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Abstract

Automated information gathering allows exploration of environments where data is
limited and gathering observations introduces risk, such as underwater and planetary
exploration. Typically, exploration has been performed in service of a query, with
a unique algorithm developed for each mission. Yet this approach does not allow
scientists to respond to novel questions as they are raised. In this thesis, we develop a
single approach for a broad range of adaptive sampling missions with risk and limited
prior knowledge. To achieve this, we present contributions in planning adaptive
missions in service of queries, and modeling multi-attribute environments.

First, we define a query language suitable for specifying diverse goals in adaptive
sampling. The language fully encompasses objectives from previous adaptive sam-
pling approaches, and significantly extends the possible range of objectives. We prove
that queries expressible in this language are not biased in a way that avoids informa-
tion. We then describe a Monte Carlo tree search approach to plan for all queries in
our language, using sample based objective estimators embedded within tree search.
This approach outperforms methods that maximize information about all variables
in hydrocarbon seep search and fire escape scenarios. Next, we show how to plan
when the policy must bound risk as a function of reward. By solving approximating
problems, we guarantee risk bounds on policies with large numbers of actions and
continuous observations, ensuring that risks are only taken when justified by reward.

Exploration is limited by the quality of the environment model, so we introduce
Gaussian process models with directed acyclic structure to improve model accuracy
under limited data. The addition of interpretable structure allows qualitative expert
knowledge of the environment to be encoded through structure and parameter con-
straints. Since expert knowledge may be incomplete, we introduce efficient structure
learning over structural models using A* search with bounding conflicts. By plac-
ing bounds on likelihood of substructures, we limit the number of structures that
are trained, significantly accelerating search. Experiments modeling geographic data
show that our model produces more accurate predictions than existing Gaussian pro-
cess methods, and using bounds allows structure to be learned in 50% of the time.
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Chapter 1

Introduction and Thesis Overview

Robotic and autonomous systems allow humanity to observe parts of the world that

they could not otherwise explore, like the depths of the ocean and surfaces of other

planetary bodies. Reaching these remote areas is expensive, technically challenging,

and risky, so there is a need for a decision making capability that performs exploration

efficiently and safely. In order to do so, we claim in this thesis that autonomous

exploration must be able to account for the following challenges:

1. Exploration in service of a query. A mission is typically conducted in ser-

vice of a specific query, such as something to find or a question to be answered.

The query influences which observations are most useful. An autonomous ex-

ploration system should be aware of the query and evaluate the utility of ob-

servations in the context of the query to be solved.

2. Queries prompted by new observations. The journey for scientific under-

standing rarely ends with a single answer. Far more frequently, an answer raises

many more questions worthy of further investigation, which are not considered

until observations are received. It is impossible to predict queries in advance,

so an autonomous exploration system must be flexible in query input.

3. Risk during exploration, with complex interactions between risk and

reward. Gathering observations frequently leads to unavoidable risk of unac-

ceptable damage to an observing agent or to the environment it is exploring.
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The risk of those outcomes occurring must be controlled, and traded off against

the fact that stricter guarantees on safety may result in less useful informa-

tion. It is often not clear, however, how changing acceptable risk will affect

information that can be gathered.

4. Limited data availability. A more accurate model of the environment being

explored reduces uncertainty in answers to queries. Unfortunately, adaptive

exploration is normally performed in environments where very limited data is

available, so there is significant noise when learning models and making predic-

tions from data.

This thesis proposes an approach to autonomous adaptive exploration called ‘Spock’

that addresses these challenges. Spock is query-driven, in that it allows users to spec-

ify their exploration goals in terms of what they wish to learn or answer, and tailors

exploration towards that query. This thesis develops a query language for Spock that

allows for a great deal of flexibility in goals, so that the query does not need to be

known in advance. Spock can reason about the risk that will be encountered by an

exploring agent, and allows users to specify tolerable risk as a function of the informa-

tion that will be gathered. Spock uses an environment model that can capture expert

knowledge of interactions between variables in an environment, in order to improve

the quality of inference when data is limited. Spock can also be used to learn parts of

the environment model that are unknown, but only introduces variable correlations

that are strongly justified, further improving prediction quality.

1.1 Need and Motivating Scenario

In this section, we further elaborate on each of the previously mentioned challenges,

and motivate them in the context of a scenario where an underwater vehicle is tasked

with predicting the number of hydrocarbon seeps in part of the environment. This is

far from the only application of Spock; in the development of this thesis Spock was

successfully deployed on a number of field campaigns and examined in multiple case
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studies. We provide further examples of applications of Spock in Section 1.6.

In certain areas of the ocean, subsurface hydrocarbon deposits naturally leak from

openings in the sea floor, leading to hydrocarbon seepage [24]. Hydrocarbon seeps

support unique fauna [124], and give information about the subsurface geology in the

local area [95]. As a result, locating seeps and determining whether they are active

is of interest within biology and geology, in addition to group interested in natural

resource extraction.

We consider an autonomous underwater vehicle that is tasked with exploring a

region of the ocean, and must take observations that best inform a prediction of

how many seeps exist at depths below 500 m. The mission’s measure of success is

the probability of the mode of how many seeps deeper than 500 m exist after all

observations have been taken. For example, observations that result in a posterior

belief that there are 5 seeps with 20% probability and 6 seeps with 80% probability

are preferred to observations that result in a posterior belief that there are 4 seeps

with 10% probability, 5 seeps with 40% probability, and 6 seeps with 60% probability.

Seeps can be detected using visual and spectrometer confirmation of hydrocar-

bon release. While confirmation of seepage can only be performed at close range

[135], seeps are commonly associated with sea floor features that can be detected

by long range sonar [114]. These features can be used to select locations to focus

exploration. The geological processes that result in seeps result in the formation of

mounds, pockmarks, and ridges [69]. Additionally, microbial metabolism on hydro-

carbons forms carbonates, which reflect more sound than surrounding rock and are

identifiable from sonar. All these features are expected to be correlated with seepage,

but the quantitative strength of those correlations is unknown. In order to determine

how many seeps are present in the environment, the autonomous vehicle must visit

sites with different combinations of bathymetric features and measure whether seeps

are present, use that information to determine how feature presence is related to the

presence of seepage, and use those learned relationships to estimate the number of

active seeps in the environment. A visualization of this scenario is shown in Figure

1-1, where different combinations of bathymetric features indicate potential seep sites
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Figure 1-1: Spock motivating scenario, where locations must be observed to maximize
the mode of the number of seeps within the 500 m depth contour. Red arrows indicate
candidate seep sites, and letters indicate local features that may be correlated with
seeps.

to be explored. In this figure, the objective is to maximize the posterior mode of the

number of seeps inside the 500 m depth contour.

We now describe how the scenario leads to each of the four challenges we identified.

The quality of observations is determined by the query. An observation is

always more useful when it results in a more precise answer to the question that mo-

tivated the study. In this case, the observation is most useful when it increases belief

in the most likely number of seeps deeper than 500 m. Assuming that the presence

or absence of bathymetric features throughout the environment is already known and

only the presence of seeps is uncertain, it will be most informative to visit sites with

bathymetric features that are common below 500 m, and those with large uncertainty

in how they relate to the presence of seepage. Determination of the relationship be-

tween features that are common below 500 m and seeps will improve predictions of

seepage at more locations, and measuring features with uncertain relationships to
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seepage will better improve the quality of predictions.

This is a very different strategy compared to maximizing information about the

existence of seeps across the whole environment. In this query, we don’t care about

improving estimates of seepage at locations above 500 m. Features that only appear

above 500 m can effectively be ignored. This behavior is not coded as constraints

that are input to Spock. Instead, ignoring features that only appear above 500 m is

inferred from the query and simulation of how observations could answer it.

Queries may arise as the mission progresses and cannot be predicted. In

theory, an algorithm could be developed specifically to estimate the number of seeps

below 500 m, and then deployed. But over the course of exploration, new and un-

expected observations occur, which prompts new questions. The underwater vehicle

may capture an image of an unfamiliar species, and biologists that receive that in-

formation may want to understand the types of bathymetric features that make up

that species’ habitat. This query could not be anticipated in advance, but it would

be highly beneficial to be able to produce a new plan to answer it, since an observ-

ing agent is already in the area. To allow this capability, we propose that adaptive

sampling should produce plans directly in response to queries input by the user, and

allow a great deal of flexibility in their expression. This way, scientific questions

prompted by exploration can be answered as they arise, without needing to generate

new planning approaches in response to every question.

Bounds must be placed on risk, which are informed by information gath-

ered. The autonomous vehicle in the motivating scenario may be subject to un-

predictable currents as it navigates, and this introduces uncertainty into its position

estimation. Attempting to navigate close to seeps that are located in tight valleys,

or next to extreme slopes, exposes the vehicle to a risk of collision with the ocean

floor, which could cause loss of the vehicle. However, this risk is unavoidable, because

the only way to avoid all risk is to stay so far away from possible seep sites that the

presence of seepage could not be confirmed or denied. The degree of acceptable risk
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must therefore be bounded.

However, the level of acceptable risk is often determined by the efficacy of the

mission. Intuitively, risks should be taken only if they are ‘worth it’. A moderate

risk of 0.01% may be acceptable if the most likely number of seeps below 500 m

could be determined with more than 80% certainty. But that level of risk may be

unacceptable if the most likely number of seeps could only be determined with 40% or

less. Reasoning about the relative utility and risk of observations in this way allows a

mission to be performed that is both practical and informative, and takes risks when

necessary and avoids them otherwise.

Data is limited, but utilizing expert knowledge can improve prediction.

A more accurate model enables predictions of future observations and unseen loca-

tions to better match reality. In order to predict the number of seeps below 500

m accurately, it is necessary to have accurate predictions of the presence of seepage

at locations that were not observed. Due to the expense of exploration, previous

observations may have only been taken at 100 locations or fewer, which makes pre-

diction difficult. In particular, statistical noise will cause correlations to be observed

between features and seeps, even if they are independent. Since data is limited, these

statistical correlations can be significant, and can reduce prediction accuracy.

However, geologists may already have scientifically-motivated evidence that cer-

tain features are correlated with seepage. If the environment model is able to capture

this prior knowledge as a constraint, then predictions can be enforced to be consistent

with known science and be more accurate. To do this in practice, the environment

model must be interpretable, so that the constraints between variables can be directly

encoded.

1.2 Problem Statement

Given the example scenarios that motivated this work and the challenges we seek to

address, we now provide a high level overview of the problem solved by this thesis.

26



More specific details on each aspect of this problem are provided in the technical

chapters.

The problem solved by Spock consists of four key elements; a model of an agent

that performs exploration, including its sensors and dynamics, an environment that

must be modeled while satisfying user specified constraints, a query about the envi-

ronment that must be answered, and a bound on the risk that the agent can take on

its mission. The problem is solved by executing a plan that takes observations of the

environment to best answer the query, while constraining risk to be below the bound.

We consider a mobile agent, like an underwater vehicle, that navigates an envi-

ronment with multiple attributes at each location. For example, seep presence and

mound presence that attributes at each location in the seep search example. Each

single attribute is spatially and temporally correlated between different locations, so

that a seep could be more likely at a location that is close to another known seep.

Different attributes are correlated with each other, so that a seep at a location may

be more likely if elevated backscatter is also present at that location. These com-

bined correlations allow prediction of the environment at locations that have not

been observed.

Prior to starting a mission, a limited amount of prior observations of the envi-

ronment are available, such as where seeps, mounds, or backscatter were previously

known to exist. In addition, domain experts provide qualitative constraints on known

relationships between variables, such as seeps being causally related to mounds, and

the relationship between the two being monotonic, so that as the probability of a

mound increases, the probability of seepage increases. The constraints and data are

used to construct a stochastic model for the environment at unobserved locations.

The agent may take a number of different actions that change its position. After

taking an action, the agent’s position is updated according to a model of its dynamics,

like moving it to a new candidate seep site. Taking an action may also incur some risk

of a failure condition occurring, such as collision with the environment or becoming

stuck. Once the agent reaches a new location, it then takes an observation of the

environment at that location. An observation could be whether a seep is present, or
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a noisy function of that signal, for example. The observations are used to update the

model of the environment and to give a better answer to a query.

In addition to an agent and a description of the environment, our problem con-

siders a query that should be answered about the environment. The query in our

motivating scenario was to optimize the posterior mode of belief over the number of

seeps below 500 m. The form of the query is flexible to allow for a new objectives

prompted by observations, like determining the habitat of a newly discovered species.

Finally, we also consider a risk bound on acceptable probability of failure, ex-

pressed as a function of overall achievement or precision of the answer to the query,

for example, accepting more risk for higher modes of the number of seeps below 500

m. We seek execution of an adaptive policy that selects actions and observations

to be performed by the agent, which may change in response to the previous obser-

vations gathered. The policy should maximize the objective specified by the query,

while bounding the total risk of the policy to be below the risk bound applied to the

objective value.

1.3 Spock in Action

In this section, we describe how the seep exploration problem described above could

be set up in Spock, and some of the behavior that it would exhibit in a hypothetical

scenario.

In order to formulate this problem in Spock, a user begins by describing what vari-

ables exist in the world, and how they are known to be related. The user encodes that

the environment contains seeps, mounds, pockmarks, ridges, and elevated backscat-

ter, all modeled as binary random variables at different locations in (𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑑𝑒𝑝𝑡ℎ)

space. Geologists state that backscatter and mounds are known to be positively

correlated with seepage, and while the effect of pockmarks and ridges is uncertain.

Constraints are also provided that if correlations do exist, seepage causally depends

on the bathymetric features. The observed presence of seepage at locations that were

visited is also provided as an input to help train the model.
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The user then provides Spock with a query that details the objective to maximize

the posterior mode of the number of seeps below 500 m. Input also describes the

dynamics of the vehicle, and how its position uncertainty grows with time. Finally,

the user describes that they would accept up to 0.05% risk if executing the plan would

perfectly determine the number of seeps below 500 m, and only 0.001% risk if the

mode of the number of seeps below 500 m is effectively 0.

This method of operations is in stark contrast to the setup and planning that has

been used in prior adaptive sampling deployments. In those deployments, the query

and environment model are both hard-coded prior to a mission, and the strategy

of where to measure is strongly coupled to both. If a new bathymetric feature was

identified to be an important indicator of seepage, it would not be straightforward to

add it to the environment model, and there would be no guarantee that the decision

making algorithm would be able to account for it correctly. As understanding of the

environment evolves, additional expert knowledge and new queries would not be able

to be included or considered on the deployment. Finally, risk would not be accounted

for explicitly, and mission operators would need to establish forbidden regions for

the vehicle. These ultimately may still allow a mission that does not satisfy the risk

bounds, or may result in a large degree of conservatism.

Spock takes the known environment variables, statements of expert knowledge,

and a query, and it begins to construct internal models of how variables in the en-

vironment are related. It has been told that mounds and backscatter are positively

correlated with seepage from expert constraints. In the prior data where the pres-

ence or absence of seeps were observed that is available to Spock, very few sites had

pockmarks and most had mounds. Without observations of pockmarks or a lack of

mounds, whether or not pockmarks and mounds have any effect on seepage is highly

uncertain. On the other hand, whether a ridge was present is observed to be effec-

tively independent of seepage on many observations, and so the belief that seeps are

not correlated with ridges is strong.

Spock proposes candidate models where seeps are and are not causally related to

pockmarks and ridges, and probabilities for those models. Spock reasons that, based

29



on the data, the models where ridges are correlated with seeps have low probability,

while whether or not pockmarks are correlated with seeps has relatively equal prob-

ability. Mounds and backscatter are known to be correlated with seepage by expert

knowledge, but the quantitative effect of mounds is highly uncertain. Let us say that

in the prior data, seeps always occurred when elevated backscatter was present, and

rarely occurred when it was not. Spock therefore infers a strong positive effect of

backscatter on the presence of seepage.

Spock uses those models to produce simulations of where seeps exist in the envi-

ronment, in order to learn what would be observed if an agent were to visit each of

the locations, and how those observations would affect belief in the number of seeps

below 500 m. From those results, Spock is able to determine how each observation

would contribute to answering the query. All the candidate locations for seeps be-

low 500 m do not have pockmarks, so even though there is significant uncertainty in

whether the presence of a pockmark would significantly affect seep predictions, the

simulations reveal that it doesn’t significantly change the number of seeps below 500

m. On the other hand, several locations below 500 m do not have mounds, so quan-

tifying the impact of mounds significantly improves belief in the most likely number

of seeps below 500 m.

Based on these observations, Spock selects to first observe a location with no

mound and positive backscatter. This combination is chosen because if a seep is not

present, it would be strong evidence that the lack of mounds is an indicator for no

seepage, and belief in the number of seeps below 500 m would be refined significantly.

There are three such sites, one that can be observed without risk that is far away

from other sites, and two that can be observed with 0.02% risk that are more central.

The risky sites are preferred, because they allow the agent to reach sites with stronger

spatial correlations on following observation. The risk of the observation is compared

against the impact on predictions of seeps that could occur, and it is determined

that the tradeoff between risk and belief update is acceptable under the risk bounds.

An observation is taken, and Spock uses that information to update its models and

predictions for the number of seeps below 500 m.
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(a) Mission executed after observing no
seep at first site.

(b) Mission executed after observing no
seep at first site.

Figure 1-2: Example missions executed by Spock in the motivating seep search sce-
nario. When no seep is found at the site of first measurement with backscatter and
no mound, the effect of mounds on seepage is inferred to be strong. When a seep is
found at that site, finding a location with backscatter, no mound, and no seep would
still significantly change belief over the number of seeps below 500 m, but searching
for one is no longer worth 0.02% risk.

Spock’s next action then depends on what was observed after the first action.

In the first case, no seep is present, as in Figure 1-2a. This is a significant result,

since seeps were always observed when backscatter was present in prior data. It’s

likely that this means that the correlation between mounds and seeps is also strong

quantitatively, and that seeps should be predicted to be less likely when mounds are

not present. Since the uncertainty in the impact of mounds has been determined,

simulations reveal that the next most informative measurement would be to measure

a location that is centrally located. Presence of seepage is expected to be spatially

correlated, and this location would best refine the estimate for the number of seeps.

In the second case, a seep is present, as in Figure 1-2b. There now remains some

uncertainty about whether no mounds has a comparable effect on seep presence to

backscatter and the observation was unlucky, or whether the impact of no mounds

on seeps is very weak. Observing no seep at another site with backscatter and no

mounds would still refine belief over the number of seeps below 500 m, but based on

the last observation, that outcome is not likely. Spock’s simulations reveal that the

lower likelihood of no seep means that taking an additional 0.02% risk is no longer

justified, and the best action is chosen to be the site with no mound and backscatter
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with no risk.

Regardless of the actions taken, after the vehicle takes a set number of observa-

tions, the mission ends. The vehicle surfaces, and reports back belief over the number

of seeps below 500 m based on its observations.

This scenario demonstrates Spock determining the quality of observations based

on relevance to the query, by choosing not to determine the effect of positive presence

of a pockmark on seepage, and to focus on locations without mounds. Risk is con-

strained as reward, and risky seep locations are only observed when they are likely

to provide meaningful information about the presence of seeps elsewhere below 500

m. The choice of locations is guided by expert knowledge, in this case about the

positive correlations between backscatter, mounds, and seepage. Finally, a similar

mission could be performed with a variety of different queries as input, prompted by

discoveries as the mission progresses.

1.4 An Overview of Spock

We now provide a summary of a Spock as a system, and provide some more detail

into how it operates. Spock is constructed from a number of components, and those

components will be developed in the technical chapters of this thesis.

At a high level, Spock consists of a planning component and an environment mod-

eling component, as shown in Figure 1-3. The planning component makes decisions

on where and what an agent should observe, and uses the environment modeling com-

ponent to inform those decisions. The environment modeling component generates

models that are consistent with expert knowledge, and allows predictions of the value

of unobserved environment variables.

The planning component takes as input a query that follows a query language

described in Chapter 2, and a risk bound expressed as a function of reward. The

query defines how reward should be computed for the plans produced by Spock. The

planning component is responsible for producing an online plan that optimizes an ob-

jective derived from the query, while ensuring that the risk taken across all executions
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Figure 1-3: Overview of Spock as a system. The planning component chooses actions
to execute for a given query and risk bound. The environment modeling component
uses expert knowledge and observations to build a predictive model of the environ-
ment, and provides samples of that model to the planning component.

of the plan is bounded by the risk bound applied to the expected reward. Planning

is performed using Monte Carlo tree search in an online manner, by constructing a

series of unconditional plans.

The planning component makes use of two technologies: query-driven adaptive

sampling and scalable Monte Carlo tree search with risk bounding functions. Query-

driven adaptive sampling is described in Chapter 3, and details how reward can

be computed for general queries using samples drawn from the environment model.

General reward estimators are embedded in the Monte Carlo search tree, so that

planning can be performed with a single technique for many queries. Scalable Monte

Carlo tree search with risk bounding functions is discussed in Chapter 4, where it is

shown that the online plans can be guaranteed to satisfy risk bounds expressed as

functions by placing constraints on actions in the online plans. The constraints are

formulated so that risky actions can be taken if they are likely to yield future reward.

The environment modeling component takes as input user-defined constraints on

the presence or absence of causal relationships between different environment at-

tributes, qualitative constraints on those relationships, such as monotonicity, and

observations that were collected in past or during the mission. The environment
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modeling component then produces samples of the environment that can be used

within the planning component.

The environment modeling component also uses two related technologies: AcyGP

models and structure learning using A* with bounding conflicts. The AcyGP model

uses multiple Gaussian processes connected through a directed acyclic graph struc-

ture, and is introduced in Chapter 5. The AcyGP model makes it simple to express

qualitative relationships and constraints on structure. The remainder of the structure

that was not constrained by users is optimized through structure learning using A*

with bounding conflicts, as described in Chapter 6. A* with bounding conflicts uses

bounds to allow the optimal structure to be found without evaluating all possible

structural models, and describes when models should be evaluated in the course of

search.

1.5 Summary of Contributions

We now provide a summary of the major contributions provided by this thesis, and

describe how they help to achieve our overall problem statement.

A Broad Query Language for Adaptive Sampling The literature on adap-

tive planning currently describes a large number of approaches to adaptive sampling

problems. These algorithms are specific to certain objectives and models, and are

not easily generalized. With query-driven adaptive sampling, our goal is to be able

to provide a single approach to adaptive sampling in service of many possible queries

provided by the user. A key step for providing this capability is defining the space

of queries that are suitable for adaptive sampling, and the means by which they may

be input to the algorithm.

In Chapter 2, we construct queries from a combination of one of three choices of

objective, a user defined function, and an optional sufficient condition. The func-

tion computes a variable of interest from the environment model, and the objective

of the mission is to maximize the objective applied to the variable of interest, or
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if the sufficient condition is supplied, minimize the number of observations required

for the objective to reach the sufficient condition. We then provide modifiers called

‘specializations’ that further affect how the objective is applied. Overall, the query

language encompasses most known adaptive sampling objectives, while introducing

significantly more capability of expression over the state of the art. We then demon-

strate that it is possible to formulate queries with optimal solutions that deliberately

ignore data that can be obtained for free, but we prove that all queries specified in

our query language do not lead to this behavior. The introduction of queries provides

a framework for specifying a broad range of adaptive sampling goals, while ensuring

they are well-posed.

Monte Carlo Tree Search for Complex Queries We adopt a Monte Carlo

tree search (MCTS) approach to solve for policies for what observations to take at

what time. Unlike most existing adaptive sampling algorithms, the flexibility in

our objectives means that they cannot necessarily be computed in closed form, and

instead must be estimated using computationally intensive estimators. Our approach

must balance the time taken exploring the space of possible actions against the time

required to estimate the result of the query after any given sequence of actions. The

introduction of sufficient conditions and specializations further complicates search, as

missions can end as soon as the sufficient condition is met, and specializations mean

that certain outcomes can be ignored.

In Chapter 3, we introduce extensions to MCTS that account for the additional

complexity introduced by a query-directed framework. To plan with computationally

intensive queries, we embed sample based estimators of probability density and mu-

tual information within an MCTS search tree. Action selection rules within MCTS

are used to determine whether a sequence of actions is possibly optimal, so that

more time is committed to making an objective estimate more accurate using addi-

tional samples. Meanwhile, coarse objective estimates that are likely to be low are

not refined with additional samples. To allow planning with sufficient conditions,

we introduce a mechanism that allows rollouts to terminate before reaching a leaf
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state within MCTS. Finally, we also show how to compute which outcomes must be

considered for the purpose of objective computation with specializations. Our Monte

Carlo tree search method allows us produce a single algorithm that will work for all

queries, and allows planning in an anytime manner.

Long Duration Risk Bounded Planning with Risk-Bounding Functions A

risk-bounding function specifies an acceptable level of risk to the exploring agent as

a function of the value of the observations that will be taken, so that the agent can

trade off risk against reward. Guaranteeing satisfaction of the risk bound in a policy

typically requires consideration of every possible outcome that could occur. For many

practical problems with a large number of possible outcomes of any observation, the

state space of search becomes large very quickly, which effectively limits the duration

of policies to a handful of actions. Furthermore, we cannot consider every possible

outcome of a continuous observation.

In Chapter 4, we show that it is possible to guarantee satisfaction of a risk bound-

ing function for policies that depend on a continuous set of outcomes, and for missions

with 20 actions or more. This is achieved by solving a sequence of smaller approx-

imating problems that consider the average outcome of a sequence of actions, then

replanning in response to each observation. The advantage of the approximating

problems is that the generated search tree has a smaller, finite number of branches,

even when there is a continuous space of outcomes of an action. This allows sig-

nificantly larger problems to be solved. By placing carefully formulated constraints

on those approximating problems, we show that a constrained solution to the next

approximating problem necessarily exists, and that executing the first action of each

approximating problem in sequence will necessarily lead to satisfaction of the risk

bounding function. Risk bounded planning ensures that risks are only taken when

they also result in worthwhile reward, and our contribution is to allow risk and reward

tradeoff to be considered over long missions.
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Gaussian Process Models with Directed Acyclic Structure Since adaptive

sampling is used to reduce uncertainty about an environment or answer questions that

remain unanswered, it is typically used in applications with significant uncertainty

in the environment and few observations. Gaussian process models are widely used

in adaptive sampling because they provide uncertainty estimates with their predic-

tions. Precisely answering a query requires an accurate model of the environment, so

it is advantageous to encode any information known about the environment outside

of the data. Even if they cannot quantitatively describe relationships between vari-

ables, experts frequently possess qualitative knowledge of the form of variables that

are modeled and the interactions between them, such as monotonicity relationships,

causality, and independence. Predictive accuracy can be improved by ensuring that

the environment model captures those relationships, but existing Gaussian process

methods do not provide an interpretable way to enforce them.

In Chapter 5 we introduce a novel Gaussian process model with directed acyclic

graph structure connecting the different attributes being modeled. This allows a user

to model conditional independence between attributes and known causal relationships

in an intuitive manner. The model further allows heterogeneous attributes, such as

discrete or continuous variables, to be captured appropriately. Then, by placing con-

straints on parameters that connect attributes in the model, we are able to enforce

qualitative constraints like monotonicity. Our Gaussian process model enables ac-

curate environment modeling and prediction, even in the presence of very limited

data.

Efficient Structure Learning Using A* with Bounding Conflicts Although

the capability to capture qualitative constraints in an environment model is valuable,

it is common that certain relationships may not be known by domain experts. In this

case, it is appropriate to determine the most likely relationships and their probabilities

using the observational data that is available. In the context of a model with graphical

structure, search over the space of models is achieved through structure learning,

which is well understood and operates by evaluating the likelihood of the data under
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different structures. However, unlike most applications of structure learning, it is a

highly time intensive process to determine the likelihood of a Gaussian process model

under each structure, as the Gaussian process must be trained.

In Chapter 6 we show that optimal structure learning can be performed without

evaluating the likelihood of all possible structures by using A* with bounding conflicts.

When searching over the space of structures, a bound is placed on the likelihood

by using the likelihood of any evaluated structure with more edges. In this way,

certain structures can be proven to be outside of the set of 𝑘 best without ever

evaluating them. This greatly reduces the number of structures that need to be

trained, and accelerates search for the most likely structure. Using A* with bounding

conflicts this way speeds up model learning considerably, without needing to resort

to approximation methods.

1.6 Applications of Spock

Before introducing Spock technically, we list some field deployments that made use

of Spock, and case studies that were performed to examine possible future use cases.

These scenarios show the diversity of applications that query-driven adaptive sam-

pling easily supports, without algorithm modification, and shows that Spock has been

successfully deployed in practice.

Coral Reef Species Monitoring Coral reefs are havens for unique species of

coral and fish that are only found in those biomes [85, 109]. In order to ensure the

preservation of those species, it is of interest to determine the extent and health of a

coral reef, determining which species are present and whether they have been subject

to harmful bleaching. Large coral reefs can cover many square kilometers of the ocean

floor, so to conduct an extensive study without performing a large number of human

dives, persistent autonomous underwater vehicles with optical and acoustic imaging

can be used to map the reef over large areas [149, 150]. Since coral reefs are fragile,

it is important for any exploring vehicle to limit the probability of colliding with the
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reef as it travels over it due to unexpected currents or tall coral that was not detected

by on-board sonar.

This application, in such a fragile ecosystem, demonstrated the critical role of

careful consideration of risk during adaptive sampling. Technology described in this

thesis was utilized for coral monitoring on a cruise to the ‘Au‘au Channel and the

Big Island of Hawai‘i in January 2018 as part of NASA’s PSTAR project, with ship

time provided by the Schmidt Ocean Institute [108]. Coral exploration missions

performed by autonomous underwater vehicles were planned with an objective to

maximize mutual information between coral density and photo observations, as well

as the presence of certain coral species and observations. The probability of collision

with the reef was estimated using position uncertainty derived from currents, and

plans were developed to ensure that the risk did not exceed a user specified bound.

Characterization of Natural Hydrocarbon Seeps As described by the example

scenario earlier in this chapter, characterization of natural hydrocarbon seeps required

adaptive sampling to be performed in a domain with extremely limited prior knowl-

edge, but incorporating expert knowledge given by geologists. Adaptive sampling and

environment modeling approaches described in this thesis were used to search for hy-

drocarbon seeps in the Costa Rica active margin in December 2018 [144], supported

by the Schmidt Ocean Institute, NASA PSTAR, and Navistry Corp. A structured

model was constructed to capture geologists qualitative understanding of the rela-

tionships between bathymetric features, acoustic backscatter signals, water column

acoustic anomalies, and the presence of seepage. The quantitative strengths of these

signals was then learned from data under the asserted qualitative model. Adaptive

planning was then used to produce dives with remotely operated and autonomous

vehicles to maximize the number of seeps found across the campaign. This approach

was able to find a novel seep site that was previously unknown to scientists that

had studied the area, and to estimate the most important predictive features for the

presence of seepage.
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Search for Oceanic Hydrothermal Vents In volcanic areas, pressure driven by

heat can cause fluids to release from beneath the sea floor in the form of hydrothermal

vents [143]. Much like hydrocarbon seeps, these vents can only be detected at close

range by autonomous or remotely operated underwater vehicles [101], and they are of

interest to biologists, geologists, and volcanologists to provide insight into subsurface

processes [63], their effects on the local biome [131], and possible threats to locals

that may be posed by volcanic activity. Like in the search for hydrocarbon seeps,

hydrothermal vents possess spatial correlations with other vents, and depend upon

the depth and rugosity of local bathymetry.

This application demonstrated the need for adaptive sampling to be able to in-

corporate changes to the model and query as the mission proceeds. Query driven

adaptive sampling was used in the search for hydrothermal vents in the Kolumbo

caldera in November 2019 as a part of NASA’s PSTAR project. A model was con-

structed to predict the presence of venting based on depth, rock type, presence to

known vents, and multiple features derived from local bathymetry. Adaptive sam-

pling produced plans for where to explore with remotely operated vehicles in order to

maximize the number of vents found, and on separate dives, to maximize information

about the distribution of vents. During the mission, encodings of sea floor charac-

teristics were made available, and these were folded into Spock’s environment model.

The approach developed in this thesis was able to locate a previously unknown vent

site that was not obvious from the bathymetry data alone.

Search for the Presence of Invasive Plant Life Park land and nature preserves

ensure that animal and plant species native to an area can continue to thrive, and

provide recreation to people who hike and camp in the area. Unfortunately, hu-

man presence in the area brings in invasive plant species, which can overwhelm local

species if they are allowed to spread. Based on reports from park visitors, volunteer

workers walk hiking trails and campsites, searching for evidence of invasive species

and removing them when possible. However, the land is typically too vast for the

number of volunteers, and search must be focused. Factors such as soil type, local
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wind direction, local water flow, proximity to hiking trails, the presence of recent

forest fires, and proximity to previously detected invasive species all are indicators of

locations where an invasive species can take hold and spread.

This scenario demonstrated that query-driven adaptive sampling is useful not

only for autonomous missions, but to guide human observers as well. The search for

invasive plant life was considered as a case study for the technology developed in this

thesis. Predictive models for the presence of invasive species based on the previously

mentioned indicators were developed. No autonomous vehicles were planned to be

used, but query driven adaptive sampling would be able to plan where volunteers

should focus their efforts, in order to maximize the number of unwelcome invasive

species that could be removed.

Threatened Species Population Estimation Rockfish are considered a threat-

ened species in the Washington Puget Sound [148]. The state is interested in esti-

mating and monitoring their population distribution and understanding the extent

of suitable habitat for population recovery. Rockfish live in rocky terrain on the sea

floor, but the distribution of suitable habitat is uncertain since low resolution sonar

scans of the Sound do not fully distinguish whether certain locations can support

rockfish. Data is gathered by lowering camera platforms and looking at the imagery

they collect. The images help inform where rockfish are present, but also where habi-

tat suitable for rockfish is present [100]. In order to construct accurate models of

population and expected growth, Washington wishes to plan their observation dives

to best understand the current rockfish population, and where additional possible

habitat lies.

This mission demonstrated the need for environment models in adaptive sampling

to be able to capture complex relationships between environment attributes. Rockfish

population monitoring was used as a case study for adaptive sampling with queries.

A model of bathymetric features must be determined based on position and the low

resolution sonar imagery. Then, presence of rockfish is determined based on location

and habitat suitability derived from bathymetry. Future observations would be se-
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lected to maximize mutual information between observations and habitat suitability

across the Sound, rockfish presence across the Sound, or a total estimate of the rock-

fish population, dependent on the query driving the mission. Even when the mission

is motivated by rockfish estimates, observations focusing on the bathymetry may still

be useful for determining overall rockfish population estimates.

Search for Water below the Lunar Surface Water ice has been found below the

surface of the moon in craters that are permanently shadowed [115]. Understanding

the distribution and thickness of that ice is critical for planning long duration manned

lunar missions or lunar bases, because access to water will be required by the human

crews [117]. A lunar rover can use a specialized drill to test for ice thickness, and by

exploring the lunar surface it can test for overall prevalence. The path of the rover

must periodically pass through illuminated areas so batteries on-board can be charged.

In addition, traversing rough or highly sloped areas of the lunar surface subjects the

rover to risk of damaging its wheels and becoming immobilized, but can lead to much

faster paths between craters. The acceptable risk must be appropriately determined

for the science return, and selections of where to observe must satisfy those bounds

on risk.

The search for lunar ice was another demonstration of the need for risk bounded

adaptive sampling techniques, and was considered as a case study for the work in this

thesis. A model of lunar ice thickness would be constructed depending on location

and fraction of time spent in shadow. Adaptive sampling planning would then be

applied to choose locations to drill with an objective in order to maximize information

about the distribution of ice thicknesses across the surface. The planner would select

locations with paths between them that constrain the total risk of being immobilized

based on the information that would be returned.
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1.7 Summary

This thesis presents Spock; a system to perform query driven adaptive sampling.

Spock plans missions of where to gather observations in order to best answer queries

raised by users. In this thesis, we propose a query language to specify queries in

adaptive sampling, and show how to use Monte Carlo planning to produce plans for

any input query. Spock is designed to operate in risky, data-limited environments, so

we present a method to plan with risk bounds that are functions of reward, propose

a Gaussian process model to model environments with limited data in the presence

of expert knowledge, and introduce a method to efficiently solve for structural rela-

tionships between environment variables. With these capabilities, Spock represents a

significant leap in adaptive sampling for the uncertain, rapidly changing environments

that humanity most wishes to explore.
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Chapter 2

Adaptive Sampling with Queries

In this chapter, we consider the problem of solving for adaptive sampling strategies

that best answer wide ranges of queries. We specify the intended problem to be solved

by a query-driven adaptive sampling algorithm and the construction of a general-

purpose query language to express the goals of a query-driven adaptive sampling

planner.

Query-driven adaptive sampling allows a scientist to define what they wish to

learn about or achieve in an adaptive sampling mission by specifying a query, and

then constructs plans for where to gather observations to best answer those queries.

Queries are designed to be expressive and capable of encoding a broad range of user

intents. On a campaign exploring a basin with evidence of hydrocarbon seepage,

example queries could include:

“Minimize the expected number of measurements so that the number of seeps found

is at least 3”,

which highlights that a query could focus on reaching a condition with the minimal

number of measurements possible,

“Maximize the expected posterior mode of the number of seeps in the environment

without backscatter above a specified threshold on the best 95% of mission outcomes”,

which highlights that a query may only depend on certain outcomes of a mission,
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“Maximize certainty in the effective length scale of spatial correlations in mound

presence”,

which highlights that a query may depend on model parameters like length scales of

spatial correlations, and

“Maximize certainty in whether mounds are causally related to seeps”,

which highlights that a query may depend on the existence of relationships between

environment attributes like mounds and seeps.

We can see the flexibility required in query construction through the examples

above. A query can focus on attributes at the locations that are actually observed,

such as ‘seeps found’, or locations across the environment, including those that have

not been observed, such as ‘number of seeps in the environment’. Queries can focus on

environment attributes such as ‘seep presence’, model parameters such as ‘the length-

scale of spatial correlations’, correct choice of model such as ‘whether mounds are

causally related to seeps’, or combinations of these such as ‘seeps without backscatter

above a specified threshold’. Furthermore, they can maximize expectations, posterior

modes, or certainty, or minimize the number of measurements needed for any of those

to reach a specific condition. Through query-driven adaptive sampling, we are able

to capture and plan for all of these objectives.

Making adaptive sampling query-driven in this way provides two advantages to

those interested in the gathered information. First, it allows missions to be planned

with objectives that are useful, but were not expressible by any previous information-

gathering planners. Second, a single planner is able to respond to the diverse set

of allowed queries. This means that a scientist can encode and plan a mission to

respond to a scientific question that was prompted by unexpected observations, and

was not anticipated prior to a previous mission. The queries that can be input to

existing approaches to adaptive sampling are not broad, and so considerations of a

novel query would require development of a new algorithm, which would require a

significant delay.
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In this chapter we focus on a rich language for expressing adaptive sampling

queries. We define our notion of a query as an objective, and a variable of interest

computed as a function over environment variables, structural models, and param-

eters. Formulating a query this way allows users to construct queries from environ-

ment variables and connections between variables, as in the examples above, without

needing to know the specifics of how the environment model generates predictions.

Query-driven adaptive sampling asks the user to supply such a variable of interest

and an appropriate objective, and an exploration policy of what to observe is solved

that optimizes the objective applied to the variable of interest.

A key insight in this chapter is that providing this generality in queries makes

it possible to construct objectives that lead to bias, causing an agent to deliberately

avoid gathering new information. Our solution is to limit the space of query objectives

to those that provably disallow this behavior.

2.1 Motivation

An example that has motivated the development of query-driven adaptive sampling is

the search for natural underwater hydrocarbon seepage in oceanographic basins using

autonomous underwater vehicles, which we refer to as the ‘seep exploration scenario’.

The presence of natural seeps is strong evidence for the presence of exploitable hydro-

carbons within a basin, so there is commercial interest in locating evidence of seepage

in order to justify more expensive subsurface studies. Bathymetric features on the sea

floor such as mounds, pockmarks, faults, and combinations of those features can be

identified by a ship-board sonar, and the strength of the ‘acoustic backscatter’ signal

returned by a sonar pulse gives an indication of the material on the sea floor. This

data is available before the deployment of any underwater vehicle, and it is known

that these seafloor features are correlated with the presence of seepage, so they can

be used to guide exploration. These locations act as a set of candidate seep sites that

can be visited by the vehicle, and an algorithm is tasked with selecting the locations

with appropriate combinations of features to visit to maximize the expected number
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of seeps found.

Exploration within an environment is rarely constrained by a single objective,

and is instead performed for a number of different reasons, each with distinct ob-

jectives, and requiring different observations to best answer. For example, beyond

simply locating seeps, it is also of interest to estimate the total number of seeps

within a basin, in order to inform estimates of the amount of hydrocarbons beneath

the surface. Since natural seeps are unique biological habitats, biologists are also

interested in these studies, but with an objective of determining the biomass that the

seeps support. While each of the objectives in the seep exploration scenario involves

gathering observations of the same variables (dissolved hydrocarbon concentrations,

bathymetric features, evidence of bubbling, etc.) within the same environment, the

optimal strategy of what measurements to take differs between objectives.

Algorithmically generated exploration strategies have seen success in satisfying

some of these objectives. But each application has typically used a single algorithm

that has been custom-built for the specific objective and environment being explored.

Each distinct algorithm requires a long and difficult development process, alongside a

dedicated expert in adaptive planning to do the design. With our approach, we aim

to produce a single planning algorithm that can plan for the majority of queries that

have been considered in the adaptive sampling literature to date, and add support

for other queries that existing approaches cannot tackle.

A single algorithm with a highly focused query is undesirable in applications in

which the environment is relatively unknown, such as the conditions encountered

during oceanographic expeditions. In these cases, the data gathered is frequently

unexpected and thought-provoking. In response to new data, scientists challenge

their initial assumptions, formulate new hypotheses about the environment, and raise

additional scientific questions that were not anticipated at the start of the expedition.

For example, on one such seep exploration mission we conducted in December 2018,

observations of differences in seep gas composition and intensity caused scientists to

hypothesize that deep-sourced fluids were only present on one side of the basin, and

they wished to test this hypothesis to further their understanding of the environment.
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With query-driven adaptive sampling, a query testing this hypothesis could be input

directly into the algorithm, and information could be gathered to answer it on the

next dive. In contrast, custom-designed algorithms brought on the expedition are

unsuitable for answering newly posed questions because the new objectives could not

be predicted in advance. This limits the extent that answers to those questions can

be pursued.

To avoid the expense of developing algorithms for multiple objectives, and to

enable scientific exploration to answer questions that are prompted by data gathered

during a mission, we propose an adaptive sampling approach that is flexible in its

input. In our approach, known as query-driven adaptive sampling, a user formulates a

scientific ‘query’ to be answered during a planned mission. The query specifies what

the user wishes to understand, or an objective to be achieved. A single planning

approach is then developed that is able to handle broad classes of queries.

We do not claim that our approach is as effective or efficient as algorithms that are

specialized to specific environments and objectives, as those approaches are able to

make use of problem-specific structure. Instead, our focus is on speed of response to a

new query and generality. We show that our approach is able to handle the same ob-

jectives as many existing adaptive sampling algorithms, plus additional problems that

are significantly beyond the capabilities of existing approaches. Using query-driven

adaptive sampling, scientists on exploration missions are able to produce information-

gathering plans automatically, without the difficulty of developing new algorithms in

anticipation of the questions that will arise on a mission. Specialized algorithms

may still be used when they are available, while our approach is intended to handle

missions for which specialized algorithms have not been generated.

2.2 Related Work

At a high level, adaptive sampling refers to any procedure of experimental data gath-

ering where the choice of variables to observe depends on the results of previous

observations. In our motivating domain of underwater exploration, adaptive sam-
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pling determines locations in space and time to measure with the instruments on an

observation platform, typically an autonomous underwater vehicle or remotely op-

erated vehicle, in order to best answer a scientific question about the environment.

However, adaptive sampling is broadly applicable beyond environmental exploration,

with applications ranging from medical trials [31] to human behavior surveys [134].

Within environmental exploration, adaptive sampling is typically performed in

service of an objective that can be fit into one of two classes. The first class is

concerned with improving the accuracy of variable(s) estimated from the environment.

Examples include minimizing error in estimates of ocean temperature, salinity, and

biological chemical concentrations [84], and locating chemical plumes [22, 102]. In the

latter example, it may not be necessary to directly observe the source of the plume

in order to precisely estimate its location. In contrast, the second class is concerned

with maximizing the number of a certain type of observation or the magnitude of

continuous observations like temperature that are taken by the observation platform.

Examples include confirming high temperature measurements [10], observing sources

of hydrocarbon seepage [144], and observing algal blooms [35]. The choice of whether

to estimate a variable accurately or seek high value observations depends on the

intentions of the mission designer, and we will allow both within query-driven adaptive

sampling.

The methods deployed on robotic surveys are normally application-specific [62],

and they do not easily generalize to objectives beyond those for which they were de-

signed. Yet as previously mentioned, novel scientific questions may arise on prolonged

exploration missions, and there may be opportunities for an observation platform to

pursue a secondary objective. Existing adaptive sampling algorithms are not able

to be used in these dynamic situations, as discussed in Section 2.1. Through query-

driven adaptive sampling, we aim to provide a theoretically well-founded approach

that is applicable to flexible objectives, including and beyond both the previously

described classes.
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2.2.1 Information Maximization

Mathematically justified approaches to improving accuracy of estimated variables

frequently use an approach of maximizing mutual information between observed vari-

ables and variables of interest, which is equivalent to minimizing the expected pos-

terior entropy of the objective variable. MacKay [92] derived strategies to maximize

mutual information between observations and model parameters, environment vari-

ables in a region of interest, and the correct model, all using Taylor series approxima-

tions of information. Krause et al. [77] studied maximization of information about the

value of a Gaussian process (GP) model, showing that it can be solved near-optimally

with a greedy strategy, while Chen et al. [27] considered this strategy whenever ob-

servations are causally dependent on an objective variable. Since computation of

mutual information is particularly easy for GP environments, a popular approach is

to model exploration as a vehicle moving through a GP. Locations have been selected

using dynamic programming [25, 90] or a genetic algorithm [60]. Our approach may

be used to estimate mutual information for all these problems, while also allowing

information to be maximized for more general variables of interest computed from

model parameters or environment variables.

While mutual information is widely used, adaptive sampling has been formulated

with other measures of information gain. These include average variance [55], average

variance reduction [15, 48], estimator integrated mean squared error [157], and Fisher

information [154]. Our approach is able to maximize information about the variable

of interest considered in each of these cases, but we focus on mutual information

for information maximization problems. To our knowledge, there have not been

comprehensive studies on the relative performance of each measure of information.

2.2.2 Observable Maximization

The canonical abstraction for maximizing observations in the face of uncertainty is

the multi-armed bandit problem. In the multi-armed bandit problem, sequential

draws are taken from a fixed number of unknown probability distributions, with the
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intention of maximizing the cumulative value of the draws [51]. Index policies that

do not explicitly simulate returns are known to be able to achieve optimal return up

to a constant factor [7, 47].

Adaptive sampling with an objective of maximizing observations over a continuous

domain has many similarities with spatially correlated bandits [152] or the continuum

armed bandit problem [71]. Stronger probabilistic lower bounds on reward are known

in the case that the observed function is a Gaussian process [36, 129] than general

continuum armed bandits. As a result, a GP model has been used in adaptive sam-

pling to seek high luminosity observations [93] and hone in on hydrothermal hotspots

[11], for example. Maximization of observations has also been studied for binary envi-

ronment variables using nearest neighbor classifiers, under the name Bayesian active

search [48, 64]. These methods make use of bounds on expectation to prune the space

of observations, though the bounds are specific to model used.

Our approach is able to solve the same problem setups as the previously de-

scribed observation-maximizing cases. However, many of these approaches make use

of domain-specific bounds or heuristics, and that enables them to plan over longer or

infinite horizons. Since the exact form of the bounds depends on the model and data

being observed, and we cannot guarantee that the query to be maximized satisfies the

assumptions for existing bounds, it follows that our approach is unable to recreate

existing for infinite horizon strategies exactly. We instead maximize reward over a

limited horizon, as in [10, 48]. While we lose application-specific performance, we

gain the ability to maximize more general variables of interest, including those whose

probability distributions are not known exactly, and add the ability to optimize over

a subset of possible outcomes.

2.3 Problem Setup and Statement

In query-driven adaptive sampling, we wish to plan and execute a policy of actions

that results in observations that let an agent learn about unknown variables. We

will primarily focus on a mobile agent that can maneuver through an environment,
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and collect local observations of the environment it is navigating. Before defining our

problem, we first specify our assumptions on the environment and the capabilities of

the agent. While our problem formulation is domain independent, we will motivate

with the seep exploration scenario.

2.3.1 Environment Model Assumptions

The environment model assumptions described in this section specifies constraints on

the model of the environment being used, in terms of a set of attribute variables and

constraints on the relationships between these variables.

Consider, for example, the environment model for the seep exploration scenario.

A vehicle must be sent to a series of selected sea floor locations in the hunt for hy-

drocarbon seepage. At each location, there is the presence or absence of bathymetric

features like mounds and pockmarks, in addition to the presence or absence of an

elevated backscatter signal. Without any of these signals, the probability of seepage

is negligible, so candidate locations of study are restricted to a finite set of locations

where at least one of these features is present. Each location then possesses a presence

or absence of seepage, as well as other variables that can only be detected at close

range like temperature, water column hydrocarbon concentrations, and the presence

or absence of seep-supported fauna like clams.

Variables like the presence of seepage at different locations are spatially correlated,

and complex statistical relationships exist between different variables at any given

site. Experts are able to intuitively describe some of these relationships by saying, for

example, that seeps cause elevated hydrocarbon concentrations, and that the presence

of seeps is positively correlated with elevated backscatter. More complex details may

be unknown, like the direction of causality between bathymetric features and seeps,

and a numerical strength of the inter-variable correlations.

Next consider our specification of the environment model setup in general, which

intends to capture all aspects of the seep exploration scenario. The environment

model consists of a discrete set of locations 𝒳 that the vehicle can reach and that

are relevant for the variable of interest in the query. Our approach will predict the
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variable of interest by predicting variables in the environment at these locations, so

if a continuous space of observations is allowed, it must be discretized for use in

our approach. A discrete domain assumption is not fundamentally different to other

adaptive sampling or sensor placement problems [77, 90]. In the seep exploration

scenario, each 𝑥 ∈ 𝒳 is a location with at least one sea floor feature associated with

seepage. In underwater missions, each location is specified in terms of longitude,

latitude, depth, and optionally time. However, the locations may also be defined

more abstractly; they may contain information such as sea floor slope or soil type

that influences the behavior of the environment at those locations.

At each location, multiple attributes, which are detectable parts of the environ-

ment, are modeled. Example attributes include temperature, the presence or absence

of a mound, or the type of coral species present at a location. Attributes are labeled

with an index 𝑚 ∈ {1, 2, ...}, so that we may refer to the presence of mounds as

attribute 3, for example. We make no assumption on the form of the attributes, they

may be continuously real valued or discrete, bounded or unbounded. We assume that

each attribute exists at each location in 𝒳 .

We refer to the value of an attribute at a specific location as an environment

variable, for example, hydrocarbon concentrations at a specific longitude, latitude,

and depth. We refer to the vector of all environment variables, for all attributes and

all locations in 𝒳 as y. The vector of environment variables of attribute 𝑚 at all

locations is written as y𝑚. We refer to all environment variables at a location 𝑥 by

y(𝑥) and a specific attribute as y𝑚(𝑥).

In the environment model, environment variables of the same attribute at different

locations are correlated, with correlations described by parameters c. Inter-location

correlations encode the fact that seeps appear in spatial clusters because they are fed

by the same underground source, for example.

In addition to correlations between environment variables of the same attribute

at different locations, there also exist correlations between different attributes. These

correlations encode relationships like the fact that seepage is known to contribute to

hydrocarbon concentrations and the existence of certain fauna nearby. Since not all
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attributes are necessarily correlated, and it may be of interest to ask queries about

which attributes directly affect others, we assume attributes are correlated following a

graphical model. Certain queries may wish to ask about causal relationships between

attributes, such as whether seeps generate mounds, or vice versa. In order to address

queries about the direction of causality, we model attributes as being connected with

directed edges. We further assume that attributes are correlated following a directed

acyclic graph (DAG) model, so that queries about conditional independence between

attributes can be easily modeled as queries about the existence of edges in a DAG.

The disadvantage of this assumption is that it does not permit environments with

cyclic causality to be modeled.

The DAG model is specified as 𝒢 = ({y𝑚}, ℰ), where ℰ is a set of directed edges

𝑛 → 𝑚 between attributes y𝑛 and y𝑚. Parameters 𝜆 describe the strength of the

correlations between different attributes (whereas c described correlations between

environment variables of the same attribute). We do not specify the specific form

of the parameters c and 𝜆 or how they are used by the model, our discussion here

is intended to highlight the parameters which can be incorporated into user defined

queries.

Using parent sets Π𝒢
𝑚 = {𝑛 | (𝑛 → 𝑚) ∈ ℰ}, the DAG structure implies that the

environment variables factor as

𝑝(y | c, ℰ ,𝜆) =
∏︁

𝑚

𝑝(y𝑚 | yΠ𝒢
𝑚
, c𝑚,𝜆𝑚,Π𝒢

𝑚
), (2.1)

where yΠ𝒢
𝑚

= {y𝑛 | (𝑛 → 𝑚) ∈ ℰ}, c𝑚 are spatial correlation parameters associated

with attribute 𝑚, and 𝜆𝑚,Π𝒢
𝑚

are edge parameters associated with the edges from

yΠ𝒢
𝑚

to y𝑚. The use of a DAG model of the environment allows the user to pose

queries about dependence or independence between different attributes, for example

by asking whether a sequence of edges exists that connects the presence of seepage

to the presence of mounds, and pose queries about causal relationships between vari-

ables, for example by asking whether the presence of mounds is a descendant of (and

therefore a causal consequence of) the presence of seeps.
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It is not necessary to have a single exact model with fixed parameters. Queries may

ask about the distributions over parameters, for example. Instead, the environment

model M = ⟨y, c, ℰ ,𝜆⟩ is considered to be a random variable that contains the

parameters necessary to make predictions in the environment model, in addition

to values of environment variables, so that variation in the parameters is allowed.

When conditioned on a set of prior observations o0 derived from some environment

variables, the environment model uses the values of the parameters c, ℰ , and 𝜆 to

provide predictions of y. That is,

𝑝(M | o0) = 𝑝(y | c, ℰ ,𝜆,o0) 𝑝(c, ℰ ,𝜆 | o0). (2.2)

Beyond the requirements listed in this section, the only restrictions we place on the

model is that after a training procedure, the distribution 𝑝(M | o0) can be sampled

from in an efficient manner. One candidate model that fulfills all our requirements

is the heterogeneous AcyGP model, which we will use for all our experiments. Our

query-driven sampling approach is separate from the model it acts on, and any model

that can be sampled from will be sufficient. Models that do not implement all the

features above, such as a lack of causal structure or spatial correlation parameters,

can be used, without allowing queries that focus on those parts of the model.

2.3.2 Agent Assumptions

The agent assumptions described in this section specify constraints on the motion of

the agent and what it is able to observe.

In the seep exploration scenario, an autonomous underwater vehicle moves be-

tween candidate seep sites, stopping to take measurements at each. There is only

enough time in a mission to visit and observe a specified number of sites, since ob-

servation can be an time intensive process. Additionally, battery constraints on the

vehicle can dictate how far the vehicle can move over the course of the mission.

When the vehicle takes measurements at a location 𝑥, it is not guaranteed to be

able to measure all environment variables y(𝑥), and there is expected to be some
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noise. For instance, a vehicle without a mass spectrometer may be unable to measure

hydrocarbon concentrations, and whether a seep can be considered active is sometimes

ambiguous. The following agent specification captures restrictions on motion and the

noise in observations.

We model the agent at discrete time steps with index 𝑡 ∈ {0, 1, . . . , 𝑇}, at which

the agent occupies some location 𝑥𝑡 ∈ 𝒳 . The agent begins at location 𝑥0 with a

vector of prior observations o0, and upon reaching location 𝑥𝑡, it takes a measurement

o𝑡, which is based on the true value of the environment variables y(𝑥𝑡). In general,

the measurement may be noisy, measure only a subset of environment variables, or

output a processed data product. To account for these possibilities, we assume the

existence of a distribution over measurements 𝑝(o𝑡 | y(𝑥𝑡)). Over 𝑡 time steps, the

measurements are collected into a vector o1:𝑡. We refer to the space of measurement

vectors of different possible length missions (including o1,o1:2, . . . ,o1:𝑇 ) as 𝒪. We do

not make assumptions on the form of the elements of o𝑡 relative to the environment

variables. For example, a discrete quantization may be taken from a continuous

environment variable.

At each time step, we decide on an action for the vehicle to take that will change

its location. We assume that a finite set of actions 𝒜 are available at each time

step. The agent dynamics model 𝑥𝑡+1 = 𝑑(𝑥𝑡, 𝑎) specifies how the state of the agent

changes from 𝑥𝑡 in response to action 𝑎 ∈ 𝒜. In the seep exploration scenario, this

may simply be the set of candidate locations that have not yet been visited but are

within battery range. In this chapter, we assume a deterministic dynamics model

with discrete time.

2.3.3 Query Assumptions

The query assumptions described in this section provide an overview of the expected

structure of a query and intuitions behind those choices. A complete discussion of

the query language can be found in Section 2.7.

A query 𝒬 = ⟨𝑓𝒬, 𝐽𝒬,∆𝒬⟩ defines two functions and an optional threshold. The

first component is the query function 𝑓𝒬, which outputs a scalar variable of interest 𝜁

57



for the problem. Queries include a query function to specify what should be studied,

or what a scientist wishes to know about. It is computed from the locations the

observation platform visits and a possible realization of the environment, including

model parameters and the true values of any environment variables. Intuitive exam-

ples include the maximum value of an attribute y𝑚 over 𝒳 , or the strength of the

correlation between two attributes in the environment.

While the query function states what should be studied, the query objective 𝐽𝒬

describes how 𝜁 should be studied. Intuitively, it states whether users are interested

in the uncertainty of 𝜁, the mode of 𝜁, or finding high values of 𝜁, and in this way it

acts as a generalization of previously identified classes of adaptive sampling problems.

Example query objectives include computing the information between 𝜁 and o1:𝑇 , or

the total expected value of 𝜁.

Finally, the query threshold ∆𝒬, distinguishes between two qualitatively different

types of missions; one where the observing agent gathers as much information as

possible in the time it has available, and another where the mission is run until a goal

is met. Both are useful ways of performing adaptive sampling, and are applicable in

different types of scenarios. The query threshold indicates that a the latter type of

mission is desired, and encodes a quantity of the query objective that is sufficient for

the mission, after which the mission can end. Examples include a sufficient level of

information, or an expected level of certainty in the answer to a query.

2.3.4 Problem Statement

We now define our problem formally, and then introduce each part in detail. A user

supplies a query over the variables in the environment model, and our approach solves

for a series of actions to be taken by a vehicle that optimizes an objective that depends

on its observations and the query output.
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Figure 2-1: Graphical model of relationships between environment and query vari-
ables.

Problem 1. Determine a policy 𝜋 : 𝒪 → 𝒜 that optimizes

max𝜋 𝑊 (𝐽𝒬,∆𝒬)

s.t. 𝜁 = 𝑓𝒬(𝑥1:𝑇 ,M )

𝑥𝑡+1 = 𝑑(𝑥𝑡, 𝜋(o1:𝑡))

o𝑡+1 ∼ 𝑝(o𝑡+1 | y(𝑥𝑡+1))

where 𝒬 = ⟨𝑓𝒬, 𝐽𝒬,∆𝒬⟩ is a query to be solved, M ∼ 𝑝(M ) is a description of the

environment model, and 𝑑 : 𝒳 ×𝒜 → 𝒳 is a vehicle dynamics model.

The top level objective 𝑊 is a quantity computed from the query objective spec-

ification and the query threshold. In most cases, 𝑊 (𝐽𝒬,∆𝒬) = 𝐽𝒬(𝜁,o1:𝑇 | o0), but

we will also specify variable length missions, where the objective is to minimize the

number of observations needed to reach the query threshold. We distinguish 𝑊 from

𝐽𝒬 because it will be necessary to estimate 𝐽𝒬 in order to construct an estimate

for 𝑊 . Given the query, the policy is constructed to lead to observations that will

optimize the top level objective.

A graphical model of relationships between variables in our problem is given in

Figure 2-1. Through appropriate selection of 𝜁 to be elements of y, c, ℰ , or 𝜆, our

formulation of queries encompasses most existing work on adaptive sampling.
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2.3.5 Examples of Query-Driven Adaptive Sampling Problems

Problem 1 is more general than existing adaptive sampling problems. In order to

illustrate grounded examples of query-driven adaptive sampling problems, and to

demonstrate the richness of our framework, we now show how existing adaptive sam-

pling problems may be formulated in our query-driven framework.

Information Maximization in a Gaussian Process

The most common adaptive sampling problem considers an agent navigating an en-

vironment described by a single-output Gaussian process model [77, 90]. The agent

is tasked with maximizing the information between its noisy observations of the en-

vironment and the true value of the environment variables at those locations. A

single-output Gaussian process model can be described with a single attribute envi-

ronment, resulting in a DAG structure with a single variable y. The set of edges and

edge parameters are then empty, while c consists of deterministic covariance kernel

parameters in the Gaussian process. Predictions of the environment are then achieved

as

𝑝(M | o0) = 𝑝(y | c,o0).

The variable of interest in this problem is the true value of the environment variables

at the locations visited, so that

𝑓𝒬(𝑥1:𝑇 ,M ) = y(𝑥1:𝑇 ).

Finally, the objective is to maximize mutual information between observations and

environment variables in the environment, which is achieved through a query objective

of mutual information 𝐼,

𝐽𝒬(𝜁,o1:𝑇 | o0) = 𝐼(𝜁;o1:𝑇 | o0).

In this work we focus on scalar variables of interest, which facilitates solving for poli-

cies for certain complex objectives. Nevertheless, query definitions can be considered
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separately from the solution method, and it is still meaningful to formulate a query

with vector 𝜁 like in this example. Furthermore, only certain objectives require scalar

𝜁, and a query that maximizes mutual information of vector 𝜁 like in this case is fully

compatible with our framework.

Bayesian Active Search

Alternatively, Bayesian active search [48, 64] seeks to maximize the expected number

of positive observations in a binary field. In this case, the environment models a

single attribute that is either 0 or 1, with

𝑓𝒬(𝑥1:𝑇 ,M ) =
𝑇∑︁

𝑡=1

y(𝑥𝑡)

𝐽𝒬(𝜁,o1:𝑇 | o0) = E [𝜁 | o0] .

Our formulation is able to generalize these problems by using more complex en-

vironment models including environment models with more than a single attribute,

considering more general functions of the observations and environment, or using a

different objective.

2.4 Overview of Approach

To describe query-driven adaptive sampling, we will first describe our model of a

query. We define a query in terms of a function supplied by the user that defines

a variable of interest, an objective, and an optional sufficient condition. The goal

of query-driven adaptive sampling will be to maximize the objective applied to the

variable of interest if no sufficient condition is applied, or minimize the number of

observations for the objective to reach the sufficient condition if it is given. Query

objectives fall into one of three classes, and the range of possible objectives can be

extended through transformations that can be applied to them. We refer to these

transformations as prior and posterior specializations, which respectively constrain

the values of observations and values of the variable of interest that are considered in
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the query.

This chapter is structured as follows. Sections 2.5 and 2.6 review mutual informa-

tion and sample-based estimators respectively, which will be used in the development

of query-driven adaptive sampling. Section 2.3 formalizes the problem statement be-

hind query-driven adaptive sampling. Section 2.7 defines queries formally, while 2.8

describes why certain limitations on query definitions were taken by proving that

certain queries can lead to unscientific behavior.

2.5 Preliminaries: Definition of Mutual Information

In this section, we review preliminaries that are necessary to understand how certain

query objectives are formulated in query-driven adaptive sampling. Adaptive sam-

pling is often performed with an objective to maximize mutual information between

observations taken by the agent and all environment variables. In query-driven adap-

tive sampling, we allow more general objectives, but include mutual information as an

important case. We now review how mutual information is defined, in order to make

clear how mutual information is an expectation of log probabilities. This definition

is used to clarify the similarity between mutual information and other objectives.

Consider two random variables 𝑥 ∼ 𝑝(𝑥) and 𝑦 ∼ 𝑝(𝑦) defined over domains 𝒳
and 𝒴 . Here, boldface notation indicates that 𝑥 and/or 𝑦 may be vector-valued ran-

dom variables. The following discussion applies equally to discrete random variables

by replacing integrals with sums.

Mutual information quantifies a measure of the dependence between 𝑥 and 𝑦, or

how much measuring 𝑦 tells us about the true value of 𝑥. Specifically, it measures

the expected change from the distribution 𝑝(𝑥) to the posterior distribution 𝑝(𝑥 | 𝑦)

obtained by measuring 𝑦 in terms of bits or nats, dependent on whether the logarithm

is base 2 or base 𝑒 respectively. If 𝑥 and 𝑦 are independent, observation of 𝑦 does

not impact 𝑥, since 𝑝(𝑥) = 𝑝(𝑥 | 𝑦). 𝑦 contains no information about 𝑥 in this case,

and mutual information is zero. Conversely, if 𝑥 is strongly dependent on 𝑦, then

𝑝(𝑥 | 𝑦) has a very different form than 𝑝(𝑥), and depends upon the specific value of
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𝑦 observed. Observing 𝑦 therefore reveals a large amount of information about the

value of 𝑥, and so the mutual information is high.

Mutual information may be formally introduced in terms of Kullback-Leibler di-

vergence [78]. The Kullback-Leibler divergence (KL divergence) is a directed distance

in the space of probability distributions, so that KL divergence from a distribution

with density function 𝑞(𝑥) to a distribution with density function 𝑝(𝑥) increases

as 𝑞(𝑥) and 𝑝(𝑥) become increasingly different. It is a measurement of how much

information results from changing belief from prior 𝑞(𝑥) to posterior 𝑝(𝑥). More

intuitively, the Kullback-Leibler divergence (KL divergence) may be thought of as a

measure of how much one distribution differs from another. The KL divergence from

𝑞(𝑥) to 𝑝(𝑥) is defined as

𝐷𝐾𝐿(𝑝(𝑥) || 𝑞(𝑥)) :=

∫︁

𝒳
𝑝(𝑥) log

𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥, (2.3)

with 0 log 0/𝑞(𝑥) interpreted as 0. To ensure that KL divergence is finite, we require

that 𝑝(𝑥) = 0 wherever 𝑞(𝑥) = 0. It can be shown that 𝐷𝐾𝐿(𝑝(𝑥) || 𝑞(𝑥)) ≥ 0, and

equals 0 if and only if 𝑝(𝑥) = 𝑞(𝑥), which assists in interpretation as a distance.

The fact that KL divergence is directed means that 𝐷𝐾𝐿(𝑝(𝑥) || 𝑞(𝑥)) is not gen-

erally equal to 𝐷𝐾𝐿(𝑞(𝑥) || 𝑝(𝑥)). It typically requires stronger evidence to move from

a prior with high certainty to an uncertain posterior, than to refine a prior with low

certainty into a higher certainty posterior.

In these terms, the mutual information between 𝑥 and 𝑦, written as 𝐼(𝑥;𝑦) [32],

may be considered to be the expectation of the directed distance from 𝑝(𝑥) to 𝑝(𝑥 | 𝑦),

with the expectation taken with respect to 𝑦. In this way, mutual information encodes

the expected change in 𝑥 after conditioning on 𝑦.

𝐼(𝑥;𝑦) := E𝑦 [𝐷𝐾𝐿(𝑝(𝑥 | 𝑦) || 𝑝(𝑥))]

=

∫︁

𝒳 ,𝒴
𝑝(𝑥 | 𝑦)𝑝(𝑦) log

𝑝(𝑥 | 𝑦)

𝑝(𝑥)
𝑑𝑥 𝑑𝑦

=

∫︁

𝒳 ,𝒴
𝑝(𝑥,𝑦) log

𝑝(𝑥,𝑦)

𝑝(𝑥) 𝑝(𝑦)
𝑑𝑥 𝑑𝑦.

(2.4)
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We may also introduce the (specific) conditional mutual information, conditioned

on a specific outcome 𝑧 as

𝐼(𝑥;𝑦 | 𝑧) := E𝑦 [𝐷𝐾𝐿(𝑝(𝑥 | 𝑦, 𝑧) || 𝑝(𝑥 | 𝑧))]

=

∫︁

𝒳 ,𝒴
𝑝(𝑥,𝑦 | 𝑧) log

𝑝(𝑥,𝑦 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦 | 𝑧)
𝑑𝑥 𝑑𝑦.

(2.5)

We refer to non-specific mutual information that averages over outcomes of 𝑧 as an

explicit expectation E𝑧 [𝐼(𝑥;𝑦 | 𝑧)].

When handling mutual information in the development of query-driven adaptive

sampling, we have to frequently compute terms of the form log 𝑝(𝑥,𝑦 | 𝑧)/𝑝(𝑥 |
𝑧) 𝑝(𝑦 | 𝑧). For brevity, we refer to this quantity as the log probability ratio 𝑙𝑟, where

𝑙𝑟(𝑥;𝑦 | 𝑧) := log
𝑝(𝑥,𝑦 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦 | 𝑧)
, (2.6)

so that 𝐼(𝑥;𝑦 | 𝑧) = E𝑥,𝑦 [𝑙𝑟(𝑥;𝑦 | 𝑧)]. This expectation will allow us to relate

mutual information to the expectations of other quantities when defining queries.

From (2.5) it can be seen that 𝐼(𝑥;𝑦 | 𝑧) = 𝐼(𝑦;𝑥 | 𝑧). This means that the

information about 𝑥 contained in 𝑦 matches the information contained in 𝑦 about 𝑥,

and 𝐼(𝑥;𝑦 | 𝑧) is a measure of the dependence between 𝑥 and 𝑦 when conditioned

on 𝑧. Though mutual information is the expectation of KL divergence and KL

divergence is a directed measure, the expectation of KL divergence does not depend

on direction.

The fact that mutual information is symmetric may be intuitively understood in

the following way. Any statement in which knowledge of 𝑦 changes understanding

of 𝑥 also results in a statement in which knowledge of 𝑥 changes understanding of

𝑦. For instance, if we know that 𝑦 = 0 =⇒ 𝑥 = 0, then we also know that

𝑥 ̸= 0 =⇒ 𝑦 ̸= 0. At first glance, the consequence of the first statement seems

stronger, especially if we initially believed that 𝑥 = 0 was a low probability event.

But in that case, it should be understood that the condition 𝑥 ̸= 0 also applies more

frequently, so that the change in uncertainty averaged across outcomes of 𝑥 and 𝑦
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due to either rule is the same. A basic introduction to mutual information is provided

by Cover [32].

An alternative way to introduce mutual information is in terms of Shannon entropy

[123]. We introduce these forms because they will be useful in the derivations of

estimators for mutual information. The specific conditional Shannon entropy of a

random variable 𝑥 conditioned on outcome 𝑧 encodes a measure of uncertainty in the

distribution 𝑝(𝑥 | 𝑧), and is defined as

𝐻(𝑥 | 𝑧) := −
∫︁

𝒳
𝑝(𝑥 | 𝑧) log 𝑝(𝑥 | 𝑧) 𝑑𝑥. (2.7)

Mutual information may equivalently be thought of as the expected reduction in

entropy in 𝑥 caused by measuring 𝑦, as

𝐼(𝑥;𝑦 | 𝑧) =

∫︁

𝒳 ,𝒴
𝑝(𝑥,𝑦 | 𝑧) log

𝑝(𝑥,𝑦 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦 | 𝑧)
𝑑𝑥 𝑑𝑦

= −
∫︁

𝒳
𝑝(𝑥 | 𝑧) log 𝑝(𝑥 | 𝑧) 𝑑𝑥 +

∫︁

𝒳 ,𝒴
𝑝(𝑥 | 𝑦, 𝑧) 𝑝(𝑦 | 𝑧) log 𝑝(𝑥 | 𝑦, 𝑧)

= 𝐻(𝑥 | 𝑧)− E𝑦|𝑧 [𝐻(𝑥 | 𝑦, 𝑧) | 𝑧] .

(2.8)

We can also express this formula as the difference between joint entropy and marginal

entropy, as

𝐼(𝑥;𝑦 | 𝑧) =

∫︁

𝒳 ,𝒴
𝑝(𝑥,𝑦 | 𝑧) log

𝑝(𝑥,𝑦 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦 | 𝑧)
𝑑𝑥 𝑑𝑦

= −
∫︁

𝒳
𝑝(𝑥 | 𝑧) log 𝑝(𝑥 | 𝑧) 𝑑𝑥−

∫︁

𝒴
𝑝(𝑦 | 𝑧) log 𝑝(𝑦 | 𝑧) 𝑑𝑦

+

∫︁

𝒳 ,𝒴
𝑝(𝑥,𝑦 | 𝑧) log 𝑝(𝑥,𝑦 | 𝑧)

= 𝐻(𝑥 | 𝑧) +𝐻(𝑦 | 𝑧)−𝐻(𝑥,𝑦 | 𝑧).

(2.9)

Formulae (2.8) and (2.9) will be used to introduce sample-based mutual information

estimators, which will be used to estimate information within query-driven adaptive

sampling.
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Finally, it will also be useful to note that log probability ratio may be expressed

as the following sum, which we will use when considering incremental increases in log

probability ratio due to multiple observations,

𝑙𝑟(𝑥;𝑦1,𝑦2 | 𝑧) = log
𝑝(𝑥,𝑦1,𝑦2 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦1,𝑦2 | 𝑧)

= log
𝑝(𝑦2 | 𝑧) 𝑝(𝑥,𝑦1,𝑦2 | 𝑧)

𝑝(𝑦1,𝑦2 | 𝑧) 𝑝(𝑥,𝑦2 | 𝑧)
+ log

𝑝(𝑥,𝑦2 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦2 | 𝑧)

= log
𝑝(𝑥,𝑦1 | 𝑦2, 𝑧)

𝑝(𝑦1 | 𝑦2, 𝑧) 𝑝(𝑥 | 𝑦2, 𝑧)
+ log

𝑝(𝑥,𝑦2 | 𝑧)

𝑝(𝑥 | 𝑧) 𝑝(𝑦2 | 𝑧)

= 𝑙𝑟(𝑥;𝑦1 | 𝑦2, 𝑧) + 𝑙𝑟(𝑥;𝑦2 | 𝑧).

(2.10)

This leads to the chain rule of mutual information, which will be used when replanning

in response to new measurements.

𝐼(𝑥;𝑦1,𝑦2 | 𝑧) = E𝑦2|𝑧 [𝐼(𝑥;𝑦1 | 𝑦2, 𝑧) | 𝑧] + 𝐼(𝑥;𝑦2 | 𝑧). (2.11)

2.6 Preliminaries: Sample-Based Density and Infor-

mation Estimators

In this section, we review preliminaries that are necessary to understand how reward is

computed within query-driven adaptive sampling. To develop query-driven adaptive

sampling, we require estimates of quantities of the form E[𝑝(𝑥)] and E[log 𝑝(𝑥)], both

over all 𝑥 ∈ 𝒳 and subsets of 𝒳 . When the form of 𝑝(𝑥) is unknown but it can be

sampled, Monte Carlo sampling allows for estimation of E[𝑓(𝑥)] by averaging 𝑓(𝑥)

evaluated at samples drawn from 𝑝(𝑥). However, E[𝑝(𝑥)] and E[log 𝑝(𝑥)] depend

explicitly on 𝑝(𝑥), and so explicit estimation of 𝑝(𝑥) or log 𝑝(𝑥) is required. In this

section, we review estimators for probability density and mutual information based

on a finite set of samples 𝒟. These estimators are used to compute the value of

missions when queries are expressed in terms of probabilities of certain outcomes or

information gain. In this section and throughout this chapter, we use a hat to refer

to an estimate of a quantity, so that 𝑝 is an estimate for the true value of a variable
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𝑝.

2.6.1 Kernel Density Estimation and 𝑘-NN Density Estima-

tion

In order to reason over queries that consider the probabilities of certain events, either

continuous or discrete, we require estimation of probability mass and probability

density. For a random variable 𝑥 with a discrete domain and a set of samples 𝒟 =

{𝑥(𝑗)}𝐿𝑗=1 drawn independently from 𝑝(𝑥), it is well known that an estimator 𝑝(𝑥) for

𝑝(𝑥) can be obtained as the ratio of 𝐿𝑥, the number of samples for which 𝑥(𝑖) = 𝑥,

and the total number of samples 𝐿,

𝑝(𝑥) =
𝐿𝑥

𝐿
. (2.12)

It is also well known that this estimator is unbiased for any finite 𝐿 and consistent,

which follows directly from properties of a binomial distribution.

For continuous 𝑥 ∈ R𝐷𝑥 with probability density 𝑝(𝑥), a finite set of samples will

never sample every possible outcome of 𝑥, so we cannot use (2.12) naively. Instead,

specialized estimators for probability density include kernel density estimators [120,

125] and 𝑘-nearest neighbor (𝑘-NN) density estimators [88], that can estimate non-

zero probability density for 𝑥 outside the set of samples. Kernel density estimators

estimate density using a kernel function 𝐾 that integrates to 1 as

𝑝𝑘𝑒𝑟𝑛(𝑥) =
1

𝐿 ℎ𝐷𝑥

𝐿∑︁

𝑖=1

𝐾

Ç
𝑥− 𝑥(𝑖)

ℎ

å
. (2.13)

for a scalar bandwidth ℎ that is chosen to increase as a function of 𝐿. The intuition

behind (2.13) is that the kernel𝐾 places probability mass near samples 𝑥(𝑖). Examples

of kernels include step functions or Gaussian density functions centered on 𝑥(𝑖), and

the width of those functions is determined by the bandwidth ℎ. For example, a large

value of ℎ would place a wide Gaussian density centered at each 𝑥(𝑖), while a small

value of ℎ would place a thin Gaussian density centered at each 𝑥(𝑖). Parzen [105]
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showed that the estimator is asymptotically unbiased and consistent for univariate

distributions, while Cacoullos [21] showed that this remains true for multivariate data

for any 𝑥, where 𝑝(𝑥) is continuous under the assumptions that

lim
𝐿→∞

ℎ(𝐿) = 0

𝐾(𝑥) ≥ 0

sup
𝑥
|𝐾(𝑥)| <∞

∫︁
|𝐾(𝑥)| 𝑑𝑥 = 1

lim
|𝑥|→∞

|𝑥|𝐷𝑥 𝐾(𝑥) = 0

∀𝑥, 𝐾(𝑥) = 𝐾(−𝑥),

though these are stronger assumptions than technically needed for asymptotic unbi-

asedness and consistency [50]. While the estimator is asymptotically unbiased, for

finite 𝐿 the estimator is biased in general, meaning that we cannot assume that the av-

erage of the estimator equals the true probability density on average across outcomes.

Under the further assumptions that lim𝐿→∞ 𝐿 ℎ(𝐿)2𝐷𝑥 = ∞, so that ℎ(𝐿) shrinks

sufficiently slowly, and that the Fourier transform of 𝐾(𝑥) is absolutely integrable,

the estimator is also consistent.

While kernel density estimators provide flexibility in the choice of kernel and

bandwidth, the choice of bandwidth influences the convergence rate of the estimator.

A large field of work focuses on deriving optimal bandwidths in terms of convergence

rate for specific choices of kernels and classes of densities [59, 66], but this requires

some knowledge of the density being estimated. An alternative approach is to choose

the bandwidth ℎ based on some pre-processing of the sample set. 𝑘-NN density

estimators do this by changing the estimates according to the distance to the 𝑘-th

nearest neighbor of the point 𝑥.

Denote the distance from 𝑥 to the 𝑘-th nearest sample as 𝜀𝑥. The distance may be

measured with respect to any norm, and for numerical stability and ease of computa-

tion, the infinity norm is often used, where
⃦⃦
𝑥(𝑖) − 𝑥(𝑗)

⃦⃦
∞ = max𝑘 |𝑥(𝑖)𝑘 − 𝑥

(𝑗)
𝑘 |. Then
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let B(𝑥, 𝜀𝑥) denote the open ball of radius 𝜀𝑥 around point 𝑥, that is B(𝑥, 𝜀𝑥) = {𝑥′ |
‖𝑥′ − 𝑥‖ < 𝜀𝑥}. The ball is defined with respect to the same norm as distance, so

for the infinity norm, is a cube with side length 2 𝜀𝑥. Let 𝑃 (𝑥, 𝜀𝑥) be the probability

mass inside B(𝑥, 𝜀𝑥), and 𝑉𝑥(𝜀𝑥) be the volume of B(𝑥, 𝜀𝑥),

𝑃 (𝑥, 𝜀𝑥) =

∫︁

B(𝑥,𝜀𝑥)

𝑝(𝑥) 𝑑𝑥 (2.14)

𝑉𝑥(𝜀𝑥) =

∫︁

B(𝑥,𝜀𝑥)

𝑑𝑥. (2.15)

The 𝑘-NN density estimator makes the approximations 𝑝(𝑥) ≈ 𝑃 (𝑥, 𝜀𝑥)/𝑉𝑥(𝜀𝑥)

and 𝑃 (𝑥, 𝜀𝑥) ≈ (𝑘 − 1)/𝐿, so that [88]

𝑝𝑘𝑁𝑁(𝑥) =
𝑘 − 1

𝐿 𝑉𝑥(𝜀𝑥)
. (2.16)

Note that the 𝑘-th nearest neighbor itself is not counted as inside the ball (since the

ball is open). The 𝑘-NN estimator is asymptotically unbiased and consistent [45, 88]

provided that 𝑘 increases as a function of 𝐿, with

lim
𝐿→∞

𝑘(𝐿) =∞

lim
𝐿→∞

𝑘(𝐿)

𝐿
= 0.

𝑝𝑘𝑁𝑁(𝑥) is also finite sample unbiased under the first order approximation that 𝑝(𝑥) =

𝑃 (𝑥, 𝜀𝑥)/𝑉𝑥(𝜀𝑥) [45], though this will not hold in general.

The 𝑘-NN estimator will apply even when used to estimate 𝑝𝑘𝑁𝑁(𝑥) for 𝑥 = 𝑥(𝑖)

with 𝑥(𝑖) ∈ 𝒟. In this case, 𝑥(𝑖) must be considered as the first nearest neighbor of

𝑥, at a distance of 0.

The 𝑘-NN estimator can be interpreted as a kernel estimator with the choices

𝐾(𝑎) =

⎧
⎪⎨
⎪⎩

1
2𝐷𝑥 , ‖𝑎‖∞ < 1

0, otherwise
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and ℎ = 𝜀𝑥 [91]. However, when multiple estimates of 𝑝(𝑥) are needed at different

𝑥, the two methods differ. Where ℎ is typically selected as a constant for all 𝑥,

𝜀𝑥 depends on the value of 𝑥 selected. 𝑘-NN approaches are favored for their fast

empirical convergence rates where samples are dense, however, they are inaccurate

for 𝑥 far from any samples. The fact that 𝜀𝑥 can change means that the ball B(𝑥, 𝜀𝑥)

is made to be as large as needed to include 𝑘 samples, even when 𝑥 very far from all

samples. In particular, the numerator of (2.16) is never 0, so that 𝑝𝑘𝑁𝑁(𝑥) ∼ 1/‖𝑥‖
in areas where there are no samples. This means

∫︀
𝑝𝑘𝑁𝑁(𝑥) 𝑑𝑥 ̸= 1, whereas 𝑝𝑘𝑒𝑟𝑛(𝑥)

does normalize correctly, with
∫︀
𝑝𝑘𝑒𝑟𝑛(𝑥) 𝑑𝑥 = 1. 𝑘-NN estimators are therefore not

suitable far from regions where any samples have been observed.

2.6.2 Sample-Based Entropy Estimators

In addition to estimation of probability density, development of query-driven adap-

tive sampling will require estimation of mutual information. Sample-based mutual

information estimators are constructed from sample-based estimators of entropy, so

we introduce entropy estimators first. Sample-based estimators of entropy take the

form

�̂�(𝑥) = − 1

𝐿

𝐿∑︁

𝑖=1

‘log 𝑝(𝑥(𝑖)), (2.17)

where ‘log 𝑝(𝑥) is an estimate for log 𝑝(𝑥). The choice of notation here draws attention

to the fact that ‘log 𝑝(𝑥) can be constructed to have lower errors than the ‘plug-in

estimator’, which estimates log 𝑝(𝑥) as log 𝑝(𝑥).

It is known that no finite sample unbiased estimator exists for discrete entropy

[103], though it is possible to reduce bias below the level achieved by the plug-in

estimator. Grassberger [56] introduced the estimator‘log 𝑝(𝑥) = 𝐺(𝐿𝑥, 𝐿) := 𝜓(𝐿𝑥) +
(−1)𝐿𝑥

2

ï
𝜓

Å
𝐿𝑥 + 1

2

ã
− 𝜓
Å
𝐿𝑥

2

ãò
− log𝐿 (2.18)

where 𝜓(𝑎) is the digamma function. Grassberger showed that bias in the estimator

decreases exponentially in expected number of samples of each value of 𝑥, which is
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faster than the plug-in estimator.

In the continuous case, entropy is frequently estimated through the use of the

Kozachenko-Leonenko (KL) entropy estimator [74, 89], which builds off of 𝑘-NN den-

sity estimators. For sample 𝑥(𝑖), we let 𝜀𝑥(𝑖) be the distance from 𝑥(𝑖) to its 𝑘-th nearest

neighbor in 𝒟. For consistency with our discussion of 𝑘-NN density estimators, we

allow the set of neighbors to include 𝑥(𝑖).

Our presentation here differs slightly from typical discussions of KL entropy es-

timators, in which log 𝑝(𝑥(𝑖)) is only estimated at a sample 𝑥(𝑖) and not for general

𝑥 /∈ 𝒟. For this reason, other work uses a set of neighbors of 𝑥(𝑖) that do not include

𝑥(𝑖) itself. Including 𝑥(𝑖) in the set of neighbors makes little difference for numerical

computation, but also allows us to generate estimates of log probability at 𝑥 /∈ 𝒟.

The KL entropy estimator relies on the identity [89]

E
î
log𝑃 (𝑥(𝑖), 𝜀𝑥

(𝑖)

)
ó

= 𝜓(𝑘 − 1)− 𝜓(𝐿) (2.19)

so that 𝜓(𝑘) − 𝜓(𝐿) is an unbiased estimator for the log probability mass within

B(𝑥(𝑖), 𝜀𝑥
(𝑖)

). This then leads to the following log probability estimate in the KL

estimator ‘log 𝑝(𝑥(𝑖)) = 𝜓(𝑘 − 1)− 𝜓(𝐿)− log 𝑉𝑥(𝜀𝑥
(𝑖)

). (2.20)

2.6.3 Sample-Based Mutual Information Estimators

We are now able to estimate mutual information using the entropy estimators in

the previous section. Sample-based estimation of mutual information is performed

on a set of independent samples 𝒟 = {(𝑥(𝑗),𝑦(𝑗))}𝐿𝑗=1 drawn from 𝑝(𝑥,𝑦). Mutual

information may be estimated using a so-called ‘3H estimator’, which is based on

the identity 𝐼(𝑥;𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥,𝑦) and uses KL entropy estimators for

marginal and joint entropies separately. For each sample (𝑥(𝑖),𝑦(𝑖)) ∈ 𝒟, we compute

the distance to the 𝑘-th nearest neighbor in the joint space 𝒳 ×𝒴 , and the marginal
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spaces 𝒳 and 𝒴 as 𝜀𝑥(𝑖),𝑦(𝑖) , 𝜀𝑥(𝑖) , and 𝜀𝑦(𝑖) . Then

𝐼(𝑥;𝑦) =
1

𝐿

𝐿∑︁

𝑖=1

Äî
𝜓(𝐿)− 𝜓(𝑘 − 1) + log 𝑉𝑥(𝜀𝑥

(𝑖)

)
ó

+î
𝜓(𝐿)− 𝜓(𝑘 − 1) + log 𝑉𝑦(𝜀𝑦

(𝑖)

)
ó
−
î
𝜓(𝐿)− 𝜓(𝑘 − 1) + log 𝑉𝑥,𝑦(𝜀𝑥

(𝑖),𝑦(𝑖)

)
óä
, (2.21)

where 𝑉𝑥 denotes the volume of the ball only in the marginal space 𝒳 .

Kraskov et al. [75] recognized that the choice of 𝑘 for each of the entropy estimators

does not have to be equal, and can be computed as the number of samples (including

(𝑥(𝑖),𝑦(𝑖))) in a ball of any fixed radius 𝜀. Under a hypothesis that errors in the

information estimates were predominantly caused by differences in the volumes of

entropy estimators, they elected to fix 𝑘 in the joint entropy estimator, and compute

𝜀𝑥
(𝑖),𝑦(𝑖) as the distance to the 𝑘-th nearest neighbor in the joint space. They then

select 𝜀𝑥(𝑖)
= 𝜀𝑦

(𝑖)
= 𝜀𝑥

(𝑖),𝑦(𝑖) , so that under an infinity norm, 𝑉𝑥(𝜀𝑥
(𝑖)

) 𝑉𝑦(𝜀𝑦
(𝑖)

) =

𝑉𝑥,𝑦(𝜀𝑥
(𝑖),𝑦(𝑖)

), and volumes cancel from the estimator.

For each 𝑥(𝑖), 𝑘𝑥(𝑖) is computed as the number of samples 𝑥(𝑗) such that
⃦⃦
𝑥(𝑗) − 𝑥(𝑖)

⃦⃦
<

𝜀𝑥
(𝑖) (including 𝑥(𝑗) = 𝑥(𝑖)), and 𝑘𝑦(𝑖) is the number of samples such that

⃦⃦
𝑦(𝑗) − 𝑦(𝑖)

⃦⃦
<

𝜀𝑦
(𝑖) (including 𝑦(𝑖)). This results in the ‘KSG estimator’

𝐼(𝑥;𝑦) =
1

𝐿

𝐿∑︁

𝑖=1

î
𝜓(𝐿) + 𝜓(𝑘 − 1)− 𝜓(𝑘𝑥

(𝑖)

)− 𝜓(𝑘𝑦
(𝑖)

)
ó
. (2.22)

Despite the form of an empirical expectation of a function applied to each sample,

the KSG estimator is not an expectation over independent random variables. 𝑘𝑥
(𝑖)

depends on samples 𝑥(𝑗) ̸= 𝑥(𝑖), so that each element of the sum is not independent.

Practically, this means that convergence theorems such as the central limit theorem

do not apply. In particular, the KSG estimator is biased for finite 𝐿.

The KSG estimator has been shown to result in more accurate predictions for

information than the 3H estimator for a variety of distributions [75], and so we will

use the KSG estimator for information estimation in this thesis. We may interpret the

information estimator as the empirical average of an estimator for the log probability
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ratio 𝑙𝑟(𝑥(𝑖);𝑦(𝑖)), leading to

𝑙𝑟(𝑥(𝑖);𝑦(𝑖)) = 𝜓(𝐿) + 𝜓(𝑘 − 1)− 𝜓(𝑘𝑥
(𝑖)

)− 𝜓(𝑘𝑦
(𝑖)

). (2.23)

In other work, where 𝑘𝑥(𝑖) is defined to not count the sample 𝑥(𝑖) itself, the KSG

estimator is seen with terms of the form 𝜓(𝑘𝑥
(𝑖)

+ 1), because there are 𝑘𝑥(𝑖)
+ 1 total

samples within B(𝑥(𝑖), 𝑘𝑥
(𝑖)

).

2.7 Queries

The specification of a query informs an agent of which locations in an environment are

worth exploring. In this section, we introduce queries with three different classes of

objectives, and transformations on those queries that we call ‘specializations’, whose

inclusion increases the expressiveness of the query language.

The first class of query objectives are formulated using probabilities 𝑝(𝜁 | o0:𝑇 ),

the second is based on mutual information which is computed using log probabilities

log 𝑝(𝜁 | o0:𝑇 ) , and the third is based on the expected values of the variable of interest

𝜁 that occur. We refer to these as queries with probability objectives, information

objectives, and value objectives respectively.

The existing adaptive sampling problems covered in Section 2.2 align directly

with two of these classes of query objectives; information maximization is achieved

through an information query objective, and maximization of observables is achieved

through a value query objective. However, the previously mentioned specializations

allow our queries to express a significantly larger set of objectives than existing work,

by allowing additional restrictions on the domain of 𝜁 and the subset of outcomes

that need to be optimized.

We construct a query in terms of three components. Intuitively, the first compo-

nent is specification of the variable of interest, which is a quantity to be measured

or predicate to be answered using a query function. The second component specifies

how the variable of interest should studied through a query objective. The query
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objective is one of the previously mentioned value, probability, or information ob-

jectives, which state that we are interested in the expected value of the variable of

interest, its posterior probability distribution after observations are taken, or mutual

information between observations and the variable of interest. The third component,

the query threshold, specifies whether the mission should achieve the best possible

result in a set number of observations, or collect the fewest possible observations in

order to reach a fixed level of belief or precision.

We now formally define a query as an operator on environment variables and model

parameters. Following our model specification, a query may request that an agent

focuses on environment variables, the spatio-temporal correlations between environ-

ment variables, the presence or absence of causal relationships between environment

variables, and/or the strength of those relationships.

Definition 1. A query 𝒬 = ⟨𝑓𝒬, 𝐽𝒬,∆𝒬⟩ is a tuple, where 𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) is

a query function that returns an output 𝜁 ∈ 𝒵, 𝐽𝒬(𝜁,o1:𝑇 | o0) is a query objective

that returns a reward in R, and ∆𝒬 is a query threshold that the query objective must

exceed, if specified.

The following subsections provide more detail on query functions, objectives, and

thresholds.

2.7.1 Query Functions

Intuitively, the query function returns an encoding of any variables the user wishes

to be the subject of study during a mission. The vector of locations reached by the

agent 𝑥1:𝑇 is included in the query function to allow queries to depend on the path

taken by the agent. This is most useful for specifying that a query depends on the

locations that were specifically observed, like when an agent needs to produce proof

of a specific phenomenon.

Since query functions can be any function a user can construct, they can be

used for diverse classes of problems, including continuous quantitative problems, logic

problems, and classification problems. We highlight these below with examples.
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Continuous Quantitative Problems

Simple queries may focus on certain environment variables or parameters, in which

case, they may be returned directly by the query function. For example, a query

focusing on the length scale of spatial correlations 𝑙𝑚 ∈ c𝑚 may be defined simply as

𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) = 𝑙𝑚.

Alternatively, a query focusing on the strength of the relationship between y𝑚 and

y𝑛 may be defined as

𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) = 𝜆𝑚,𝑛.

It is possible to return any function of the environment variables and model pa-

rameters from the query function, and this may be used to define derived outputs, or

conditions on observations. For example, a query focusing on the maximum value of

attribute y𝑚 across the domain may be defined as

𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) = max(y𝑚).

Logical Problems

A query function may also return the answer to a boolean question, with 1 indicating

truth and 0 indicating falsehood. This means queries may focus on the answers to

questions specified by formulations of logic.

For example, a query focusing on the boolean question of whether y𝑚 is directly

caused by y𝑛 and y𝑙 may be defined as

𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) = 1 {(𝑛→ 𝑚) ∈ ℰ ∧ (𝑙→ 𝑚) ∈ ℰ} ,

where 1 {𝑎} is a function that returns 1 if the local expression 𝑎 is true, and 0

otherwise.

A query seeking to observe, at any location, evidence of a mound with active
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seepage may define a query function as

𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) =
𝑇⋁︁

𝑡=1

1 {y1(𝑥𝑡) = 1 ∧ y2(𝑥𝑡 = 1)} ,

if y1 and y2 are the presence of mounds and active seepage respectively.

Classification Problems

A query may also return a classification that is derived from the attributes. It is not

necessary for the classifications to be cast to a numeric number. These types of query

functions support labeling areas in the environment as part of distinct categories.

For example, we could define a coral reef as ‘healthy’ if less than 2% of coral are

bleached, ‘threatened’ if 2-10% of coral are bleached, and ‘endangered’ if more than

10% of coral are bleached. If y1(𝑥) is an attribute that is 1 if coral exists at location 𝑥

and 0 otherwise, and y2(𝑥) is an attribute that is 1 if coral at a location 𝑥 is bleached

and 0 otherwise, we may define a query function as

𝑓𝒬(𝑥1:𝑇 , ⟨y, c, ℰ ,𝜆⟩) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ℎ𝑒𝑎𝑙𝑡ℎ𝑦,
∑︀

𝑥∈𝒳 1{y1(𝑥)=1∧y2(𝑥)}∑︀
𝑥∈𝒳 1{y1(𝑥)=1} < 0.02

𝑡ℎ𝑟𝑒𝑎𝑡𝑒𝑛𝑒𝑑, 0.02 ≤
∑︀

𝑥∈𝒳 1{y1(𝑥)=1∧y2(𝑥)}∑︀
𝑥∈𝒳 1{y1(𝑥)=1} ≤ 0.1

𝑒𝑛𝑑𝑎𝑛𝑔𝑒𝑟𝑒𝑑,
∑︀

𝑥∈𝒳 1{y1(𝑥)=1∧y2(𝑥)}∑︀
𝑥∈𝒳 1{y1(𝑥)=1} > 0.1.

There is no requirement that 𝑓𝒬 is a simple function of its parameters, as in these

examples. The output may be given by any computational routine. For example,

the query function may solve an optimization problem that is formulated from the

observations and parameters. This allows us to express important queries, such as

what an upper bound on ocean depth for a region. In our experiments, we use query-

directed adaptive sampling to find unblocked escape routes through a road network

by defining 𝑓𝒬 to be the output of a graph search routine.

There is a technical issue in that the query function may refer parameters for edges

in a DAG structural model of the environment that do not exist in every instance of

the model. For example, the set of edges ℰ is itself a random variable, so that the
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edge parameters 𝜆𝑚,𝑛 do not exist unless (𝑛→ 𝑚) ∈ ℰ . Dependent on the goal, the

user may either check for the existence of (𝑛→ 𝑚) in 𝑓𝒬 and return a specified value

when it does not exist, or specify that the model must include an edge (𝑛→ 𝑚).

2.7.2 Overview of Query Objectives

In this and the next two sections, we will introduce query objectives. Intuitively,

the query objective describes how a measure of reward should be computed from the

output of the query function.

We desire for our query objectives to cover a large portion of the problems ex-

pressible by the current literature, including information maximization and observable

maximization problems. For this reason, a query objective includes a basic objective,

which specifies whether the mission is concerned with optimizing expectations of vari-

ables, posterior probabilities, or mutual information. However, we find that this alone

is not sufficient to express all the objectives in which we are interested. For this rea-

son, we also introduce posterior and prior specializations, which respectively constrain

the values of 𝜁 and o1:𝑇 that are of interest in the problem. A query objective may

include zero or one posterior specializations and zero or one prior specializations.

Mathematically, a query objective is always a function 𝐽𝒬(𝜁,o1:𝑇 | o0) that de-

pends on the distributions of the random variables 𝜁 and o1:𝑇 , and the inclusion of

specializations changes the form of the function. In practice, the basic objective is

one of three options, a posterior specialization is fully specified by a set 𝒱 , and a prior

specialization is specified by a number 0 ≤ 𝛿𝑝𝑟𝑖𝑜𝑟 ≤ 1. Therefore, in order for a user

to specify a query objective, they may provide a tuple

⟨𝐽𝑏𝑎𝑠𝑖𝑐,𝒱 , 𝛿𝑝𝑟𝑖𝑜𝑟⟩ ,

where 𝐽𝑏𝑎𝑠𝑖𝑐 ∈ {𝑣𝑎𝑙𝑢𝑒, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}, and 𝒱 and 𝛿𝑝𝑟𝑖𝑜𝑟 can be optionally

excluded to indicate that no posterior or prior specializations are necessary.

77



2.7.3 Basic Query Objectives

We first describe query objectives in their simplest forms, without introducing mod-

ifiers that restrict the objectives to specific values. Unlike changes in the query func-

tion, changes in the query objective impact the quantities estimated during planning,

and so change how the adaptive sampling algorithm operates. The basic choice of

query objective is one of three options:

Maximization of Value: This objective indicates that the agent must select ob-

servations that maximize the expectation of the variable of interest,

𝐽𝒬(𝜁,o1:𝑇 | o0) = E [𝜁 | o0] . (2.24)

A value objective should be used when a mission aims to maximize observations of

an environmental variable. This objective depends on the agent’s actions when 𝜁

depends on 𝑥1:𝑇 . This is most useful for attempting to locate specific phenomena,

for example maximizing the number of hydrocarbon seeps observed, or the number

of locations where conditions on local environment variables are met. Use of this

objective requires that the output of the objective function is scalar and numeric.

Maximization of Probability: This objective indicates that the agent must se-

lect observations that maximize the expected posterior probability of the variable of

interest 𝜁,

𝐽𝒬(𝜁,o1:𝑇 | o0) = E [𝑝(𝜁 | o0:𝑇 ) | o0] . (2.25)

This objective gives an interpretable measure of the posterior belief in the variable of

interest 𝜁 after the observations have been taken. Expected belief is not a rigorous

measure of certainty like Shannon entropy, but it is easier to interpret than informa-

tion and does not depend upon prior belief 𝑝(𝜁 | o0). Probability objectives are most

useful when used in combination with specializations to maximize the probability of

a particular outcome. This should be used when the results from a query will be

used to make a single informed estimate of the variable of interest. An example is
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maximizing the posterior belief in the number of seeps in the environment. A prob-

ability objective would be the correct choice when a single number of seeps in the

environment must be estimated, with a penalty when that selection is wrong.

Maximization of Information: This objective indicates that the agent must se-

lect observations to maximize mutual information between observations and the vari-

able of interest,

𝐽𝒬(𝜁,o1:𝑇 | o0) = 𝐼(𝜁;o1:𝑇 |o0). (2.26)

Maximization of mutual information is equivalent to minimizing posterior Shannon

entropy of 𝜁 conditioned on o1:𝑇 . This means that an information objective should

be used when a mission aims to reduce uncertainty in 𝜁, as measured by entropy, as

much as possible. For example, an information objective could be used to generate

the most precise estimates for the number of seeps in the environment. An infor-

mation objective would be the correct choice when the full posterior distribution of

possibilities would be considered, without making a single final choice or estimation.

All three classes of objectives maximize some quantity. More complex queries,

like determining whether a quantity falls within a certain range, are expressible with

specializations and sufficiency, which we cover in the following subsections.

It will be convenient in later definitions and proofs to refer to all query objectives

with a single notation, so we introduce two functions 𝑓(𝜁,o1:𝑇 | o0) and 𝑔(o1:𝑇 | o0)

for this purpose. 𝑓 is the quantity within expectations in each query objective, while

𝑔 includes an expectation over 𝜁. 𝑓 and 𝑔 allow us to express any query objective as

𝐽𝒬(𝜁,o1:𝑇 | o0) = E [𝑓(𝜁,o1:𝑇 | o0) | o0]

= Eo1:𝑇 |o0

[︀
E𝜁|o0:𝑇

[𝑓(𝜁,o1:𝑇 | o0) | o0:𝑇 ] | o0

]︀

= Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0] .

(2.27)

The basic query objectives may be expressed using definitions of 𝑓 given in Table 2.1,

and with 𝑔(o1:𝑇 | o0) = E𝜁|o0:𝑇
[𝑓(𝜁,o1:𝑇 | o0) | o0:𝑇 ]. As such, further modifications to

queries will be discussed in this form, with the understanding that they are applicable
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Objective 𝑓(𝜁,o1:𝑇 | o0) 𝒱(𝑓,o1:𝑇 | o0)

Value 𝜁 𝒱*
𝑆(𝑓,o1:𝑇 | o0) or 𝒱𝑐𝑜𝑛𝑠𝑡

Probability 𝑝(𝜁 | o0:𝑇 ) 𝒱*
𝑆(𝑓,o1:𝑇 | o0)

Information 𝑙𝑟(𝜁;o1:𝑇 | o0) None

Table 2.1: Summary of objectives and posterior specializations available in query-
driven adaptive sampling.

to each of the three basic objective forms above.

To illustrate 𝑓 and 𝑔 through example, let 𝜁 be the the number of seeps in the

environment and consider a probability objective. Then

𝑓(𝜁,o1:𝑇 | o0) = 𝑝(𝜁 | o0:𝑇 )

is the probability of a specific value of the number of seeps conditioned on specific

observations o0:𝑇 .

𝑔(o1:𝑇 | o0) = E𝜁|o0:𝑇
[𝑝(𝜁 | o0:𝑇 ) | o0:𝑇 ]

is the expected posterior probability over all possible numbers of seeps, conditioned

on specific observations o0:𝑇 . Finally,

𝐽𝒬(𝜁,o1:𝑇 | o0) = Eo1:𝑇 |o0

[︀
E𝜁|o0:𝑇

[𝑝(𝜁 | o0:𝑇 ) | o0:𝑇 ] | o0

]︀

is the expected posterior probability probability over all possible numbers of seeps,

conditioned on all possible values of the observations o1:𝑇 , and the specific observa-

tions o0.

Later in this chapter, when we discuss conditions required for queries to be well-

formed and when we discuss online planning, we will need to understand how an

objective changes when conditioning on a larger set of observation than before, such

as when conditioned ono0:𝑡+1 after conditioning on o0:𝑡. For now, we point out that

for value and probability objectives, 𝑓(𝜁,o1:𝑇 | o0) = 𝑓(𝜁,o𝑡+1:𝑇 | o0:𝑡) and 𝑔(o1:𝑇 |
o0) = 𝑔(o𝑡+1:𝑇 | o0:𝑡) for 1 ≤ 𝑡 ≤ 𝑇 , while this is not true for information objectives.

We will use this fact in our proofs later.
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2.7.4 Specialization in Query Objectives

In this section, we add complexity to query objectives to express more interesting

problems by introducing specializations. In their basic forms, the query objectives

above significantly overlap with approaches to adaptive sampling elsewhere in the

literature. But these objectives alone are not sufficient to model some of the more

complex queries we would like to consider. Examples of these more complex queries

include “Maximize the expected number of seeps found on the best 90% of mission

outcomes”, and “Maximize the expected posterior mode of the number of seeps in

the environment”. In these examples, focusing on the best 90% of mission outcomes

and focusing on the posterior mode of a distribution are modifiers to a basic query

objective that existing adaptive sampling approaches could not model.

To allow these queries to be modeled and answered, we now show how our query

objectives may be specialized to only consider certain values of the variable of interest,

such as the posterior mode, or specific observations, including the top 90% of mission

outcomes. Here, we introduce two kinds of specializations, which we name prior

and posterior specializations. A prior specialization constrains the prior values of

observations that are considered in the objective, and would allow a query to focus

on the top 90% of mission outcomes. Meanwhile, a posterior specialization constrains

the posterior values of the variable of interest, conditioned on o0:𝑇 , that are considered

in the objective, and would allow a query to optimize a posterior mode. Including

these specializations in our query definition allows for adaptive sampling objectives

significantly beyond the state of the art.

To intuitively describe the queries that specializations allow, we illustrate them

in terms of our motivating scenario, where a vehicle explores the ocean floor, and

observes sites of hydrocarbon seepage, given as attribute y1. We consider two queries

of interest. The first is the number of seeps at the locations that the vehicle has

visited,

𝜁1 =
𝑇∑︁

𝑡=1

1 {y1(𝑥𝑡) = 1} ,
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while the second is the total number of seeps in the environment,

𝜁2 =
∑︁

𝑥∈𝒳
1 {y1(𝑥) = 1} .

𝜁1 describes only what is seen on the mission, while 𝜁2 describes the true state of the

world. Based on camera imagery, the vehicle provides observations of whether a seep

is present at the locations that it visits. However, the images may be misinterpreted,

so the observations may be considered noisy observations of the truth.

Types of Specializations

To motivate and better distinguish between prior and posterior specializations, let us

return to the previous statement that all basic queries can be formulated as expected

values. The expectations may be expanded as an outer expectation over o1:𝑇 | o0,

the observations that could be received in the mission, and an inner expectation over

𝜁 | o0:𝑇 , the variable of interest conditioned on the observations taken during the

mission,

E [𝑓(𝜁,o1:𝑇 | o0) | o0] = Eo1:𝑇 |o0

[︀
E𝜁|o0:𝑇

[𝑓(𝜁,o1:𝑇 | o0) | o0:𝑇 ] | o0

]︀
. (2.28)

The outer expectation above considers all possible values of observations during the

mission conditioned on the initial observations, o1:𝑇 | o0, while the inner expectation

considers all possible values of the variable of interest conditioned on the observations,

𝜁 | o0:𝑇 . The goal is to select observations that make the expectation as large as

possible. Specialization adds in the idea that not all values of 𝜁 and o1:𝑇 are equally

important for the mission. Considering the nested expectations explicitly reveals that

these concepts can be applied to both the distributions 𝑝(o1:𝑇 | o0) and 𝑝(𝜁 | o0:𝑇 ).

Posterior specializations limit the values of 𝜁 considered in 𝑝(𝜁 | o0:𝑇 ), while prior

specializations limit the values of o1:𝑇 considered in 𝑝(o1:𝑇 | o0).
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Posterior Specialization

In the query “Maximize the expected posterior mode of the number of seeps in the

environment”, we are not concerned with the probabilities of all possible numbers of

seeps on the environment, only the mode. This idea is encompassed in the concept of

posterior specialization, which focuses on the posterior probability that 𝜁 falls within

a specific domain of interest. In the seep count example just given, we are only

interested in 𝑃
î
𝜁2 = arg max𝜁′2

𝑝(𝜁 ′2 | o0:𝑇 ) | o0:𝑇

ó
, and not in the distribution over

the values of 𝜁2 that are not the mode.

A posterior specialization allows a user to specify a query such as “Maximize the ex-

pected posterior probability that at least three seeps are visited”. The number of seeps

visited follows a distribution 𝑝(𝜁1 | o0:𝑇 ), so there is a probability 𝑃 [𝜁1 ≥ 3 | o0:𝑇 ] that

three or more seeps have been visited for each o1:𝑇 that could be observed. This is

the probability that 𝜁1 is a member of a fixed subset of its domain, namely the set

of numbers greater than 3. The objective then maximizes the expectation of that

probability over different possible observations. In this case, that objective would be

to find the policy 𝜋 that satisfies

max
𝜋

Eo1:𝑇 |o0 [𝑃 [𝜁1 ≥ 3 | o0:𝑇 ] | o0] . (2.29)

Alternatively, a user might ask “Maximize the expected posterior mode of the

number of seeps in the environment”. The number of seeps in the environment follows

a distribution 𝑝(𝜁2 | o0:𝑇 ), and the posterior mode is max𝜁2 𝑝(𝜁2 | o0:𝑇 ). This is

also the probability that 𝜁2 falls in a set; the set consisting of the the values of 𝜁2

with greatest probability. In contrast to the previous example, the set is now not

fixed, as different values of 𝜁2 may have the highest probability when conditioned on

different observations o1:𝑇 . This objective maximizes the expectation of that mode
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over different possible observations, so the objective would be

max
𝜋

Eo1:𝑇 |o0 [max 𝑝(𝜁2 | o0:𝑇 ) |o0] =

max
𝜋

Eo1:𝑇 |o0

ñ
𝑃

ñ
𝜁2 = arg max

𝜁′2

𝑝(𝜁 ′2 | o0:𝑇 )

⃒⃒
⃒⃒
⃒o0:𝑇

ô ⃒⃒
⃒⃒
⃒o0

ô
. (2.30)

Both the example queries above may be expressed through application of a poste-

rior specialization, which we now define. A posterior specialization is used to trans-

form the inner expectation over 𝑝(𝜁 | o0:𝑇 ) in an objective into a probability of

membership in a set 𝒱(𝑓,o1:𝑇 | o0), as

E𝜁|o0:𝑇
[𝑓(𝜁,o1:𝑇 | o0) | o0:𝑇 ]→ 𝑃 [𝜁 ∈ 𝒱(𝑓,o1:𝑇 | o0) | o0:𝑇 ] . (2.31)

This transformation results in a different kind of objective, one that is focused on

probability of membership in a set 𝒱(𝑓,o1:𝑇 | o0) that potentially depends on the

class of query objective and observations. For example, the set of values of 𝜁 with

highest probability conditioned on o0:𝑇 depends upon the observations taken and

the fact that the query objective focuses on probabilities. Posterior specializations

are introduced in this way because many queries of interest are concerned with the

probability that a variable of interest is within some desired range.

The transformation of a posterior specialization results in a final objective of

max
𝜋

Eo1:𝑇 |o0 [𝑃 [𝜁 ∈ 𝒱(𝑓,o1:𝑇 | o0) | o0:𝑇 ]] , (2.32)

whereas previously it was expressed as (2.28).

It should be noted that this objective is equivalent to

max
𝜋

𝑃 [𝜁 ∈ 𝒱(𝑓,o1:𝑇 | o0) | o0] , (2.33)

but we emphasize the potential dependence of 𝒱 on o0:𝑇 , meaning that the value of

the objective is not independent of the observations taken.
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Only certain forms of 𝒱(𝑓,o1:𝑇 | o0) are permitted in order to avoid unscientific

behavior by the agent. We provide a technical discussion of the rationale behind these

restrictions, and the aberrant behavior that we avoid, in Section 2.8.

For value objectives, 𝒱(𝑓,o1:𝑇 | o0) may be specified by the user to be any constant

subset of the domain of 𝜁, which we denote by 𝒱𝑐𝑜𝑛𝑠𝑡. This is useful when only certain

query outputs are of interest. The previous example to “Maximize the expected

posterior probability that at least three seeps are visited” was an example of a constant

set, with 𝒱𝑐𝑜𝑛𝑠𝑡 = {𝑖 | 𝑖 ≥ 3}.

Additionally, extreme values of 𝑓(𝜁,o1:𝑇 | o0) may be of interest, without the user

necessarily knowing what they are for each possible value of o0:𝑇 . Examples include

maximizing the largest possible query output or the probability of the mode. Queries

may focus on larger sets than the single top value, particularly when 𝜁 is continuous.

To express these queries, we also allow 𝒱(𝑓,o1:𝑇 | o0) to be chosen to be the set of

elements of 𝒵 with positive probability and maximum cardinality 𝑆 that maximize

𝑓(𝜁,o1:𝑇 | o0), which we denote as 𝒱*
𝑆(𝑓,o1:𝑇 | o0). This choice may be made for

value and probability objectives.

To formally define 𝒱*
𝑆(𝑓,o1:𝑇 | o0), let 𝒵+(o0:𝑇 ) be the set of query function

outputs with positive probability conditioned on o0:𝑇 ,

𝒵+(o0:𝑇 ) := {𝜁 ∈ 𝒵 | 𝑝(𝜁 | o0:𝑇 ) > 0} . (2.34)

Then we define

𝒱*
𝑆(𝑓,o1:𝑇 | o0) := arg max

𝒱⊆𝒵+(o0:𝑇 ), |𝒱|≤𝑆

∑︁

𝜁∈𝒱
𝑓(𝜁,o1:𝑇 | o0). (2.35)

For value objectives, 𝒱*
𝑆 is the set of maximum values of 𝜁 with positive probability,

while for probability objectives, it is the set of values with the maximum probability.

In the probability objective case, 𝒱*
𝑆 may not be uniquely defined. But since we are

only concerned with 𝑃 [𝜁 ∈ 𝒱(𝑓,o1:𝑇 | o0) | o0:𝑇 ], which is equal for all maxima of

(2.35), the choice between maximum values can be made arbitrarily.
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Information objectives do not support posterior specialization. The options for

posterior specializations are summarized in the second column of Table 2.1.

For the examples given above, the objective specified in (2.29) is a value objective

using 𝒱𝑐𝑜𝑛𝑠𝑡 = [3,∞), and (2.30) is a probability objective using 𝒱*
1 (𝑓,o1:𝑇 | o0).

Prior Specialization

In the query “Maximize the expected number of seeps found on the best 90% of

mission outcomes”, we are not concerned with an expectation over all values of o1:𝑇 ,

but only the 90% of o1:𝑇 that result in the highest number of seeps found. This idea

is encompassed in prior specialization, which constrains values of observations in the

distribution 𝑝(o1:𝑇 | o0). In the seep observation example just given, we are only

interested in values of o1:𝑇 that occur with 90% total probability.

Prior specializations may be desired for a number of reasons. There may be

certain values of o1:𝑇 which are unlikely, but lead to imprecise posterior estimates of

𝜁 | o0:𝑇 . For example, there may be 10% probability that noisy sensors indicate that

there are no seeps in the environment when they have, in fact, been observed. If a

user is able to characterize the noise associated with their sensors, then they may

use a prior specialization to exclude those observations from computation of reward.

Another potential use case is when unlikely outcomes lead to very low reward, which

can cause a plan to favor more conservative missions that avoid these low reward

observations. Depending on the mission, it can be acceptable to remove these low

probability, worst case outcomes from the objective.

A prior specialization allows a user to specify a query such as “Maximize the

expected number of seeps visited on the best 90% of mission outcomes”. In this case,

that objective would be

max
𝜋,𝒰

Eo1:𝑇 |o0

[︀
E𝜁|o0:𝑇

[𝜁1 | o0:𝑇 ] | o0,o1:𝑇 ∈ 𝒰
]︀

s.t. 𝑃 [o1:𝑇 ∈ 𝒰 | o0] ≥ 0.9. (2.36)

A prior specialization can also be combined with a posterior specialization. For

example, a user may ask to “Maximize the expected posterior mode of the number of
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seeps in the environment on the best 95% of mission outcomes”. In this case, there

is a 5% chance that the policy could lead to outcomes where the number of seeps

is not well known, but those are ignored as low probability outcomes, leading to an

objective of

max
𝜋,𝒰

Eo1:𝑇 |o0

ñ
𝑃

ñ
𝜁2 = arg max

𝜁′2

𝑝(𝜁 ′2 | o1:𝑇 )

⃒⃒
⃒⃒
⃒o0:𝑇

ô ⃒⃒
⃒⃒
⃒o0,o1:𝑇 ∈ 𝒰

ô
s.t. 𝑃 [o1:𝑇 ∈ 𝒰 | o0] ≥ 0.95. (2.37)

As in the two examples above, a prior specialization restricts the values of o1:𝑇

considered in the outer expectation Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0]. 𝑔(o1:𝑇 | o0), may be

drawn from any objective with or without posterior specialization. The expectation

is conditioned on a set of observation outcomes 𝒰(o1:𝑇 ) that maximize the condi-

tional expectation and occur with at least probability 𝛿𝑝𝑟𝑖𝑜𝑟, resulting in the following

transformation

Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0]→ Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0,o1:𝑇 ∈ 𝒰(o1:𝑇 )] (2.38)

where

𝒰(o1:𝑇 ) := arg max
𝒰⊆𝒪,𝑃 [o1:𝑇∈𝒰|o0]≥𝛿𝑝𝑟𝑖𝑜𝑟

Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0,o1:𝑇 ∈ 𝒰 ] (2.39)

The user only needs to specify the constant 𝛿𝑝𝑟𝑖𝑜𝑟, while the adaptive sampling algo-

rithm determines the best set 𝒰 that optimizes the expectation.

For the examples given above, (2.36) is a value objective with no posterior special-

ization and a prior specialization with 𝛿𝑝𝑟𝑖𝑜𝑟 = 0.9. (2.37) is a probability objective

with a posterior specialization to 𝒱*
1 (𝑓,o1:𝑇 | o0) and a prior specialization with

𝛿𝑝𝑟𝑖𝑜𝑟 = 0.95.
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2.7.5 Query Thresholds

Finally, we wish to be able to consider queries that do not run for a set number of

observations, but instead specify a termination condition that must be satisfied. An

example is “Minimize the expected number of observations so that the probability

that 3 or more seeps are found exceeds 70%”. This idea is encompassed in the idea

of sufficiency, which specifies that reaching a threshold is sufficient to consider the

mission complete. Sufficiency transforms the objective from a maximization over a

finite time horizon to a minimization of observations.

A sufficient condition specifies that a mission is only required to be run until

𝑔(o1:𝑇 | o0) within an objective, evaluated for the observations o1:𝑇 that are seen,

exceeds a threshold ∆𝒬. In the previous example to “Minimize the expected number

of observations so that the posterior probability that at least three seeps are visited

is at least 70%”, that objective would be

min
𝜋

E [𝑇 ] s.t. 𝑃 [𝜁1 ≥ 3 | o0:𝑇 ] ≥ 0.7 ∀o1:𝑇 . (2.40)

Here it is understood that 𝑇 is now variable, depending on an agent’s choice to

continue after each observation.

Alternatively, combining with prior and posterior specializations, a user may ask

to “Minimize the expected number of observations so that the posterior mode of the

number of seeps in the environment on the best 95% of mission outcomes is at least

80%”. In this case, the objective would be

min𝜋,𝒰 E [𝑇 ]

s.t. 𝑃
î
𝜁2 = arg max𝜁′2

𝑝(𝜁 ′2 | o1:𝑇 )
⃒⃒
⃒o0:𝑇

ó
≥ 0.8 ∀o1:𝑇 ∈ 𝒰

𝑃 [o1:𝑇 ∈ 𝒰 | o0] ≥ 0.95.

(2.41)

As in the examples above, introducing sufficiency modifies the objective to be

the minimum number of observations required for the original object to exceed some
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threshold ∆𝒬, as

max
𝜋

Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0]→ min
𝜋

E [𝑇 ] s.t. 𝑔(o1:𝑇 | o0) ≥ ∆𝒬 ∀o1:𝑇 ∈ 𝒰 .
(2.42)

Without an explicit prior specialization, 𝒰 contains all possible observations. In this

thesis, we only account for minimization of number of observations. Extensions to

minimize other quantities such as fuel usage may be considered as part of future work.

Sufficiency captures the idea that certain missions could be run effectively indef-

initely, with diminishing returns. For example, an underwater vehicle could explore

an area of several square kilometers for months if given the capability to recharge.

However, eventually the data gathered answers the question that prompted the mis-

sion with a sufficient level of accuracy, and the resources can instead be used for an

alternative purpose. Encoding a level of sufficiency in the query provides a way to

evaluate when the mission should be considered complete.

The option to include sufficiency in a query further justifies why prior special-

izations are necessary. For most environment models, the objective in (2.40) may

actually be ill-formed, because there is a non-zero probability that the environment

may not contain three or more seeps to find, resulting in E[𝑇 ] =∞. This expectation

will be infinite so long as there is any positive probability that there is not three or

more seeps to find.

A suitably chosen prior specialization allows those possibilities to be excluded

from the objective, so that E [𝑇 ] is finite. For example, a user selects a prior confi-

dence 𝛿𝑝𝑟𝑖𝑜𝑟 that is below the probability that there are three or more seeps to find.

When planning, the observations o1:𝑇 that provide evidence that there are less than

three seeps to find will be excluded from 𝒰 , so the query threshold will not have to

be satisfied those outcomes. When those outcomes are detected, the mission ends

immediately, and for the remaining outcomes, the number of measurements required

to reach the query threshold is finite. As a result, E [𝑇 ] is finite.

This issue of infinite numbers of observations needed to reach certain conditions

is the exact issue discussed by Jiang et al. [65]. They resolve the issue by including
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a maximum possible value of 𝑇 , corresponding to each 𝑥 ∈ 𝒳 being sampled once.

But when there is observation noise, repeated observations of the same site may in

fact be appropriate, and inclusion of prior specializations can ensure the problem is

well-defined even in these cases.

2.8 Ensuring Queries are Well-Formed

Our query formulations are broad and encompass many known formulations of adap-

tive sampling. But it is of course possible to define objectives that cannot be expressed

in our query language. To justify the restrictions in our query language, we now show

that some natural objectives can lead to counter-intuitive behavior and bias when

used as objectives for adaptive sampling, and we argue that this makes them ill-

formed for use as queries that guide missions. We discuss these limitations formally,

and prove that our queries do not result in the same behavior.

When a query is ill-formed, the resulting bias in observations means that the

results will not necessarily reflect the reality of the environment. For example, if a

query asks an agent to prove a certain hypothesis, an agent may ignore all observations

that do not support that hypothesis. It will eventually gather a large number of

observations that support the hypothesis and conclude that it is true, even when

most evidence in the environment points to the hypothesis being false. This leads

to misleading conclusions. For this reason, we recommend against planning with ill-

formed queries, and we argue that the ill-formed query is rarely the true intention

of the user. Users should instead use a well-formed query that is closer to their true

intention. For example, a query posed to determine with maximum accuracy whether

the hypothesis is true or false will consider both possibilities and will not bias the

conclusions in the data in the same way.

Additional queries certainly exist that are not expressible in our query language

but are still well-formed. Future work may focus on adding support for these queries,

but we suggest that they should be carefully analyzed to prove they are well-formed

first.
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2.8.1 An Example of an Ill-Formed Query

First, let us consider an example of an objective that is useful, but results in undesir-

able behavior when used in adaptive sampling. A user may desire to reach a specified

level of confidence in the answer to a query after observations have been taken, and to

have that confidence level reached for as many outcomes of the mission as possible. In

a seep environment, this could take the form of a query to “Maximize the probability

that the posterior mode of the number of seeps in the environment exceeds 75%”,

max
𝜋

𝑃

ïÅ
max
𝜁2

𝑝(𝜁2 | o0:𝑇 )

ã
≥ 0.75

⃒⃒
⃒⃒o0

ò
. (2.43)

For any policy, (2.43) can certainly be evaluated. However, we now show that using

it as an objective may cause an agent to deliberately avoid improving its model of the

environment, even if additional observations could be gathered for no cost. Example

1 gives an explicit numerical example of how this can occur in this query.

Example 1. Assume that no prior observations have been taken, and consider 𝜁2 ∈
{0, 1}, so that there are either 0 or 1 seeps in the environment. Consider a model

where 𝑃 [𝜁2 = 0] = 0.8 before any observations. Assume the agent is given the choice

of whether to take an observation o at its current location. The observation satisfies

o ∈ {0, 1}, with

𝑃 [o = 0 | 𝜁2 = 0] = 0.9

𝑃 [o = 0 | 𝜁2 = 1] = 0.2

so we expect observation of o to be useful in determining the true value of 𝜁2. Appli-

cation of Bayes’ theorem confirms this intuition, and yields

𝑃 [𝜁2 = 0 | o = 0] ≈ 0.947

𝑃 [𝜁2 = 0 | o = 1] ≈ 0.333,

with 𝑃 [o = 0] = 0.76. Depending on the value of o observed, uncertainty in the value
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of 𝜁 may rise or fall, but the likelihood that it rises is low.

For the objective given in (2.43), choosing not to receive the observation o will

result in a larger objective value than receiving it. This occurs because reducing the

uncertainty in 𝜁2 does not improve the objective, but increasing the uncertainty does

reduce it.

If the observation is never taken, or the result is discarded without looking at it,

then the objective value is based on the prior belief 𝑝(𝜁2), without any observations.

Following (2.43), the objective value is evaluated to be

𝑃

ïÅ
max
𝜁2

𝑝(𝜁2)

ã
≥ 0.75

ò
= 1.

On the other hand, if the observation is taken, the objective value is based on its

posterior belief 𝑝(𝜁2 | o), which differs depending on the value of o observed. The

confidence threshold of 0.75 is only satisfied when o = 0, and so the objective value is

𝑃

ïÅ
max
𝜁2

𝑝(𝜁2 | o)

ã
≥ 0.75

ò
= 𝑃 [o = 0] = 0.76.

The agent therefore maximizes the objective by avoiding observation of o, because

it can result in undesirable outcomes, even if it is already at an appropriate location

to take the measurement with no cost.

In this example, the agent avoids the observation because its former belief about

the environment is favorable compared to possible posterior beliefs. The agent will

only select observations that do not reduce the posterior mode below 0.75, biasing

the data gathering process in order to reinforce the current belief state.

When an agent avoids data and deliberately biases its understanding of the en-

vironment, it acts in an unscientific manner. Because of the bias, the results may

also not be reflective of the true probabilities of query satisfaction. We view this as

undesirable behavior, and for this reason label (2.43) as an ill-formed query.
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2.8.2 Monotonically Nondecreasing Queries

In the previous example, the agent avoided gathering the observation o because the

objective value decreased with the addition of o. More generally, an agent will not

avoid gathering data if it can be proven that the objective value will not decrease

as the result of an observation that can be gathered without cost. To avoid ignoring

observations, we assert that all query objectives must be monotonically nondecreasing,

defined below. When an objective is not monotonically nondecreasing, the value of the

objective can decrease with additional observations, causing an agent to potentially

discard or refuse to gather data.

Definition 2. An objective 𝐽𝒬 is said be monotonically nondecreasing if, for ev-

ery observation o𝑇 that does not affect the true value of 𝜁, that 𝐽𝒬(𝜁,o1:𝑇 | o0) ≥
𝐽𝒬(𝜁,o1:𝑇−1 | o0).

Note that the definition of monotonically nondecreasing objectives does not con-

sider the case where observation o𝑇 decreases the objective because the true value of

𝜁 is changed. This can occur for choices of query functions that depend directly on

the observation locations 𝑥1:𝑇 , such as a variable of interest equal to the minimum

temperature observed on the mission. In this case, reward for biasing the observa-

tions has been built in to the query function, and does not indicate that the query

objective is unsuitable.

We now show that the query objectives and specializations that we have defined

are monotonically nondecreasing, and so are appropriate for use as objectives in

adaptive sampling missions. Theorems 1 through 3 show that value, probability, and

information objectives without specializations are all monotonically nondecreasing.

Theorem 1. A value objective is monotonically nondecreasing.

Proof. Without posterior specialization, the value objective 𝐽𝒬(𝜁,o1:𝑇 | o0) = E [𝜁 | o0]

does not directly depend on the observations. If the value of 𝜁 is unchanged by o𝑇 ,

then 𝐽𝒬(𝜁,o1:𝑇−1 | o0) = 𝐽𝒬(𝜁,o1:𝑇 | o0).

Theorem 2. A probability objective is monotonically nondecreasing.
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Proof. The result follows from application of Sedrakyan’s inequality [122], which

states that for real 𝑎1, . . . , 𝑎𝑛 and positive 𝑏1, . . . , 𝑏𝑛,

𝑛∑︁

𝑖=1

𝑎2𝑖
𝑏𝑖
≥ (
∑︀𝑛

𝑖=1 𝑎𝑖)
2

∑︀𝑛
𝑖=1 𝑏𝑖

.

For fixed o0:𝑇−1, and observations o𝑇 with non-zero probability, select 𝑎𝑖 = 𝑝(𝜁 |
o0:𝑇 ) 𝑝(o𝑇 | o0:𝑇−1) and 𝑏𝑖 = 𝑝(o𝑇 | o0:𝑇−1). Then when the addition of o𝑇 does not

change the true value of 𝜁, we have

𝐽𝒬(𝜁,o1:𝑇 | o0) = E [𝑝(𝜁 | o0:𝑇 )]

=
∑︁

𝜁

∑︁

o0:𝑇−1

𝑝(o0:𝑇−1)
∑︁

o𝑇

𝑝(o𝑇 | o0:𝑇−1) 𝑝(𝜁 | o0:𝑇 ) 𝑝(𝜁 | o0:𝑇 )

=
∑︁

𝜁

∑︁

o0:𝑇−1

𝑝(o0:𝑇−1)
∑︁

o𝑇

(𝑝(𝜁 | o0:𝑇 ) 𝑝(o𝑇 | o0:𝑇−1))
2

𝑝(o𝑇 | o0:𝑇−1)

≥
∑︁

𝜁

∑︁

o0:𝑇−1

𝑝(o0:𝑇−1)

Ä∑︀
o𝑇
𝑝(𝜁 | o0:𝑇 ) 𝑝(o𝑇 | o0:𝑇−1)

ä2
∑︀

o𝑇
𝑝(o𝑇 | o0:𝑇−1)

=
∑︁

𝜁

∑︁

o0:𝑇−1

𝑝(o0:𝑇−1) 𝑝(𝜁 | o0:𝑇−1)
2

= E [𝑝(𝜁 | o0:𝑇−1)] = 𝐽𝒬(𝜁,o1:𝑇−1 | o0),

where the inequality follows from application of Sedrakyan’s inequality on the inner-

most sum for each 𝜁 and o0:𝑇−1. When o𝑇 is continuous, the proof is identical, using

the integral version of Sedrakyan’s inequality.

Theorem 3. An information objective is monotonically nondecreasing.

Proof. The result follows from the chain rule for mutual information [32], which states

that

𝐼(𝜁;o1:𝑇 | o0) = 𝐼(𝜁;o1:𝑇−1 | o0) + Eo1:𝑇−1|o0 [𝐼(𝜁;o𝑇 | o0:𝑇−1) | o0] .

This is combined with the non-negativity of mutual information, which states that
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𝐼(𝜁;o𝑇 | o0:𝑇−1) ≥ 0. Then

𝐽𝒬(𝜁,o1:𝑇 | o0) = 𝐼(𝜁;o1:𝑇−1 | o0) + Eo1:𝑇−1|o0 [𝐼(𝜁;o𝑇 | o0:𝑇−1) | o0]

≥ 𝐼(𝜁;o1:𝑇−1 | o0)

= 𝐽𝒬(𝜁,o1:𝑇−1 | o0).

Next, we show that the posterior specializations we have outlined preserve mono-

tonicity. Theorem 4 considers a constant domain posterior specialization with value

objectives, and Theorem 5 considers variable domain posterior specialization for value

and probability objectives.

Theorem 4. A value objective with a constant domain posterior specialization 𝒱𝑐𝑜𝑛𝑠𝑡
is monotonically nondecreasing.

Proof. Consider the potential addition of observation o𝑇 to o0:𝑇−1. Monotonicity only

applies for observations that do not change the value of 𝜁, so the prior 𝑝(𝜁 | o0) does

not change. Therefore, for a value query, the following objectives are equal

Eo1:𝑇−1|o0 [𝑃 [𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 |o0:𝑇−1] | o0]

= Eo1:𝑇 |o0 [𝑃 [𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 |o0:𝑇 ] | o0]

= 𝑃 [𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 | o0] .

Therefore, the objective does not change with any additional measurements that do

not change 𝜁, and unintended decreases in reward are not possible.

To demonstrate monotonicity with variable domain posterior specializations, we

will make use of the following lemma.

Lemma 1. For value and probability objectives, for all o0:𝑇 such that 𝑝(o1:𝑇 | o0) > 0,

𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇 ] ≤ 𝑃 [𝜁 ∈ 𝒱*

𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ] .
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Proof. For probability objectives, the lemma follows immediately from the definition

of 𝒱*
𝑆(𝑓,o1:𝑇 | [0]) as the set of values of 𝜁 that maximize 𝑝(𝜁 | o0:𝑇 ) with a fixed

cardinality.

Now we consider value objectives. From the identity

𝑝(𝜁 | o0:𝑇−1) = Eo𝑇 |o0:𝑇−1
[𝑝(𝜁 | o0:𝑇 ) | o0:𝑇−1] ,

it follows that for all o0:𝑇 that occur with non-zero probability, 𝑝(𝜁 | o0:𝑇 ) > 0 implies

𝑝(𝜁 | o0:𝑇−1) > 0, and therefore 𝒵+(o0:𝑇 ) ⊆ 𝒵+(o0:𝑇−1).

Now consider any of the largest elements of a fixed cardinality 𝑆 in 𝒵+(o0:𝑇−1).

Because 𝒵+(o0:𝑇 ) ⊆ 𝒵+(o0:𝑇−1), each of those elements will either also be the among

the largest elements of cardinality 𝑆 in 𝒵+(o0:𝑇 ), or will not be an element of 𝒵+(o0:𝑇 ).

Therefore, for 𝑓(𝜁,o1:𝑇 | o0) = 𝜁, all elements of 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) that are not in

𝒱*
𝑆(𝑓,o1:𝑇 | o0) are not elements of 𝒵+(o0:𝑇 ). We may write this statement as:

𝑝(𝜁 | o0:𝑇 ) = 0 for all 𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) ∖ 𝒱*

𝑆(𝑓,o1:𝑇 | o0).

Then

𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇 ]

= 𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) ∩ 𝒱*

𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ]

+ 𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) ∖ 𝒱*

𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ]

= 𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) ∩ 𝒱*

𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ]

≤ 𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ] .

Theorem 5. A value or probability objective with a variable domain posterior spe-

cialization 𝒱*
𝑆(𝑓,o1:𝑇 | o0) is monotonically nondecreasing.

Proof. Consider the potential addition of observation o𝑇 to o0:𝑇−1. For constant
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o0:𝑇−1, by the definition of expectation and marginal probability, we have

Eo𝑇 |o0:𝑇−1
[𝑃 [𝜁 ∈ 𝒱*

𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇 ] | o0:𝑇−1]

= 𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇−1] .

By lemma 1 we have

𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇−1]

= Eo𝑇 |o0:𝑇−1
[𝑃 [𝜁 ∈ 𝒱*

𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇 ] | o0:𝑇−1]

≤ Eo𝑇 |o0:𝑇−1
[𝑃 [𝜁 ∈ 𝒱*

𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ] | o0:𝑇−1] .

This implies that

𝐽𝒬(𝜁,o1:𝑇−1 | o0) = Eo1:𝑇−1|o0 [𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇−1 | o0) | o0:𝑇−1] | o0]

≤ Eo1:𝑇−1|o0

[︀
Eo𝑇 |o0:𝑇−1

[𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ] | o0:𝑇−1] | o0

]︀

= Eo𝑇 |o0 [𝑃 [𝜁 ∈ 𝒱*
𝑆(𝑓,o1:𝑇 | o0) | o0:𝑇 ] | o0]

= 𝐽𝒬(𝜁,o1:𝑇 | o0).

Therefore, an additional observation o𝑇 that does not affect the true value of 𝜁

can only increase the objective value with posterior specialization.

Our final theorem, Theorem 6, shows that the addition of a prior specialization

will preserve monotonicity.

Theorem 6. For any objective 𝑔(o1:𝑇 | o0) such that Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0] is

monotonically nondecreasing, the addition of a prior specialization will preserve mono-

tonicity.

Proof. We have

Eo1:𝑇−1|o0 [𝑔(o1:𝑇−1 | o0) | o0,o1:𝑇−1 ∈ 𝒰(o1:𝑇−1)]

≤ Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0,o1:𝑇−1 ∈ 𝒰(o1:𝑇−1)]

≤ Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0,o1:𝑇 ∈ 𝒰(o1:𝑇 )] .
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The first inequality above follows from maximizing Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0] being

monotonically nondecreasing for any distribution over o1:𝑇 , including 𝑝(o1:𝑇 | o0,o1:𝑇−1 ∈
𝒰(o1:𝑇−1)). The second inequality follows from the definition of 𝒰(o1:𝑇 ) as the expec-

tation maximizing set with a fixed probability.

Finally, we draw attention to the fact that even if the query 𝐽𝒬(𝜁,o1:𝑇 | o0) is

monotonically nondecreasing, the expression 𝑔(o1:𝑇 | o0) will not be monotonically

nondecreasing in general. For example, for certain values of o𝑇 we may have

𝑃 [𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 | o0:𝑇 ] < 𝑃 [𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 | o0:𝑇−1] .

This means that when a sufficient condition is supplied, certain observations o𝑇 may

reduce 𝑔(o1:𝑇 | o0) and become further from satisfying ∆𝒬. However, since the expec-

tation of 𝑔(o1:𝑇 | o0) is monotonically nondecreasing, 𝑔(o1:𝑇 | o0) will increase for at

least one outcome unless the objective is exactly 0. This makes taking additional ob-

servations progress on satisfying the sufficient condition, so that observations without

cost will not be ignored.

2.9 Summary

In this chapter, we introduced adaptive sampling that may be used to respond to a

class of user-specified queries. We formally introduced a query as a function acting

on an instance of the environment model and the locations visited by an agent, an

objective that may be modified through the use query specializations, and an op-

tional query threshold that specified a sufficient condition should be met in as few

observations as possible. We further showed that optimizing a query objective will

lead to an agent that ignores observations unless the query objective is monotonically

non-decreasing, and we proved that all queries expressible in our query language are

monotonically non-decreasing.
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Chapter 3

Planning for Adaptive Sampling with

Queries

Given the definition of queries and query-driven adaptive sampling in the previous

chapter, we now present a planner that makes decisions on where to gather observa-

tions in order to solve query-driven adaptive sampling problems. In this chapter we

introduce a Monte Carlo tree search based planner that solves for adaptive sampling

strategies that answer all queries expressible in our language. One technical chal-

lenge in query-driven adaptive sampling is that we lack closed form expressions for

probabilities and information that we will need to evaluate how well a sequence of

observations answers a query. In our planner, we propose to compute reward using

sample-based estimators of expectation, probability, and mutual information.

Since sample-based estimators can require a large number of samples to converge,

one of our innovations is to refine those estimators over the course of rollouts per-

formed during Monte Carlo tree search. Initially, few samples of observations and

the variable of interest are taken for a given sequence of actions, to compute reward

from a loose estimate of the objective. If a sequence of actions is likely to be opti-

mal, further samples will be taken, to refine the objective estimate for that path. As

the algorithm proceeds, most computational effort is spent to determine the optimal

objective path from a few candidates.

Applying MCTS to the full set of queries we consider also requires a number of
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innovations to be added to MCTS, and this chapter also introduces these changes.

We show how to test whether a query has been satisfied by a number of observations,

and terminate a rollout early when sufficient information has been gathered. Certain

queries also consider only a subset of outcomes, and we show how to estimate reward

in these cases using a top percentile of samples gathered.

At the end of this chapter, we test the application of query-driven adaptive sam-

pling on scenarios inspired by the search for hydrocarbon seeps, and emergency re-

sponders during a wildfire. We show that query-driven adaptive sampling can be

used even for queries that are complex functions of environment variables, and that

it outperforms strategies that maximize information about all environment variables.

3.1 Overview of Query-Driven Planning

We now describe an overview of our approach to query-driven adaptive sampling. In

existing adaptive sampling problems, the primary source of difficulty is the size of

the policy space that must be considered. However, in these existing approaches,

reward can typically be computed easily for any sequence of actions, such as through

a closed form expression for information. In our case, we face difficulty resulting from

the complexity of computing the objective, in addition to the size of the search space.

Complexity in computing reward has two causes. First, the generality permitted

by the query function means our algorithm does not have access to a description up

front of the prior and posterior distributions 𝑝(𝜁 | o0) and 𝑝(𝜁 | o0:𝑇 ), and cannot rely

on assumptions like Gaussianity that are used in other approaches. Dependent on

the form of the query, it is not guaranteed that analytic descriptions of distributions

of 𝜁 even exist, and so query objectives including expectation of value and mutual

information typically cannot be computed in closed form. Further, as functions over

random variables, they typically need to be estimated through sampling, an expensive

process.

Second, even when the closed form descriptions of 𝑝(𝜁 | o0:𝑇 ) do exist, such as

when it is a discrete distribution, calculating that distribution from the environment
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model can be a computationally intensive procedure. To provide an exact result,

𝑝(𝜁 | o0:𝑇 ) must be computed for each possible value of o1:𝑇 for a given sequence

of observation locations 𝑥1:𝑇 , and then for each 𝑥1:𝑇 considered in the search over

policies. When the environment is modeled by a complex machine learning method,

computation of 𝑝(𝜁 | o0:𝑇 ) requires retraining, and this makes it impractical to exactly

compute the query objective for every sequence of actions. Furthermore, it is not clear

how to define bounds on the objective that would hold for every possible query.

Instead, our approach relies on the fact that, after o1:𝑡 have been observed,

𝑝(𝜁,o𝑡+1:𝑇 | o0:𝑡) can be sampled efficiently, and that those samples can be used

to estimate 𝑝(𝜁 | o0:𝑇 ) or quantities like information directly. When imprecise esti-

mates of probability are required, this procedure only requires training 𝑝(𝜁 | o0:𝑡) once

for the observations that are taken, and is more efficient than training the posterior

𝑝(𝜁 | o0:𝑇 ) for every possible o0:𝑇 .

The samples can be produced by sampling from the environment model 𝑝(M |
o0:𝑡), then computing the variable of interest 𝜁 = 𝑓𝒬(𝑥1:𝑇 ,M ). Finally, we sample

the observations, based on the attributes y(𝑥𝑡) within the sample of the environment

model M , according to the distribution 𝑝(o𝑡 | y(𝑥𝑡)). We define and make use of

finite sample estimators that can approximate the objective from samples of 𝜁 and

o1:𝑇 . We apply Monte Carlo tree search (MCTS) in order to search over the space

of actions, and we generate samples {(𝜁(𝑖),o(𝑖)
𝑡+1:𝑇 )} each time a sequence of actions is

considered in the search tree. The sample-based estimators are then used to compute

a reward based on the query objective 𝐽𝒬.

Rather than expending computational resources on estimating the reward accu-

rately for every sequence of actions considered, we instead generate a coarse estimate

for the reward based on relatively few samples. MCTS then guides search to improve

the accuracy of estimated reward for sequences of actions based on the likelihood that

the coarse estimates are optimal. When a sequence of actions that has been previously

reached is reached again, additional samples are taken, and the reward estimate is

refined. In this way, reward estimation is made more accurate for those sequences of

actions which are believed to be optimal, while not wasting computational resources
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on those with poor initial estimates. This is the same basic idea as bandit-based

Monte Carlo planning, but our contribution is to embed more complex estimators in

the search tree, and to augment MCTS to allow early terminating rollouts and reward

derived from a top percentile of samples.

Even when using finite sample estimators for the query objective, it will still be

too slow a process to explicitly construct a conditional plan, consisting of a deci-

sion tree that branches on possible observations. Instead, we perform Monte Carlo

planning online over unconditional search trees. Starting from 𝑥0 and observations

o0, we solve for a sequence of actions 𝑎0:𝑇−1 over the full horizon of the plan that

maximizes 𝐽𝒬(𝜁,o1:𝑇 | o0). We then execute action 𝑎0, observe o1, and then solve for

an unconditional plan 𝑎1:𝑇−1 that maximizes 𝐽𝒬(𝜁,o2:𝑇 | o0:1), repeating this process

until 𝑇 actions have been performed.

The process of executing an adaptive mission using online planning is fairly stan-

dard and well understood. Our novel contribution to this process is to detail how

query thresholds and prior specializations must be modified in plans generated online

in order to ensure the query objective is optimized for the executed plan.

This chapter has the following structure. Section 3.2 describes our MCTS plan-

ning approach, and highlights differences from existing applications of MCTS. Section

3.3 describes online planning, how queries must be modified in response to new obser-

vations, and an overview of query-driven adaptive sampling. Section 3.4 describes in

detail how the finite sample estimators embedded in the search tree are constructed.

Finally, Section 3.5 provides experiments comparing query-driven adaptive sampling

against approaches maximizing information about all environment variables in the

environment, in scenarios motivated by seep search and responding to wildfires.
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3.2 Monte Carlo Tree Search with Sample Based Es-

timators

Monte Carlo tree search (MCTS) with bandit-based action selection [72] was devel-

oped to find policies in conditional trees or plans in unconditional trees. In this work,

we take the latter approach, and solve for unconditional plans, which are updated

online with reward estimated through finite samples.

The basic idea of MCTS is to sample a search tree using a series of rollouts from

the root state to a leaf state, selecting actions at random. The rollouts are used to

generate imprecise estimates of the reward that could be achieved by taking each

action in the search tree. These estimates inform which actions should be sampled

further, and which action should be selected after sampling is complete.

We apply this approach at each time step 𝑡 in order to determine a sequence

of actions 𝑎𝑡:𝑇−1. For each sequence of actions, we produce an estimate 𝐽 for the

objective 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) from finite samples {(𝜁(𝑖),o(𝑖)
𝑡+1:𝑇 )} drawn from 𝑝(𝜁,o𝑡+1:𝑇 |

o0:𝑡). Paths through the search tree are assigned reward computed from 𝐽 , in order to

prioritize which paths should be re-sampled. In this section, we discuss how planning

is performed using MCTS when given an appropriate objective estimator 𝐽 . The

exact form of 𝐽 is discussed in Section 3.4.

Our approach differs from standard MCTS in the three following ways:

General estimators in search. The reward gained from taking a sequence of

actions is not simply the average of the samples taken. 𝐽 is derived using more

complex estimators, including 𝑘-NN estimators of mutual information. In addition,

when a sufficient condition is specified, the estimators used in the search tree may

be used to inform early termination of rollouts, as it will no longer be necessary to

rollout to a leaf state.

Refinement of reward for specific action sequences. In MCTS, the reward

for visiting a sequence of states in the search tree (corresponding to possible action
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decisions) is typically assumed to be known, and finite sample uncertainty arises from

estimating the average reward of different sequences of search states. For example, in

a Gaussian process model environment with constant kernel hyperparameters, and a

Gaussian noise observation model, mutual information 𝐼(𝜁;o1:𝑇 | o0) can be computed

in closed form; as can the expectation E [𝜁 | o0]. Sampling with MCTS is then only

needed in order to search the space of possible actions. In contrast, in our case the

exact reward associated with a sequence of search states is also estimated from a

set of samples, so states must be considered multiple times to produce an accurate

estimate of the reward.

Expectations over a top percentile of outcomes. Our definition of prior spe-

cialization requires maximization of expectation over the top 𝛿𝑝𝑟𝑖𝑜𝑟 of outcomes with

greatest reward. In order to ensure the correct fraction of outcomes are considered

on each branch of the policy, we will rescale 𝛿𝑝𝑟𝑖𝑜𝑟 for each online plan.

The following sections review standard MCTS, then discuss the first two additions.

We then introduce our online planning approach as a series of MCTS problems that

are solved online, and describe how our third addition influences this approach.

3.2.1 Monte Carlo Tree Search

We perform unconditional planning using Monte Carlo tree search over an ‘or tree’

of search states. For the purpose of discussion, we will assume we are planning from

time step 0, but the same principles apply when planning from any time step 𝑡.

The root state 𝑠0 describes the original state of the vehicle, 𝑥0, in addition to all

measurements o0 seen prior to the start of the mission. Each state 𝑠𝑡 at time step

𝑡 describes a specific choice of actions taken by the observing agent. Taking action

𝑎𝑡 ∈ 𝒜 leads to state 𝑠𝑡+1, which includes 𝑥𝑡+1 = 𝑑(𝑥𝑡, 𝑎) as the new observation

location, and a reward 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) is received.

The general principle of MCTS-based planning in a tree of search states is shown in

Figures 3-1a through 3-1d. Search is performed with a series of rollouts from the root

state 𝑠0. In each rollout, a series of states from the root state 𝑠0 to a terminal state 𝑠𝑇
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are considered, reward is evaluated, and reward information is backpropagated back

up the tree to update estimations of future reward.

Each rollout begins with the root state 𝑠0. An action is selected from the state

currently under consideration following an action selection rule, and the state resulting

from that action is then considered. In our application, the rollout continues until

a state on the planning horizon 𝑠𝑇 is reached. Reward 𝑟 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) from each

of the state transitions is observed, and counts of the number of rollouts performed

from state 𝑠𝑡 with action 𝑎𝑡 are recorded as 𝑁𝑠𝑡,𝑎𝑡 , and the total number of rollouts

from state 𝑠𝑡 is recorded as 𝑁𝑠𝑡 . Observed 𝑟 and 𝑁𝑠𝑡,𝑎𝑡 are used to compute empirical

estimates of cumulative future reward �̂�(𝑠𝑡, 𝑎𝑡) for each state and action pair.

Estimates of future reward are used in the action selection rule for the rollout,

guiding search towards actions that are likely to result in high reward. Here, we use

the UCB selection rule [7] as proposed in UCT [72], selecting the action from node 𝑠𝑡

that satisfies

arg max
𝑎𝑡

= �̂�(𝑠𝑡, 𝑎𝑡) +

 
2 log𝑁𝑠𝑡

𝑁𝑠𝑡,𝑎𝑡

. (3.1)

This choice of rule balances exploration of the search tree and exploitation of actions

that have been explored in order to maximize the cumulative reward observed on all

rollouts.

MCTS has been widely used for large discrete search space problems, including

adaptive sampling, where the size of the decision space makes searching for a globally

optimal solution impractical. Additionally, adaptive sampling problems possess many

local optima of poor quality, and it is not easy to escape those suboptimal solutions

using optimization based methods.

MCTS alleviates both of these problems by allowing a policy to be generated in

anytime manner with continual improvement of the quality of the solution as solution

runtime increases.
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Figure 3-1: Progression of Monte Carlo tree search estimator reevaluation and termi-
nated rollouts in an unconditional tree. States and actions on rollouts are bolded.
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3.2.2 MCTS with Estimator Refinement and Terminated Roll-

outs

Two of the innovations we introduce to standard Monte Carlo tree search above are

allowing complex objective estimators to be refined with additional samples over the

course of search, and allowing rollouts to be terminated before reaching the planning

horizon when sufficient reward is achieved.

An algorithmic description of our MCTS approach is given in Algorithm 1. Roll-

outs are performed with successive calls to SampleState, beginning at the root node.

When a state 𝑠𝑡 is sampled, if a sufficient condition has been specified for a query or

𝑠𝑡 is a leaf state, an estimation 𝐽(𝑠𝑡,𝒬) of the objective value for observations o1:𝑡 is

computed through the use of a routine RefineEstimator on line 6. An immediate

reward is then computed from the estimate using the procedure ImmediateReward

on line 7. When a sufficient condition is specified, the rollout will end immediately

if 𝐽(𝑠𝑡,𝒬) exceeds the query threshold ∆𝒬. Checking this condition is performed

within the routine ContinueRollout on line 8. When the rollout is allowed to con-

tinue, a child state 𝑠𝑡+1 is selected according to UCT’s selection rule on line 9, then

𝑠𝑡+1 is sampled. After 𝑠𝑡+1 has been sampled, the future reward estimate �̂�(𝑠𝑡, 𝑎𝑡) is

updated, and the reward achieved from 𝑠𝑡 onwards is returned from SampleState.

We now discuss how each of these procedures operates in order to lead to desired

behavior.

Estimator Refinement

RefineEstimator takes additional samples of the environment model M , which are

then used to produce samples of the variable of interest and observations. These are

then used to compute an updated value of the estimators described in Section 3.4.

This procedure is necessary because the average reward gained from visiting a

state is not simply the average of the samples taken at that state when using complex

objective estimators. Each time a state 𝑠𝑡 (resulting from actions 𝑎0:𝑡−1) is visited,

𝐿+ additional samples of 𝜁 and o1:𝑡 are added for use in computation and refinement
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Algorithm 1: MCTS
Input : Initial state 𝑠0, planning horizon 𝑇 , max planning time 𝜏 , query 𝒬
Output: Next action to execute

1 loop until planning time 𝜏 reached
2 SampleState(𝑠0, 𝒬)
3 return arg max𝑎 �̂�(𝑠0, 𝑎)

4 Procedure SampleState(𝑠𝑡, 𝒬)
5 if sufficient condition ∆𝒬 in query or 𝑡 = 𝑇 then
6 RefineEstimator(𝑠𝑡, 𝐿+, 𝒬)
7 𝑟 ← ImmediateReward(𝑠𝑡, 𝒬)
8 if 𝑡 ̸= 𝑇 and ContinueRollout(𝑟, 𝒬) then

9 𝑎← arg max𝑎𝑡 �̂�(𝑠𝑡, 𝑎𝑡) +
√︁

2 log𝑁𝑠𝑡

𝑁𝑠𝑡,𝑎𝑡

10 𝑠𝑡+1 ← child state with 𝑥𝑡+1 = 𝑑(𝑥𝑡, 𝑎)
11 𝑞 ← SampleState(𝑠𝑡+1, 𝒬)
12 �̂�(𝑠𝑡, 𝑎)← 𝑁𝑠𝑡,𝑎 �̂�(𝑠𝑡,𝑎)+𝑞

𝑁𝑠𝑡,𝑎+1

13 𝑁𝑠𝑡,𝑎 ← 𝑁𝑠𝑡,𝑎 + 1
14 𝑟 ← 𝑟 + 𝑞

15 𝑁𝑠𝑡 ← 𝑁𝑠𝑡 + 1
16 return 𝑟

of the estimator. This procedure is shown through Figure 3-1. After visiting 𝑠𝑡 a

total of 𝑁𝑠𝑡 times, the total number of samples taken is 𝐿𝑠𝑡 = 𝑁𝑠𝑡𝐿+, all of which are

used to produce an updated estimate 𝐽(𝑠𝑡,𝒬).

In close analogy to existing MCTS approaches, we could choose 𝐿+ = 1, tak-

ing a single sample each time a state is visited. However, evaluating 𝐽(𝑠𝑡,𝒬) is not

necessarily a simple operation, and is not evaluated on a single sample alone, but a

collection of samples. In the case of 𝑘-NN estimators, 𝑘 nearest neighbors of every

sample must be found, typically through the use of a structure such as a KD-tree. In-

crementally adding new samples to a KD-tree causes it to quickly become unbalanced,

and it must be reconstructed. From this perspective, it is advantageous to visit a state

fewer times with a higher value of 𝐿+, in order to avoid repeatedly constructing data

structures needed to compute 𝐽(𝑠𝑡,𝒬).

On the other hand, we could use a very large number of samples on each rollout,

and gain an accurate evaluation of the reward for every sequence of actions. But this

method is also unnecessarily wasteful when we are using computational resources to
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refine estimates for suboptimal decisions. Our approach is to make use of a noisy

initial estimate with a moderate number of samples, typically with 𝐿+ on the scale

of a few hundred samples. We then use reward computed from that estimate to

guide whether taking further samples is justified. Frequently, the initial estimate is

sufficient to tell that a sequence of actions is unlikely to be optimal, even if the true

reward is not known exactly.

It is possible to reduce the number of samples needed by reusing the samples that

have been taken in multiple branches. The samples (𝜁(𝑖),o
(𝑖)
1:𝑡) after visiting 𝑥1:𝑡 are

generated from a sample M (𝑖). The sample M (𝑖) does not depend on the locations

explored, so when generating (𝜁(𝑗),o
(𝑗)
1:𝑡) after visiting some 𝑥′

1:𝑡 ̸= 𝑥1:𝑡, we may re-use

the sample M (𝑖). As a result, we cache all model samples M (𝑖) generated over the

course of search.

An overview of this procedure is provided in Algorithm 2. The number of samples

drawn from the model is stored as 𝐿M , and the number of samples taken for state

𝑠𝑡 is stored as 𝐿𝑠𝑡 . On line 2, it is checked whether RefineEstimator is called for a

state 𝑠𝑡 with 𝐿M < 𝐿𝑠𝑡 + 𝐿+. If 𝐿M is not large enough, then an additional 𝐿𝑢𝑝𝑑𝑎𝑡𝑒

samples are taken in lines 3 through 7. Otherwise, the existing samples M (𝐿𝑠𝑡 :𝐿𝑠𝑡+𝐿+)

are used to generate the 𝐿+ additional query and observation samples. It is not

necessary that 𝐿𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐿+; depending on the time taken to load the environment

model into memory and any computations required to prepare sampling, it may be

more beneficial to gather environment model samples in larger batches, using 𝐿𝑢𝑝𝑑𝑎𝑡𝑒 >

𝐿𝑠𝑎𝑚𝑝𝑙𝑒.

The remainder of RefineEstimator shows the additional 𝐿+ samples of observa-

tions and query variables of interest being generated in the for loop on line 8, before

and updated objective estimate is generated using those samples.

Immediate Reward and Terminated Rollouts

The procedure ImmediateReward then provides a means to compute the reward

𝑅(𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡) from 𝐽(𝑠𝑡,𝒬). The reward may be considered an estimate for the

top level objective 𝑊 . A decision is then made about whether to continue the rollout
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Algorithm 2: Reward Computation
1 Procedure RefineEstimator(𝑠𝑡, 𝐿+,𝒬)
2 if 𝐿M < 𝐿𝑠𝑡 + 𝐿+ then
3 for 𝑖 = 𝐿M + 1, . . . , 𝐿M + 𝐿𝑢𝑝𝑑𝑎𝑡𝑒

4 c(𝑖), ℰ (𝑖),𝜆(𝑖) ← SampleDist(𝑝(c, ℰ ,𝜆))
5 y(𝑖) ← SampleDist(𝑝(y | c(𝑖), ℰ (𝑖),𝜆(𝑖)))
6 M (𝑖) ←

⟨︀
y(𝑖), c(𝑖), ℰ (𝑖),𝜆(𝑖)

⟩︀

7 𝐿M ← 𝐿M + 𝐿𝑢𝑝𝑑𝑎𝑡𝑒

8 for 𝑗 = 𝐿𝑠𝑡 + 1, . . . , 𝐿𝑠𝑡 + 𝐿+

9 o
(𝑗)
1:𝑡 ← SampleDist(𝑝(o1:𝑡 | y(𝑗)(𝑥1:𝑡)))

10 𝜁(𝑗) ← 𝑓𝒬(𝑥1:𝑡,M (𝑗))

11 𝐿𝑠𝑡 ← 𝐿𝑠𝑡 + 𝐿+

12 𝐽(𝑠𝑡,𝒬)← ObjectiveEstimator(𝐽𝒬, 𝜁(1:𝐿𝑠𝑡 ),o
(1:𝐿𝑠𝑡 )
1:𝑡 , 𝐿𝑠𝑡)

13 Procedure ImmediateReward(𝑠𝑡, 𝒬)
14 if sufficient condition ∆𝒬 in 𝒬 then
15 if 𝐽(𝑠𝑡,𝒬) ≥ ∆𝒬 then
16 return −

(︁
𝑡− 1 + Δ𝒬−𝐽(𝑠𝑡,𝒬)

𝐽(𝑠𝑡,𝒬)−𝐽(𝑠𝑡−1,𝒬)

)︁

17 else if 𝑡 = 𝑇 then
18 return −

(︁
𝑇 + 1− 𝐽(𝑠𝑡,𝒬)

Δ𝒬

)︁

19 else
20 return 0
21 else
22 if 𝑡 = 𝑇 then
23 return 𝐽(𝑠𝑡,𝒬)
24 else
25 return 0

26 Procedure ContinueSampling(𝑟, 𝒬)
27 if sufficient condition ∆𝒬 in 𝒬 and 𝐽(𝑠𝑡,𝒬) ≥ ∆𝒬 then
28 return False
29 else
30 return True
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or immediately end it in the procedure ContinueRollout. Both ImmediateReward

and ContinueRollout are described in Algorithm 2.

ImmediateReward and ContinueRollout change behavior dependent on whether

a sufficient condition is specified in the query. When a sufficient condition is not

specified, the objective 𝑊 is to maximize the query objective over a fixed number

of 𝑇 actions. Since the estimator 𝐽(𝑠𝑡,𝒬) computes an estimate of 𝐽𝒬(𝜁,o1:𝑡 | o0),

including all observations up to state 𝑠𝑡, it is only necessary for the estimator to be

computed for leaf states in the search tree, which will be used to determine reward for

a full sequence of actions. As a result, ImmediateReward returns 0 before reaching a

leaf state in line 25. At a leaf state 𝑠𝑇 , 𝐽(𝑠𝑇 ,𝒬) is returned on line 23. There is no

need to terminate a rollout early without a sufficient conditon, so ContinueRollout

always returns True on line 30.

On the other hand, when a sufficient condition ∆𝒬 is specified, then in MCTS we

solve for the shortest sequence of actions for which 𝐽𝒬(𝜁,o1:𝑡 | o0) ≥ ∆𝒬. In this case,

it is necessary to compute an objective estimate at every state, in order to determine

whether the threshold ∆𝒬 has been reached by o1:𝑡. To match the objective 𝑊 , the

reward to be maximized is taken as the negative of the number of actions taken to

reach ∆𝒬. However, it is typically favorable to prioritize missions that achieve a

higher value for 𝐽𝒬 with the same mission length, and from the perspective of the

planner, it is less likely that a state with a larger estimate 𝐽(𝑠𝑡,𝒬) fails to truly satisfy

𝐽𝒬(𝜁,o1:𝑡 | o0) ≥ ∆𝒬 due finite sample errors in the estimator. To favor states with

larger 𝐽(𝑠𝑡,𝒬) among those that achieve the sufficient condition at the same depth,

ImmediateReward returns an estimate of the non-integer number of time steps needed

to reach ∆𝒬 on line 16, computed using a linear interpolation between the objectives

at 𝑠𝑡−1 and 𝑠𝑡. When 𝐽(𝑠𝑡,𝒬) is significantly higher than ∆𝒬, or 𝐽(𝑠𝑡−1,𝒬) is close

to ∆𝒬, the reward returned is closer to −(𝑡 − 1) than −𝑡, favoring the actions that

led to 𝑠𝑡 in the search tree.

There is no value in continuing to sample deeper in the search tree once the query

threshold is achieved at 𝑠𝑡. Rollouts are terminated once the sufficient condition

is reached by returning False from ContinueRollout on line 28. When a rollout
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is terminated at state 𝑠𝑡, the reward returned consists only of the immediate reward

𝑅(𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡). The count 𝑁𝑠𝑡 of rollouts from 𝑠𝑡 is not incremented, since the rollout

does not continue on to actions from 𝑠𝑡. This means that the process of choosing an

action from 𝑠𝑡, which may still occur on later samples dependent on future estimates

of 𝐽(𝑠𝑡,𝒬), is not affected by terminating a rollout early. This procedure is shown in

Figure 3-1f, where after a sufficiently high value of 𝑅(𝑠0, 𝑎2, 𝑠2) is received, the rollout

is not continued past 𝑠2. �̂�(𝑠2, 𝑎1) and �̂�(𝑠2, 𝑎2) are not changed, but �̂�(𝑠0, 𝑎2) is.

There remains the question of what to return from states where 𝐽(𝑠𝑡,𝒬) < ∆𝒬.

For 𝑡 ̸= 𝑇 , it is possible that a successor state does achieve the sufficient condition,

so ImmediateReward returns 0 on line 20 and ContinueRollout returns True on line

30. Using a reward of 0 ensures that �̂� includes only the reward obtained from the

successor state where the sufficient condition is achieved.

When ∆𝒬 is not reached by a leaf state 𝑠𝑇 , we do not want to eliminate 𝑠𝑇 from

the search tree, because it is possible that a more accurate estimate using additional

samples would reveal that 𝐽𝒬(𝜁,o1:𝑇 | o0) ≥ ∆𝒬 is satisfied. But the reward should

be lower than that of any state that does achieve the sufficient condition. A logical

approach would be to return the negative of an extrapolation of the number of actions

required to reach an objective of ∆𝒬, computed from 𝐽(𝑠𝑇 ,𝒬). However, this number

can be a negative number with a high magnitude for sequences of actions 𝑎0:𝑇−1 with

𝐽(𝑠𝑇 ,𝒬) close to 0. We empirically found that since the reward is propagated all the

way to the root state, sampling a single sequence of actions with 𝐽(𝑠𝑇 ,𝒬) ≈ 0 would

cause �̂�(𝑠0, 𝑎0) to become a large negative number, and action 𝑎0 would never be

sampled again from the root state by UCT’s action selection rule. This is undesirable,

because other sequences of actions starting with 𝑎0 that do satisfy the sufficient

condition may exist, and perhaps may have already be sampled.

Instead, we return a reward in the range [−𝑇 − 1,−𝑇 ], using a formula

𝑅(𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇 ) = −𝑇 − 1 +
𝐽(𝑠𝑇 ,𝒬)

∆𝒬
(3.2)

on line 18. This formula maps states with 𝐽(𝑠𝑇 ,𝒬) close to ∆𝒬 to a reward close to
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−𝑇 , while states with 𝐽(𝑠𝑇 ,𝒬) ≈ 0 return −𝑇 − 1.

3.3 Online Planning

In order to make our plan adaptive to observations received as the plan executes, we

perform online planning, where Monte Carlo Tree Search is run after each observation.

We now discuss online planning in detail, including a justification of why we perform

planning online, and how objectives need to change after each observation in order

to appropriately generate a plan for the query.

When planning online, after having taken observation o𝑡−1, the query is updated

to be a modified 𝒬𝑡−1, based on the observations that were received. The query is

changed to optimize an objective that is conditioned on observations o0:𝑡−1. As we

will discuss in this section, the query is also modified to rescale query thresholds and

prior specializations in order to ensure desired behavior. MCTS then generates a plan

consisting of actions 𝑎𝑡−1, . . . , 𝑎𝑇−1. Action 𝑎𝑡−1 is performed, and the observation o𝑡

is observed. The environment model is then updated, based on the observations o0:𝑡,

and the next plan is generated from state 𝑠𝑡 with a query 𝒬𝑡. Requiring planning to

be done online may limit the total time made available for planning, but we note that

MCTS allows a plan to be produced in an anytime manner, so that a plan is always

available.

Our approach expands upon prior work in online MCTS by ensuring that query

thresholds and prior specializes are satisfied within an online planning framework.

Generating the correct behavior requires changing the query threshold and prior spe-

cialization confidence levels in response to observations as they are received.

3.3.1 Changes in Objectives During Online Planning

When we produce a new plan after receiving an observation, the objective changes.

For example, when planning at the start of the mission, where the only observations

are o0, the objective used is 𝐽𝒬(𝜁,o1:𝑇 | o0), which is conditioned only on o0 and

averages over o1:𝑇 that could be observed. Later, after observing o1:𝑡, we produce a
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new plan that optimizes the objective 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡), which is now conditioned

on all of the o0:𝑡 that are observed and only averages over o𝑡+1:𝑇 . In this section, we

clarify the relationship between optimizing 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) in response to every

possible o1:𝑡 and the overall objective for the mission 𝐽𝒬(𝜁,o1:𝑇 | o0).

We will compare fully policies that maximize 𝐽𝒬(𝜁,o1:𝑇 | o0) against policies that

maximize 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) for a given value of o0:𝑡. If the behavior of our planning

algorithm is correct, the policy that maximizes 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) will perform the

same actions that would be performed by the policy that maximizes 𝐽𝒬(𝜁,o1:𝑇 | o0)

after o1:𝑡 have been observed. Our goal is to ensure that this property holds even

with changes in the objective during online planning.

We will show that for value, probability, and information objectives, follow the

actions of a policy that maximizes 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) after every o0:𝑡 for all 𝑡 is

equivalent to following a policy that maximizes 𝐽𝒬(𝜁,o1:𝑇 | o0) for the duration

of the mission. This result provides some justification for why it is appropriate to

optimize 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) during online planning. However, since we solve for the

unconditional plan that maximizes 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) and not the conditional policy,

the result does not mean that the policy that is followed by performing online planning

optimizes 𝐽𝒬(𝜁,o1:𝑇 | o0).

To show that the policies are equivalent, first note that 𝜁 is computed using

the full history of actions 𝑥1:𝑇 for all plans, so the interpretation of 𝜁 is unchanged

between observations. Next, consider an agent following the policy that maximizes

𝐽𝒬(𝜁,o1:𝑇 | o0). After having received any set of observations o0:𝑡 and entering state

𝑠𝑡, the remainder of the policy from 𝑠𝑡 will maximize Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡]. If

it holds that

max
𝜋

Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡] = max
𝜋

𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡), (3.3)

for any 𝑝(o𝑡+1:𝑇 | o0:𝑡), then those remaining actions result in the same objective value

as a policy that maximizes 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) from 𝑠𝑡. If (3.3) further holds for all o0:𝑡

and all 𝑡, then following the first actions of policies that maximize 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡)
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at each 𝑡 must result in a policy that maximizes 𝐽𝒬(𝜁,o1:𝑇 | o0).

For value and probability objectives, we can show that (3.3) is true because

Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡] = 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡). (3.4)

For value objectives

Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡] = Eo𝑡+1:𝑇 |o0:𝑡

[︀
E𝜁|o0:𝑇

[𝜁 | o0:𝑇 ] | o0:𝑡

]︀

= Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡]

= 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡)

(3.5)

so the objectives align and (3.3) holds. Likewise, for probability objectives

Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡] = Eo𝑡+1:𝑇 |o0:𝑡

[︀
E𝜁|o0:𝑇

[𝑝(𝜁 | o0:𝑇 ) | o0:𝑇 ] | o0:𝑡

]︀

= Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡]

= 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡).

(3.6)

In both cases, these results held because 𝑔(o1:𝑇 | o0) = 𝑔(o𝑡+1:𝑇 | o0:𝑡). Furthermore,

posterior specializations depend on each full observation sequence o0:𝑇 , and so can be

applied without modification.

The situation is slightly different for information objectives, because the original

information 𝐼(𝜁;o1:𝑇 | o0) depends on the prior probabilities 𝑝(𝜁 | o0) and 𝑝(o1:𝑇 | o0).

This means that 𝐼(𝜁;o𝑡+1:𝑇 | o0:𝑡) ̸= Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡]. Instead, we have

Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡]

= Eo𝑡+1:𝑇 |o0:𝑡

[︀
E𝜁|o0:𝑇

[𝑙𝑟(𝜁;o1:𝑇 | o0) | o0:𝑇 ] | o0:𝑡

]︀

= Eo𝑡+1:𝑇 |o0:𝑡

[︀
E𝜁|o0:𝑇

[𝑙𝑟(𝜁;o𝑡+1:𝑇 | o0:𝑡) | o0:𝑇 ] | o0:𝑡

]︀
+ E𝜁|o0:𝑡 [𝑙𝑟(𝜁;o1:𝑡 | o0) | o0:𝑡]

= 𝐼(𝜁;o𝑡+1:𝑇 | o0:𝑡) + 𝑔(o1:𝑡 | o0)

= 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) + 𝑔(o1:𝑡 | o0).

(3.7)
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Since maximization of Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡] is equal to maximization of the

sum of 𝐽𝒬(𝜁,o𝑡+1:𝑇 | o0:𝑡) and a constant term depending only on prior observations

o0:𝑡, then (3.3) continues to hold.

When a sufficient condition is not specified, the constant term can be safely ignored

when replanning with observations o0:𝑡. However, it must be explicitly handled in the

objective when comparing against ∆𝒬. Information objectives do not accept posterior

specializations, so there is no need for them to handle the constant offset.

3.3.2 Treatment of Sufficient Conditions in Online Planning

There are two types of decisions that need to be made when planning with a suf-

ficient condition; deciding when to terminate rollouts during planning because the

query threshold is reached by the plan, and making the decision to end the mission

after observations have been received. We described early terminating rollouts in our

discussion of MCTS, but we now discuss how these behaviors change during online

planning.

First reconsider early terminating rollouts. When planning from an initial state,

𝐽(𝑠𝑡,𝒬) is an estimate for 𝐽𝒬(𝜁,o1:𝑡 | o0), and we described that rollouts should be

terminated at any state 𝑠𝑡 such that 𝐽(𝑠𝑡,𝒬) ≥ ∆𝒬. Now consider planning from

state 𝑠𝑡′ , after having observed o0:𝑡′ . In this search tree, 𝐽(𝑠𝑡,𝒬) is now an estimate

for the objective 𝐽𝒬(𝜁,o𝑡′+1:𝑡 | o0:𝑡′). For value and probability objectives, the results

from Section 3.3.1 showed that Eo𝑡′+1:𝑡|o0:𝑡′
[𝑔(o1:𝑡 | o0) | o0:𝑡′ ] = 𝐽𝒬(𝜁,o𝑡′+1:𝑡 | o0:𝑡′).

This means that the new objective is the expectation of 𝑔(o1:𝑡 | o0) conditioned on

the observations that have been gathered, and it is suitable to compare the objective

against ∆𝒬, which was a limit on 𝑔(o1:𝑡 | o0). As a result, for value and probability

objectives, the condition that rollouts terminate when 𝐽(𝑠𝑡,𝒬) ≥ ∆𝒬 holds for all

plans generated online.

Next, to determine whether a mission should end after planning from state 𝑠𝑡−1,

executing action 𝑎𝑡−1, and observing o𝑡, we must determine whether to end the mis-

sion. A query threshold ∆𝒬 dictates that the mission should end if 𝑔(o1:𝑡 | o0) ≥ ∆𝒬.

Therefore, we require an additional estimator for 𝑔, which we refer to as 𝑔(o1:𝑡 | o0).
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If 𝑔(o1:𝑡 | o0) ≥ ∆𝒬 is found to hold, then the sufficient condition is deemed to have

been satisfied, and the mission immediately ends. For value and probability objec-

tives, the fact that 𝐽(𝑠𝑡,𝒬) is an estimate for the expectation of 𝑔(o1:𝑡 | o0) will mean

that 𝑔(o1:𝑡 | o0) can be naturally evaluated using the samples taken when planning

from state 𝑠𝑡−1, and its form naturally follows from the computation of 𝐽(𝑠𝑡,𝒬). We

therefore defer discussion on how to compute 𝑔(o1:𝑡 | o0) until Section 3.4, where the

estimators for 𝐽(𝑠𝑡,𝒬) are introduced.

When using an information objective, we showed Eo𝑡′+1:𝑡|o0:𝑡′
[𝑔(o1:𝑡 | o0) | o0:𝑡′ ] =

𝐽𝒬(𝜁,o𝑡′+1:𝑡 | o0:𝑡′)+𝑔(o1:𝑡′ | o0), and this result makes planning online more complex.

Since the objective 𝐽𝒬(𝜁,o𝑡 | o0:𝑡−1) when planning from state 𝑡− 1 is no longer the

expectation of 𝑔(o1:𝑡 | o0), the samples used to estimate 𝐽(𝑠𝑡,𝒬) can only be used

to estimate 𝑔(o1:𝑡 | o0) − 𝑔(o1:𝑡−1 | o0) instead of 𝑔(o1:𝑡 | o0). As a result, after

observing o𝑡, we will need to use additional samples cached from earlier plans in

order to generate the estimate 𝑔(o1:𝑡 | o0). Details are given in Section 3.4.

The rule for terminating rollouts must also change when using an information

objective, due to fact that 𝐽𝒬(𝜁,o𝑡′+1:𝑡 | o0:𝑡′) differs from an expectation of 𝑔(o1:𝑡 |
o0) by 𝑔(o1:𝑡′ | o0), and so comparison against ∆𝒬 is not suitable. To solve this

problem, we will use the fact that when planning from a state 𝑠𝑡′ with a sufficient

condition and an information objective, we will have already computed the constant

term 𝑔(o1:𝑡′ | o0) to determine whether the mission should have ended after observing

o𝑡′ . We then determine whether to terminate rollouts at any state 𝑠𝑡 using a newly

defined threshold ∆𝒬,𝑡′ for planning from 𝑠𝑡′ . Using the previous estimate, we define

∆𝒬,𝑡′ = ∆𝒬 − 𝑔(o1:𝑡′ | o0), (3.8)

and terminate rollouts once 𝐽𝒬(𝜁,o𝑡′+1:𝑡 | o0:𝑡′) ≥ ∆𝒬,𝑡′ .

3.3.3 Rescaling of Prior Specializations in Online Planning

Performing planning online will also introduce complexity into how prior specializa-

tions are computed. During the course of online planning, we must also rescale a
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prior specialization level 𝛿𝑝𝑟𝑖𝑜𝑟 to maintain correct behavior.

To see why, consider using online planning to solve for a policy with a prior

specialization of 𝛿𝑝𝑟𝑖𝑜𝑟. That is,

max
𝜋,𝒰

Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0,o1:𝑇 ∈ 𝒰 ] s.t. 𝑃 [o1:𝑇 ∈ 𝒰 | o0] ≥ 𝛿𝑝𝑟𝑖𝑜𝑟.

For the purpose of discussion, consider the and/or tree of outcomes given in Figure

3-2. There are no prior observations, 𝑇 = 2, 𝛿𝑝𝑟𝑖𝑜𝑟 = 0.5, there is one possible action

at state 𝑠0 and two actions available at 𝑠1 and 𝑠2, and all actions have two equally

likely outcomes. The observations received and the value of 𝑔(o0:2) are displayed

beneath each leaf state.

Since we plan over an or tree, we do not generate the tree in Figure 3-2 explicitly,

instead o1
1 and o2

1 are in a single state resulting from 𝑎1, and o1
2, o2

2, o5
2, and o6

1 are

in a single state resulting from the sequence [𝑎1, 𝑎1]. Nonetheless, the plan developed

online after receiving the first observation will depend on whether o1
1 or o2

1 is received.

As a result, execution will follow one of the branches shown in this tree. We wish to

analyze the behavior of our algorithm across different outcomes, and so we visualize

the full and/or tree here.

To simplify analysis, we first ignore finite sample limits, and assume we have access

to exact probabilities and rewards. When planning from 𝑠𝑡, we generate states below

𝑠𝑡, and condition on observations o1:𝑡 that were observed. We search for the sequence

of actions that maximizes

Eo𝑡+1:2|o1:𝑡 [𝑔(o1:2) | o1:𝑡,o1:2 ∈ 𝒰𝑡] s.t. 𝑃 [o1:2 ∈ 𝒰𝑡 | o1:𝑡] ≥ 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡

for some 𝒰𝑡 and 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡. When planning first starts from 𝑠0, 𝒰0 = 𝒰 , and 𝛿𝑝𝑟𝑖𝑜𝑟,0 =

𝛿𝑝𝑟𝑖𝑜𝑟, and we find the optimal sequence of actions to be [𝑎1, 𝑎1] with conditional

expectation 12.

In this example, the optimal policy is to select action 𝑎1 from 𝑠1, and the action

selected from 𝑠2 is irrelevant. When performing unconditional planning from state

𝑠0, we would find the optimal action sequence to be [𝑎1, 𝑎1]. The set of observations
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Figure 3-2: Example and/or search tree to demonstrate the effect of online planning
under a prior specialization. All actions have two equally likely outcomes, indicated
by arcs.

with probability at least 0.5 that results in the highest conditional expectation is 𝒰 =

{[o1
1,o

1
2], [o

1
1,o

2
2]}, with Eo1:2 [𝑔(o1:2) | o1:2 ∈ 𝒰 ] = 12. Letting 𝒰 𝑖 denote the elements

of 𝒰 that begin with the observations seen up to 𝑠𝑖, we have 𝒰1 = {[o1
1,o

1
2], [o

1
1,o

2
2]}

and 𝒰2 = ∅.

Now assume that after executing 𝑎1 from 𝑠0, the agent observes o1
1 and enters

𝑠1. If we were to replan from 𝑠1 with 𝛿𝑝𝑟𝑖𝑜𝑟,1 = 0.5, we would now find that 𝑎2 is

the best action, because we find that the set of observations with 50% probability

conditioned on o1
1 and highest reward is 𝒰1 = {[o1

1,o
3
2]}, with conditional expectation

16. The result when planning from 𝑠2 is also different, because the best action is

𝑎1, when in optimal policy it does not matter. The issue here is that the outcomes

define 𝒰 in the optimal policy both result from 𝑠1. However, planning from 𝑠1 and

𝑠2 with 𝛿𝑝𝑟𝑖𝑜𝑟,1 = 0.5 considers only the best single result from each state, leading to

suboptimal actions. The optimal policy can be executed using unconditional planning

by planning from 𝑠1 using 𝛿𝑝𝑟𝑖𝑜𝑟,1 = 1.0, and from 𝑠2 using 𝛿𝑝𝑟𝑖𝑜𝑟,1 = 0, which result

in 𝒰1 = {[o1
1,o

1
2], [o

1
1,o

2
2]} and 𝒰1 = ∅ respectively.

Correct behavior from 𝑠1, that considers the expectation of 𝑔(o1:2) over outcomes

consistent with the plan found at 𝑠0, assigns the probability 𝛿𝑝𝑟𝑖𝑜𝑟,1 to 𝒰1 based on
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how frequently occurrences of o1 also occur in the 𝛿𝑝𝑟𝑖𝑜𝑟-optimal set of outcomes 𝒰
in the top level plan from 𝑠0. When many observations that start with o1 appear

in the top level 𝒰 , then we should maximize expectation computed over more out-

comes that follow o1, and therefore increase 𝛿𝑝𝑟𝑖𝑜𝑟,1. More precisely, 𝛿𝑝𝑟𝑖𝑜𝑟,1 constrains

𝑃 [o1:2 ∈ 𝒰1 | o1]. To maintain consistency with the optimal actions found at the root,

𝑃 [o1:2 ∈ 𝒰1 | o1] should be set to be the closest match to 𝑃 [o1:2 ∈ 𝒰0 | o1]. There-

fore, we set 𝛿𝑝𝑟𝑖𝑜𝑟,1 = 𝑃 [o1:2 ∈ 𝒰0 | o1]. In the context of the example above, all

observations that contain o1
1 were elements of 𝒰 when planning from 𝑠0, so all obser-

vations that follow from o1
1 should be considered as part of 𝒰1 when planning from

𝑠1, resulting in 𝛿𝑝𝑟𝑖𝑜𝑟,1 = 1.0.

To formalize this idea, we plan from state 𝑠𝑡 with known observations o0:𝑡 using a

prior specialization level 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡. 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡 is the probability of set 𝒰𝑡, which consists of

the observations that maximize 𝑔(o1:𝑇 | o0) and begin with the known o1:𝑡. Starting

with 𝛿𝑝𝑟𝑖𝑜𝑟,0 = 𝛿𝑝𝑟𝑖𝑜𝑟 as specified in the original objective, after planning, the action

sequence 𝑎𝑡:𝑇−1 is found to maximize Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o1:𝑇 | o0) | o0:𝑡,o1:𝑇 ∈ 𝒰𝑡]. Action

𝑎𝑡 is then executed, and observation o𝑡+1 is observed. We then set 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡+1 for the

next sequence of actions using

𝛿𝑝𝑟𝑖𝑜𝑟,𝑡+1 = 𝑃 [o1:𝑇 ∈ 𝒰𝑡 | o0:𝑡+1] . (3.9)

So far, we have assumed that probabilities of all observations are available to

the planner, but in query-driven adaptive sampling we use samples of observations

obtained from rollouts. When planning from state 𝑠𝑡, we calculate the reward for

a path from 𝑠𝑡 to 𝑠𝑇 using a set of independent observations {o(𝑖)
1:𝑇} that start with

known o1:𝑡 and with the remainder drawn from the distribution 𝑝(o𝑡+1:𝑇 | o0:𝑡). We

then construct an empirical set 𝒰𝑡 consisting of the top ⌈𝛿𝑝𝑟𝑖𝑜𝑟,𝑡 𝐿𝑠𝑇 ⌉ observations with

highest 𝑔(o1:𝑇 | o0), and estimate the objective as an expectation over that set. This

raises two challenges, particularly when considering continuous-valued observations.

First, any specific continuous observation o𝑡+1 will almost surely not appear in the set

of samples, leading to 𝑃
î
o1:𝑇 ∈ 𝒰𝑡 | o0:𝑡+1

ó
= 0 with probability 1. Second, a specific
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continuous observation o𝑡 that has been sampled will almost surely appear only once

in the sample set.

Fortunately, rearrangement of (3.9) through Bayes’ theorem provides a means to

estimate 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡+1 for observations that have not been seen, by using

𝛿𝑝𝑟𝑖𝑜𝑟,𝑡+1 =
𝑃
î
o𝑡+1 | o0:𝑡,o1:𝑇 ∈ 𝒰𝑡

ó
𝑃 [o1:𝑇 ∈ 𝒰𝑡 | o0:𝑡]

𝑃 [o𝑡+1 | o0:𝑡]

≈ 𝑝(o𝑡+1 | o0:𝑡,o1:𝑇 ∈ 𝒰𝑡) 𝑃 [o1:𝑇 ∈ 𝒰𝑡 | o0:𝑡]

𝑝(o𝑡+1 | o0:𝑡)

=
𝑝(o𝑡+1 | o0:𝑡,o1:𝑇 ∈ 𝒰𝑡)

𝑝(o𝑡+1 | o0:𝑡)

⌈𝛿𝑝𝑟𝑖𝑜𝑟,𝑡 𝐿𝑠𝑇 ⌉
𝐿𝑠𝑇

(3.10)

where 𝑝 is computed as an empirical estimator of probability mass or density, as

described in Section 3.4. The estimator 𝑝(o𝑡+1 | o0:𝑡,o1:𝑇 ∈ 𝒰𝑡) is computed from the

set of samples in 𝒰𝑡, while 𝑝(o𝑡+1 | o0:𝑡) is computed from all samples taken at time

step 𝑡.

3.3.4 Query-Driven Adaptive Sampling Algorithm Description

The procedure for query-driven adaptive sampling performed using online planning

is provided in Algorithm 3, including rescaling of query thresholds and prior special-

izations described in the preceding sections. At each time step 𝑡 up to the planning

horizon, the query used in MCTS is updated to be 𝒬𝑡 = ⟨𝑓𝒬, 𝐽𝒬,𝑡,∆𝒬,𝑡⟩, which in-

cludes a rescaled prior specialization in the objective 𝐽𝒬,𝑡 and a sufficient condition

∆𝒬,𝑡 using the observations received so far.

In Algorithm 3, planning is performed at steps 𝑡 = 0, . . . , 𝑇 − 1 within the while

loop starting on line 6. Lines 7 through 10 construct 𝒬𝑡 using 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡 and ∆𝒬,𝑡, which

are initialized for 𝑡 = 0 on lines 2 through 5. The objective estimator to be used in

MCTS is then set to estimate 𝐽𝒬,𝑡 conditioned on the observations o0:𝑡.

MCTS is performed for a specified amount of time on line 11, and the best action

is executed on line 12, resulting in observation of o𝑡+1. The remaining lines are then

concerned with deciding whether to end the mission and recomputing the query to be
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used for the next step of MCTS. The estimator 𝑔(o1:𝑡+1 | o0) is computed and checked

against ∆𝒬 in lines 13 through 15. If it is found that 𝑔(o1:𝑡+1 | o0) ≥ ∆𝒬, the sufficient

condition is satisfied and the mission ends. If the query uses an information objective,

the query threshold is recomputed on line 17. Finally, the prior specialization is also

rescaled on line 21.

Algorithm 3: Query-Driven Adaptive Sampling
Input : Planning horizon 𝑇 , planning time 𝜏 , original query

𝒬 = ⟨𝑓𝒬, 𝐽𝒬,∆𝒬⟩
1 𝑡← 0
2 if sufficient condition ∆𝒬 then
3 ∆𝒬,0 ← ∆𝒬
4 if prior specialization 𝛿𝑝𝑟𝑖𝑜𝑟 then
5 𝛿𝑝𝑟𝑖𝑜𝑟,0 ← 𝛿𝑝𝑟𝑖𝑜𝑟

6 while 𝑡 < 𝑇 do
7 𝑠𝑡 ← state with 𝑥0:𝑡

8 𝐽𝒬,𝑡 ← 𝐽𝒬 using prior specialization 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡
9 𝒬𝑡 ← ⟨𝑓𝒬, 𝐽𝒬,𝑡,∆𝒬,𝑡⟩

10 Set ObjectiveEstimator to estimate 𝐽𝒬,𝑡(𝜁,o𝑡+1:𝑖 | o0:𝑡)
11 MCTS(𝑠𝑡, 𝑇 , 𝜏 , 𝒬𝑡)

12 Execute arg max𝑎 �̂�(𝑠𝑡, 𝑎) and observe o𝑡+1

13 Compute 𝑔(o1:𝑡+1 | o0)
14 if 𝑔(o1:𝑡+1 | o0) ≥ ∆𝒬 then
15 return
16 if 𝐽𝒬 is an information objective and sufficient condition ∆𝒬 then
17 ∆𝒬,𝑡+1 ← ∆𝒬 − 𝑔(o1:𝑡+1 | o0)
18 else if sufficient condition ∆𝒬 then
19 ∆𝒬,𝑡+1 ← ∆𝒬
20 if prior specialization 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡 then
21 𝛿𝑝𝑟𝑖𝑜𝑟,𝑡+1 ← 𝑝(o𝑡+1|o0:𝑡,o1:𝑇∈𝒰𝑡)

𝑝(o𝑡+1|o0:𝑡)

⌈𝛿𝑝𝑟𝑖𝑜𝑟,𝑡 𝐿𝑠𝑇
⌉

𝐿𝑠𝑇

22 end

3.4 Sample Based Estimators for Query Objectives

We now discuss the use of sample based estimators for computing conditional prob-

abilities and log probability ratios. We then show how these methods may be used

to construct the estimators 𝐽(𝑠𝑡,𝒬) and 𝑔(o1:𝑡 | o0) used in query-driven adaptive
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sampling.

3.4.1 Estimation of Probabilities and Log Probability Ratios

Our objective estimators require estimates for the conditional probability 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0)

and the ratio of log probabilities log 𝑝(𝜁,o
(𝑖)
1:𝑇 | o0)/𝑝(𝜁 | o0) 𝑝(o

(𝑖)
1:𝑇 | o0) for an obser-

vation o
(𝑖)
1:𝑇 using a set of 𝐿 samples 𝒟 = {(𝜁(𝑖),o(𝑖)

1:𝑇 )}𝐿𝑖=1 drawn from 𝑝(𝜁,o1:𝑇 | o0).

Naturally, the same techniques may be used for conditioning on o0:𝑡 using samples

from 𝑝(𝜁,o𝑡+1:𝑇 | o0:𝑡).

Following from work on estimation of probability and mutual information using

𝑘-nearest neighbor estimates, we use 𝑘-NN and kernel density estimators to produce

our estimates. We refer to the estimates of conditional probability as 𝑝(𝜁 | o(𝑖)
0:𝑇 ), and

we write the estimate for the ratio of log probabilities as 𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0).

Our objective differs somewhat from the typical use of 𝑘-NN methods for es-

timation of probability density and mutual information. Typically, estimation of

expectation and mutual information are performed as

E [𝜁 | o0] ≈
1

𝐿

𝐿∑︁

𝑖=1

𝜁(𝑖)

E [𝑙𝑟(𝜁;o1:𝑇 | o0) | o0] ≈
1

𝐿

𝐿∑︁

𝑖=1

𝑙𝑟(𝜁(𝑖);o
(𝑖)
1:𝑇 | o0).

In particular, this does not require explicit estimation of 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) or 𝑙𝑟(𝜁,o(𝑖)

1:𝑇 |
o0) for 𝜁 ̸= 𝜁(𝑖). In contrast, certain objectives used in query-driven adaptive sam-

pling require these quantities explicitly. For example, prior specializations are com-

puted using the samples o
(𝑖)
1:𝑇 with the highest values of E

𝜁|o(𝑖)
1:𝑇 ,o0

î
𝜁 | o(𝑖)

1:𝑇 ,o0

ó
or

E
𝜁|o(𝑖)

1:𝑇 ,o0

î
𝑙𝑟(𝜁;o

(𝑖)
1:𝑇 | o0) | o(𝑖)

1:𝑇 ,o0

ó
. These expressions do require estimation for 𝜁 ̸=

𝜁(𝑖), and this estimation occur even if there is only a single sample of the specific

observation o
(𝑖)
1:𝑇 . In this way, our estimators also differ from KL-divergence estima-

tors [20, 107], which could estimate E
𝜁|o(𝑖)

1:𝑇 ,o0

î
𝑙𝑟(𝜁,o

(𝑖)
1:𝑇 | o0) | o(𝑖)

1:𝑇 ,o0

ó
using multiple

samples of 𝜁 from 𝑝(𝜁) and 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0).

We begin by separating each pair (𝜁(𝑖),o
(𝑖)
1:𝑇 ) into their continuous parts (𝑐𝜁

(𝑖), 𝑐o
(𝑖)
1:𝑇 )
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and discrete parts (𝑑𝜁
(𝑖), 𝑑o

(𝑖)
1:𝑇 ), so that we can distinguish estimates of probability

mass and probability density. Since 𝜁 is scalar, one of 𝑐𝜁
(𝑖) and 𝑑𝜁

(𝑖) will be empty,

but we maintain both for convenience in notation. We then sort the samples into sets

sharing the same discrete elements 𝒟𝛼 := {(𝑐𝜁(𝑖), 𝑐o
(𝑖)
1:𝑇 ) | (𝑑𝜁

(𝑖), 𝑑o
(𝑖)
1:𝑇 ) = 𝛼}. We use

𝐿𝛼 to denote the size of 𝒟𝛼. There are now 4 cases to consider.

𝜁 discrete, o1:𝑇 discrete: This case is handled using plug-in estimators with the

frequencies of each of the discrete values, resulting in

𝑝(𝜁 | o(𝑖)
1:𝑇 | o0) =

𝐿
𝜁,

𝑑
o
(𝑖)
1:𝑇

𝐿
𝑑
o
(𝑖)
1:𝑇

(3.11)

𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0) = ‘log 𝑝(𝜁,o

(𝑖)
1:𝑇 | o0)−‘log 𝑝(𝜁 | o0)−‘log 𝑝(o

(𝑖)
1:𝑇 | o0)

= 𝐺(𝐿
𝜁,

𝑑
o
(𝑖)
1:𝑇
, 𝐿)−𝐺(𝐿𝜁 , 𝐿)−𝐺(𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝐿).

(3.12)

The function 𝐺 was defined in (2.18).

𝜁 discrete, o1:𝑇 mixed: We compute the conditional probability and log probability

ratio as

𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) =

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝜁, 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝜁, 𝑑o

(𝑖)
1:𝑇 | o0)

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝑑o

(𝑖)
1:𝑇 | o0)

𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0) = log

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝜁, 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝜁, 𝑑o

(𝑖)
1:𝑇 | o0)

𝑝(𝜁 | o0) 𝑝(𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝑑o

(𝑖)
1:𝑇 | o0)

.

Let 𝜀o
(𝑖)
1:𝑇 be the distance to 𝑘-th nearest neighbor of 𝑐o

(𝑖)
1:𝑇 among the set of samples

{𝑐o
(𝑗)
1:𝑇} that satisfy 𝑑o

(𝑗)
1:𝑇 = 𝑑o

(𝑖)
1:𝑇 . Consistent with the use of 𝑘-NN estimators for

points within their sample sets, the neighbors of 𝑐o
(𝑖)
1:𝑇 include 𝑐o

(𝑖)
1:𝑇 itself. Then let

𝑘𝜁,o
(𝑖)
1:𝑇 be the number of samples such that

⃦⃦
⃦𝑐o

(𝑖)
1:𝑇 − 𝑐o

(𝑗)
1:𝑇

⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 , 𝑑o

(𝑗)
1:𝑇 = 𝑑o

(𝑖)
1:𝑇 ,
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and 𝜁(𝑗) = 𝜁 (including 𝑐o
(𝑖)
1:𝑇 itself). Making use of the following approximations

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝜁, 𝑑o

(𝑖)
1:𝑇 ,o0) =

𝑘𝜁,o
(𝑖)
1:𝑇

𝐿
𝜁,

𝑑
o
(𝑖)
1:𝑇

𝑉
𝑐o1:𝑇

(𝜀o
(𝑖)
1:𝑇 )‘log 𝑝(𝑐o

(𝑖)
1:𝑇 | 𝜁, 𝑑o

(𝑖)
1:𝑇 ,o0) = 𝜓(𝑘𝜁,o

(𝑖)
1:𝑇 )− 𝜓(𝐿

𝜁,
𝑑
o
(𝑖)
1:𝑇

)− log 𝑉
𝑐o1:𝑇

(𝜀o
(𝑖)
1:𝑇 )

𝑝(𝜁, 𝑑o
(𝑖)
1:𝑇 | o0) =

𝐿
𝜁,

𝑑
o
(𝑖)
1:𝑇

𝐿‘log 𝑝(𝜁, 𝑑o
(𝑖)
1:𝑇 | o0) = 𝐺(𝐿

𝜁,
𝑑
o
(𝑖)
1:𝑇
, 𝐿)

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) =

𝑘 − 1

𝐿
𝑑
o
(𝑖)
1:𝑇

𝑉
𝑐o1:𝑇

(𝜀o
(𝑖)
1:𝑇 )‘log 𝑝(𝑐o

(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) = 𝜓(𝑘 − 1)− 𝜓(𝐿

𝑑
o
(𝑖)
1:𝑇

)− log 𝑉
𝑐o1:𝑇

(𝜀o
(𝑖)
1:𝑇 )

𝑝(𝑑o
(𝑖)
1:𝑇 | o0) =

𝐿
𝑑
o
(𝑖)
1:𝑇

𝐿‘log 𝑝(𝑑o
(𝑖)
1:𝑇 | o0) = 𝐺(𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝐿)‘log 𝑝(𝜁 | o1:𝑇 ) = 𝐺(𝐿𝜁 , 𝐿)

leads to the simple estimators

𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) =

𝑘𝜁,o
(𝑖)
1:𝑇

𝑘 − 1
(3.13)

𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0) = 𝜓(𝑘𝜁,o

(𝑖)
1:𝑇 ) + 𝜓(𝐿

𝑑
o
(𝑖)
1:𝑇

)− 𝜓(𝐿
𝜁,

𝑑
o
(𝑖)
1:𝑇

)− 𝜓(𝑘 − 1)

+𝐺(𝐿
𝜁,

𝑑
o
(𝑖)
1:𝑇
, 𝐿)−𝐺(𝐿𝜁 , 𝐿)−𝐺(𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝐿).

(3.14)

The probability estimator above sums to 1 across 𝜁, because there are 𝑘− 1 total

samples less than 𝜀o
(𝑖)
1:𝑇 from 𝑐o

(𝑖)
1:𝑇 , when 𝑐o

(𝑖)
1:𝑇 is included.

When o
(𝑖)
1:𝑇 has no discrete part, we have 𝐿

𝜁,
𝑑
o
(𝑖)
1:𝑇

= 𝐿𝜁 and 𝐿
𝑑
o
(𝑖)
1:𝑇

= 𝐿, which

asymptotically recovers the discrete-continuous mutual information estimator of Ross

[112].

𝜁 continuous, o1:𝑇 discrete: We use a kernel density estimator, using a kernel

that counts samples within a fixed distance 𝜀𝜁(𝑖) . We choose 𝜀𝜁(𝑖) as the distance to

the 𝑘-th nearest neighbor of 𝜁(𝑖) among all samples {𝜁(𝑗)}, including 𝜁(𝑖). Then we
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let 𝑘𝜁𝑑 be the number of samples such that
⃦⃦
𝜁 − 𝜁(𝑗)

⃦⃦
∞ < 𝜀𝜁

(𝑖) , and 𝑑o
(𝑗)
1:𝑇 = 𝑑o

(𝑖)
1:𝑇

(including 𝜁(𝑖)), and use the estimators

𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) =

𝑘𝜁𝑑
𝐿

𝑑
o
(𝑖)
1:𝑇
𝑉𝜁(𝜀𝜁

(𝑖))
=

𝑘𝜁𝑑
2𝐿

𝑑
o
(𝑖)
1:𝑇
𝜀𝜁(𝑖)

(3.15)

𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0) = ‘log 𝑝(𝜁 | o(𝑖)

1:𝑇 | o0)−‘log 𝑝(𝜁 | o0)

= 𝜓(𝑘𝜁𝑑) + 𝜓(𝐿)− 𝜓(𝑘 − 1)− 𝜓(𝐿
𝑑
o
(𝑖)
1:𝑇

).
(3.16)

𝜁 continuous, o1:𝑇 mixed: We compute the conditional probability and log prob-

ability ratio as

𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) =

𝑝(𝜁, 𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝑑o

(𝑖)
1:𝑇 | o0)

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 | o0) 𝑝(𝑑o

(𝑖)
1:𝑇 | o0)

𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0) = log

𝑝(𝜁, 𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝑑o

(𝑖)
1:𝑇 | o0)

𝑝(𝜁 | o0) 𝑝(𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) 𝑝(𝑑o

(𝑖)
1:𝑇 | o0)

.

As before, we set 𝜀o
(𝑖)
1:𝑇 to be the distance to the 𝑘-th nearest neighbor of 𝑐o

(𝑖)
1:𝑇 among

the set of samples {𝑐o
(𝑗)
1:𝑇} that satisfy 𝑑o

(𝑗)
1:𝑇 = 𝑑o

(𝑖)
1:𝑇 , including 𝑐o

(𝑖)
1:𝑇 itself. Then we

let 𝑘𝜁,o
(𝑖)
1:𝑇

𝑑 be the number of samples such that
⃦⃦
⃦(𝜁, 𝑐o

(𝑖)
1:𝑇 )− (𝜁(𝑗), 𝑐o

(𝑗)
1:𝑇 )
⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 ,

𝑑o
(𝑗)
1:𝑇 = 𝑑o

(𝑖)
1:𝑇 (including (𝜁(𝑖), 𝑐o

(𝑖)
1:𝑇 )), and 𝑘𝜁 be the number of samples such that

⃦⃦
𝜁 − 𝜁(𝑗)

⃦⃦
∞ < 𝜀o

(𝑖)
1:𝑇 , (including 𝜁(𝑖)). Making use of the following approximations

𝑝(𝜁, 𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) =

𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑

𝐿
𝑑
o
(𝑖)
1:𝑇

𝑉𝜁,o1:𝑇
(𝜀o

(𝑖)
1:𝑇 )‘log 𝑝(𝜁, 𝑐o

(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) = 𝜓(𝑘

𝜁,o
(𝑖)
1:𝑇

𝑑 )− 𝜓(𝐿
𝑑
o
(𝑖)
1:𝑇

)− log 𝑉𝜁,o1:𝑇
(𝜀o

(𝑖)
1:𝑇 )

𝑝(𝑐o
(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) =

𝑘 − 1

𝐿
𝑑
o
(𝑖)
1:𝑇

𝑉o1:𝑇
(𝜀o

(𝑖)
1:𝑇 )‘log 𝑝(𝑐o

(𝑖)
1:𝑇 | 𝑑o

(𝑖)
1:𝑇 ,o0) = 𝜓(𝑘 − 1)− 𝜓(𝐿

𝑑
o
(𝑖)
1:𝑇

)− log 𝑉o1:𝑇
(𝜀o

(𝑖)
1:𝑇 )‘log 𝑝(𝜁 | o0) = 𝜓(𝑘𝜁)− 𝜓(𝐿)− log 𝑉𝜁(𝜀

o
(𝑖)
1:𝑇 )
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leads to the estimators

𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) =

𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑

(𝑘 − 1) 𝑉𝜁(𝜀o
(𝑖)
1:𝑇 )

=
𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑

2(𝑘 − 1) 𝜀o
(𝑖)
1:𝑇

. (3.17)

𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 ,o0) = 𝜓(𝑘

𝜁,o
(𝑖)
1:𝑇

𝑑 ) + 𝜓(𝐿)− 𝜓(𝑘 − 1)− 𝜓(𝑘𝜁). (3.18)

(3.15) through (3.18) may be evaluated for any 𝜁, but a compact representations

of 𝑝 and 𝑙𝑟 can be generated by noting that 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) and 𝑝(𝜁 | o0) are piecewise

constant in 𝜁. Once 𝜀o
(𝑖)
1:𝑇 , 𝐿, and 𝐿

𝑑
o
(𝑖)
1:𝑇

have been computed, the probability density

depends only on the number of samples that are within 𝜀o
(𝑖)
1:𝑇 of 𝜁, which only changes

at points that are exactly 𝜀o
(𝑖)
1:𝑇 from a sample 𝜁(𝑗). By considering these points in

order, the piecewise constant ranges of the density function can be constructed.

Algorithm 4 describes the procedure for generating the piecewise probability den-

sity function in the form of a set triples (𝑙, 𝑢, 𝜌), where 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) = 𝜌 for 𝑙 < 𝜁 < 𝑢.

First, the set of all observed 𝜁(𝑗) for which
⃦⃦
⃦𝑐o

(𝑖)
1:𝑇 − 𝑐o

(𝑗)
1:𝑇

⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 and 𝑑o

(𝑗)
1:𝑇 = 𝑑o

(𝑖)
1:𝑇

are collected in a set 𝒵(𝑖). A set of lower bounds 𝑙𝑏 = {𝜁(𝑗) − 𝜀o(𝑖)
1:𝑇 | 𝜁(𝑗) ∈ 𝒵(𝑖)} and

upper bounds 𝑢𝑏 = {𝜁(𝑗) + 𝜀o
(𝑖)
1:𝑇 | 𝜁(𝑗) ∈ 𝒵(𝑖)} are then constructed, and considered in

order from lowest to highest. After passing each lower bound, the density function

increases, and after passing each upper bound, the pdf decreases.

Algorithm 5 is very similar, and describes the procedure for generating the piece-

wise log probability ratio. When o1:𝑇 is mixed, we must consider the full set of 𝜁

samples 𝒵 = {𝜁(𝑗)} instead of only those for which
⃦⃦
⃦𝑐o

(𝑖)
1:𝑇 − 𝑐o

(𝑗)
1:𝑇

⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 , because

we will need to compute the count 𝑘𝜁 .

3.4.2 Estimation of Objectives

We now discuss how to generate estimates for each objective from the set of 𝐿 samples

𝒟. As shown in Algorithm 6, each type of objective; value, probability, and informa-

tion, uses a specialized estimator that will return a list of 𝐿 values, each representing

an estimate for a single sample o
(𝑖)
1:𝑇 . The appropriate specialized estimator is called

by CallSpecializedEstimator, with specific forms described in the next sections.
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Algorithm 4: GeneratePiecewiseDensity

Input : Conditioned observation o
(𝑖)
1:𝑇 , set of samples 𝒟

𝑑
o
(𝑖)
1:𝑇

, distance 𝜀o
(𝑖)
1:𝑇 ,

discrete sample count 𝐿
𝑑
o
(𝑖)
1:𝑇

(if o1:𝑇 discrete), 𝑘 (if o1:𝑇 continuous)

Output: Piecewise constant density for 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) in 𝑝𝑑𝑓

1 if o1:𝑇 discrete then // Evaluating (3.15)
2 𝑑𝑒𝑛← 2𝐿

𝑑
o
(𝑖)
1:𝑇

𝜀o
(𝑖)
1:𝑇

3 𝒵(𝑖) ← {𝜁(𝑗) | (𝜁(𝑗), 𝑐o
(𝑗)
1:𝑇 ) ∈ 𝒟

𝑑
o
(𝑖)
1:𝑇
}

4 else // Evaluating (3.17)
5 𝑑𝑒𝑛← 2(𝑘 − 1) 𝜀o

(𝑖)
1:𝑇

6 𝒵(𝑖) ← {𝜁(𝑗) | (𝜁(𝑗), 𝑐o
(𝑗)
1:𝑇 ) ∈ 𝒟

𝑑
o
(𝑖)
1:𝑇
,
⃦⃦
⃦𝑐o

(𝑖)
1:𝑇 − 𝑐o

(𝑗)
1:𝑇

⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 }

7 𝑙𝑏← {𝜁(𝑗) − 𝜀o(𝑖)
1:𝑇 | 𝜁(𝑗) ∈ 𝒵(𝑖)}

8 𝑢𝑏← {𝜁(𝑗) + 𝜀o
(𝑖)
1:𝑇 | 𝜁(𝑗) ∈ 𝒵(𝑖)}

9 𝑙← min 𝑙𝑏, 𝑙𝑏← 𝑙𝑏 ∖ {𝑙}
10 𝑝𝑑𝑓 ← [(−∞, 𝑙, 0)]
11 𝑘𝑑 ← 1
12 while 𝑢𝑏 is not empty do
13 𝑢← min 𝑙𝑏 ∪ 𝑢𝑏
14 𝑝𝑑𝑓 ← 𝑝𝑑𝑓 ∪ [(𝑙, 𝑢, 𝑘𝑑/𝑑𝑒𝑛)]
15 if 𝑢 ∈ 𝑙𝑏 then
16 𝑘𝑑 ← 𝑘𝑑 + 1
17 else
18 𝑘𝑑 ← 𝑘𝑑 − 1
19 end
20 remove 𝑢 from 𝑙𝑏 or 𝑢𝑏
21 𝑙← 𝑢

22 end
23 𝑝𝑑𝑓 ← 𝑝𝑑𝑓 ∪ [(𝑙,∞, 0)]
24 return 𝑝𝑑𝑓
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Algorithm 5: GeneratePiecewiseLogRatio

Input : Conditioned observation o
(𝑖)
1:𝑇 , set of samples 𝒟

𝑑
o
(𝑖)
1:𝑇

, distance 𝜀o
(𝑖)
1:𝑇 ,

discrete sample count 𝐿
𝑑
o
(𝑖)
1:𝑇

(if o1:𝑇 discrete), 𝑘 (if o1:𝑇 continuous)

Output: Piecewise constant 𝑙𝑟(𝜁;o
(𝑖)
1:𝑇 | o0) in 𝑙𝑟𝑓

1 if o1:𝑇 discrete then // Evaluating (3.16)
2 𝒵(𝑖) ← {𝜁(𝑗) | (𝜁(𝑗), 𝑐o

(𝑗)
1:𝑇 ) ∈ 𝒟

𝑑
o
(𝑖)
1:𝑇
}

3 else // Evaluating (3.18)
4 𝒵(𝑖) ← {𝜁(𝑗)}
5 𝑙𝑏← {𝜁(𝑗) − 𝜀o(𝑖)

1:𝑇 | 𝜁(𝑗) ∈ 𝒵(𝑖)}, 𝑢𝑏← {𝜁(𝑗) + 𝜀o
(𝑖)
1:𝑇 | 𝜁(𝑗) ∈ 𝒵(𝑖)}

6 𝑙𝑟𝑓 ← [], 𝑙← −∞
7 𝑘𝜁𝑑 ← 0, 𝑘𝜁 ← 0, 𝑘𝜁,o

(𝑖)
1:𝑇

𝑑 ← 0
8 while 𝑢𝑏 is not empty do
9 𝑢← min 𝑙𝑏 ∪ 𝑢𝑏

10 o
(𝑗)
1:𝑇 ← sample such that 𝜁(𝑗) = 𝑢

11 if o1:𝑇 discrete then
12 𝑙𝑟𝑓 ← 𝑙𝑟𝑓 ∪ [(𝑙, 𝑢, 𝜓(𝑘𝜁𝑑) + 𝜓(𝐿)− 𝜓(𝑘 − 1)− 𝜓(𝐿

𝑑
o
(𝑖)
1:𝑇

))]

13 if 𝑢 ∈ 𝑙𝑏 then 𝑘𝜁𝑑 ← 𝑘𝜁𝑑 + 1 else 𝑘𝜁𝑑 ← 𝑘𝜁𝑑 − 1

14 else

15 𝑙𝑟𝑓 ← 𝑙𝑟𝑓 ∪ [(𝑙, 𝑢, 𝜓(𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑 ) + 𝜓(𝐿)− 𝜓(𝑘 − 1)− 𝜓(𝑘𝜁))]
16 if 𝑢 ∈ 𝑙𝑏 then
17 𝑘𝜁 ← 𝑘𝜁 + 1

18 if
⃦⃦
⃦𝑐o

(𝑖)
1:𝑇 − 𝑐o

(𝑗)
1:𝑇

⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 and 𝑑o

(𝑖)
1:𝑇 = 𝑑o

(𝑗)
1:𝑇 then

19 𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑 ← 𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑 + 1

20 else
21 𝑘𝜁 ← 𝑘𝜁 − 1

22 if
⃦⃦
⃦𝑐o

(𝑖)
1:𝑇 − 𝑐o

(𝑗)
1:𝑇

⃦⃦
⃦
∞
< 𝜀o

(𝑖)
1:𝑇 and 𝑑o

(𝑖)
1:𝑇 = 𝑑o

(𝑗)
1:𝑇 then

23 𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑 ← 𝑘
𝜁,o

(𝑖)
1:𝑇

𝑑 − 1

24 remove 𝑢 from 𝑙𝑏 or 𝑢𝑏
25 𝑙← 𝑢

26 end
27 return 𝑙𝑟𝑓
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When a prior and/or posterior specialization is given, the specialized estimator

will be an estimate for 𝑔(o
(𝑖)
1:𝑇 | o0), while in other cases it will be sufficient to return an

estimate for 𝑓(𝜁,o
(𝑖)
1:𝑇 | o0). The value returned from Algorithm 6 is the expectation

over the top 𝛿𝑝𝑟𝑖𝑜𝑟 percentile of these values, computed as the average over the top

⌈𝛿𝑝𝑟𝑖𝑜𝑟 𝐿⌉ elements computed. No prior specialization is equal to the case where

𝛿𝑝𝑟𝑖𝑜𝑟 = 1. When the samples are computed a state 𝑠𝑡, the final value returned is the

desired estimator 𝐽(𝑠𝑡,𝒬).

Algorithm 6: ObjectiveEstimator
Input : Objective to estimate 𝐽𝒬, set of samples 𝒟, number of samples 𝐿
Output: Objective estimate 𝐽

1 𝛿𝑝𝑟𝑖𝑜𝑟 ← prior specialization in 𝐽𝒬
2 𝑒𝑠𝑡← CallSpecializedEstimator(𝒟)
3 𝑠𝑜𝑟𝑡𝑒𝑑← SortDecreasing(𝑒𝑠𝑡)
4 𝐽 ← 0
5 for 𝑖 = 1, . . . , ⌈𝛿𝑝𝑟𝑖𝑜𝑟 𝐿⌉
6 𝐽 ← 𝐽 + 𝑠𝑜𝑟𝑡𝑒𝑑𝑖
7 return 𝐽/⌈𝛿𝑝𝑟𝑖𝑜𝑟 𝐿⌉

The following sections describe the estimators that can be called as part of the

routine CallSpecializedEstimator.

3.4.3 Estimation of Value Objectives

Without posterior specialization, a value objective returns the expected value of the

query output, 𝐽𝒬(𝜁,o1:𝑇 ) = E [𝜁 | o0]. Without a prior specialization, it is well known

that this values can be estimated simply as the empirical average of samples {𝜁(𝑗)},
so it is sufficient to return those values for use in the objective estimator directly.

However, when a prior specialization is provided, it is no longer sufficient to return

these values, because the average of the top 𝛿𝑝𝑟𝑖𝑜𝑟 percentile of samples {𝜁(𝑗)} will

typically exceed the average of the top 𝛿𝑝𝑟𝑖𝑜𝑟 percentile of samples {𝑔(o
(𝑗)
1:𝑇 | o0)}. It

is therefore necessary to compute estimates for E
𝜁|o(𝑖)

1:𝑇 ,o0

î
𝜁 | o(𝑖)

1:𝑇 ,o0

ó
, which is done

by estimating 𝑝(𝜁 | o(𝑖)
1:𝑇 ,o0) for each o

(𝑖)
1:𝑇 , and computing the sum or integral over

all 𝜁. In the case of continuous 𝜁, the integral of the piecewise constant 𝑝𝑑𝑓 can be
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computed exactly by considering each interval. This procedure is in Algorithm 7.

Algorithm 7: ValueEstimator
Input : Set of samples 𝒟
Output: Appropriate set 𝑒𝑠𝑡 to be averaged for value objective estimation

1 if 𝛿𝑝𝑟𝑖𝑜𝑟 = 1 then
2 return

¶
𝜁(𝑖) | (𝜁(𝑖),o(𝑖)

1:𝑇 ) ∈ 𝒟
©

3 else if 𝜁 discrete then
4 return

¶∑︀
𝜁 𝜁 𝑝(𝜁 | o

(𝑖)
1:𝑇 ,o0) | (𝜁(𝑖),o(𝑖)

1:𝑇 ) ∈ 𝒟
©

5 else
6 𝑒𝑠𝑡← {}
7 for (𝜁(𝑖),o

(𝑖)
1:𝑇 ) ∈ 𝒟

8 𝑝𝑑𝑓 ← GeneratePiecewiseDensity(o(𝑖)
1:𝑇 ,𝒟

𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

9 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪
{︀∫︀

𝜁 𝑝𝑑𝑓 𝑑𝜁
}︀

10 return 𝑒𝑠𝑡

The first form of posterior specialization permitted in a value objective is a con-

stant posterior specialization, so that 𝐽(𝜁,o1:𝑇 | o0) = Eo1:𝑇 |o0 [𝑃 [𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 | o0:𝑇 ] | o0].

The specialized estimator in Algorithm 8 approximates 𝑃
î
𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 | o(𝑖)

1:𝑇 ,o0

ó
for

each o
(𝑖)
1:𝑇 , using either the discrete probability estimator directly or integral of the

piecewise probability density over 𝒱𝑐𝑜𝑛𝑠𝑡.

Algorithm 8: ConstantPosteriorSpecializationValueEstimator
Input : Set of samples 𝒟, domain 𝒱𝑐𝑜𝑛𝑠𝑡
Output: Estimates of 𝑃

î
𝜁 ∈ 𝒱𝑐𝑜𝑛𝑠𝑡 | o(𝑖)

1:𝑇 ,o0

ó
in 𝑒𝑠𝑡

1 𝑒𝑠𝑡← {}
2 for (𝜁(𝑖),o

(𝑖)
1:𝑇 ) ∈ 𝒟

3 if 𝜁 discrete then
4 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪

¶∑︀
𝜁∈𝒱𝑐𝑜𝑛𝑠𝑡

𝑝(𝜁 | o(𝑖)
1:𝑇 ,o1:𝑇 )

©
5 else
6 𝑝𝑑𝑓 ← GeneratePiecewiseDensity(o(𝑖)

1:𝑇 ,𝒟
𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

7 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪
¶∫︀

𝒱𝑐𝑜𝑛𝑠𝑡
𝑝𝑑𝑓 𝑑𝜁

©
8 return 𝑒𝑠𝑡

The second form of posterior specialization permitted in a value objective is a max

value posterior specialization, so that 𝐽(𝜁,o1:𝑇 | o0) = Eo1:𝑇 |o0 [𝑃 [𝜁 ∈ 𝒱*
𝑆 | o0:𝑇 ] | o0]

where 𝒱*
𝑆 = arg max𝒱⊆𝒵+(o0:𝑇 ), |𝒱|≤𝑆

∑︀
𝜁∈𝒱 𝜁. The specialized estimator in Algorithm
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9 approximates 𝑃
î
𝜁 ∈ 𝒱*

𝑆 | o(𝑖)
1:𝑇 ,o0

ó
for each o

(𝑖)
1:𝑇 , using either the discrete probability

estimator on the largest 𝜁 with positive probability, or the integral of the piecewise

probability density over the largest 𝜁 with non-zero density. In the continuous 𝜁

case, the max cardinality 𝑆 may be reached in the middle of a segment of piecewise

constant density.

Algorithm 9: MaximumPosteriorSpecializationValueEstimator
Input : Set of samples 𝒟, size of domain 𝑆
Output: Estimates of 𝑃

î
𝜁 ∈ 𝒱*

𝑆 | o(𝑖)
1:𝑇 ,o0

ó
in 𝑒𝑠𝑡

1 𝑒𝑠𝑡← {}
2 for (𝜁(𝑖),o

(𝑖)
1:𝑇 ) ∈ 𝒟

3 𝑃 ← 0, 𝑆𝑢𝑠𝑒𝑑 ← 0
4 if 𝜁 discrete then
5 for 𝜁 ∈ SortDecreasing(𝒵)
6 if 𝑝(𝜁 | o(𝑖)

1:𝑇 ,o0) > 0 then
7 𝑃 ← 𝑃 + 𝑝

î
𝜁 | o(𝑖)

1:𝑇 ,o0

ó
8 𝑆𝑢𝑠𝑒𝑑 ← 𝑆𝑢𝑠𝑒𝑑 + 1
9 if 𝑆𝑢𝑠𝑒𝑑 = 𝑆 then

10 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪
¶
𝑃
©

11 break
12 else
13 𝑝𝑑𝑓 ← GeneratePiecewiseDensity(o(𝑖)

1:𝑇 ,𝒟
𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

14 for (𝑙, 𝑢, 𝜌) ∈ SortDecreasingInU(𝑝𝑑𝑓)
15 if 𝜌 > 0 then
16 𝑃 ← 𝑃 + 𝜌 min(𝑢− 𝑙, 𝑆 − 𝑆𝑢𝑠𝑒𝑑)
17 𝑆𝑢𝑠𝑒𝑑 ← 𝑆𝑢𝑠𝑒𝑑 + min(𝑢− 𝑙, 𝑆 − 𝑆𝑢𝑠𝑒𝑑)
18 if 𝑆𝑢𝑠𝑒𝑑 = 𝑆 then
19 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪

¶
𝑃
©

20 break
21 return est

3.4.4 Estimation of Probability Objectives

Without posterior specialization, a probability objective returns the expected condi-

tional probability, 𝐽(𝜁,o1:𝑇 | o0) = E [𝑝(𝜁 | o0:𝑇 ) | o0]. Just as in the value estimator

case, when no prior specialization is provided, this can be estimated as the empirical
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average of
¶
𝑝(𝜁(𝑖) | o(𝑖)

1:𝑇 ,o0)
©
, but when a prior specialization is provided we must

estimate E
𝜁|o(𝑖)

1:𝑇 ,o0

î
𝑝(𝜁 | o(𝑖)

1:𝑇 ,o0) | o(𝑖)
1:𝑇 ,o0

ó
explicitly. This procedure is described in

Algorithm 10.

Algorithm 10: ProbabilityEstimator
Input : Set of samples 𝒟
Output: Appropriate set 𝑒𝑠𝑡 to be averaged for probability objective

estimation
1 if 𝛿𝑝𝑟𝑖𝑜𝑟 = 1 then
2 return

¶
𝑝(𝜁(𝑖) | o(𝑖)

1:𝑇 ,o0) | (𝜁(𝑖),o(𝑖)
1:𝑇 ) ∈ 𝒟

©
3 else if 𝜁 discrete then
4 return

¶∑︀
𝜁 𝑝(𝜁 | o

(𝑖)
1:𝑇 ,o0)

2 | (𝜁(𝑖),o(𝑖)
1:𝑇 ) ∈ 𝒟

©
5 else
6 𝑒𝑠𝑡← {}
7 for (𝜁(𝑖),o

(𝑖)
1:𝑇 ) ∈ 𝒟

8 𝑝𝑑𝑓 ← GeneratePiecewiseDensity(o(𝑖)
1:𝑇 ,𝒟

𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

9 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪
¶∑︀

(𝑙,𝑏,𝜌)∈𝑝𝑑𝑓 𝜌
2 (𝑢− 𝑙)

©
10 return 𝑒𝑠𝑡

The only form of posterior specialization permitted in a value objective is a max

value posterior specialization, so that 𝐽(𝜁,o1:𝑇 ) = Eo1:𝑇
[𝑃 [𝜁 ∈ 𝒱*

𝑆 | o1:𝑇 ]] where 𝒱*
𝑆 =

arg max𝒱⊆𝒵+(o1:𝑇 ), |𝒱|≤𝑆

∑︀
𝜁∈𝒱 𝑝(𝜁 | o1:𝑇 ). The specialized estimator in Algorithm 11

approximates and returns 𝑃
î
𝜁 ∈ 𝒱*

𝑆 | o(𝑖)
1:𝑇

ó
for each o

(𝑖)
1:𝑇 by summing the largest

discrete probabilities or regions with the largest probability density.

3.4.5 Estimation of Information Objectives

Finally, information objectives are used without posterior specializations, and the ob-

jective returns 𝐽(𝜁,o1:𝑇 | o0) = E [𝑙𝑟(𝜁;o1:𝑇 | o0) | o0]. Like the value and probability

objective estimators, when there is no prior specialization, the objective can be esti-

mated as the average of
¶
𝑙𝑟(𝜁(𝑖);o

(𝑖)
1:𝑇 | o0)

©
, while with a prior specialization we must

estimate E
𝜁|o(𝑖)

1:𝑇 ,o0

î
𝑙𝑟(𝜁;o

(𝑖)
1:𝑇 | o0) | o(𝑖)

1:𝑇 ,o0

ó
explicitly. This procedure is described in

Algorithm 12.
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Algorithm 11: MaximumPosteriorSpecializationProbabilityEstimator
Input : Set of samples 𝒟, size of domain 𝑆
Output: Estimates of 𝑃

î
𝜁 ∈ 𝒱*

𝑆 | o(𝑖)
1:𝑇

ó
in 𝑒𝑠𝑡

1 𝑒𝑠𝑡← {}
2 for (𝜁(𝑖),o

(𝑖)
1:𝑇 ) ∈ 𝒟

3 𝑃 ← 0, 𝑆𝑢𝑠𝑒𝑑 ← 0
4 if 𝜁 discrete then
5 𝑝𝑚𝑓 ← {𝑝(𝜁 | o(𝑖)

1:𝑇 ,o0) | 𝜁 ∈ 𝒵}
6 for 𝑝 ∈ SortDecreasingInP(pmf )
7 𝑃 ← 𝑃 + 𝑝
8 𝑆𝑢𝑠𝑒𝑑 ← 𝑆𝑢𝑠𝑒𝑑 + 1
9 if 𝑆𝑢𝑠𝑒𝑑 = 𝑆 then

10 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪
¶
𝑃
©

11 break
12 else
13 𝑝𝑑𝑓 ← GeneratePiecewiseDensity(o(𝑖)

1:𝑇 ,𝒟
𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

14 for (𝑙, 𝑢, 𝜌) ∈ SortDecreasingInRho(𝑝𝑑𝑓)
15 𝑃 ← 𝑃 + 𝜌 min(𝑢− 𝑙, 𝑆 − 𝑆𝑢𝑠𝑒𝑑)
16 𝑆𝑢𝑠𝑒𝑑 ← 𝑆𝑢𝑠𝑒𝑑 + min(𝑢− 𝑙, 𝑆 − 𝑆𝑢𝑠𝑒𝑑)
17 if 𝑆𝑢𝑠𝑒𝑑 = 𝑆 then
18 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪ {𝑃}
19 break
20 return 𝑒𝑠𝑡

Algorithm 12: InformationEstimator
Input : Set of samples 𝒟
Output: Appropriate set 𝑒𝑠𝑡 to be averaged for information estimation

1 if 𝛿𝑝𝑟𝑖𝑜𝑟 = 1 then
2 return

¶
𝑙𝑟(𝜁(𝑖);o

(𝑖)
1:𝑇 | o0) | (𝜁(𝑖),o(𝑖)

1:𝑇 ) ∈ 𝒟
©

3 else if 𝜁 discrete then
4 return

¶∑︀
𝜁 𝑝(𝜁 | o

(𝑖)
1:𝑇 ,o0) 𝑙𝑟(𝜁

(𝑖);o
(𝑖)
1:𝑇 | o0) | (𝜁(𝑖),o(𝑖)

1:𝑇 ) ∈ 𝒟
©

5 else
6 𝑒𝑠𝑡← {}
7 for (𝜁(𝑖),o

(𝑖)
1:𝑇 ) ∈ 𝒟

8 𝑝𝑑𝑓 ← GeneratePiecewiseDensity(o(𝑖)
1:𝑇 ,𝒟

𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

9 𝑝𝑙𝑟 ← GeneratePiecewiseLogRatio(o(𝑖)
1:𝑇 ,𝒟

𝑑
o
(𝑖)
1:𝑇
, 𝜀o

(𝑖)
1:𝑇 , 𝐿

𝑑
o
(𝑖)
1:𝑇
, 𝑘)

10 𝑒𝑠𝑡← 𝑒𝑠𝑡 ∪
¶∑︀

(𝑙,𝑢,𝜌)∈𝑝𝑑𝑓,(𝑙,𝑢,𝑙𝑟)∈𝑝𝑙𝑟 𝜌 𝑙𝑟 (𝑢− 𝑙)
©

11 return 𝑒𝑠𝑡
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3.4.6 Estimation of Sufficient Condition Satisfaction

After having planned from state 𝑠𝑡−1 with a sufficient condition, executed action

𝑎𝑡−1, and observed o𝑡, the samples in previous search trees can frequently be used to

compute the estimator 𝑔(o1:𝑡 | o0). The state 𝑠𝑡 in the search tree that follows action

𝑎𝑡−1 already contains samples which, when calling CallSpecializedEstimator using

a prior specialization, are used to construct estimates 𝑔(o
(𝑖)
𝑡 | o0:𝑡−1) for each o

(𝑖)
𝑡 .

These same estimators can be used to estimate 𝑔(o𝑡 | o0:𝑡−1), even when o𝑡 /∈ {o(𝑖)
𝑡 }.

For value and probability objectives, this is sufficient to generate 𝑔(o1:𝑡 | o0), because

𝑔(o1:𝑡 | o0) = 𝑔(o𝑡 | o0:𝑡−1).

In the case of an information objective, 𝑔(o1:𝑡 | o0) ̸= 𝑔(o𝑡 | o0:𝑡−1), and it is the

first value that we actually need. It may be true that a state following 𝑎0:𝑡−1 already

exists in the search tree that was constructed when planning from 𝑠0, but this will

not be true in general. Instead, we cache the original environment model trained with

observations o0. After executing action 𝑎𝑡−1, we draw samples
¶

(𝜁(𝑖),o
(𝑖)
1:𝑡)
©
, and use

those to compute 𝑔(o1:𝑡 | o0) using the routines described in InformationEstimator

with a prior specialization.

3.5 Experiments

In this section, we test query-driven adaptive sampling on scenarios inspired by

searches for hydrocarbon seeps on the ocean floor, and emergency response to a wild-

fire. We compare query-driven adaptive sampling against an information-maximizing

adaptive sampling approach that maximizes the mutual information between obser-

vations and all environment variables.

3.5.1 Hydrocarbon Seep Search Scenario

In our first experiments, we apply query-driven adaptive sampling to the search for

hydrocarbon seeps, which is one of the major domains that inspired its develop-

ment. The scenario includes an remotely operated underwater vehicle exploring a
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multi-attribute environment, with queries depending on data outside the environ-

ment model. This scenario is modeled after a field deployment described by Vrolijk

et al. [144].

In this scenario, we use data of possible seep sites in the Costa Rica continental

margin collected by Sahling et al. [114]. Each site is described by its longitude,

latitude, and depth, and is given labels of whether there is a seep present, a mound

present, a pockmark present, or elevated backscatter at the location. Each of these

four labeled attributes are modeled as binary attributes in the environment model.

When the remotely operated vehicle visits a site, it observes the unknown attributes

at that location.

In practical missions, the presence of mounds and pockmarks and backscatter

characteristics of the ocean floor can be observed using long distance sonar before

the deployment of a remotely operated vehicle. This means that usually only the

presence or absence of seeps at any location is unknown, while the presence of mounds,

pockmarks, and backscatter are known. In addition, the probability of seepage at a

location where there is no bathymetric evidence is typically considered to be negligible.

As such, only sites with one or more mounds, pockmarks, or elevated backscatter are

considered as candidate observation sites.

Seep Depth Range Experiment

In this experiment, a remotely operated vehicle (ROV) is tasked with determining

the depth range at which seeps exist in the environment. That is, the difference in

depth between the deepest location there is a seep and the shallowest location there is

a seep. We use a finite number of 46 candidate observation sites, so the depth range

is a discrete random variable.

We use a query with an information objective, to be optimized over a fixed mission

length of 8 observations. The model is trained on full observations at 10 sites, and

observations of mounds, pockmarks, and backscatter at an additional 36 locations.

We use a fixed structural model, with edges from each of mounds, pockmarks, and

backscatter to seeps. In this experiment, we model that the ROV will be lowered

136



and surfaced for every observation, so there are no dynamics constraints that limit

which sites can be explored. We allow 120 seconds of planning time between actions.

For comparison, the experiment is performed 10 times with query-driven adaptive

sampling and adaptive sampling that maximizes mutual information between obser-

vations and the distribution of seeps across the entire environment, using the same

Monte Carlo tree search procedure. The observations at the visited locations are

taken from the true dataset, rather than simulated.

Results that compare the sites visited by query-driven adaptive sampling and

information-maximizing adaptive sampling on one of the 10 missions are given in

Figure 3-3, which plots the depth distribution of seeps (blue lines), non-seeps (gray

lines), and shows the depths of the locations observed (red arrows) by missions by

query-driven adaptive sampling and information-maximizing adaptive sampling. As

can be seen in Figure 3-3a, query-driven adaptive sampling focuses observations on

deep and shallow sites. Rather than starting by selecting the deepest and shallow-

est sites, query-driven adaptive sampling first selects a site at approximately 1000

m depth, which is believed very likely to have seepage and significantly reduces un-

certainty in the depth range. After seepage at that site is confirmed, query-driven

adaptive sampling focuses on deeper and shallower sites. Within 6 observations, it

confirms that the shallowest site does have a seep, and that there is not a seep deeper

than 1072 m, meaning the depth range of seeps is known exactly. In contrast, the be-

havior of information-maximizing adaptive sampling in Figure 3-3b shows that most

information on seep distribution is gathered over a range of depths, but this is not

most beneficial for determining the depth range of seeps. Non-zero entropy in the

result exists after 8 observations are taken in the mission. 6 depths are shown in

Figure 3-3b because two seeps at depth 718 m and two seeps at depth 1000 m are

observed.

Figure 3-4 shows decreases in entropy of seep depth range, averaged across the

10 missions. Here, uncertainty in entropy results from difference in behavior between

different random seeds, as well as the fact that environment models trained from

different seeds can differ slightly in their predictions. It should also be noted that
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(a) Observations selected by query-driven adaptive sampling.

700 800 900 1000 1100

Depth (m)

(b) Observations selected by information maximizing adaptive sampling.

Figure 3-3: Depths of observations selected by query-driven adaptive sampling and
information maximizing adaptive sampling. Blue lines indicate seeps, gray lines indi-
cate non-seeps, and red arrows indicate sites selected for observation.
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Figure 3-4: Average entropy in seep depth after observations in simulated mis-
sion comparing query-driven adaptive sampling (QDAS) and information-maximizing
adaptive sampling (AS).

the outcomes of missions are determined from the data set and not drawn from the

modeled distribution, meaning that entropy can increase after an observation is taken.

The results show a significant reduction in depth range entropy using query-driven

adaptive sampling, and there is always no uncertainty in seep depth range after no

more than 7 observations. Information-maximizing adaptive sampling, on the other

hand, never resolves the question of seep depth, since it does not focus observations

on the shallowest and deepest sites.

Seep Search Without Observation Noise

In this experiment, a remotely operated vehicle is tasked with minimizing the number

of observations required to find 3 additional seeps in the top 90% of mission outcomes.

This experiment demonstrates the capability of query-driven adaptive sampling to

identify undesirable outcomes in the bottom 10% of possible observations, and im-

mediately end the mission in those cases.

This mission is modeled using a value query objective, a sufficient condition,

and a prior specialization with 𝛿𝑝𝑟𝑖𝑜𝑟 = 0.9. The ROV is assumed to be able to
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determine exactly whether seeps are present or absent once it has visited a site. The

environment model is trained on full observations at 5 sites, and observations of

mounds, pockmarks, and backscatter are provided at an additional 28 locations. The

training set contains 2 known seeps, and 3 additional seeps are required to be found

from among the 28 sites with unobserved seep presence, for a total of 5 known seeps.

In this example, we observe that the 28 candidate sites naturally form 4 separate

clusters. We constrain the agent dynamics so that after it leaves a cluster, it cannot

return to that same cluster, in order to avoid needlessly complex paths. We allow 300

second of planning time between actions, and repeat the experiment 10 times using

query-driven adaptive sampling.

It turns out that the environment model predicts the presence of seeps at certain

locations with high confidence, even with very limited data. This occurs because

both seeps in the training set occur with elevated backscatter but no mounds and

pockmarks, which is not shared by any of the non-seep sites in the training set.

The model associates this pattern with seepage, and the pattern is actually a strong

indicator of seepage in the dataset, with 8 of 11 sites with backscatter and no mounds

or pockmarks being seeps. This means that missions typically proceed by moving to

three sites of seepage, as in Figure 3-5a, and immediately ending.

However, behavior when a non-seep site is reached is interesting from the perspec-

tive of application of prior specializations. In Figure 3-5b, the environmental model

results in a high confidence that the second site visited is a seep, so that the top

90% of outcomes all consider a seep at that site. When the site visited is revealed to

not be a seep, query-driven adaptive sampling determines that the realization of the

environment is drawn from the 10% of outcomes that are not counted towards the

objective. As a result, 𝛿𝑝𝑟𝑖𝑜𝑟,2 is computed to be zero, and the mission immediately

ends without satisfaction of the sufficient condition.

In total, the average mission length across the 10 runs is 2.40± 0.22, not counting

the observations needed to collect the prior data, with every mission that achieves

the sufficient condition ending in exactly 3 observations.
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(a) Mission that ends with satisfaction of the sufficient condition.
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(b) Mission that ends due to prior specialization.

Figure 3-5: Paths generated in the seep search experiment without observation noise.
Crosses indicate sites of seepage, circles indicate sites without seepage. Axes are not
scaled geographically.
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Seep Search With Observation Noise

The previous experiment is simple because the certain seeps in the environment can be

predicted with high confidence. To add additional complexity, we repeat the previous

experiment, simulating the presence of noise in all observations of seepage, both in

the training set and during the mission. This could reflect that the hydrocarbon seep

does not constantly release gas, and that the presence of seepage is imprecisely in-

ferred from local evidence. This experiment demonstrates that query-driven adaptive

sampling is able to reason about satisfying sufficient conditions involving variables

that are never directly observed.

We model that an observation of seepage matches truth with 75% probability, and

returns the opposite result with 25% probability. The modeler is aware of this noise,

so that there is greater uncertainty in the model predictions. The objective is to

minimize the number of observations so that the expected total number of seeps seen,

conditioned on the observations and including the training data, exceeds 5 in the top

90% of outcomes. We constrain the agent dynamics as in the previous experiment,

and once again allow 300 seconds for planning between observations over 10 runs.

This experiment is interesting because the agent never directly observes seepage.

Instead, the truth at the locations visited must be inferred from the noisy observa-

tions, and that the top 90% of mission outcomes include negative observations. The

most frequent outcome, shown in Figure 3-6a, is once again to visit three seeps, and

observe presence of a seep at each. Even though the algorithm is not certain that

these locations are seeps, the expected total number of seeps visited exceeds 5, when

accounting for the possibility of seeps being at all training locations.

Figure 3-6b shows that having visited 3 additional seeps can be inferred, even

when only 2 observations indicate presence of a seep. In this case, an additional

3 seeps are visited after the first three observations of the mission. However, since

the second observation is 0, there is not sufficient evidence that five total seeps have

been visited until a fourth observation is completed. However, the inferences are not

always correct. Figure 3-6c shows a mission in which 2 additional seeps have been
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visited, but the expected number visited in total still exceeds 5.

In total, the average mission length across the 10 runs is 4.00 ± 0.45 observa-

tions, with an average over those that achieve the sufficient condition of 3.67 ± 0.33

observations.

3.5.2 Fire Escape Scenario

One of the major strengths of query-driven adaptive sampling is that we are able to

plan with respect to arbitrary variables of interest, which may potentially be defined

by highly complex functions of the environment. The following scenario demon-

strates this complexity by performing adaptive sampling in service of identifying es-

cape routes from wildfires and informing emergency responders of where they should

focus their efforts. The scenario is loosely inspired by the evacuation of Southern

Lake Tahoe.

In this scenario, we consider the road network illustrated in Figure 3-7 in a region

subject to a wildfire emergency. Nodes represent major junctions where people can

reside, and edges represent roads that allow people to evacuate the area. Table 3.1

gives the modeled coordinates of each node. Each edge is either blocked by fire

hazards or unblocked, as modeled by a binary variable located at the center point

of each edge (small circles in Figure 3-7). The presence of fire hazards is spatially

correlated according to a binary heterogeneous AcyGP model. Nodes 𝐴, 𝐸, 𝑃 , and

𝑄 are connected to further roads that allow exit from the modeled area. We say that

there is an escape route from a node if 𝐴, 𝐸, 𝑃 , or 𝑄 can be reached from the node

by following unblocked roads.

An autonomous drone is dispatched to identify which roads are blocked. A mission

is modeled as having time for up to 8 actions. Starting from a specified node, for each

action the drone may fly directly to any other node up to 12 units away. If start and

end nodes are connected by a road, the drone is assumed to fly above the road and

observe if it is blocked with no noise. No meaningful data is taken if the two roads

are not connected. To model the dependence of observations on the path taken, o𝑡 is

defined to be 0 if flying over an unblocked road, 1 if flying over a blocked road, and
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(a) Mission that ends with satisfaction of the sufficient condition after
visiting 3 seeps.
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(b) Mission that ends with satisfaction of the sufficient condition after
visiting 3 seeps, with only 2 positive observations.
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(c) Mission that ends with satisfaction of the sufficient condition with-
out visiting 3 seeps.

Figure 3-6: Paths generated in the seep search experiment with observation noise.
Crosses indicate sites of seepage, circles indicate sites without seepage. Axes are not
scaled geographically.
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Figure 3-7: Road network used for fire escape scenario experiments.

Node Coordinates

𝐴 (0, 0)
𝐵 (5,−1)
𝐶 (14,−1)
𝐷 (19, 0)
𝐸 (22, 2)
𝐹 (4,−5)
𝐺 (10,−5)
𝐻 (18,−5)
𝐼 (6,−9)
𝐽 (17,−9)
𝐾 (5,−15)
𝐿 (10,−13)
𝑀 (14,−13)
𝑁 (10,−17)
𝑂 (10,−20)
𝑃 (7,−23)
𝑄 (13,−23)

Table 3.1: Road network node coordinates in the fire escape scenario.
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a dummy value of 2 if not following a road.

We consider two different experiments in this scenario; one where an escape route

must be identified for people within the road network, and another where emergency

responders must be decide which roads they should clear. Both experiments show

the advantages of using adaptive sampling that is query-focused by focusing observa-

tions on roads that are relevant to the query, which outperforms adaptive sampling

that maximizes information about the presence of fires throughout the environment.

Furthermore, the emergency response experiment shows the utility of posterior spe-

cializations.

Confirmed Escape Route Experiment

In this experiment, evacuees at 𝐿 are searching for an escape route from 𝐿 that is

confirmed to be unblocked. That is, they desire an escape route from 𝐿 where every

road has been observed and found to be unblocked. The objective is to maximize the

probability that such an escape route has been found at the conclusion of the mission.

Based on the roads traversed in the path 𝑥1:𝑇 , the query function 𝑓𝒬(𝑥1:𝑇 ,M ) returns

1 if a confirmed escape route from 𝐿 has been found, and 0 otherwise. The objective

is maximization of value.

At the start of the experiment, we model that roads 𝐵𝐹 and 𝐺𝐼 are known to

be blocked, while 𝐽𝑀 , 𝑀𝑁 , 𝐿𝑁 , and 𝐾𝑂 are known to be open. 180 seconds are

allowed for planning before each action is taken, and the experiment is repeated

30 times using query-driven adaptive sampling and adaptive sampling maximizing

the mutual information between road status and observations. Each repeat uses an

environment truth drawn from the Gaussian Process posterior.

Results are given in Table 3.2. Since information-maximizing adaptive sampling

attempts to construct a most accurate distribution over the entire map, we never

observed it to spatially focus observations and confirm the existence of an escape

route. With query-driven adaptive sampling, exactly half of all completed missions

resulted in confirmation of an escape route.
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AS QDAS

0.00 ± 0.00 0.500 ± 0.09

Table 3.2: Empirical expected success rate in the confirmed escape route experiment
for information-maximizing adaptive sampling (AS) and query-driven adaptive sam-
pling (QDAS). Numbers after ± indicate standard errors in the mean.

Emergency Response Experiment

In this experiment, firefighters at node 𝑃 deploy the drone in order to help them

prioritize their resources. After the drone observes o1:𝑇 , the firefighters use the data

to select a road to clear. The firefighters can only reach a blocked road by following

unblocked roads from 𝑃 . The goal is to use the drone to select the road with the

largest probability of creating the most escape routes.

To model this problem, the query function 𝑓𝒬(𝑥1:𝑇 ,M ) considers all blocked roads

reachable by an unblocked path from node 𝑃 . For each candidate road, it computes

the number of nodes in the environment that would have escape routes if the road was

cleared. 𝑓𝒬 returns the reachable road that results in the largest number of escape

routes when cleared as 𝜁. Ties are broken deterministically, favoring roads that can

be reached following fewer roads from 𝑃 . Between roads that still tie, a deterministic

preference is given that represents secondary preferences such as ease of traversal of

the roads and visibility.

The objective in this case is to maximize the expected maximum posterior prob-

ability 𝑝(𝜁 | o1:𝑇 ),

max E
ï
max

𝜁
𝑝(𝜁 | o1:𝑇 )

ò
.

In our framework, this is modeled as a probability objective with a maximum posterior

specialization of size 1.

At the start of the experiment, we model that roads 𝐵𝐹 , 𝐶𝐷, 𝐹𝐼, 𝐺𝐼, 𝐻𝐽 , and

𝐽𝑀 are known to be blocked, while 𝑀𝑁 , 𝐾𝑂, and 𝑂𝑃 are known to be unblocked.

Conditions of all other roads are unknown. 120 seconds are allowed for planning before

each action is taken. The experiment is repeated 30 times using query-driven adaptive

sampling and adaptive sampling maximizing the mutual information between road
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AS QDAS

0.570 ± 0.038 0.798 ± 0.029

Table 3.3: Empirical expected maximum posterior probabilities in the emergency
response experiment for information-maximizing adaptive sampling (AS) and query-
driven adaptive sampling (QDAS). Numbers after ± indicate standard errors in the
mean.

status and observations. Each repeat uses an environment truth drawn from the

Gaussian Process posterior.

Results averaged over 30 experiment runs are given in Table 3.3, where we com-

pare the empirical expected maximum posterior probabilities of query-driven adap-

tive sampling and information maximizing adaptive sampling. In this experiment,

the state of a road is not immediately important unless clearing a second road would

open up a new escape route to the first. By using an appropriate objective within

query-driven adaptive sampling, the policy is able to focus on paths that are most use-

ful for maximizing posterior probability, rather than maximizing information about

the presence of fires in locations that do not direct the responders. This results in

a significantly higher posterior probability for query-driven adaptive sampling than

information-maximizing adaptive sampling.

Depictions of the differences in behavior between query-driven adaptive sampling

and information maximizing adaptive sampling are shown in Figures 3-8 and 3-9,

which show the routes taken by query-driven adaptive sampling and information-

maximizing adaptive sampling, for two different environment truths. Symbols over

the roads indicate the known state of the environment at the conclusion of the mission,

either from what was known at the start of the mission, or from observations. Green

circles indicate unblocked paths, while red rectangles indicate blocked paths.

Figure 3-8 shows paths taken when fire is relatively widespread. The mission

planned by query-driven adaptive sampling in Figure 3-8a identifies that emergency

responders cannot travel far from 𝑃 , and the only choices of routes to clear are 𝐼𝐾 or

𝑁𝑂. Clearing 𝐼𝐾 will add exactly one additional escape route (from 𝐼) and clearing

𝑁𝑂 will add exactly two additional escape routes (from 𝑁 and 𝑀). The information
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(a) Path generated by query-driven adaptive
sampling.
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(b) Path generated by information maximiz-
ing adaptive sampling.

Figure 3-8: Paths generated in the emergency response experiment when the environ-
ment has widespread fire hazards, along with the known state of the environment at
the conclusion of the mission. Green circles indicate unblocked paths, red rectangles
indicate blocked paths. Using query-driven adaptive sampling, all roads reachable
by emergency responders are explored, and the best route to clear is known exactly.
Information maximizing adaptive sampling leaves uncertainty over which roads are
reachable and should be cleared.
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gathered by the drone there shows that clearing 𝑁𝑂 is certainly the best choice, so

that max𝜁 𝑝(𝜁 | o1:𝑇 ) = 1. Note that this result is actually known by the time the

drone reaches node 𝐾; the additional actions provide an observation of 𝑂𝑄 that does

not change the number of nodes with escape routes. The conditions of the top of the

map are unknown, but observing those regions does not affect the immediate decision

of the emergency responders.

In contrast, the mission generated by information-maximizing adaptive sampling

in Figure 3-8b provides more information about the state of the overall environment,

but is less useful for directing the emergency responders. After the mission, the

statuses of 𝐼𝐾 and 𝑂𝑁 are unknown, which means the best route to clear is also

unknown. As in the previous case, if 𝑁𝑂 is blocked, then clearing it will add exactly

2 escape routes. Meanwhile, if 𝐼𝐾 turns out to be unblocked, then clearing 𝐼𝐺 could

add between zero and three new escape routes (from 𝐵, 𝐶, and 𝐺, depending on the

status of 𝐴𝐵 and 𝐵𝐺). But 𝐼𝐺 cannot be reached if 𝐼𝐾 is blocked, and clearing and

𝐼𝐾 will add between 1 and 2 escape routes (from 𝐼 and 𝐿, depending on 𝐼𝐿). If the

emergency responders deployed and saw 𝑂𝑁 was blocked, they would not know with

certainty whether to clear 𝑂𝑁 or to travel up 𝑂𝐾 and clear routes further up that

road. Computation of the probabilities in this case reveals that max𝜁 𝑝(𝜁 | o1:𝑇 ) ≈
0.437, with the best 𝜁 being 𝑂𝑁 . Overall, while query-driven adaptive sampling

identifies the optimal road to clear, information maximizing adaptive sampling results

in significantly lower probability in the best course of action.

Figure 3-9 shows paths taken by query-driven adaptive sampling and information-

maximizing adaptive sampling when the fire has not spread as far to the South of the

map. When clearing a road results in the same number of escape routes and require

the same number of roads from 𝑃 , our ordering asserts that clearing 𝐽𝑀 is preferred

over 𝐺𝐿, which is preferred over 𝐺𝐼. After data is gathered by query-driven adaptive

sampling in Figure 3-9a, the best path to clear is 𝐺𝐿 with relatively high probability,

because it may generate escape routes from 𝐵, 𝐶, 𝐷, and 𝐻 in addition to 𝐺. Only

when both 𝐵𝐺 and 𝐶𝐺 are blocked, or when an escape route from 𝐺 already exists

does clearing 𝐽𝑀 become the best choice. This results in max𝜁 𝑝(𝜁 | o1:𝑇 ) ≈ 0.701,
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with the best 𝜁 being 𝐺𝐿

In contrast, after data is gathered by information-maximizing adaptive sampling

in Figure 3-9b, there remains ambiguity about whether 𝐼 can be reached by following

3 roads, since 𝐼𝐾 is unobserved. If 𝐼𝐾 is clear, then clearing 𝐺𝐼 is usualy preferred.

If 𝐼𝐾 is blocked instead, then 𝐺𝐿 is preferred. But in both cases, if there already

exists an escape route from 𝐺, then clearing 𝐽𝑀 is preferred. The status of 𝐼𝐾 is

quite uncertain, resulting in max𝜁 𝑝(𝜁 | o1:𝑇 ) ≈ 0.469, with the best 𝜁 being 𝐺𝐼.

Overall, while neither mission is able to determine the best choice of road to clear

with 100% probability, use of query-driven adaptive sampling results in a significantly

higher maximum probability for the best known choice.

3.6 Summary

In this chapter, we introduced a method to perform query-directed adaptive sampling

using Monte Carlo tree search to produce online unconditional plans. Our MCTS ap-

proach embedded complex query estimators within tree search, and supported early

termination of rollouts and optimization over a percentile of samples in order to sup-

port sufficient conditions and prior specializations in queries. We then discussed how

query thresholds and prior specializations must be modified during online planning

in order to optimize the query during execution.

Finally, through experiments based on hydrocarbon seep search, and escape from

and response to wildfires, we showed that query-driven adaptive sampling outperforms

adaptive sampling that maximizes information about all environment variables. By

focusing observations to only those that are relevant to the query, questions posed

in the forms of queries are able to be answered more precisely using query-driven

adaptive sampling.
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(a) Path generated by query-driven adaptive
sampling.
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(b) Path generated by information maximiz-
ing adaptive sampling.

Figure 3-9: Paths generated in the emergency response experiment when the envi-
ronment has fewer fire hazards, along with the known state of the environment at
the conclusion of the mission. Green circles indicate unblocked paths, red rectangles
indicate blocked paths. Neither approach identifies the best road to clear with 100%
probability, but with query-driven adaptive sampling it is recognized that clearing
𝐺𝐿 is likely to open the most escape routes. With information-maximizing adaptive
sampling, the status of 𝐼𝐾 is unknown, so additional uncertainty over the best route
remains because it is unknown whether node 𝐼 can be reached by traveling over 3
unblocked roads.
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Chapter 4

Scalable Monte-Carlo Tree Search

with Risk Bounding Functions

In practical exploration missions of novel environments, like in oceanographic cam-

paigns and planetary exploration, an exploring agent is exposed to a significant

amount of risk, which may lead to loss of the agent. In exploration problems in

particular, it is unclear how much additional information can be gained by taking

those risks, so it has been proposed to develop exploration policies subject to a risk

bounding function, that constrains permissible risk as a function of reward.

Previous work has explored solving offline for a policy subject to a risk bounding

function, but the need to choose actions for every measurement in advance of a mission

has two disadvantages. First, the size of the decision tree means that missions that

are small enough to be solved are limited in their duration, with typically fewer than 6

actions. Second, an action cannot be generated in advance for every possible outcome

in a continuous space. This means approximations are required to estimate reward

and risk, but it is difficult to guarantee that risk is bounded as a function of reward

when neither are known exactly. In query-driven adaptive sampling, we will require

long duration policies that respond to continuous spaces of observations, so in this

chapter, we will show that an agent can execute conditional policies that satisfy risk

bounding functions by performing online unconditional planning. This will allow us

to consider significantly fewer states when planning, and allow us to produce plans
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up to 20 actions in length.

Our approach is to apply an extension of Monte Carlo Tree Search (MCTS),

that bounds probability of failure, to solve these unconditional plans online in an

anytime manner. Our innovation lies in how we define the unconditional planning

problems and online planning strategy. We are able to formulate the problems so

that the probability of failure constraint is guaranteed to be satisfied in expectation

over all possible executions, without introducing large amounts of conservatism. The

approach does not need to plan for all measurements explicitly, or constrain planning

based only on the measurements that were observed. Through experiments on real

bathymetric data and simulated measurements, we show our algorithm allows an

agent to take dangerous actions only when the reward justifies the risk. We then

verify through Monte Carlo simulations that failure bounds are satisfied.

4.1 Motivation

Scientists commonly perform adaptive sampling missions in order to identify and

confirm the existence of high reward regions. In underwater exploration, for example,

autonomous vehicles may be tasked with locating regions with high temperatures,

algal and plankton blooms, or high concentrations of pollutants or hydrocarbons for

the purpose of identifying suitable locations for follow-up studies.

Such missions are performed because the environment is not well understood. New

measurements contribute to an improved understanding as they are received, and

impact the future of the mission. We require an adaptive system that is capable of

updating its plan in response to new measurements to direct it towards high reward

locations. The measurements may be drawn from a continuous space, so it is not

feasible to assign a unique action to every possible measurement before the mission

begins. Furthermore, the approach must be scalable, to allow missions with tens of

actions.

However, disturbances and noises acting on an agent make safe autonomous ex-

ploration difficult. In underwater applications, the seafloor surface is often known
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relatively well, but uncertainty in position accumulates due to unknown currents and

inaccuracy in on-board inertial navigation. Navigating close to obstacles incurs some

probability of collision, leading to failure, but it is often impossible to conduct a

mission without accepting some level of risk. There is therefore a tradeoff between

allowed risk and expected reward over which the autonomous system should be able

to reason.

In this chapter, we describe a method of planning and executing an adaptive

mission that maximizes the expected reward of samples, while limiting the probability

of failure of the mission. We define a method of specifying tolerance for failure as a

function of reward through a risk bounding function, and enforce the chance constraint

that the expected rate of failure is bounded by the risk bounding function applied

to the expected reward over all executions. Our method applies Monte Carlo Tree

Search (MCTS) to online unconditional plans, which allows a solution to be found

in an anytime manner, making it suitable for on-board autonomy or missions with

tight time constraints. Furthermore, we are able to provably enforce the chance

constraint without planning for all measurements explicitly, and without limiting

allowed probability of failure based only on the observation that were taken.

4.2 Related Work

Adaptive sampling tasks an agent with exploring an environment that is unknown.

The environment is either characterized by a known uncertainty field [61, 155], or

described by a stochastic process such as a Gaussian process (GP) [16, 77, 90]. It is

typical to discretize available actions and perform discrete state space search, though

notable exceptions exist, including using Rapidly Exploring Random Trees [61] or

genetic algorithms [60].

When tasked with maximizing information measures in a continuous-valued GP,

the information depends only on the locations of samples and not their values [16,

76]. It follows that replanning in response to new information is not necessary, and

sampling may be directed to regions where the GP is uncertain, but nonetheless
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believed to be low. In contrast, missions that require maximization of a function

that depends on measurements of the GP, or perform information maximization in

heterogeneous environment model, the policy will depend explicitly on observations,

and must be adaptive.

Even with discrete action and state spaces, the problem quickly becomes in-

tractable as the search tree branches in both actions and the full history of obser-

vations. Fixed horizon planning strategies that consider only the next few actions

[77, 93, 126] cannot guarantee chance constraints, as no actions may be possible that

satisfy failure bounds late in the policy, and setting a probability threshold for each

action can lead to highly suboptimal policies. An entire policy that branches on mea-

surements is found by Low et al. [90], though their experimental results imply small

action spaces and relatively few measurements, whereas we consider on the order of

20 actions.

An alternative approach used by Hitz et al. [60] is to plan and begin execution

of a full policy that does not depend on measurement outcomes but satisfies a cost

constraint. The policy is updated by replanning in response to new measurements.

We adopt a similar approach, while the key differences between this work and Hitz

et al. in this regard are that our chance constraint applies to the policy as a whole

and depends on measurement outcomes.

Chance constrained planning has been examined for motion planning [17, 99], but

bounds are applied to non-adaptive plans. These approaches could be used within

an online planning framework, and using some of the results in this chapter, can

be made to bound probability of failure averaged across all executions. However, the

result can be highly suboptimal, and this approach may not even be possible with risk

bounding functions for outcomes that repeatedly result in low rewards. RAO* applies

chance constraints over policies for Partially Observable Markov Decision Processes

[116], but it will search over all possible actions if the heuristic guiding search is poor,

and we lack an informative heuristic for adaptive sampling objectives. Our approach

differs in that we reason over a more general notion of a chance constraint through

a risk bounding function, do not explicitly branch on measurements, and use MCTS
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to produce a policy under limited planning time without heuristics.

A different approach for chance constrained planning is to maximize a sum of

reward and a weighted penalty for failure in an unconstrained problem. There is

no known method of selecting weights to guarantee chance constraint satisfaction,

so the unconstrained problem is solved repeatedly with different weights until the

solution is observed to satisfy the chance constraint [49]. We consider large problems

for which it is intractable to produce a full policy and calculate the probability of

failure. Instead, we define sequential approximating problems that guarantee chance

constraint satisfaction without needing to explicitly compute reward or probability

of failure for the full policy.

4.3 Problem Statement

In this chapter, we consider an agent exploring an environment modeled as a stochastic

process. Like in Problem 1, the agent receives observations o𝑡 at a location 𝑥𝑡,

which are drawn from a distribution that depends on local environment variables

y(𝑥𝑡+1). The agent’s objective is to execute a policy that optimizes the expectation

of a function 𝑔(o1:𝑇 | o0). The form of 𝑔(o1:𝑇 | o0) is identical to that of the query

objectives that appear in Chapter 2, in that it is an expectation over a variable of

interest determined from a query function..

Separately from Problem 1, we now add that an agent’s position is unknown

and Gaussian distributed. The agent is exposed to a risk of colliding with forbidden

regions of the environment ℱ , such as obstacles, due to uncertainty in its position. The

objective is to execute a policy that maximizes reward computed from observations,

while bounding the risk of collision with the environment to be below a function of the

expected reward. This chance constrained adaptive sampling problem is summarized

in Problem 2.

We assume that the agent is unable to detect its position exactly, but we model

its location at the time of measurement 𝑡 by a multivariate Gaussian distribution

with known parameters, 𝑥𝑡 ∼ 𝒩 (𝜇𝑡,Σ𝑡). After each measurement, an action 𝑎𝑡 ∈ 𝒜
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is chosen by the policy 𝜋, which moves the agent a fixed amount 𝑑(𝑎𝑡), while it is

subject to independent unbounded noise 𝑤𝑡 ∼ 𝒩 (0,Σ𝑤). We assume actions apply

identically to each location, so that 𝑥𝑡+1 ∼ 𝒩 (𝜇𝑡 + 𝑑(𝑎𝑡),Σ𝑡 + Σ𝑤). The probability

that the agent enters a forbidden region is bounded by a risk bounding function ∆

applied to the expected reward.

Problem 2. Chance Constrained Adaptive Sampling

𝜋* = arg max𝜋 E [𝑔(o1:𝑇 | o0) |𝜋,o0]

s.t. 𝑝
Ä⋁︀𝑇

𝑡=1 𝑥𝑡 ∈ ℱ
ä
≤ ∆ (E [𝑔(o1:𝑇 | o0) |𝜋])

o𝑡+1 ∼ 𝑝(o𝑡+1 | y(𝑥𝑡+1))

𝑥0 ∼ 𝒩 (𝜇0,Σ0)

𝑥𝑡+1 ∼ 𝒩 (𝜇𝑡 + 𝑑(𝜋(o1:𝑡)),Σ𝑡 + Σ𝑤)

4.4 Overview of Approach

Our approach to Problem 2 is to formulate it as a chance constrained Markov decision

process (CCMDP) with a risk bounding function [113, 8], which we solve using online

planning. After each observation, we solve an unconditional CCMDP using Monte

Carlo tree search to ensure a policy is available at any time.

Performing this procedure naively will lead to significant conservatism, meaning

that significantly less risk will be used than is permissible under the risk bounding

function. Our innovations include proving that a risk bounding function is satisfied

when risk and reward are averaged across different observations, construction of the

unconditional online CCMDPs to reduce conservatism, and ensuring that solutions

necessarily exist to the problems that are solved online.

In order to prove chance constraint satisfaction with a risk bounding function, we

will leverage the Vulcan algorithm [12, 8]. The development of Vulcan proved that

if every sequence of outcomes in a policy satisfies a particular local condition, then

a policy satisfies a risk bounding function. This result continues to apply even if

the outcomes are not finite, so we construct the constraints in our online CCMDPs

to ensure that that the local condition necessarily holds for any sequence of actions
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generated by online planning. This allows us to guarantee satisfaction of the risk

bounding function without ever evaluating all outcomes.

We construct constraints in the online plans that match Problem 2 and limit risk

as a function of reward received. In order to reduce conservatism, we measure that

risk against reward computed from expected values of past observations, rather than

their true values. This means that risky actions are not necessarily forbidden because

of the low reward of previous actions.

Finally, in order to ensure that solutions necessarily exist to the constrained prob-

lems that we solve online, we will solve for sequences of actions that satisfy risk

bounds even if no reward is received. We then show that these actions can be used

to prove that a solution to the constrained online problems will always exist.

4.5 A Motivating Example

We now present a concrete, simple example to describe our approach and the diffi-

culties associated with online chance-constrained planning. In this scenario, shown in

Figure 4-1, an agent occupies some state 𝑥0. For simplicity, we do not model position

as Gaussian distributed in this example, but state that certain actions simply have

probability of failure.

At 𝑥0, the agent has a single action available, 𝑎0, which moves it to the right to

location 𝑥1 with no risk, where it observes o1, where 𝑃 [o1 = 0] = 0.2, 𝑃 [o1 = 1] =

0.4, and 𝑃 [o1 = 3] = 0.4. It then has two choices available. It may move up by

taking action 𝑎11, which incurs no risk, and where it observes o1
2, with 𝑃 [o1

2 = 0] =

1. Alternatively, it may move down by taking action 𝑎21. With probability 0.1,

action 𝑎21 leads to failure and no observation is taken, otherwise o2
2 is observed. o2

2

is correlated with o1
2, so that 𝑃 [o2

2 = 0 | o1 = 0] = 1, 𝑃 [o2
2 = 1 | o1 = 1] = 7/9,

𝑃 [o2
2 = 6 | o1 = 1] = 2/9, 𝑃 [o2

2 = 1 | o1 = 3] = 2/9, 𝑃 [o2
2 = 3 | o1 = 3] = 7/9.

The agent’s objective is to maximize the expected sum of its measurements, so

that in the language of Problem 2, 𝑔(o1:𝑇 | o0) =
∑︀𝑇

𝑡=1 o𝑡. This can be constructed

as a value query, modeling the observations as environment variables, letting 𝜁 =
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Figure 4-1: Example problem in which an agent must maximize the sum of its obser-
vations. Taking action 𝑎12 leads to failure with probability 0.1.

∑︀𝑇
𝑡=1 o𝑡, and having the observations introduce no additional noise. The risk taken

by the agent is constrained by a linear risk bounding function ∆
Ä
E
î∑︀𝑇

𝑡=1 o𝑡 | o0

óä
=

0.03 E
î∑︀𝑇

𝑡=1 o𝑡 | o0

ó
.

The optimal offline policy in this example is visualized in Figure 4-2, with the

rewards of different outcomes. The agent takes action 𝑎11 when o1 = 0, and takes

action 𝑎21 otherwise. We can compute the expected reward achieved by this policy

to be E
î∑︀𝑇

𝑡=1 o𝑡 | o0

ó
= 3.28, and the probability of failure to be 0.08. So we verify

that 𝑃 [𝑓𝑎𝑖𝑙] = 0.08 ≤ 0.0984 = 0.03× E
î∑︀𝑇

𝑡=1 o𝑡 | o0

ó
. A policy where 𝑎21 is always

taken would achieve the same reward, but would have 𝑃 [𝑓𝑎𝑖𝑙] = 0.1, which would

violate the risk bound.

The policy in Figure 4-2 is the policy that we wish to execute by performing online

planning. For example, we want the first online plan to select 𝑎0, then we want the

next online plan to select 𝑎11 after o1 = 0 is received, and for the online plan to select

𝑎21 when o1 is observed to be 1 or 3.

The online plans that we will construct will only have conditional outcomes for

success and failure. All success states will be collected into a single state, while all

failure states will be collected into a single state. For example, online CCMDPs

constructed after observing o1 = 0 and o1 = 1 in the previous example would be
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Figure 4-2: Optimal policy for the example scenario. 𝑅 indicates rewards gained for
actions. Dark states are failure states.
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(a) Online CCMDP constructed after ob-
serving o1 = 0.

p = 1
R = 1

p = 0.1
R = 1

p = 0.9
R = 3.1̄

a1
1 a2

1

(b) Online CCMDP constructed after ob-
serving o1 = 1.

Figure 4-3: Online CCMDPs constructed in response to two different observations.
Dark states are failure states. Rewards include the reward gained from previous
observations at 𝑥1.

those shown in Figure 4-3. We will constrain these CCMDPs developed online so

that action 𝑎11 is selected in Figure 4-3a, and action 𝑎21 is selected in Figure 4-3b.

One approach would be to apply the risk bounding function to rewards in the

online CCMDPs. For example, we could compute that the expected reward after

taking action 𝑎21 in Figure 4-3a would be 0, and the risk of that action would be 0.1.

After computing that 0.1 > ∆(0), we would reject 𝑎21 in this case, but accept 𝑎11 since

the probability of failure is also 0. However, using this strategy in Figure 4-3b we find

that the expected reward for 𝑎21 is 2.9, with risk 0.1, and 0.1 > ∆(2.9), so we would

also select 𝑎11.
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This approach is therefore conservative, because the optimal policy is not executed

by selecting the optimal actions in our online CCMDPs. Likewise, we have not

actually proven that this strategy will select actions that satisfy the chance constraint,

shown how to generalize it when previous actions involve risk, or shown that solutions

to the online CCMDPs actually exist. If, in the course of online execution, we were

to construct a CCMDP without a solution, our online strategy cannot be said to

actually satisfy the risk bound.

The approach detailed in this chapter answers all these issues. We use the Vulcan

algorithm to prove that a modification and generalization of the approach described

above actually does result in executions that respect the chance constraint, albeit still

with the issue of conservatism above. We then introduce a modification to the online

CCMDPs that, while still resulting in suboptimal executions in general, will execute

the optimal policy in examples like this one. Then, we address the issue of solution

existence, and show that we can solve a condition online which proves that all online

CCMDPs can be solved if a solution exists from state 𝑠0.

4.6 Preliminaries: Chance Constrained Markov De-

cision Processes with Risk Bounding Functions

Since we will model our problem as a chance-constrained Markov decision process

(CCMDP) with a risk bounding function, we now review their construction and in-

terpretation. We will use the contents of this section to formally define the problems

we solve online.

4.6.1 Definition of CCMDPs with Risk Bounding Functions

A CCMDP with a risk bounding function is a method of modeling a general sequential

decision process where acceptable risk is bounded as a function of reward. Here

we define states, actions, and reward in CCMDPs, and specify restrictions on risk

bounding functions.
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A CCMDP with a risk bounding function is formally defined as the following tuple

⟨𝒮, 𝒞,𝒜, 𝒯 , 𝑅, 𝑠0, 𝑇,∆⟩, where 𝒮 is a set of states, 𝒞 ⊆ 𝒮 is a set of safe states, 𝒜 is a

set of actions available from each state, 𝒯 : 𝒮 ×𝒜× 𝒮 → [0, 1] gives the probability

of transitioning from a state to another by taking an action, 𝑅 : 𝒮 ×𝒜×𝒮 → [0,∞)

gives the reward of entering a state from another by taking an action, 𝑠0 ∈ 𝒞 is a

starting state, 𝑇 is the total number of actions that can be taken in the mission,

and ∆ : [0,∞) → [0, 1] is a risk bounding function which specifies the allowable

probability of failure as a function of expected reward. Define a state history as an

ordered sequence of states and actions,

ℎ0:𝑡 = ⟨𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑡⟩ . (4.1)

The objective is to find a policy 𝜋* : 𝒮 → 𝒜 defined by

𝜋* = arg max
𝜋

E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋]

s.t. 𝑝

(︃
𝑇⋁︁

𝑡=1

𝑆𝑡 /∈ 𝒞
)︃
≤ ∆ (E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋]) ,

(4.2)

where

𝑢(ℎ0:𝑇 ) =
𝑇−1∑︁

𝑡=0

𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1). (4.3)

In our setup, states will encode information about agent position and previous

observations, and safe states will be those where the position is outside the limits of

obstacles. Reward will be determined by a query objective, and the risk bounding

function will constrain how much risk of collision with the environment is acceptable

as a function of the expected query objective over an executed policy.

4.6.2 Interpretation of Risk Bounding Functions

An unconstrained MDP considers failure in the sense that the expected reward de-

creases as failure probability increases. However, the optimal unconstrained policy

may result in a probability of failure that is arbitrarily close to 1, while simultaneously
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placing no constraint on how large the reward must be in this case. This behavior is

undesirable for a mission designer, for whom the expense of collecting and repairing

the vehicle may not be worth the data obtained.

We encode the tolerance for risk of a mission designer through the risk bounding

function, which specifies the allowable probability of failure of a policy as a function

of the expected reward. Our solution method will require that ∆ is a non-decreasing

concave function so that we can make use of certain bounds on probability of failure.

These are not particularly restrictive assumptions; they encode that we will not forbid

a mission from using the same amount of risk as another that achieves less reward,

and that progressively additional reward is worth less additional risk, both of which

are reasonable assumptions for risk tolerance.

Risk bounding functions generalize the notion of a single risk bound that appears

in the chance constrained planning literature [99]. The idea of a functional represen-

tation of failure tolerance is particularly important in exploration, where the increase

in reward with risk is unknown. This idea is illustrated in Figure 4-4, where in (a) a

small increase in risk allows the agent to move closer to the obstacle and leads to a

large increase in reward, while in (b) it has no effect. A mission designer may prefer

a slightly higher risk bound in (a), but a lower risk bound in (b). A risk bounding

function encodes this tolerance without the need to know the relationship between

risk and reward in the environment, only the price in failure probability that the

mission designer is willing to pay for reward.

There does exist a relationship between risk and reward chance constrained mo-

tion planning problems, such as navigating autonomous underwater vehicles or au-

tonomous cars with position uncertainty to specific locations. In those problems,

increases in risk bounds lead to reductions in transit time or required control, as ve-

hicles are able to travel closer to obstacles. It is natural to set the level of permissible

risk based on how damaging loss of the vehicle would be. So long as the risk bound is

not too low, the final waypoint will always be reached, and changing the risk bound

controls how quickly or efficiently the goal is achieved. Adaptive sampling missions

are different because there is not a single goal that will or will not be achieved. The
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Figure 4-4: An agent (white) close to an obstacle (black) with (a) high reward close
to the obstacle and (b) uniform reward. Reward of observation is indicated by the
color of the environment, with brighter colors worth more.

success of a mission depends on the amount of information it gathers, and so success

is directly determined by the reward, which depends on permissible risk. For this

reason, we wish to make the relationship between risk and reward explicit in adaptive

sampling problems.

It is important to note that the chance constraint uses expectations of failure and

reward over the entire policy. Dangerous actions with low reward are permitted if

high reward is achieved on other measurement histories. This is important, because

an unlikely realization of the environment may result in minimum rewards for all

actions, but it may not be possible to execute actions for which the probability of

failure is below ∆(0).

4.7 Preliminaries: The Vulcan Algorithm

In our approach, we will use the previously developed Vulcan algorithm [8], which

we now describe here. In particular, we will use a theorem from Ayton and Williams

[8] which states that a risk bounding function is satisfied for a policy if every a

quantity called the sequence execution risk is bounded for every possible outcome of
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the possible. We will then use this result to prove that the plans produce and execute

online satisfy the risk bounding function by proving that sequence execution risk is

bounded for every possible outcome of the online plans.

Vulcan is based on the Upper Confidence Bound applied to Trees (UCT) algorithm

for MDPs, which uses previous samples of the search tree to guide future samples

towards promising solutions [72]. In UCT, random sampling is performed to build

a search tree. Rollouts are performed from a root state, with each rollout selecting

a single action from a state, choosing a single outcome of the chosen action, and

repeating this process until a leaf state is reached. The action selection rule used by

UCT is that on the first |𝒜| times a state is sampled, actions that have never been

selected are chosen. On subsequent samples, the action is chosen according to

𝑎𝑡 = arg max
𝑎

𝑄(𝑠𝑡, 𝑎) +

 
2 log𝑁𝑠𝑡

𝑁𝑠𝑡,𝑎

. (4.4)

𝑄(𝑠𝑡, 𝑎𝑡) is an empirical average of the reward achieved on rollouts that took action

𝑎𝑡 from 𝑠𝑡, 𝑁𝑠𝑡 is the number of samples taken at state 𝑠𝑡, and 𝑁𝑠𝑡,𝑎𝑡 is the number

of samples of 𝑎𝑡 from 𝑠𝑡.

In order to apply UCT to CCMDPs, the challenge is that MCTS only considers

rollouts individually, and does not explicitly consider expectations of reward over

multiple candidate policies. This means that if the highest reward policy does not

satisfy the risk bound, UCT does not provide a means to estimate the reward of the

next best policy.

To circumvent this issue, Vulcan introduces a sufficient condition for satisfaction

of the risk bounding function that applies to each sequence of states individually.

In this way, satisfaction of the risk bound can be determined for each sequence of

actions on the rollouts that sample them, rather than computing expected reward for

multiple policies. Vulcan defines the sequence execution risk ser of a state history
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ℎ0:𝑡 = ⟨𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑡⟩ as

𝑠𝑒𝑟(ℎ0:𝑇 ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑝(
⋁︀𝑇

𝑡=1 𝑆𝑡 /∈𝒞 | 𝑠0,𝑎0:𝑇−1)
1−𝑝(

⋁︀𝑇
𝑡=1 𝑆𝑡 /∈𝒞 | 𝑠0,𝑎0:𝑇−1)

no failures

0 otherwise

. (4.5)

In this equation, 𝑝
Ä⋁︀𝑇

𝑡=1 𝑆𝑡 /∈ 𝒞
⃒⃒
⃒ 𝑠0, 𝑎0:𝑇−1

ä
is the combined probability that a

failure state is entered by executing 𝑎0 from 𝑠0, executing 𝑎1 from 𝑠1, up to executing

𝑎𝑇−1 from 𝑠𝑇−1. This can be thought of as a measure of risk for the individual state

history. 𝑠𝑒𝑟 is defined to be 0 for state histories that encounter failures, which is a

technical choice made so that actions that lead to failures early in the policy are not

found to violate the risk bound. The denominator of 𝑠𝑒𝑟 is then a normalization, to

account for the outcomes in which 𝑠𝑒𝑟 is 0.

UCT proceeds as in the work of Kocsis and Szepesvári [72], by performing roll-

outs according to the previous action selection rule, and computing 𝑄(𝑠𝑡, 𝑎𝑡). Where

Vulcan differs is that upon reaching a safe state at the planning horizon 𝑇 , it adds an

additional condition that the entire state history in the rollout is checked to satisfy

𝑠𝑒𝑟(ℎ0:𝑇 ) ≤ ∆ (𝑣(ℎ0:𝑇 )) , (4.6)

where 𝑣 is any function that satisfies E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] ≤ E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋]. By the

definition of ser that is defined to be 0 for any histories with a failure, the equation

(4.6) is satisfied for any histories ending in failure states, which is desirable so that

risks with low immediate rewards are allowed if they lead to high rewards later. If

(4.6) is not satisfied or no actions remain from a state, then the last action is deleted

from the search tree and a new sample is taken from 𝑠0.

Theorem 1 of Ayton and Williams [8] shows that any policy found under this

strategy is guaranteed to satisfy the chance constraint. The proof follows from the

fact that the expectation of ser across all state histories in a policy equals the total
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probability of failure, so that

𝑝

(︃
𝑇⋁︁

𝑡=1

𝑆𝑡 /∈ 𝒞
⃒⃒
⃒⃒
⃒ 𝑠0, 𝜋

)︃
= E [𝑠𝑒𝑟 (ℎ0:𝑇 ) | 𝑠0, 𝜋]

≤ E [∆ (𝑣(ℎ0:𝑇 )) | 𝑠0, 𝜋]

≤ ∆ (E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋])

≤ ∆ (E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋])

(4.7)

by Jensen’s inequality for non-decreasing concave ∆. The resultant policy is subop-

timal, but the advantage in this context is that (4.6) can be applied to each state

history without knowledge of the others.

In order to use Vulcan in an online planning framework, we will use the fact that

the executed actions are guaranteed to satisfy the chance constraint if a state history

satisfying (4.6) can be found after any set of observations, even if they have not been

computed explicitly. Therefore, our approach will be to construct the online planning

problems so that the actions selected by solving those problems will necessarily result

in state histories that will satisfy (4.6).

4.8 Modeling Chanced Constrained Adaptive Sam-

pling as a CCMDP

In this section, we describe how we model Problem 2 as a chance-constrained Markov

decision process with a risk bounding function. We detail how we capture agent state,

how we define state transitions, and how we define reward.

The CCMDP constructed here produces a unique state for each observation, so

that an optimal policy can respond to differences in observations. This CCMDP is

introduced so that we can analyze the behavior of the actions that we will executed

online, and show that they satisfy the risk bounding function when averaged over

all outcomes. However, when we solve this problem online, we will construct smaller

CCMDPs with a single state that captures all possible observations at a location.
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4.8.1 State Formulation

Since the agent is never aware of or capable of responding to its true position history,

a state 𝑠𝑡 includes a full history of position distributions. These are characterized by

vectors of mean positions 𝜇0:𝑡 and covariances Σ0:𝑡. In addition, the agent responds

to its entire history of observations o0:𝑡, and whether a failure has occurred, which is

indicated with a binary variable 𝐹𝑡 that is zero when no failure has occurred and one

otherwise, so a state is defined as

𝑠𝑡 = ⟨𝜇0:𝑡,Σ0:𝑡,o0:𝑡, 𝐹𝑡⟩ . (4.8)

The initial state defines the initial mean, covariance, and prior measurements, and

is assumed to be safe. From the perspective of a CCMDP, 𝒞 is the set of all states

where 𝐹𝑡 = 0, and failure states satisfy 𝐹𝑡 = 1. We consider only a single failure

state resulting from each state and action, which encompasses all outcomes in which

𝑥𝑡+1 ∈ ℱ .

4.8.2 State Transitions

It is difficult to compute the true probability of collision of an agent with a Gaussian

state distribution with an arbitrary environment. 𝑥𝑡 is described by a Gaussian

distribution, but when conditioned on the safety of previous states it is not Gaussian

in general, since this suggests that 𝑥𝑘 /∈ ℱ for all 𝑘 ≤ 𝑡. In our CCMDPs, we will

instead conservatively overestimate the value.

A state 𝑠𝑡 encodes distributions over 𝑥0:𝑡, rather than exact values of position.

For appropriate mean and covariances, and from a safe state 𝑠𝑡 to another safe state
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𝑠𝑡+1, probability of transition can be computed as

𝒯 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = 𝑝(o𝑡+1, 𝐹𝑡+1 = 0 | 𝑠𝑡, 𝑎𝑡)

= 𝑝(𝐹𝑡+1 = 0 | 𝑠𝑡, 𝑎𝑡) 𝑝(o𝑡+1 | 𝐹𝑡+1 = 0, 𝑠𝑡, 𝑎𝑡)

= 𝑝 (𝐹𝑡+1 = 0 | 𝑠𝑡, 𝑎𝑡)

×
∫︁
𝑝(o𝑡+1 | o0:𝑡,𝑥0:𝑡+1,F0:𝑡+1 = 0) 𝑝(𝑥0:𝑡+1 | F0:𝑡+1 = 0) 𝑑𝑥0:𝑡+1

= 𝑝 (𝐹𝑡+1 = 0 | 𝑠𝑡, 𝑎𝑡)
∫︁
𝑝(o𝑡+1 | o0:𝑡,𝑥0:𝑡+1) 𝑝(𝑥0:𝑡+1 | F0:𝑡+1 = 0) 𝑑𝑥0:𝑡+1.

(4.9)

where the last line follows from the facts that 𝑠𝑡, and 𝑎𝑡 encode that F0:𝑡+1 = 0, that

the exact values of 𝑥0:𝑡+1 are marginalized out from states, and that

𝑝(o𝑡+1 | o0:𝑡,𝑥0:𝑡+1,F0:𝑡+1 = 0) = 𝑝(o𝑡+1 | o0:𝑡,𝑥0:𝑡+1). (4.10)

The probability from a safe state 𝑠𝑡 to failure state 𝑠𝑡+1 is

𝒯 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = 𝑝(𝐹𝑡+1 = 1 | 𝑠𝑡, 𝑎𝑡). (4.11)

It is useful to think of failure states as being terminal, with no actions available from

them. Formally, we define a single action as available which always leads back to the

same state, netting zero reward.

4.8.3 Reward Function

We model the agent as receiving reward immediately after measurement, when possi-

ble. Upon collision with the environment, which is described by the forbidden region

ℱ , it is unable to perform the measurement, but previous rewards are not lost. For

an underwater vehicle, this case occurs when collision triggers a mission abort and

surface sequence, which takes the vehicle out the field until a diagnostic can be run

and parts can be replaced, but previous measurements are recoverable. Successful

abort sequences after a collision are common for slow vehicles with line of sight to the

surface, and we leave the less common case where data is lost in collision to future
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research.

In practice, this means that when 𝑥𝑡+1 is in the forbidden region, the reward

received is 𝑔(o1:𝑡 | o0). As a result, for failure states 𝑠𝑡+1, we have 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) =

𝑔(o1:𝑡 | o0). Safe states 𝑠𝑡+1 receive zero reward unless they are leaf states, in which

case we have 𝑅(𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇 ) = 𝑔(o1:𝑇 | o0). As a result, for a sequence of safe

states, 𝑢(ℎ0:𝑇 ) = 𝑔(o1:𝑇 | o0).

4.9 Risk Approximations

In this section, we detail how we compute bounds on risk of collision with the envi-

ronment, and then use those bounds to develop bounds for sequence execution risk.

Most of the following development of bounds on risk were previously presented by

Ono and Williams [99], but our use of these expressions to develop bounds on 𝑠𝑒𝑟 are

novel.

Since probability of failure is difficult to compute exactly, we follow Ono and

Williams [99] to develop a conservative bound using Boole’s inequality.

𝑝

(︃
𝑇⋁︁

𝑡=1

𝑆𝑡 /∈ 𝒞
⃒⃒
⃒⃒
⃒ 𝑠0, 𝑎0:𝑇−1

)︃
= 𝑝

(︃
𝑇⋁︁

𝑡=1

𝑥𝑡 ∈ ℱ
⃒⃒
⃒⃒
⃒ 𝑠0, 𝑎0:𝑇−1

)︃

≤
𝑇∑︁

𝑡=1

𝑝 (𝑥𝑡 ∈ ℱ | 𝜇𝑡,Σ𝑡) ,

(4.12)

where

𝑝(𝑥𝑡 ∈ ℱ | 𝜇𝑡,Σ𝑡) =

∫︁

ℱ
𝒩 (𝜇𝑡,Σ𝑡) 𝑑𝑥𝑡. (4.13)

(4.13) remains computationally intensive for arbitrary obstacles, and sampling

based approximations can underestimate the risk. Instead, we use an estimation that

is guaranteed to be conservative by enclosing ℱ with a union of 𝑁𝐹 convex polytopes,

ℱ ⊆
𝑁𝐹⋃︁

𝑖=1

ℱ𝑖, (4.14)

where polytope ℱ𝑖 may be described as an intersection of half-spaces based on each
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of its 𝐸𝑖 edges,

ℱ𝑖 =

{︃
𝑥

⃒⃒
⃒⃒
⃒⃒

𝐸𝑖⋀︁

𝑗=1

ℎ𝑇
𝑖𝑗 𝑥 ≥ 𝑔𝑖𝑗

}︃
, (4.15)

for vector ℎ𝑖𝑗 and scalar 𝑔𝑖𝑗.

Using Boole’s inequality again, we have

𝑝(𝑥𝑡 ∈ ℱ | 𝜇𝑡,Σ𝑡) ≤
𝑁𝐹∑︁

𝑖=1

𝑝(𝑥𝑡 ∈ ℱ𝑖 | 𝜇𝑡,Σ𝑡). (4.16)

Let ℰ𝑖(𝜇𝑡) be the set of half-space indices of ℱ𝑖 that the mean state 𝜇𝑡 lies outside,

ℰ𝑖(𝜇𝑡) :=
{︀
𝑗
⃒⃒
ℎ𝑇

𝑖𝑗 𝜇𝑡 < 𝑔𝑖𝑗
}︀
. (4.17)

Then we bound the probability of collision by the minimum probability of entering

one of the half-spaces in ℰ𝑖(𝜇𝑡):

𝑝(𝑥𝑡 ∈ ℱ𝑖 | 𝜇𝑡,Σ𝑡) ≤ min
𝑗∈ℰ𝑖(𝜇𝑡)

𝑝(ℎ𝑇
𝑖𝑗 𝑥𝑡 ≥ 𝑔𝑖𝑗), (4.18)

𝑝(ℎ𝑇
𝑖𝑗𝑥𝑡 ≥ 𝑔𝑖𝑗) =

1

2
+

1

2
erf

Ñ
ℎ𝑇

𝑖𝑗𝜇𝑡 − 𝑔𝑖𝑗»
2ℎ𝑇

𝑖𝑗Σ𝑡ℎ𝑖𝑗

é
. (4.19)

The intuition for (4.18) is given in Figure 4-5, while (4.19) follows from a Gaussian

cumulative density function. A convex decomposition of the forbidden regions can be

computed prior to the start of planning.

In order to use these bounds on probability of failure within sequence execution

risk, we define 𝑝𝑓 as the sum of bounds on probabilities of collision with each obstacle

in the environment,

𝑝𝑓 (𝑠𝑡) =

𝑁𝐹∑︁

𝑖=1

min
𝑗∈ℰ𝑖(𝜇𝑡)

𝑝(ℎ𝑇
𝑖𝑗𝑥𝑡 ≥ 𝑔𝑖𝑗). (4.20)

Then it follows from (4.5), (4.12), and (4.16) that

𝑠𝑒𝑟(ℎ0:𝑇 ) ≤
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

. (4.21)
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Figure 4-5: Probability of collision with a convex obstacle is less than the minimum
probability of crossing a line defined by its edges.

The approach we take is then to sample over potential trajectories, and verify that

each potential trajectory satisfies

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆ (𝑣(ℎ0:𝑇 )) (4.22)

for some choice of function 𝑣.

4.10 Solution Procedure

Even using Vulcan, Problem 2 is too large to find an explicit solution, as Vulcan

requires every outcome of the policy to be sampled in order to guarantee the chance

constraint is satisfied. Instead, we will construct plans online that only condition on

success or failure, in which each state corresponds to a choice of actions, and will

include all possible observations.

After receiving an observation, we replan from state 𝑠𝑡, constructing a CCMDP

starting at 𝑠𝑡 that solves for a plan conditioned on the observations seen so far. In

the online CCMDP, action 𝑎𝑘 results in failure with probability 𝑝𝑓 (𝑠𝑘+1), or a single

success state, as opposed to distinct states for each observation as in Section 4.8.1.

The reward for entering the safe state is bounded by the expected reward from all

observations resulting from the sequence of actions found. The first action of the

policy is executed, then replanning is performed from the true 𝑠𝑡+1. We only ever
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produce unconditional plans, because the mission ends immediately after any failure

that occurs, and only one success state follows each action. However, the plans

are constructed to depend on all observations so far, and so the actions selected are

adaptive to the observations that have been received. We can then determine whether

the risk bounding function is satisfied for the expected risk and expected reward over

all possible executions.

Online planning is a standard technique. Planning this way allows significantly

smaller problems to be solved, with the disadvantages that the executed actions are

suboptimal, and that computational effort must be expended online. The innovation

in our approach is that we construct our online plans to guarantee that Vulcan’s

condition (4.6) must be satisfied for every outcome that occurs, so that the risk

bound is necessarily satisfied. This involves carefully selecting the bounds we impose

on the online CCMDPs, and guaranteeing that a solution will always exist for the

online CCMDP that we construct. We show in this section that this can be done.

4.10.1 Construction of Online CCMDPs

We will construct the online CCMDPs so that outcomes of an action that do not

result in failure are contained in the same state. This means that all actions will

have at most two outcomes in the online CCMDPs; a failure state where execution

immediately ends, and a success state where the action is taken and an observation is

received. The reward for entering success states will be based on the expected reward

across the different observations that could be received.

Consider planning online from a state 𝑠𝑡, after having received past observations

o0:𝑡. Like in Chapter 2, a sequence of safe states up to the plan horizon 𝑇 will receive

reward E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] for value and probability objectives, while information

objectives receive E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] + 𝑔(o1:𝑡 | o0).

For sequences of states ending in failure states 𝑠𝑡′ , meanwhile, value and proba-

bility objectives receive reward E [𝑔(o𝑡+1:𝑡′ | o0:𝑡) | o0:𝑡], while information objectives

receive E [𝑔(o𝑡+1:𝑡′ | o0:𝑡) | o0:𝑡] + 𝑔(o1:𝑡 | o0). Since all other states receive no reward,

these results are also the values of 𝑢(ℎ0:𝑇 ) and 𝑢(ℎ0:𝑡′+1).
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The observations o𝑡 are drawn from the distribution at the location 𝜇𝑡. This

approximation produces a small amount of error under the reasonable assumption

that position distribution length scales are small compared to length scales of spatial

correlations in the model.

The reward functions described here do not differ substantially from the previous

chapter, but we have described them to contrast them against the constraints we will

impose in the online CCMDPs that are described in this section.

4.10.2 Basic Chance Constraint Satisfaction

In this section, we show how placing constraints on the online CCMDPs ensures that

the chance constraint is satisfied over all possible executions. We wish to ensure

that the chance constraint is satisfied, meaning that the expected risk across all plan

executions is bounded as a function of the expected reward across all executions.

When we plan online from a state 𝑠𝑡, the agent has already selected actions 𝑎0 through

𝑎𝑡−1 and observed the outcomes of those actions by receiving observations o1:𝑡. In

doing so, the agent has moved through a sequence of states that were modeled by the

fully conditional CCMDP in Section 4.8. But by performing online planning, we then

are not generating the states 𝑠𝑡+1:𝑇 in the conditional CCMDP, but instead using a

CCMDP with a smaller state space.

The key to enforcing the chance constraint is realizing that placing a bound of

the form (4.22) on the online CCMDP and solving for an unconditional plan 𝑎𝑡:𝑇−1

will also place a bound on the sequence execution risk of all states that could be

reached in the conditional CCMDP by following 𝑎𝑡:𝑇−1 from 𝑠𝑡. After 𝑡 actions, an

online CCMDP is constructed for each 𝑠𝑡 that could be reached, and we can view the

actions selected online up to 𝑠𝑡, followed by the actions found by online CCMDPs at

state 𝑠𝑡 as a policy in the conditional CCMDP. We can analyze the properties of that

policy, and construct the online CCMDPs so that the chance constraint is necessarily

satisfied.

To place bounds on the online CCMDPs, we can select an appropriate function 𝑣,

so that (4.6) holds for all such o𝑡+1:𝑇 along with the o1:𝑡 that were already observed. By
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constructing each online CCMDP to satisfy this condition, we guarantee the chance

constraint without needing to solve the conditional CCMDP.

Let us now demonstrate this more concretely, and consider choices of 𝑣 that we

could use. An intuitive choice when planning in the online CCMDP from state 𝑠𝑡

would be to bound the sequence execution risk using the reward that is computed

for states in the online CCMDP. For each leaf state, this would mean that when the

objective is a value or probability objective, the state histories in the online CCMDP

satisfy ∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆ (E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡]) , (4.23)

while for information objectives they satisfy

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆ (E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] + 𝑔(o1:𝑡 | o0)) . (4.24)

If these conditions are not satisfied, we delete the last state of a state sequence from

the search tree, so that search is only performed over those states where the conditions

are satisfied. Among those plans where these conditions are satisfied, we select the

one with the highest expected reward.

Now let us consider a state history in the fully conditional CCMDP that was

reached by following 𝑎𝑡:𝑇−1 from 𝑠𝑡, and received some observations o1:𝑡. The sequence

execution risk of that state history is still bounded by
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)/
Ä
1−∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)
ä
,

as computed in the online CCMDP, because the probability of entering a failure state

is the same in the fully conditional CCMDP and online CCMDP. For that sequence,

we need to demonstrate that

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆ (𝑣(ℎ0:𝑇 )) (4.25)

for some 𝑣(ℎ0:𝑇 ) such that E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] ≤ E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋] where 𝑢(ℎ0:𝑇 ) =

𝑔(o1:𝑇 | o0). But this necessarily holds, because we showed in Chapter 2 that

Eo1:𝑇 |o0

[︀
Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] | o0

]︀
= Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0] (4.26)
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for value and probability objectives, while

Eo1:𝑇 |o0

[︀
Eo𝑡+1:𝑇 |o0:𝑡 [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] + 𝑔(o1:𝑇 | o0) | o0

]︀

= Eo1:𝑇 |o0 [𝑔(o1:𝑇 | o0) | o0] (4.27)

for information objectives. Therefore the condition we require is satisfied, because

E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] = E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋] when using

𝑣(ℎ0:𝑇 ) = E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] , value or probability objectives

𝑣(ℎ0:𝑇 ) = E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] + 𝑔(o1:𝑡 | o0), information objectives.
(4.28)

Example

Let us make this explicit using our previous example, where we had a value objective

for which 𝑔(o1:𝑇 | o0) =
∑︀𝑇

𝑡=1 o𝑡. Execution satisfies the chance constraint if, for each

safe state history in the conditional CCMDP, we can show that

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆ (𝑣(ℎ0:𝑇 )) ,

where E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] ≤ E
î∑︀𝑇

𝑡=1 o𝑡

⃒⃒
⃒o0, 𝜋

ó
. In the online CCMDP, we produce a

plan from state 𝑠𝑡 where every safe state history,

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
.

If this constraint holds for the online plan that is generated in response to each o1:𝑡,

then we have that for each state history in the conditional CCMDP, that

𝑠𝑒𝑟(ℎ0:𝑇 ) ≤
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
.
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Since Eo1:𝑇 |o0

î
Eo𝑡+1:𝑇 |o0:𝑡

î∑︀𝑇
𝑘=1 o𝑘 | o0:𝑡

ó
| o0

ó
= Eo1:𝑇 |o0

î∑︀𝑇
𝑘=1 o𝑘 | o0

ó
, then we have

that E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] ≤ E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋], and Theorem 1 of Ayton and Williams [8]

guarantees the chance constraint is satisfied. We did not verify that 𝑠𝑒𝑟(ℎ0:𝑇 ) ≤
∆ (𝑢(ℎ0:𝑇 )) = ∆

Ä∑︀𝑇
𝑡=1 o𝑡

ä
for every state history in the conditional CCMDP, and

this turns out to be unnecessary.

For example, let us say that the agent observed o1 = 0 in the motivating exam-

ple, and we plan online from state 𝑠1, as in Figure 4-3a. For the safe state history

⟨𝑠0, 𝑎0, 𝑠1, 𝑎11, 𝑠2⟩, we have

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0

E [o1 + o2 | o1] = 0
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0 ≤ 0 = ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
.

Therefore, the conditions above hold. For the safe state history ⟨𝑠0, 𝑎0, 𝑠1, 𝑎21, 𝑠2⟩, we

have

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0.1

E [o1 + o2 | o1] = 0
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0.1̄ > 0 = ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
,

so the conditions above are violated. As a result, action 𝑎11 is selected after receiving

o1 = 0.

Now let’s consider that the agent observed o1 = 1. For the safe state history
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⟨𝑠0, 𝑎0, 𝑠1, 𝑎11, 𝑠2⟩,

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0

E [o1 + o2 | o1] = 1
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0 ≤ 0.03 = ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
.

so the conditions above hold. For the safe state history ⟨𝑠0, 𝑎0, 𝑠1, 𝑎21, 𝑠2⟩, we have

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0.1

E [o1 + o2 | o1] = 3.1̄
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0.1̄ > 0.093̄ = ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
.

so the conditions above is still violated. As a result, action 𝑎11 is selected.

Finally, consider that the agent observed o1 = 3. For the safe state history

⟨𝑠0, 𝑎0, 𝑠1, 𝑎21, 𝑠2⟩,

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0.1

E [o1 + o2 | o1] = 5.5̄
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0.1̄ < 0.16̄ = ∆

(︃
E

[︃
𝑇∑︁

𝑘=1

o𝑘

⃒⃒
⃒⃒
⃒ o0:𝑡

]︃)︃
.

The conditions above are satisfied, and 𝑎21 results in higher reward than 𝑎11, so 𝑎21 will

be selected.

Overall, performing online planning in this way will execute 𝑎11 after observing

o1 = 0 or 1, and 𝑎21 after observing o1 = 3. The expected reward of this execution is

2.52, and the risk taken is 0.004, which is less than ∆(2.52) = 0.0756, so the chance

constraint is satisfied overall.
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4.10.3 Less Conservative Chance Constraint Satisfaction

In the previous section we showed that the solutions to the online CCMDPs that we

construct necessarily result in execution that satisfies the chance constraint. However,

we also showed through the example above that actions executed can be suboptimal.

Here, we show how to find a condition that results in behavior that is less suboptimal

for certain problems.

The reason for suboptimality in the example above, is that in the optimal policy,

observations that follow o1 = 2 generate significant reward. That reward is enough

to justify the additional risk taken when o1 = 1, even though the rewards received

from taking action 𝑎21 after observing o1 are not enough to justify the reward alone.

The choice of 𝑣 made above may not satisfy (4.22) when observations are low, even

if there is enough reward on other branches to justify the risk.

Instead, for value or probability objectives for which E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] can

be written in the form

E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] =
𝑇∑︁

𝑘=1

E [𝑔𝑘(o0:𝑘) | o0:𝑘] (4.29)

for some functions 𝑔𝑘(o0:𝑘), we are able to share reward between different branches of

online CCMDP when determining if risk is satisfied. An examples is a value objective

with 𝑔(o𝑡+1:𝑇 | o0:𝑡) =
∑︀𝑇

𝑘=1 o𝑘, for which 𝑔𝑘(o0:𝑘) = o𝑘.

When solving the online CCMDPs from 𝑠𝑡, we require that safe state histories

satisfy

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆

(︃
𝑇∑︁

𝑘=𝑡+1

E [𝑔𝑘(o0:𝑘) | o0:𝑡] +
𝑡∑︁

𝑘=1

E [𝑔𝑘(o0:𝑘) | o0:𝑘−1]

)︃
. (4.30)

The intuition behind (4.30) is to use expected reward computed with fewer observa-

tions than have actually been taken. This way, when low reward is achieved but it

was possible to achieve greater reward on unobserved outcomes, the reward passed

into the risk bounding function will be increased, allowing greater risk. Note that in

(4.30), each expectation on the right depends on o0:𝑘−1 rather than the observations
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o0:𝑘. In this way, checking whether a state history satisfies the conditions necessary

to satisfy the risk bound depends upon an observation o𝑘 not directly in the state

history.

This corresponds to the following choice of 𝑣

𝑣(ℎ0:𝑡) =
𝑇∑︁

𝑘=𝑡+1

E [𝑔𝑘(o0:𝑘) | o0:𝑡] +
𝑡∑︁

𝑘=1

E [𝑔𝑘(o0:𝑘) | o0:𝑘−1] (4.31)

To show that the risk bound is satisfied, we must show that E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] ≤
E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋]. Here, the expectation is taken with respect to all observations that

would be received by executing the first actions of online plans found up to time step

𝑡, then executing the actions 𝑎𝑡:𝑇−1 found by the online CCMDPs at state 𝑠𝑡. The

condition on expectation holds because the expectation of 𝑣(ℎ0:𝑇 ) conditioned on o0

is the same as the expectation of 𝑢(ℎ0:𝑇 ) conditioned on o0. More precisely,

E [𝑣(ℎ0:𝑇 ) | 𝑠0, 𝜋] = E

[︃
𝑇∑︁

𝑘=𝑡+1

E [𝑔𝑘(o0:𝑘) | o0:𝑡] +
𝑡∑︁

𝑘=1

E [𝑔𝑘(o0:𝑘) | o0:𝑘−1]

⃒⃒
⃒⃒
⃒ o0

]︃

= E

[︃
𝑇∑︁

𝑘=𝑡+1

E [𝑔𝑘(o0:𝑘) | o0:𝑡] +
𝑡∑︁

𝑘=1

E [𝑔𝑘(o0:𝑘) | o0:𝑘]

⃒⃒
⃒⃒
⃒ o0

]︃

= E [E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡] | o0]

= E [𝑔(o1:𝑇 | o0) | o0]

= E [𝑢(ℎ0:𝑇 ) | 𝑠0, 𝜋]

(4.32)

and the chance constraint is satisfied. The second line follows from the fact that the

outer expectation is over all observations that could be received following 𝜋 in the

conditional CCMDP. The expectation over the policy of an expectation conditioned

on o0:𝑘 is the same as the expectation over the policy of an expectation conditioned

on o0:𝑘−1.

Unlike (4.23), it is not necessarily true that sequence execution risk is bounded by

the risk bounding function applied to the observations that occur on the state history

in (4.30), so that reward can be shared between different branches.
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Example

To make this concrete, consider the example of maximizing the observations received.

The form of (4.30) is then

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

≤ ∆

(︃
𝑇∑︁

𝑘=𝑡+1

E [o𝑘 | o0:𝑡] +
𝑡∑︁

𝑘=1

E [o𝑘 | o0:𝑘−1]

)︃
.

Let us say that the agent observed o1 = 0 in the motivating example. For the safe

state history ⟨𝑠0, 𝑎0, 𝑠1, 𝑎11, 𝑠2⟩, we have

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0

E [o1] = 1.6

E [o2 | o1] = 0
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0 < 0.048 = ∆

(︃
𝑇∑︁

𝑘=𝑡+1

E [o𝑘 | o0:𝑡] +
𝑡∑︁

𝑘=1

E [o𝑘 | o0:𝑘−1]

)︃
.

so action 𝑎11 is permissible. Note that E [o1] averages the possible values of o1, ignoring

the actual observation o1 that as received. On the other hand, for the safe state history

⟨𝑠0, 𝑎0, 𝑠1, 𝑎21, 𝑠2⟩ we find

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0.1

E [o1] = 1.6

E [o2 | o1] = 0
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0.1̄ > 0.048 = ∆

(︃
𝑇∑︁

𝑘=𝑡+1

E [o𝑘 | o0:𝑡] +
𝑡∑︁

𝑘=1

E [o𝑘 | o0:𝑘−1]

)︃
.

so that action 𝑎21 is not permissible, and action 𝑎11 is selected.

On the other hand, let us say that the agent observed o1 = 1 in the motivating
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example. For the safe state history ⟨𝑠0, 𝑎0, 𝑠1, 𝑎21, 𝑠2⟩, we have

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0.1

E [o1] = 1.6

E [o2 | o1] = 2.1̄
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0.1̄ < 0.1113̄ = ∆

(︃
𝑇∑︁

𝑘=𝑡+1

E [o𝑘 | o0:𝑡] +
𝑡∑︁

𝑘=1

E [o𝑘 | o0:𝑘−1]

)︃
.

so the conditions above is valid, and as a result, action 𝑎21 is selected as the highest

reward action.

For completeness, we can also consider the case where o1 = 3. For the safe state

history ⟨𝑠0, 𝑎0, 𝑠1, 𝑎21, 𝑠2⟩, we have

𝑇∑︁

𝑡=1

𝑝𝑓 (𝑠𝑡) = 0.1

E [o1] = 1.6

E [o2 | o1] = 2.5̄
∑︀𝑇

𝑡=1 𝑝𝑓 (𝑠𝑡)

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠𝑡)

= 0.1̄ < 0.1246̄ = ∆

(︃
𝑇∑︁

𝑘=𝑡+1

E [o𝑘 | o0:𝑡] +
𝑡∑︁

𝑘=1

E [o𝑘 | o0:𝑘−1]

)︃
.

so the conditions above is valid, and as a result, action 𝑎21 is selected as the highest

reward action. We have therefore recovered execution of the optimal policy in the

conditional CCMDP with our online plans, which we have already verified satisfies

the risk bounding function.

4.10.4 Guarantees on Existence of Policy

The above strategy guarantees that a policy can be executed that follows the risk

bounding function, assuming that a plan that satisfies (4.30) can be computed online

in response to all measurements. This is a non-trivial assertion because a solution that

satisfies the constraint may not exist, and in this section we introduce an additional
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condition that ensures this is always possible.

Consider planning online from state 𝑠𝑡, with a plan that satisfies (4.30) and in-

cludes 𝑎𝑡. Define a worst case state history 𝑤(𝑎𝑡) as any safe state history 𝑤(𝑎𝑡) =¨
𝑠
𝑤(𝑎𝑡)
0 , 𝑎

𝑤(𝑎𝑡)
0 , 𝑠

𝑤(𝑎𝑡)
1 , . . . , 𝑠

𝑤(𝑎𝑡)
𝑛

∂
that satisfies 𝑠𝑤(𝑎𝑡)

0:𝑡 = 𝑠0:𝑡, 𝑎
𝑤(𝑎𝑡)
0:𝑡 = 𝑎0:𝑡, and

∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠

𝑤(𝑎𝑡)
𝑡 )

1−∑︀𝑇
𝑡=1 𝑝𝑓 (𝑠

𝑤(𝑎𝑡)
𝑡 )

≤ ∆

(︃
𝑡+1∑︁

𝑘=1

E [𝑔𝑘(o0:𝑘) | o0:𝑘−1]

)︃
. (4.33)

By requiring that any worst case state history exists for the chosen 𝑎0 from the initial

state 𝑠0, the fact that a solution always exists to all online CCMDPs in this chapter

is guaranteed.

To see this, assume that when planning from state 𝑠𝑡 that a plan is found that

satisfies (4.30) and 𝑤(𝑎𝑡) exists. 𝑤(𝑎𝑡) is intuitively a plan that satisfies Vulcan’s con-

dition, even without any additional reward from future observations. When planning

online from any possible 𝑠𝑡+1, after observing any o𝑡+1, following the actions 𝑎𝑤(𝑎𝑡)
𝑡+1:𝑇−1

must therefore satisfy (4.30) as well, even if all measurements result in zero expected

reward.

The actions 𝑎𝑤(𝑎𝑡)
𝑡+1:𝑇−1 from any 𝑠𝑡+1 is also a worst case state history for 𝑎𝑤(𝑎𝑡)

𝑡+1 ,

which means that the worst case state history could be followed until the end of

execution, guaranteeing that (4.30) and (4.33) can always be satisfied regardless of

measurements.

When then planning online from 𝑠𝑡+1, usually the action selected 𝑎𝑡+1 ̸= 𝑎
𝑤(𝑎𝑡)
𝑡+1 . In

this case, 𝑎𝑡+1 is only permitted if 𝑤(𝑎𝑡+1) can be found, which guarantees the risk

bounding function can be satisfied regardless of future measurements from 𝑎𝑡+1 by

the same argument.

To summarize, the worst case state history is typically not executed, but we re

quire that one exists. This is a weaker condition than enforcing that the solution to

the online CCMDP must be a worst case state history. Furthermore, the existence

of a worst case state history implies a worst case state history exists when planning

after the next measurement. So long as a worst case state history exists at state 𝑠0,

one necessarily exists for all 𝑠𝑡, and so a solution to all online CCMDPs necessarily
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exist.

Practically, the existence of a worst case state history can be checked after sam-

pling 𝑎𝑡 when planning from 𝑠𝑡. If one cannot be found, the action is immediately

deleted from the search space. Worst case state histories can often be found by greed-

ily selecting the minimum risk action from the action space. In our implementation,

if this is not a valid worst case state history, none is assumed to exist.

4.11 Algorithm Description

Our strategy requires solving 𝑇 online CCMDPs, and we provide an algorithmic

description in this section. Algorithm 13 provides an overview of online execution

using online CCMDPs. Algorithm 13 operates on an agent described through its

initial observations and position, and takes a total planning horizon 𝑇 , plus a planning

time limit 𝜏 to use when solving each online CCMDP. The current state of the agent,

on line 2, captures the observations so far, the mean and covariances of positions

so far, and that the current state is a safe state. If the current state were not safe,

planning would not be proceeding. The 𝑇 online CCMDPs are constructed and solved

in each of the loops on line 3. The best actions in the online CCMDPs are executed,

and the next observation o𝑡+1 is observed if the action successful.

Algorithm 13: ExecuteRiskBoundedPolicy
Input: Planning horizon 𝑇 , planning time limit 𝜏 , initial observations o0,

initial agent position distribution 𝜇0, Σ0

1 for 𝑡 from 0 to 𝑇 − 1
2 𝑠𝑡 ← state with o0:𝑡, 𝜇0:𝑡, Σ0:𝑡, and 𝐹𝑡 = 0
3 𝑎← RiskBoundedMCTS(𝑠𝑡, 𝑇 , 𝜏)

4 Execute 𝑎
5 if 𝑎 results in safe state then
6 observe o𝑡+1

7 else
8 end mission

Algorithm 14 describes the MCTS strategy for solving the online CCMDPs. It

operates on a state 𝑠𝑡 at time step 𝑡, and requires a planning horizon 𝑇 and a time to
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use for planning 𝜏 . Each online CCMDP is solved by repeatedly performing rollouts

from 𝑠𝑡 up to a time limit of 𝜏 , in the loop on line 1. A search tree is built from 𝑠𝑡

according to the action selection rules of the UCT algorithm.

Lines 5 through 15 provide rules for deleting actions in search tree, so that the

plan found from 𝑠𝑡 satisfies Vulcan’s conditions for chance constraint satisfaction.

Upon reaching the planning horizon, (4.30) is verified in the if statement on line 5,

and the previous action is deleted if it is not satisfied. Similarly, if no actions remain

at a state after all actions leading to it are deleted on line 8, then the previous action

is deleted. On line 12, after selecting action 𝑎𝑡, 𝑤(𝑎𝑡) is found and (4.33) is verified.

If this condition fails, the immediately preceding action is also deleted.

Lines 16 through 21 define immediate rewards for states. These are assigned at

leaf states, regardless of whether they result in failure. Other states receive zero

immediate reward.

The rollout continues on line 22, with actions selected according to UCT’s se-

lection rule, and child states constructed from each action. In the online CCMDPs

constructed here, the states represent all observations that could occur, or failure.

A failure state is generated if a random number is below the probability of failure

from the selected action 𝑎, otherwise a success state is generated. The next state is

sampled, returning the reward achieved from all states below on the rollout. None

could be returned if the rollout resulted in actions being deleted by violation of the

constraints we impose. If it is note, the estimate for �̂� is updated at the state, and

counts in the number of times samples are taken are incremented.

4.12 Experiments

We examine our algorithm in two different ways. First, we run the algorithm on

real bathymetry data and a simulated measurement field. We show our algorithm is

able to move towards high reward locations based on the data it gathers, and take

dangerous actions when they are expected to yield high reward. We then verify that

the risk bounding function is satisfied through Monte Carlo simulations over randomly
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Algorithm 14: RiskBoundedMCTS
Input : State 𝑠𝑡, planning horizon 𝑇 , max planning time 𝜏
Output: Next action to execute

1 loop until planning time 𝜏 reached
2 SampleState(𝑠𝑡)
3 return arg max𝑎 �̂�(𝑠𝑡, 𝑎)

4 Procedure SampleState(𝑠𝑡′)
5 if 𝑡′ = 𝑇 , 𝑠𝑡′ is a safe state, and (4.30) not satisfied then
6 delete 𝑎𝑡′−1

7 return None
8 if no actions remain at 𝑠𝑡′ then
9 delete 𝑎𝑡′−1

10 return None
11 if 𝑡′ = 𝑡+ 1 then
12 𝑤 ← greedily found sequence of min risk states
13 if (4.33) not satisfied then
14 delete 𝑎𝑡
15 return

16 if 𝑠𝑡′ is a failure state then
17 return E [𝑔(o𝑡+1:𝑡′ | o0:𝑡) | o0:𝑡]
18 else if 𝑡′ = 𝑇 then
19 𝑟 ← E [𝑔(o𝑡+1:𝑇 | o0:𝑡) | o0:𝑡]
20 else
21 𝑟 ← 0

22 if 𝑡′ ̸= 𝑇 then

23 𝑎← arg max𝑎𝑡′
�̂�(𝑠𝑡′ , 𝑎𝑡′) +

…
2 log𝑁𝑠𝑡′
𝑁𝑠𝑡′ ,𝑎𝑡′

24 if Random(0, 1) < 𝑝𝑓 (𝑠𝑡′+1) then
25 𝑠𝑡′+1 ← child state with 𝑥𝑡′+1 = 𝑥𝑡′ + 𝑑(𝑎), Σ𝑡′+1 = Σ𝑡′ + Σ𝑤,

𝐹𝑡′+1 = 1
26 else
27 𝑠𝑡′+1 ← child state with 𝑥𝑡′+1 = 𝑥𝑡′ + 𝑑(𝑎), Σ𝑡′+1 = Σ𝑡′ + Σ𝑤,

𝐹𝑡′+1 = 0 representing all o𝑡′+1

28 𝑞 ← SampleState(𝑠𝑡′+1)
29 if 𝑞 is not None then

30 �̂�(𝑠𝑡′ , 𝑎)← 𝑁𝑠𝑡′ ,𝑎 �̂�(𝑠𝑡′ ,𝑎)+𝑞

𝑁𝑠𝑡′ ,𝑎+1

31 𝑁𝑠𝑡′ ,𝑎
← 𝑁𝑠𝑡′ ,𝑎

+ 1
32 𝑟 ← 𝑟 + 𝑞
33 𝑁𝑠𝑡′

← 𝑁𝑠𝑡′
+ 1

34 return 𝑟
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instantiated Gaussian Processes.

To test the performance of our algorithm in realistic scenarios, we convexify true

bathymetric data to produce forbidden regions, and simulate a temperature measure-

ment field. The location chosen was East of Boston Harbor, from -70.890 to -70.876

degrees longitude, and 42.344 to 42.355 degrees latitude, provided by NOAA survey

H10992 [97]. The mission simulated an autonomous underwater vehicle operating at

a constant 15 meters depth, with an objective to maximize the sum of its temperature

measurements, which are taken with negligible noise.

15 meter depth contours were used as obstacle boundaries. In each case, the agent

started at a location -70.8816 degrees longitude and 42.3505 degrees latitude with zero

position uncertainty. The environment was modeled as a single attribute Gaussian

process with a radial basis function kernel. The true value of the measured field was

16 at the starting location, and increased by 1 for each km West or South. Each

action moved the vehicle 50 meters in one of the eight compass directions. We used

the following parameters: 𝑇 = 20, 𝜏 = 60 sec, Σ0 = 0𝐼 m2, Σ𝑤 = 12𝐼 m2, 𝑚(𝑥) =

16, 𝑘(𝑥, 𝑥′) = 1.25 exp
¶Ä
−‖𝑥− 𝑥′‖2 /(2× (200 m)2)

ä©
.

In this experiment, the Gaussian process environment model meant the observa-

tions could be arbitrarily low, and this makes it difficult to construct a concave risk

bounding function that is valid over all possible values of the reward. Furthermore,

we wish to avoid missions where the agent repeatedly samples a single location that

is known to be high. In order to avoid handling very low rewards and repeatedly

sampling the same state, the objective that the agent maximizes is set to be

E

[︃
𝑇∑︁

𝑡=1

(o𝑡 − 12.5) 1{o𝑡 ≥ 12.5, ‖𝜇𝑡 − 𝜇𝑡′‖ > 12.5 m ∀𝑡′ < 𝑡} | o0

]︃
,

meaning that observations below 12.5, or taken at locations with a mean location

within 12.5 meters of a previous observation are assigned zero reward, otherwise the

reward is the observation minus 12.5.
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4.12.1 Tests on Controlled Environments

In Figure 4-6 we test this scenario using three different risk bounding functions. The

risk bounding functions were selected primarily to show differences in behavior, but

we note that they lead to realistic acceptable failure rates on the order of tenths of

a percent. Figure 4-6 (a) shows a trajectory resulting from a risk bounding function

∆(𝑥) = 0.0003𝑥. The measurements are high enough to warrant movement into the

South-West of the map by the most direct route possible, which requires passing

between multiple obstacles. In Figure 4-6 (b) a lower risk bounding function of

∆(𝑥) = 0.0002𝑥 does not allow movement close to obstacles until there is enough

certainty that high measurements lie to the South-West. In addition, the route taken

uses a thicker channel, with less overall probability of failure. Finally, in Figure 4-6

(c), the risk bounding function ∆(𝑥) = 0.0001𝑥 is too strict to allow the vehicle to

pass close to obstacles, and instead it moves up and down the border of the obstacles

without moving in too close.

4.12.2 Monte Carlo Tests

In order to experimentally verify that the risk bounding function is satisfied across a

policy, we ran Monte Carlo simulations with random measurements following a known

Gaussian Process, and verified that the failure rate was less than the risk bounding

function applied to the average reward. In the simulations, true (disturbed) locations

were generated, and measurements were drawn from a Gaussian Process at the true

locations, while the algorithm reasoned over measurements at mean locations. The

environment was the same as the previous test.

The low probability of failure in the previous test meant that uncertainty in a

Monte Carlo derived failure rate would be comparable to the true failure rate. To

increase certainty in the simulation results, we increased the covariance of the agent,

leading to a higher probability of failure. In order to speed up simulations and

emphasize risk, we also decreased the planning horizon and planning time, and allowed

the agent to move further with every action. The following parameters were changed:
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Figure 4-6: Output trajectories with a single true environment and multiple risk
bounding functions.
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𝑛 = 8, 𝜏 = 2 sec, Σ𝑤 = 60𝐼 m2, 𝑙𝑚𝑖𝑛 = 25 m. The distance traveled by every action

was changed to 100 m. Failure was evaluated with respect to the convexified obstacles,

so the failure rate does not account for conservatism due to convexification. 10,000

simulations were run with a risk bounding function of ∆(𝑥) = 0.001𝑥. The mean

function was the true environment of the previous experiment so that measurements

would typically be biased towards dangerous actions.

The expected cumulative reward was 64.9, which permitted a failure rate of 0.0649

under the risk bounding function, while the measured failure rate was 0.0208. There

was conservatism in the policy, as only 32% of permitted risk was used. The con-

servatism can be attributed to three major sources. First and most importantly, our

strategy averages reward and risk across outcomes, but does not move all allowed

probability of failure from low risk to high risk outcomes. In particular, some envi-

ronments resulting from the GP have high reward to the East where there are few

obstacles. Our approach is not fully capable of moving all allowed risk to cases where

high rewards are near obstacles. The additional sources of conservatism are the use of

Boole’s inequality to overestimate the probability of failure and the underestimation

of the reward function.

To confirm that conservatism was reduced when danger exists in all directions,

we reran the experiment with Σ𝑤 = 100𝐼 m2 and additional obstacles introduced to

the North and East. In this case the expected cumulative reward was 26.4, which

permitted a failure rate of 0.0264, while the measured failure rate was 0.0165. In this

case, 63% of available risk was used.

4.13 Summary

In this chapter, we developed a method of executing a mission where the probability of

failure is bounded as a convex function of expected reward. By applying Monte Carlo

tree search to a series of easily computable online problems, we ensure that an action is

found in an anytime manner. We derived constraints that enforce a chance constraint

without the need to plan over all outcomes and which guarantee online planning is
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possible. Simulation results on true bathymetry show our algorithm trades off risk

against reward intuitively, taking dangerous actions only when justified by the reward,

while Monte Carlo simulations verify that the chance constraint is satisfied.
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Chapter 5

The Directed Acyclic Gaussian

Process (AcyGP) Model

Query-driven adaptive sampling is performed in environments with complex interde-

pendencies between observable variables. For example, the probability of presence of

a hydrocarbon seep at a location is strongly dependent upon whether other bathy-

metric features like mounds or pockmarks are present at that location. In order to

generate accurate probability distributions over variables at unobserved locations, we

desire an environment model that will allow those relationships to be modeled, and

learned when they are unknown. In order to allow experts to encode known relation-

ships between variables, the interdependencies should be expressed in an intuitive

manner.

In this chapter, we propose the AcyGP model as the environment prediction model

for query-driven adaptive sampling. The AcyGP model extends existing multi-output

Gaussian process methods by encoding the relationships between different attributes

through a directed acyclic graph. In this way, the AcyGP model combines the ca-

pability of directed acyclic graphs to perform accurate prediction with limited data,

with the capability of Gaussian processes to capture spatio-temporal correlations.

In the AcyGP model, the relationships between attributes are simple and inter-

pretable, which allows an expert user to specify qualitative relationships that must

appear in the model, or exclude certain relationships from consideration. Unknown
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dependencies between variables can be automatically discovered from data, by a

search procedure that finds the structure that best fits the data. We show that

by capturing the dependency structure of the environment, the AcyGP model out-

performs existing multi-output Gaussian process models on a variety of prediction

domains. In addition, we show that the learned structure has a physically meaningful

interpretation.

5.1 Motivation

One of the key principles of any adaptive sampling procedure is that variables in

the environment are correlated. These correlations allow the sampling agent to iden-

tify promising places to observe, based on the probabilistic model learned thus far.

The correlations include spatio-temporal correlations and correlations between two

different attributes. An example spatial correlation is that a hydrocarbon seep is

much more likely to be present within a few hundred meters of where another has

already been observed. A temporal correlation could be that at a fixed location, a

seep is more likely to be actively releasing gas when it has recently been observed

to be active. Correlations between two attributes may include that a seep is much

more likely to be observed at a location where an elevated backscatter signal has been

observed, or where bathymetric features like mounds have been found. The presence

of such correlations allows an adaptive sampling procedure to update predictions of

unobserved variables using nearby or related observations. The updated predictions

are then used to decide where an adaptive sampling algorithm should take additional

measurements.

Gaussian processes (GPs) are frequently used for environment models in adap-

tive sampling for two key reasons. First, GPs are able to encode correlations in

space and time, and between multiple environmental attributes, thereby modeling

all correlations of interest in an environment. Second, GPs produce distributions as

predictions, making them suitable for the probabilistic reasoning in adaptive sam-

pling. Unlike many other probabilistic machine learning methods, the predictions
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from GPs are consistent with Bayesian inference, in the sense that prediction uncer-

tainty decreases on average once additional data has been added.1 This means that

it is actually meaningful to compute the information gained by an observation in a

GP, because the predictions behave as a random variable should in response to new

data.

Multi-output Gaussian processes (MOGPs) model multiple attributes, such as

the presence of seepage and temperature, throughout space and time. In the machine

learning community, each attribute is known as an output, because it is output by

the Gaussian process model. In this chapter, we will mostly use the term attribute,

but we will continue to use the acronym MOGP to maintain consistency with the

Gaussian process literature.

Each attribute exists at each input, which is typically a location in space and/or

a point in time. Correlations are learned between variables of the same attribute at

different inputs, and between separate attributes. Parameterizations that encode the

correlations, such as length scales of spatial correlations, are trained on the observed

data, in order to best learn patterns that appear in that data. Correlations between

attributes allow data from one attribute to be used to improve prediction accuracy

in another.

Existing MOGP approaches are effective at learning complex correlations between

attributes, but many state of the art models learn correlations between all pairs of

attributes [4, 54, 110, 132]. This is undesirable because in complex adaptive sampling

problems not every attribute is necessarily correlated or relevant for prediction of

variables that impact a query. Relatively little work in MOGPs has focused on de-

termining whether there is sufficient evidence for two attributes to be correlated. By

correlating all attributes, MOGP training may capture random correlations resulting

from small sample statistics between independent attributes. This results in less ac-
1A regression algorithm can be made to output a predictive probability distribution by predicting

parameters of the distribution. A common way to do this is to train a neural network to output
the mean and variance of a Gaussian distribution. However, since the neural network does not treat
the prediction explicitly as a random variable, there is no guarantee that predictions will satisfy
laws of conditioning. A prior prediction may not be equal to the average of posterior prediction
that is conditioned on more data, and the average uncertainty of posterior predictions may actually
increase, dependent upon how the network has been parameterized.
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curate predictions, since a change in one attributes will lead to changes in another

that is meant to be unrelated. Correlating all attributes will also directly correlate

two attributes that are independent when conditioned on a third, resulting in changes

in predictions even when the third attribute does not change, and again lowering ac-

curacy. In these cases, the false correlations cause an MOGP to duplicate patterns

from one attribute to another, even when there is limited direct evidence that the

same pattern exists in both attributes. This leads to poor predictive performance

and underestimation of prediction errors.

Another drawback of existing MOGP models is their inflexibility. In query-driven

adaptive sampling, we aim to improve prediction accuracy in the face of limited

data by using expert knowledge, including textbook knowledge and prior experience,

to guide the model. Experts can do so by specifying which correlations between

attributes do or do not exist, as well as qualitative properties of these relationships,

such as positive and negative correlations. Existing fully correlated MOGP methods

provide no simple method to remove correlations between specific pairs of attributes

or impose qualitative knowledge.

Some methods have been reported that control the attributes that are correlated,

by manually specifying all pairs of attributes that are correlated [1, 70, 83]. In these

methods, predictions are highly dependent on the structure choice. These methods

work well when the full structure is known, but even an expert may not be able to

exactly specify all correlations that do or do not exist. With the AcyGP model, we

allow the user to specify restrictions on the space of models. When an expert knows

certain correlations exist or do not exist, they can specify this knowledge as a con-

straint. Likewise, when qualitative relationships are known, they can be encoded.

Bayesian networks, which are directed acyclic graphs for modeling conditional proba-

bilities, provide a framework to naturally model these kind of relationships, which we

combine with a GP model to describe the spatial correlations in environments. For

all correlations and relationships that are not specified, the model is trained on data

to recover the most likely sets of correlations consistent with the user’s restrictions.

Control of correlations between variables has been considered extensively in the
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graphical models community [67, 73]. As with fully connected multi-output GPs,

fully connected graphical models tend to propagate noise or correlate conditionally

independent attributes, reducing predictive performance [43]. Structure learning al-

gorithms have been developed in the graphical models community to identify simple,

high likelihood models that enforce likely conditional independence statements be-

tween variables, and can be made consistent with restrictions on correlations that

must exist. The graphical models found through structure learning improve predic-

tive accuracy in the presence of conditionally independent attributes, and are more

robust to noise.

In this chapter, we leverage insights from structure learning of graphical models

to introduce a Gaussian process model called the AcyGP model. The AcyGP model

combines latent GPs in a directed acyclic graph (DAG) structure, in order to control

attribute correlations. The DAG structure provides an intuitive method of specifying

those correlations, because the connections are directly between attributes and not

through alternative hidden processes. The structure also enables a degree of inter-

pretability in the model, because the edge relationships each rely on few parameters,

and the effect of each on the model can be understood. The DAG may be partially

specified by an expert, and the remainder is learned from the data. When learning the

unspecified structure, we limit it to only those conditional independencies between

attributes that are substantially justified by the data.

5.2 Related work

Gaussian processes model data at various inputs as Gaussian distributed. The covari-

ance between data points is modeled as a function of the relative inputs of different

data points, so observations at inputs that are closer together are more closely corre-

lated. A Gaussian process is trained by optimizing a parametric representation of the

covariance matrix, called the covariance kernel, in order to optimize the likelihood of

the data [118, 147].

A frequently taken approach to multi-output Gaussian process regression is to
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combine independent single attribute Gaussian processes to produce multiple corre-

lated attributes. The independent Gaussian processes are unobserved, and so are

considered to be latent processes in the model. The observed attributes are modeled

by linearly combining the latent processes with different weights for each attribute,

or by convolving the latent processes [5, 87].

Linear combination models including the intrinsic coregionalization model [68],

the linear model of coregionalization [54], and the semiparametric latent factor model

(SLFM) [132], all represent attributes as linear sums of the latent processes. This

means an attribute at a certain input only depends on the latent processes at that

same input, making these approaches simple to construct. The methods differ in

the number of latent processes used and whether the latent processes share kernels.

Sharing latent processes between attributes leads to correlations between attributes,

and the fact that each latent process may have correlations over a different length

scale leads to correlations over multiple spatial scales for each attribute. Extensions

have explored applying higher rank combinations of the latent processes [18], allowing

correlated latent processes [139], and adding an additional latent process unique to

each attribute [98] to construct more expressive models. In all cases, predictive per-

formance is strongly dependent upon choices of the number of latent processes and

how they are mixed. Determination of the optimal model requires training all pos-

sibilities and testing. In contrast, our use of structure learning may be viewed as an

automated method of selecting which latent processes contribute to which attribute

variables.

Convolutional methods attempt to integrate ‘non-local’ information, so that an

attribute at a certain input may depend on the values of latent processes at different

inputs. Convolutional methods construct attribute processes by convolving latent

processes with a smoothing kernel, incorporating information from multiple inputs.

Initial approaches used a single white noise process [141, 94], while more recent exten-

sions have used mixtures of multiple latent processes [19] and allowed latent processes

different from white noise [3, 81]. Convolution allows non-local effects such as time

delays to be modeled, but this leads to more hyperparameters to train compared to
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linear models. This results in a greater potential for noise transfer between attributes

and additional predictive error if the number of latent processes is not carefully con-

trolled.

The AcyGP method is most similar to a class of methods we refer to as Gaussian

process autoregressors, where attributes are considered sequentially and are computed

using transformations of previous attributes. Dependent on the choice of transforma-

tion, this can be more expressive than linear combinations of latent processes. The

sequence of transformations leads to a directed graph structure, where each attribute

is a child of those of which it was a transformation. Work on GP autoregressors,

to date, has used a fully connected network [110], a single parent for each attribute

[70], or a bipartite network [83]. Choices among these three structures are application

driven, designed to correlate attributes according to known relationships.

Our method has the same goal as GP autoregressors, of controlling correlations be-

tween attributes, but we generalize on these methods by allowing any DAG structure

between attributes by learning that structure directly from the data. The possible

structures that our method automatically learns includes those used in the previously

mentioned work, but typically the best structure found by our method falls outside

these three categories.

Gaussian processes autoregressors also bear similarity to deep Gaussian processes

[34]. Deep GPs use the attributes of latent GPs as inputs to another layer of GPs,

rather than networks between attribute dimensions. These models are highly expres-

sive, but are difficult to analyze and train.

Finally, a related body of work has considered inference on Gaussian processes

defined over inputs that are connected by trees and general undirected graphs [130,

145, 140]. These methods improve prediction accruacy when using small training sets.

In these cases the graphical model is imposed over the input space for GPs with a

single attribute variable and does not control correlations between multiple attributes,

whereas we consider a graphical model imposed between multiple attribute variables.
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Figure 5-1: Three oceanic attributes modeled as a function of 𝑥. Gray nodes are
observed, white nodes are unobserved. Correlation decays with distance. When 𝜌(𝑥2)
is observed, 𝑇 (𝑥2) and 𝑆(𝑥2) are correlated. When 𝜌(𝑥3) is not observed, 𝑇 (𝑥3) and
𝑆(𝑥3) are uncorrelated

5.3 Overview of the AcyGP Model

In this chapter, we describe the AcyGP model, which we claim removes spurious

correlations that are introduced by limited data, and allows an expert to encode their

knowledge into the environment model. The AcyGP model does this by constructing

a multi-output Gaussian process from single attribute Gaussian processes that are

arranged in a directed acyclic graph structure. The AcyGP model makes dependencies

between attributes explicit, so that qualitative expert knowledge can be converted into

constraints.

To motivate the development of the AcyGP model, let us consider an environment

in which we model three oceanographic attributes; temperature 𝑇 , salinity 𝑆, and

density 𝜌. Every point 𝑥 in the environment has a temperature, salinity and density,

so we model these as functions 𝑇 (𝑥), 𝑆(𝑥), 𝜌(𝑥), as shown in Figure 5-1. When we

have some observations of these variable at a location 𝑥1, and partial observations at

𝑥2, and we want to be able to predict them at other locations 𝑥2 and 𝑥3.

We may not know the attributes at 𝑥2 and 𝑥3, but there are various chains of

logic that would guide our predictions, and that we want our model to capture. The
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first is the idea of spatial correlation. If 𝑥2 is close to 𝑥1, then the temperature at

𝑥1 is likely similar to the temperature at 𝑥2. The temperature at 𝑥3 that is further

away is more likely to be have a larger difference from 𝑇 (𝑥1). The same logic applies

to 𝑆(𝑥) and 𝜌(𝑥), though each may have different strengths of spatial correlations.

The idea of spatial correlation is captured by a Gaussian process, which is able to

produce a predictive distribution for 𝑇 (𝑥2) and 𝑇 (𝑥3).

The second idea that guides our predictions is that attributes are correlated with

each other. Greater densities are observed at greater salinities and lower densities are

observed at higher temperatures. If we had observed 𝜌(𝑥2) to be higher than 𝜌(𝑥1),

then we might expect that 𝑆(𝑥2) > 𝑆(𝑥1) and 𝑇 (𝑥2) < 𝑇 (𝑥1), though we would

not know for sure since other unobserved variables like pressure may also contribute

to changes in density. Multi-output Gaussian processes capture this knowledge by

learning correlations between the attributes, so that they can inform predictions.

But there is even more knowledge available to experts that is not captured by

MOGP models. An expert may know that increasing the temperature of a packet

of water will cause it to expand, reducing density. Increasing salinity means adding

more mass, also causing an immediate change in density. This is a causal relationship,

indicating that density is directly affected by changes to temperature and salinity.

This causality implies that temperature and salinity are correlated in specific ways

when density is observed. If after observing that 𝜌(𝑥2) > 𝜌(𝑥1) we want to predict

𝑇 (𝑥2) and 𝑆(𝑥2), then it is likely that either 𝑇 (𝑥2) < 𝑇 (𝑥1) or that 𝑇 (𝑥2) > 𝑇 (𝑥1)

and 𝑆(𝑥2) > 𝑆(𝑥1). Temperature and salinity are dependent when conditioned on

density. Moreover, we know the direction of these relationships already, and the

environment model should be able to capture and encode that knowledge that we

already know, even if there is not enough data to learn it.

Without observing changes in density, changes in temperature and salinity can be

explained by a variety of influences like tributaries and sunshine, and they can behave

effectively independently to each other. This is the idea of conditional independence

that is also not captured by existing MOGP models. Existing MOGPs would learn

correlations between 𝑇 (𝑥) and 𝑆(𝑥), even when they are only correlated through
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Figure 5-2: Sketch of a AcyGP constructed for three continuous unbounded variables.
Blue functions represent modeled attributes, while the red line indicates a latent
process. Three Gaussian processes are combined in a DAG structure to model the
environment.

𝜌(𝑥). Learning this correlation constrains predictions of 𝑇 (𝑥) and 𝑆(𝑥), and reduces

accuracy.

The AcyGP model captures all this information using a directed acyclic graph

structure. A schematic of the structure of a basic AcyGP is given in Figure 5-2. We

model 𝑇 (𝑥) and 𝑆(𝑥) as Gaussian processes that are independent of one another,

since they do not depend on one anther except through 𝜌(𝑥). Since 𝜌(𝑥) is affected

causally by 𝑇 (𝑥) and 𝑆(𝑥), we construct 𝜌(𝑥) as a linear combination of 𝑇 (𝑥), 𝑆(𝑥),

and an unobserved (latent) process 𝑓𝜌(𝑥). 𝑓𝜌(𝑥) encodes changes in density that

are not fully explained by temperature and salinity, and may have its own spatial

correlations.

This construction, where density is dependent upon temperature and salinity,

defines a directed graphical model, in which there are edges from 𝑇 (𝑥) to 𝜌(𝑥) and

𝑆(𝑥) to 𝜌(𝑥). 𝑇 (𝑥) and 𝑆(𝑥) do not depend directly on one another, so there is no

edge between them, and they are not transformations of each other. In this way, the

AcyGP model captures conditional independence between attributes. Since 𝜌(𝑥) is
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constructed using linear multiples of 𝑇 (𝑥) and 𝑆(𝑥), we can encode our qualitative

knowledge of these relationships as constraints on the coefficients 𝜆𝜌,𝑇 and 𝜆𝜌,𝑆 in the

model. Knowing that density decreases as temperature increases means that 𝜆𝜌,𝑇 < 0,

and knowing that density increases as salinity increases means that 𝜆𝜌,𝑆 > 0. In order

to train the AcyGP, we learn the structure and the parameters, but an expert can

specify the edges that must exist, and specify the constraints on parameters when

training begins.

The model we described so far has all unbounded, continuous attributes, which

makes modeling simple. But in adaptive sampling, we may want to model more

complex attributes. For example, we may wish to model the presence of mounds,

the presence of elevated backscatter, and the presence of seeps as 𝑀𝑝(𝑥), 𝐵𝑝(𝑥), and

𝑆𝑝(𝑥) respectively. These are functions that at each point in space are binary. Let us

say that we want to capture a similar relationship between attributes, so that seeps

depend causally on mounds and backscatter. An example of a AcyGP constructed

for this environment is given in Figure 5-3.

Binary attributes are not easily modeled by a Gaussian process, but at a specific

location 𝑥, they can be modeled as a Bernoulli distribution 𝐵𝑒𝑟𝑛(𝜇(𝑥)), where 0 ≤
𝜇(𝑥) ≤ 1 indicates the probability that the attribute is 1 at location 𝑥. In order to

model spatial correlations, we desire that 𝜇(𝑥1) and 𝜇(𝑥2) are close when 𝑥1 and 𝑥2

are close. To do so, we model the parameter 𝜇(𝑥) using a real valued function 𝛼(𝑥)

that can be modeled with a Gaussian process. But since a Gaussian process produces

predictions in the range (−∞,∞), we compute 𝜇(𝑥) as 𝑒𝛼(𝑥)/(1+𝑒𝛼(𝑥)). To model the

three attributes, we construct a latent process for each attribute, 𝑓𝑀𝑝(𝑥), 𝑓𝐵𝑝(𝑥), and

𝑓𝑆𝑝(𝑥), which models their individual effects on probabilities of occurrence through

space. For mounds and backscatter, 𝛼𝑀𝑝(𝑥) = 𝑓𝑀𝑝(𝑥) and 𝛼𝐵𝑝(𝑥) = 𝑓𝐵𝑝(𝑥).

In order to introduce dependency between seep presence and mound presence,

𝛼𝑆𝑝(𝑥) is composed of a sum of 𝑓𝑆𝑝(𝑥) and functions of 𝑀𝑝(𝑥) and 𝑆𝑝(𝑥). Making

these functions linear multiplications would not be very expressive, since 𝑀𝑝(𝑥) = 0

would always have no effect on seep presence. Instead, if 𝑀𝑝(𝑥) = 0 we add one

number, 𝜆𝑆𝑝,𝑀𝑝,0, to 𝛼𝑆𝑝(𝑥), and we add a different number 𝜆𝑆𝑝,𝑀𝑝,1 to 𝛼𝑆𝑝(𝑥) when
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Figure 5-3: Sketch of a AcyGP constructed for three binary variables. Blue functions
represent modeled attributes, while red lines indicates latent processes and functions.
Three Gaussian processes are combined in a DAG structure, and passed through
sigmoid functions to predict binary probabilities, in order to model the environment.
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𝑀𝑝(𝑥) = 1. In this way we can scale the relative effects of presence and absence

arbitrarily. Training the AcyGP means finding this structure, and solving for the

parameters associated with it.

The remainder of this chapter describes this model in full. We provide prelimi-

naries of quadrature rules, Gaussian processes, and directed acyclic graphical models

in Sections 5.4, 5.5, and 5.6 that will be necessary for the development of the AcyGP

model. We then introduce the homogeneous AcyGP model in Section 5.8, where all

variables are continuous and unbounded, because it is a conceptually simpler con-

struction. We discuss how to train the model, and how to produce predictions when

the model is trained. We then discuss how qualitative constraints are encoded in the

homogeneous AcyGP model in Section 5.9. Finally, we introduce the heterogeneous

AcyGP model in Section 5.10, which generalizes the homogeneous AcyGP model and

allows for attributes that may be categorical, or bounded. At the end of this chapter,

we provide experimental results that show the AcyGP model provides more accurate

predictions than existing MOGP methods.

5.4 Preliminaries: Quadrature Rules

In our development of the AcyGP model to model non-continuous attributes, we will

require computation of complex expectations that cannot be evaluated in closed form,

such as

E𝑝(r)

ï
𝑒r

1 + 𝑒r

ò
=

∫︁

ℛ
𝑝(r)

𝑒r

1 + 𝑒r
𝑑r,

where r is Gaussian distributed. Here, 𝑒r/1+𝑒r is a formula for a probability 𝑝(𝑦 | r),
and we will need to evaluate these integrals for many types of probability distributions

𝑝(𝑦 | r). We make use of Gaussian quadrature rules in order to rapidly approximate

these expectations without resorting to Monte Carlo techniques.

A 𝐶-point quadrature rule for the function 𝑊 (r) approximates the integral
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∫︀
ℛ𝑊 (r) 𝑔(r) 𝑑r for any function 𝑔 using 𝐶 samples of 𝑔(r) as follows

∫︁

ℛ
𝑊 (r) 𝑔(r) 𝑑r ≈

𝐶∑︁

𝑐=1

𝑤𝑐 𝑔(r𝑐). (5.1)

The sample locations r𝑐 ∈ ℛ are known as the abscissae of the quadrature rule,

and 𝑤𝑐 are referred to as the weights. When the function 𝑊 (r) is the probability

density function 𝑝(r) of a continuous distribution, the quadrature rule may be used

as an estimation of the expectation E𝑝(r) [𝑔(r)]. We construct a representation of the

quadrature rule as a set of tuples of abscissae and weights, 𝒬[𝑝(r)] = {(r𝑐, 𝑤𝑐)}𝐶𝑐=1.

The abscissae and weights may be selected so that the approximation is exact when

𝑔(r) is a polynomial up to a maximum order [80]. A quadrature rule that uses the

fewest number of samples possible to exactly compute the expectation for polynomials

of a given order is called a Gaussian quadrature rule. A 𝐶-point Gaussian quadrature

rule in 1D can exactly integrate any polynomial of degree 2𝐶−1. Since large classes of

functions can be approximated as polynomials, we make use of Gaussian quadrature

rules to approximate expectations of broad classes of functions.

Gaussian quadrature rules for a large number of parameterized distributions are

known. For example, Gaussian quadrature for the 1D function 𝑊 (𝑟) = exp(−𝑟2) is

known as Gauss-Hermite quadrature. Scaling of Gauss-Hermite abscissae and weights

may be used to approximate expectations over Gaussian distributions. When exact

formulae for quadrature rules do not exist, a 𝐶-point Gaussian quadrature over any

1D distribution with finite moments may be computed using matrix operations on

the first 2𝐶 − 1 moments of the distribution in 𝒪(𝐶3) operations [53]. For certain

families of distributions, like Gaussian distributions, a Gaussian quadrature rule may

be computed offline and parameterized in terms of the mean and variance of the dis-

tribution. In higher dimensions, non-Gaussian (and therefore suboptimal) quadrature

rules may be computed by solving a linear program [40].

Quadrature rules are typically considered for continuous distributions, because

computing expectations over discrete distributions can be performed exactly for every

function 𝑔 with a number of weighted samples equal to the size of the domain of the
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discrete variable. In our discussion, we will use quadrature rules over distributions

𝑝([r, s]) with continuous component r ∈ ℛ and discrete component s ∈ 𝒮. These are

constructed by applying a quadrature rule to 𝑝(r | s) for each s, and multiplying the

weights of those rules by 𝑝(s). This yields

𝒬[𝑝(r, s)] =
¶

([r𝑐, s𝑐
′
], 𝑤𝑐 × 𝑤𝑐′) | s𝑐′ ∈ 𝒮, 𝑤𝑐′ = 𝑝(s𝑐

′
), (r𝑐, 𝑤𝑐) ∈ 𝒬[𝑝(r | s𝑐′)]

©
. (5.2)

5.5 Preliminaries: Gaussian Processes

In this section, we introduce Gaussian processes and multi-output Gaussian processes

formally. We will use this as the starting point for constructing the AcyGP model.

5.5.1 Single Attribute Gaussian Processes

A single-attribute Gaussian processes (GP) is a continuous valued regression model

that models a function 𝑦 : R𝐷𝑥 → R. Given a finite set of input/attribute pairs

{(𝑥𝑖, 𝑦(𝑥𝑖))}𝑁𝑖=1, 𝑥𝑖 ∈ R𝐷𝑥 , where 𝐷𝑥 is the dimensionality of 𝑥, a GP models the

variables 𝑦(𝑥𝑖) as drawn from an𝑁 -dimensional Gaussian distribution [147]. Since the

GP assigns a probability to any set of (𝑥𝑖, 𝑦(𝑥𝑖)) pairs, a GP places a prior distribution

over the space of functions that model 𝑦(𝑥). Like any Bayesian prior, that prior can

be updated in response to observed data to generate a posterior distribution. That

posterior distribution gives a likelihood for the function conditioned on the data that

has been observed.

The GP 𝑓 ∼ 𝒢𝒫(𝑚, 𝑘) is specified through its mean function 𝑚(·) and covariance

kernel 𝑘(·, ·). The mean function 𝑚(𝑥𝑖) controls the mean value of the process at

any 𝑥𝑖, and the kernel 𝑘(𝑥𝑖,𝑥𝑗) encodes the covariance between 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗). A

single kernel is typically used for all 𝑥𝑖,𝑥𝑗.

Denote the vectors of inputs and attributes as 𝑋 = [𝑥1, . . . ,𝑥𝑁 ]𝑇 and

y = [𝑦(𝑥1), . . . , 𝑦(𝑥𝑁)]𝑇 . The attribute vector is modeled as the sum of values

f = [𝑓(𝑥1), . . . , 𝑓(𝑥𝑁)]𝑇 drawn from the Gaussian distribution. plus a vector 𝜖 of
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independent noise,

y = f + 𝜖, (5.3)

f ∼ 𝒩 (𝑚(𝑋),𝐾f ,f ), (5.4)

𝜖 ∼ 𝒩 (0, 𝜎2𝐼), (5.5)

where [𝐾f ,f ]𝑖,𝑗 = 𝑘(𝑥𝑖,𝑥𝑗). We could have included noise in the kernel 𝑘, but it

is separated out here to make explicit that y includes some noise on top of f , and

that we may be interested in estimating f without noise. This could be the case if

𝜖 represents measurement noise, and we are interested in predicting a signal without

that noise.

It is typical to shift the data such that 𝑚(𝑋) = 0 for training and prediction

purposes, then perform the reverse transformation on predictions from the GP, for

numerical stability. We follow this convention for the rest of this chapter, and focus

only on GPs for which 𝑚(𝑋) = 0.

Prediction of attributes y* at inputs 𝑋* is accomplished using a conditional Gaus-

sian distribution. The following equations follow from the mean and covariance of a

Gaussian distribution with some variables observed [147].

f* | y ∼ 𝒩 (𝜇f*|y,Σf*|y), (5.6)

𝜇f*|y = 𝐾f*,f

[︀
𝐾f ,f + 𝜎2𝐼

]︀−1
y, (5.7)

Σf*|y = 𝐾f*,f* −𝐾f*,f

[︀
𝐾f ,f + 𝜎2𝐼

]︀−1
𝐾f ,f* , (5.8)

where [𝐾f*,f ]𝑖,𝑗 = 𝑘(𝑥*
𝑖 ,𝑥𝑗).

Gaussian process covariance kernels are selected so that the covariance matrix in

the resultant Gaussian distribution is always positive definite for any choice of inputs

𝑋. This requirement is necessary to ensure that any Gaussian distribution produced

by the GP is well-defined, because Gaussian distributions are only defined for positive

definite covariance matrices. The kernel parameterizes how the process at different
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inputs is correlated, with larger numbers indicating greater correlation. To model

correlation that decays with distance between inputs, many kernels decay to zero as

a |𝑥𝑖 − 𝑥𝑗| increases. Popular kernels include the radial basis function (RBF) kernel

𝑘(𝑥𝑖,𝑥𝑗) = 𝜃2 exp

Å
−|𝑥𝑖 − 𝑥𝑗|2

2 𝑙2𝑑

ã
, (5.9)

the rational quadratic kernel

𝑘(𝑥𝑖,𝑥𝑗) = 𝜃2
Å

1 +
|𝑥𝑖 − 𝑥𝑗|2

2𝛼 𝑙2

ã−𝛼

, (5.10)

and the spectral mixture (SM) kernel [151]

𝑘(𝑥𝑖,𝑥𝑗) =
𝑆∑︁

𝑠=1

𝜃𝑠

𝐷𝑥∏︁

𝑑=1

exp

Ç
−(𝑥𝑖,𝑑 − 𝑥𝑗,𝑑)2

2 𝑙2𝑠,𝑑

å
cos (𝜈𝑠,𝑑 (𝑥𝑖,𝑑 − 𝑥𝑗,𝑑)) . (5.11)

The RBF kernel models smooth functions with a single length scale of correlations,

the rational quadratic kernel is equivalent to a mixture of correlations over multiple

length scales, and the SM kernel may be used to construct any pattern of correlation

with enough elements.

Each kernel is controlled by a number of hyperparameters, including 𝜃𝑠, 𝑙𝑠,𝑑, 𝜈𝑠,𝑑,

and 𝛼 in the kernels above, that are learned from the data. We denote the vector of

parameters in the GP as 𝜃. To train to the data, kernel hyperparameters and noise

parameters are selected to maximize the log likelihood of the data, log 𝑝(y),

log 𝑝𝜃(y) = −1

2

Ä
y𝑇
[︀
𝐾f ,f + 𝜎2𝐼

]︀−1
y + log det

[︀
𝐾f ,f + 𝜎2𝐼

]︀
+ 𝑛 log 2𝜋

ä
. (5.12)

which follows from likelihood of the gaussian distribution 𝒩 (0,𝐾f ,f + 𝜎2𝐼) used in

the Gaussian process.

It is typical to perform this training using a quasi-Newton gradient descent al-

gorithm, such as the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm

(L-BFGS) [86]. L-BFGS performs quasi-Newton optimization, and constructs an ap-

proximation to the local inverse Hessian matrix from a small number of vectors, so
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the full inverse Hessian is not held in memory as in BFGS [42].

5.5.2 Multi-Output Gaussian Processes

We now introduce multi-output Gaussian processes, and begin by introducing them

in their general form. Multi-output Gaussian processes (MOGPs) extend GPs to

model multiple attributes. We now consider the multiple attributes as a vector valued

function in 𝐷𝑦 dimensions, 𝑦(𝑥) =
[︀
𝑦1(𝑥), . . . , 𝑦𝐷𝑦(𝑥)

]︀𝑇 . We define f𝑚 and y𝑚 as

the Gaussian vector and attribute vector for the attribute with index 𝑚 only, and

define the vectors of all Gaussian values and attributes as f𝑇 =
î
f𝑇1 , . . . , f

𝑇
𝐷𝑦

ó
and

y𝑇 =
î
y𝑇
1 , . . . ,y

𝑇
𝐷𝑦

ó
respectively. An MOGP expresses all attributes as a single 𝑁𝐷𝑦-

dimensional Gaussian distribution,

f ∼ 𝒩 (0,𝐾f ,f ), f𝑇 =
î
f𝑇1 . . . f𝑇𝐷𝑦

ó
. (5.13)

Kf ,f specifies all correlations between attributes, and may be considered to be com-

posed of 𝐷2
𝑦 blocks of size 𝑁 ×𝑁 ,

𝐾f ,f =

⎡
⎢⎢⎢⎣

𝐾f1,f1 · · · 𝐾f𝐷𝑦 ,f1

... . . . ...

𝐾f𝐷𝑦 ,f1
· · · 𝐾f𝐷𝑦 ,f𝐷𝑦

⎤
⎥⎥⎥⎦ . (5.14)

The block 𝐾f𝑚,f𝑛 corresponding to attributes 𝑚 and 𝑛 is modeled using a cross

covariance kernel specific to attributes 𝑚 and 𝑛, so that

[𝐾f𝑚,f𝑛 ]𝑖,𝑗 = 𝑘𝑚𝑛(𝑥𝑖,𝑥𝑗). (5.15)

The kernels are defined such that the overall covariance matrix is positive definite.

5.5.3 Fully Correlated MOGPs from Latent Processes

The MOGPs we introduced in the previous section place few restrictions on the cross

covariance kernels except that the overall covariance matrix must be positive definite,
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but it can be difficult to formulate and optimize with this constraint in practice. One

way to construct an MOGP with a covariance that is necessarily positive definite is

to construct it as a linear combination of unobserved (latent) single-attribute GPs.

We now discuss this construction, which will be useful as a starting point to develop

the AcyGP model when all data is continuous.

Linearly combining multiple independent single-attribute latent GPs introduces

correlations between the attribute dimensions. The semiparametric latent factor

model (SLFM) [132] models each attribute as the weighted linear combination of

𝑄 independent latent processes 𝑢𝑞, so that

𝑓𝑚(𝑥) =

𝑄∑︁

𝑞=1

Λ𝑚,𝑞 𝑢𝑞(𝑥), (5.16)

where each 𝑢𝑞 ∼ 𝒢𝒫(0, 𝑘𝑞) is an independent single-attribute GP and Λ is a 𝐷𝑦 ×𝑄
matrix of scalar coefficients. The SLFM model is visualized in Figure 5-4a. The

SLFM model induces the following effective covariance kernel between attributes

𝑘𝑚𝑛(𝑥𝑖,𝑥𝑗) =

𝑄∑︁

𝑞=1

Λ𝑚,𝑞 Λ𝑛,𝑞 𝑘𝑞(𝑥𝑖,𝑥𝑗) (5.17)

For example, when using RBF kernels for all latent processes, each kernel 𝑘𝑚𝑛 encodes

correlations over 𝑄 length scales in the SLFM.

Then, as in the single attribute case, dimension 𝑚 of the attributes is constructed

from the Gaussian signal and independent noise, following y𝑚 = f𝑚 + 𝜖𝑚, where

𝜖𝑚 ∼ 𝒩 (0, 𝜎2
𝑚𝐼).

5.5.4 MOGP Networks

Alternative methods seek to control the dependence between attributes by explic-

itly constructing a network structure between attributes. The Gaussian processive

autoregressive regression model (GPAR) [110] constructs each attribute using a GP
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Figure 5-4: Comparison of MOGP model structures.

trained on vectors with previous attributes,

𝑦1(𝑥) = 𝑓1(𝑥) + 𝜖1

𝑦2(𝑥) = 𝑓2([𝑥, 𝑦1(𝑥)]) + 𝜖2

𝑦3(𝑥) = 𝑓3([𝑥, 𝑦1(𝑥), 𝑦2(𝑥)]) + 𝜖3
...

(5.18)

A schematic of GPAR is shown in Figure 5-4b. In principle, the GP 𝑓𝑚 can

be constructed to depend on only a subset of previous attributes [1]. However, the

ordering and choice of how gaussian processes are related has been hand-coded in

previous applications of this technique. For many domains, it is not immediately

clear how to construct the network of dependencies, or only partial knowledge of the

correct correlations may be known.

5.6 Preliminaries: Directed Acyclic Graphical Mod-

els

A directed acyclic graphical model (DAG) 𝒢 = (𝒴 , ℰ) consists of a set of variables

𝒴 and directed edges ℰ . There is no requirement that each variable in 𝒴 is scalar,

and for our purposes we will consider 𝒴 to be composed of random vectors y𝑚, with

𝑚 ∈ [𝐷𝑦], where [𝐷𝑦] = {1, 2, . . . , 𝐷𝑦}. Each directed edge in ℰ points from and to

elements of 𝒴 , written as y𝑚 → y𝑛. Acyclicity in the DAG asserts that it is not
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possible to create a loop by following directed edges in their indicated direction.

In a DAG model, a variable is independent of its non-descendants given its parents.

This implies that a distribution 𝑝𝜃(y) that factorizes over a DAG 𝒢 be written as

𝑝𝜃(y) =

𝐷𝑦∏︁

𝑚=1

𝑝𝜃𝑚(y𝑚 |yΠ𝒢
𝑚

), (5.19)

where 𝜃𝑚 is the vector of parameters associated with the distribution of y𝑚 | yΠ𝒢
𝑚
,

and Π𝒢
𝑚 refers to the parent set of y𝑚, defined as the indices of variables with directed

edges pointing to y𝑚, i.e. Π𝒢
𝑚 = {𝑛 | (y𝑛 → y𝑚) ∈ ℰ}, and yΠ𝒢

𝑚
= {y𝑛 |𝑛 ∈ Π𝒢

𝑚}.
This factorization of the probability distribution implies a direct dependence of a

variable on its parents, and so the DAG structure provides a means of controlling

conditional independence.

Directed acyclic graphs are one of several methods of relating conditional indepen-

dence between variables to structure. Alternate methods include undirected graphical

models and hybrid graphs [43]. We are particularly interested in DAGs for develop-

ing the AcyGP model because a DAG can be easily constructed through a structural

equation model, as described below. A structural equation model describes a set of

variables 𝒴 using a set of stochastic functions {𝐹𝑚} according to

y𝑚 = 𝐹𝑚(yΠ𝒢
𝑚

). (5.20)

If this model is satisfied, then 𝑝𝜃(y) necessarily factorizes according to the DAG 𝒢.
This follows from the fact that 𝐹𝑚 implies that y𝑚 depends only on yΠ𝒢

𝑚
, leading to

a factorization of the form in (5.19).

For example, consider a Gaussian graphical model where 𝒴 = {y1,y2,y3} are

jointly Gaussian distributed, and ℰ = {(y1 → y3), (y2 → y3)}. Then we can describe
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the variables through the following structural equation model,

y1 ∼ 𝒩 (𝜇1, 𝜎
2
1)

y2 ∼ 𝒩 (𝜇2, 𝜎
2
2)

y3 = 𝑎1y1 + 𝑎2y2 + z3, z3 ∼ 𝒩 (𝜇3, 𝜎
2
3).

5.6.1 Topological Orderings

Topological orderings can be used to draw samples from a graph 𝒢 by sampling

each variable in the order given by the topological ordering. We will use samples to

perform training and prediction for the AcyGP model, so in this section we introduce

how those topological orderings may be found.

Since a DAG permits no cycles in its edges, an ordering can be defined over its

variables so that parents always appear earlier than children. A topological ordering

of graph 𝒢 = (𝒴 , ℰ) is an ordered list 𝑇 (𝒢) = (y𝑚1
,y𝑚2

, . . . ,y𝑚𝐷𝑦
) such that for all

(y𝑛 → y𝑚) ∈ ℰ , y𝑛 comes before y𝑚 in 𝑇 (𝒢). A single DAG may have multiple

topological orderings. A sample can then be drawn from 𝒢 by sampling each variable

y𝑚 from the distribution 𝑝𝜃𝑚(y𝑚 |yΠ𝒢
𝑚

) in order of 𝑇 (𝒢).

A topological ordering is constructed by repeatedly extending a topological or-

dering over a subset of the variables, until all variables are ordered. We will use the

notation 𝑇𝑚𝑘
(𝒢) = (y𝑚1

,y𝑚2
, . . . ,y𝑚𝑘

) to refer to a topological ordering up to y𝑚𝑘
.

Since topological orderings are not unique, the notation 𝑇𝑚𝑘
(𝒢) may be ambiguous.

In our algorithms that construct 𝑇 (𝒢) incrementally, 𝑇𝑚𝑘
(𝒢) will refer to a partial

topological ordering constructed at a previous step.

A topological ordering may be constructed for 𝒢 by starting with the empty list

𝑇∅(𝒢) = (), and incrementally constructing 𝑇𝑚𝑘+1
(𝒢) = (𝑇𝑚𝑘

(𝒢),y𝑚𝑘+1
) when y𝑚𝑘+1

has all parents already in the list 𝑇𝑚𝑘
(𝒢).
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5.6.2 Score Based Structure Learning

When training an AcyGP, it will frequently be the case that the full DAG structure

of is unknown, but observations drawn from the environment model are available.

We will use structure learning to infer the unknown parts of the structure from the

observational data. In this section, we review the principles of score based structure

learning for directed acyclic graphical models.

In our context, structure learning refers to inferring the DAG structure of a dis-

tribution that was used to produce data samples, in addition to any parameters asso-

ciated with that DAG. A partial structure may be known and can be accommodated

as a constraint, but this is not necessary.

Performing structure learning has two main advantages over assuming a fully

connected network. First, the structure itself may be explanatory about the distribu-

tion, by revealing causal relationships or independence between variables that were

not obvious from the data alone. Second, learning a structure and then performing

prediction using that model has been repeatedly empirically demonstrated to improve

prediction accuracy [43]. When a distribution factorizes according to a DAG, it typi-

cally may be described using fewer parameters compared to an arbitrary distribution.

For example, learning a Gaussian DAG requires learning means and variances for each

variable, plus edge weights. When the DAG is sparse, this is fewer parameters than

learning means and a joint covariance matrix for all variables. Performing inference

without introducing all the unnecessary parameters in a fully correlated distribution

allows parameters to be learned from data more accurately.

Furthermore, statistical noise in the data can be recognized by its deviation from

the model, making parameter learning more robust to noise. For example, data drawn

from a Gaussian graphical model with additional noise may be well modeled by an

arbitrary multivariate Gaussian distribution with a certain covariance matrix, but

may not be well modeled with any Gaussian distribution that factorizes according to

the DAG. In this case, finding the closest distribution that factorizes according to the

DAG gives a more accurate model, rather than fitting to the noise.
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It is expected that the observed data y will exhibit high likelihood under an ac-

curate model. However, for DAGs representing most distributions of interest, the

maximum possible likelihood grows with DAG complexity, and the maximum likeli-

hood model will always be a fully connected DAG, regardless of the true underlying

model. This makes selecting the maximum likelihod model an unsuitable objective for

structure learning. Concretely, for graphs 𝒢 = (𝒴 , ℰ) and 𝒢 ′ = (𝒴 , ℰ ′) with ℰ ⊆ ℰ ′,
and distributions parameterized by vectors 𝜃 and 𝜃′, we typically have

max
𝜃

𝑝𝜃(y | 𝒢) ≤ max
𝜃′

𝑝𝜃′(y | 𝒢 ′). (5.21)

Score based structure learning methods instead maximize a score that increases

with increasing data likelihood, and decreases with increased DAG complexity. The

idea is to find a simple DAG that matches the data well, which will give better

predictions of future samples. However, unlike maximum parsimony [138], which

uses domain specific measures of complexity to construct a simple tree from the data,

score based methods are usually based on probabilistic likelihood and a count of the

number of edges in a graph.

For DAG structure learning, the score is typically the accumulation of scores for

individual variables, where the individual variable scores depend only on their parents,

so that the graph selected satisfies

arg max
𝒢

𝐷𝑦∑︁

𝑚=1

𝑆𝑐𝑜𝑟𝑒(y𝑚,yΠ𝒢
𝑚

). (5.22)

When using such a score, scores for each variable and parent set may be evaluated

separately, which reduces the total number of scores that need to be computed com-

pared to a unique score for every possible DAG. Optimization consists of selecting the

structure that optimizes the sum of scores while maintaining acyclicity in the graph.

Scores depend on data likelihood, which is a function of unknown parameters 𝜃.

We may place a prior over 𝜃 to compute data likelihood, but it may be difficult

to define accurate prior distributions 𝑝𝜃(y | 𝒢), particularly before any data has
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been observed. For these scenarios, scores that are independent of 𝑝(𝜃) have been

developed, including the Akaike information criterion (AIC) [2] and the Bayesian

information criterion (BIC) [119] were developed. AIC and BIC are both designed

to be minimized, so their negatives give scores that must be maximized. For a given

graphical model 𝒢 with distributions parameterized by 𝜃 and 𝑁 data samples, AIC

and BIC scores are defined as

AIC =

𝐷𝑦∑︁

𝑚=1

2|𝜃𝑚| − 2 max
𝜃𝑚

log 𝑝𝜃𝑚(y𝑚 |yΠ𝒢
𝑚

) (5.23)

BIC =

𝐷𝑦∑︁

𝑚=1

|𝜃𝑚| log𝑁 − 2 max
𝜃𝑚

log 𝑝𝜃𝑚(y𝑚 |yΠ𝒢
𝑚

). (5.24)

When the data is actually generated by a model in the model candidate set, BIC

is known to be consistent, meaning that minimizing BIC recovers the true structure

with probability approaching 1 in the large data limit. This property holds even with

correlated data [26]. By contrast, AIC is derived under assumptions that all models

are approximations to a more complex data-generating process. In this thesis, we will

primarily use BIC, following an assumption that the AcyGP model is accurate for a

certain choice of structure and parameters.

5.7 Intuition Behind the AcyGP Model

The AcyGP model performed multi-output Gaussian process regression by combining

single-attribute Gaussian processes in a DAG structure. We claim that the AcyGP

model is essential to avoiding spurious correlations that arise, given the limited data

that is available during adaptive sampling. In this section, we discuss the intuition

behind this idea, including why a DAG structure is expected to improve prediction

accuracy in an MOGP.

To understand why spurious correlations between attributes are introduced, con-

sider applying MOGP inference to two attributes, 𝑦1(𝑥) and 𝑦2(𝑥). Unbeknown to

the modeler, the two functions are independent. As an example, both 𝑦1 and 𝑦2
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Figure 5-5: Samples fro two independent GPs with positive correlation.

may represent time series data of humidity from different weather stations, but the

stations are separated by such a large distance that the weather patterns are effec-

tively unrelated. Alternatively, 𝑦1 may represent the methane concentrations at each

location 𝑥 in the ocean, while 𝑦2 represents effective density of the sea water.

Despite the independence of 𝑦1 and 𝑦2, non-zero correlations between the at-

tributes are likely to be observed in the presence of limited data; we illustrate as

follows. Figure 5-5 shows 11 samples from two independently modeled Gaussian pro-

cesses 𝑦1 and 𝑦2. In both cases, the data is normalized to mean 0 and standard

deviation 1. By chance, both tend to increase at similar points in time, which allows

computation of a positive covariance, in this case of 0.205.

A sufficiently large set of data drawn from the GPs would show that 𝑦2 decreases

as often as it increases when 𝑦1 increases, but with small data sets like we encounter in

adaptive sampling, statistically arising correlations are likely. In fact, when randomly

generating normalized points from two independent Gaussian processes in the way

described above, we experimentally observed that |𝑐𝑜𝑣(𝑦1, 𝑦2)| > 0.2 approximately

80% of the time.

Existing MOGP methods will identify and learn these correlations, and erro-

neously use the behavior of 𝑦1 to influence prediction of 𝑦2. More accurate results

would instead be obtained by training each attribute dimension as an independent

GP. The AcyGP model assesses the strength of the observed correlations relative to

the size of the data set, determines that independence between 𝑦1 and 𝑦2 is likely, and
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converges on a model with 𝑦1 independent of 𝑦2. Use of the AcyGP model results in

lower error in model predictions, and frequently allows for meaningful interpretations

of the dependencies between variables to be derived from the data.

5.8 The Homogeneous AcyGP Model

We now describe our AcyGP model, including how it is structured, how parameters

and structure are learned, and how to perform prediction with the trained model. It

is conceptually useful to begin with a description of the simpler homogeneous model,

where all attributes are assumed to be continuous, real valued, and unbounded. This

excludes discrete valued attributes, or an attribute bounded between 0 and 1, for

example. This is the standard modeling assumption for a Gaussian process, and

it permits likelihood computation and prediction to be performed in closed form.

However, we acknowledge that the assumption of continuous unbounded real valued

data is inappropriate for many adaptive sampling missions, so extensions to more

complex attributes are considered in Section 5.10.

5.8.1 Homogeneous AcyGP Construction

An AcyGP enforces a DAG 𝒢 between the 𝐷𝑦 attributes. 𝒢 is described by parent

sets Π𝒢
𝑚 for each attribute, containing the indices of parents of attribute 𝑚. Each

attribute is then modeled as a combination of its parent attributes and a latent single

attribute Gaussian process.

In analogy to the structural equation model of a Gaussian DAG, a heteroge-

neous AcyGP combines latent GPs 𝑓𝑚 ∼ 𝒢𝒫(0, 𝑘𝑚), white noise processes 𝜀𝑚, and a

weighted adjacency matrix Λ ∈ R𝐷𝑦×𝐷𝑦 according to

𝑦𝑚(𝑥) = 𝑓𝑚(𝑥) + 𝜀𝑚(𝑥) +
∑︁

𝑛∈Π𝒢
𝑚

Λ𝑚,𝑛 𝑦𝑛(𝑥). (5.25)

Element 𝑚,𝑛 of the adjacency matrix is the coefficient that parent attribute 𝑦𝑛 should

be multiplied by when constructing 𝑦𝑚. For all 𝑛 /∈ Π𝒢
𝑚, it holds that Λ𝑚,𝑛 = 0.
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Kernels 𝑘𝑚 are selected by the modeler when an AcyGP is constructed.

This construction is a structural equation model between the attributes, so the

attributes factor according to the DAG 𝒢, so that for any vector of inputs 𝑋, the

vector of each attribute at 𝑋 is independent of its non-descendents in the graph at

𝑋, given values for its parents at 𝑋. Formally, 𝑦𝑚(𝑋) ⊥ 𝑦𝑁𝐷𝒢
𝑚

(𝑋) |yΠ𝒢
𝑚

(𝑋), where

𝑁𝐷𝒢
𝑚 is the set of indices of non-descendants of attribute 𝑚.

The selected DAG structure therefore provides a mechanism to control the depen-

dencies between observables in an environment, and the structure may be interpreted

as a declaration of a causal model between attributes. Introducing conditional in-

dependence in the model in this manner ensures correlations between independent

attributes are also independent, improving prediction accuracy.

We can write a simple expression connecting the vector functions 𝑦(𝑥), 𝑓(𝑥), and

𝜀(𝑥). First define the matrix 𝐵 = 𝐼 −Λ. Then

𝑓(𝑥) + 𝜀(𝑥) = 𝐵𝑦(𝑥). (5.26)

Recognition of this connection between 𝑦, 𝑓 , and 𝜀 will be key for training and

performing inference in the AcyGP.

5.8.2 Comparison to Existing MOGP Methods

The model described in (5.25) expresses each attribute as a local linear transforma-

tions of parent attributes. The transformation is local because 𝑦𝑚(𝑥) depends on

𝑦𝑛 only at 𝑥, and it is linear because 𝑦𝑛 is multiplied by a coefficient. Local linear

transformations are known to be effective in MOGP models [83], and they permit

inference to be performed exactly and in closed form because the resulting model is

fully Gaussian. The homogeneous AcyGP model bears similarity to SLFM in (5.16)

in that each attribute is constructed from a linear combination of latent and noise

processes. However, unlike SLFM, not all attributes are correlated in the AcyGP

model, so spurious correlations inconsistent with structure are not learned, and the

noise processes from ancestor attributes are included in each attribute. The formula-
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tion also bears similarity to MOGP networks when the function descriptions in (5.18)

are formulated to have linear dependence on previous attributes. Unlike GPAR, not

all previous attributes are used as inputs to the next attribute. Compared to these

fully connected models, fewer edges prevents spurious correlations being introduced

between attributes, and improves prediction accuracy, as discussed in Section 5.6.

The AcyGP model also differs from alternative MOGOP networks that allow flex-

ibility in structure [1, 70, 83], but require the modeler to hand-code the dependencies

between attributes. In an AcyGP, the parent sets may model any DAG, and unknown

edges are learned from the data, which allows conditional independencies between at-

tributes to be enforced.

5.8.3 Selection of Parameters and DAG Structure

When constructing an AcyGP model, we allow an expert to define relationships be-

tween attributes that are known to exist or not to exist. The remainder of the DAG

is then chosen so that it provides the best fit to the data, consistent with the rela-

tionships defined by the expert. The expert supplies the known relationships in terms

of allowable parent sets for each index, denoted by {Ξ𝑚}𝐷𝑦

𝑚=1. Each Ξ𝑚 contains all

permissible sets of parents for attribute 𝑦𝑚. For any DAG 𝒢 that could be found to

be the structure for the AcyGP, Π𝒢
𝑚 ∈ Ξ𝑚. Our structure learning algorithm does

not require this set to be explicitly enumerated. The expert may instead supply a

function that returns whether Π𝒢
𝑚 ∈ Ξ𝑚 holds. This way, the set Ξ𝑚 may be defined

through rules, for example that a specific parent may not exist, or that the total

number of parents must be less than a certain size.

When we train an AcyGP, we search for the vector 𝜃 of kernel parameters and

parent weights and the DAG 𝒢 consistent with {Ξ𝑚} that minimizes the Bayesian

Information Criterion [119]. BIC is selected because it remains consistent when data

at different inputs is correlated. BIC maximizes likelihood of all data y, and penalizes

edges in 𝒢, ensuring that edges are only included if they lead to a sufficient increase

in likelihood.

When training an AcyGP, we do not change the choices of covariance kernels 𝑘𝑚.
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This means that the number of kernel hyperparameters stays the same regardless of

DAG structure. For example, an AcyGP constructed with RBF kernels always has

a variance scale parameter and a length scale parameter. In contrast, changing the

number of edges in the DAG will change the number of parameters in the AcyGP.

Non-zero entries of the matrix Λ may be considered to be parameters, and there is

one for every edge. If y𝑛 → y𝑚 is not in the selected structure, then Λ𝑚,𝑛 is 0 by

construction, and is not considered a variable parameter of the model.

Since the number of kernel parameters does not change, we may exclude them

from the BIC computation. In the homogeneous AcyGP model, a single parameter

Λ𝑚,𝑛 is specified for each parent y𝑛 of variable y𝑚, so we maximize the following

expression equivalent to minimizing BIC,

𝐷𝑦∑︁

𝑚=1

max
𝜃𝑚

log 𝑝𝜃𝑚(y𝑚 |yΠ𝒢
𝑚

)− |Π
𝒢
𝑚|

2
log𝑁 such that Π𝒢

𝑚 ∈ Ξ𝑚 (5.27)

Training a homogeneous AcyGP is therefore performed by searching for the pa-

rameters 𝜃 and the graphical model 𝒢 that satisfies (5.27). This objective may be

viewed as maximizing log likelihood, with a term that penalizes additional edges in

the DAG 𝒢. We express this in the following problem, and describe how this is

performed in the following section.

Problem 3. Training a homogeneous AcyGP.

Given observations {y𝑚}𝐷𝑦

𝑚=1 at 𝑁 inputs, kernels {𝑘𝑚}𝐷𝑦

𝑚=1, and sets of candidate

parent sets {Ξ𝑚}𝐷𝑦

𝑚=1, determine the DAG structure 𝒢* and vector of parameters 𝜃*,

consisting of kernel hyperparameters and AcyGP edge parameters Λ𝑚,𝑛, that satisfy

𝜃*,𝒢* = arg max
𝜃𝑚,𝒢

𝐷𝑦∑︁

𝑚=1

log 𝑝𝜃𝑚(y𝑚 |yΠ𝒢
𝑚

)− |Π
𝒢
𝑚|

2
log𝑁

under a homogeneous AcyGP model, such that Π𝒢
𝑚 ∈ Ξ𝑚 ∀𝑚 ∈ [𝐷𝑦].
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5.8.4 Optimization Procedure for Parameters and DAG Struc-

ture

We now discuss how to solve for the parameters and structure that solve Problem

3. When all attributes are observed, the parameters for a known structure can be

trained by optimizing 𝐷𝑦 single attribute GPs, as in (5.25), each depending only on

y𝑚 and yΠ𝒢
𝑚
. Factorization in this manner is critical for structure learning, because

it allows reasoning over combinations of separate parent sets, instead of optimizing

the parameters for every possible DAG individually. However, when parents are

unobserved, marginalization will cause an attribute to depend on further ancestors.

As an example, consider an AcyGP where 𝑦2 has 𝑦1 as its only parent, and 𝑦3

has 𝑦2 as its only parent. If 𝑦1(𝑥), 𝑦2(𝑥), and 𝑦3(𝑥) have all been observed, then the

parameters of the processes 𝑓2 and 𝜀2 can be selected to maximize the likelihood of

𝑦2(𝑥)−Λ2,1𝑦1(𝑥) as a single attribute Gaussian process, and the same procedure can

be used to optimize 𝑓3 and 𝜀3. But if we have only observed 𝑦1(𝑥) and 𝑦3(𝑥), then

since 𝑦2(𝑥) is unobserved, 𝑦3(𝑥) depends directly 𝑦1(𝑥). In effect, the distribution

no longer factors according to its DAG structure when data is missing, so we cannot

compute BIC as a separable sum for each variable, greatly complicating structural

optimization.

In the cases when some attributes are missing, 𝜃 and 𝒢 are selected using the

Structural EM algorithm [44]. Structural EM simultaneously optimizes parameters

and structure that maximize a penalized likelihood, as desired in Problem 3, in the

presence of limited data.

The basic idea of (non-structural) expectation maximization (EM) is determine

parameters 𝜃 that maximize the log likelihood log 𝑝𝜃(y) of some observed data y,

while there also exists some data w that is unobserved. Maximization of likelihood of

the observed data alone is intractable, but optimizing the log likelihood log 𝑝𝜃(y,w)

is simpler. EM determines the optimal parameters in an iterative procedure. At

iteration 0 it assumes an initial value 𝜃(0) for the parameters. At iteration 𝑠, given 𝜃(𝑠),

it selects 𝜃(𝑠+1) that optimizes Ew|y,𝜃(𝑠) [log 𝑝𝜃(y,w)]. This repeats until convergence

223



of 𝜃, at which point the parameters are a local maximum of 𝑝𝜃(y).

Structural EM works very similarly. There is observed data y, and unobserved

data w that depend upon parameters 𝜃 and a structural model 𝒢. The objective is to

maximize log 𝑝𝜃(y | 𝒢)− 𝑐(𝒢) for a function 𝑐 that depends only on the structure. In

the AcyGP case, y is observed data, w is unobserved attributes at the inputs where y

is observed, and the form of 𝑐 is given by (5.27). If there was no unobserved data, the

likelihood would factor between parent sets for any DAG model. This would mean

that 𝜃𝑚 could be found that optimized log 𝑝𝜃𝑚(y𝑚 | yΠ𝒢
𝑚

) for each Π𝒢
𝑚, and then

structure could be optimized as a combinatorial search over parent sets. But since

certain data is missing, the likelihood does not factor, and optimizing the parameters

and structure is more difficult. Like in EM, structural EM assumes values of 𝜃 and

𝒢 and updates them iteratively to values that optimize an expected log likelihood.

A description of Structural EM for the AcyGP model is given in Algorithm 15.

We first construct the vector of estimated values of observed and unobserved data

v𝑇 = [v𝑇
1 , . . . ,v

𝑇
𝐷𝑦

]. Each v𝑚 contains the observed data y𝑚 in addition to w𝑚,

which consists of estimations of the unobserved values out of 𝑦𝑚(𝑥1), . . . , 𝑦𝑚(𝑥𝑁).

For iteration counters 𝑠 and 𝑡, structural EM iteratively optimizes the expectation

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡) [log 𝑝𝜃𝑚(v | 𝒢)]−
𝐷𝑦∑︁

𝑚=1

|Π𝒢
𝑚|

2
log𝑁, (5.28)

and selects the next iterations of 𝜃 and 𝒢 to be the parameters and structure that

optimized this objective. Since v contains all attributes, we know that log 𝑝𝜃𝑚(v |
𝒢) =

∑︀𝐷𝑦

𝑚=1 log 𝑝𝜃𝑚(v | vΠ𝒢
𝑚

), so the objective to optimize factors as

𝐷𝑦∑︁

𝑚=1

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
− |Π

𝒢
𝑚|

2
log𝑁. (5.29)

At convergence, the solution is a local optimum of BIC.

Optimization in Algorithm 15 is done in an inner loop and an outer loop. In the

inner loop on line 2, only the parameters 𝜃 are optimized while the structure is held

constant. This loop is run for a set number of iterations 𝑠𝑚𝑎𝑥 or until convergence.
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Algorithm 15: Structural EM Algorithm
Input : Initial parameters 𝜃(0,0) and DAG 𝒢(0)
Output: Maximum likelihood hyperparameters 𝜃(𝑡,𝑠) and DAG 𝒢(𝑡), possible

parent sets {Ξ𝑚}
1 loop for 𝑡 = 0, 1, . . . until convergence
2 loop for 𝑠 = 0, 1, . . . until 𝑠 = 𝑠𝑚𝑎𝑥 or convergence
3 𝜃(𝑡,𝑠+1) ← arg max𝜃

∑︀𝐷𝑦

𝑚=1 Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀

4 𝜃(𝑡+1,0), 𝒢(𝑡+1) ←
arg max𝜃,𝒢

∑︀𝐷𝑦

𝑚=1 Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
− |Π𝒢

𝑚|
2

log𝑁 such that
Π𝒢

𝑚 ∈ Ξ𝑚

Since the structure is held constant, structure penalization can be excluded from

the objective in the inner loop. The outer loop on line 1 runs the inner loop, and

once convergence is reached, then performs simultaneous optimization of 𝜃 and the

structure 𝒢 on line 4. Optimization of structure is performed less frequently because

it is typically more computationally demanding than optimizing parameters for a

fixed structure, so optimizing parameters more frequently accelerates the algorithm.

Line 4 of Structural EM is achieved through the use of score-based structure

learning. We optimize 𝜃𝑚 for candidate parent sets in order to assign them the

following score,

𝐷𝑦∑︁

𝑚=1

𝑆𝑐𝑜𝑟𝑒(𝑡,𝑠)(v𝑚,vΠ𝒢
𝑚

) =

𝐷𝑦∑︁

𝑚=1

ℒ̂(𝑡,𝑠)(v𝑚 |vΠ𝒢
𝑚

)− |Π
𝒢
𝑚|

2
log𝑁 (5.30)

ℒ̂(𝑡,𝑠)(v𝑚 |vΠ𝒢
𝑚

) := max
𝜃𝑚

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
. (5.31)

Each DAG is assigned a score equal to the sum of the scores of its parent sets. The

chosen structure 𝒢(𝑡+1) is found by evaluating the scores of parent sets that appear in

{Ξ𝑚}, and searching for the combination with highest combined score that does not

introduce cycles. This may be done naively by evaluating the score for all possible

parent sets, but this is highly inefficient. Discussion of how to perform this search

efficiently is the focus of the following chapter.

The primary difference between our use of the structural EM algorithm and its

original proposal by Friedman [44] is that our data is correlated between inputs be-
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cause it is drawn from a Gaussian process, rather than independent draws from a

graphical model. This means that the v𝑚 we consider are correlated across inputs,

with optimization of 𝜃 requiring a numerical optimization procedure.

5.8.5 Optimization Procedure for a Candidate Structure

A key step in the Structural EM algorithm is to find parameters 𝜃𝑚 that optimize

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
. This is done on line 3 of Algorithm 15, and for all

possible parent sets as part of the optimization on line 4. We discuss its computation

in this section.

Since all variables in the homogeneous AcyGP model are Gaussian distributed,

expected log likelihood for an attribute with a candidate parent set can be computed

in closed form. Let v |y,𝜃(𝑡,𝑠),𝒢(𝑡) ∼ 𝒩 (𝜇v|y,Σv|y), and construct the 𝑁 × 𝐷𝑦𝑁

matrix 𝐴𝑚 as

𝐴𝑚 =
[︁
𝐵𝑚,1𝐼 𝐵𝑚,2𝐼 · · · 𝐵𝑚,𝐷𝑦𝐼

]︁
, (5.32)

where 𝐵 is defined in (5.26). 𝐴𝑚 connects vectors f𝑚 ∼ 𝒩 (0,𝐾f𝑚,f𝑚) and 𝜖𝑚 ∼
𝒩 (0, 𝜎2

𝑚𝐼) of latent and noise process values to v as f𝑚 + 𝜖𝑚 = 𝐴𝑚v. Then the

expected log likelihood of each factor may be expressed as

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀

= Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

ï
𝑝𝜃𝑚(f𝑚 + 𝜖𝑚)

⃒⃒
⃒
f𝑚+𝜖𝑚=𝐴𝑚v

ò
= −1

2

Ä
(𝐴𝑚𝜇v|y)𝑇�̂�−1

f𝑚,f𝑚
𝐴𝑚𝜇v|y + tr

Ä
𝐴𝑚Σv|y𝐴

𝑇
𝑚�̂�

−1
f𝑚,f𝑚

ä
+ log det �̂�f𝑚,f𝑚

ä
(5.33)

where �̂�f𝑚,f𝑚 = 𝐾f𝑚,f𝑚 + 𝜎2
𝑚𝐼. Within each loop of the Structural EM algorithm,

kernel hyperparameters, noise variances 𝜎2
𝑚, and parent weights Λ𝑚,𝑛 are selected to

maximize (5.33). Optimization is performed through the L-BFGS algorithm [86].

5.8.6 Prediction in the Homogeneous AcyGP model

In this section, we show how to produce predictions of attributed at unobserved

locations in the AcyGP model. Once an AcyGP is trained and 𝜃 and 𝒢 have been se-
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lected, we will need to produce predictions of the environment for use in query-driven

adaptive sampling. In addition, prediction is required to produce the distributions

𝑝(v | y,𝜃(𝑡,𝑠),𝒢(𝑡)) used on lines 3 and 4 of Algorithm 15.

Prediction of unobserved attributes y* at inputs 𝑋* is achieved using a condi-

tional Gaussian distribution. Following (5.26), covariances between y and y* may be

constructed elementwise as

[𝐾y*
𝑚,y𝑛

]𝑖,𝑗 =

𝐷𝑦∑︁

𝑞=1

[𝐵−1]𝑚,𝑞 [𝐵−1]𝑛,𝑞
[︀
𝑘𝑞(𝑥

*
𝑖 ,𝑥𝑗) + 𝜎2

𝑚𝛿𝑥*
𝑖 ,𝑥𝑗

]︀
, (5.34)

where 𝛿𝑥*
𝑖 ,𝑥𝑗

is the Kronecker delta. Analogous expressions may be constructed for

𝐾y,y and 𝐾y*,y* . Then, the predictions satisfy y* |y ∼ 𝒩
(︀
𝜇y*|y,Σy*|y

)︀
with

𝜇y*|y = 𝐾y*,y 𝐾
−1
y,y y, Σy*|y = 𝐾y*,y* −𝐾y*,y 𝐾

−1
y,y 𝐾y,y* . (5.35)

v |y is computed in this manner using y* = w, and adding y into the distribution

with zero variance.

5.9 Qualitative Constraints in the AcyGP Model

We now describe more completely how qualitative constraints on structure and corre-

lations are introduced in the homogeneous AcyGP model, and how they influence the

training process within structural EM. Once we introduce the heterogeneous AcyGP

model in the following section, we will generalize these ideas for heterogeneous at-

tributes.

The AcyGP model makes dependencies between attributes explicit by including

or excluding edges in a graphical model that encodes causal dependencies. When

the model is constructed, the presence of an edge y𝑛 → y𝑚 states that 𝑦𝑚(𝑥) has a

term Λ𝑚,𝑛𝑦𝑛(𝑥) added to it. Whether or not direct dependency between attributes is

introduced in the model is controlled by whether an edge exists, and the effect of an

edge is controlled through the parameter Λ𝑚,𝑛. The qualitative statements that we
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allow map to constraints on these two aspects of the model. We allow statements on

the existence or non-existence of edges, which are enforced as constraints over whether

an edge exists in the solved DAG model 𝒢, and we allow statements of monotonicity

and relative sizes of directed relationships, which are enforced as constraints over the

parameter Λ𝑚,𝑛.

5.9.1 Edge Existence Constraints

An expert may have different ways of expressing qualitative knowledge of structure.

In the simplest form, they may know that 𝑦𝑛 is a parent of 𝑦𝑚, like how temperature

was a parent of density in our motivating example. They may also may not know

whether 𝑦𝑚 and 𝑦𝑛 are causally related, but that if they are, then 𝑦𝑛 is definitely

the parent. We express these kinds of constraints through the previously mentioned

sets of allowable parent sets, {Ξ𝑚}. A specification of Ξ𝑚 is provided as input to the

training process, and any parent set for 𝑦𝑚 that does not exist in Ξ𝑚 is not allowed in

the DAG 𝒢 that is solved in structural EM. For example, if 𝑦𝑛 is definitely a parent

of 𝑦𝑚, then all parent sets Π𝒢
𝑚 in Ξ𝑚 must contain the index 𝑛 as an element. If 𝑦𝑛

is never a parent of 𝑦𝑚, then no Π𝒢
𝑚 in Ξ𝑚 contains the index 𝑛. If 𝑦𝑛 is only ever a

parent of 𝑦𝑚 when 𝑦𝑙 is also a parent, then all Π𝒢
𝑚 in Ξ𝑚 that contains 𝑙 also contains

𝑛.

When a user constructs an AcyGP and begins training, they may specify the sets

{Ξ𝑚} manually if they wish, or they may construct a function 𝑎𝑙𝑙𝑜𝑤(Π𝒢
𝑚) that returns

True when Π𝒢
𝑚 ∈ Ξ𝑚, which allows greatest flexibility. However, this is often tedious,

and more general than is usually needed. A user can also specify a set of known edges

that must exist in the model ℰ𝑒𝑥𝑖𝑠𝑡 and a set of edges that must not exist in the model

ℰ𝑛𝑜𝑡−𝑒𝑥𝑖𝑠𝑡. Then 𝑎𝑙𝑙𝑜𝑤(Π𝒢
𝑚) can be computed as

𝑎𝑙𝑙𝑜𝑤(Π𝒢
𝑚) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

True, 𝑛 ∈ Π𝒢
𝑚 ∀𝑛 s.t. (y𝑛 → y𝑚) ∈ ℰ𝑒𝑥𝑖𝑠𝑡 and 𝑙 /∈

Π𝒢
𝑚 ∀𝑙 s.t. (y𝑙 → y𝑚) ∈ ℰ𝑛𝑜𝑡−𝑒𝑥𝑖𝑠𝑡

False, otherwise.

(5.36)
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Users can also specify that ℰ𝑒𝑥𝑖𝑠𝑡 is simply the complement set of ℰ𝑛𝑜𝑡−𝑒𝑥𝑖𝑠𝑡 or vice

versa, if they wish to merely exclude certain edges.

Within structural EM, the sets Ξ𝑚 are used when generating candidate DAG

structures. Structures are selected on line 4 of Algorithm 15 that maximize

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
− |Π

𝒢
𝑚|

2
log𝑁.

In a naive implementation, for each 𝑚, the sets Π𝒢
𝑚 in Ξ𝑚 are enumerated. Every

possible parent set is generated, and if 𝑎𝑙𝑙𝑜𝑤(Π𝒢
𝑚) is True, the optimal parameters

for that parent set are found. L-BFGS is used to perform gradient ascent to find the

solution to

max
𝜃𝑚

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
− |Π

𝒢
𝑚|

2
log𝑁

for every possible Π𝒢
𝑚 in Ξ𝑚. Determining 𝒢(𝑡+1) is then achieved by selecting a single

parent set for each attribute, out of those that were evaluated, that result in an acyclic

structure and the largest sum of the expressions above at the optimized values of 𝜃𝑚.

There exist many structure learning algorithms that take rewards for edges and solve

for the maximum reward DAG, and we use an A* based approach [156].

5.9.2 Edge Strength Constraints

The expert may also specify constraints on monotonicity and relative sizes of specific

edges, when they exist. These translate to constraints on the parameters Λ𝑚,𝑛.

Specifically, we allow an expert to specify that when 𝑦𝑛 is a parent of 𝑦𝑚, that the

expectation of 𝑦𝑚 either increases or decreases with the value of 𝑦𝑛. As an example,

we saw that density is expected to decrease when temperature increases, so this is

a monotonically decreasing relationship. Since the homogeneous AcyGP model is a

linear model, the parameter Λ𝑚,𝑛 is interpreted as the strength of the effect of 𝑦𝑛(𝑥)

on 𝑦𝑚(𝑥). To assert that 𝑦𝑚 monotonically increases in expectation with increasing

𝑦𝑛, we require that Λ𝑚,𝑛 > 0, and to specify that 𝑦𝑚(𝑥) monotonically decreases in

expectation with increasing 𝑦𝑛, we require that Λ𝑚,𝑛 < 0.
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We can also specify that the effect of 𝑦𝑛 on 𝑦𝑚, if it exists, is small. This can be

achieved by specifying that the parameter Λ𝑚,𝑛 is small, so that −𝜖 < Λ𝑚,𝑛 < 𝜖 for

a small value 𝜖.

The expert specifies these constraints as a list of statements that 𝑦𝑚 monotonically

increases/decreases with 𝑦𝑛, and that the effect of 𝑦𝑛 on 𝑦𝑚 is small, that are given

when the AcyGP is constructed. These statements are then converted into constraints

to be used when the AcyGP is trained. They are used whenever the parameters of the

AcyGP are solved, which occurs in lines 3 and 4 of structural EM. These constraints

can be passed directly into gradient optimization algorithm, in this case, L-BFGS.

L-BFGS is used to find a value of 𝜃 that satisfies these constraints, so that the

qualitative statements given by the user necessarily hold.

5.10 The Heterogeneous AcyGP Model

In this section we generalized the AcyGP model beyond continuous unbounded at-

tributes, by using likelihood approximations developed for heterogeneous Gaussian

processes. The homogeneous AcyGP model is powerful, and permits exact expres-

sions for likelihood and posterior predictive distributions. However, in many adap-

tive sampling domains, we wish to use the AcyGP model to consider non-Gaussian

attributes, such as categorical variables or continuous valued variables with known

minima or maxima. For example, the presence or absence of a seep at location 𝑥

may be described by the function 𝑦(𝑥), but the output of 𝑦(𝑥) is Boolean variable.

We still wish to capture spatio-temporal correlations and correlations between ob-

servables through an interpretable DAG model, while being able to handle different

types of attributes.

We model these environments through the heterogeneous AcyGP model. The

model is heterogeneous because it allows each attribute to follow a different type of

distribution. Our approach combines ideas from heterogeneous Gaussian process re-

gression presented by Moreno-Muñoz et al. [96] with the homogeneous AcyGP model.

The primary difference from the homogeneous AcyGP model is more complex depen-
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dencies between attributes in order to model non-Gaussian attributes. Likelihood

computation and prediction cannot be performed in closed form, and we rely instead

on a variational approximation to inference. Compared to [96], we introduce connec-

tions between attributes that depend directly on non-Gaussian attributes, and show

how approximate inference may be performed with more complex quadrature rules.

5.10.1 Heterogeneous AcyGP Construction

In this section we describe how a heterogeneous AcyGP is constructed. As in the

homogeneous model, we enforce a DAG structure 𝒢 between 𝐷𝑦 attributes in the

multi-output Gaussian process. In the heterogeneous model, each attribute is as-

sumed to be drawn from a specified type of distribution, such as a Gaussian distri-

bution or a categorical distribution. These distributions are parameterized, and the

heterogeneous AcyGP model uses latent Gaussian processes to model a subset of the

parameters as a function of input variables. For example, a Gaussian attribute may

be parameterized by a input-dependent mean and a constant variance, and the mean

of the distribution is drawn from a latent Gaussian process. In this way, the attribute

distributions vary with the inputs through the latent processes.

Each attribute 𝑦𝑚 is modeled using an attribute model that describes how a dis-

tribution for 𝑦𝑚(𝑥) is constructed from input-dependent parameters. Formally, an

attribute model for 𝑦𝑚(𝑥) in the heterogeneous AcyGP model is defined to be a tu-

ple (𝐽𝑚, 𝑝𝛽𝑚 , 𝑡𝜆𝑙,𝑚,𝑗
), where 𝑝𝛽𝑚 is a probability distribution used to predict 𝑦𝑚(𝑥))

from input dependent parameters, 𝐽𝑚 is an integer representing how many latent

processes are needed to model 𝑝𝛽𝑚 , and 𝑡𝜆𝑙,𝑚,𝑗
is a function that describes how 𝑦𝑚

should be modeled to affect child attributes. Formally, the attribute model represents

that 𝑦𝑚(𝑥) is distributed as

𝑦𝑚(𝑥) ∼ 𝑝𝛽𝑚(𝑦𝑚(𝑥) | 𝛼𝑚(𝑥)). (5.37)

The distribution depends on a vector 𝛼𝑚(𝑥) = [𝛼𝑚,1(𝑥), . . . , 𝛼𝑚,𝐽𝑚(𝑥)]𝑇 of 𝐽𝑚 real-

valued parameters that vary with input 𝑥, and a vector 𝛽𝑚 of constant parameters.
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For example, if 𝑦𝑚(𝑥) is Gaussian distributed with input-dependent mean and con-

stant variance, then 𝛼1(𝑥) would be the input-dependent mean, 𝛽𝑚,1 would be the

constant variance, 𝑝𝛽𝑚(𝑦𝑚(𝑥) | 𝛼𝑚(𝑥)) = 𝒩 (𝛼𝑚,1(𝑥), 𝛽𝑚,1), and since only one input

parameter is required, 𝐽𝑚 = 1.

The input-dependent parameter 𝛼𝑚,𝑗(𝑥) is constructed as the sum of a latent GP

𝑓𝑚,𝑗(𝑥) ∼ 𝒢𝒫(0, 𝑘𝑚,𝑗) and the functions 𝑡𝜆𝑚,𝑛,𝑗
as

𝛼𝑚,𝑗(𝑥) = 𝑓𝑚,𝑗(𝑥) +
∑︁

𝑛∈Π𝒢
𝑚

𝑡𝜆𝑚,𝑛,𝑗
(𝑦𝑛(𝑥)). (5.38)

In the example of a Gaussian 𝑦𝑚, we model that parameters of child attributes 𝛼𝑙 scale

linearly with 𝑦𝑚, so 𝑡𝜆𝑙,𝑚,𝑗
(𝑦𝑚(𝑥)) = 𝜆𝑙,𝑚,𝑗,1 𝑦𝑚(𝑥). The number of latent processes

𝐽𝑚 and the number of parameters in 𝛽𝑚 is specified by the type of distribution of 𝑦𝑚.

The function 𝑡𝜆𝑙,𝑚,𝑗
describes how the value of 𝑦𝑚 influences the parameters 𝛼𝑙

of a child attribute 𝑦𝑙. For example, to encode a positive correlation between 𝑦𝑙 and

𝑦𝑚, 𝑡𝜆𝑙,𝑚,𝑗
(𝑦𝑚(𝑥)) should return a larger value for larger values of 𝑦𝑚(𝑥), and the

function 𝑝𝛽(𝑦𝑙(𝑥) | 𝛼𝑙(𝑥)) should make larger values of 𝑦𝑙(𝑥) more likely with larger

𝛼𝑙(𝑥). The form of the function 𝑡𝜆𝑙,𝑚,𝑗
(𝑦,(𝑥)) and the number of parameters 𝜆𝑙,𝑚,𝑗 is

specified by the type of distribution of the parent attribute 𝑦𝑚(𝑥). For example, if 𝑦𝑚

is modeled as a categorical distribution with Gaussian parent 𝑦𝑛, the effect of 𝑦𝑛(𝑥)

on 𝛼𝑚,𝑗(𝑥) is the previously mentioned linear scaling rule 𝜆𝑚,𝑛,𝑗,1 𝑦𝑛(𝑥) for Gaussian

attribute models.

When an AcyGP is trained, structure and parameters will be optimized like in

the homogeneous AcyGP model. In addition to kernel parameters, training a hetero-

geneous AcyGP will optimize the parameters 𝛽𝑚 and 𝜆𝑙,𝑚,𝑗.

To assist in solving for AcyGP structure, we wish to ensure that an AcyGP with

structure 𝒢 models a broader set of distributions than an AcyGP with structure 𝒢 ′

with a subset of edges from 𝒢. To enforce this requirement, we assert that 𝑡𝜆𝑙,𝑚,𝑗

must be formulated so that there exists values of 𝜆𝑙,𝑚,𝑗 for which 𝑡𝜆𝑙,𝑚,𝑗
(𝑦𝑚(𝑥)) = 0

for all 𝑦𝑚(𝑥). In this way, the effect of 𝑦𝑚 can always be removed for its children

with a choice of the parameters 𝜆𝑙,𝑚,𝑗, so that an AcyGP with structure 𝒢 will model
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Table 5.1: Common attribute models for use in the heterogeneous AcyGP model.

Data Domain Distribution 𝐽 𝑝𝛽𝑚 𝑡𝜆𝑙,𝑚,𝑗

R Normal 1 𝒩 (𝛼𝑚,1, 𝛽𝑚,1) 𝜆𝑙,𝑚,𝑗,1 𝑦𝑚
R≥0 Gamma 1 𝐺(𝑒𝛼𝑚,1 , 𝛽𝑚,1) 𝜆𝑙,𝑚,𝑗,1 𝑦𝑚
[0, 1] Beta 1 𝐵(𝛽𝑚,1 𝜎(𝛼𝑚,1)1, 𝛽𝑚,1 𝜎(𝛼𝑚,1)2) 𝜆𝑙,𝑚,𝑗,1 𝑦𝑚

{1, . . . , 𝐶} Categorical 𝐶 − 1 𝜎(𝛼𝑚)𝑦𝑚 𝜆𝑙,𝑚,𝑗,𝑦𝑚

a strictly larger set of distributions than an AcyGP with structure 𝒢 ′. For example,

if 𝑦𝑚 follows a Gaussian attribute model, then 𝑡𝜆𝑙,𝑚,𝑗
(𝑦𝑚(𝑥)) = 0 when 𝜆𝑙,𝑚,𝑗,1 = 0.

In this way, an AcyGP with edge y𝑚 → y𝑙 can capture any distribution that can be

represented by an AcyGP without this edge by selecting 𝜆𝑙,𝑚,𝑗,1 = 0.

Table 5.1 shows common attribute models used in the heterogeneous AcyGP

model. The choice of attribute model is based on the domain of the attribute 𝑦𝑚,

such as the set of positive numbers or the set [0, 1], so that the choice of distribution

produces predictions within that domain. Domains that are scaled or offset from

those listed in Table 5.1 can be modeled by applying the reverse transformation to

the data prior to modeling. 𝒩 , 𝐺, and 𝐵 are used to represent the probability density

functions for normal, gamma, and beta distributions,

𝒩 (𝑎, 𝑏) =
1√
2𝜋𝑏

exp

Å
−(𝑦𝑚 − 𝑎)2

2𝑏

ã
(5.39)

𝐺(𝑎, 𝑏) =
1

Γ(𝑎) 𝑏𝑎
𝑦𝑎−1
𝑚 𝑒−

𝑦𝑚
𝑏 (5.40)

𝐵(𝑎, 𝑏) =
Γ(𝑎+ 𝑏)

Γ(𝑎) Γ(𝑏)
𝑦𝑎−1
𝑚 (1− 𝑦𝑚)𝑏−1 , (5.41)

and 𝜎(𝑎)𝑏 is the softmax function,

𝜎(𝑎)𝑏 =

⎧
⎪⎨
⎪⎩

exp(𝑎𝑖)

1+
∑︀|𝑎|

𝑖=1 exp(𝑎𝑖)
, 𝑏 ∈ {1, . . . , |𝑎|}

1

1+
∑︀|𝑎|

𝑖=1 exp(𝑎𝑖)
, 𝑏 = |𝑎|+ 1

. (5.42)

The following example shows how attribute models are combined for a given DAG

structure.
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Example 2. Consider an AcyGP with 3 attributes, 𝑦1, 𝑦2, and 𝑦3. 𝑦1(𝑥) is a Gaus-

sian random variable, 𝑦2(𝑥) is a categorical random variable with domain {1, 2}, and

𝑦3(𝑥) is a categorical random variable with domain {1, 2, 3}. The DAG structure has

two edges, 𝑦1 → 𝑦3 and 𝑦2 → 𝑦3.

The mean of 𝑦1(𝑥) is modeled as 𝛼1,1(𝑥), and its variance is specified by a static

parameter 𝛽1,1. Since 𝑦1 has no parents, 𝛼1,1(𝑥) = 𝑓1,1(𝑥) for the latent GP 𝑓1,1.

Similarly, 𝑦2(𝑥) depends on a single input-dependent parameter 𝛼2,1(𝑥) and no

static parameters. 𝑦2 has no parents, so 𝛼2,1(𝑥) = 𝑓2,1(𝑥) for GP 𝑓2,1.

Finally, 𝑦3(𝑥) depends on two input-dependent parameters, 𝛼3,1(𝑥) and 𝛼3,2(𝑥)

and no static parameters. 𝑦3 has 𝑦1 and 𝑦2 as parents, so

𝛼3,1(𝑥) = 𝑓3,1(𝑥) + 𝜆3,1,1,1 𝑦1(𝑥) + 𝜆3,2,1,1 𝛿𝑦2(𝑥),1 + 𝜆3,2,1,2 𝛿𝑦2(𝑥),2

𝛼3,2(𝑥) = 𝑓3,2(𝑥) + 𝜆3,1,2,1 𝑦1(𝑥) + 𝜆3,2,2,1 𝛿𝑦2(𝑥),1 + 𝜆3,2,2,2 𝛿𝑦2(𝑥),2

for GPs 𝑓3,1 and 𝑓3,2. In analogy to the homogeneous AcyGP model, the parameters

depend linearly on the value of 𝑦1(𝑥), with |𝜆3,1,1| = 1. The dependence on 𝑦2(𝑥)

is more complex, and uses multiple parameters |𝜆3,2,1| = 2 to encode the distinct

influences of 𝑦2(𝑥) = 1 and 𝑦2(𝑥) = 2.

Through this definition, probability distributions for 𝑦𝑚(𝑋) depend directly on

the parents 𝑦Π𝒢
𝑚

(𝑋). This introduces a structural equation model connecting the

attributes, so that the data factors according to the DAG 𝒢. Spatio-temporal corre-

lations are captured by the Gaussian processes 𝑓𝑚,𝑗, which correlates spatially close

observations by making similar values of latent functions more likely.

In Moreno-Muñoz et al. [96], the parameters {𝛼𝑚} depend only on mixtures of

latent processes {𝑓𝑚,𝑗}, rather than the true attributes {𝑦𝑚}. This means that for 𝑥𝑖

and 𝑥𝑗 such that 𝑦Π𝒢
𝑚

(𝑥𝑖) = 𝑦Π𝒢
𝑚

(𝑥𝑗), the effect on prediction of 𝑦𝑚(𝑥𝑖) and 𝑦𝑚(𝑥𝑗)

may be different, because it is not guaranteed that 𝑓Π𝒢
𝑚

(𝑥𝑖) = 𝑓Π𝒢
𝑚

(𝑥𝑗). In contrast,

our approach treats the attributes as a more fundamental quantity, and depends on

𝑦Π𝒢
𝑚

(𝑥𝑖) directly, eliminating this problem.
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5.10.2 Modeling Qualitative Constraints

Expert knowledge of interactions in the environment helps to constrain model param-

eters, leading to a more accurate model and faster selection of optimized parameters.

We have already discussed that experts may possess incomplete knowledge of the

interactions between variables in the environment, but they also may possess partial

knowledge of the nature of interactions between specific variables, if they exist. This

incomplete knowledge could take many forms, but we specifically consider here qual-

itative relationships between variables that specify whether correlations are positive

or negative.

Formulation of a structural equation model for AcyGPs makes it simple to express

a few key qualitative relationships between variables as restrictions on {𝜆𝑚,𝑛,𝑗}. For

an inter-variable relationship expressed as an edge 𝑦𝑛 → 𝑦𝑚, we may express that con-

tinuous 𝑦𝑚 increases in expectation with increased continuous 𝑦𝑛 or when categorical

𝑦𝑛 = 𝑖 as
𝜆𝑚,𝑛,1,1 > 0, continuous 𝑦𝑚, continuous 𝑦𝑛

𝜆𝑚,𝑛,1,𝑖 > 0, continuous 𝑦𝑚, categorical 𝑦𝑛 = 𝑖.
(5.43)

We may similarly express that the probability of categorical 𝑦𝑛 = 𝑗 increases with

increased continuous 𝑦𝑛 or when categorical 𝑦𝑛 = 𝑖 as

𝜆𝑚,𝑛,𝑗,1 > 𝜆𝑚,𝑛,𝑗′,1 ∀ 𝑗′ ̸= 𝑗, categorical 𝑦𝑚 = 𝑗, 𝑗 < 𝐶, continuous 𝑦𝑛

𝜆𝑚,𝑛,𝑗′,1 < 0 ∀ 𝑗′, categorical 𝑦𝑚 = 𝐶, continuous 𝑦𝑛

𝜆𝑚,𝑛,𝑗,𝑖 > 𝜆𝑚,𝑛,𝑗′,𝑖 ∀ 𝑗′ ̸= 𝑗, categorical 𝑦𝑚 = 𝑗, 𝑗 < 𝐶, categorical 𝑦𝑛 = 𝑖

𝜆𝑚,𝑛,𝑗′,𝑖 < 0 ∀ 𝑗′, categorical 𝑦𝑚 = 𝐶, categorical 𝑦𝑛 = 𝑖.

(5.44)

Opposite statements, that continuous 𝑦𝑚 decreases in expectation or the probability

of categorical 𝑦𝑛 = 𝑗 decreases when continuous 𝑦𝑛 increases or when categorical

𝑦𝑛 = 𝑖, can be achieved by reversing the signs of all inequalities.
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5.10.3 Selection of Parameters and DAG Structure in the Het-

erogeneous AcyGP Model

In this section, we describe how parameters and DAG structure are selected in the

heterogeneous AcyGP model. Since the model has been generalized and includes

additional parameters compared to the homogeneous AcyGP model, the form of the

objective must also be modified.

Selection of parameters for a given structure and choice of structure is still per-

formed through optimization of BIC. Like in the homogeneous AcyGP model, missing

observations of an attribute at an input where another attribute has been observed

means optimization must be done through Structural EM, with vectors of observed

and unobserved values v𝑚.

For fixed kernels and attribute models, the number of kernel parameters and

parameters in 𝛽𝑚 does not change with structure. However, the number of parent

dependence parameters 𝜆𝑚,𝑛,𝑗 now depends on the choices of parents. For a Gaussian

parent 𝑦𝑛, only a single parameter is needed in 𝜆𝑚,𝑛,𝑗, but for a categorical parent

with domain size 𝐶, 𝐶 − 1 parameters are needed in 𝜆𝑚,𝑛,𝑗. In addition, these edge

parameters exist for each of the 𝐽𝑚 latent processes that are used in modeling 𝑦𝑚. As

a result, the number of parameters in a heterogeneous AcyGP model associated with

attribute 𝑚 is 𝐽𝑚
(︀∑︀

𝑛∈Π𝒢
𝑚
|𝜆𝑚,𝑛,𝑗|

)︀
, and the objective function that is optimized in

structural EM becomes

𝐷𝑦∑︁

𝑚=1

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀
− 𝐽𝑚

2

Ñ
∑︁

𝑛∈Π𝒢
𝑚

|𝜆𝑚,𝑛,𝑗|

é
log𝑁. (5.45)

Here, the vector 𝜃𝑚 includes kernel hyperparameters and all parameters 𝛽𝑚 and

𝜆𝑚,𝑛,𝑗.

Changing the parameter count does not change the way that structural EM oper-

ates in any meaningful way. However, the expectation Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
)
]︀

no longer has a closed form solution, and we must resort to approximations that we

describe in the following sections.
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5.10.4 Optimization Procedure for a Candidate Structure

Combining multiple non-Gaussian distributions in the heterogeneous AcyGP model

means that posterior distributions conditioned on observations can no longer be writ-

ten in closed form, and it is difficult to even describe the posterior distributions

exactly. This makes it difficult to compute the likelihood of observations. In this

section, we describe how to approximate likelihood using a variational technique that

was developed by Moreno-Muñoz et al. [96], which we adapt to the heterogeneous

AcyGP model.

To see why inference and likelihood computation is difficult, consider an AcyGP

with a single categorical attribute with domain {1, 2} and a single observation 𝑦1(𝑥𝑖).

The posterior distribution of 𝑓1,1(𝑥𝑖) is given as

𝑝(𝑓1,1(𝑥𝑖) | 𝑦1(𝑥𝑖)) ∝ 𝑝(𝑦1(𝑥𝑖) | 𝑓1,1(𝑥𝑖)) 𝑝(𝑓1,1(𝑥𝑖))

= 𝜎(𝑓1,1(𝑥𝑖))𝑦𝑚(𝑥𝑖) 𝑝(𝑓1,1(𝑥𝑖)).

This posterior is difficult to work with because of the sigmoid term. The distribution

is non-Gaussian, and a normalization constant cannot be computed in closed form.

Prediction of any 𝑦1(𝑥𝑗) | 𝑦1(𝑥𝑖) must be computed through integration over 𝑓1,1(𝑥𝑗) |
𝑦1(𝑥𝑖), which is similarly non-Gaussian, and it is not clear how to efficiently sample

from or perform quadrature over this distribution. The difficulty is only exacerbated

in the case of additional observations.

Instead, we follow the approach of Moreno-Muñoz et al. [96] and perform infer-

ence and training through the use of a variational approximation. Moreno-Muñoz

et al. developed this method to model heterogeneous Gaussian processes, in which

all parameters are modeled using a fully correlated linear MOGP. The variational

approach optimizes likelihood using an approximation to the posterior distribution of

the latent Gaussian processes. The posterior distribution of the GPs are modeled as

Gaussian distributed, and a lower bound on likelihood is developed for any Gaussian

posterior. This lower bound can be approximated using Gauss-Hermite quadrature,

and the Gaussian posterior that results in the largest lower bound on likelihood is
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solved. The optimized value of the bound is used in structural EM for training, and

this variational posterior is used for inference and prediction. The variational approx-

imation can be more readily computed than the exact posterior, is faster for large

data sets, and can handle cases for which no analytic expression for the posterior

distribution exists.

In the variational approach, the processes 𝑓𝑚,𝑗 are modeled at a vector of inducing

locations 𝑍 = [𝑧1, . . . ,𝑧𝑁𝑧 ]. In general, fewer inducing locations will be chosen than

training inputs, so that training will be accelerated. We denote the values of the

processes at the inducing locations as u𝑚,𝑗 = [𝑓𝑚,𝑗(𝑧1), . . . , 𝑓𝑚,𝑗(𝑧𝑁𝑧)]
𝑇 .

We then make the variational choice to model the posterior distributions on the

latent processes values as the closest Gaussian distributions to the true posteriors.

We still perform structural EM, so we compute posteriors with respect to the vec-

tor of all parent observables vΠ𝒢
𝑚
. The approximate posterior distribution is de-

noted 𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) = 𝒩 (𝜇𝑚,𝑗,𝑆𝑚,𝑗). 𝑞𝜃𝑚,𝑗

(u𝑚,𝑗) is an approximation to the true (non-

Gaussian) posterior 𝑝𝜃𝑚,𝑗
(u𝑚,𝑗 | vΠ𝒢

𝑚
), but we will solve for 𝜇𝑚,𝑗 and 𝑆𝑚,𝑗 so that

𝑞𝜃𝑚,𝑗
is close to 𝑝𝜃𝑚,𝑗

. The combined posterior of f𝑚,𝑗,u𝑚,𝑗 is approximated using the

exact conditional distribution of f𝑚,𝑗 | u𝑚,𝑗 and the variational distribution of u𝑚,𝑗

as

𝑝𝜃𝑚,𝑗
(f𝑚,𝑗,u𝑚,𝑗 |vΠ𝒢

𝑚
) ≈ 𝑞𝜃𝑚,𝑗

(f𝑚,𝑗,u𝑚,𝑗)

= 𝑝𝜃𝑚,𝑗
(f𝑚,𝑗 |u𝑚,𝑗) 𝑞𝜃𝑚,𝑗

(u𝑚,𝑗).
(5.46)

Here, 𝑝𝜃𝑚,𝑗
(f𝑚,𝑗 |u𝑚,𝑗) is computed as the predictive distribution of a Gaussian process

at inputs 𝑋 conditioned on observations of u𝑚,𝑗 at inputs 𝑍.

We denote the complete vectors of all GP values for attribute index 𝑚 as f𝑇𝑚 =

[f𝑇𝑚,1, . . . , f
𝑇
𝑚,𝐽𝑚 ] and u𝑇

𝑚 = [u𝑇
𝑚,1, . . . ,u

𝑇
𝑚,𝐽𝑚

]. Since the processes 𝑓𝑚,1, . . . , 𝑓𝑚,𝑗 are
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mutually independent, we may compute joint distributions as

𝑞𝜃𝑚(u𝑚) =
𝐽𝑚∏︁

𝑗=1

𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) (5.47)

𝑝𝜃𝑚(f𝑚 |u𝑚) =
𝐽𝑚∏︁

𝑗=1

𝑝𝜃𝑚,𝑗
(f𝑚,𝑗 |u𝑚,𝑗), (5.48)

which jointly imply that

𝑞𝜃𝑚(f𝑚,u𝑚) = 𝑝𝜃𝑚(f𝑚 |u𝑚) 𝑞𝜃𝑚(u𝑚). (5.49)

Using the variational distribution, a lower bound for the log likelihood is derived

using Jensen’s inequality, which implies that for random variable r, logE [𝑔(r)] ≥
E [log 𝑔(r)]. Algebraic manipulation of the log likelihood and application of Jensen’s

inequality leads to

log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢
𝑚

)

= log

∫︁
𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
, f𝑚) 𝑝𝜃𝑚(f𝑚 |u𝑚) 𝑝𝜃𝑚(u𝑚) 𝑑f𝑚 𝑑u𝑚

= log

∫︁
𝑞𝜃𝑚(f𝑚,u𝑚)

𝑝𝜃𝑚(v𝑚 |vΠ𝒢
𝑚
, f𝑚) 𝑝𝜃𝑚(f𝑚 |u𝑚) 𝑝𝜃𝑚(u𝑚)

𝑞𝜃𝑚(f𝑚,u𝑚)
𝑑f𝑚 𝑑u𝑚

= logE𝑞𝜃𝑚 (f𝑚,u𝑚)

ï
𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
, f𝑚) 𝑝𝜃𝑚(f𝑚 |u𝑚) 𝑝𝜃𝑚(u𝑚)

𝑞𝜃𝑚(f𝑚,u𝑚)

ò
≥ E𝑞𝜃𝑚 (f𝑚,u𝑚)

ï
log

𝑝𝜃𝑚(v𝑚 |vΠ𝒢
𝑚
, f𝑚) 𝑝𝜃𝑚(u𝑚)

𝑞𝜃𝑚(u𝑚)

ò
= E𝑞𝜃𝑚 (f𝑚)

[︀
log 𝑝𝜃𝑚(v𝑚 |vΠ𝒢

𝑚
, f𝑚)

]︀
−KL(𝑞𝜃𝑚(u𝑚) || 𝑝𝜃𝑚(u𝑚))

=
𝑁∑︁

𝑖=1

E𝑞𝜃𝑚 (𝑓𝑚(𝑥𝑖))

[︀
log 𝑝𝜃𝑚(𝑦𝑚(𝑥𝑖) |𝑦Π𝒢

𝑚
(𝑥𝑖),𝑓𝑚(𝑥𝑖))

]︀

−
𝐽𝑚∑︁

𝑗=1

KL(𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) || 𝑝𝜃𝑚,𝑗

(u𝑚,𝑗)),

(5.50)

where KL(· || ·) denotes the Kullback-Leibler divergence between two distributions.

239



The distribution 𝑞𝜃𝑚(f𝑚) is computed as

𝑞𝜃𝑚(f𝑚) ,
∫︁
𝑝𝜃𝑚(f𝑚 |u𝑚) 𝑞𝜃𝑚(u𝑚) 𝑑u𝑚

=
𝐽𝑚∏︁

𝑗=1

∫︁
𝑝𝜃𝑚,𝑗

(f𝑚,𝑗 |u𝑚,𝑗) 𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) 𝑑u𝑚,𝑗

=
𝐽𝑚∏︁

𝑗=1

𝒩
Ä
𝐾f𝑚,𝑗 ,u𝑚,𝑗

𝐾−1
u𝑚,𝑗 ,u𝑚,𝑗

𝜇𝑚,𝑗,

𝐾f𝑚,𝑗 ,u𝑚,𝑗
𝐾−1

u𝑚,𝑗 ,u𝑚,𝑗

(︀
𝑆𝑚,𝑗 −Ku𝑚,𝑗 ,u𝑚,𝑗

)︀
𝐾−1

u𝑚,𝑗 ,u𝑚,𝑗
𝐾u𝑚,𝑗 ,f𝑚,𝑗

ä
.

(5.51)

The variational strategy is to maximize the lower bound given in (5.50) through

selection of the AcyGP parameters 𝜃 and 𝒢 in addition to the parameterization of

𝑞𝜃𝑚(u𝑚) (through the values of 𝜇𝑚 and 𝑆𝑚). It may be verified by substitution that

for 𝑞𝜃𝑚(f𝑚,u𝑚) = 𝑝𝜃𝑚(f𝑚,u𝑚 |vΠ𝒢
𝑚

) the bound is tight. This means the optimiza-

tion is exact for AcyGPs with Gaussian attributes with 𝑍 = 𝑋, because the true

posterior distribution is Gaussian, matching the variational assumption. When the

true posterior distribution 𝑝𝜃𝑚(f𝑚,u𝑚 |vΠ𝒢
𝑚

) is not Gaussian distributed, variational

optimization solves for the Gaussian distribution with the closest likelihood to the

true posterior.

Applying this form to the Structural EM objective given in (5.45), we reach a final

objective to be optimized of

𝐷𝑦∑︁

𝑚=1

{︃
Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︃
𝑁∑︁

𝑖=1

E𝑞𝜃𝑚 (𝑓𝑚(𝑥𝑖))

[︀
log 𝑝𝜃𝑚(𝑦𝑚(𝑥𝑖) |𝑦Π𝒢

𝑚
(𝑥𝑖),𝑓𝑚(𝑥𝑖))

]︀
]︃

−
𝐽𝑚∑︁

𝑗=1

KL(𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) || 𝑝𝜃𝑚,𝑗

(u𝑚,𝑗))−
𝐽𝑚
2

Ñ
∑︁

𝑛∈Π𝒢
𝑚

|𝜆𝑚,𝑛,𝑗|

é
log𝑁

⎫
⎬
⎭ . (5.52)
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5.10.5 Approximate Computation Through Numerical Quadra-

ture

For heterogeneous attributes, evaluation of the expectations in (5.52) over the distri-

butions of v |y,𝜃(𝑡,𝑠),𝒢(𝑡) and 𝑞𝜃𝑚(𝑓𝑚(𝑥𝑖)) typically lack closed form solutions. Pre-

cise evaluation can be achieved through Monte Carlo techniques, but Monte Carlo

estimation is time consuming. Evaluation of the expectations is therefore evaluated

through the use of quadrature rules that we describe in this section. The basics of

numerical quadrature were covered in Section 5.4.

Gaussian expectations are maximized through Gauss-Hermite quadrature, so we

use this method for approximation expectations of 𝑞𝜃𝑚(𝑓𝑚(𝑥𝑖)). To model v |y,𝜃(𝑡,𝑠),𝒢(𝑡),
we compute a quadrature rule 𝒬[𝑝

𝜃
(𝑡,𝑠)
𝑚

(𝑦(𝑥𝑖) |y,𝒢(𝑡))] for each 𝑥𝑖. The method to

construct this quadrature rule is given in the next section.

(5.52) is computed using quadrature rules𝒬[𝑝
𝜃
(𝑡,𝑠)
𝑚

(𝑦(𝑥𝑖) |y,𝒢(𝑡))] = {(𝑦(𝑥𝑖)
𝑐, 𝑤𝑐)}𝐶𝑐=1

and 𝒬[𝑞𝜃𝑚(𝑓𝑚(𝑥𝑖))] = {(𝑓𝑚(𝑥𝑖)
𝑐′ , 𝑤𝑐′)}𝐶′

𝑐′=1, as

𝐷𝑦∑︁

𝑚=1

{︃
𝑁∑︁

𝑖=1

𝐶∑︁

𝑐=1

𝐶′∑︁

𝑐′=1

𝑤𝑐 𝑤𝑐′ log 𝑝𝜃𝑚(𝑦𝑚(𝑥𝑖)
𝑐 |𝑦Π𝒢

𝑚
(𝑥𝑖)

𝑐,𝑓𝑚(𝑥𝑖)
𝑐′)

−
𝐽𝑚∑︁

𝑗=1

KL(𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) || 𝑝𝜃𝑚,𝑗

(u𝑚,𝑗))−
𝐽𝑚
2

Ñ
∑︁

𝑛∈Π𝒢
𝑚

|𝜆𝑚,𝑛,𝑗|

é
log𝑁

⎫
⎬
⎭ . (5.53)

As in the homogeneous model, optimization is performed using L-BFGS. For nu-

merical stability, training alternates between optimizing 𝜃 and optimizing 𝜇𝑚 and

𝑆𝑚.

5.10.6 Prediction in the Heterogeneous AcyGP Model

Just like in the homogeneous AcyGP model, training a heterogeneous AcyGP requires

prediction on lines 3 and 4 of Algorithm 15, and also to produce samples used in query-

driven adaptive sampling. Multivariate posterior predictions of the heterogeneous

AcyGP model generally do not have closed form representations. However, we can

either sample from the posterior distribution, or construct attribute quadrature rules.
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Sampling from the Posterior Distribution

Sampling from the heterogeneous AcyGP posterior is performed using the posterior

representation of the latent processes directly. For a vector of prediction inputs 𝑋*,

distributions over the latent process posteriors 𝑞𝜃𝑚(f*𝑚) may be computed using (5.51).

Samples of f*𝑚 may be taken directly from the multivariate Gaussian distributions.

A sample of y*
𝑚 is computed using samples of f*𝑚 and samples of y*

Π𝒢
𝑚

according to

the structural equation model of the AcyGP. The attribute dimensions are considered

in a topological order consistent with the DAG structure 𝒢. Using samples of y*
Π𝒢

𝑚
,

𝑡𝜆𝑚,𝑛,𝑗
(𝑦𝑛(𝑥*

𝑖 )) are computed for all 𝑛 ∈ Π𝒢
𝑚 and combined with samples of f*𝑚 to

give samples of 𝛼𝑚(𝑥*
𝑖 ). Finally, samples of 𝑦𝑚(𝑥*

𝑖 ) are taken from the distribution

𝑝𝛽𝑚(𝑦𝑚(𝑥*
𝑖 ) |𝛼𝑚(𝑥*

𝑖 )).

Predictions as Quadrature Rules

We can construct quadrature rules for all attributes in the AcyGP at a single location

in a similar manner to sampling. Starting with a quadrature rule for an empty set of

variables 𝒬[𝑞𝜃(𝑦∅(𝑥*
𝑖 ))] = {(∅, 1)}, the quadrature rule is constructed incrementally,

adding each attribute in topological order consistent with the DAG structure 𝒢 as

described in Algorithm 16.

The loop on line 2 loops through each attribute 𝑚, and has available the quadra-

ture rule 𝒬[𝑞𝜃(𝑦𝑇𝑛(𝒢)(𝑥
*
𝑖 ))] for all attributes that precede attribute 𝑚 in a topological

ordering. For each element 𝑦𝑇𝑛(𝒢)(𝑥
*
𝑖 )

𝑐 of the quadrature rule over the preceding at-

tributes we construct 𝒬[𝑞𝜃(𝑦𝑚(𝑥*
𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐)] on lines 6 through 16. This is done

using samples from a quadrature rule of 𝑦𝑇𝑛(𝒢) on line 5 and samples from a quadra-

ture rule for 𝑞𝜃𝑚(𝑓𝑚(𝑥*
𝑖 )) on line 11 to generate samples for 𝛼𝑚(𝑥*

𝑖 ) on line 13. This

is then passed through 𝑝𝛽𝑚 to generate 𝒬[𝑞𝜃(𝑦𝑚(𝑥*
𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐)] on line 16.

We then combine elements of the quadrature rule over 𝑦𝑇𝑛(𝒢)(𝑥
*
𝑖 ) with elements of

the quadrature rules over 𝑦𝑚(𝑥*
𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐 to produce elements of the quadrature

rule 𝒬[𝑞𝜃(𝑦𝑇𝑚(𝒢)(𝑥*
𝑖 ))] on line 18. Once the final index 𝑚 has been considered, the

final quadrature rule is returned.
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Algorithm 16: AcyGP Quadrature Prediction
Input : Trained AcyGP parameters 𝜃, DAG 𝒢, prediction location 𝑥*

𝑖 , and
observed data y

Output: Predictive quadrature rule 𝒬[𝑞𝜃(𝑦(𝑥*
𝑖 ))]

1 𝒬[𝑞𝜃(𝑦𝑇𝑚(𝒢)(𝑥*
𝑖 ))]← {(∅, 1)}

2 for 𝑚 in order of topological ordering 𝑇 (𝒢)
3 𝒬[𝑞𝜃(𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 ))]← 𝒬[𝑞𝜃(𝑦𝑇𝑚(𝒢)(𝑥*

𝑖 ))]
4 𝒬[𝑞𝜃(𝑦𝑇𝑚(𝒢)(𝑥*

𝑖 ))]← {}
5 for (𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐, 𝑤𝑐) ∈ 𝒬[𝑞𝜃(𝑦𝑇𝑛(𝒢)(𝑥
*
𝑖 ))]

6 if 𝑦𝑚(𝑥*
𝑖 ) is observed then

7 𝒬[𝑞𝜃(𝑦𝑚(𝑥*
𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐)]← {(𝑦𝑚(𝑥*
𝑖 ), 1)}

8 else
9 Construct 𝒬[𝑞𝜃𝑚(𝑓𝑚(𝑥*

𝑖 ))] using Gauss-Hermite quadrature on the
distribution constructed in (5.51)

10 𝒬[𝑞𝜃(𝑦𝑚(𝑥*
𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 ))]← {}

11 for (𝑓𝑚(𝑥*
𝑖 )

𝑐′ , 𝑤𝑐′) ∈ 𝒬[𝑞𝜃(𝑓𝑚(𝑥*
𝑖 )]

12 for 𝑗 ∈ {1, . . . , 𝐽𝑚}
13 𝛼𝑚,𝑗(𝑥

*
𝑖 )

𝑐′ ← 𝑓𝑚,𝑗(𝑥
*
𝑖 )

𝑐′ +
∑︀

𝑛∈Π𝒢
𝑚
𝑡𝜆𝑚,𝑛,𝑗

(𝑦𝑛(𝑥*
𝑖 )

𝑐)

14 Construct 𝒬[𝑝𝛽𝑚(𝑦𝑚(𝑥*
𝑖 ) | 𝛼𝑚(𝑥*

𝑖 ))] using an appropriate
quadrature rule for 𝑝𝛽𝑚

15 for (𝑦𝑚(𝑥*
𝑖 )

𝑐′′ , 𝑤𝑐′′) ∈ 𝒬[𝑝𝛽𝑚(𝑦𝑚(𝑥*
𝑖 ) | 𝛼𝑚(𝑥*

𝑖 ))]
16 Add (𝑦𝑚(𝑥*

𝑖 )
𝑐′′ , 𝑤𝑐′ × 𝑤𝑐′′) to 𝒬[𝑞𝜃(𝑦𝑚(𝑥*

𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥
*
𝑖 ))]

17 for (𝑦𝑚(𝑥*
𝑖 )

𝑐′ , 𝑤𝑐′) ∈ 𝒬[𝑞𝜃(𝑦𝑚(𝑥*
𝑖 ) |𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐)]
18 Add ([𝑦𝑇𝑛(𝒢)(𝑥

*
𝑖 )

𝑐′ , 𝑦𝑚(𝑥*
𝑖 )

𝑐], 𝑤𝑐 × 𝑤𝑐′) to 𝒬[𝑞𝜃(𝑦𝑇𝑚(𝒢)(𝑥*
𝑖 ))]

19 if 𝑚 is last index in 𝑇 (𝒢) then
20 return 𝒬[𝑞𝜃(𝑦𝑇𝑚(𝒢)(𝑥*

𝑖 ))]
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5.11 Experiments

We now present experimental results of the AcyGP model performed on synthetic

and real data. We hypothesize that the the AcyGP model will be able to produce

more accurate predictions of missing data than other Gaussian process models in

prediction tasks with strong correlations between attributes. We show improvements

in prediction error measured from the predictive mean of a Gaussian process over

state of the art Gaussian process methods that correlate all attributes, and a model

that is structures as an AcyGP, but maximizes unpenalized data likelihood.

Our synthetic experiment is designed to demonstrate how correlating independent

attributes can leading to highly incorrect predictions. The real data experiments use

common MOGP benchmarks, but also demonstrate the applicability of the AcyGP

model in multiple, dissimilar domains both relevant to and independent from adaptive

sampling.

We tested the homogeneous AcyGP model against the frequently applied MOGP

baseline SLFM, and the recent state of the art GPAR [110] on continuous valued

data. We tested against the heterogeneous Gaussian process model [96], which models

heterogeneous distribution parameters through a fully correlated SLFM model, on

binary-valued data. The experiments were each repeated 10 times, with random

initial hyperparameters used for optimization, and no edges in the initially assumed

DAG structure 𝒢(0).

When a single attribute is to be predicted, we present results in terms of mean

absolute error, which is the mean error of the difference between the predicted mean

and the true data point. When multiple attributes are predicted, we follow the

literature and present errors for each attribute in terms of standardized mean squared

error (SMSE), defined below, where 𝑦𝑝𝑟𝑒𝑑 is predicted by the GP, 𝑦𝑡𝑟𝑢𝑒 is the true

value of the removed test data, and 𝜇𝑡𝑒𝑠𝑡 is the mean of the removed test data for the

attribute.

SMSE =

∑︀𝑁𝑝𝑟𝑒𝑑

𝑖=1 (E[𝑦𝑝𝑟𝑒𝑑(𝑥𝑖)]− 𝑦𝑡𝑟𝑢𝑒(𝑥𝑖))
2

∑︀𝑁𝑝𝑟𝑒𝑑

𝑖=1 (𝜇𝑡𝑒𝑠𝑡 − 𝑦𝑡𝑟𝑢𝑒(𝑥𝑖))2
(5.54)
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5.11.1 Synthetic Data Experiment

This experiment was formulated to test the capability of the AcyGP model to recover

known structure and avoid spurious correlations that would harm prediction accuracy.

To do so, we generate synthetic data with attributes that are strongly correlated, but

independent when conditioned on a third attribute.

Our synthetic data consisted of 41 equally spaced data points on the domain [0, 10]

for the following functions with no noise.

𝑦1(𝑥) = 𝑒−(𝑥−2)2 𝑦2(𝑥) = 1.1𝑒−𝑥2

+ 5𝑒−0.4(𝑥−2.5)2 + 3𝑒−4(𝑥−7)2 + 0.01𝑥3

𝑦3(𝑥) = 2𝑦1(𝑥) + 0.8 log(𝑥+ 0.25)

The functions are shown graphically in Figure 5-6a. We then remove and attempt to

predict 𝑦3 in the range [6, 8] using an AcyGP with RBF kernels.

The functions in this experiment are designed so that 𝑦3 is strongly correlated with

𝑦1, and weakly correlated with 𝑦2 through peaks near 𝑥 = 2. However, 𝑦3 depends

only on 𝑦1, and 𝑦2 has a unique peak at 𝑥 = 7. If an MOGP method falsely correlates

𝑦3 with 𝑦2, we expect a peak to appear in the prediction of 𝑦3.

Unlike SLFM and GPAR, the AcyGP model does not introduce spurious corre-

lations between 𝑦2 and 𝑦3, improving prediction accuracy. Structural search reveals

that while 𝑦3 is well described by dependence on either 𝑦1 or 𝑦2, dependence on 𝑦2

contributes little additional explanatory power when 𝑦1 is already included as a par-

ent, so there is limited evidence for a second peak in 𝑦3. The AcyGP model performs

this tradeoff and recovers the true DAG, with a single edge 𝑦1 → 𝑦3, as shown in

Figure 5-7. A second peak is not predicted, as in Figure 5-6b. Mean absolute errors

of the predicted means are given in Table 5.2, showing small errors for the AcyGP

model. GPAR and SLFM directly correlate 𝑦2 with 𝑦3, resulting in a second peak in

predictions of 𝑦3 and significantly larger mean absolute errors.
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Table 5.2: Mean absolute errors of predictions on the synthetic data set.

SLFM GPAR AcyGP

1.00 ± 0.12 0.151 ± 0.004 0.0086 ± 0.0003
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Figure 5-6: Synthetic data set visualization and predictions with 95% confidence
intervals.
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Figure 5-7: Structure extracted by the AcyGP model on the synthetic data set.
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Figure 5-8: Structure extracted by the AcyGP model on the Jura data set.

5.11.2 Jura Data Set

The Jura data set [54] consists of soil metal concentrations collected at different spatial

locations in the Swiss Jura. This dataset is similar to the type of observations found

in typical adaptive sampling problems, as it contains geological variables distributed

through space with varying longitude and latitude. For this reason, the Jura dataset

is a common benchmark for geospatial modeling.

We repeat the experimental setup in other MOGP studies [4, 54, 110], where 259

observations of nickel (Ni), zinc (Zn), and cadmium (Cd) concentrations are known.

100 additional data points provide observations of Ni and Zn, and Cd is predicted at

those 100 locations. As in previous works, the data is log-transformed then modeled

using RBF kernels, though errors are computed in the original scale.

The structure extracted by the AcyGP model is given in Figure 5-8. The DAG is

fully connected, which reflects the fact that all metal concentrations are well correlated

in this experiment. But this experiment shows that the AcyGP model has value even

with strongly correlated variables, by reducing mean absolute error over the state of

the art. It achieves this by solving for an ordering of variables that better matches

the relationships seen in the data. Figure 5-8 implies that Zn is modeled as linearly

dependent on both Cd and Ni, so that additional information about concentrations

of Cd can be extracted from the spatial distribution of concentrations of Cd.

Mean absolute errors of the cadmium predictions are given in Table 5.3. De-

spite using simpler expressions for inter-attribute relationships than the previous

best-known method, GPAR, the AcyGP model achieves a new state of the art in

minimization of mean absolute error on this baseline. This improvement results di-

rectly from the solved structural model, where Cd is not modeled as a function of
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Table 5.3: Mean absolute errors on Jura prediction task.

SLFM GPAR AcyGP

0.5352 ± 1×10-5 0.3999 ± 4×10-4 0.3946 ± 0.023

function of both Ni and Zn, as is assumed in GPAR. Instead, the solved DAG models

Cd as child of Ni, and Zn as a child of Ni and Cd.

5.11.3 Exchange Data Set

The exchange data set consists of the daily exchange rates with respect to USD of pre-

cious metals and currencies over 251 days of 2007. This domain is frequently tested in

the MOGP literature, and is an insightful test of the AcyGP model because there is a

large number of attributes with complex interdependencies and temporal correlations

over many length scales. Testing on this domain also shows the applicability of the

AcyGP model outside of adaptive sampling experiments.

Previous works on this data set assumed that global markets are driven by a small

number of latent forces and are highly correlated [98]. We instead hypothesize that

currencies are driven by a few select trading partners, and test whether a sparse DAG

structure improves prediction accuracy. We model the prices of gold (AUX), silver

(AGX), and 6 currencies (CAD, EUR, CHF, AUD, NZD, and HKD) using rational

quadratic kernels. The task is to predict CAD on data points 50-100, HKD on points

100-150, and AUD on points 150-200, given all other observations. We consider a

subset of possible DAG structures where the only edges possible are from elements of

{AUX, AGX, NZD, EUR, CHF} to elements of {CAD, HKD, AUD}. No restrictions

are placed on other methods. To test the influence of sparsity in the DAG, we

repeat the experiment with all possible edges from {AUX, AGX, NZD, EUR, CHF}
to {CAD, HKD, AUD}, labeled as ‘AcyGP Full’.

Standardized mean squared errors (SMSEs) are given in Table 5.4. Predictions for

CAD and HKD are given in Figures 5-9a and 5-9b, and the learned DAG is given in

Figure 5-9c. Compared to alternate methods, CAD predictions in the AcyGP model

are lower and closer to truth. Additionally, confidence intervals in the predictions

248



Table 5.4: Standardized mean squared error on the exchange prediction task.

SLFM GPAR AcyGP AcyGP Full

CAD 1.63 ± 0.10 0.953 ± 0.022 0.6010 ± 1×10-8 0.6425 ± 2×10-4

HKD 1.15 ± 0.11 1.380 ± 0.075 0.6353 ± 6×10-8 1.75 ± 0.15
AUD 0.099 ± 0.033 0.04091 ± 0.00095 0.02920 ± 2.2×10-4 0.02936 ± 1×10-6

Average 0.959 ± 0.082 0.791 ± 0.028 0.4218 ± 7×10-5 0.807 ± 0.050

are substantially larger in the AcyGP model. Typically, larger confidence intervals

are undesirable for prediction, but in this experiment, larger uncertainties better

model the deviation of the data from the predicted mean. Some data is outside

the 95% confidence interval generated by the SLFM and GPAR models, resulting in

low likelihood, and giving greater likelihood of the predictions in the AcyGP model

despite the larger variance in predictions. This shows that correlating all attributes

will tend to lead to overestimates of confidence, which may not reflect certainty about

the data.

HKD is identified to have no parents due to its unique slump over the first half of

the year. This corresponds to meaningful domain-specific structure, since the price

of HKD is known to be tied to USD [79], and it does not respond to market forces

that affect other currencies relative to USD. The predicted price of HKD is pushed

upwards by the SLFM and downwards by GPAR, but predicting this attribute with

no parents (as an independent GP) leads to more accurate predictions.

Using a fully connected structure leads to significantly reduced prediction accu-

racy, particularly for HKD. The fully connected model learns correlations between

unrelated currencies, introducing patterns into the prediction targets that do not oc-

cur. The AcyGP model avoids introducing these patterns, and so improves prediction

accuracy.

5.11.4 Andromeda Data Set

The Andromeda data set [58, 128] consists of daily averages of temperature (𝑇 ), pH,

conductivity (𝜎), salinity (𝑆), oxygen (𝑂2), and turbidity (𝛽) observed over 54 days
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Figure 5-9: Exchange test results. Predictions show 95% confidence intervals, with
missing data in red.

Table 5.5: Standardized mean squared error on the Andromeda prediction task.

SLFM GPAR AcyGP AcyGP Full

Salinity 0.0934 ± 0.0057 0.2087 ± 0.0024 0.05324 ± 1×10-8 0.0962 ± 0.0020
Oxygen 0.130 ± 0.019 0.4626 ± 0.0027 0.03210 ± 5×10-9 0.0387 ± 0.0021

Average 0.112 ± 0.011 0.3356 ± 0.0020 0.04267 ± 8×10-9 0.0675 ± 0.0021

by an underwater mooring. Oceanographic models causally describe many of these

variables as functions of small sets of others, so we anticipate a sparse DAG model

to well describe this system. Furthermore, since the number of data points is small,

we expect spurious statistical correlations to exist in this data set. We tested the

capability to predict salinity on days 21-30 and oxygen on days 31-40 given all other

data. We also repeated the test, solving for the highest unpenalized score AcyGP

(‘AcyGP Full’) for reference.

Standardized mean squared errors are given in Table 5.5. We see significant im-

provement in prediction under the AcyGP model. The optimized DAG, as shown in

Figure 5-10a places salinity and oxygen near the top of the DAG, with 2 and 3 direct

relatives. The learned DAG structure appears to avoid modeling additional correla-

tions that harmfully influence predictions in the other, fully correlated models. All

edges to and from oxygen and salinity in the sparse structure appear in the fully con-

nected structure learned without penalization in Figure 5-10b, so the presence of the

additional direct correlations to other variables is responsible for reduced prediction

accuracy by the fully connected AcyGP model.
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Figure 5-10: Learned structures in the Andromeda prediction task.

5.11.5 Seep Data Set

We construct a data set describing likely sites of natural hydrocarbon seepage in the

Costa Rica continental margin, derived from observations taken by Sahling et al.

[114]. The adaptive sampling technology described in this thesis was applied on a

field deployment to this continental margin in December 2018 [9, 144], so testing on

this data set is an accurate representation of the type of environmental prediction

required for adaptive sampling missions.

The seep data set describes longitude and latitude positions of 112 candidate

seep sites. A location is considered to be a candidate seep site when a visual or

chemical confirmation of seepage has been detected, or an observable signal strongly

correlated with seepage is present, such as specific bathymetric features, microbial

mats, or backscatter signals. For each candidate seep site, our data set includes

presence of a mound (𝑀), a pockmark (𝑃 ), a fault (𝐹 ), elevated backscatter (𝐵),

and confirmed presence of seepage (𝑆), each of which are binary variables.

We model prediction of the presence of seepage using the heterogeneous AcyGP

model and heterogeneous Gaussian processes [96] with RBF kernels. In this experi-

ment, the heterogeneous AcyGP model is used with a fixed structure, shown in Figure

5-11. This model is derived from a simplification of a geologists intuitive model of an

environment. The occurrence of bathymetric features and backscatter is considered

to be an independent event, unless connected through seepage as a common effect.

In each experiment, we remove seep presence data from 8 locations for training,
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Figure 5-11: Imposed AcyGP structure in the seep data set experiment.

Table 5.6: Mean absolute errors on the seep prediction task.

Heterogeneous GP Heterogeneous AcyGP

0.303 ± 0.044 0.066 ± 0.035

and record the mean error of the probability of seep presence at the locations where

it was removed. Both models are variational, and we use all 112 inputs as the latent

locations. Errors are reported with respect to 6 repeats of this experiment, with

different data withheld on each repeat. For a given repeat, the withheld data is the

same for both models.

Mean absolute errors from the experiment are shown in Table 5.6. The heteroge-

neous AcyGP model has only 21.8% of the mean absolute error of the heterogeneous

Gaussian process model in this experiment. Examination of the optimized AcyGP

reveals that the parameters 𝜆𝑚,𝑛,𝑗 which connect probability of seepage to its par-

ents, are very large in magnitude. This implies that most of the information allowing

prediction of seepage comes from other observations at the same spatial location,

rather than spatial correlations. The AcyGP model with a binary attribute 𝑦𝑚 and

a binary parent 𝑦𝑛 assigns two parent dependence parameters in the vector 𝜆𝑚,𝑛,𝑗,

one for when the parent 𝑦𝑛(𝑥𝑖) = 1, and another when 𝑦𝑛(𝑥𝑖) = 0. This makes the

AcyGP model more expressive than the heterogeneous GP model, which uses only

one parameter per attribute per latent process. The AcyGP model is better able to

capture the true distribution of seepage given observable features, resulting in lower

error predictions.
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5.12 Summary

In this chapter, we introduced the AcyGP model. The AcyGP model aims to im-

prove modeling accuracy in data limited environments, where spurious correlations

arise from small-sample statistics. The AcyGP model constructs an environment from

multiple Gaussian processes that are combined in a directed acyclic graph model struc-

ture. The DAG structure allows an expert to specify known relationships between

attributes that are known to exist and known not to exist, and the remainder are

learned from data using score-based structure learning. When structure is learned, it

is limited to edges which are strongly justified, preventing spurious correlations from

being introduced into the model. The formulation of an AcyGP also makes parame-

terizations of relationships between attributes easily interpretable, so that qualitative

expert knowledge of monotonicity and relative scale can be encoded as constraints

and extracted from trained models.

In addition, we introduced the homogeneous AcyGP model, where all attributes

are continuous and unbounded, and the more general heterogeneous AcyGP model,

which allows categorical and bounded-domain attributes. We then showed experi-

mentally that the sparse models generated by the AcyGP model outperform existing

methods. On a diverse set of benchmarks where sparse models are solved, the AcyGP

model achieves errors 38.1% as large or less compared to other Gaussian process ap-

proaches. In domains where a fully connected model is solved, the error improvements

are more marginal, but the AcyGP model still achieves state of the art performance.
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Chapter 6

Optimizing Structure Using A* with

Bounding Conflicts

In the last chapter, we argued for the importance of searching for the best model

structure, as well as mode parameters, given a expert’s prior knowledge. But training

a complex machine learning model like an AcyGP is highly time consuming, and when

the best DAG structure is selected by training each attribute on all possible parents,

learning progresses slowly. The space of possible models is large, so search must be

efficient and fast to prevent unnecessary slowdown during adaptive sampling. In this

chapter we accelerate structure learning by drawing upon an approach to speed up

learning, called bounding conflicts, taken from the model-based reasoning community,

for performing system-wide estimation. The key insight behind bounding conflicts is

to produce a more informed generator of candidate structures, by learning from the

results of performing detailed parameter estimation on previous structures.

In this chapter, we describe the use of A* with bounding conflicts (A*BC) for

finding maximum penalized likelihood structural models when those likelihoods are

expensive to compute. Our primary motivation is rapidly solving for optimal directed

acyclic graph structures in the AcyGP model that are consistent with expert imposed

constraints. Use of bounding conflicts allows optimal structures to be found without

explicitly evaluating the likelihoods of all models.

Structure learning is typically applied in problems where likelihood of any struc-
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ture can be easily computed. A typical step before searching over the space of

structures is to generate the maximum likelihood of each variable conditioned on

all possible parent sets [156, 33]. When these likelihoods are difficult to compute, this

preprocessing step takes most of the time used for structure learning. Our idea is to

compute the likelihoods during the course of search over structures, and use what is

learned from candidate structures to limit further evaluation to fewer structures. Our

particular approach is based on the A*BC algorithm [136], which was introduced to

incrementally improve a heuristic from evaluated candidates within hybrid estimation

problems.

Our algorithm introduces several innovations to A*BC. We provide a method of

bounding likelihood that is applicable for structure learning, which is derived from

evaluated likelihoods of models with more edges. This makes it advantageous to

compute likelihoods for models with many edges first, and we introduce a method to

selecting likelihoods to compute that are expected to be tight bounds on likelihoods of

unevaluated models. We further reduce the number of models that must be evaluated

by placing bounds on the cost of paths already traversed in A* search, in addition

to bounds on the cost to go, as has previously been done in A*BC. In total, our

approach reduces the number of models evaluated significantly, with a large reduction

in solution time. We show that in AcyGP structural optimization, A*BC performs

approximately 50% faster than other exact structural search algorithms with no loss

in optimality, and is comparable in time to a well-tuned local search.

6.1 Motivation

Environments of interest for adaptive sampling, such as those in the oceans or on other

planetary bodies, consist of many interacting variables of potential interest. These

environments are frequently under study because the nature of the interactions is

unknown. Yet even when the environment is well understood, a complete environ-

mental model may be outside of the expertise of the team conducting the experiment,

or depend on unobservable parameters. For example, sea floor hydrocarbon release
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is strongly influenced by subsurface geology, which is only partially observable, and

an expert may consider multiple models to be consistent with observations of the

environment. Our environment modeling approach must still be able to be used to

perform inference in the face of this model uncertainty.

To resolve model uncertainty, we learn the unspecified part of the structure from

the data. For the AcyGP model, this is performed by optimizing BIC, with the objec-

tive described in Chapter 5. However, searching over the space of DAG structures is

highly time consuming, particularly when considering data correlated across inputs.

The difficulty arises from the time needed to evaluate BIC, which requires training a

Gaussian Process in order to evaluate the optimized likelihood of the data. Almost

all time in structural search is spent evaluating optimized likelihoods, so to see sig-

nificant decreases in search time, the number possible structures that is trained must

be reduced.

We present a novel variant of A* with bounding conflicts [136] that substantially

accelerates finding the optimal structural model. The algorithm uses a set of op-

timized likelihoods to place upper bounds on the likelihoods of other parent sets.

The bounds allow the optimal structure to be found while computing the optimized

likelihood of only a fraction of possible structures.

6.2 Overview of Structural Search Using A* with

Bounding Conflicts

In this section, we give an intuitive overview of the idea behind structure learning

using A* with bounding conflicts. We wish to maximize the penalized likelihood

of a DAG, say using BIC, and we will do so without evaluating the likelihood of

every possible parent set. The key idea is that evaluated likelihoods can be used to

place bounds on other, unevaluated likelihoods, and this allows us to prove structure

optimality without evaluating every single likelihood.

The essence of this idea can be seen from the example DAG given in Figure 6-
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Figure 6-1: Example optimized log likelihoods for variable v3 conditioned on different
sets of parents. If we wish to maximize a sum of optimized log likelihood and an edge
penalization of 2 per edge, it is never necessary to evaluate the likelihood of v3 with
no parents.

1. To avoid polluting the example with too many numbers, let us assume that we

already know v1 and v2 have no parents, and we need to find the parents of v3. In

analogy to maximizing BIC, we wish to find the parents with the largest optimized

log likelihood, minus a penalization of 2 per edge in the model. In this case, the

answer is the structure in the top right, with a penalized likelihood of 7.

One option is to evaluate every likelihood in Figure 6-1 and pick the largest pe-

nalized likelihood, but then we have to evaluate all four likelihoods. Instead, we can

use the fact that adding edges must increase maximum likelihood, and show that the

top left structure never needs to be evaluated.

Let us assume we evaluated the optimized likelihood for all structures except for

v3 with no parents. Intuitively, a DAG structure with an edge from v2 to v3 can still

represent any probability distribution that matches a DAG with no edges to v3, so
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max log 𝑝(v3 | v2) ≥ max log 𝑝(v3). The maximum penalized likelihood for the top

left structure is therefore less than or equal to max log 𝑝(v3 | v2) − 2 = 1. But we

already know that v1 with v3 as a parent achieves penalized likelihood of 7, so no

parents for v3 cannot be optimal, and we don’t have to determine the likelihood.

While useful, this bound doesn’t tell us which order to evaluate the likelihoods.

If we did not know 𝑝(v3 | v2), we would not know that 𝑝(v3) cannot be optimal.

Our solution is to use A* search with bounding conflicts for this purpose. Using

the known bounds, A* search allows us to use heuristic information to select the

structures that are believed to be optimal under current knowledge of likelihoods.

A* with bounding conflicts is used to improve the quality of the heuristic as search

progresses and additional information about likelihoods is gathered.

In Section 6.3, we review related work in structure learning and A* search. In

Section 6.4 we present a formal problem statement, then in Section 6.5 we review

key concepts behind A* and A* with bounding conflicts. Our approach is described

technically in Section 6.6. We prove the optimality of the approach in Section 6.7,

show how to use expanded lists in Section 6.8, and compare A* to A* with bounding

conflicts in Section 6.9. Finally, we test our approach, and show speedups compared

to A* search and local searches using in Section 6.11.

6.3 Related Work

In this section we review work related to our structure learning approach. We will

build off existing structure learning algorithms, while using utilizing bound-directed

search developed in the conflicted-directed search community.

6.3.1 Structure Learning Methods

In this thesis we build upon score-based methods of structure learning. In this section

we review score-based structure learning, and contrast it to constraint-based structure

learning. We also discuss the distinction between exact and local search in structure

learning.
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Algorithms that learn directed acyclic graphs from data are typically classified

as either constraint based methods or score based methods. Score based structure

learning algorithms optimize a score function that rewards high likelihood of the

observed data and penalizes a large number of edges in the DAG. Exact score based

algorithms, which identify globally optimal structures, perform well in the presence

of limited data, but become intractable to optimize for large numbers of variables,

because the number of possible DAGs grows super-exponentially with the number of

variables considered [111]. State of the art exact score based methods include A*

[156] and branch and bound [37] based search, which generate bounds on score by

loosening acyclicity constraints during search. Alternative approaches have encoded

the problem as an integer linear program, made more efficient through heuristics that

greedily construct high scoring solutions [13, 33, 104].

Typically, DAG structure learning algorithms have been applied to problems where

the score function to optimize is relatively inexpensive to compute, so that the diffi-

culty in optimization comes from the size of the DAG search space. In contrast, the

DAGs we consider have relatively few variables, typically less than 20, so structural

search is fast, but most complexity arises from evaluating the scores. The previously

mentioned score-based algorithms do not attempt to limit the number of scores eval-

uated, and most require a full list of scores as input, making them unsuitable for our

purposes. Our approach is able to substantially reduce overall optimization time by

limiting the number of scores that must be evaluated during search.

Constraint based methods estimate conditional independence relations from the

data, and then generates candidate DAGs consistent with those conditional indepen-

dence relations [106]. Constraint based methods tend to scale well to large numbers

of variables, but may be inaccurate in the presence of limited data, where conditional

independence tests may be inaccurate. Modern constraint based methods have fo-

cused on limiting the number of independence tests necessary. For example, the PC

algorithm [127] tests conditional independence in progressively larger sets, while other

approaches construct a candidate DAG using independence tests on small variable

sets and attempt to repair detected inconsistencies [28, 38]. A separate approach
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instead learns smaller DAGs that are later combined [153]. It is more straightforward

to generate bounds on likelihood from evaluated likelihoods than it is to generate

bounds on conditional independence tests. For this reason, we take a score-based

learning approach.

Local score based algorithms instead search the space of DAG structures locally.

Search is defined on the space of DAGs, DAG Markov equivalence classes [30], or

variable orderings [133], with a second level of search defined in the latter cases where

more than one DAG is consistent with each element of the search space. Search space

elements are mutated to define a neighborhood of structures, and a hill climbing

strategy is followed to reach a locally optimal structure. Stochastic search methods

are employed to escape local optima, such as Tabu search [52, 121], which prevents

previously evaluated DAGs from being revisited, and simulated annealing [82], which

allows transitions to suboptimal structures with a probability based on their score.

Since the full space of possible DAGs is not considered in local methods, fewer score

evaluations are necessary. However, convergence to the true optimal structure is not

guaranteed, and there are no methods to evaluate the degree of suboptimality of the

DAG returned, preventing it from being interpreted meaningfully. Where speed is

favored over optimality, AcyGP structures can be optimized with local search meth-

ods. However, we show experimentally that A*BC search reaches provably optimal

structures in time consistent with a well-tuned local search algorithm. This is sig-

nificant, because the tuned parameters would not be known for most problems, and

A*BC does not require these parameters.

6.3.2 A* and Conflict-Directed Search

In this chapter, we use this idea of bound generation during search that was developed

for A* with bounding conflicts, and apply it in a structure learning setting. A* was

originally proposed by Hart et al. [57] for motion planning problems. A* expands

may be formulated as search over a graph of states, where the objective is to find

a path of maximum reward or minimum cost from a start vertex to a goal vertex.

A* does this through the use of a heuristic, which provides a bound on the cost of

261



the optimal path. At each step of the algorithm, the next best edge in the graph,

evaluated using the heuristic, is selected and explored.

While A* has been adopted in a number of domains and is still widely used [6, 137],

it does not improve its heuristic as information is gained. Conflict-directed A* [146]

improved upon A* by using information about inconsistency with constraints. A* is

used to select states consisting of variable assignments in order of maximum likeli-

hood, while rules for inconsistency with observations are derived from assignments.

These rules are generalized to prune additional states from the search space. A* with

bounding conflicts [136] further generalizes this idea, by deriving stricter bounds on

the likelihoods of variable assignments as they are considered during search. These

bounds are used to inform more precise heuristics, reducing the number of states that

need to be considered searched.

6.4 Problem Statement

We are motivated by the problem of finding a directed acyclic graph that maximizes

a score function. The score is separable between parent sets and composed of an

expensive to optimize likelihood function and a complexity penalty. Partial expert

knowledge of structure is encoded through sets of allowable parents for each variable,

which restricts the search space.

Let us set up this problem from the perspective of Problem 3 in Chapter 5, where

we were interested in finding the structure that optimized the BIC for observations in

an AcyGP, subject to restrictions on the allowable parent sets in the DAG structure.

In order to solve Problem 3, we needed to find the structure that optimized a more

complex objective function within structural EM. In the heterogeneous AcyGP case,
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we sought the parameters and structure that satisfied the following complex function

arg max
𝜃,𝒢

𝐷𝑦∑︁

𝑚=1

Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︃
𝑁∑︁

𝑖=1

E𝑞𝜃𝑚 (𝑓𝑚(𝑥𝑖))

[︀
log 𝑝𝜃𝑚(𝑦𝑚(𝑥𝑖) |𝑦Π𝒢

𝑚
(𝑥𝑖),𝑓𝑚(𝑥𝑖))

]︀
]︃

−
𝐽𝑚∑︁

𝑗=1

KL(𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) || 𝑝𝜃𝑚,𝑗

(u𝑚,𝑗))−
𝐽𝑚
2

Ñ
∑︁

𝑛∈Π𝒢
𝑚

|𝜆𝑚,𝑛,𝑗|

é
log𝑁. (6.1)

To avoid the complexity associated with this expression, and to generalize the

content of this chapter to other problems, we present this problem as one of finding

the parameters and structure that satisfy

arg max
𝜃,𝒢

∑︁

𝑚

𝜌𝜃𝑚(v𝑚,vΠ𝒢
𝑚

)− 𝑐𝑚(Π𝒢
𝑚), (6.2)

for some function of variables and parent sets 𝜌𝜃𝑚(v𝑚,vΠ𝒢
𝑚

) that depends upon pa-

rameters 𝜃𝑚, and a DAG complexity penalization 𝑐𝑚(Π𝒢
𝑚). The problem of finding

the AcyGP structure with maximum BIC is recovered using each v𝑚 as the vector of

environment variables of output 𝑚, and the functions

𝜌𝜃𝑚(v𝑚,vΠ𝒢
𝑚

) = Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︃
𝑁∑︁

𝑖=1

E𝑞𝜃𝑚 (𝑓𝑚(𝑥𝑖))

[︀
log 𝑝𝜃𝑚(𝑦𝑚(𝑥𝑖) |𝑦Π𝒢

𝑚
(𝑥𝑖),𝑓𝑚(𝑥𝑖))

]︀
]︃

−
𝐽𝑚∑︁

𝑗=1

KL(𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) || 𝑝𝜃𝑚,𝑗

(u𝑚,𝑗)). (6.3)

and

𝑐𝑚(Π𝒢
𝑚) =

𝐽𝑚
2

Ñ
∑︁

𝑛∈Π𝒢
𝑚

|𝜆𝑚,𝑛,𝑗|

é
log𝑁, (6.4)

as given by (5.52).

The generalized DAG structure learning problem is formalized in Problem 4 below.

Problem 4. Consider of a set of variables 𝒱 = {v𝑚}𝐷𝑦

𝑚=1. For each variable v𝑚 ∈ 𝒱
and set vΨ ⊆ 𝒱 ∖ {v𝑚}, suppose there exists a function 𝜌𝜃𝑚(v𝑚,vΨ) with output in

R that is parameterized by the vector 𝜃𝑚 ∈ Θ𝑚,Ψ. Let 𝒫𝑚,Ψ = {𝜌𝜃𝑚(v𝑚,vΨ) |𝜃𝑚 ∈
Θ𝑚,Ψ} be the set of function outputs generated by all possible parameterizations, and
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let 𝜌(v𝑚,vΨ) = max𝜃𝑚∈Θ𝑚,Ψ
𝜌𝜃𝑚(v𝑚,vΨ). Assume that the functions 𝜌𝜃𝑚 satisfy

𝒫𝑚,Ψ ⊆ 𝒫𝑚,Φ for all 𝑚 and Ψ ⊆ Φ.

Given a score function 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

) = 𝜌(v𝑚,vΠ𝒢
𝑚

)−𝑐𝑚(Π𝒢
𝑚) with cost functions

𝑐𝑚 : 2[𝐷𝑦 ]∖{𝑚} → R, and allowable parent sets {Ξ𝑚}𝐷𝑦

𝑚=1, find the directed acyclic graph

𝒢* = (𝒱 , ℰ) and vector of parameters 𝜃 that satisfies

arg max𝜃,𝒢
∑︀𝐷𝑦

𝑚=1 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

)

such that Π𝒢
𝑚 ∈ Ξ𝑚

𝜌(v𝑚,vΠ𝒢
𝑚

) expensive to compute

The condition that 𝒫𝑚,Ψ ⊆ 𝒫𝑚,Φ means that the effects of edges can be ‘zeroed

out’, so that a DAG with a larger set of edges represents a larger set of distributions.

This is necessary so that bounds on likelihood apply.

The restriction that 𝜌(v𝑚,vΠ𝒢
𝑚

) is expensive to compute is not a hard restriction;

the methods described in this chapter can be applied regardless. However, when

𝜌(v𝑚,vΠ𝒢
𝑚

) is easily computed, existing DAG structure learning algorithms are typi-

cally substantially faster than our approach. Though we do not precisely characterize

the conditions under which each approach is superior, problems with closed form ex-

pressions for 𝜌(v𝑚,vΠ𝒢
𝑚

) will generally perform better by evaluating all 𝜌(v𝑚,vΠ𝒢
𝑚

)

prior to search, while when 𝜌(v𝑚,vΠ𝒢
𝑚

) is solved by a machine learning training pro-

cedure, it is advantageous to use the bounding strategy in this chapter.

6.5 Preliminaries: A* Search and A* with Bounding

Conflicts

We begin by reviewing A* as a method for search in graphs, and then describe A*

with bounding conflicts (A*BC) as an extension. Our method further builds on

existing A*BC development by providing a derivation of bounding conflicts suitable

for structural search and introducing a new rule for when bounding conflicts should

be computed.
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6.5.1 A* Search

A* search is a complete and optimal algorithm for determining shortest paths in

weighted graphs. A* performs search over a weighted graph consisting of a set of

states 𝒮 connected by a set of edges ℰ . Each edge (𝑠𝑖 → 𝑠𝑗) ∈ ℰ indicates that it is

possible to travel from state 𝑠𝑖 to state 𝑠𝑗, with cost 𝑐(𝑠𝑖 → 𝑠𝑗) incurred. We refer to

the set of states reachable by edges from 𝑠𝑖 as the successors of 𝑠𝑖. A* seeks to find

the path from a given start state 𝑠𝑠𝑡𝑎𝑟𝑡 to any goal state 𝑠𝑔𝑜𝑎𝑙 ∈ 𝒮𝑔𝑜𝑎𝑙 with the lowest

total incurred cost. The path is constructed by sequentially traveling between states

along edges in ℰ and summing the costs of all edges taken.

The algorithm operates by placing states on a priority queue in order of mini-

mization of 𝑓(𝑠) , 𝑔(𝑠) + ℎ(𝑠). 𝑔(𝑠) is the cumulative cost incurred to reach state 𝑠,

and ℎ(𝑠) is an admissible heuristic function. The heuristic returns an estimate for the

additional cost to be incurred by traveling from 𝑠 to a goal state. The requirement

that the heuristic is admissible states that ℎ(𝑠) ≤ min 𝑐(𝑠→ 𝑠𝑔𝑜𝑎𝑙) for all 𝑠𝑔𝑜𝑎𝑙, where

𝑐(𝑠 → 𝑠𝑔𝑜𝑎𝑙) is the cost required to travel from 𝑠 to 𝑠𝑔𝑜𝑎𝑙 and the minimum is taken

over all possible paths.

Search begins with only 𝑠𝑠𝑡𝑎𝑟𝑡 on the queue with 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡) = 0. At each iteration,

the head of the queue (with lowest 𝑔(𝑠) + ℎ(𝑠)) is popped, and the state is expanded,

meaning its successors are generated and added to the queue. For each successor

state 𝑠𝑠𝑢𝑐𝑐, 𝑔(𝑠𝑠𝑢𝑐𝑐) is evaluated as 𝑔(𝑠𝑠𝑢𝑐𝑐) = 𝑔(𝑠) + 𝑐(𝑠 → 𝑠𝑠𝑢𝑐𝑐). The queue is then

re-sorted, and the process of popping and expansion repeats in a loop. Once any goal

state is expanded, the path taken to that state must be the lowest cost path from

𝑠𝑠𝑡𝑎𝑟𝑡 to any state in 𝒮𝑔𝑜𝑎𝑙

A* Search with an Expanded List

There may be multiple paths to a state 𝑠 from the start state. This can result in

𝑠 being placed on the queue multiple times, with different values of 𝑔(𝑠) from the

different total costs to a state.

It is inefficient to repeatedly expand the same state with different costs, so it is
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common in A* to maintain a list of expanded states called the expanded list. A state

is added to the expanded list when it is expanded for the first time, and then it is

never expanded again. If the state then reappears at the head of the queue, it is

instead removed without successors being added to the queue.

In order for A* to remain optimal with an expanded list, it must be ensured that

the first time 𝑠 is expanded, it has been reached by the shortest path from 𝑠𝑠𝑡𝑎𝑟𝑡 to

𝑠. If this is not true, a path from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑔𝑜𝑎𝑙 that passes through 𝑠 can be made to

have lower cost by replacing the part of the path from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠 with the lowest cost

path to 𝑠. With the shortest path being used whenever a state is expanded, there

is no better path through 𝑠, and any time 𝑠 reappears on the queue it can safely be

discarded without sacrificing optimality.

A sufficient condition for the lowest cost path for any state to be expanded first is

to use a consistent heuristic. A consistent heuristic satisfies the additional properties

that for all 𝑠 ∈ 𝒮 and for all successors 𝑠𝑠𝑢𝑐𝑐 of 𝑠,

ℎ(𝑠) ≤ 𝑐(𝑠→ 𝑠𝑠𝑢𝑐𝑐) + ℎ(𝑠𝑠𝑢𝑐𝑐), (6.5)

and for any goal state, ℎ(𝑠𝑔𝑜𝑎𝑙) = 0. If the heuristic chosen is consistent, an expanded

list may be used in A* with no loss of optimality.

Maximum Reward Paths with A*

A* may instead be used to find the path with maximal reward from 𝑠𝑠𝑡𝑎𝑟𝑡 to any 𝑠𝑔𝑜𝑎𝑙

if moving between states gives reward instead of cost. The algorithm runs similarly,

with the priority queue constructed to maximize 𝑔(𝑠) + ℎ(𝑠), with 𝑔(𝑠) tracking the

reward gained on the path to 𝑠. An admissible ℎ(𝑠) is constructed to overestimate the

reward of the largest reward path from 𝑠 to any 𝑠𝑔𝑜𝑎𝑙. A consistent heuristic satisfies

ℎ(𝑠) ≥ 𝑟(𝑠→ 𝑠𝑠𝑢𝑐𝑐) + ℎ(𝑠𝑠𝑢𝑐𝑐), with reward function 𝑟, in addition to ℎ(𝑠𝑔𝑜𝑎𝑙) = 0.
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{}

{v2}{v1} {v3}

{v1,v2} {v1,v3} {v2,v3}

{v1,v2,v3}

Figure 6-2: Factor graph for DAG with three variables. Duplicated from Yuan and
Malone [156].

6.5.2 A* for DAG Structural Search

Our approach will use the method of converting DAG structure learning problem to

a state space search problem that was developed by Yuan and Malone [156]. Their

method was to search for maximum score directed acyclic graph structures using A*,

where score is a penalized maximum likelihood, like in Problem 4. The method is

competitive with state of the art structure learning algorithms in terms of speed, but

assumes that likelihoods for all parent sets in a DAG can be evaluated. We will use

the same state space as defined in this work, but we will show how to use A*BC to

find the maximum score DAG without evaluating all likelihoods.

To find the maximum score DAG constructed from the set of variables 𝒱 = {v𝑚},
A* search is performed over a factor graph. Each state in the factor graph is a subset

of 𝒱 , and a path through the factor graph defines an order in which variables are added

to the states along the path. An example factor graph for a DAG over 3 variables

is shown in Figure 6-2. Since a path defines an ordering, it is used to represent any

DAG with a topological ordering given by the variable ordering of the path.

The reward for each edge is the highest score of the newly added variable that
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can be achieved by selecting a parent set from the state that the edge left. For

example, when moving from state {v2} to state {v1,v2}, a reward is given equal to

the maximum of 𝑆𝑐𝑜𝑟𝑒(v1, ∅), and 𝑆𝑐𝑜𝑟𝑒(v1,v2). In this way, the reward of a path is

equal to the reward of the maximum score DAG that is consistent with its topological

ordering, and finding the maximum score DAG is achieved by finding the maximum

score path through the factor graph.

Formally, the reward received by moving from a state 𝑠 to 𝑠′ = 𝑠 ∪ {v𝑚} is

defined to be the maximum possible score that can be attained by selecting a subset

of variables in 𝑠 as parents of v𝑚,

𝑟(𝑠→ 𝑠 ∪ {v𝑚}) = max
vΦ⊆𝑠

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ). (6.6)

There are many DAGs consistent with a single topological ordering, and potentially

multiple topological orderings for any given DAG, but the path only represents the

maximum score DAG for a given topological ordering.

Search is performed from the start state 𝑠𝑠𝑡𝑎𝑟𝑡 = {}, and the only goal state is

𝑠𝑔𝑜𝑎𝑙 = 𝒱 . An edge exists from 𝑠 to 𝑠𝑠𝑢𝑐𝑐 if 𝑠𝑠𝑢𝑐𝑐 can be constructed by adding a single

variable in 𝒱 to 𝑠. Since the parents of each variable can only be selected from the

set of variables in the preceding state, cycles cannot be introduced into the DAG by

construction.

States are ordered on a queue in terms of maximization of 𝑔(𝑠) + ℎ(𝑠). Once the

goal state is expanded, the score of the path taken is the score of the optimal DAG.

𝑔(𝑠) is computed as the accumulation of rewards along the path as in standard A*.

Multiple heuristics are proposed by Yuan and Malone. The simplest is ℎ𝑠𝑖𝑚𝑝𝑙𝑒,

which overestimates the remaining score of variables not in 𝑠 by ignoring acyclicity

constraints. In this way, the optimal parent set can be selected for each variable

individually,

ℎ𝑠𝑖𝑚𝑝𝑙𝑒(𝑠) =
∑︁

v𝑚 /∈𝑠
max

Ψ⊆[𝐷𝑣 ]∖{𝑚}
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ). (6.7)

ℎ𝑠𝑖𝑚𝑝𝑙𝑒 was proven by Yuan and Malone to be both admissible and consistent.

A more accurate heuristic is achieved by dividing the space of variables into 𝑁𝑠𝑢𝑏
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disjoint subsets 𝒱𝑖 of no more than 𝑘 elements, so that 𝒱 = 𝒱1∪· · ·∪𝒱𝑁𝑠𝑢𝑏
. The 𝑘-cycle

heuristic is computed by enforcing acyclicity only between elements of each 𝒱𝑖, and

ignoring acyclicity between subsets. The static 𝑘-cycle heuristic uses subsets selected

prior to the start of search, and is known to be both admissible and consistent. The

dynamic 𝑘-cycle heuristic greedily selects subsets that result in the tightest bound on

score each time the heuristic is calculated. The dynamic 𝑘-cycle heuristic is known

to be admissible but inconsistent.

The main disadvantage of this approach for our purpose is that it requires calcula-

tion of scores of all possible parent sets prior to the start of search. In typical structure

learning tasks, it is assumed that calculation of scores is fast, and the primary source

of complexity comes from the large space of DAGs that needs to be evaluated. In our

case, calculation of all likelihoods in the scores is the most computationally expensive

part of search, making this approach infeasible. Pruning rules exist that prove that

certain parent sets cannot be optimal without evaluation of their score [37, 156], but

these are limited to independent discrete variables and are not applicable to our case.

Use of A*BC will allow us to find the optimal DAG structure without the need to

evaluate likelihoods of all possible structures.

6.5.3 A* with Bounding Conflicts

A*BC [136] is designed to improve the heuristic used in search by using informa-

tion computed during candidate generation. This is done by generalizing the cost

computed during testing. The approach is to represent these bounds as bounding

conflicts, and to use the bounding conflicts to reorder elements on the search queue.

A*BC was developed to solve problems in which variables of the set 𝒳 = {𝑥1, . . . , 𝑥𝑡}
must each be assigned elements from their respective finite domains 𝒟 = {𝑑1, . . . , 𝑑𝑚}.
Making the assignments 𝑥𝑖 = 𝑒𝑖 for 𝑒𝑖 ∈ 𝑑𝑖 incurs cost, and the objective is to find

the assignments to all variables with the lowest total cost. The total cost does not

need to be the sum of costs of individual assignments.

Search is performed over set of states where each state represents a partial assign-

ment to the variables. A partial assignment is a set of assignments 𝑠 = {(𝑥𝑖 = 𝑒𝑖)},
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which does not necessarily include an assignment to all variables in 𝒳 . Search begins

at 𝑠𝑠𝑡𝑎𝑟𝑡 = {}, and 𝒮𝑔𝑜𝑎𝑙 consists of the set of states where all variables in 𝒳 are

assigned. Edges are constructed from states with partial assignments to states where

a larger set of variables has been assigned.

A* with bounding conflicts extends A* search by providing a means to learn

tighter heuristics over the course of search through the use of bounding conflicts. A

bounding conflict is a tuple 𝛾 = (𝑧, 𝑏), where 𝑧 is a partial assignment of variables and

𝑏 : {𝑧′ | 𝑧′ ⊇ 𝑧} → R is a function that acts on the set of larger partial assignments

than 𝑧 and returns a cost. The cost returned by 𝑏(𝑧′) is a lower bound on the cost of

any complete assignment that is a superset of 𝑧′.

The set of known bounding conflicts Γ = {𝛾} can be used as a means of refining

estimates of total cost 𝑓(𝑠) for any state. If 𝑠 is a superset of the partial assignment

𝑧 of a bounding conflict 𝛾, then it is known that the total cost of a goal reachable

from 𝑠 is bounded from below as 𝑏(𝑠). Since this applies for all bounding conflicts

in Γ, A*BC maintains a priority queue of states ordered in terms of the tightest cost

bound that can be computed from all bounding conflicts, computed as

𝑓(𝑠,Γ) = max
(𝑧,𝑏)∈Γ : 𝑠⊇𝑧

𝑏(𝑠). (6.8)

Search begins with only a loose bounding function applicable to all states, and as

search progresses, additional bounding conflicts are derived from evaluation of the

true cost of partial assignments. The method to derive new conflicts during search

is application specific. As search progresses, new conflicts are derived, the set of

bounding conflicts grows, and 𝑓(𝑠,Γ) becomes a tighter bound on cost.

To avoid repeatedly re-evaluating the entire queue, states remain sorted using

only the bounding conflicts available at the time they were queued, until they reach

the head. At each iteration, search removes the head of the queue and 𝑓(𝑠,Γ) is

recomputed using the most up to date bounding conflicts. If the state would remain

at the head of the queue with its new bounded cost, it is expanded, and successor

states are queued. Otherwise, the state is requeued, and the next head is considered.
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Search continues until 𝑘 goal states are expanded, where 𝑘 is the number of best

solutions desired.

We make use of the idea in A*BC of deriving bounds on cost over the course

of search in order to perform efficient structural search. Bounding conflicts will be

derived from the likelihoods of some structures, and used to tighten bounds on the

score of structures for which the likelihood is unknown. Once a structure is found

with true cost that is lower than the bounds on all other structures, it is known to be

optimal, without needing to evaluate the true likelihoods of the remaining candidates.

6.6 A*BC for Structural Search

We now describe our method of using A* with bounding conflicts for DAG struc-

tural search. Our approach combines the state formulation of A* for DAG structure

learning with the use of bounding conflicts derived from evaluated scores.

6.6.1 Overview of Approach

We will show that the likelihood of a variable with a given parent set can be used to

place an upper bound on the score of that variable with a smaller parent set. A* search

is performed over the state space described in Section 6.5.2, using these upper bounds

on score to order the priority queue. As each state is expanded, the algorithm will

evaluate optimal likelihoods for additional parent sets, which will tighten the bounds

placed on parent sets with unevaluated likelihood. Once the goal state is expanded

with a score that is exact, optimal DAG structure can be extracted from the state.

This typically occurs with many fewer likelihood evaluations than performed by A*.

Our major innovations over the existing description of A*BC are a class of bound-

ing conflicts that are applicable in different scenarios than those described in [136],

and a set of rules to choose likelihoods to evaluate that are expected to generate

tighter bounds. The added rules will prove to be critical to making A*BC work well

in this domain.
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6.6.2 Computing Bounds on Score

A*BC search is guided by bounds on scores derived from optimized likelihoods. Dur-

ing search, we maintain a set of computed likelihoods ℬ = {𝜌(v𝑚,vΦ)}, which are

used to compute bounds on score for unevaluated parent sets.

We make use of the bound in the following theorem to place bounds on score.

These bounds on score will be used to construct bounds on 𝑔 and ℎ in A* search from

the likelihoods that have been evaluated so far. Evaluating additional likelihoods

will tighten the bound. Stronger bounds are frequently used to prune the search

space in structure learning, though the derived bounds are typically specific to to

discrete variables [37, 156] or independent Gaussian variables, and not applicable for

our problem.

Theorem 7. Let 𝒫𝑚,Ψ = {𝜌𝜃𝑚(v𝑚,vΨ) |𝜃𝑚 ∈ Θ𝑚,Ψ} be a set of real-valued functions

parameterized by 𝜃𝑚. Assume that for some Ψ and Φ, 𝒫𝑚,Ψ ⊆ 𝒫𝑚,Φ. Then

max
𝜃𝑚∈Θ𝑚,Ψ

𝜌𝜃𝑚(v𝑚,vΨ) ≤ max
𝜃𝑚∈Θ𝑚,Φ

𝜌𝜃𝑚(v𝑚,vΦ).

Proof. The proof follows immediately from the relation 𝒫𝑚,Ψ ⊆ 𝒫𝑚,Φ. Since every

element of 𝒫𝑚,Ψ is in 𝒫𝑚,Φ, it follows that max 𝒫𝑚,Ψ ≤ max 𝒫𝑚,Φ. Then

max
𝜃𝑚∈Θ𝑚,Ψ

𝜌𝜃𝑚(v𝑚,vΨ) = max 𝒫𝑚,Ψ

≤ max 𝒫𝑚,Φ

= max
𝜃𝑚∈Θ𝑚,Φ

𝜌𝜃𝑚(v𝑚,vΦ).

The following corollary shows how we may use Theorem 7 to derive bounds on

likelihood for the AcyGP model. The corollary states that the optimized likelihood

with parent sets that are supersets of vΠ𝒢
𝑚

can be used to bound optimized likelihood

with parents vΠ𝒢
𝑚
.
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Corollary 7.1. In the AcyGP model,

max
𝜃𝑚∈Θ𝑚,Ψ

𝑝𝜃𝑚(v𝑚 |vΨ) ≤ max
𝜃𝑚∈Θ𝑚,Φ

𝑝𝜃𝑚(v𝑚 |vΦ) ∀Ψ ⊆ Φ.

Proof. Define

𝜌𝜃𝑚(v𝑚,vΠ𝒢
𝑚

) = Ev|y,𝜃(𝑡,𝑠),𝒢(𝑡)

[︃
𝑁∑︁

𝑖=1

E𝑞𝜃𝑚 (𝑓𝑚(𝑥𝑖))

[︀
log 𝑝𝜃𝑚(𝑦𝑚(𝑥𝑖) |𝑦Π𝒢

𝑚
(𝑥𝑖),𝑓𝑚(𝑥𝑖))

]︀
]︃

−
𝐽𝑚∑︁

𝑗=1

KL(𝑞𝜃𝑚,𝑗
(u𝑚,𝑗) || 𝑝𝜃𝑚,𝑗

(u𝑚,𝑗))

so that 𝜌𝜃𝑚(v𝑚,vΠ𝒢
𝑚

) = 𝑝𝜃𝑚(v𝑚 |vΠ𝒢
𝑚

). The parameters 𝜃𝑚 contain the kernel hyper-

parameters for output 𝑚, as well as distribution parameters 𝛽𝑚, parent parameters

𝜆𝑚,𝑛,𝑗, and the mean and covariance of the posterior 𝑞𝜃𝑚(u𝑚).

In order to use Theorem 7, we must show that 𝒫𝑚,Ψ ⊆ 𝒫𝑚,Φ. We prove this by

showing that for any 𝜃𝑚 ∈ Θ𝑚,Ψ, it is possible to construct a vector 𝜗𝑚 ∈ Θ𝑚,Φ such

that 𝜌𝜃𝑚(v𝑚,vΨ) = 𝜌𝜗𝑚(v𝑚,vΦ).

To construct 𝜗𝑚 using 𝜃𝑚, for each 𝑛 ∈ Φ ∖ Ψ, select the parameters {𝜆𝑚,𝑛,𝑗}
such that 𝑡𝜆𝑚,𝑛,𝑗

(·) = 0. This choice effectively zeroes out the influence of parent 𝑛 on

output 𝑚. Then, select the kernel hyperparameters, 𝛽𝑚, {𝜆𝑚,𝑛,𝑗} with 𝑛 ∈ Ψ, and

the variational posterior mean and covariance identically to 𝜃𝑚. This fully recovers

the structural equation model of the AcyGP model with parent set vΨ.

Since this process can be performed for any 𝜃𝑚 ∈ Θ𝑚,Ψ, we have 𝒫𝑚,Ψ ⊆ 𝒫𝑚,Φ.

The corollary then follows from direct application of Theorem 7.

As an example, consider the sketch of the heterogeneous AcyGP model from Chap-

ter 5, which we repeat in Figure 6-3. An AcyGP over the same variables could be

defined with no edges, in which case we would have 𝛼𝑆𝑝(𝑥) = 𝑓𝑆𝑝(𝑥). Corollary 7.1

states that we can recover any possible set of parameters in the AcyGP with no edges

by selecting 𝜆𝑆𝑝,𝑀𝑝,0 = 𝜆𝑆𝑝,𝑀𝑝,1 = 𝜆𝑆𝑝,𝐵𝑝,0 = 𝜆𝑆𝑝,𝐵𝑝,1 = 0, which makes the edges have

no effect. Other parameters in the model can be selected identically to the AcyGP

with no edges.
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Figure 6-3: Sketch of a heterogeneous AcyGP.
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Using Corollary 7.1, 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

) is bounded using the optimized likelihood

of any superset of Π𝒢
𝑚 and the true complexity cost 𝑐𝑚(Π𝒢

𝑚). During search, we can

make use of any likelihood in the known set ℬ. We define the tightest available upper

bound on score for the known set of likelihoods as 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚
,ℬ), computed as

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚
,ℬ) := min

𝜌(v𝑚,vΦ)∈ℬ : Φ⊇Π𝒢
𝑚

𝜌(v𝑚,vΦ)− 𝑐𝑚(Π𝒢
𝑚) (6.9)

Within our search algorithm, we will compute bounds on the functions 𝑔(𝑠) and ℎ(𝑠)

by using 𝑆𝑐𝑜𝑟𝑒. 𝑆𝑐𝑜𝑟𝑒 is the best bound we have available, and will be used to guide

search.

6.6.3 Algorithm Description

An overview of A*BC for DAG structure learning is given in Algorithm 17. We use

the same state space as in A* search, so that each state 𝑠 is a subset of the variables

𝒱 . A path through the state space defines a topological ordering.

Search starts with a start state {} on the queue on line 1. States are repeatedly

popped from the head of the queue, and either requeued or expanded until a goal

state is reached with a tight bound.

In our A*BC algorithm, we aim to approximate the functions 𝑔(𝑠) and ℎ(𝑠) used

in A* for DAG structure learning with the previously derived upper bounds on score.

This allows us to approximate the reward that can be achieved by a path through a

state 𝑠, using information from the likelihoods we have evaluated. States are sorted

on the priority queue in order of maximization of 𝑔(𝑠,ℬ)+ ℎ̄(𝑠,ℬ), which respectively

bound 𝑔(𝑠) and ℎ(𝑠) using the set of evaluated likelihoods ℬ. 𝑔 and ℎ̄ are computed

by using 𝑆𝑐𝑜𝑟𝑒 in the place of 𝑆𝑐𝑜𝑟𝑒 for the definitions of 𝑔(𝑠) and ℎ𝑠𝑖𝑚𝑝𝑙𝑒(𝑠) in A*

for DAG search described in Section 6.5.2.

To ensure that restrictions on possible parent sets expressed through the sets {Ξ𝑚}
are respected, we add the following additional restriction. The reward of a path is

equal to the maximum score DAG that has two properties, a) it is consistent with

the topological ordering defined by the path, and b) it has the parent set of v𝑚 as an
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element of Ξ𝑚 for all 𝑚. This leads to the following definitions for 𝑔 and ℎ̄,

𝑔(𝑠,ℬ) =
∑︁

v𝑚𝑟∈𝑇 (𝑠)

max
Ψ∈Ξ𝑚𝑟

Ψ⊆{𝑚1,...,𝑚𝑟−1}

𝑆𝑐𝑜𝑟𝑒(v𝑚𝑟 ,vΨ,ℬ) (6.10)

ℎ̄(𝑠,ℬ) =
∑︁

v𝑚 /∈𝑠
max
Ψ∈Ξ𝑚

Ψ⊆[𝐷𝑦 ]∖{𝑚}
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ), (6.11)

where 𝑇 (𝑠) = (v𝑚1 ,v𝑚2 , . . . ,v𝑚|𝑠|) is a topological ordering over the variables in 𝑠

derived from the path taken to 𝑠.

Like in Timmons and Williams [136], to avoid repeatedly re-evaluating the entire

queue when a new likelihood has been evaluated, states remain sorted using only the

set ℬ available at the time they were queued, until they reach the head. At each

iteration, search removes the head of the queue on line 3 and 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ) is

recomputed using the most up to date set of optimized likelihoods on line 4. If a

state does not remain at the head of the queue with its new bounded reward, the

state is requeued on line 6, and the next head is considered. If the state would

remain at the head of the queue with its new bounded reward, it is expanded on line

14, additional likelihoods are evaluated with the procedure 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠, and

successor states are queued. If state 𝑠′ would be a successor of state 𝑠 as 𝑠′ = 𝑠∪{v𝑚},
but there is no set Π𝑚 ⊆ 𝑠 such that Π𝑚 ∈ Ξ𝑚, then the path would not be able

to represent any DAG under this restriction. As a result, 𝑠′ is not generated as a

successor to 𝑠.

Search starts with all likelihoods {𝜌(v𝑚,v[𝐷𝑦 ]∖{𝑚}} evaluated. These largest possi-

ble parent sets are evaluated so that a bound exists for every possible parent set in the

problem. Since no larger parent sets exist to place finite bounds on 𝜌(v𝑚,v[𝐷𝑦 ]∖{𝑚}),

the bounded score for these optimized likelihoods is not finite if they have not been

evaluated. As a result, DAGs with full parent sets will have infinite bounded score,

and will always appear at the head of the queue until they are evaluated in any

best first search procedure. Therefore, computing them at the start of search is not

wasteful.

Treatment of possible goal states are handled on line 7. A goal state is a state
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to which all variables 𝒱 have been added, so that a path to it represents a full DAG

over the variables in our problem. The goal state is only expanded once 𝑔(𝑠𝑔𝑜𝑎𝑙,ℬ) =

𝑔(𝑠𝑔𝑜𝑎𝑙), meaning that the optimized likelihoods of the DAG with the best bounded

score represented by 𝑠𝑔𝑜𝑎𝑙 have been computed exactly, as checked on line 8. This

is necessary, because if 𝑔(𝑠𝑔𝑜𝑎𝑙) ̸= 𝑔(𝑠𝑔𝑜𝑎𝑙), it is not necessarily true that the path to

𝑠𝑔𝑜𝑎𝑙 constructs the optimal score DAG. Another state 𝑠′ on the true optimal path

to 𝑠𝑔𝑜𝑎𝑙 may exist on the queue with a tighter likelihood bound, so that 𝑔(𝑠′,ℬ) +

ℎ̄(𝑠′,ℬ) ≤ 𝑔(𝑠𝑔𝑜𝑎𝑙), causing 𝑠𝑔𝑜𝑎𝑙 to be expanded first. If 𝑔(𝑠,ℬ) is not exact, additional

likelihoods are computed from its maximum bounded score parent sets, and it is

requeued. A*BC terminates once a goal state is expanded, returning the DAG that

optimized the score of the state.

Algorithm 17: A*BC Structural Search
Input : Optimized likelihood set ℬ = {𝜌(v𝑚,v[𝐷𝑦 ]∖{𝑚})}
Output: Maximum score DAG 𝒢

1 Initialize 𝑄 with an empty state
2 loop while goal state not expanded
3 𝑠← 𝑝𝑜𝑝(𝑄)
4 𝑔 ← 𝑔(𝑠,ℬ), ℎ̄← ℎ̄(𝑠,ℬ) // Recompute with latest bounding

conflicts
5 if 𝑔 + ℎ̄ is no longer highest reward in 𝑄 then
6 Requeue 𝑠 with priority 𝑔 + ℎ̄, continue
7 else if 𝑠 is a goal state with highest bounded score DAG 𝒢 then
8 if ∃ v𝑚 such that 𝜌(v𝑚,vΠ𝒢

𝑚
) /∈ ℬ then // Bound not tight

9 ℬ ← ℬ ∪ {𝜌(v𝑚,vΠ𝒢
𝑚

)}
10 Queue 𝑠 with priority 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ), continue
11 else return 𝒢
12 else for v𝑚 /∈ 𝑠 do // Make successor states
13 ℬ ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠(𝑠,v𝑚,ℬ)
14 Queue 𝑠∪{v𝑚} with priority 𝑔(𝑠∪{v𝑚},ℬ) + ℎ̄(𝑠∪{v𝑚},ℬ), continue
15 end

6.6.4 Rules for Computation of Optimized Likelihood

A major difference between our approach and the existing A*BC implementation is

that it is easy to generate bounds by computing likelihoods at any time. Whereas
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bounds naturally arise [136] when evaluating the cost for complete assignments, in

our case, any optimized likelihood could be evaluated at any point in search in order

to produce a new bound. In Algorithm 17, the set of optimized likelihoods ℬ are

evaluated as part of the routine 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠, which we now describe.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠 produces bounds for a set of parent assignments that is at

the head of the queue when a state is expanded. In this way, parent sets that are

likely to be optimal, as determined by progress through the A* search space, have

their likelihoods evaluated, producing tighter bounds and making their optimality

less likely. The parent sets that are evaluated are either the best known parent set,

or another that is expected to remove the need to evaluate the current best known

parent set.

In order to decide which likelihoods to evaluate when, consider that unlike the

application of A*BC developed by Timmons and Williams [136], where a bounding

conflict is used to bound any extension of an assignment to variables, our bound

uses a given assignment to the parent set of v𝑚 to bound the reward of other parent

set assignments of the same variables v𝑚. Further, the bound is only applicable to

parent sets that are subsets of evaluated likelihoods. This raises a unique tradeoff to

be addressed during search. On one hand, it is advantageous to evaluate 𝜌(v𝑚,vΠ𝒢
𝑚

)

for relatively large parents sets vΠ𝒢
𝑚

in order to place bounds on the scores of a large

number of DAGs. On the other hand, optimized likelihoods for smaller parent sets

give tighter bounds for their subsets. Search must evaluate likelihoods that are large

enough to bound multiple possible DAGs, while ensuring the bounds are tight enough

to push suboptimal DAGs further down the search queue.

An algorithmic description for 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠 is given in Algorithm 18.

When a state 𝑠 is expanded, each successor is generated by adding v𝑚 /∈ 𝑠 to the set

of variables currently contained in 𝑠. 𝑔(𝑠 ∪ {v𝑚},ℬ) is computed for the successor
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state as

𝑔(𝑠 ∪ {v𝑚},ℬ) = 𝑔(𝑠,ℬ) + 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ) (6.12)

vΨ = arg max
vΦ⊆𝑠, Φ∈Ξ𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ,ℬ). (6.13)

Unless 𝜌(v𝑚,vΨ) has been evaluated, 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ) is inexact. We can tighten

𝑔(𝑠 ∪ {v𝑚},ℬ) by evaluating 𝜌(v𝑚,vΨ), or alternatively, evaluating 𝜌(v𝑚,vΨ ∪ vΩ)

for some non-empty vΩ. The latter option is preferred, because it is possible that

evaluation of 𝜌(v𝑚,vΨ ∪ vΩ) tightens 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ) enough that the new state

𝑠 ∪ {v𝑚} never reaches the head of the queue. If this occurs, then 𝜌(v𝑚,vΨ) never

needs to be evaluated, saving the evaluation time. Evaluating 𝜌(v𝑚,vΨ∪vΩ) has the

additional utility that it may be used to derive bounds on other subsets of vΨ ∪ vΩ,

while 𝜌(v𝑚,vΨ) may only be used to derive bounds on subsets of vΨ. The choice of

vΩ is intended to lower 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ) as much as possible, while still generating

a bound applicable for other parent sets. This is done in order to move the newly

generated successor state deeper into the search queue, so that the optimum DAG is

found without considering the state again and needing to evaluate more likelihoods.

Our strategy for selecting vΩ is based on the heuristic observation that in sparse

DAGs, likelihood with any single parent in the optimal parent set is often (but not

always) significantly increased over likelihood when using a single parent not in the

optimal set. That is,

𝜌(v𝑚, {v𝑛}) > 𝜌(v𝑚, {v𝑙}), 𝑛 ∈ Π𝒢*

𝑚 , 𝑙 /∈ Π𝒢*

𝑚 .

To choose vΩ, we combine 𝑘 variables in 𝑠 that result in lowest likelihood when used

as the only parent of v𝑚, and are not already in vΨ. In this way, elements of vΩ are

unlikely to be part of the optimal parent set, and we anticipate that 𝜌(v𝑚,vΨ∪vΩ) is

not significantly larger than 𝜌(v𝑚,vΨ). It frequently occurs that after 𝜌(v𝑚,vΨ∪vΩ)

is evaluated, vΨ is no longer the best candidate parent set for output v𝑚. In this

case, no new optimized likelihoods are computed, and search proceeds using the new
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best candidate parent set. In the case where vΨ remains the best candidate parent

set, for the new state, the likelihood 𝜌(v𝑚,vΨ) is evaluated.

Algorithm 18: EvaluateLikelihoods
Input : Expanded state 𝑠, variable to add v𝑚, optimized likelihood set ℬ
Output: Larger optimized likelihood set ℬ′ with additional evaluated parent

sets of v𝑚

1 vΨ ← arg maxvΦ⊆𝑠 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ,ℬ) // Best parent set under bounds
2 vΩ ← 𝑘 values of v𝑛 ∈ 𝑠 ∖ vΨ with lowest 𝜌(v𝑚, {v𝑛}) in ℬ
3 ℬ′ ← ℬ ∪ {𝜌(v𝑚,vΨ ∪ vΩ)}
4 if arg maxvΦ⊆𝑠 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ,ℬ) = vΨ then
5 ℬ′ ← ℬ′ ∪ {𝜌(v𝑚,vΨ)}
6 end
7 return ℬ’

While 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠 could evaluate up to two likelihoods instead of only

evaluating 𝜌(v𝑚,vΨ), it actually causes significantly fewer optimized likelihoods to be

computed over the course of search. If the algorithm only evaluated 𝜌(v𝑚,vΨ), that

likelihood cannot be used to bound 𝜌(v𝑚,vΨ∪vΩ). When the bound for 𝜌(v𝑚,vΨ) is

loose, meaning it is computed using the optimized likelihood of a much larger parent

set, it is frequently the case that 𝜌(v𝑚,vΨ∪vΩ) is loosely bounded by a similarly large

parent set. This then makes vΨ ∪ vΩ a new candidate optimal parent set, which will

have to be evaluated during the course of search regardless. In contrast, by choosing to

evaluate 𝜌(v𝑚,vΨ ∪vΩ) first, we can use the result to refine the bound on 𝜌(v𝑚,vΨ).

If 𝜌(v𝑚,vΨ ∪ vΩ) is low, it may lower the bound on 𝜌(v𝑚,vΨ) so that vΨ never

becomes a candidate optimal parent set for v𝑚, so that the true value of 𝜌(v𝑚 |vΨ)

is never evaluated. This explains why it is important to evaluate larger parent sets

before smaller parent sets. Our experimental results confirm this intuition, and we

see significantly fewer likelihoods evaluated under our proposed strategy, compared

to evaluating the likelihood of the best parent set.

When 𝑘 is too low, 𝜌(v𝑚,vΨ ∪ vΩ) is a bound for fewer candidate sets. When

𝑘 is too high, the bound produced is too loose, and vΨ remains the best parent set.

Generally, optimized likelihood increases more significantly with additional variables

when Ψ is smaller, so we increase 𝑘 as a function of |Ψ|. Empirically, we find strong
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performance using 𝑘 = 1 when |Ψ| ≤ 2 and 𝑘 = 2 otherwise.

This procedure is applied in the following example.

Example 3. Consider an optimal DAG search problem where for all 𝑚, 𝑐𝑚(Ψ) =

|Ψ|. Assume that search expands the state {v1,v2,v3} and generates the successor

state {v1,v2,v3,v4}. At the time of expansion, ℬ contains the following optimized

likelihoods:

𝜌(v4,v∅) = −55

𝜌(v4,v{1}) = −50

𝜌(v4,v{2}) = −11.5

𝜌(v4,v{1,2,3}) = −10.

The maximum bounded score parent set for v4 is {v3}, with bounded score

𝑆𝑐𝑜𝑟𝑒(v4,v{3},ℬ) = 𝜌(v4,v{1,2,3})− 𝑐4({3}) = −11.

We observe that v4 is almost fully described by dependence on v{2}, because 𝜌(v4,v{2})

is almost as large as 𝜌(v4,v{1,2,3}). Since the optimized likelihood of v4 changes little

with the inclusion of v3, it is reasonable to expect that 𝜌(v4,v{3}) is low, and that the

bound above is loose.

If this expectation is true, and v4 is almost fully described by dependence on v{2},

then we also expect that 𝜌(v4,v{1,3}) is low. Furthermore, 𝜌(v4,v{1,3}) must be larger

than 𝜌(v4,v{3}), so calculating 𝜌(v4,v{1,3}) to be low proves that 𝜌(v4,v{3}) must

also be low. In this case, our approach identifies v1 as the variable with the lowest

likelihood when used as the only parent on v4, and first evaluates 𝜌(v4,v{1,3}).

If we compute 𝜌(v4,v{1,3}) and find that 𝜌(v4,v{1,3}) = −40, we can compute the

following bound,

𝑆𝑐𝑜𝑟𝑒(v4,v{3},ℬ) = 𝜌(v4,v{1,3})− 𝑐4({3}) = −41.
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This bound is below the known score 𝑆𝑐𝑜𝑟𝑒(v4,v{2}) = −12.5, we know that v{3} can-

not be the optimal parent set for v4 when v{2} is available. The likelihood 𝜌(v4,v{3})

then never needs to be computed explicitly.

To see that this is not wasteful, assume instead that we compute 𝜌(v4,v{3}) and

find 𝜌(v4 |v{3}) = −43. Then the maximum bounded score parent set for v4 is v{1,3},

with bounded score

𝑆𝑐𝑜𝑟𝑒(v4,v{1,3},ℬ) = 𝜌(v4,v{1,2,3})− 𝑐4({1, 3}) = −12.

Under this loose bound, v{1,3} is the parent set with the highest bounded score, and it

is highly likely that 𝜌(v4,v{1,3}) still needs to be computed later in search.

6.7 Proof of Optimality

We now present a complete proof that the DAG returned by A*BC has the highest

score of all possible DAGs. The proof is performed by contradiction. We show that

if a DAG with higher score exists when the goal state is expanded, then a state with

higher priority exists on the queue. But this higher priority state must be expanded

before the goal state, so cannot be on the queue, yielding a contradiction. We first

begin with two lemmas. Lemma 2 establishes that the score of an expanded goal

state is exact.

Central to the proof is the fact that there are no loops in the graph that is being

searched, otherwise a path to a state can accumulate reward for the parents of a single

index multiple times. The fact that there are no loops is satisfied by construction in

our problem.

Lemma 2. Upon expansion, the reward of goal state 𝑠 is equal to the exact score of

the maximum score DAG with topological ordering 𝑠.

Proof. Denote the known bounding conflicts at the time of expansion of 𝑠 as ℬ, and

denote the DAG with highest known bounded score at the time of expansion with

topological ordering 𝑠 as 𝒢. By definition, 𝒢 is used to score 𝑠 at expansion. To prove
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the lemma, we prove that the score of 𝑠 at expansion is the exact score of 𝒢, and that

there is no DAG 𝒢 ′ with topological ordering 𝑠 with higher score.

By the description of our algorithm, 𝑠 is only expanded once all likelihoods have

been computed for 𝒢. This implies that for all v𝑚, 𝜌(v𝑚,vΠ𝒢
𝑚

) ∈ ℬ when 𝑠 is

expanded. All outputs v𝑚 are elements of 𝑠, so the heuristic is zero, and the bounded

score of 𝑠 at expansion is given by

𝑔(𝑠,ℬ) =
∑︁

𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚
,ℬ)

=
∑︁

𝑚

min
𝜌(v𝑚,vΦ)∈ℬ : Φ⊇Π𝒢

𝑚

𝜌(v𝑚,vΦ)− 𝑐𝑚(Π𝒢
𝑚)

=
∑︁

𝑚

𝜌(v𝑚,vΠ𝒢
𝑚

)− 𝑐𝑚(Π𝒢
𝑚)

=
∑︁

𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

).

The third equality follows from Theorem 7.1 and the fact that the exact likelihoods

are in the set of bounding conflicts. This shows that the reward of 𝑠 is the exact score

of 𝒢.
Now assume for contradiction that there exists another DAG 𝒢 ′ with topological

ordering 𝑠 with higher true score than 𝒢. Then

∑︁

𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚
,ℬ) =

∑︁

𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

)

≤
∑︁

𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢′
𝑚

)

≤
∑︁

𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢′
𝑚
,ℬ).

Therefore 𝒢 cannot be the DAG with highest known bounded score with topological

ordering 𝑠, resulting in the contradiction.

Lemma 3 states that the priority 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ) of a state bounds the true score

of any DAG with topological ordering consistent with the path taken to 𝑠.

Lemma 3. Consider any search state 𝑠 = {v𝑚1 , . . . ,v𝑚𝑟} reached by a path that
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added variables in the order 𝑇 (𝑠) = (v𝑚1 , . . . ,v𝑚𝑟). For any DAG 𝒢 over all v𝑚

with topological ordering that begins with 𝑇 (𝑠), and any set of bounding conflicts

ℬ ⊇ {𝜌(v𝑚,v[𝐷𝑦 ]∖{𝑚})}, then

∑︁

v𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

) ≤ 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ).

Proof. The score of the DAG may be decomposed as

∑︁

v𝑚∈𝑠
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢

𝑚
) +

∑︁

v𝑚 /∈𝑠
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢

𝑚
).

The two elements of the expression may be bounded by 𝑔(𝑠,ℬ) and ℎ̄(𝑠,ℬ) respec-

tively. Since 𝒢 has topological ordering that begins with 𝑇 (𝑠), it must be that for all

v𝑚𝑟 ∈ 𝑠,Π𝒢
𝑚 ⊆ {𝑚1, . . . ,𝑚𝑟−1}. Then, since ℬ ⊇ {𝜌(v𝑚,v[𝐷𝑦 ]∖{𝑚})}, ℬ must contain

a likelihood of v𝑚 evaluated with a superset of Π𝒢
𝑚 for all 𝑚, and an upper bound on

score must exist for all outputs and parent sets. It follows that

∑︁

v𝑚∈𝑠
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢

𝑚
) ≤

∑︁

v𝑚∈𝑠
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢

𝑚
,ℬ)

≤
∑︁

v𝑚∈𝑠
max

Ψ⊆{𝑚1,...,𝑚𝑟−1}
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ)

= 𝑔(𝑠,ℬ).

Similarly,

∑︁

v𝑚 /∈𝑠
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢

𝑚
) ≤

∑︁

v𝑚 /∈𝑠
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢

𝑚
,ℬ)

≤
∑︁

v𝑚∈𝒫
max

Ψ⊆[𝐷𝑦 ]∖{𝑚}
𝑆𝑐𝑜𝑟𝑒(v𝑚,vΨ,ℬ)

= ℎ̄(𝑠,ℬ),

Summing the two expressions completes the proof.

We now prove the optimality of our A*BC search procedure, as stated by the

following theorem.
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Theorem 8. Once a goal state is expanded in Algorithm 17, its score is the score of

the optimal DAG.

Proof. Denote the expanded goal state by 𝑠, the topological ordering implied by the

path as 𝑇 (𝑠), and the known set of likelihoods at the time of expansion as ℬ. In

addition, let the DAG with highest bounded score with topological ordering 𝑇 (𝑠) be

denoted by 𝒢.

From lemma 2 we know that 𝑠 has priority at expansion equal to the exact (not

bounded) score of 𝒢, and that no other DAG with topological ordering given by 𝑇 (𝑠)

has higher score. Next, we prove that no other DAG can have a higher score than 𝒢,
regardless of ordering.

Assume for contradiction that another DAG 𝒢 ′ exists with higher score than 𝒢.
𝒢 ′ must have a different topological ordering 𝑇 (𝑠′) ̸= 𝑇 (𝑠). Whenever a state is

expanded in A*BC, successor states are added to the queue with all possible outputs

added to the expanded state. As a result, there must be another state 𝑠′′ on the queue

consisting of first 𝑟 elements of 𝑇 (𝑠′).

Since 𝑠′′ is not at the head of the queue, its reward was computed with a set of

known likelihoods ℬ′′ ⊆ ℬ. Then

𝑔(𝑠,ℬ) =
∑︁

v𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢
𝑚

)

≤
∑︁

v𝑚

𝑆𝑐𝑜𝑟𝑒(v𝑚,vΠ𝒢′
𝑚

)

≤ 𝑔(𝑠′′,ℬ′′) + ℎ̄(𝑠′′,ℬ′′),

where the final inequality follows from lemma 3. Use of the lemma is valid, because

bounding conflicts for the largest parent sets of each output are computed at the start

of A*BC. However, the result above implies that 𝑠 cannot be at the head of the queue

and expanded, because 𝑠′′ has larger bounded score, resulting in a contradiction.
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6.8 Using an Expanded List

As discussed in Section 6.5.1, in A* the use of an expanded list greatly reduces search

complexity by ensuring that the same state is not repeatedly placed on the queue a

large number of times. In order for search to remain optimal, the first time any state

𝑠 is expanded, it must have been reached by the highest reward path to 𝑠. In A*, use

of a consistent heuristic is a sufficient condition for this property.

This property no longer holds when search is performed with priority 𝑔(𝑠,ℬ) +

ℎ̄(𝑠,ℬ), even when ℎ̄ is consistent. As a counterexample, consider some 𝑠 on the

queue, reached by suboptimal path 𝑇 (𝑠) while state 𝑠′ reached by part of the optimal

path to 𝑠 is also on the queue. Consistency of ℎ̄ tells us that

𝑔(𝑠) + ℎ̄(𝑠,ℬ) ≤ 𝑔(𝑠′) + ℎ̄(𝑠′,ℬ).

This is not sufficient to prove that 𝑠′ is expanded before 𝑠 in our algorithm, because

priorities use 𝑔 instead of 𝑔.

Even if the priorities are evaluated with the same set of likelihoods, so that 𝑠 and

𝑠′ are queued with respective priorities 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ) and 𝑔(𝑠′,ℬ) + ℎ̄(𝑠′,ℬ), it is

feasible that ℬ results in a loose bound for 𝑔(𝑠,ℬ) and a tight bound for 𝑔(𝑠′,ℬ). This

can result in

𝑔(𝑠) + ℎ̄(𝑠,ℬ) ≤ 𝑔(𝑠′) + ℎ̄(𝑠′,ℬ) ≤ 𝑔(𝑠′,ℬ) + ℎ̄(𝑠′,ℬ) ≤ 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ).

This results in 𝑠 being expanded before 𝑠′, even though it has been reached by a

suboptimal path.

However, it is possible to define another condition which is sufficient to determine

that the maximum reward path to any state has been found, and allows us to construct

an expanded list for our search algorithm. This condition is described in the following

theorem. Intuitively, this theorem states that a state can be added to the expanded

list if it is expanded at a time when the reward up to that state is known exactly, so

that any bounds on it are tight.

286



Theorem 9. Assume that ℎ̄ is a consistent heuristic for fixed ℬ, meaning that for any

state 𝑠 and any path from state 𝑠′ to 𝑠, ℎ̄(𝑠′,ℬ) ≥ 𝑟(𝑠′ → 𝑠)+ ℎ̄(𝑠,ℬ). Further assume

that ℎ̄ can only be reduced with larger ℬ, so that for ℬ′ ⊆ ℬ, ℎ(𝑠,ℬ′) ≥ ℎ(𝑠,ℬ). If state

𝑠 is ever expanded with 𝑔(𝑠,ℬ) = 𝑔(𝑠), then 𝑠 has been expanded on the maximum

possible reward path.

Proof. Denote the reward obtained on the highest score path to state 𝑠 as 𝑔*(𝑠),

and the bound for this path as 𝑔*(𝑠,ℬ). Assume for contradiction that 𝑠 has been

expanded with set of optimized likelihoods ℬ on a path with reward 𝑔(𝑠) < 𝑔*(𝑠), but

that 𝑠 has never been expanded on the highest reward path. Then there exists a state

𝑠′ on the queue with priority evaluated with ℬ′ ⊆ ℬ that is reached the maximum

reward path to 𝑠′ that is a subset of the optimal path to 𝑠. Then

𝑔*(𝑠′,ℬ′) + ℎ̄(𝑠′,ℬ′) ≥ 𝑔*(𝑠′) + ℎ̄(𝑠′,ℬ′)

≥ 𝑔*(𝑠′) + 𝑟(𝑠′ → 𝑠) + ℎ̄(𝑠,ℬ′)

= 𝑔*(𝑠) + ℎ̄(𝑠,ℬ′)

≥ 𝑔*(𝑠) + ℎ̄(𝑠,ℬ)

> 𝑔(𝑠) + ℎ̄(𝑠,ℬ).

The first line follows from 𝑔* being an overestimate for 𝑔*, the second line results

from the consistency of ℎ̄, the fourth line from ℎ̄ being tightened by larger ℬ, and the

final line results from the optimality of 𝑔*(𝑠).

Since 𝑠 was queued with priority 𝑔(𝑠) + ℎ̄(𝑠,ℬ), the inequality above shows that

𝑠′ must have had a higher priority than 𝑠. Then 𝑠 cannot be have been at the head

of the queue and expanded, resulting in a contradiction.

Theorem 9 implies that once a state 𝑠 has been expanded with a reward to the

state that is exact, then any future paths to 𝑠 are suboptimal and can be ignored in

search. During search, we maintain an expanded list, and add states to the list once

they are expanded with 𝑔(𝑠,ℬ) = 𝑔(𝑠). Any time a state on the expanded list would

be expanded, it is instead ignored. To check that 𝑔(𝑠,ℬ) = 𝑔(𝑠) is satisfied, we verify
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that for all v𝑚𝑟 ∈ 𝑇 (𝑠),

𝜌(v𝑚𝑟 ,vΦ) ∈ ℬ where Φ = arg max
Ψ⊆{𝑚1,...,𝑚𝑟−1}

𝑆𝑐𝑜𝑟𝑒(v𝑚𝑟 ,vΨ,ℬ). (6.14)

Note that Theorem 9 does not say that when 𝑠 is expanded, it has been reached

by the maximum reward path. It is possible that 𝑠 has been previously reached on

the maximum score path and expanded with inexact 𝑔. Theorem 9 only states that

any future times that 𝑠 is reached, the state may be ignored.

6.9 Comparison of Efficiency Between A* and A*BC

The A*BC procedure presented in this chapter is designed for scores that are expen-

sive to evaluate. Compared to A* DAG search, our algorithm evaluates fewer score

functions, resulting in significant time savings. Our approach is not recommended for

use when scores are computationally cheap to evaluate, and it will typically lead to

slower search in this case.

Our A*BC procedure orders the priority queue based on bounds on both reward

received and the heuristic 𝑔(𝑠,ℬ) + ℎ̄(𝑠,ℬ), which may be quite loose when few op-

timized likelihoods have been evaluated. Compared to A* search that orders the

priority queue by 𝑔(𝑠)+ℎ(𝑠), the looser bounds in A*BC means that more states will

appear at the head of the queue as search progresses, and more states will expanded

in total. By delaying computation of scores, A*BC acts with limited information

that is available at the start of search of A*. As a result, a less efficient search over

states is effectively used by A*BC and more states are expanded than in A*, but the

advantage is that fewer likelihoods will be evaluated.

In problems where likelihoods are computationally expensive to compute, it is

worthwhile to accept more complex search expanded with fewer likelihoods evalu-

ated. However, when exact scores are easily computed, there is little to be gained

by delaying computation of optimized likelihoods, and the additional complexity of

search using A*BC is disadvantageous.
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6.10 Markov Equivalence Classes in AcyGP Struc-

tural Search

In this section, we will explain why we do not perform search over the smaller space

of Markov equivalence classes for DAGs, as is performed by some structure learning

algorithms. Instead, we search over the space of DAGs.

Multiple directed acyclic graphs can encode the same set of conditional indepen-

dence statements [142], and therefore are capable of representing the same set of

distributions. Such graphs are said to be Markov equivalent, and a set of DAGs that

are all Markov equivalent is known as a Markov equivalence class. Since Markov

equivalent DAGs represent the same set of distributions, many score functions in-

cluding BIC give the same score to all DAGs in the same Markov equivalence class

[29], which is known as score equivalence.

Score equivalence is the foundation of algorithms such as Greedy Equivalent Search

[30], which searches over the smaller space of Markov equivalence classes, rather than

the full space of DAGs. Score equivalence can be shown to hold for DAGs over

specific parameterized distributions, such as discrete or Gaussian DAGs, allowing

efficient search over the space of equivalence classes to be used.

Our approach does not perform search over the space of Markov equivalence

classes. This is because our primary application is the AcyGP model, and AcyGPs

are parameterized such that two AcyGPs with identical conditional independence re-

lationships between outputs do not represent the same distributions. AcyGPs are

therefore not score equivalent under scores such as BIC.

As an example, there are two possible connected DAG structures between two

variables, 𝒱 = {v1,v2}, as shown in Figure 6-4. The DAGs in Figure 6-4 are Markov

equivalent; Figures 6-4a and 6-4b represent the same distributions. Here there are no

necessary conditional independence statements between the variables, so that both

DAGs represent all distributions. If v1 and v2 were constrained to be discrete random

variables or jointly Gaussian with an arbitrary covariance matrix, then any distribu-

tion that factors according to Figure 6-4a could also factor according to Figure 6-4b
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v1 v2

(a)

v1 v2

(b)

Figure 6-4: Two possible connected DAGs with two variables.

and vice-versa. Both DAGs would then be scored identically by BIC.

This reasoning no longer holds true for the AcyGP model, because kernels restrict

the space of possible covariances. To see this, consider a homogeneous AcyGP with

two outputs. Assume for simplicity that each output 𝑚 has kernel 𝑘𝑚(𝑥𝑖,𝑥𝑗; 𝑙𝑚) =

exp(−|𝑥𝑖−𝑥𝑗|2/(2𝑙2𝑚)), has no noise, and all outputs are observed at all input locations

𝑋. The distributions for the AcyGPs with structures in Figure 6-4 are zero mean

Gaussians with covariance matrices described below.

For the structure in Figure 6-4a

𝑐𝑜𝑣([v1,v2], [v1,v2]) =

⎡
⎣ 𝐾1(𝑋,𝑋; 𝑙1) Λ1,2 𝐾1(𝑋,𝑋; 𝑙1)

Λ1,2 𝐾1(𝑋,𝑋; 𝑙1) Λ2
1,2 𝐾1(𝑋,𝑋; 𝑙1) + 𝐾2(𝑋,𝑋; 𝑙2)

⎤
⎦ ,

and for the structure given in Figure 6-4b

𝑐𝑜𝑣([v1,v2], [v1,v2]) =

⎡
⎣ 𝐾1(𝑋,𝑋; 𝑙1) + Λ2

2,1 𝐾2(𝑋,𝑋; 𝑙2) Λ2,1 𝐾2(𝑋,𝑋; 𝑙2)

Λ2,1 𝐾2(𝑋,𝑋; 𝑙2) 𝐾2(𝑋,𝑋; 𝑙2)

⎤
⎦ .

For a sufficiently large dimensionality of 𝑋, it is not always possible to select the

kernel parameters and edge weights of the second covariance to equal any parameter-

ization of the first. In particular, in the first case 𝑐𝑜𝑣(v1,v1) is parameterized by a

kernel with one length scale, and in the second case it is parameterized by a kernel

with two length scales, so the set of possible values of 𝑐𝑜𝑣(v1,v1) is strictly larger in

the first case.
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Figure 6-5: Andromeda data set timing results.

6.11 Experiments

We compare the search time speedup that is gained from the use of A*BC for struc-

tural search for AcyGP problems. For the size of DAGs we consider, likelihood opti-

mization composes 95% of structural search time. Since existing exact methods differ

only in the time required for generating candidate structures, and that time is small,

we only test against A* search [156] as an exact method. We also compare against

locally optimal Tabu search [52], which is frequently used for structure optimization.

Tabu search can be made to perform as quickly as desired by limiting the number of

iterations and restarts performed, so we also compare the standardized mean squared

error (SMSE) of the AcyGP under the solved structure to assess the quality of the

model found, and the success rate at converging to the optimal structure. (with the

lowest SMSE across all experiments)

6.11.1 Andromeda Timing Experiment

We repeat the experiment on the Andromeda data set described in Chapter 5 exper-

iment 100 times, starting with randomly selected initial DAGs for use in structural

EM. Tabu search was performed with 0 through 4 restarts and 50 iterations per

restart. Results are given in Table 6.1, and plotted in Figure 6-5.

We observe a 47.8% lower training time when using A*BC compared to A* search,

with no loss in predictive power or structure accuracy. A*BC performs competitively

with a well-tuned Tabu search; Tabu can only achieve faster training times than A*BC
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Table 6.1: Time, standardized mean squared errors, and optimal DAG convergence
rate on the Andromeda timing experiment.

A*BC A* Tabu

0 Restarts 1 Restart 2 Restarts 3 Restarts 4 Restarts

Time (sec) 240.3
± 3.5

460.1
± 7.9

118.4
± 2.1

178.2
± 3.0

219.1
± 3.8

266.5
± 4.8

294.1
± 4.9

SMSE 0.04297
± 0.00031

0.04296
± 0.00031

0.0461
± 0.0014

0.04390
± 0.00028

0.04376
± 0.00030

0.04340
± 0.00030

0.04308
± 0.00031

Optimal Rate 0.980
± 0.014

0.980
± 0.014

0.160
± 0.037

0.580
± 0.050

0.770
± 0.042

0.890
± 0.031

0.930
± 0.026

when convergence to a suboptimal structure occurs in more than 20% of experiments,

and A*BC is faster than Tabu with 3 or more restarts. The optimal number of restarts

to use in Tabu would not be known prior to training, but tuning this parameter is not

required when using A*BC. In this case, convergence to locally suboptimal structures

increase SMSE by a few percent, but when lowest predictive errors are desired, or the

structure will be examined and interpreted, A*BC provides the fastest way to reach

the best known structure.

In this experiment, the number of iterations per restart in Tabu search is high

enough for it to reach and become trapped in local optima, resulting in reduced rate

in finding the optimal DAG and increased standardized mean squared error. Several

restarts are required to reduce the probability of converging to a locally optimal

structure, which eventually makes Tabu search slower than A*BC. A*BC and A*

do not converge to the best known structure in all experiments because structural

EM may return a locally optimal structure, depending on initial parameter guesses,

even with an optimal structural search. More complex methods using restarts with

multiple parameter guesses may be able to avoid this problem, but we do not explore

those methods here. However, the strong performance of A*BC compared to Tabu

search shows the value in performing optimal structure learning.
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Number of Likelihood Evaluations

We also compare the average number of likelihoods evaluated by A*BC, A*, and

Tabu search, as a measure of the efficiency of A*BC. To show the advantage of our

proposed active bounding strategy and that it results in fewer evaluated likelihoods,

we also compare against two alternative bound evaluation strategies.

In the ‘best parents’ strategy, when state 𝑠 is expanded and variable v𝑚 is added

to form the successor, we evaluate only the optimized likelihood of the best par-

ent set under the known bounds. That is, we evaluate 𝜌(v𝑚,vΨ), where vΨ =

arg maxvΦ⊆𝑠 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ,ℬ). This differs from the active bound in that compu-

tation of vΩ is ignored.

In the ‘until exact’ strategy, when state 𝑠 is expanded and variable v𝑚 is added to

form the successor, we evaluate the optimized likelihood of the best parent set under

the known bounds until maximum score for the successor state is known exactly.

That is, we evaluate 𝜌(v𝑚,vΨ), where vΨ = arg maxvΦ⊆𝑠 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ,ℬ), and keep

doing so until arg maxvΦ⊆𝑠 𝑆𝑐𝑜𝑟𝑒(v𝑚,vΦ,ℬ) is an element of ℬ.

Results are given in Table 6.2. When comparing A*BC, A*, and Tabu search, the

number of evaluations agrees with the timing results. By using the active bounding

strategy, search requires more than 50 fewer likelihood evaluations compared to sim-

pler strategies, resulting in a 10.8% reduction in total number of likelihoods needed.

Table 6.2: Average number of likelihoods evaluated in the Andromeda timing exper-
iment.

Average Likelihoods Evaluated

A*BC
Active 447.7 ± 7.6

Best Parents 519.5 ± 8.6
Until Exact 501.9 ± 8.3

A* 689.3 ± 12.37

Tabu

0 Restarts 239.3 ± 4.7
1 Restart 357.1 ± 6.3
2 Restarts 424.0 ± 7.6
3 Restarts 476.6 ± 8.6
4 Restarts 513.4 ± 9.1
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6.11.2 Exchange Timing Experiment

We perform 100 repeats on the Exchange data set experiment described in Chapter

5. In this experiment, the global optimum DAG is reachable through local trans-

formations from any initial DAG with few iterations, so restarts in Tabu search are

not required. We test with 5, 10, and 15 iterations. No more than 10 iterations are

required by Tabu search to reach the optimal structure from any randomly generated

initial structure. Results are given in Table 6.3.

Table 6.3: Time, standardized mean squared errors, and optimal DAG convergence
rate on the Exchange timing experiment.

A*BC A* Tabu

5 Iters 10 Iters 15 Iters

Time (sec) 227.3 ± 1.4 502.5 ± 0.3 170.6 ± 1.7 218.5 ± 1.8 237.1 ± 1.6

SMSE 0.4219
± 7×10-9

0.4219
± 0.0

0.530
± 0.018

0.4219
± 7×10-9

0.4219
± 7×10-9

Optimal Rate 1.0 ± 0.0 1.0 ± 0.0 0.360 ±
0.048 1.0 ± 0.0 1.0 ± 0.0

We find a 54.7% reduction in training time using A*BC compared to A*. Tabu

with 5 iterations performs poorly in terms of SMSE and optimality rate, with 125% of

the standardized mean squared error of the A*BC solution. With 10 iterations, Tabu

reaches equal prediction accuracy to A*BC and is only 3.8% faster, while increasing

the number of iterations to 15 causes Tabu search to be slower than A*BC. This

shows that A*BC is again similar to a well-tuned Tabu search, but does not require

guessing the parameters that would be needed. Note that since structural EM is not

required, the complete enumeration of all likelihoods from fixed initial parameters

performed by A* becomes a deterministic algorithm, causing no uncertainty in the

mean SMSE.

Number of Likelihood Evaluations

We again compare the number of optimized likelihoods evaluated by A*BC, A*, and

Tabu search, including different bounding strategies in A*BC. Results are given in
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Table 6.4. The reduction in number of optimized likelihoods evaluated shows the

advantage of A*BC over A*. However, in this experiment, there is not a significant

difference in likelihoods when using the active bounding strategy versus alternatives.

This may be due to the relatively low number of likelihoods needed to be evaluated

in the experiment.

Table 6.4: Average number of likelihoods evaluated in the Exchange timing experi-
ment.

Average Likelihoods Evaluated

A*BC
Active 56.4 ± 0.4

Best Parents 55.3 ± 0.2
Until Exact 56.8 ± 0.3

A* 101.0 ± 0.0

Tabu
5 Iters 37.32 ± 0.06
10 Iters 49.2 ± 0.3
15 Iters 53.4 ± 0.4

6.12 Summary

In this chapter, we developed A* with bounding conflicts to perform score-based struc-

ture learning in problems with likelihoods that are difficult to optimize. Evaluated

likelihoods are used to generate bounds on the scores of structures with unknown like-

lihoods, which are then used to guide search towards structures that are promising

with the current information. Additional likelihoods are evaluated as search pro-

gresses, which improve the accuracy of the bounds. Experiments training AcyGP

models on real, limited data problems with sparse optimal DAG structures show

that A*BC can achieve training speeds that are approximately 50% faster than those

achieved using A*, without a loss in solution optimality.
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Chapter 7

Conclusions and Future Work

This thesis has introduced query-driven adaptive sampling, including adaptive sam-

pling in service of queries, long duration risk-bounded planning, environment models

that capture qualitative constraints from expert users, and efficient search over struc-

ture of models. In this concluding chapter, we summarize our contributions and

results, and discuss possible future extensions to the work in this thesis.

7.1 Summary of Contributions and Results

This thesis was inspired by a need to apply a single adaptive sampling approach

to missions with changing or novel goals. In order to realize that capability, we

have introduced innovations in adaptive sampling, risk bounded planning, Gaussian

process modeling, and structure learning. We now review each of these contributions.

In order to define adaptive sampling over queries, we introduced a broad query

language to define problems to be solved by adaptive sampling. This query language

can express the objectives solved by most adaptive sampling algorithms to date, and it

provides a common interface for adaptive sampling algorithms to respond to. Under

the query language, a query includes a variable of interest specified by a function

that can be computed from any environment variables, a query objective, and an

optional sufficient condition to be satisfied. A functional definition of variables of

interest allows a user great flexibility in describing the targets of adaptive sampling.
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Meanwhile, having a selection of objectives allows the goal to be clear, and relates

query-driven adaptive sampling to previous adaptive sampling approaches. Sufficient

conditions further draw the distinction between missions that run for a fixed length,

and those that run until some level of understanding or confidence is reached. We

showed that some natural queries are not suitable for adaptive sampling because they

cause an agent to ignore data, and proved this does not occur in our query language.

To actually implement adaptive sampling in service of queries, we used Monte

Carlo tree search based planning. Handling diverse queries required us to embed in-

formation and probability density estimators in tree search, allow early termination

of rollouts, and allow consideration of only certain outcomes. In combination, these

allow plans to be found for all queries in our query language, but also may be of

independent interest in other applications of Monte Carlo tree search. We performed

experiments simulating search for hydrocarbon seeps and identifying escape routes

in a wildfire emergency. Results showed that planning with respect to a query out-

performs standard maximization of information, and the fire escape scenario showed

that planning can be performed for queries computed by non-trivial routines.

To allow adaptive sampling in dangerous environments, we demonstrated how to

produce long duration adaptive policies that satisfy functional relationships between

risk and reward. Our approach produces a series of non-adaptive plans by combining

all observations at the same location in a single state. Replanning is then performed

in response to new observations. By carefully constructing the risk bounds for each

of the plans, we showed that the overall executed policy satisfies a risk-bounding

function, and that solutions for plans could always be found after any possible obser-

vation. Through experiments with a simulated underwater vehicle, we showed that it

is possible to execute risk-bounded policies with at least 20 actions. Furthermore, we

showed intuitive behavior avoiding risks from tight passages as the risk bound was

made tighter.

Adaptive sampling is most frequently performed in data limited environments,

where pure statistical learning will frequently lead to correlations that are unjusti-

fied. In order to leverage experts’ knowledge about the environment in an intuitive
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manner, we developed the AcyGP model, which introduces a directed acyclic graph

structure into multi-output Gaussian processes. The structure is interpretable, so

that qualitative knowledge about independence and dependence relationships be-

tween variables in an environment can be modeled by selecting the structure, and

relationships like monotonicity and dominance can be encoded through constraints

on the edges. Structure that is not known is then solved through the use of structure

learning. Our experiments on standard Gaussian process benchmarks and oceano-

graphic data sets with limited data showed that training an AcyGP results in lower

mean errors in prediction and higher likelihoods of missing data under the predicted

distribution, when compared to state of the art Gaussian process regression methods.

Finally, since experts may not have complete knowledge of a structure, we consid-

ered structure learning for AcyGP models. Since it is computationally expensive to

compute the likelihood of an attribute under a set of parents in a Gaussian process,

we showed it is possible to significantly reduce the number of parent sets that need

to be trained. We place bounds on the likelihood of an attribute given parents using

likelihoods derived from larger sets of parents, and use these bounds to guide search

using A*BC. We also developed heuristic rules for which likelihoods to evaluate, in

order to reduce the total number needed in the course of search. Experiments showed

that the time required to train an AcyGP is reduced by approximately 50% using

A*BC, with no loss in structure optimality, compared to using A* search.

7.2 Extensions and Future Work

In the development of query-driven adaptive sampling, we have achieved significant

generality by expressing queries through query functions, objectives, and sufficient

conditions. A positive outcome of this decision is that it has allowed us to develop

a planning approach that is suitable for a large class of possible queries, making our

algorithm broadly applicable to many exploration problems. An obvious disadvantage

to this approach is that our approach cannot be as efficient or effective as one that

leverages specific assumptions or structure in the problem. When seeking to extend

299



research work, it is typical to propose generalizations or removal of assumptions. But

since query-driven adaptive sampling is already broad, it may be more beneficial to

seek more effective solutions for subsets of its capability, using more assumptions and

specific structure.

Out of the extensions we propose below, ‘scalable DAG structure learning’ and

‘more theoretically well-founded MCTS with estimators’ are examples of studying a

subset of the capability in this thesis while taking additional assumptions. Develop-

ment of ‘multi-vehicle query-driven adaptive sampling’ would be an extension to the

work in this thesis, while ‘exact solutions for planning with risk-bounding functions’

carries ideas from this thesis to additional domains.

7.2.1 Scalable Gaussian Process Structure Learning

In order to learn the structure of an AcyGP, we exploit the fact that the likelihood of

a DAG can factored into the product of the likelihoods of each attribute conditioned

on its parents. This allows us to determine the optimal structure by searching over

combinations of parent sets, which is more efficient than training each structure indi-

vidually. When data is missing, this approach requires us to resort to an expectation

maximization procedure, so that the total likelihood of the structure can be predicted

using estimates of the missing data.

While this procedure works well for Gaussian processes with approximately 5 to

10 attributes and on the order of 100 observations, this approach is not scalable for

larger problems. The number of possible parent sets grows exponentially with the

number of attributes in the environment. Even using A*BC, the number of Gaussian

processes that must be trained quickly becomes too large for practical computation.

A method that permits more large scale structure learning would be required for

larger environments.

Recent work on structure learning, referred to as NOTEARS [158], has shown that

it is possible to formulate an acyclicity constraint as a specially formulated constraint

on a weighted adjacency matrix that parameterizes a DAG. The advantage of this

approach is that structure can be optimized without using any kind of discrete space
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search, simply by adding a constraint to an algorithm that optimizes DAG parameters.

This means that total training time no longer scales according to the number of parent

sets in a DAG, and instead grows with the number of parameters controlling the DAG,

which is much more practical for large problems.

As presented, NOTEARS only allows an algorithm to solve for the single best

structure, and is currently incompatible with 𝑘-best structure learning. Further re-

search would be required to determine how to loosen this restriction. Furthermore,

NOTEARS makes specific assumptions that variables are linear functions of their par-

ents. The method would need to be generalized to be compatible with the variational

optimization used in the heterogeneous AcyGP model, and to determine whether all

types of variables (continuous, categorical, bounded, etc.) could still be arbitrarily

combined.

7.2.2 Theoretical Guarantees on MCTS with Embedded Esti-

mators

Query-driven adaptive sampling operates by planning using Monte Carlo tree search

with embedded estimators of mutual information and probability density. As more

samples are taken, values returned by the estimator form a sequence that converges

to the true objective value. Within tree search, we select rollouts using the mean of

elements in that sequence, which also converges to the true objective value. In this

way, our tree search remains asymptotically optimal.

However, the sequence of objective values does not possess the same properties as

a sequence of empirical means of samples. In particular, 𝑘-NN based density estima-

tions and mutual information estimations are expectations, but they are expectations

of correlated random variables, since nearest neighbor distances between independent

samples are correlated. This means that the central limit theorem does not necessar-

ily apply, and the expectation of samples is not necessarily a sub-Gaussian random

variable as is assumed in the development of UCT [7, 72]. This means we lack finite

time guarantees about convergence rates to optimal decisions.
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In practice, the convergence properties of density and mutual information estima-

tors are not well known, which severely limits the analysis that can be performed at

this time. Recent work has shown that under specific assumptions on the distribution

from which samples are drawn, 𝑘-NN entropy estimators are asymptotically Gaussian

[14, 39], but bounds on the deviation from Gaussianity with finite samples have not

been provided. The use of mutual information estimation within MCTS in this thesis

motivates further analysis of finite-time convergence properties of information estima-

tors, which can then be used to derive more theoretically grounded rollout selection

rules.

More generally, it is known that information estimators have bounded second

moments [46], and so it may be possible to use rollout selection rules based on best

arm identification algorithms for distributions with heavy tails. Unfortunately, these

approaches come with very weak guarantees, and we were not able to show significant

improvement over UCT by using them in this thesis.

7.2.3 Multi-Vehicle Query-Driven Adaptive Sampling

The technology in this thesis was developed for a single agent that explores its environ-

ment, without the complexity of coordination with other agents. Many applications

do use a single agent for exploration due to limits on cost or complexity, but it is also

common to explore large environments using multiple agents. When multiple agents

are used, they are most frequently deployed sequentially [23], or with each vehicle

operating independently. Having multiple agents perform simultaneous cooperative

operations in which information is shared is significantly more complex, but may lead

to significant advantages in exploration.

Multiple exploring agents can gather information in a shorter period of time, and

may carry different instrument payloads to be specialized towards a certain type of

observation. Yet in order to effectively plan with multiple exploring agents, there are

a number of questions that must be resolved concerning what information each agent

gathers and how they share data.

When considering where each agent should explore, a simple approach is to assign
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a subset of the environment to be the domain of each agent, and limit exploration to

those regions. This means that agents will not explore the same locations, but there

may still be some redundancy in the types of observations taken. For example, two

agents may both explore areas of bleached coral at different geographic locations, but

dependent on the query, more information may be obtained by having one explore

bleached coral and another explore healthy coral. An alternative approach may be

to have each agent explore distinct subsets of the observation space, with healthy

and bleached coral being distinct observations in the previous example. This would

also allow each agent to use its unique sensing capability, if the assigned parts of

the observation space are determined based on instruments. An effective solution is

likely to combine both approaches, so that the distances needed to be travelled to find

certain types of observations are considered when assigning parts of the observation

space to each agent.

Then we must handle the frequency with which each agent communicates its ob-

servations to other agents, and the number of observations each agent communicates.

Intuitively, communication of observations is a slow process that would require an

underwater agent to surface, and observations only need to be communicated when

they would influence the behavior of another agent. One approach may be to com-

municate only those observations that meet some relevance criteria, such as being

significantly correlated with the observations that a different agent seeks. Estimates

of that correlation could be generated under each agent’s current model, and when

the estimate exceeds a threshold, the agent could mark the observation as needing to

be communicated. The frequency of communication, in addition to the observations

chosen to be communicated, may also be determined based on the degree to which

belief over the other agent’s observations are influenced.
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7.2.4 Exact Solutions for Planning with Risk-Bounding Func-

tions

Risk-bounding functions have been particularly useful for adaptive sampling prob-

lems, where the relationship between risk and reward is difficult to understand [8, 9].

However, the concept of a constraint on risk as a function of reward may be applicable

in other domains, like motion planning and human-robot interaction. As an extreme

example, it may be permissible for a robotic agent to use more risk if its actions are

likely to save a human collaborator’s life.

Existing solutions for constrained Markov decision processes (MDPs), such as lin-

ear programming methods [41], can be used to solve MDPs with linear risk-bounding

functions. But current methods for solving problems with more general concave risk-

bounding functions are not guaranteed to find optimal solutions. To generalize the

application of risk-bounding functions, further research can focus on methods that

do produce optimal plans.

MDPs with concave risk bounding functions can be represented as nonlinear op-

timization problems and solved with general purpose nonlinear constrained solvers.

But solutions are likely to still be suboptimal, due to the local maxima found by

nonlinear optimizers. An alternative approach may be an iterative procedure, where

a local linear approximation to the risk bounding function is used, and solutions can

inform the next approximation to use.
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