xt+n | St = s

#
. (6.7)

The summation in (6.7) is over future features, while in (6.6) we have a sum over

features already observed by the agent. This shows how linear expected traces act as

predecessor features. A similar connection was made in the tabular setting by Pitis

[118], relating source traces, which aim to estimate the source matrix (I� gP)�1,

to successor representations [27]. In a sense, the above generalises this insight. In

addition to being interesting in its own right, this connection allows for an intriguing

interpretation of zzz(s) as a multidimensional value function. Like with successor

features, the features xt play the role of rewards, discounted with g ·l rather than g ,

and with time flowing backwards.

Although the predecessor interpretation only holds in the linear case, it is also

of interest as a means to obtain a practical implementation of expected traces with

non-linear function approximation, for instance applied only to the linear ‘head’

of a deep neural network. We used this ‘predecessor feature trick’ in our Atari

experiments described earlier.

6.6.2 Relation to Model-Based Reinforcement Learning

Model-based reinforcement learning provides an alternative approach to efficient

credit assignment. The general idea is to construct a model that estimates state-

transition dynamics, and to update the value function based upon hypothetical tran-

sitions drawn from the model [144], for example by prioritised sweeping [106, 166].
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In practice, model-based approaches have proven challenging in environments (such

as Atari games) with rich perceptual observations, compared to model-free ap-

proaches that more directly update the agent’s policy and predictions [164].

In some sense, expected traces also construct a model of the environment—but

one that differs in several key regards from standard state-to-state models used in

model-based reinforcement learning. First, expected traces estimate past quantities

rather than future quantities. Second, they estimate the accumulation of gradients

over a multi-step trajectory, rather than full transition dynamics, thereby focusing

on those aspects that matter for the update. Third, they allow credit assignment

across these potential past trajectories with a single update, without the iterative

computation that is typically required when using a more explicit model. These

differences may be important to side-step some of the challenges faced in model-

based learning.

6.6.3 Batch Learning and Replay

We have mainly considered the online learning setting in this paper. It is often

convenient to learn from batches of data, or replay transitions repeatedly, to enhance

data efficiency. A natural extension is replay the experiences sequentially [e.g. 66],

but perhaps alternatives exist. We now discuss one potential extension.

We defined a mixed trace yyyt that mixes the instantaneous and expected traces.

Optionally the expected trace zzzt can be updated towards the mixed trace yyyt as well,

instead of towards the instantaneous trace eeet . Analogously to TD(l ) we propose to

then use at least one real step of data:

Dqqq t ⌘ b (———t + gtltyyyt�1� zzzqqq (St))
> ∂ zzzqqq (St)

∂qqq
, (6.8)

with ———t ⌘—wVw(St). This is akin to a forward-view l -return update, with —wVw(St)

in the role of (vector) reward, and zzzqqq of value, and discounted by ltgt , but reversed

in time. In other words, this can be considered a sampled Bellman equation [10] but

backward in time.

When we then choose h = 0, then yyyt�1 = zqqq (St�1), and then the target in
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(6.8) only depends on a single transition. Interestingly, that means we can then

learn expected traces from individual transitions, sampled out of temporal order,

for instance in batch settings or when using replay.

6.6.4 Application to Other Traces

We can apply the idea of expected trace to more traces than considered here. We

can for instance consider the characteristic eligibility trace used in REINFORCE

[173] and related policy-gradient algorithms [148].

Another appealing application is to the follow-on trace or emphasis, used in

emphatic temporal difference learning [150] and related algorithms [e.g., 60]. Em-

phatic TD was proposed to correct an important issue with off-policy learning,

which can be unstable and lead to diverging learning dynamics. Emphatic TD

weights updates according to 1) the inherent interest in having accurate predictions

in that state and, 2) the importance of predictions in that state for updating other

predictions. Emphatic TD uses scalar ‘follow-on’ traces to determine the ‘empha-

sis’ for each update. However, this follow-on trace can have very high, even infinite,

variance. Instead, we might estimate and use its expectation instead of the instan-

taneous emphasis. A related idea was explored by Zhang et al. [177] to obtain

off-policy actor critic algorithms.

6.7 Conclusion
We have proposed a mechanism for efficient credit assignment, using the expec-

tation of an eligibility trace. We have demonstrated this can sometimes speed up

credit assignment greatly, and have analyzed concrete algorithms theoretically and

empirically to increase understanding of the concept. The main findings of this

work can be summarised as follows:

• The introduction of the concept of expected traces and the algorithm ET(l )

for counterfactual credit assignment.

• A theoretical analysis proving that ET(l ) results in unbiased updates with

respect to traditional TD(l ) with possible lower variance.
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• Empirical results demonstrating the benefit of using expected traces in some

tabular and linear prediction tasks (faster learning).

• An extension of the concept of expected traces to control and nonlinear func-

tion approximation.

• A mechanism for combining expected traces with deep neural network that

empirically demonstrates better performance in two Atari tasks.

These promising finding encourage further discussions. Expected traces have

several interpretations. First, we can interpret the algorithm as counterfactually up-

dating multiple possible trajectories leading up to the current state. Second, they

can be understood as trading off bias and variance, which can be done smoothly via

a unifying h parameter, between standard eligibility traces (low bias, high variance)

and estimated traces (possibly higher bias, but lower variance). Furthermore, with

tabular or linear function approximation we can interpret the resulting expected

traces as predecessor states or features—object analogous to successor states or

features, but time-reversed. These interpretations suggest that a variety of comple-

mentary ways to potentially extend these concepts and algorithms.



Chapter 7

General Conclusions

Designing artificial agents capable of identifying the key features in the observa-

tional space and to reason about the effect of states and actions on outcomes, has

the potential to serve many aspects of human society. Data-efficient AI systems

will ultimately generate a lower carbon footprint and will be more accessible than

current systems due to the reduced costs of training and deploying them. Addi-

tionally, such data-efficient AI systems will be better suited for crucial problems

in small-data domains such as healthcare and education in under-developed parts

of the world. On this basis, this thesis studied the data-efficiency problem of RL

and was set out to clarify the impact of representation learning in RL, to propose

new approaches to design data-efficient RL agents. In particular, this thesis made

progress towards demonstrating the claim that

data-efficiency in reinforcement learning can be achieved through

structural representation learning and counterfactual credit assign-

ment.

In this final chapter, I summarise the work undertaken in this thesis that sup-

ports this claim. I conclude with general discussions, and present possible directions

for future work that emerged from the findings in this thesis.

7.1 Summary of Contributions
This thesis first addressed the problem that the current RL community does not

have clear answers to the questions of “What exactly is a good representation for
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RL” and “How to learn such a representation?”. With a deep overview of the dif-

ferent representation learning methods in use in RL, Chapter 3 demonstrated that

prior works have made different design choices and have different, sometimes con-

flicting, understandings of what makes a good representation for RL. Four main

representational properties that are deemed desirable were identified: from a review

of the existing literature, a good representation either supports (1) policy evalua-

tion, (2) policy search, (3) exploration, or (4) generalisation. Using this proposed

categorisation, an extensive and critical discussion was carried out, identifying simi-

larities, contradiction, limitation and pitfalls in the reviewed representation learning

methods in RL. In particular, it was observed that a representation supporting pol-

icy evaluation can hinder policy search and that exploration and generalisation can

be formulated as sub-goals of policy evaluation and policy search. These findings

help shape the discussion around the importance of learning representation in RL,

and identify key directions for future work, which are considered in the concluding

remarks of Chapter 3.

Secondly, a new line of research for learning rich low dimensional state repre-

sentations for value-base RL was proposed. Representation learning methods were

proposed to improve the data-efficiency of RL algorithms in an innovative way. In

Chapter 4, the common smoothness assumption of the value function on the graph

of state was challenged: it was demonstrated that when this assumption does not

hold, which happens frequently in real-world problems, the current state-of-the-art

graph-based representation in RL Proto-Value Functions (PVFs) cannot approxi-

mate the value function in low dimension with satisfying accuracy. Consequently,

other graph-based methods were applied to RL, and it was found that the algo-

rithm node2vec [45] is well suited for RL. Indeed, Chapter 4 showed that node2vec

efficiently generates low dimensional state representation vectors that capture the

structural equivalence of the states while preserving the local properties of the envi-

ronment without relying strongly on the smoothness assumption of the value func-

tion. These characteristics are shown to be key in accurately approximating value

functions, and node2vec demonstrated improvements in low-dimensional value-
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based RL with respect to the PVFs. Building on these findings, Chapter 5 intro-

duces state2vec, a novel graph-inspired representation learning algorithm for RL,

that overcomes the practical limitations of node2vec. State2vec efficiently learns a

representation that exhibits the same characteristics as the SR, making it well suited

for multi-task RL.

Lastly, this thesis addressed the data efficiency problem of RL from the credit

assignment perspective. Chapter 6 introduced a novel and more efficient solution

to the credit assignment problem. Where traditional RL methods assign credit to

states and actions on a temporal basis, expected eligibility traces (Chapter 6) allow

counterfactual credit assignment, such that credit is assigned to states or actions

that could have led to the current state but did not do so this time. This is shown

to be particularly helpful in stochastic environments, where the same behaviour is

not guaranteed to produce the same reward. In such cases, the newly introduced

expected traces enable the propagation of rare rewards faster.

7.2 Future works

The research presented in this thesis is a step towards achieving data-efficiency in

RL, and opens up new interesting research avenues. This section highlights some

future research directions that arose from insights gained during the development

of this work.

7.2.1 Theoretical Framing of Optimal Representations in RL

The work carried out in this thesis shed light on the fact there is no globally accepted

consensus on what makes a representation optimal in RL. Chapter 4 highlighted

prior theoretical efforts demonstrating that under some assumptions, data-efficiency

is achievable through low dimensional representations. However, the nature of such

representation is yet to be defined and understood. There is an irrefutable need for

a theoretical framing of optimal representations in RL. Such advancement will help

us design learning systems for generating representations with optimal guarantees,

hence unlocking more data-efficient RL.
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7.2.2 Agents with Multiple Representations

Chapter 4 identified key representational properties for RL. It was discussed that

a representation learning mechanism often targets a specific properties, sometimes

at the expense of other desirable representational properties. It is remains unclear

whether all desirable properties—to support policy evaluation and search, explo-

ration, and generalisation—can be captured within a single representation. As a re-

sult, a relevant adjacent research question could be investigated: “Can agents learn

from multiple representations?”. Similarly to how control agents adapt their policy

to trade-off between exploration and exploitation during training, we could imag-

ine agents adapting their current representation of their world depending on which

learning stage their are at. For instance, in the early stage of learning, the agent

could speed up its exploration of the environment with a representation designed to

support exploration. As more confidence is gained about the environment, the agent

could utilise the data acquired during exploration to fine-tune a representation that

is more suited for faster control or generalisation. Agents able to quickly change

their representation of the world to suit their current need would have the potential

to greatly improve learning efficiency.

7.2.3 Graphs and RL

This thesis demonstrated initial promising benefits of using graphs to learn a struc-

tural representation of the environment to speed up the solving of RL problems.

In particular, Chapter 4 validated the importance of representation capturing struc-

tural equivalences as well as local properties in the state space for efficient RL, and

Chapter 5 developed an efficient graph-inspired representation learning algorithm

for RL that exhibit the aforementioned characteristics. These findings suggest that

the potential of graph-based, or graph-inspired, methods in RL should be further

explored.

For example, an interesting future research direction would be to investigate

ways of incorporating graph-based methods into existing deep RL systems. Aug-

menting traditional RL algorithms, which operate in the temporal domain, with

graph-based methods, which give information about the spectrum of the state and
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action space, could potentially unlock novel, more efficient, RL agents.

Graph tools could also be considered in the credit assignment problem. For

instance, spectral analysis on graphs could be used to identify key states (such as

doorways or highly connected hubs), and use this information to assign credit based

on structural characteristics. Additionally, alternative graphs could be inferred from

data and used to propagate reward information. For instance, instead of relying on

transitions to connect states in the graphs, state features similarity could be used:

states that are close in the observation space would be highly connected in the graph.

In this way, information could be propagated quickly among similar states, even if

they are distant under the transition dynamics. This would have the potential of

going beyond traditional temporal credit assignment, expanding the counterfactual

credit assignment idea explored in Chapter 6.
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Appendix

A.1 Proof of Lemma 1
We start with a formal definition of a Markov state:

Definition 8. Markov property: we say a state s is Markov if

p(Rt+1,St+1|At ,St ,Rt�1,At�1,St�1...) = p(Rt+1,St+1|At ,St).

Next, we show that a Markov state implies a similar property for the transition

probabilities induced by a policy p:

Property 1. Let pp be the transition probabilities induced by policy p . Then, if s is

Markov, we have that

pp(Rt+1,St+1|St ,Rt�1,At�1,St�1...) = pp(Rt+1,St+1|St).

Proof.

pp(Rt+1,St+1|St ,Rt�1,At�1,St�1...) =
Z

a
p(a|St)p(St+1,Rt+1|At = a,St ,Rt�1,At�1,St�1...)da

(A.1)

=
Z

a
p(a|St)p(St+1,Rt+1|At = a,St)da.

(Markov property)
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Using the above, we can prove Lemma 1:

Lemma 1. If s is Markov, then E [dteeet | St = s ] = E [dt | St = s ]E [eeet | St = s ].

Proof. First note that the expectations above are with respect to the transition prob-

abilities pp as defined in (A.1). That noted, the result trivially follows from the

fact that, when s is Markov, the two random variables dt and eeet are independent

conditioned on St . To see why this is so, note that dt is defined as

dt = Rt+1 + gt+1Vw(St+1)�Vw(St). (A.2)

Since we are conditioning on the event that St = s, the only two random quantities

in the definition of dt are Rt+1 and St+1. Thus, because s is Markov, we have that

pp(dt |St ,Rt ,St�1,Rt�1, ...) = pp(dt |St), (Property 1)

that is, St fully defines the distribution of dt . This means that pp(dt |St ,Xt 0) =

pp(dt |St) for any t 0  t, where Xt 0 is a random variable that only depends on events

that occurred up to time t 0. Replacing Xt 0 with eeet , we have that pp(dt |St ,eeet) =

pp(dt |St), which implies that dt and eeet are independent conditioned on St .

A.2 Proof of Proposition 2
Proposition 2. Let eeet an instantaneous trace vector. Then let zzzt(s) be the empirical

mean zzzt(s) = 1
nt(s) Ânt(s)

i eeets
i
, where ts

i -s denote past times when we have been in state

s, that is Sts
i
= s, and nt(s) is the number of visits to s in the first t steps. Consider

the expected trace algorithm wt+1 = wt +atdt zzzt . If St is Markov, the expectation

of this update is equal to the expected update with instantaneous traces eeet , while

attaining a potentially lower variance:

E [atdt zzzt(St) | St ] = E [atdteeet | St ] and

V[atdt zzzt(St) | St ] V[atdteeet | St ] ,
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where the second inequality holds component-wise. The inequality is strict when

V[eeet | St ]> 0.

Proof. We have

E [atdteeet | St = s ] = E [atdt | St = s ]E [eeet | St = s ] (as s is Markov)

= E [atdt | St = s ]E [zzzt | St = s ] (as zzzt =
1
n Ân

i eeets
i
)

= E [atdt zzzt | St = s ] .

Now let us look at the conditional variance for each of the dimension of the

update vector atdt zzzt : V[atdt zzzt,i | St = s], where zzzt,i denotes the i-th component of

vector zzzt .

V[atdt zzzt,i | St = s]

= E
⇥
(atdt zzzt,i)

2 | St = s
⇤
�E [atdt zzzt,i | St = s ]2

= E
⇥

a2
t d 2

t (zzzt,i)
2 | St = s

⇤
�E [atdt | St = s ]2E [zzzt,i | St = s ]2

= E
⇥

a2
t d 2

t | St = s
⇤
E
⇥
(zzzt,i)

2 | St = s
⇤
�E [atdt | St = s ]2E [zzzt,i | St = s ]2

By a similar argument, we have

V[atdteeet,i | St = s]

= E
⇥

a2
t d 2

t | St = s
⇤
E
⇥
(eeet,i)

2 | St = s
⇤
�E [atdt | St = s ]2E [eeet,i | St = s ]2

Now, we also know that E [zzzt | St = s ] = E [eeet | St = s ] = µt , as zzzt is the empirical

mean of eeet . Thus we also have, component-wise,

E [zzzt,i | St = s ] = E [eeet,i | St = s ] = µt,i

Moreover, from the same reason we have that V(zzzt,i|St = s) = 1
ns
V(eeet,i|St = s). Thus

we obtain:

V[atdt zzzt,i | St = s] = E
⇥

a2
t d 2

t | St = s
⇤
E
⇥

zzzt,i(zzzt,i)
T | St = s

⇤
�E [atdt | St = s ]2 µ2

t,i
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Thus:

V[atdt zzzt,i | St = s]�V[atdteeet,i | St = s]

= E
⇥

a2
t d 2

t | St = s
⇤�
E
⇥

zzzt,i(zzzt,i)
T | St = s

⇤
�E

⇥
eeet,i(eeet,i)

T | St = s
⇤�

| {z }
0, from definition of zzzt,i

 0 ,

with equality holding, if and only if:

i E
⇥
(zzzt,i)2 | St = s

⇤
= E

⇥
(eeet,i)2 | St = s

⇤
) V(zzzt,i|St = s) = V(eeet,i|St = s), but

V(zzzt,i|St = s) = 1
ns
V(eeet,i|St = s) by definition of zzzt,i as the running mean on

samples eeet,i. This can only happen for ns = 1, or in the absence of stochasticity,

for every state s. Thus, in the most general case, this implies V(zzzt,i|St = s) =

V(eeet,i|St = s) = 0; or

ii E
⇥

a2
t d 2

t | St = s
⇤
= 0) dt = 0

Thus, we have equality only with we have exactly one sample for the average zzzt so

far, or only one sample is needed (thus zzzt and eeet are not actual random variables

and there is only one deterministic path to s); or when the TD errors are zero for all

transitions following s.

A.3 Properties of Mixture Traces
In this section we explore and proof some of the properties of the proposed mixture

trace, defined in Equation (6.3) in the main text and repeated here:

yyyt = (1�h)zzzqqq (St)+h
�
gtltyyyt�1 +—wVw(St)

�
. (6.3)

The proofs, in this section we will use the notation xt to denote the features used in

a linear approximation for the value function(s) constructed. Just note that this term

can be substituted, in general, by the gradient term —wVw(St) in the equation above.

Proposition 3. The mixture trace yyyt defined in (6.3) can be written as yyyt = µyyyt�1+

xt with decay parameter µ = hgl and signal xt = (1�h)zzzqqq (St)+h —wVw(St),
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such that

yyyt =
t

Â
k=0

(hgl )k [(1�h)zzzqqq (St�k)+h —wVw(St�k)] . (6.5)

Proof. As mentioned before, under a linear parameterization —wVw(St) = x(St) :=

xt Let us start with the definition of the mixture trace yyyt :

yyyt = (1�h)zzzt +h(gtltyyyt�1 +xt)

= [(1�h)zzzt +hxt ]+hgtltyyyt�1

= [(1�h)zzzt +hxt ]+hgtlt [(1�h)zzzt�1 +hxt�1]+h2gtltgt�1lt�1yyyt�2

= (1�h)
⇥
zzzt +hgtlt zzzt�1 +h2gtltgt�1lt�1zzzt�2 + · · ·

⇤
+

+h
⇥
xt +hgtltxt�1 +h2gtltgt�1lt�1xt�2 + · · ·

⇤

= (1�h)
t

Â
k=0

(hgl )kzzzt�k +h
t

Â
k=0

(hgl )kxt�k

=
t

Â
k=0

(hgl )k [(1�h)zzzt�k +hxt�k]

Substituting xt in the above derivation by —wVw(St) leads to (6.3).

Proposition 4. When using approximations zQQQ(s) = QQQx(s) and Vw(s) = w>x(s)

then, if (1� h)QQQ + hI is non-singular, ET(l , h) has the same fixed point as

TD(lh).

Proof. By Proposition 3 we have that yyyt can be re-written as:

yyyt =
t

Â
k=0

(hgl )k [(1�h)zzzqqq (St�k)+hx(St�k)]

=
t

Â
k=0

(hgl )k [(1�h)QQQx(St�k)+hx(St�k)] (A.3)

= [(1�h)QQQ+hI]
t

Â
k=0

(hgl )kx(St�k)

| {z }
instantaneous trace eeelh

t

. (A.4)

We examine the fixed point w⇤ of the algorithm using this approximation of the
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expected trace:

E [dtyyyt ] = E
h

yyyt(Rt+1 + gx(St+1)
>w⇤ �x(St)

>w⇤)
i

= 0 .

This implies the fixed point is

w⇤ = E
h

yyyt(gx(St+1)�x(St))
>
i�1

E [yyytRt+1 ] .

Now, plugging in the relation in (A.4) above, we get:

w⇤ = E
h
[(1�h)QQQ+hI]eeelh

t (gx(St+1)�x(St))
>
i�1

E
h
[(1�h)QQQ+hI]eeelh

t Rt+1

i

= E
h

eeelh
t (gx(St+1)�x(St))

>
i�1

[(1�h)QQQ+hI]�1 [(1�h)QQQ+hI]E
h

eeelh
t Rt+1

i

= E
h

eeelh
t (gx(St+1)�x(St))

>
i�1

E
h

eeelh
t Rt+1

i
.

This last term is the fixed point for TD(lh).

Moreover, it is worth noting that the above equality recovers, for the extreme

values of h :

• h = 1) yyyt = Ât
k=0(gl )kxt�k (instantaneous trace for TD(l ))

• h = 0) yyyt = Ât
k=0(hgl )kzzzt�k = zzzt (expected trace for TD(l ))

Moreover, as the extreme values already suggest, the expected update of the

mixture traces follows the TD(l ) learning, in expectation, for all the intermediate

values h 2 (0,1) as well, trading off variance of estimates as h approaches 0.

Proposition 5. Let eeel
t be a l trace vector. Let yyyt = (1�h)zzzt +h(glyyyt�1 + xt)

(as defined in (6.3)). Consider the ET(l ,h) algorithm wt+1 = wt +atdtyyyt . For all

Markov states s the expectation of this update is equal to the expected update with

instantaneous traces eeel
t :

E [atdtyyy(St)|St = s ] = E
h

atdteeel
t |St = s

i
,
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for every h 2 [0,1] and any l 2 [0,1].

Proof. Let us revisit Eq. 6.5 in Proposition 3:

E [yyyt ] = E
"

t

Â
k=0

(hgl )k [(1�h)zzzt�k +hxt�k]

#

= E
"

t

Â
k=0

(hgl )k [(1�h)E [ (xt�k + gl zzzt�k�1) ]+hxt�k]

#

= E

2

64
t

Â
k=0

(hgl )kxt�k +(1�h)gl
t�1

Â
k=0

(hgl )k zzzt�k�1| {z }
E[ (xt�k�1+gl zzzt�k�2) ]

3

75

= E

2

64
t

Â
k=0

(hgl )kxt�k +(1�h)gl
t�1

Â
k=0

(hgl )kxt�k�1 +(1�h)(gl )2
t�2

Â
k=0

(hgl )k zzzt�k�2| {z }
E[xt�k�2+gl zzzt�k�3 ]

3

75

= E
"

t

Â
k=0

(hgl )kxt�k +(1�h)
t�1

Â
i=1

(gl )i
t�i

Â
k=0

(hgl )kxt�k�i

#

Now, re-writing the sum, gathering all the weighting for each feature xt�k�i we get:

E [yyyt ] = E
"

t

Â
k=0

(hgl )kxt�k +(1�h)
t�1

Â
i=1

(gl )i
t�i

Â
k=0

(hgl )kxt�k�i

#

= E
"

xt +
t

Â
k=1

xt�k

 
(hgl )k +(1�h)

k

Â
i=1

(gl )i · (glh)
k�i
!#

= E
"

xt +
t

Â
k=1

xt�k(gl )k

 
hk +(1�h)

k

Â
i=1

hk�i

!#

= E
"

xt +
t

Â
k=1

xt�k(gl )k
✓

hk +(1�h)
1�hk

(1�h)

◆#

= E
"

xt +
t

Â
k=1

xt�k(gl )k

#

= E
"

t

Â
k=0

(gl )kxt�k

#

Thus E [yyyt ] = E
⇥

Ât
k=0(gl )kxt�k

⇤
= E

⇥
eeel

t
⇤
, where eeel

t is the instantaneous l trace on

feature space x. Thus E [yyy(s) ] = zl
⇤ (s) = E

⇥
eeel

t
⇤
. Finally we can plug-in this result in the
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expected update:

E [atdtyyy(St)|St = s ] = E [atdt |St = s ]E [yyy(St)|St = s ]

= E [atdt |St = s ]zl
⇤ (s)

= E [atdt |St = s ]E
h

eeel
t |St = s

i

= E
h

atdteeel
t |St = s

i
.

Finally, please note that in this proposition and its proof we drop the time

indices t for l and g parameters in the definition of yyyt . This is purely to ease the

notation and promote compactness in the derivation
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A.4 Visualising PVFs and Node2vec
Figures A.2, A.2, A.4, A.4, and A.5, A.6 depict different embedding dimensions of

PVFs and node2vec in the four-room, low stretch tree and 1D torus domains.
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Figure A.1: First 18 PVFs on the four-room domain.
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Figure A.2: 18 node2vec dimensions on the four-room domain.
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Figure A.3: First 18 PVFs on the low stretch tree domain.
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Figure A.4: 18 node2vec dimensions on the low stretch tree domain.
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Figure A.5: First 18 PVFs on the 1D torus domain.
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Figure A.6: 18 node2vec dimensions on the 1D torus domain.
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