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Abstract

How do we collect observational data that reveal fundamental properties of scientific
phenomena? This is a key challenge in modern scientific discovery. Scientific phenomena are
complex—they have high-dimensional and continuous state, exhibit chaotic dynamics, and
generate noisy sensor observations. Additionally, scientific experimentation often requires
significant time, money, and human effort. In the face of these challenges, we propose to
leverage autonomous decision-making to augment and accelerate human scientific discovery.

Autonomous decision-making in scientific domains faces an important and classical
challenge: balancing exploration and exploitation when making decisions under uncertainty.
This thesis argues that efficient decision-making in real-world, scientific domains requires task-
targeted exploration—exploration strategies that are tuned to a specific task. By quantifying
the change in task performance due to exploratory actions, we enable decision-makers
that can contend with highly uncertain real-world environments, performing exploration
parsimoniously to improve task performance.

The thesis presents three novel paradigms for task-targeted exploration that are motivated
by and applied to real-world scientific problems. We first consider exploration in partially
observable Markov decision processes (POMDPs) and present two novel planners that
leverage task-driven information measures to balance exploration and exploitation. These
planners drive robots in simulation and oceanographic field trials to robustly identify plume
sources and track targets with stochastic dynamics. We next consider the exploration-
exploitation trade-off in online learning paradigms, a robust alternative to POMDPs when
the environment is adversarial or difficult to model. We present novel online learning
algorithms that balance exploitative and exploratory plays optimally under real-world
constraints, including delayed feedback, partial predictability, and short regret horizons.
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We use these algorithms to perform model selection for subseasonal temperature and
precipitation forecasting, achieving state-of-the-art forecasting accuracy.

The human scientific endeavor is poised to benefit from our emerging capacity to integrate
observational data into the process of model development and validation. Realizing the
full potential of these data requires autonomous decision-makers that can contend with the
inherent uncertainty of real-world scientific domains. This thesis highlights the critical role
that task-targeted exploration plays in efficient scientific decision-making and proposes three
novel methods to achieve task-targeted exploration in real-world oceanographic and climate
science applications.
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The following tables summarize the symbols used in this thesis, expanded from the notational
conventions of [23].

The basics

x A vector x.
X A matrix X.
X A set X.
X A random variable X.
x A constant scalar x.

Specific sets

R Real numbers.
Rn Real n-vectors.
Rm×n Real m× n matrices.
R+ Nonegative reals.
Z Integers.
Z+ Nonnegative integers.
Sn Symmetric n× n matrices.
Sn+ Symmetric, positive semidefinite n× n matrices.

Vectors and matrices

1 Vector of all ones.
ei ith standard basis vector.
I The identity matrix.
X> Transpose of matrix X.
trX Trace of matrix X.
diagx Diagonal matrix with entries x.
λi(X) The ith largest eigenvalue of matrix X.
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Norms and distances

‖·‖ A norm.
‖·‖∗ Dual of norm ‖·‖.
‖x‖2 The `2-norm of vector x.
‖x‖1 The `1-norm of vector x.
‖x‖∞ The `∞-norm of vector x.
‖X‖op The operator-norm of matrix X.

Probability

Ex∼X [f(x)] Expected value of f(x) w.r.t. the law of random variable X.
P(S) Probability of event S or probability distribution of random variable S.
4n The (n− 1)-dimensional probability simplex.
P(·) The set of probability distributions on the input.

Functions and derivatives

f : A→ B f is a function on the set A into the set B.
C0(A) The set of continuous functions on the set A.
∇f Gradient of the function f .
∂f
∂x The partial derivative of the function f w.r.t. input variable x.
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Chapter 1

Introduction

Our ability to measure the world around us—from the micro- to the macro-scale—has
increased rapidly in recent decades. Scientific discovery in fields ranging from the climate
sciences to experimental physics is poised to benefit from this increased availability of
observational data, which enables inductive reasoning and model development (Fig. 1.1). A
key challenge in scientific domains is that observational data are often expensive to obtain
in terms of money, time, and human labor. These constraints dictate that a scientist should
carefully choose experiments that produce informative measurements and target prerogative
instances : experiments that are “specially valuable because they enable us to decide between
two theories, each possible so far as previous observations are concerned” [151].

Historically, scientific data collection has largely been carried out by individual scientists,
who leverage domain knowledge and intuition to design informative experiments and explore
complex phenomena. In modern applications, however, scientific phenomena are represented
by a high dimensional set of tightly coupled state variables, generate incomplete and noisy
observations, and exhibit complex dynamics in space and time. State uncertainty is often
significant, and many observations may measure only nuisance variables or provide redundant
information. Additionally, a single set of experiments may be insufficient to understand a
complex phenomenon; multiple rounds of iterative experimentation and observation must
be used to incrementally learn models and reduce parameter uncertainty. In the presence of
these complexities, human-driven scientific data collection is often insufficient or inefficient.

As we seek to understand increasingly complex scientific phenomena, there is
an opportunity to leverage autonomous decision-making algorithms to augment
the human data collection process and extract insight from observational data
in new ways. In contrast with a human-driven, “single-shot” experimental design process,
this thesis frames scientific data collection as an autonomous, closed-loop and model-based

1
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Figure 1.1: Applications of Autonomous Scientific Discovery: In many scientific domains,
researchers use structured models in combination with artificial intelligence methods to drive scientific
discovery. Clockwise from the top-left: exploring hydrothermal plumes with deep sea robots from the
WHOI JASON team; optimizing photovoltaic material synthesis from Hartono et al. [55]; dynamic
parts modeling for animal behavior studies from Hayden et al. [58]; nuclear cargo detection with
physics-based Bayesian models from Zheng [198].

decision-making problem (Fig. 1.2). The decision-making loop begins with an autonomous
planner, which uses available prior domain information to select an initial experiment
or set of experiments aimed at exploring some scientific hypothesis. After executing the
experiments, the decision-maker receives the resulting observational data. These data are
used to refine a predictive model of the scientific phenomena of interest. This may involve
tuning the parameters of a partial differential equation or learning the weights of a neural
network. The updated model is then available to the planner, which leverages improved
model predictions to target the next set of experiments. This decision-making loop occurs
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Autonomous Planning

Model Learning

Predictions Observations

Figure 1.2: Closed-loop, Model-based Scientific Decision-Making: The model-based scientific
decision-making loop starts with an autonomous planning algorithm that produces a plan for data
acquisition. These plans specify, e.g., a data-collection policy for a scientific robot — such as the
autonomous underwater vehicle (AUV) SENTRY pictured — or a sequence of configurations for a
static sensor. When executed, this plan produces observations of an underlying scientific phenomena,
such as the hydrothermal plume pictured. These observations are integrated into a modeling pipeline,
in which a predictive model is learned from scientific data. The learned model produces state estimates
and performs uncertainty quantification. State predictions or forecasts are fed into the next round of
autonomous planning to improve the quality of the collected data.

iteratively and in closed-loop, i.e., the planner observes the result of the current experiment
before choosing experiments in the subsequent stage.

1.1 Scientific Tasks, Exploration, and Exploitation

Posing scientific discovery as a sequential decision-making problem requires the specification
of a scientific task. Often, this scientific task is distinct from building an accurate predictive
model of the full physical system, which may be unnecessary or infeasible. Instead, in
scientific domains, the task is often to target observations or samples that have specific
properties. For example, a marine robot may be tasked to collect methane-rich samples in
a hydrothermal plume (Fig. 1.2) or capture camera images of a specific species of coral in
a reef environment. Accomplishing these tasks does require constructing a model of the
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environment. However, the robot does not require high-fidelity predictions for low-methane
regions of a plume or sandy regions of a reef to collect the desired observations. Not all
uncertainty is detrimental and the best model for decision-making is not necessarily the
most accurate model; decision-makers only require models that are sufficient for the task at
hand. A finite number of observations are available both for learning a predictive model
of the environment and for targeting a scientific task, and optimizing the accuracy of the
model is often in direct conflict with targeting the desired scientific observations.

This conflict between model improvement and targeting a scientific task is an instantiation
of a fundamental challenge in decision-making: balancing exploration and exploitation when
making decisions under uncertainty. Faced with uncertainty, a decision-maker must gather
information about the structure and dynamics of the world; this is known as exploration.
However, while exploring, a decision-maker may be forgoing immediate rewards and is
unable to perform actions that exploit the current knowledge of the environment. This
inherent tension between novelty and information gathering, and actions which are known
to be good is known as the explore-exploit dilemma [138].

The explore-exploit dilemma is something that human decision-makers contend with
on a daily basis and underpins much of strategy, risk-management and decision-theory.
The dilemma emerges in a more explicit way for computational decision-makers, such as
the closed-loop system pictured in Fig. 1.2. The system can only gather a finite number
of observations, and has significant uncertainty about the state and future evolution of
the environment. Some actions available to the decision-maker will result in observations
that reduce state uncertainty and enable model learning; these are the exploratory actions.
Other actions will result in observations that useful for the scientific task at hand; these are
exploitative actions. These two objectives are often in direct competition and a key challenge
in decision-making under uncertainty is achieving an efficient balance of exploration and
exploitation by performing the minimum amount of exploration necessary to ensure an
acceptable level of task performance.

1.2 POMDPs and the Challenges of Scientific Decision-Making

Uncertainty is inherent in real-world decision-making; balancing exploration and exploita-
tion is a key challenge in these domains. Partially observable Markov decision processes
(POMDPs), introduced in Sec. 2.5, are the primary paradigm for modeling and solving
decision-making problems under uncertainty. POMDP-based decision-making can provide
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an optimal balance between exploration and exploitation, reducing uncertainty only when
necessary to improve expected task performance. However, scientific domains often exhibit
significant challenges, including:

(a) Extreme partial observability due to incomplete or noisy sensor observations,

(b) High-dimensional and continuous state spaces,

(c) Complex latent variable structure (highly coupled state and nuisance variables),

(d) Unpredictable, stochastic, or chaotic time-dynamics,

(e) Multiple spatial and temporal scales, and

(f) Complex human factors (scientific stakeholders, risk aversion, etc.).

Solving for optimal POMDP policies given a single one of these challenges would require
innovation in state-of-the-art decision-making approaches. Unfortunately, real-world scientific
data problems commonly exhibit all of these challenges simultaneously.

For example, consider again the example of mapping a deep sea hydrothermal plume
with a marine robot carrying a chemical sensor (Fig. 1.2). The plume state is a complex, 3D
structure (b) that is advecting due to currents on hourly scales and mixing due to turbulence
on very short timescales (e). The plume expression in the water column changes moment
by moment (d). The robot only observes the plume’s state at a single point in space and
time with its chemical sensor (a). Many observations will not contain plume water and the
observations are highly correlated in space and time (c). Marine robot deployments require
a significant investment of human and financial resources, and scientists and operators
often require that robot behavior is interpretable and trustworthy (f). The robot must
plan trajectories that collect informative point-observations of the plume, and fuse these
observations together over time and space to generate a comprehensive model of the plume.
This scientific decision-making problem is the focus of Chapter 3 in the thesis.

The Role of Uncertainty An implication of challenges (a-f) is that decision-makers in
scientific domains must contend with significant environmental uncertainty, both aleatoric
and epistemic. Choosing where to send the robot to take the next chemical observation is
not as simple as examining the plume state and choosing a promising point. The planner
fundamentally does not know where the plume is. The robot must instead explore the
environment to reduce state uncertainty and then exploit that knowledge to choose promising
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observations. However, because of properties (a-f), exploration can be inefficient; many
observations carry little information about the underlying, high-dimensional plume. Even as
the robot collects observations and gathers information, the underlying plume is dynamic and
changing; uncertainty will grow again. Uncertainty is a fundamental and persistent
part of scientific decision-making problems.

The persistence of uncertainty in scientific decision-making makes many standard
POMDP approximations infeasible. Due to this persistent uncertainty, the exploration-
exploitation trade-off plays an outsized role in scientific decision making, compared to other
traditional decision-making domains such as task and motion planning or manipulation.
The decision-maker must reason about when and how to explore the environment to collect
useful information that will effectively reduce state uncertainty and allow it to accomplish
a given scientific task. It must also recognize when the current state estimate is sufficient
should instead be exploited.

1.3 Task-Targeted Exploration

The unifying technical idea in this thesis is that not all uncertainty has equal
impact in a decision-making problem; not all uncertainty is created equal. It
may be critical to resolve specific aspects of state uncertainty and others may have no
impact on the task or validity of the hypothesis. For example, if a scientist is trying to
find the centerline of the plume — the region with the highest concentration of plume
water — resolving the fine details of plume structure in the low concentrations regions
far from the centerline is not necessary. If the scientific task, on the other hand, is to
understand the extent of the plume spread, mapping the far-reaching, low-concentration
regions would be critical. Given a task specified by loss or reward function, we develop
decision-makers that can perform task-targeted exploration, allocating the minimal amount
of exploration necessary to accomplish a task. This thesis presents novel algorithms for
closed-loop scientific decision-making that perform parsimonious, targeted exploration in
order maintain an acceptable level of task performance.

The ideas presented in this thesis enable task-targeted exploration and decision-making
in real-world scientific domains under uncertainty. We develop three novel decision-making
algorithms—in the fields of partially observable Markov decision processes and online
learning—that balance exploration and exploitation efficiently in scientific domains, min-
imizing exploration while providing robust regret guarantees on algorithm performance.
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These algorithms are principled, trustworthy decision-making paradigms that have been
deployed in several real-world scientific domains, including deep sea hydrothermal plume
discovery and climate and weather forecasting.

1.4 Contributions and Thesis Outline

This thesis develops decision-makers for autonomous scientific discovery that operate in
highly uncertain environments and use task-targeted exploration to balance exploration and
exploitation. Chapter 2 introduces background technical material on decision-making. In
the following chapters, we analyze the exploration and exploitation trade-off in two different
sequential decision-making formulations, online learning and partially observable Markov
decision processes, and demonstrate that task-targeted exploration can lead to efficient and
provably robust policies. The thesis presents the following contributions:

• Chapter 3—PLUMES: Source-Seeking with Targeted Information Rewards
Hydrothermal plumes in the ocean are complex phenomena that experience advection
by ocean currents, diffusion, and turbulent mixing. To effectively localize and map
hydrothermal plumes, an autonomous underwater vehicle (AUV) must take exploratory
sensing actions to localize the rising buoyant stem of the plume and exploit that
knowledge to collect samples of the plume source. Chapter 3 formulates this “maximum-
seek-and-sample” problem as a partially observable Markov decision process (POMDP)
and presents PLUMES, an algorithm for nonmyopic planning of information gathering
actions in a high-dimensional, continuous state space. PLUMES uses a maximum-value
information reward to target exploration and drive the AUV to collect observations
that efficiently identify the global maximum. Monte Carlo tree search with progressive
widening is used for look-ahead planning in continuous observation spaces.

In simulation and field deployments, we demonstrate that PLUMES successfully per-
forms task-targeted exploration, allocating minimal exploration in order to identify
the plume source and then exploiting that knowledge to collect samples at the source.
Baseline algorithms, such as uniform coverage or upper confidence bound heuristics,
are shown to over- or under-explore compared to PLUMES respectively. The devel-
opments in this chapter demonstrate that autonomous decision-making can advance
oceanographic science. This work was originally presented in Flaspohler et al. [45].

• Chapter 4—Value of Information and Macro-action Discovery in POMDPs
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Expanding upon the task-targeted exploration strategy developed in Chapter 3, this
chapter introduces a novel value of information (VoI) metric that quantifies how
a sensing or information gathering action affects long-term task success for general
decision-making problems. VoI enables task-targeted exploration by explicitly approxi-
mating how sensitive task success is to exploratory actions.

We leverage VoI to construct high-level macro-actions1 directly from a low-level POMDP
model. Macro-actions are sequences of exploitative actions that can be leveraged
whenever the VoI is low. We bound the performance of the resulting macro-action
policies relative to an optimal policy. These macro-actions policies are applied to a
simulated dynamic target tracking scientific application, in which a planner adapts
its exploration strategy to the predictability of the underlying target. For highly
unpredictable targets, the planner performs rapid, closed-loop sensing to keep state
uncertainty low. For more predictable targets, the planner tolerates higher state
uncertainty and only performs exploration infrequently. This work presents the first
algorithm for macro-action discovery with performance guarantees in POMDPs and
introduces a novel, quantitative connection between information and task performance
via VoI. This work was originally presented in Flaspohler et al. [46].

• Chapter 5—Online Learning with Optimism and Delay
The final chapter of the thesis deals with online learning. Online learning is a sequential
decision-making paradigm in which a learner is pitted against an adversarial environ-
ment. POMDPs are a powerful model when the dynamic and observational models that
underlie a domain are available and provide high-quality state estimates. However, in
some domains, our ability to model future dynamics and observations is more limited.
Adversarial online learning algorithms provide robust performance in many complex
real-world online prediction problems such as climate or weather forecasting, where
the predictability of future states of the world is inherently low due to chaos.

The key to effective online learning is again to balance exploration and exploitation in
the face of unknown and potentially adversarial future losses. The final methodological
contribution of the thesis is developing robust online learning algorithms for real-
world scientific applications. These algorithms—DORM, DORM+, and AdaHedgeD—
automatically adjust their exploration-exploitation balance to target a given loss
function, while dealing with the challenges of delayed feedback, short regret horizons,

1Macro-actions define sequences of exploitative actions that are executed in open-loop.
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and real-time operational requirements. We demonstrate that these online learning
methods produce zero-regret forecast ensembles for subseasonal climate forecasting
and achieve robust, state-of-the-art performance from year to year. This work was
originally presented in Flaspohler et al. [47]
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Chapter 2

Background

This thesis deals with decision-making problems. The following chapter surveys classical and
state-of-the-art algorithms for decision-making, spanning fields including online learning,
bandit algorithms, sequential decision-making, and optimal experimental design. Although
these problems are studied by different (and sometimes siloed) research communities,
each with its own formulation and notation, there are deep connections between these
branches of decision-making. We seek to make the connections between problems clear
and present each paradigm within a unified notational and conceptual framework. This
thesis makes contributions in the theory and practice of online learning (Chapter 5) and
partially observable Markov decision processes (Chapters 3 and 4), but background material
for several other decision-making paradigms are additionally included for completeness.

Human beings are autonomous agents that make sequences of choices to achieve their
objectives. The field of decision-making or decision theory attempts to codify and formalize
this process, such that it can be performed by computational systems. The study of
computational decision-making has a long history and hundreds of papers and monographs
have been published in past decades, e.g., [15, 18, 64, 174].

In the canonical decision-making formulation, an agent or decision-maker interacts with
an environment with a potentially evolving state. The decision-maker selects actions (or
plays or controls) and the environment then produces rewards and potentially additional
observations (Fig. 2.1). This formulation is the basis of many problems in fields such as
control theory, operations research, and reinforcement learning.

Decision-making problems can be classified by (a) how much information the decision-
maker receives about the world, and (b) the properties of the decision-maker and environment
(stationarity, persistence of state, controllability). In this chapter, we introduce four
fundamental classes of decision-making problems:

11
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Decision-Maker

Environment

Rewards,
Observations Actions

Figure 2.1: The Canonical Decision-Making Loop: In the most general model of a decision-
making process, a decision-maker or agent interacts with an environment by sequentially choosing
actions; the environment in turn produces rewards and observations, which the decision-maker uses
to improve its action selection.

• Online learning: The decision-maker has no persistent state and the outcome of
every action is fully observable at each timestep.

• Bandit problems: The decision-maker has no persistent state, but only the (poten-
tially stochastic) outcome of a chosen action is observed.

• Markov decision processes (MDPs): The decision-maker has a persistent state
that impacts available actions and rewards. The state of the environment and rewards
are fully observable.

• Partially observable Markov decision processes (POMDPs): The decision-
maker has a persistent state that impacts available actions and rewards. Rewards are
fully observable but the state of the environment is only partially observable.

Other decision-making frameworks, such as partial monitoring [94] and reinforcement learning
[174] are variants of these four fundamental classes with additional restrictions or capacities
on the decision-maker and environment.

2.1 A Note on Related Work

The thesis covers a broad range of technical topics and scientific application areas. To
maintain the readability and logical flow of the text, we have opted to place most of
the related work locally within the thesis. Beyond what background and related work is
presented in this chapter, the most relevant, contemporary work is highlighted in each
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technical chapter and the technical innovations of this thesis, as compared to past literature,
are highlighted.

2.2 Online Learning

Online learning is a sequential decision-making paradigm in which a learner is pitted against
a potentially adversarial environment [94, 129, 152]. At time t, the learner (decision-maker)
must select an action, or play, wt from some set of possible plays W. The environment
then reveals the loss function `t (“loss” is used conventionally in online learning, instead of
“reward”) and the learner pays the cost `t(wt). The learner uses information collected in
previous rounds to improve its plays in subsequent rounds. Over a period of length T , the
goal of the learner is to minimize regret, an objective that quantifies the performance gap
between the learner and the best possible constant play in retrospect in some competitor
set U:

RegretT = sup
u∈U

T∑
t=1

`t(wt)− `t(u). (2.1)

This adversarial formulation of online learning algorithms provides robust performance in
many complex real-world online problems where predicting the behavior of the environment
is challenging. Probabilistic formulations of online learning are also studied extensively
[94, 129, 152]. In these formulations, distributional assumptions are made on the realized
losses and the goal of the learner is to minimize expected regret, instead of worst-case regret
(2.1).

Follow the regularized leader (FTRL) and online mirror descent (OMD) are two canonical
algorithms for solving online learning problems [129, 152]. FTRL and OMD choose actions
that achieve optimal worst-case regret against adversarial loss sequences by using the
following decision rules to choose wt+1 based on the gradients of previously observed losses
gt ∈ ∂`t(wt), a strongly-convex regularizer ψ, and a regularization strength parameter λ:

wt+1 = arg min
w∈W

〈g1:t,w〉+ λψ(w), (FTRL)

wt+1 = arg min
w∈W

〈gt,w〉+ Bλψ(w,wt)

with arbitrary w0, (OMD)
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where B is the Bregman divergence: Bψ(w,u) , ψ(w)− ψ(u)− 〈∇ψ(u),w − u〉.
The regularization strength parameter λ in these expressions plays the critical role of

managing the trade-off between exploration and exploitation in online learning. For large
values of the λ, the algorithms will favor values of wt that minimize the regularizer and
make more conservative plays (in some sense, exploring possible plays or “hedging their
bets”). For small values of λ, the algorithms will favor values of wt that perform well with
respect to previously observed losses and make more risky plays (in some sense, exploiting
their past knowledge). There are theoretical settings of λ that achieve optimal regret
bounds, but in real-world applications these settings are often not practically useful and
tuning the regularization strength parameter λ to achieve strong performance is challenging.
State-of-the-art algorithms, such as AdaHedge [40, 129], attempt to tune λ online to improve
the balance of exploration and exploitation as learning progresses.

Compared to the paradigms for sequential decision-making that appear later in this
chapter, the online learning paradigm may look surprisingly sparse. There is no explicit
model of an underlying environment or state, the system dynamics, or the observational
model. However, this simplicity is what makes online learning formulations powerful. All
information about the environment is distilled into a loss function, which encodes how
well the chosen action accomplishes a given task. Instead of trying to model knowledge of
current and future states of the environment, online learners select plays that guarantee
small regret under any adversarial realization of the underlying environment and resulting
losses. While this approach can be overly conservative when an accurate model of the
underlying environment is available, online learning approaches are powerful in domains
such as weather forecasting, where the underlying observational and dynamical models are
imperfectly understood or chaotic.

2.3 Bandit Problems

Bandit problems are formulated identically to online learning problems, with one key
difference: the environment only reveals the loss of the chosen action lt = `t(wt) (cf.
in online learning, the full loss function `t is revealed to the learner at each time step).
Additionally, the loss of an action is often modeled as being stochastic, similar to stochastic
online learning formulations. There is some underlying loss distribution associated with
each play Pwt , and the received loss is sampled from that distribution: lt ∼ Pwt . These
differences induce a different exploration-exploitation trade-off in bandit problems. The
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learner must strike a balance between playing a diverse set of actions in order to estimate
their expected loss distributions, and exploiting that knowledge to make plays with low
expected loss (or high expected reward).

As in online learning, the performance of bandit algorithms is measured using regret.
In stochastic bandits, the chosen regret metric is often expected regret. We will switch to
the more standard notation of bandit algorithms, in which the play is called an arm a and
belongs to some set A. The learner receives a reward rt instead of a loss at each timestep.
We will continue to use the notation Pa to represent the distribution over rewards under
arm a.

Let µ∗ = maxa∈A Er∼Pa [r] be the maximum expected reward of any arm a ∈ A. Then
the regret of a sequence of plays (a1, . . . , aT ) on a bandit instance is:

RegretT =
T∑
t=1

µ∗ − E[Rt], (2.2)

where the expectation is taken with respect to the probability distribution on rewards
induced by the interaction between the bandit choices and the environment [94]. A bandit
algorithm is said to be “no-regret” if the regret grows sublinearly, e.g., limT→∞

1
TRegretT = 0.

Beyond sublinearity, the specific growth rate of the regret for different algorithms has been
studied extensively in bandit literature, and both upper- and lower-bounded [94].

Several bandit algorithms for the finite-arm, stochastic payoff domain achieve the lower
bound on the rate of regret growth, including the popular upper confidence bound (UCB)
algorithm [91, 94]. Other algorithms allow for adversarial formulations, as we saw in online
learning, including the Exp3 algorithm [8, 94]. Extensions to the basic finite stochastic setting
allow for infinite arm sets, the inclusion of context, non-stationary payoff distributions,
and a variety of other modifications. Lattimore and Szepesvári [94] provide an extensive
overview of the theory and practice of bandit algorithms.

2.4 Markov Decision Processes

Both the online learner and the bandit algorithms played against environments that were
“state-less”, i.e., the choice made by the decision-maker at time t did not affect the available
actions or future rewards in subsequent timesteps. While these online learning and multi-
armed bandit formulations are very useful, many sequential decision-making problems arise
in which an agent must consider the future consequences of actions taken on the problem
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state. In these formulations, the set of available actions and rewards are state-dependent
and the state is controlled by the decision-making process. For example, a marine robot
that drives into a long channel searching for a target has to contend with the consequence
of backtracking and re-localizing if the target is not found in the channel. Sequential
decision-making problems with state are ubiquitous in real-world applications, from robotics
to agriculture to personalized medicine.

Sequential decision-making with state has been studied for nearly a century, starting
with the seminal works of Bellman [15], Howard [64] in the early 1950s (although the
field has roots back to the 17th century [143, Ch. 1]). A variety of formulations have
been developed for specifying sequential decision-making problems. Perhaps the most
pervasive are “classical planning” problems—often encoded using a programming domain
definition language (PDDL), Markov decision processes (MDPs), and partially observable
Markov decision processes (POMDPs). Each formulation admits increasing levels of problem
uncertainty: PDDL solvers often assume that state transitions deterministically given a
chosen action; MDPs can model stochastic state transitions; and POMDPs allow the state
itself to be partially observed via noisy and limited sensors by introducing a stochastic
measurement model. Many scientific applications have state which is best modeled as
stochastic and partially observable; therefore, Chapters 3 and 4 focus on the full POMDP
problem. The MDP formulation and its extension to POMDPs are introduced in the
following sections.

The key idea in Markov decision process is that the environment has a state that
impacts the rewards received when different actions are taken and impacts future states.
MDPs are Markov in the sense that future states depend on past states only via the
current state, i.e., letting St represent the state at time t and given an action a, then
P(St+1 | S0 = s0, . . . , St = st, a) = P(St+1 | St = st, a). This Markov property of the state
is key for developing efficient solvers for MDP problems.

Formally, an MDP is a tuple: (S,A, T,R,H, γ):

• S: a set of discrete or continuous states,

• A: a set of discrete or continuous actions,

• T : S × A × S → [0, 1], the transition function, i.e., T (s, a, s′) = P(St+1 = s′ | St =

s, at = a),

• R: S ×A → R, the reward of taking action a when the state is s, i.e., R(s, a),
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• H: the horizon, H ∈ [0,∞], and

• γ: discount factor, 0 ≤ γ ≤ 1; for infinite horizon problems we often require γ < 1.

In the remainder of the text, we present the finite-horizon MDP formulation. Infinite horizon
MDPs are an extension of the finite horizon case, given basic regularity assumptions (i.e.,
the discount factor ensures that the infinite expected reward converges, or the agent is
guaranteed to enter an absorbing state with zero reward).

As in many formulations of decision making, the MDP objective is to maximize the
expected reward over the planning horizon, given the distribution over initial states. Solving
an MDP involves producing a (potentially horizon-dependent) policy {πt : S → P(A)}H−1

t=0 ,
mapping from states to a distribution over actions. MDP policies are generally evaluated by
their expected, discounted, cumulative reward, given initial state s. This objective is known
as the MDP horizon-h value function under policy π, starting from state s:

V π
h (s) = E

[ h−1∑
t=0

γtR
(
st, πt(st)

)
| s0 = s

]
, (2.3)

where the expectation is taken over the random outcomes of interactions between the
environment (the MDP model) and the policy.

Evaluating and optimizing the value function, as formulated in (2.3), is seemingly
complex, as it requires computing the distribution over outcomes that arise from a policy
interacting with the MDP environment while simultaneously optimizing that policy. A
key innovation in the theory of MDPs was the recognition that (2.3) could be re-written
recursively:

V π
h (s) = R(s, π(s)) + γ

∫
s′∈S

V π
h−1(s′) P(s′ | s, π(s)) ds′. (2.4)

The recursive expression (2.4) is the Bellman equation for the MDP value function. It
decomposes the long-term value of a state into a sum of its instantaneous reward and the
value of the subsequent states at horizon h − 1, weighted by the probability of reaching
those states given the current state and chosen action.

The value function induces a partial ordering on the set of possible policies, i.e., a policy
π is better or equal to a policy π′ if the value of π is greater than or equal to π′ for all states
[174], and an optimal policy maximizes the value function over the set of possible actions for
all states. There is a large body of literature that studies the existence and uniqueness of
optimal MDP policies [17, 94, 135, 143]. Although general MDP policies may be stochastic,
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for a large class of real-world MDPs, there exists a deterministic, memoryless optimal policy
[94]. In the remainder of the thesis, we will focus on the class of deterministic, memoryless
policies.

The optimal MDP value function is given by maximizing (2.4) over the set of possible
actions:

V ∗h (s) = max
a∈A

R(s, a) + γ

∫
s′∈S

V ∗h−1(s′) P(s′ | s, a) ds′, (2.5)

and an optimal MDP policy is given by choosing actions that are greedy according
to a one-step look ahead of the optimal value function: π∗(s) = arg maxa∈AR(s, a) +

γ
∫
s′∈S V

∗
h−1(s′) P(s′ | s, a) ds′. Algorithms such as policy iteration and value iteration

([174]) can be used to approximate the optimal MDP value function and policy.
MDPs are a highly flexible formulation of a decision-making that can represent a diverse

set of real-world problems. The simplest version of an MDP has discrete states and actions.
This is known as a “tabular MDP”, because the transition function can be represented by a
set of transition matrices {Ta}|A|−1

a=0 , such that Ta[i, j] = P(St+1 = i | St = j, at = a) and
the reward function by a reward matrix R, such that R[i, j] = R(si, aj). When the size
of the state and action spaces are small enough to fit these objects in computer memory,
tabular MDPs can be solved efficiently using value or policy iteration.

2.5 Partially Observable Markov Decision Processes

When the state is not fully observable in a sequential decision-making problem, the standard
MDP formulation is no longer applicable. Partially observable states arise in many practical
decision-making problems in which the environment is observed through limited or noisy
sensors. In these problems, the state is no longer available as a sufficient statistic for
decision-making. Instead, the decision-maker receives observations that reveal some partial
information about the underlying state. The decision-maker must make use of its history of
actions and observations at time t, Ht = (a0, z1, a1, . . . , zt−1, at−1, zt) to make subsequent
decisions.

The key difficulty in so-called partially observable Markov decision processes (POMDPs)
is that the optimal decision at time t depends on the full history of observations and actions
taken by the agent. Learning history-dependent policies, instead of state-dependent polices,
is computationally challenging: the number of possible histories grows exponentially in
the planning horizon. This is known as the “curse of history” in the POMDP literature.
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Many POMDP models introduce a belief state, which is a probabilistic representation of
the current interaction history. The belief is a sufficient-statistic for decision-making [7]
and, when the belief is used to represent the state of the world, the Markov property of the
state is restored. However, beliefs are represented by (often high-dimensional) probability
distributions. Planning, therefore, must happen in high-dimensional, continuous belief space.
In discrete problems, the size of the belief space grows exponentially with the number of
discrete states. This is known as the “curse of dimensionality” in the POMDP literature.
These twin curses—of history and dimensionality—suffice to make decision-making in
partially observable environments challenging.

Formally, a finite horizon POMDP can be represented as tuple: (S,A, T,R,Z, O, b0, H, γ),
where S are the states, A are the actions, R is the reward, H is the horizon, and γ is the
discount factor, as defined in Sec. 2.4. Additionally, we define:

• Z: a set of discrete or continuous observations,

• O: S × A × Z → [0, 1], the observation or measurement function, i.e., O(s, a, z) =

P(Zt = z | St = s, at−1 = a),

• b0: the initial belief state, i.e., b0 ∈ P(S).

As the agent moves through the world, it selects actions and receives observations.
Because the state of the world is not directly observable, the agent maintains a belief and
must update this belief each time it takes an action and receives an observation. Given the
transition and observation models, the belief can be updated directly using Bayes rule (the
belief is the posterior distribution on the current state, conditioned on the history). We
define the belief update function as follows:

bt(s) = τ(bt−1, at−1, zt)(s) (2.6)

, P(St = s | a0, z1, . . . , zt−1, at−1, zt) (2.7)

= P(St = s | bt−1, at−1, zt) (2.8)

=

∫
s′∈S O(s, at−1, zt)T (s′, at−1, s)bt−1(s′) ds′

P(zt | bt−1, at−1)
(2.9)

This equation is known as a Bayes filter [71] and is often intractable to compute directly in
large or continuous state spaces, as the data evidence term in the denominator is expensive to
compute. An approximate Bayesian inference procedure or filter can be used to represent the
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belief, such as a Kalman filter [79], particle filter [83], or more general MCMC or variational
methods [21, 56, 73].

As in the MDP formulation, the realized reward in a POMDP is a random variable.
Optimal planning is defined as finding a belief-dependent policy {π∗t : P(S)→ A}H−1

t=0 that
maximizes expected reward: E

[∑H−1
t=0 γtR

(
St, πt(bt)

)
| b0
]
, where bt is the updated belief

at time t, conditioned on the history of actions and observations. The recursively defined
horizon-h optimal POMDP value function V ∗h quantifies, for any belief b, the expected
cumulative reward of following an optimal policy over the remaining planning iterations:
V ∗0 (b) = maxa∈A Es∼b[R(s, a)] and

V ∗h (b) = max
a∈A

Es∼b[R(s, a)] + γ

∫
z∈Z

P(z | b, a)V ∗h−1(τ(b, a, z)) dz h ∈ [1, H − 1], (2.10)

where τ(b, a, z) is the updated belief after taking action a and receiving observation z

(2.9). Again, as in the MDP formulation, the optimal policy at horizon h is to act greedily
according to a one-step look ahead of the horizon-h value function.

2.5.1 Piecewise-Linear and Convex Value Functions

Despite its continuous nature, the value function for any discrete, finite horizon POMDP
can be represented by a piecewise-linear and convex function (PWLC) with a finite number
of supporting hyperplanes, often called α-vectors [77, 160]. Value iteration over belief space
proceeds by building the horizon-h value function from the set of α-vectors at horizon-(h−1).
At each step of value iteration, the resulting value function remains PWLC [77].

This property has been leveraged to compute optimal policies in small, discrete POMDPs
and can be proved by induction. As for tabular MDPs, we represent the discrete transition
function T by a set of transition matrices {Ta}|A|−1

a=0 , such that Ta[i, j] = P(St+1 = i | St =

j, at = a). The observation function O will be represented by a set of observation matrices
{Oa}|A|−1

a=0 , such that Oa[i, j] = P(Zt = i | St = j, at−1 = a).

Base Case. For each action a, construct an α-vector: αa = [R(s1, a), . . . , R(sN , a)]> for
each state s1, . . . , sN ∈ S. Then, by definition of the vector inner product:

V ∗0 (b) = max
a∈A

∑
s∈S

b(s)R(s, a) = max
a∈A

α>a b. (2.11)
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As the maximum of |A| linear segments, V ∗0 is PWLC and is represented by the supporting
hyperplanes Γ0 = {αa}|A|a=0. The size of the α-vector set is |Γ0| = |A|.

Inductive Case. Assuming that V ∗h−1 is PWLC and can be represented by a finite set of
α-vectors Γh−1, we show that V ∗h is PWLC. Recall from (2.10):

V ∗h (b) = max
a∈A

∑
s∈S

b(s)R(s, a) + γ
∑
z∈Z

P(z | b, a)V ∗h−1(τ(b, a, z)) h ∈ [1, H − 1]. (2.12)

We can re-write (2.12) using the transition and observation matrices and the α-vectors
defined in (2.11):

V ∗h (b) = max
a∈A

α>a b+ γ
∑
z∈Z

P(z | b, a)V ∗h−1

(diag(Oa[z, :])Tab

P(z | b, a)

)
(2.13)

= max
a∈A

α>a b+ γ
∑
z∈Z

P(z | b, a) max
α∈Γh−1

α>
(diag(Oa[z, :])Tab

P(z | b, a)

)
(2.14)

= max
a∈A

α>a b+ γ
∑
z∈Z

�����P(z | b, a)
�����1

P(z | b, a)
max
α∈Γh−1

α> diag(Oa[z, :])Tab (2.15)

= max
a∈A

α>a b+ γ
∑
z∈Z

max
α∈Γh−1

α> diag(Oa[z, :])Tab. (2.16)

where (2.13) is due to the definition of the belief transition operator (2.9), (2.14) makes use
of the inductive hypothesis that V ∗h−1 is PWLC and can be represented with a finite set of
α-vectors Γ∗h−1, and (2.15) follows because the normalizing data evidence factor does not
affect the maximum and can be pulled out to cancel with the term from the expectation.

The second part of expression (2.16) yields a unique α-vector for each distinct value of
a ∈ A, z ∈ Z, and αi ∈ Γh−1:

α>a,z,i = γα>i diag(Oa[z, :])Ta. (2.17)

Any of these vectors could be maximizing a priori for a specific belief b. Therefore, the
α-vector set at horizon h must contain the Cartesian sum of all possible maximizing αi’s for
each z ∈ Z:

Γa =
{
αa + α | α ∈ αa,z1,· ⊕ αa,z2,· ⊕ · · · ⊕ αa,zM ,·

}
(2.18)
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The final set of α vectors for horizon h is the union over action choices:

Γh =
⋃
a∈A

Γa. (2.19)

The set of unique vectors in (2.17) is of size |A||Z||Γh−1| and (2.18) produces |A||Z||Γh−1|

unique vectors. Therefore, the set Γh has size |Γh| = O(|A||Z||Γh−1|) and grows exponentially
in the number of discrete actions A and doubly exponentially in the number of discrete
observations Z with the planning horizon H. �

2.5.2 Approximate Solvers

As we have seen, (2.10) is intractable for POMDPs with continuous state, action, or
observation spaces; for large discrete problems, the doubly exponential growth in the number
of α-vectors possibly needed to represent the optimal value function (Sec. 2.5.1) makes
optimal policy computation infeasible [77, 135]. Thus, an optimal policy for POMDPs
must be approximated. Much of the art of practical decision-making under uncertainty
is making well-designed algorithmic and heuristic choices that enable efficient and robust
planning algorithms. These algorithms can be broken into offline and online solvers and are
summarized in the following sections and in Table 2.1.

Offline Solvers

POMDP solvers can be grouped into two categories: offline and online solvers. Offline solvers
construct a policy entirely offline, before the agent begins interacting with the environment.
Because the solver must commit to a policy without seeing what belief states the agent
realizes, offline solvers have to produce policies that perform well from any given belief
state. This inability to tailor the policy approximation to belief states that are realized
during execution is the main drawback of offline POMDP solvers; the produced policy
must be globally good. The advantage of offline solvers is that they generally have access
to significant computational resources and are free from size, weight, and power (SWaP)
constraints that online solvers often face if they are deployed on robotic platforms or in
real-world scenarios.

The most common offline POMDP solvers perform some form of value iteration using
a piecewise-linear and convex approximation of the value function made up of α-vectors.
These algorithms include the exact solvers of Kaelbling et al. [77], Sondik [160] and a host
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of approximate solvers, detailed in Table 2.1. Each approximate solver tries to exploit
some structure in the POMDP value function to produce policies that approximate the
optimal policy as closely as possible. Although the development of approximate, offline
POMDP solvers has progressed in the last several decades, state-of-the-art algorithms still
suffer from significant scalability challenges and have seen limited application to real-world
decision-making problems.

Online Solvers

Unlike offline solvers, online POMDP solvers construct an approximate policy online: given
the current belief state bt, an online solver will seek to approximate the optimal policy only
at the current belief π∗(bt). In this way, online solvers can (at least partially) circumvent
the curse of dimensionality by focusing computation on the region of belief space that is
locally reachable from bt. Additionally, online solvers often search over a limited horizon
h < H . This limited look-ahead search helps to circumvent the curse of history. The penalty
paid by online solvers for these benefits is that the policy search for π∗(bt) must be done at
time t, while the agent is interacting with the world. In some applications, this penalty may
not be steep; a resource manager may make a choice about acquisition only once a day or
month, and the planner has sufficient time to develop a new approximate policy before a
decision must be made. On the other hand, if the decision-maker is driving a robot through
the world, the solver may only have seconds to collect an observation, update its belief, and
produce a new policy. When resource constraints are significant, online POMDP planning
may be infeasible or require only very limited local search with short, look-ahead horizons.
In these cases, hybrid offline-online planners that can make use of additional computational
resources in an offline setting may be more practical.

The majority of modern, online POMDP solvers are based on tree search, inspired by
the success of algorithms like Monte Carlo tree search [25]. These algorithms approximate
the value function at a given belief by forward simulating different action choices and
resultant observations. Different algorithms leverage different heuristics to chose how to
forward simulate experiences and how to estimate the POMDP value function based on
sampled experiences. A summary of several influential online POMDP algorithms is given
in Table 2.1.
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Table 2.1: POMDP Algorithms: Selected POMDP planning methods, organized by algorithm
name, whether the algorithm operates offline or online, whether the algorithm can support continuous
states (S), actions (A), and observations (Z), and a summary of the key idea enabling the algorithm.

Alg. Off/online Cont. S, A, Z? Key Idea

PBVI [137] Offline N,N,N Maintain α-vectors that dominate for a specific
set of exemplar beliefs. Choose these beliefs to
approximate the reachable belief space.

SARSOP [90] Offline N,N,N Maintain α-vectors that dominate for a specific
set of exemplar beliefs. Maintain upper and
lower bounds on the value function and sam-
ple these beliefs to approximate the optimally
reachable belief space.

MCVI [12] Offline Y,N,Y Replace value function policy representation
with policy graph. Use α-vectors to represent
value. Approximate α-vectors via Monte Carlo
(MC) rollouts. Can handle large spaces due to
MC sampling.

Perseus [140, 162] Offline Y,Y,Y Instead of keeping an α-vector for every belief,
maintain only some subset of vectors necessary
to increase the value estimate at every itera-
tion. To extend to continuous spaces, leverage
Gaussian mixture representations, sampled ac-
tions, and discretized observations.

Hilbert POMDPs [127] Offline Y,Y,Y Use kernel embedding to represent belief and
value function.

MC POMDPs [24] Offline Y,Y,Y Use MC sampling to estimate conditional val-
ues and importance sampling (IS) to correct for
observation sampling bias. Learn a high-level
discrete state decomposition based on task.

DESPOT [159] Online Y,N,N Construct a sparse policy tree using sampled
scenarios. Estimate value by constructing tree
and doing backups. Do state rollouts instead
of belief rollouts.

DESPOT-α [49] Online Y,N,Y Extend DESPOT to larger observation spaces
the using α-vectors to represent value at inter-
mediate tree nodes.

POMCP [155] Online Y,N,N Construct a sparse policy tree using Monte
Carlo sampling and upper confidence tree
heuristics at intermediate nodes. Estimate
value by doing rollouts and backups. Do state
rollouts instead of belief rollouts.

POMCPOW [172] Online Y,Y,Y Similar to POMCP but use double progressive
widening to handle continuous observation and
actions.
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2.5.3 Open versus Closed-loop Planning

In their traditional formulation, both MDPs and POMDPs model “closed-loop” decision-
makers—decision-makers that observe the state or collect an observation at each timestep
and are able to update their belief and policy based on the received feedback. During
planning, a closed-loop decision-maker will anticipate receiving information about the state,
either through direct observation or a partially observable observation model, and can plan
information-gathering actions in order to improve task performance.

On the other extreme, “open-loop” decision-makers commit to an action sequence or plan
and execute that plan without receiving state feedback or observations. Open-loop planners
can either ignore the uncertainty about future state in MDP and POMDP formulations (e.g.,
planning for the maximum-likelihood estimate of the state evolution), or by anticipating the
lack of observation, generate plans that are good in expectation over all possible future state
realizations. Open-loop planners produce a plan or action sequence; closed-loop planners
produce a policy.

There are solutions that sit between these two extremes, known as open-loop feedback
planning (or model-predictive control in the controls community). Open-loop feedback
planners generate open-loop plans over a receding horizon, but collect state information
or observations and re-plan at some regular interval. An open-loop feedback planner still
generates a plan, instead of a policy, but is able to make use of state information or
observation when it is available. When full, closed-loop planning is intractable but open-loop
planning is possible, open-loop feedback planners are often a practical compromise.

2.6 Experimental Design

Experimental design is the problem of selecting a set of measurements or experiments in order
to learn about an unknown system. Experimental design has for centuries been performed
largely by human scientists, who leverage domain knowledge, intuition, and codified best-
practice to design informative experiments. Starting in the 1960s, the experimental design
problem was abstracted and formalized as an optimization problem, given a model of the
unknown system and measurement process. The formalization of experimental design as
a decision-making problem is known as optimal experimental design (OED), or Bayesian
optimal experimental design (BOED) [27, 142].
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OED deals with models of the form:

y = f(x, θ), (2.20)

where y ∈ Y ⊆ R is a scalar response variable (or observation), x ∈ X ⊆ Rm is the
specification of the experiment conditions (or actions), and θ ∈ Θ ⊆ Rd are unknown
parameters that determine the state of the environment but are not controllable by the
experimenter. The observation function f : X × Θ → Y may generally be complex and
nonlinear.

In the special case that f is restricted to have a linear dependence on θ and the observation
y is corrupted by statistical noise, we arrive at a class of OED problems known as statistical
linear experimental design:

y = g(x)>θ + ε, (2.21)

for arbitrary function g : X → Rd and noise distribution ε ∼ Pε. The noise distribution Pε
is often assumed to have zero mean, finite variance, and a distribution that is independent
of the chosen experimental conditions x.

If we run n experiments with different experimental conditions (g(x1), . . . , g(xn)), we
can model the full experimental set up with an n × d design matrix X, a n × 1 response
vector y, an n× 1 error vector ε as:

y = Xθ + ε. (2.22)

If we further assume that the observation noise has a Gaussian distribution, ε ∼ N (0, σ2), the
problem is known as normal linear experimental design. This is the most commonly studied
class of OED problems, as several elegant and computationally inexpensive algorithms exist
for selecting the design matrix X.

For the normal linear problem specified in (2.22), the minimum variance unbiased (MVU)
estimator of θ given a design matrix and a response vector is:

θ̂ = (X>X)
−1
X>y. (2.23)

This estimator has error covariance:

E[(θ̂ − θ)(θ̂ − θ)>] = σ2(X>X)
−1

= σ2
( n∑
i=1

xix
>
i

)−1

. (2.24)
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The basic method behind normal linear OED is to define a scalarization of the error
covariance matrix and optimize that scalarization with respect to the design matrix X.
Different scalarizations focus on different measures of the “size” of the error covariance
matrix:

• A-optimality: minimize the trace of the error covariance

• D-optimality: minimize the determinant of the error covariance

• E-optimality: minimize the norm of the error covariance, i.e., the maximum eigenvalue

Given a scalarization choice, the design matrix is then optimized using a variety of techniques,
including greedy selection and convex optimization as each of A-, D-, and E-optimality give
rise to a convex objective function over a convex set [23, Section 7.5].

In contrast to the frequentist OED formulation, Bayesian OED [27] places a prior
distribution on the environment, models the probabilistic measurement model for the
unknown parameters θ, and seeks to optimize an expected utility function, where the
expectation is taken with respect to the posterior distribution on θ given the chosen ob-
servations. For environmental models including Gaussian processes, Gaussian Markov
random fields, and other Bayesian models, past approaches have used submodular opti-
mization and greedy selection to maximize information criteria and solve BOED problems
[53, 87, 88, 132, 134, 192, 193, 199, 200],

2.6.1 Connections to other fields of decision-making

The problem of experimental design has deep connections to other decision-making paradigms
that we have presented in this section. We can classify standard experimental design as
being “stateless”, i.e., the experiment selected at time t does not impact the available
experiments in future times or the state of the environment. However, the “reward” in an
experimental design problem is not additive: if the same experiment is selected multiple
times, the information provided about the unknown parameters diminishes. This complicates
decision-making. On the other hand, in the normal linear setting, the “reward” from each
play is a known, non-random quantity. This makes normal linear OED amenable to batch
optimization-based solutions, unlike bandit problems in which the reward is randomly
sampled from an unknown payoff distribution [94, Section 4.2].

In non-normal, non-linear experimental design problems, the reward of each design x may
depend on the random observation received y. These formulations are more like a standard
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bandit problem and are often solved using sequential approaches, such as greedy selection.
Other extensions of the basic OED problem may include a state if the experiments directly
impact the state of the environment or the ability to run future experiments. For these
problems, full POMDP-style planning becomes necessary. However, again, the reward in
OED problems often encapsulates the information gathered about the unknown parameters
and is not additive. Extensions of the standard, additive, state-based reward POMDP model
presented in Sec. 2.5 to information rewards or other non-additive, belief-based rewards
are given in Araya et al. [4], Fehr et al. [43]. These formulations may be appropriate for
non-linear, non-normal experimental design problems with state.



Chapter 3

PLUMES: Source-Seeking with

Targeted Information Rewards

In many environmental and earth science applications, experts want to collect scientifically
valuable samples to characterize a source or concentration maximum of an initially

unobserved environmental phenomena. We will call this problem of seeking and characterizing
a source phenomena the maximum seek-and-sample (MSS) problem. The MSS problem
arises in applications from hydrothermal vent discovery to oil spill response to volcanic
monitoring (Fig. 3.1).

Figure 3.1: Source Seeking Applications: Deep sea hydrothermal plumes (left), oceanographic
oil-spills (center), and volcanic fumarole basins (right) each give rise to multimodal expressions
from single or multiple potentially time-varying sources. Image credit: (Left) WHOI JASON Team;
(Center) NASA/GSFC/MODIS Rapid Response Team; (Right) WHOI, Adam Soule and William
Pardis.

Robustly and generally solving the MSS problem is challenging because it is fundamentally
a problem of balancing exploration and exploitation in an unknown environment. Many
phenomena, including the three highlighted in Fig. 3.1, can only be observed using single-
point chemical sensors. Using these limited sensors to find the maximum concentration point
in a complex, multimodal environment requires solving the dual problems of (1) mapping

29
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the unknown environment, and (2) using that map to localize and characterize a potentially
time-varying source. However, a key challenge and opportunity in the MSS problems is that
a perfect map of the environment is not necessary to robustly localize a source. Therefore,
a scientist or autonomous decision-maker must answer the question: how well do I need to
map this environment to ensure that I have localized the global maximum point or source?
Seeking an effective balance between exploration and exploitation in the MSS problem
requires task-targeted exploration. The development of task-targeted exploration strategies
in this specific application will inspire the general task-targeted exploration approach that
we develop in Chapter 4.

In canonical MSS solutions, the exploration-exploitation trade-off is resolved by choosing
to favor exploration. Observations are collected at predetermined locations by a technician
or mobile platform following a uniform coverage trajectory. These non-adaptive strategies
over-explore, resulting in sample sparsity at the source. Additionally, executing a fixed,
pre-planned trajectory may be infeasible when the geometric structure of the environment
is unknown (e.g., boulder fields) or changing (e.g., tidal zones). Increasing the number of
valuable samples that localize and characterize a source requires adaptive online planning
that strikes a more refined balance between exploration and exploitation.

To enable adaptive source-seeking in partially observable environments, this chapter
formulates the MSS problem as a partially observable Markov decision process (POMDP).
POMDPs are general models for decision-making under uncertainty, which we have reviewed
in Sec. 2.5. We define the MSS POMDP, in which the partially observable state represents
the continuous environmental phenomenon and a sparse reward function encodes the MSS
scientific objective by giving reward only to samples sufficiently close to the global maximum.
Solving for an optimal POMDP policy is generally intractable [124], and the MSS POMDP
is additionally complicated by both continuous state and observation spaces, the sparse
MSS reward function, and limited and noisy sensor observations.

To overcome these challenges, this thesis presents PLUMES — Plume Localization under
Uncertainty using Maximum-valuE information and Search — an adaptive algorithm that
approximately solves the MSS POMDP and enables a mobile robot to efficiently localize
and densely sample an environmental maximum, subject to practical challenges including
dynamic constraints, unknown geometric map and obstacles, and noisy sensors with limited
field-of-view. The key to PLUMES is the use of a targeted information reward that drives a
robot or autonomous sensor to perform the minimum amount of exploration necessary to
confidently localize the maximum point in an continuous, multi-model environment.
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Motivating Application: Plume Stem Localization. Hydrothermal vents in the ocean were
first observed in 1977 [33] at the Galapagos Rift, and since have been a concerted focus
of a geodynamical and biogeochemical studies. Hundreds of undiscovered vent sites are
hypothesized to exist in the deep sea [14] with implications for global nutrient and energy
budgets, and novel ecosystems. The problem of vent localization has been addressed by
many authors (e.g., [69, 82, 112, 113, 125, 133, 185]) and is a challenging problem given the
complicated spatiotemporal plume structure caused by tidal advection, water mass mixing,
and chaotic turbulence in hydrothermal plume environments.

Hydrothermal plumes in the deep sea are typically characterized as buoyancy-driven
water masses. At a vent source, emitted fluids are significantly less dense than background
seawater (primarily by virtue of being super-heated). This less dense water mass rises rapidly
in the water column, forming a buoyant stem (Fig. 3.2, A), which grows approximately 1 m

in diameter for every 10 m vertically travelled. Due to rapid cooling, turbulent mixing, and
the natural stratification of ocean water, vent-derived waters will reach a point of neutral-
buoyancy with the background seawater. At this point, the plume forms a nonbuoyant
or neutrally buoyant or intrusion layer (Fig. 3.2, A & B), which spreads out across the
isopycnal that describes the ocean layer of equivalent density. In the Atlantic basin, plume
rise height is typically expected to be approximately 300-350 m; in the Pacific basin, this is
150-200 m [163]. This buoyant stem and neutrally-buoyant layer model of a hydrothermal
plume has been mathematically codified perhaps most famously by Morton et al. [122] as a
system of conservative equations.

In most real-world environments, advective cross-flow is present. This “bends” a buoyant
stem in a time-varying way and reduces the effective rise height of the plume by introducing
more aggressive mixing [179]. A time-varying cross-flow will move the location of the buoyant
stem within the large, intrusion layer and leads to complicated, multimodal structure within
the intrusion layer (Fig. 3.2, D). We will model the problem of buoyant stem localization
within a multimodal intrusion layer as a MSS POMDP.

Overview. The remainder of this chapter presents PLUMES, a planner for localizing and
collecting samples at the global maximum of an a priori unknown and partially observable
continuous environment. We formulate the MSS problem as a partially observable Markov
decision process (POMDP) with continuous state and observation spaces, and a sparse reward
signal. To solve the MSS POMDP, PLUMES uses an information-theoretic reward heuristic
with continuous-observation Monte Carlo Tree Search to efficiently localize and sample
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Figure 3.2: Deep Sea Hydrothermal Plumes: Four visualizations of the structure of deep sea
hydrothermal plumes. (A) Schematic diagram of the structure of a hydrothermal plume (not to scale);
(B) The emergence of a buoyant stem and intrusion layer during plume laboratory experiments in
a stratified medium (Image credit: Snapshot from [197]); (C) A real-world plume vent source at
Guaymas Basin, Gulf of California (Image credit: WHOI JASON team); (D) Simulated multimodal
structure of the intrusion layer under advective and diffusive dynamics (Image credit: Michael
Jakuba [69])

from the global maximum. In simulation and field experiments, PLUMES collects more
scientifically valuable samples than state-of-the-art planners in a diverse set of environments,
with various platforms, sensors, and challenging real-world conditions. This chapter is based
on work appearing in Flaspohler et al. [45], Preston [141].
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3.1 Related Work

In the following sections, we provide an overview of contemporary related literature.

Informative Path Planning

Within the robotics literature the field of informative path planning (IPP) has combined ideas
from experimental design and POMDP planning to develop a suite of heuristic algorithms
for sequential decision-making with information rewards on size, weight, and power (SWaP)
constrained robotic platforms. IPP algorithms have employed mixed integer linear programs
(MILPs) [195], behavior-based reactive controllers [16], traveling salesman formulations
[70], branch and bound methods [63], sampling-based motion planners [97], and biomimetic
gradient descent algorithms [181] to approximately solve a robotic path planning problem
with information rewards. These approaches have been applied to a variety of scientific
applications: Hitz et al. [62] demonstrate a surface vehicle for plankton distribution mapping
in a lake; Hollinger and Sukhatme [63] use marine vehicles to map the distribution of WiFi
signal strength across a lake; Arora et al. [6] use a Bayes net to model the environment
and perform hypothesis-driven planning with Monte Carlo tree search for space robotics
applications; Manjanna et al. [108, 109] deploy a heterogeneous robotic team to sample
chlorophyll density; Karapetyan et al. [81] develop efficient coverage algorithms for river
environments; Shkurti et al. [154] use visual sensors to perform underwater following with
marine robots; Girdhar et al. [51] develop Bayesian nonparametric models for encouraging
novelty seeking in scientific robots. IPP is a large and heterogeneous field. Underlying
real-world IPP applications are a host of clever heuristic and algorithmic choices that allow
the underlying, information-reward POMDP to be approximated efficiently. Chapter 3 of
this thesis continues this line of work and presents an informative path planning algorithm
for plume or source seeking applications.

The MSS problem is closely related to IPP problems. Canonical offline IPP techniques
for pure information-gathering that optimize submodular coverage objectives can achieve
near-optimal performance [19, 165]. However, in the MSS problem, the value of a sample
depends on the unknown maximum location, requiring adaptive planning to enable the
robot to select actions that explore to localize the maximum and then seamlessly transition
to selecting actions that exploitatively collect valuable samples there. Even for adaptive
IPP methods, the MSS problem presents considerable challenges. The target environmental
phenomenon is partially observable and most directly modeled as a continuous scalar function.
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Additionally, efficient maximum sampling with a mobile robot requires consideration of
vehicle dynamics, travel cost, and a potentially unknown obstacle map. Handling these
challenges in combination excludes adaptive IPP algorithms that use discrete state spaces
[6, 100], known metric maps [70, 156], or unconstrained sensor placement [88].

Planning in Continuous Domains

In the MSS problem, the state of the environment can be modeled as a continuous function.
PLUMES uses a Gaussian Process (GP) model to represent the belief over this continuous
function, and must plan over the uncountable set of possible GP beliefs that arise from
future continuous observations. To address planning in continuous spaces, state-of-the-art
online POMDP solvers use deterministic discretization [101] or a combination of sampling
techniques and particle filter belief representations [89, 155, 159, 173]. Efficiently discretizing
or maintaining a sufficiently rich particle set to represent the underlying continuous function
in MSS applications is itself a challenging problem, and can lead to inaccurate inference of the
maximum [37]. Other approaches have considered using the maximum-likelihood observation
to make search tractable [111]. However, this assumption can compromise search and has
optimality guarantees only in linear-Gaussian systems [139]. Instead, PLUMES uses Monte
Carlo Tree Search (MCTS) with progressive widening, which we call continuous-observation
MCTS, to limit planning tree growth [34] and retain asymptotic optimality [9].

Rewards and Heuristics

In the MSS POMDP, the reward function is sparse and does not explicitly encode the value of
exploration. Planning with sparse rewards requires long-horizon information gathering and
is an open problem in robotics [158]. To alleviate this difficulty, less sparse heuristic reward
functions can be optimized in place of the true reward, but these heuristics need to be selected
carefully to ensure the planner performs well with respect to the true objective. In IPP,
heuristics based on the value of information have been applied successfully [62, 88, 111, 171],
primarily using the GP-UCB criteria [32, 165]. We demonstrate that within practical mission
constraints, using UCB as the heuristic reward function for the MSS POMDP can lead to
suboptimal convergence to local maxima due to a mismatch between the UCB heuristic and
the true MSS reward. Instead, PLUMES takes advantage of a heuristic function from the
Bayesian optimization (BO) community for state-of-the-art black-box optimization [186],
which we call maximum-value information (MVI). MVI overcomes sparsity and encourages
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long-term information gathering, while still converging to the true reward of the MSS
POMDP.

3.2 The Maximum Seek-and-Sample POMDP

We formalize the MSS problem by considering a target environmental domain as a d-
dimensional compact set Xw ⊂ Rd. We allow Xw to contain obstacles with arbitrary
geometry and let X ⊂ Xw be the set of reachable points with respect to the robot’s
initial pose. We assume there is an unknown underlying continuous function f : Xw → R,
f ∈ C0(Xw) representing the value of a continuous environmental phenomenon of interest.
The MSS objective is to find the unique, reachable global maximizer x∗ = arg maxx∈X f(x)

by safely navigating while receiving noisy observations of this function f . We assume f is an
unknown, black-box function, i.e., we cannot access derivative information or any analytic
form.

We model the process of navigating and generating observations as the MSS POMDP: an
8-tuple (S,A, T,R,Z, O, b0, H, γ), specialized from the general model presented in Sec. 2.5:

• S: a set of tuples consisting of the underlying continuous environment and location of
the robot, {(f,x) | f ∈ C0(Xw),x ∈ X}.

• A: a discrete set of action primitives available to the agent, e.g., Dubins curves; can be
a function of the robot’s location x ∈ X.

• T : S ×A×S → [0, 1], the transition function, encodes the dynamics of the underlying
environment and the robot’s dynamics. The environment is assumed to be either
static or changing with a random diffusion dynamic (Fig. 3.9); the robot is assumed to
transition deterministically given an action.

• R: S ×A → R, the reward of taking action a when problem state is s, i.e., R(s, a).

• Z: a continuous set of possible observations, Z ⊆ R+.

• O: S × A × Z → [0, 1], the observation or measurement function, encodes how the
robot observes the underlying environment via a noisy point measurement.

• b0: the initial belief state, b0 ∈ P(S).

• γ: discount factor, 0 ≤ γ ≤ 1.
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The Bellman equation is used to recursively quantify the value of belief bt ∈ P(S) over
a finite horizon h under policy π as:

V π
h (bt) = E[R(st, π(bt))] + γ

∫
z∈Z

V π
h−1(b

π(bt),z
t+1 ) P(z | bt, π(bt)) dz, (3.1)

where the expectation is taken over the current belief and b
π(bt),z
t+1 is the updated belief

after taking action π(bt) and observing z ∈ Z. An optimal policy π∗h over horizon-h is the
maximizer of the value function over the space of possible policies Π: π∗h = arg maxπ∈Π V

π
h (bt).

However, Eq. 3.1 is intractable in general continuous state and observation spaces [124]; an
optimal policy must be approximated. PLUMES uses a receding-horizon, online POMDP
planner and heuristic reward function to approximately solve the MSS POMDP in real-time
on robotic systems.

3.3 The PLUMES Algorithm

PLUMES is an closed-loop, online planning algorithm with a sequential decision-making
structure:

1. Conditioned on bt, approximate an optimal policy π∗h for finite horizon h with π̂∗h.

2. Execute the action a = π̂∗h(bt).

3. Collect observations z ∈ Z according to O.

4. Update bt to incorporate this new observation; repeat.

In the following sections, we define the specific choice of belief model, planning algorithm,
and heuristic reward function that PLUMES uses to solve the MSS POMDP.

3.3.1 Gaussian Process Belief Model

We assume the robot’s location xt at planning iteration t is fully observable, and the
unknown environmental phenomenon f is partially observable. The full belief-state is
represented as a tuple bt of robot state xt and environment belief gt = P(f) at time t.
Because f is a continuous function, we cannot represent the belief gt as a distribution over
discrete states, as is standard in POMDP literature [77], and must choose an alternate
representation. PLUMES uses a Gaussian process (GP) [148] to represent gt conditioned
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on a history of past observations. Gaussian processes are a powerful tool for representing
uncertainty over continuous functions given a set of noisy function observations, and are well
suited to represent the environmental state in this application. This GP is parameterized
by a mean µ(x) and covariance function κ(x,x′).

As the robot traverses a location x, it gathers observations z ∈ Z of f subject to
Gaussian sensor noise σ2

n, such that z = f(x) + ε with ε
i.i.d.∼ N (0, σ2

n). Given a history
Dt = {xi, zi}D−1

i=0 of D observations and observation locations at planning iteration t, the
posterior belief at a new location x′ ∈ X is computed:

gt(x
′) | Dt ∼ N (µt(x

′), σ2
t (x
′)),where (3.2)

µt(x
′) = κt(x

′)>(Kt + σ2
nI)
−1zt, (3.3)

σ2
t (x
′) = κ(x′,x′)− κt(x′)>(Kt + σ2

nI)
−1κt(x

′), (3.4)

where zt = [z0, . . . , zD−1]>, Kt ∈ S+ is the positive semi-definite kernel matrix with
Kt[i, j] = κ(xi,xj) for all xi,xj ∈ Dt, and κt(x

′) = [κ(x0,x
′), . . . , κ(xD−1,x

′)]>. This
simple, closed-form solution for the posterior predictive distribution enables a planner to
predict the value of the environment at a new location and quantify the uncertainty in that
prediction. Evaluating (3.3) and (3.4) require inverting the kernel matrix each time a new
observation is received, which can become computationally expensive for large observation
sets. Several techniques exist for scaling GP models to large, streaming datasets [103]. In
Sec. 3.4, our implementation is based on rank−1 update to the kernel matrix that leverages
the matrix inversion lemma and is described in App. A.2.

3.3.2 Planning with Continuous-Observation MCTS

PLUMES selects high-reward actions using a receding-horizon search over possible belief
states. This search requires a simulator that can sample observations and generate beliefs
given a proposed action sequence. For PLUMES, this simulator is the GP model, which
represents the belief over the continuous function f , and in turn simulates continuous
observations from proposed action sequences by sampling from the Gaussian distribution
defined by (3.3) and (3.4).

PLUMES uses continuous-observation MCTS to overcome the challenges of planning in
continuous state and observation spaces. Continuous-observation MCTS has three stages:
selection, forward simulation, and back-propagation. Each node in the tree can be represented
as the tuple of GP belief and robot location, bt = (gt,xt). Additionally, we will refer to
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Figure 3.3: Continuous-Observation MCTS: Illustrated to horizon h = 1, the tree consists of
alternating belief and belief-action nodes. Action decisions are made at belief nodes and random belief
transitions according to the observation function occur at belief-action nodes. Note that belief-action
nodes have a varying number of children due to progressive widening and unequal simulation (not
visualized) due to PUCT policy.

two types of nodes: belief nodes and belief-action nodes. The root of the tree is always a
belief node, which represents the entire history of actions and observations up through the
current planning iteration. Through selection and simulation, belief and belief-action nodes
are alternately added to the tree (Fig. 3.3).

Selection. From the root, a rollout begins with the selection stage, in which a belief-action
child is selected according to the Polynomial Upper Confidence Tree (PUCT) policy [9].
The PUCT value Q̂∗aug(bt, a) is the sum of the average heuristic rewards (i.e., MVI) from all
previous simulations and a term that favors less-simulated action sequences:

Q̂∗aug(bt, a) = Q̂∗(bt, a) +

√
N(bt)

ed

N(bt, a)
, (3.5)

where Q̂∗(bt, a) is the average heuristic reward of choosing action a with belief bt in all
previous rollouts, N(bt) is the number of times the node bt has been simulated, N(bt, a)

is the number of times that particular action from node bt has been selected, and ed is a
depth-dependent parameter1.

Forward Simulation. Once a child belief-action node is selected, the action associated with
the child is forward simulated using the generative observation model O, and a new belief

1Refer to Table 1 of Auger et al. [9] for parameter settings.
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node is generated bt+1 = (gt+1,xt+1) as though the action were taken and samples observed.
The simulated observations are drawn from the belief-action node’s GP model gt, and
the robot’s location is updated deterministically based on the selected action. Since the
observations in a GP are continuous, every sampled observation is unique with probability
one. Progressive widening, with depth-dependent parameter1 αd incrementally grows the
tree by limiting the number of belief children of each belief-action node. When growing the
tree, bt+1 is either chosen to be the least visited node if bN(bt, a)αdc = b(N(bt, a)− 1)αdc, or
otherwise is a new child with observations simulated from bt. By limiting the width of the
search tree and incrementally growing the number of explored children, progressive widening
avoids search degeneracy in continuous environments.

Back-propagation. Once a sequence of actions has been rolled out to a horizon h, the
accumulated heuristic reward is propagated upward from the leaves to the tree root. The
average accumulated heuristic reward and number of queries are updated for each node
visited in the rollout. Rollouts continue until the computation budget is exhausted. The
most visited belief-action child of the root node is executed.

Continuous-observation MCTS within PLUMES provides both practical and theoretical
benefits. Practically, progressive-widening directly addresses search degeneracy by visiting
belief nodes multiple times even in continuous observation spaces, allowing for a more
representative estimate of their value. Theoretically, PLUMES can be shown to select
asymptotically optimal actions. Analysis in Auger et al. [9] for PUCT-MCTS with pro-
gressive widening in MDPs can be extended to PLUMES by reducing the MSS POMDP
to an equivalent belief-state MDP [77]. This belief-state MDP has a state space equal to
the set of all possible beliefs, and a transition distribution that captures the effect of both
the dynamics and the observation model after each action. Planning in this representation
is often intractable as the state space is continuous and infinite-dimensional. However,
PLUMES plans directly in the belief-state MDP by using its GP belief state to compute the
transition function efficiently.

Subsequently, Theorem 1 in Auger et al. [9] shows that for an MDP with a continuous
state space, like the belief-state MDP representation suggested, the value function estimated
by continuous-observation MCTS asymptotically converges to that of the optimal policy:∣∣∣Q̂∗h(bt, a)−Q∗h(bt, a)

∣∣∣ ≤ C

N(bt, a)γd
, (3.6)



40 CHAPTER 3. PLUMES: SOURCE-SEEKING WITH TARGETED INFORMATION REWARDS

with high probability [9], for constants C > 0 and γd∗.

3.3.3 Maximum-Value Information Reward

The true reward function for the MSS POMDP would place value on collecting sample
points x within an ε-ball of the true global maximum x∗ = arg maxx∈X f(x):

R((f,x), a) = 1‖x−x∗‖<ε, (3.7)

where ε is determined by the scientific application. The reward function for the MSS POMDP
does not depend on the action a ∈ A; we will drop this dependence in the remainder of
the chapter. Optimizing this sparse reward function directly is challenging. In order to
efficiently trade-off between exploration and exploitation, a planner optimizing the MSS
reward (3.7) must perform long-horizon search over exploratory actions in order to determine
which exploratory actions lead to improvements in expected reward. In practice, evaluating
the utility of information gathering actions in a long-horizon POMDP is very challenging
and requires significant computational resources [57].

In order to balance exploration and exploitation in the MSS POMDP, PLUMES replaces
the true MSS reward with the maximum-value information (MVI) heuristic reward [186].
The belief-dependent MVI heuristic reward R̃(bt,x) quantifies the expected value of having
belief bt and collecting a sample at location x ∈ X. MVI reward quantifies the mutual
information between the random variable Z, representing the observation at location x, and
Z∗, the random variable representing the value of the function f at the global maximum:

R̃(bt,x) = I({x, Z};Z∗ | bt), (3.8)

where Z∗ = maxx′∈X f(x′). To compute the reward of collecting a random observation Z
at location x under belief bt, we approximate the expectation over the unknown Z∗ by
sampling from the posterior distribution z∗i ∼ P(Z∗ | bt) and using Monte Carlo integration
with M samples [186]:

R̃(bt,x) = H[P(Z | x, bt)]− Ez′∼P(Z∗|bt)[H[P(Z | x, bt, Z∗ = z′)], (3.9)

≈ H[P(Z | x, bt)]−
1

M

M∑
i=0

H[P(Z | x, bt, Z∗ = z∗i )]. (3.10)

Each entropy expression H[·] can be respectively approximated as the entropy of a Gaussian
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random variable with mean and variance given by the GP equations (3.3) and (3.4), and
the entropy of a truncated Gaussian, with upper limit z∗i and the same mean and variance.

To draw samples z∗i from the posterior P(Z∗ | bt), we employ spectral sampling [145].
Spectral sampling draws a function f̂ , which has analytic form and is differentiable, from
the posterior belief of a GP with stationary covariance function [61, 186]. To complete the
evaluation of Eq. 3.10, z∗i ∼ P(Z∗ | bt) can be computed by applying standard efficient global
optimization techniques (e.g., sequential least squares programming, quasi-Newton methods)
to find the global maximum of the sampled f̂ . This results in the following expression for
MVI reward [186]:

R̃(bt,x) ≈ 1

M

M∑
i=0

γz∗i (x)φ(γz∗i (x))

2Φ(γz∗i (x))
− log(Φ(γz∗i (x))) (3.11)

where γz∗i (x) =
z∗i −µt(x)
σt(x) , µt(x) and σt(x) are given by (3.3) and (3.4), and φ and Φ are the

standard normal PDF and CDF respectively. For actions that collect samples at more then
one location, the reward of an action R̃(bt, a) is the sum of rewards of the locations sampled
by that action.

MVI initially favors collecting observations in areas that have high uncertainty due to
sampling maxima from the initial uniform GP belief. As observations are collected and
uncertainty diminishes in the GP, the sampled maxima converge to the true maximum and
reward concentrates locally at this point, encouraging exploitative behavior. This contrasts
with the Upper Confidence Bound (UCB) heuristic, which distributes reward proportional to
the predictive mean µt(x) and weighted variance σt(x) of the current GP belief model (3.3)
and (3.4): R̃UCB(bt,x) = µt(x) +

√
βtσ(x). As the robot explores, UCB reward converges

to the underlying phenomenon, f . The difference in convergence characteristics between
MVI and UCB can be observed in Fig. 3.4. Robots optimizing a UCB heuristic will never
stop exploring, as reward is distributed throughout the environment; robots optimizing
an MVI heuristic will perform only enough exploration to confidently identify the global
maximum, and then being to exploit that knowledge to sample near the maximum.

3.4 Experiments and Results

We analyze the empirical performance of PLUMES in an ablation study of MSS scenarios
that feature convex and non-convex environments. We compare against three baselines used
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Figure 3.4: Convergence of MVI vs UCB Heuristic: The true environmental phenomenon
with the global maximum marked by a star is shown in the center; high regions are colored yellow
and low regions blue. In (A,C), the robot trajectory and corresponding reward functions are shown
early (20 actions) and later (140 actions) in a mission. On the top row, snapshots of the robot belief
state with planned trajectories are shown, with recent actions colored pink and earlier actions colored
blue. Red stars mark maxima sampled by MVI. In the bottom row, the corresponding reward function
is shown, with high-reward regions colored yellow and low reward regions colored purple. By the
end of the mission, MVI clearly converges to placing reward only at the global maximum, which in
turn leads to efficient convergence of the robot. By contrast, the reward landscape resulting from
canonically used UCB converges to the underlying function, causing the UCB planner to uniformly
tour high-valued regions of the environment.

in environmental surveying: non-adaptive lawnmower-coverage (Boustro., an abbreviation
of boustrophedonic [29]), greedy myopic planning with UCB reward (UCB-Myopic) [171],
and nonmyopic planning with traditional MCTS [25] that uses the maximum-likelihood
observation and UCB reward (UCB-MCTS) [111]. The performance of UCB planners has
been shown to be sensitive with respect to β value [111]. In order to avoid subjective tuning,
we select a time-varying βt that is known to enable no-regret UCB planning [165, 171].
PLUMES uses continuous-observation MCTS with hyperparameters presented in Auger et
al. [9].

To evaluate the mission performance of all planners, we report accumulated MSS reward
(Eq. 3.7), which directly corresponds to the number of scientifically valuable samples collected
within an ε-ball of the true maximum. This metric is reported for all trial scenarios in
Tables 3.1 and 3.2. We additionally report several metrics commonly used in IPP to evaluate
posterior model quality: overall environmental posterior root mean-squared error (RMSE)
and error in posterior prediction of x∗ at the end of a mission (x∗ error). We use a Mann-
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Whitney U non-parametric significance test [110] to report statistical significance (p = 0.05
level) in performance between PLUMES and baseline algorithms.

3.4.1 Bounded Convex Environments

In marine and atmospheric applications, MSS often occurs in a geographically bounded,
obstacle-free environment. In 50 simulated trials, we applied PLUMES and our baseline
planners to a point robot in a 10 m × 10 m multimodal environment drawn randomly from
a GP prior with a squared-exponential covariance function and zero mean function (l = 1.0,
σ2 = 100.0, σ2

n = 1.0 [1%]) (see Fig.3.5). The action set consisted of ten viable trajectories
centered at the robot’s pose with path length 1.5 m, and samples were collected every 0.5 m

of travel. Mission lengths were budgeted to be 200 m. Nonmyopic planners rolled out to a
5-action horizon and were allowed 250 rollouts per planning iteration. Summary simulation
results are presented in Table 3.1.

Figure 3.5: Simulation Environments: The multimodal simulated 10m × 10m environments.
Yellow regions are high-valued; blue regions are low-valued. The global maximum is marked with
a star. The left and center environments represent convex-worlds (Section 3.4.1), while the right
environment is representative of a non-convex world (Section 3.4.2).

In these trials, PLUMES accumulated significantly (0.05-level) more reward than base-
lines. The distribution of accumulated reward (Fig. 3.6) shows that PLUMES has a single
dominating mode near reward 200 and few low-performing missions (reward <50). In con-
trast, both UCB-based methods have distributions which are multimodal, with non-trivial
modes in the low-performance region. Boustro. collected consistently few scientifically
valuable samples. In addition to collecting many more samples at the maximum, PLUMES
achieved statistically indistinguishable levels of posterior RMSE and x∗ error compared to
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Table 3.1: Accumulated True MSS Reward (Eq. 3.7), RMSE, and x∗ Error, Reported
as Median (Interquartile Range). Asterisks denote baselines whose difference in performance is
statistically significant compared to PLUMES.

Convex Simulation Trials ASV Trial
ε = 1.5 m, 50 trials ε = 10 m, 1 trial

MSS Reward RMSE x∗ Error MSS Reward
PLUMES 199 (89) 3.8 (9.2) 0.21 (0.23) 524
UCB-MCTS 171 (179)* 3.7 (9.6) 0.24 (0.29) -
UCB-Myopic 148 (199)* 3.6 (9.2) 0.33 (3.25) -
Boustro. 27 (3)* 2.7 (10.4) 0.26 (0.46) 63

baselines (Table 3.1).

Figure 3.6: Distribution of Accumulated MSS Reward in 50 Convex-World Simulations:
Accumulated MSS reward is calculated for each trial and the distribution for each planner is plotted
as a kernel density estimate (solid line). The dashed lines represent the median accumulated reward
for each planner (reported in Table 3.1). The gray area of the plot indicates a low performance region
where the planner collected <50 samples near the maximum. PLUMES has a single mode near 200,
whereas both UCB-based methods are multimodal, with modes in the low performance region.

The corresponding field trial for convex-world maximum-search was performed in the
Bellairs Fringing Reef, Barbados by a custom-built autonomous surface vehicle (ASV) with
the objective of localizing the most exposed coral head Fig. 3.7. Coral head exposure is
used to select vantage points for coral imaging [108] and in ultraviolet radiation studies on
coral organisms [13]. Due to time and resource constraints, only one trial of two planners
was feasible on the physical reef; we elected to demonstrate PLUMES and Boustro., one of
the most canonical surveying strategies in marine sciences.
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Figure 3.7: Coral Mapping with an ASV: The objective of the ASV is to find and sample at
the most exposed (shallowest) coral head in a region of Bellairs Fringing Reef, Barbados. Overlaid
on the aerial photo is the a priori unknown bathymetry of the region (yellow is shallow, blue is
deep). Equipped with an acoustic point altimeter, the ASV must explore to infer the location of the
maximum (marked with a star) and then sample at that coral colony.

The ASV (1 m × 0.5 m) had holonomic dynamics and a downward-facing acoustic point
altimeter (Tritech Micron Echosounder) with returns at 1 Hz. Ten dynamically-feasible
10 m straight paths radiating from the location of the ASV were used in the action set.
The environment was bounded by a 50 m by 50 m geofence. Localization and control was
provided by a PixHawk Autopilot with GPS and internal IMU; the fused state estimate
was empirically suitable for the desired maximum localization accuracy (ε = 10 m). The
budget for each mission was 1000 m, which took approx. 45 minutes to travel. The GP
kernel was trained on altimeter data from a dense data collection deployment the day before
(parameters l = 2.01, σ2 = 0.53, σ2

n = 0.02 [26%]). Note the high noise in the inferred GP
model, as well as the relatively small length-scale in the 2500 m2 field site. The reconstructed
bathymetry and vehicle are shown in Fig. 3.8.

PLUMES successfully identified the same coral head to be maximal as that inferred
from the GP trained on prior dense data collection, as indicated by accumulated reward in
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Figure 3.8: Coral Head Map and ASV: (A) The ground truth bathymetric map inferred from all
collected data, mean corrected in depth. Yellow represents shallower depths, and blue is deeper. The
global maximum is marked with a black star. (B) The custom ASV used to traverse the 2500 m2

region.

Table 3.1, overcoming the challenges of moving in ocean waves, noisy altimeter measurements,
and highly multimodal environment. Additionally, the posterior prediction of x∗ had an
error of only 1.78 m while Boustro. reported 8.75 m error due to its non-adaptive sampling
strategy.

In the Bellairs Fringing Reef trials, the environment was assumed to be static. However,
in many marine domains the impact of sediment transport, waves, and tides could physically
change the location of a maximum over the course of a mission. PLUMES can be extended
to dynamic environments by employing a spatiotemporal kernel in the GP model, which
allows for the predictive mean and variance to change temporally [157]. If the dynamics of
an environment can be encoded in the kernel function, no other changes to PLUMES are
necessary; MVI will be distributed according to the time dynamic. Fig. 3.9 demonstrates
the properties of PLUMES with a squared-exponential kernel over space (l = 1.5, σ2 = 100,
σ2
n = 0.5) and time (l = 100, σ2 = 100, σ2

n = 0.5). In this illustrative scenario, the global
maximum moved between planning iteration T = 230 and T = 250. PLUMES with a
spatiotemporal kernel maintained multiple hypotheses about the maximum’s location given
the random-walk dynamic of the environment, resulting in MVI reward being re-distributed
between the two maxima over time.
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Figure 3.9: Extending PLUMES for Spatiotemporal Monitoring: (A) The ground truth map
at two planning iterations for a dynamic environment. The maximum is marked with a black star,
and migrates from the top left to the top right of the world. (B) MVI reward is redistributed by using
a spacetime kernel within PLUMES that captures the environment’s dynamics.

3.4.2 Non-Convex Environments

We next consider non-convex environments with potentially unknown obstacles, a situation
that occurs frequently in practical MSS applications with geographical no-go zones for rover
or ASV missions, and in indoor or urban settings. We evaluated PLUMES, UCB-Myopic,
and UCB-MCTS planners in 50 simulated trials with the same environments, vehicle, and
actions as described in Section 3.4.1, with the inclusion of 12 block obstacles placed uniformly
around the world in known locations (see Fig.3.5). Boustro. was not used as a baseline
because of non-generality of the offline approach to unknown obstacle maps.

As indicated in Table 3.2, PLUMES accumulated significantly more MSS reward than
UCB-MCTS and UCB-Myopic, at the 0.05-level. The distribution of reward across the
trials is visualized in Fig. 3.11. Like in the convex-world, the PLUMES has a primary
mode between reward 200-250, while the UCB-based planners have a primary mode in the
low-performance region (reward <50). There was no significant difference between planners
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Figure 3.10: Snapshot of Unknown Non-Convex Map Scenario: (A) shows examples of
how the action-primitives change based upon obstacle detection (black lines) and safety padding
(grey lines). (B-D) show a planning iteration of PLUMES, starting with the current belief map and
obstacle detections (B). The MVI heuristic is illustrated in (C) where lighter regions are higher value.
(D) shows the rollout visibility of continuous-observation MCTS where darker regions are visited
more often. Areas of high reward are generally visited more often by the search.

with respect to RMSE or x∗ error. The fact that PLUMES maximized the true MSS reward
while achieving statistically indistinguishable error highlights the difference in exploitation
efficiency between PLUMES and UCB-based methods.

The simulation experiments assume that a geometric map is known a priori. However
in practical applications, like indoor gas leak detection, access to a map may be limited
or unavailable. We simulate the scenario in which a nonholonomic car equipped with a
laser range-finder must build a map online as it seeks the maximum in a cluttered indoor
environment (Fig. 3.10). We generate a simulated chemical phenomenon from a GP (l = 0.8,
σ2 = 100.0, σ2

n = 2.0 [2%]), and simulate observations at 1 Hz. The action set for the vehicle
consists of eleven 1.5 m Dubins curves projected in front of the vehicle, one straight path
behind the vehicle, and a “stay in place” action. Results for five trials are shown in Table
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3.2 and illustrate that PLUMES accumulates more MSS reward than baselines, indicating
robust performance.

These simulation and robot trials demonstrate the utility of PLUMES compared to
canonical and state-of-the-art baselines in a diverse set of environments with challenging
practical conditions. For high-stakes scientific deployments, the consistent convergence and
sampling performance of PLUMES is critical and beneficial.

Table 3.2: Accumulated True MSS Reward (Eq. 3.7), RMSE, and x∗ Error, Reported
as Median (Interquartile Range). Asterisks denote baselines whose difference in performance is
statistically significant compared to PLUMES.

Non-convex Simulation Trials Dubins Car Trials
ε = 1.5 m, 50 trials ε = 1.5 m, 5 trials

MSS Reward RMSE x∗ Error MSS Reward
PLUMES 206 (100) 3.6 (2.1) 0.25 (0.56) 159 (74)
UCB-MCTS 115 (184)* 3.6 (1.5) 0.27 (1.18) 52 (17)
UCB-Myopic 86 (102)* 3.4 (1.0) 0.23 (0.34) 42 (66)
Boustro. - - - -

Figure 3.11: Distribution of Accumulated MSS Reward in 50 Non-Convex Mission
Simulations: Accumulated MSS reward distribution (solid line) and median (dashed line, reported
in Table 3.2) for each planner. The gray area of the plot indicates a low performance region (reward
<50). PLUMES has few low-performing missions and a primary mode near reward 250. The primary
mode of both UCB-based methods is in the low performance region due to convergence to suboptimal
local maxima.
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3.5 Conclusion

This work presents maximum-value information as a targeted reward function this is naturally
adaptive and avoids a hand-tuned parameter to balance exploration and exploitation. MVI
samples potential global maxima from the robot’s full belief state to manage exploration
and exploitation. In contrast, heuristic functions like UCB place reward on all high-
valued or highly uncertain regions, leading to unnecessary exploration and limiting the
time available to exploit knowledge of the true maximum. Ultimately, the MVI heuristic
allows PLUMES to collect exploitative samples, while still achieving the same overall level
of posterior model accuracy (shown by RMSE) as UCB-based planners. Additionally,
continuous-observation MCTS allows PLUMES to search over belief-spaces on continuous
functions without discretization or maximum-likelihood assumptions. Finally, in dynamic
environments for which the dynamics can be encoded into the GP kernel function, PLUMES
exhibits continuous monitoring behavior to maintain low uncertainty at the maximum.

Maximum seek-and-sample is a critical task in environmental monitoring and PLUMES
presents a solution to this problem with theoretical convergence guarantees, strong empirical
performance, and robustness under real-world conditions. One limitation of PLUMES
is that it relies on the MVI reward function alone to trade off between exploration and
exploitation. In a GP model with squared-exponential or other standard kernel functions,
the observations that are most informative about the value of the maximum are also located
at the maximum. Because of this property, as the robot explores, MVI concentrates on
the maximum location and the robot is drawn there, naturally performing exploitation by
sampling at the maximum. This convergence of the exploratory and exploitative objectives
need not occur. Using a different underlying model may lead to information about the source
being maximized at some location distant from the actual source location. In these models,
it would not be sufficient to maximize MVI. The robot would instead need to monitor MVI
and intentionally transition to exploitative behavior when the maximum value uncertainty
was sufficiently low. The next chapter introduces a more general method for balancing
exploration and exploitation in planning problems that directly computes when a transition
between exploration and exploitation is necessary.



Chapter 4

Value of Information and

Macro-action Discovery in POMDPs

Balancing exploration and exploitation is critical in scientific decision-making. Chap-
ter 3 demonstrates how a careful balance between exploration and exploitation can be

struck by using targeted information rewards to perform the minimal amount of exploration
necessary to confidently identify a source phenomena in an unknown environment. Generally,
performing parsimonious exploration requires understanding how uncertainty in the state of
a system or environment affects an agent’s ability to perform a given task. Quantifying the
sensitivity of task performance to state uncertainty would enable an agent to intelligently
trade-off between exploration and exploitation: when task performance is highly sensitive to
state uncertainty, an agent can target exploration; when this sensitivity is low, the agent
can instead target exploitation.

Quantifying the sensitivity of task performance to state uncertainty for general decision-
making problems is challenging, as this sensitivity intimately depends on the specific details
of the task and domain of interest. For example, in the hydrothermal plume domain of
Chapter 3, the robot’s task was to find the global maximum in a multimodal environment.
Uncertainty about the state of the environment in regions that were unlikely to contain
the global maximum had no impact on task performance. However, if the robot’s task was
to monitor the boundary between high and low values of the environment — as might be
necessary when tracking the progress of, e.g., an oil spill — then knowing the background
state of the environment in low-valued regions becomes essential. Additionally, if the robot’s
sensor is noisy or the underlying environment is dynamic, additional exploration of low-valued
regions may be necessary to ensure that these regions do not contain unobserved high-valued
points. The solution developed in Chapter 3, in which a specific information metric was
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designed to target exploration that determined the maximum location in an environment, is
not easily adapted to new environments or tasks for general scientific decision-making.

The goal of this chapter is approximate how task performance and model uncertainty
are connected for general decision-making problems and then use this to adaptively and
efficiently balance exploration and exploitation. We introduce a new metric, termed value
of information (VoI), that quantifies task sensitivity to state uncertainty and then use
VoI to construct open-loop macro-actions—sequences of exploitative actions—that an
agent can execute when improvement in task performance due to exploration is marginal.
The motivating scientific application in the chapter is dynamic target tracking for ocean
applications, which is introduced in the following section.

Motivating Application: Dynamic target tracking. Traditional marine robotic deployments
focus largely on mapping static phenomena in known locations, such as bathymetric features,
hydrothermal plume vents, or ice sheets [30, 78, 191]. Due to the immense scale of the
marine environment and the relative sparsity of phenomena of interest, it is difficult for
scientists to study dynamic phenomena in the ocean, including the long-term behavior of
animals, biomass migrations, or other biological or chemical phenomena. Recent innovations
in marine robotic platforms has produced small, agile platforms that can track and target
dynamic phenomena such as WHOI’s Mesobot [196] and the WARP AUV [52] (Fig. 4.1).

Figure 4.1: Dynamic Target Tracking in the Ocean: Examples of ocean platforms that have
been recently developed for the task of tracking dynamic biological phenomena in the ocean. Image
credit: (Left) WHOI Mesobot Team; (Center/Right) WHOI, WARPLab and WARP AUV.

These agents use cameras and other sensors to localize and track phenomena of interest
as those phenomena locomote and are transported by ocean currents and upwellings.
Mesobot, for example, is used to track the diel migration of deep-dwelling animals [196]; the
WARP AUV has been used to track fish and other small marine animals in shallow-water
environments [52]. These different biological targets have different dynamics, long term
behaviors, and can be detected and sensed with different levels of accuracy. These robots
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must, in turn, understand how the dynamics and observability of each target affects its ability
to accomplish the tracking task: if the target moves quickly, unpredictably, and is difficult to
detect, the robot must run a high-frequency, closed-loop detector and controller to maintain
the target track; if the target moves slowly, predictably, and is easy to detect, the tracking
task can be performed even with significant state uncertainty. This motivating application
demonstrates how the specifics of a task impact the sensitivity of task performance to state
uncertainty.

Overview. The remainder of this chapter introduces a general formulation for quantifying
value of information (VoI) in partially observable Markov decision processes (POMDPs). We
use VoI to extract belief-dependent, variable-length macro-actions directly from a low-level
POMDP model by chaining sequences of exploitative, open-loop actions together when the
task-specific value of information (VoI) — the change in expected task performance caused
by observations in the current planning iteration — is low. The performance gap between
these macro-action policies and the optimal, closed-loop policy is shown to be bounded.
This analysis makes use of two classical ideas in POMDP theory: the contractive property
of the belief transition operator and the size of a policy’s reachable belief space. Finally, a
macro-action policy is applied to a simulated version of the dynamic tracking application.
In this simulated domain, the robot demonstrates variable exploration policies depending
on the predictability and dynamics of the underlying target. This chapter is based on work
appearing in Flaspohler et al. [46]

4.1 The Reachable Belief Space and POMDP Hardness

A core challenge in POMDP planning is that searching over possible exploratory actions
causes an exponential explosion in the complexity of the planning problem, because the
planner must search over possible exploratory actions, simulate received observations, and
incorporate those observations into the planner’s belief state. Formally, the optimally
reachable belief space R∗(b0) — the set of beliefs that are reachable from an initial belief
b0 under stochastic observation transitions when following an optimal policy — grows
exponentially with the planning horizon in the size of the observation set. The complexity
of computing an optimal POMDP policy is related to the covering number of R∗(b0)

[95], and this exponential growth poses a challenge for planning algorithms that attempt
to approximate R∗(b0) using offline, point-based approximations [90, 137, 140] or online,
sampling methods [155, 159, 172].
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To reduce this search complexity, we may want to identify portions of the planning
horizon during which an agent can execute a preset, exploitative action and not need to
reason over the full dynamics of the belief state. Previous approaches have introduced
high-level macro-actions 1 or options [175], such as drive to the nearest exit, to reduce
planning complexity in complex tasks by executing a fixed, exploitative policy for a given
portion of the planning horizon. Policies that use open-loop macro-actions have the dual
benefits of a shorter effective planning horizon and smaller reachable belief space (RBS),
as a policy’s reachable belief space grows linearly rather than exponentially when acting
in open-loop (Figure 4.2). However, macro-actions are largely hand-coded [3, 59, 178]
or learned without formal guarantees [2, 11, 72]. Here, we address the key challenge of
generating macro-actions from a low-level POMDP model such that the resulting policies
have bounded regret.

Belief State
Initial Belief
Open-loop belief transition
Closed-loop belief transition
due to observations z

RBS under Macro-Action

Initial Belief

Full Belief Simplex

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

RBS under Optimal Policy

z=0
z=1z=2

Figure 4.2: Reachable Belief Space (RBS) and Macro-actions: POMDP planning algorithms
often reason over the value of beliefs in a policy’s reachable belief space (RBS). However, the size of
a policy’s RBS generally grows exponentially with the planning horizon in the size of the observation
set Z. This exponential growth is visualized for a three-state discrete POMDP with |Z| = 3. Because
the belief transitions deterministically under the open-loop VoI macro-actions, the size of the RBS
grows only linearly during macro-action execution.

This chapter introduces a method for generating belief-dependent, variable-length macro-
1We use the term macro-action synonymously with open loop action sequence.
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actions using a point-based representation of the POMDP value function. Our key insight
is to introduce a value of information (VoI) metric—which estimates the change
in expected task performance caused by sensing in the current planning iteration—and
constrain policies to selectively act open-loop when VoI is low. Unlike hand-coded or learned
macro-actions, we show that a horizon-H policy utilizing VoI macro-actions has bounded
regret rH compared to the optimal policy. Let V ∗H be the expected reward of an optimal
policy and VMA

H the expected reward of the VoI macro-action policy. Then, our main result
(Thm. 4.6.2) shows:

rH =
∥∥V ∗H − VMA

H

∥∥
∞ ≤

1− γH
1− γ

(
δB
(
3L+

Rmax
1− kγ + Lγk

)
+ τ
)
, (4.1)

where γ is the POMDP discount factor, L is a Lipschitz constant describing the smoothness
of the value function in belief space, and the POMDP reward function is bounded in
[−Rmax, Rmax].

The three remaining terms — τ , δB, and k— elucidate the key trade-offs for task-targeted
exploration in POMDP planning. Introducing potentially sub-optimal macro-actions into
a policy increases regret. The parameter τ is a VoI threshold, below which the planner
acts in open-loop; high values of τ increase macro-action utilization but also increase
regret. However, macro-action policies are often easier to approximate than an optimal
policy. During planning, we approximate the value function at a set of beliefs that form
a δB-covering of the macro-action policy’s RBS. Since the open-loop belief dynamics are
a k-contractive mapping on belief space, this RBS grows slowly when acting in open-loop;
macro-action utilization leads to lower values of δB and lower regret bounds. The form
of Eq. 4.1 makes the trade-off between exploration and exploitation in POMDP policies
explicit. Somewhat surprisingly, although consistent with Eq. 4.1, our empirical results
demonstrate that macro-action policies can even outperform approximations of the optimal
policy when planning with a finite point-based belief representation.

In the following sections, we introduce VoI macro-action generation and present empirical
results in a set of simulated dynamic tracking experiments. Taken together, VoI macro-action
generation and the associated regret bound address two fundamental questions for macro-
action-based planning in partially observable domains: how do we construct high-value
macro-actions and when can we use them without compromising policy performance?
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4.2 Related Work

Existing offline [90, 137, 140] and online [155, 159] POMDP planners must contend with the
rapid growth of R∗(b0) and the resulting difficulty of approximating optimal plans. Previous
work has quantified the hardness of approximating optimal POMDP policies in terms of the
covering number of R∗(b0) [95] and POMDP planners such as SARSOP [90] leverage this
insight during planning. Online POMDP solvers, on the other hand, search over a reduced
RBS by sampling scenarios in a receding horizon fashion [155, 159, 172]. However, the
performance of many online planning algorithms depends on the complexity of the optimal
policy [159]. For problems in which the covering number of R∗(b0) is large, both offline
and online methods have little recourse. By contrast, we explicitly search for near-optimal
policies that are easy to approximate by selectively employing open-loop macro-actions to
reduce the size of the policy’s reachable belief space.

Options and macro-actions [175] have been widely used within the POMDP and rein-
forcement learning communities to reduce planning complexity. Previous approaches use
a prescribed set of macro-actions or closed-loop options, which are identified to provide a
useful problem decomposition [3, 59, 65, 84, 99, 178]. These algorithms allow planners to
search over shorter effective planning horizons and often benefit from a reduced RBS, but
do not provide a mechanism to identify useful options or macro-actions from the under-
lying planning problem. Recently, work in deep reinforcement learning has attempted to
directly learn data-dependent closed-loop options in fully-observable problems [2, 11, 41, 72].
However, these approaches do not provide formal performance guarantees or deal with the
growth of the RBS and the other challenges present in partially observable problems.

4.3 Planning Preliminaries

As introduced in previous chapters, a finite-horizon POMDP can be represented as tuple:
(S,A, T,R,Z, O, b0, H, γ), where S are the states, A are the actions, and Z are the observa-
tions. At planning iteration t, the agent selects an action a ∈ A and the transition function
T : S ×A → P(S) defines the probability of transitioning between states in the world, given
the current state s and control action a. After the state transition, the agent receives an
observation according to the observation function O : S × A → P(Z), which defines the
probability of receiving an observation, given the current state s and previous control action
a. The reward function R : S ×A → R serves as a specification of the task. A POMDP is
initialized with belief b0 and plans over horizon H with discount factor γ. In the following,
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we consider finite-horizon planning problems; extensions of many of the results to discounted
infinite-horizon problems is straightforward.

Due to the stochastic and partially observable nature of current and future states, the
realized reward in a POMDP is a random variable. Optimal planning is often defined
as finding the sequence of policies {π∗t : P(S) → A}H−1

t=0 that maximize expected reward:
E
[∑H−1

t=0 γtR
(
St, πt(bt)

)
| b0
]
, where bt is the updated belief at time t, conditioned on the

history of actions and observations.
The recursively defined horizon-h optimal value function V ∗h quantifies, for any belief b,

the expected cumulative reward over the remaining planning iterations when following an
optimal policy: V ∗0 (b) = maxa∈A Es∼b[R(s, a)] and

V ∗h (b) = max
a∈A

Es∼b[R(s, a)] + γ

∫
z∈Z

P(z | b, a)V ∗h−1(ba,z)dz h = 1, . . . ,H − 1, (4.2)

where ba,z is the updated belief after taking control action a and receiving observation z,
computed via Bayes rule using the transition T and observation O functions. The optimal
policy at horizon h is to act greedily according to a one-step look ahead of the value function.

4.4 Generating Belief-Dependent Macro-Actions

In the following section, we introduce value of information (VoI) and describe how VoI can
be used to generate belief-dependent, variable-length macro-actions. In (4.4), we define VoI
for a given belief as the change in expected long-term reward caused by acting closed-loop
and collecting a sensor observation in the current planning iteration. Estimating VoI is
critical for selectively employing open-loop macro-actions because open-loop actions have
bounded regret exactly when VoI is low.

Before presenting the formal definition of VoI, we give an example to provide intuition
about when low VoI may arise in planning problems. A belief may have low VoI when:

(i) state dynamics are locally predictable due to the transition function, or

(ii) the reward function is insensitive to uncertainty in the current belief, or

(iii) sensors are locally uninformative or only infrequent sensing is necessary to reduce state
uncertainty.

These conditions are visualized schematically in Fig. 4.3. These (and other) conditions arise
in many real-world planning problems. Consider the problem of a marine robot tracking
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a plankton bloom using an ocean flow model. State uncertainty grows slowly when the
bloom is localized in regions of near-laminar flow (i). Moderate uncertainty in the bloom
location may be tolerable when far from human-occupied beaches (ii). Finally, if the state
of the bloom can be observed accurately in certain regions of the ocean, only infrequent
observation may be necessary; by contrast, in regions where sensor observations are highly
noisy, observations may not meaningfully reduce state uncertainty (iii).

Observation FunctionReward FunctionTransition Dynamics

Low predictability

High observability

Predictable dynamics

Low observability

Invariant reward
outside of

zone of interest

PC: A. Cuzol

Figure 4.3: Conditions for Low VoI: Value of information may be low in a POMDP when the
transition dynamics are locally predictable over short horizons (left), the reward function is invariant
to aspects of state uncertainty (middle), or when observations are uninformative due to low state
observability (right).

Rather than specialize an algorithm to recognize conditions (i)-(iii), invariably missing
other conditions, we find regions of belief-space where open-loop macro-actions are near-
optimal by estimating VoI directly using the POMDP value function.

4.4.1 Value of Information for Identifying One-Step Open-loop Actions

We adopt a point-based value function representation, i.e., we approximate the value function
using a set of N exemplar beliefs B = {bi}N−1

i=0 . We compute successive value-function
approximations to horizon-H using point-based value iteration [137], where backups of
beliefs in the set B leverage a parametric form of the value function over belief space, such
as a set of α-vectors [77] or a deep neural network. We modify the standard value iteration
backup operation to compute the VoI, adding open-loop backups whenever the VoI is low.
An algorithm summary is presented in Algorithm 1.

We begin by constructing the value function V̂ ∗h , which approximates the value of a
policy that selectively acts in open-loop when VoI is low. V̂ ∗0 is initialized to the optimal
value function. To perform backups of V̂ ∗h , we compute the open-loop value, V OLP

h , which
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considers acting in open-loop in the current planning iteration:

V OLP
h (b) = max

a∈A
Es∼b[R(s, a)] + γV̂ ∗h−1(ba,∗) h = 0, . . . ,H − 1, (4.3)

where ba,∗ represents the open-loop belief transition, marginalizing over the received obser-
vation.

During the value function backup, we compute both the standard, closed-loop value (Eq.
4.2), denoted V CLP

h and the open-loop value V OLP
h , where for both backups V̂ ∗h−1 is used to

evaluate the recursion. The difference between the open- and closed-loop value represents
the VoI at horizon h for each belief in B (Figure 4.4).

VoIh(b) = V CLP
h (b)− V OLP

h (b) (4.4)

When VoI is below a regret threshold τ we perform an open-loop backup at b. We then add
b to the open-loop set BOLPh and store the optimal open-loop action in action set AOLPh .
The resulting backup operator is denoted Ĥ:

V̂ ∗h (b) = ĤV̂ ∗h−1(b) =

V OLP
h (b) if V OLP

h (b) ≥ V CLP
h (b)− τ

V CLP
h (b) otherwise

(4.5)

As shown in Algorithm 1, the belief set B is initialized at the start of the algorithm by
the construct_belief_set (e.g., using random beliefs or beliefs reachable under a QMDP
policy [102]). As is standard in point-based POMDP literature [137], we perform iterations
of alternating value-iteration and belief set updates, in which the value function estimate is
used to update the set of reachable beliefs B, via the expand_belief_set method, which
in turn is used to improve the value function estimate. The algorithm input is a POMDP
model, a VoI threshold τ , and a number of belief-set update iterations iters.

4.4.2 Chaining Open-loop Actions into Macro-Actions

Value iteration is performed to horizon H using Eq. 4.5, producing the value function V̂ ∗h ,
sets of open-loop BOLPh beliefs, and optimal open-loop actions AOLPh . We use these sets to
generate near-optimal macro-actions for each belief in B by performing macro-action chaining
(Fig. 4.4). An algorithm summary for macro-action chaining is presented in Algorithm 2.

Starting from horizon h, we iterate over beliefs in B. If b 6∈ BOLPh , we immediately
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Input: POMDP = (S,A, T,R,Z, O, b0, H, γ), iters, τ
B = construct_belief_set(b0)
for i = 0, . . . , iters− 1 do
V̂ ∗0 (b) = maxa∈A Es∼b[R(s, a)], ∀b ∈ B
BOLP0 = B // Open loop actions are optimal at horizon-0
for h = 1, . . . ,H − 1 do
for b ∈ B do
V OLP
h (b) = maxa∈A Es∼b[R(s, a)] + γV̂ ∗h−1(ba,∗)

V CLP
h (b) = maxa∈A Es∼b[R(s, a)] + γ

∫
Z P(z | b, a)V̂ ∗h−1(ba,z)dz

VoIh(b) = V CLP
h (b)− V OLP

h (b)
if VoIh(b) ≤ τ then
Add b to BOLPh and optimal action to AOLPh .
V̂ ∗h (b) = V OLP

h (b)
else
V̂ ∗h (b) = V CLP

h (b)
end if

end for
end for
B = expand_belief_set(b0, B, {V̂ ∗h }H−1

h=0 , {BOLPh }H−1
h=0 )

end for
return B, {V̂ ∗h }H−1

h=0 , {BOLPh }H−1
h=0 , {AOLPh }H−1

h=0

Algorithm 1: Value Iteration for Macro-Action Planning

terminate macro-action chaining. If b ∈ BOLPh , we find the associated open-loop action
a ∈ AOLPh . Critically, the open-loop belief transition is deterministic conditioned on the
selected action. Let ba,∗ be the belief resulting from open-loop action a, which may or may
not be included in B. If ba,∗ 6∈ B, we evaluate V OLP

h−1 (ba,∗) and V CLP
h−1 (ba,∗) and use Eq. 4.5

to decide if ba,∗ ∈ BOLPh−1 . If so, we find the associated optimal action a′ and extend the
macro-action chain for belief b to include a′; if not, we terminate the chain. We proceed
in this manner for the remainder of the planning horizon, or until the deterministically
transitioning belief is not in the open-loop set. The chaining process is repeated for each
belief in B and each horizon h = 0, . . . ,H − 1.

Macro-action chaining produces a set of belief-dependent macro-actions for beliefs in B.
However, during online policy execution, we are likely to encounter beliefs not contained in
B. For each belief b 6∈ B, we execute the macro-action associated with b’s nearest neighbor
in B under the L1 norm. Let VMA

H to denote the expected reward of this approximate
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Figure 4.4: Macro-action Generation: (A) To compute the value of information at the current
belief, we compute immediate reward plus the horizon-(h− 1) value under both an open-loop (blue)
and closed-loop (purple) belief transition. This difference represents the value of information for
long-term task performance. (B) Variable-length macro-actions are constructed by macro-action
chaining — for each belief in the open-loop set BOLP

h , we compute the open-loop transition (blue)
and terminate macro-action chaining when the belief transitions into the closed-loop set (purple).
For beliefs in the closed loop set, no macro-action is generated.

macro-action policy over horizon H.
Algorithm 2 details the procedure for macro-action chaining. Macro-action chaining

takes as input the belief set B, and the VoI macro-action value function {V̂ ∗h }H−1
h=0 , open-loop

sets {BOLPh }H−1
h=0 , and optimal open-loop actions{AOLPh }H−1

h=0 . The algorithm checks if a
belief b is in the open-loop set at horizon h; for beliefs b 6∈ B, check_open_loop computes
VoI as described in Algorithm 1 to determine if an open-loop action is near-optimal at b.

Method Summary VoI macro-action generation first proceeds backward, performing point-
based value iteration to estimate VoI and using VoI to decompose the belief space into beliefs
for which an open-loop action is near-optimal (open-loop set) and those for which sensing
is needed (closed-loop set) (Sec. 4.4.1). Then, macro-action chaining proceeds forward,
propagating each belief in the open-loop set forward under the action computed during
value iteration and building an open-loop macro-action chain until the propagated belief
lies in the closed-loop set (Sec. 4.4.2). The resulting VoI macro-actions are belief-dependent
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Input: B, {V̂ ∗h }H−1
h=0 , {BOLPh }H−1

h=0 , {AOLPh }H−1
h=0

macroaction[b, 0] = AOLP0 (b),∀b ∈ B // Initialize horizon zero macro-actions
for h = 1, . . . ,H − 1 do
for b ∈ B do
b′ = b
for t = h, . . . , 0 do
//Check if b′ is in the open-loop set and, if so, get open-loop action a∗.
olp, a∗ = check_open_loop(b′, t, B, {V̂ ∗h }H−1

h=0 , {BOLPh }H−1
h=0 )

if not olp then
break // Sensor observation necessary, terminate macro-action chaining

end if
macroaction[b, h].append(a∗)
b′ = b′a

∗,∗ // Transition belief according to open-loop dynamics
end for

end for
end for

Algorithm 2: Macro-Action Chaining

and variable-length. This method is visualized in Fig. 4.4.

4.5 Macro-actions in Discrete Problems

Sec. 4.4 introduced belief-dependent macro-actions for general POMDP problems by leverag-
ing a representation of the optimal POMDP value function. However, for discrete POMDP
problems (problems in which the state, action, and observation spaces are discrete), the
value function is known to have special piecewise-linear and convex structure [77], and
macro-actions can be generated using this PWLC representation of the value function.

In the following section, we construct an approximation to the optimal PWLC value
function by iteratively backing up a set of α-vectors over a finite horizon H. At each backup
horizon h, the set of vectors Γ̂∗h contains a mixed set of open-loop and closed-loop vectors.

4.5.1 Value Iteration in Belief Space

Sec. 2.5.1 introduced the PWLC, α-vector formulation for representing the value function of
discrete POMDPs. As we saw, the number of α-vectors necessary grows doubly exponentially
with planning horizon, making it intractable to form the optimal value function in all but
very small problems. One standard method for circumventing this exponential growth is
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point-based POMDP methods [137]. In point-based approximations, we maintain only the
subset of the possible α-vectors that dominate at the exemplar beliefs in B, maintaining the
α-vector set at a constant size. Choosing the set B to be representative of beliefs encountered
during policy execution is key in point-based POMDP solvers.

As in Sec. 2.5.1, we will represent the transition function T by a set of transition
matrices {Ta}|A|−1

a=0 , such that Ta[i, j] = P(St+1 = i | St = j, at = a). The observation
function O will be represented by a set of observation matrices {Oa}|A|−1

a=0 , such that
Oa[i, j] = P(Zt = i | St = j, at−1 = a).

4.5.2 Open- and Closed-loop α-vectors

As in Sec. 4.4, we construct a value function V̂ ∗h , which represents the value of beliefs when
acting under a policy that selectively leverages open-loop actions. In this discrete setting,
V̂ ∗h will be represented by a finite set of α-vectors, Γ̂∗h.

We initialize V̂ ∗0 with the set of α-vectors the represent the reward function, Γ̂∗0, as
described in Eq. 2.11. The backup operator constructs the set Γ̂∗h from the set Γ̂∗h−1 via the
following operations.

Closed-loop First, we construct the standard, closed-loop α-vectors, which represent the
value function under closed loop dynamics [77, 137]. First, the one-step reward vectors are
constructed for a ∈ A, which represents the immediate reward of an action a:

Γa,∗h = αa. (4.6)

Then, a set of projected α-vectors is constructed, which capture the effect of the observation
and transition dynamics on an input belief.

Γa,zh = {γα>h−1 diag(Oa[z, :])Ta | αh−1 ∈ Γ̂∗h−1} (4.7)

Next, for each belief b in the belief set B the optimal α-vector under an action a for that
belief is computed by summing over possible realized observations:

Γah = {Γa,∗h +
∑
z∈Z

arg max
α∈Γa,zh

α>b | b ∈ B}. (4.8)
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Finally, only the optimal action and its associated α-vector for each belief is maintained:

Γh =
{

arg max
α∈{Γah|a∈A}

α>b | b ∈ B
}
. (4.9)

Open-loop To determine the VoI from a specific belief state, we introduce open-loop α-
vectors, which represent the deterministic transition of belief due to system dynamics in the
absence of observations. These open-loop (OLP) α-vectors are constructed similarly to their
closed-loop counterparts, where the open-loop transition dynamics are governed by only the
transition matrix:

Γa,∗,OLPh = {γα>h−1Ta | αh−1 ∈ Γ̂∗h−1} (4.10)

Γa,OLPh = {Γa,∗h + arg max
α∈Γa,∗,OLPh

α>b | b ∈ B} (4.11)

ΓOLPh =
{

arg max
α∈{Γa,OLPh |a∈A}

α>b | b ∈ B
}
. (4.12)

4.5.3 Value Iteration Backups

At each backup during value iteration, we add a mixture of open- and closed-loop α vectors
to our current vector set Γ̂∗h. For each belief b ∈ B, we compute the open- and closed-loop
value and the value of information:

V OLP
h (b) = max

α∈ΓOLPh

α> · b (4.13)

V CLP
h (b) = max

α∈Γh
α> · b (4.14)

VoIh(b) = V CLP
h (b)− V OLP

h (b) (4.15)

If VoIh(b) ≤ τ , we add the corresponding open-loop vector to the set Γ̂∗h and add
belief b to the open-loop set; otherwise, we add the closed-loop vector. Thus, at horizon
h, we represent the value function V̂ ∗h using a mixture of open- and closed-loop α-vectors,
representing regions of belief space in which open-loop actions are near-optimal

4.5.4 A Note on Algorithmic Complexity

Point-based POMDP algorithms maintain a set of α-vectors of constant size; the main algo-
rithmic cost is construction of the updated set of vectors using the methodology described in
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the previous section. Traditional point-based methods have complexity O(|S|2|A||Z||Γh−1|)
to generate intermediate α-vectors and complexity O(|S||A||Z||Γh−1||B|) to selected the
maximizing α-vector for each belief in B [137]. During value iteration for VoI macro-action
generation, evaluating open-loop actions and computing VoI has cost equivalent to adding
one additional observation to the observation space that provides no information about
the current state. This leads to an algorithmic complexity of O(|S|2|A|(|Z| + 1)|Γh−1|)
to generate intermediate α-vectors and O(|S||A|(|Z| + 1)|Γh−1||B|) to evaluate VoI and
select the open- and closed-loop sets. For large state spaces, the algorithmic complexity
of macro-action generation is dominated by constructing the closed-loop α-vectors during
value iteration.

4.6 Macro-Action Policy Analysis

In the following, we show that the macro-action value function VMA
H is within a constant

factor of the optimal value function V ∗H .
Let (S,F , µ) be a σ-finite measurable space with σ-algebra F and measure µ. Let the

belief space P(S) be a subset of L1(S,F , µ) with L1 norm ‖·‖1 and let ‖·‖ denote the
absolute value on R. Let the point-based belief set B form a δB-covering of a compact set
G ⊆ P(S) that contains all beliefs reachable under the VoI macro-action policyRMA(b0) ⊆ G.
We assume the following:

Assumption 4.6.1. Let V π
h , the horizon h value function under a policy π be Lipschitz

continuous with Lipschitz constant L over the reachable belief space of initial belief b0 under
policy π: ‖V π

h (b1)− V π
h (b2)‖ ≤ L‖b1 − b2‖1,∀b1, b2 ∈ Rπ(b0).

This assumption holds for many classes of POMDP problems, including finite-horizon
discrete POMDPs [77], finite-horizon continuous POMDPS [95], and information reward
POMDPs [43]. For example, in the discrete problems presented in Sec. 4.5, the PWLC value
function is Lipschitz continuous with respect to the 1-norm on discrete belief states with
Lipschitz constant L ≤ 1−γH

1−γ Rmax.
Consider the POMDP model M = (S,A, T,R,Z, O, b0, H, γ) with reward bounded in

[−Rmax, Rmax]. We define regret rH at horizon H as the worst-case difference in long-term
expected reward between the optimal policy V ∗H and the approximate VoI macro-action
policy VMA

H :
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Theorem 4.6.2. The worst-case regret of a policy using VoI macro-actions with threshold τ
is bounded for beliefs in G by:

rH =
∥∥V ∗H − VMA

H

∥∥
∞ ≤

1− γH
1− γ

(
δB
(
3L+

Rmax
1− kγ + Lγk

)
+ τ
)
. (4.16)

We prove Theorem 4.6.2 in the remainder of this section. The proof relies on two key
results: Lemma 4.6.1, which bounds value approximation error during VoI-based backups
and Lemma 4.6.3, which bounds the error of applying macro-actions computed offline to
beliefs at runtime.

4.6.1 Value Backup Error

Let H, V ∗h denote the exact value backup operator and the resulting optimal value function
respectively (Eq. 4.2) and Ĥ, V̂ ∗h (b) denote the point-based, macro-action backup and value
function (Eq. 4.5), where the optimal open-loop action for each belief is used without
macro-action chaining. We show that the error between V ∗h and V̂ ∗h is bounded and can be
decomposed into error caused by the point-based approximation and error caused by the
inclusion of potentially sub-optimal open-loop actions.

Lemma 4.6.1. The horizon-H value function error caused by including open-loop actions in
backups whenever VoI < τ is bounded for beliefs in G by εH =

∥∥∥V̂ ∗H − V ∗H∥∥∥∞ ≤ 1−γH
1−γ (2LδB +

τ).

This bound illuminates the role of VoI parameter τ in policy performance — for larger
τ , open-loop actions are used frequently and δB will generally decrease, improving policy
regret; however, large τ also contributes to the policy regret by allowing open-loop actions
be taken even when VoI is high.

Proof. Consider any compact subset β of G; importantly, β can be different from the belief
set B used in planning. We define εh to be the maximum error in the value function on the
set β during the value iteration recursion at horizon h. Let bε ∈ β be the belief for which
the value function error is maximized and δ be the minimum distance between a belief in
B and bε: δ = minb∈B‖b− bε‖1. Because B forms a δB covering of β, we have that δ ≤ δB.
We bound εh (for proof see App. B.1) by the following term: εh =

∥∥∥V ∗h (β)− V̂ ∗h (β)
∥∥∥
∞
≤

2LδB +
∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥.
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The term 2LδB represents the value-function error induced by the point-based approx-
imation [137]. We will further examine the term HV ∗h−1(b) − ĤV̂ ∗h−1(b). Without loss of
generality, let a1 be the optimal, closed-loop action at belief b and a2 be the near-optimal,
open-loop action selected for backing up V̂ ∗h . Let Ha1 denote the closed-loop value function
backup using action a1 and Ĥa2,OLP denote the open-loop backup using action a2.

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥ =

∥∥∥Ha1V ∗h−1(b)− Ĥa2,OLP V̂ ∗h−1(b)
∥∥∥, (4.17)

≤
∥∥∥Ha2,OLP V ∗h−1(b) + τ − Ĥa2,OLP V̂ ∗h−1(b)

∥∥∥, (4.18)

≤
∥∥∥γV ∗h−1(ba2,∗) + τ − γV̂ ∗h−1(ba2,∗)

∥∥∥ ≤ γεh−1 + τ, (4.19)

where if ba2,∗ 6∈ G, we replace V ∗h−1(ba2,∗), V̂ ∗h−1(ba2,∗) with a valid lower-bound. Expanding
the recursion εh ≤ γεh−1 + 2LδB + τ , we conclude that εH ≤ 1−γH

1−γ (2LδB + τ). �

4.6.2 Generalizing Macro-Actions

During policy execution, we generalize macro-actions computed for beliefs in B to new
beliefs. The error induced by this approximation can be bounded by demonstrating that
the open-loop dynamics are a non-expansive mapping in belief-space, ensuring that during
an open-loop macro-action, the distance between the forward-propagated beliefs can be no
larger than their initial separation δ.

Lemma 4.6.2. (Lasota and Mackey [93]) The open-loop dynamics are a non-expansive
mapping in belief space. Consider two beliefs b1, b2 ∈ P(S) such that ‖b1 − b2‖1 = δ. Then,
for any action a taken in open-loop, it follows that

∥∥ba,∗1 − ba,∗2

∥∥
1
≤ kδ for 0 ≤ k ≤ 1.

Let VMA
h denote the value of following an approximate macro-action policy from belief

b at horizon h, where b 6∈ B and the macro-action computed for its nearest neighbor b∗ is
instead executed.

Lemma 4.6.3. The additional value function error of approximating the VoI macro-action
at belief b using its nearest neighbor b∗ under k-contractive open-loop dynamics is bounded
by:

ηH =
∥∥∥V̂ ∗H − VMA

H

∥∥∥
∞
≤ 1− γH

1− γ
(
LδB +

RmaxδB
1− γk + LγkδB

)
. (4.20)

Proof. Consider any compact subset β of G. Then ηh =
∥∥∥V̂ ∗h (β)− VMA

h (β)
∥∥∥
∞
.
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Without loss of generality, let b be the belief for which ηh is maximized, let b∗ be its
nearest neighbor in B, and let Al = {a1, . . . , al} be the length-l macro-action that is optimal
at b∗. We show (details in App. B.1) that ηh can be decomposed into error incurred during
the macro-action and error over the remainder of the planning horizon. We use the notation
bA1:i to denote an updated belief after taking the first i actions of macro-action Al in
open-loop.

ηh ≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥+ γl(LklδB + ηh−l). (4.21)

The form of Eq. 4.21 reflects the expected reward when following the macro-action Al from
both belief b and b∗ and then reverting to the macro-action policy from the resulting belief.
We bound Eq. 4.21 by application of the non-expansive property:

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥, (4.22)

≤
l−1∑
i=0

γiRmax
∥∥bA1:i
∗ − bA1:i

∥∥
1
≤

l−1∑
i=0

γiRmaxk
i‖b∗ − b‖1 ≤

1− γlkl
1− γk Rmaxδ. (4.23)

Plugging this expression into Eq. 4.21, we have the recursion: ηh ≤ LδB+ 1−γlkl
1−γk RmaxδB+

γlLklδB + γlηh−l. This expression depends on l, the length of the optimal macro-action at
horizon h, in a complex way. Because l is variable and unknown a priori, we replace l with
its worst-case value in each expression: ηh ≤ LδB + RmaxδB

1−γk + γLkδB + γηh−1 and expand
the recursion. �

Analysis Summary To bound the regret of the VoI macro-action policy compared to the
optimal policy, we first bound the error caused by using sub-optimal open-loop actions
when VoI was below a threshold τ . We then bound the regret of generalizing macro-actions
generated for beliefs in B to new beliefs encountered during policy execution. Finally, we
combine these approximation errors:

Proof. (Theorem 4.6.2) We bound the regret of the VoI macro-action policy on the set G as
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follows:

rH =
∥∥V ∗H − VMA

H

∥∥
∞ ≤

∥∥∥V ∗H − V̂ ∗H∥∥∥∞ +
∥∥∥V̂ ∗H − VMA

H

∥∥∥
∞

= εH + ηH . (4.24)

The result follows by applying Lemma 4.6.1 and Lemma 4.6.3 to bound εH and ηH . �

4.7 Experiments

We present experimental results designed to highlight various aspects of VoI macro-actions
and provide insight into the nature of the regret bound and its implications macro-action
design. We assume discrete states, actions and observations and represent the value function
by a piecewise-linear and convex (PWLC) collection of α-vectors [77]. An adaptation of
the algorithm presented in Section 4.4 to a PWLC value function is contained in Sec. 4.5.
We use this example to expose several key low VoI regimes caused by structure in the
system dynamics, reward function, and transition dynamics. We present the following two
experiments.

Experiment 1: Predictable Dynamics Our first experiment is designed to highlight how
locally predictable state dynamics can lead to low VoI values (condition (i), Sec. 4.4). We
test both a random-walk target dynamic and a boundary target dynamic in which the
target performs a random walk in the interior but moves deterministically clockwise on the
boundaries, with probability α = 0.20 of returning to the interior (Fig. 4.5). These dynamics
exemplify different VoI regimes. In the boundary dynamic, VoI is low on the boundary,
allowing for long macro-actions. In the random walk dynamic, VoI is more uniform over
belief space; only short macro-actions are possible before sensing is necessary.

Experiment 2: Invariant Reward Our second experiment introduces conditions (ii) and (iii)
(Sec. 4.4) by rewarding the agent for tracking the target only in a single zone of interest
in the upper left corner of the world and imposing non-uniform observation noise inspired
by the Dark-Light POMDP problem [139, 172], such that the agent can sense the target’s
location most accurately on the bottom half of the world (Fig. 4.8). The agent follows a
boundary transition dynamic (condition (i)). The agent must perform information gathering
– moving to the bottom of the world to localize the target — before returning to the upper
corner to track the target in the zone of interest. VoI is high when the target is nearing the
zone of interest and can be localized with sufficient accuracy via sensing.
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(B) Boundary Dynamics(A) Random Walk
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Figure 4.5: Dynamic Tracking Experiment: An agent (blue) tracks a partially observable target
(red) in an environment with obstacles and boundaries (black) under (A) a random walk or (B) a
boundary dynamic with escape probability α.

4.7.1 Experimental Setup and Parameters

We demonstrate macro-action generation in a dynamic tracking problem (Fig. 4.5), in which
a fully observable, actuated agent tracks a partially observable target moving in a known
10×10 discretized map (|S| = 10, 000). The agent can move in each of the cardinal directions
or stay in place (|A| = 5). The agent observes the target location with discretized Gaussian
noise (diagonal covariance, σ2 = 6.25, |Z| = 100) in Experiment 1 and discretized Gaussian
noise with diagonal covariance varying linearly depending on the agent’s location, from
σ = 0 (perfect observation) in the bottom row of the world to σ2 = 25.0 in the top row of
the world in Experiment 2. We plan over a horizon of 75 iterations for Experiment 1 and 25

iterations for Experiment 2. We have discount factor γ = 0.99. In Experiment 1, the reward
function penalizes the squared Euclidean distance between the target and the agent, and in
Experiment 2, the agent receives a reward of 50.0 if it is in the cell as the target when the
target is in the zone of interest ({0, 1} × {0, 1}); otherwise, the agent receives zero reward.
The VoI threshold τ is set to τ = 5 in Experiment 1 and τ = 0.05 in Experiment 2.

Policies are constructed using point-based value iteration [137] with a fixed-size belief set
|B| = 285 and executed in a set of M = 500 tracking experiments for evaluation. The belief
set B is initialized to beliefs reachable under a QMDP policy [102] and three iterations of
alternating value-iteration and belief set updates are performed, in which the value function
estimate is used to update the set of reachable beliefs B, which in turn is used to improve the
value function estimate [137]. These values were determined by computational constraints;
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value function convergence during experimentation was not assessed. Additionally, although
PBVI formed the base approximation algorithm for these experiments, any approximation
of the POMDP value function can form the base of macro-action construction. Further
improvement may be seen if algorithms such as SARSOP [90] that explicitly attempt to
approximate the optimally reachable belief space are used as the base approximation.

The VoI macro-action policy (VoI MA) is compared against an approximation to the
closed-loop optimal policy (base closed-loop, Base CL) and a fixed length macro-action
(Fixed MA) policy, which is constrained to act closed-loop only every T = 15 planning
iterations. For all three policies, value function approximation is performed using a custom
implementation of PBVI [137].

4.7.2 Experimental Results

Results for Experiment 1 are shown in Table 4.1. Under the boundary dynamic, the VoI
macro-action policy has higher cumulative reward than the Base CL and Fixed MA policies.
This may seem counterintuitive — the performance of the optimal policy is an upper bound
on the VoI macro-action policy. However, this is an example of the trade-off between policy
complexity and approximability indicated by Theorem 4.6.2. The observed value of δB is
significantly lower for the VoI macro-action policy (Table 4.1), indicative of the macro-action
policy’s smaller reachable belief space. We note that the fixed macro-action policy has the
smallest value of δB. However, the fixed-length macro-actions, like many other hand-coded
macro-actions, can be arbitrarily sub-optimal. For the random walk dynamic, there is less
opportunity to exploit open-loop actions and we see that, as we would hope, VoI MA policy
performance reverts to that of the closed-loop policy.

Boundary Dynamics, α = 0.20 Random Walk Dynamics
Planner Total Reward Empirical δB Total Reward Empirical δB
Base CL 2800.2 (465.6)* 0.45 (0.04)* 3035.8 (257.5) 0.42 (0.04)*
VoI MA 3039.5 (274.4) 0.29 (0.03) 3050.8 (212.9) 0.31 (0.04)
Fixed MA 2584.3 (460.5)* 0.17 (0.02)* 2946.6 (311.4)* 0.15 (0.02)*

Table 4.1: Results for Experiment 1: Realized reward (higher is better) and empirical estimates
of δB (lower is better) during M = 500 experiments using VoI MA, Base CL, and Fixed MA policies
(mean, std). Significant differences from VoI MA (two-sided Welch’s t-test with Bonferroni correction,
p < 0.05/2) are indicated with an asterisk.

We additionally explore the effect of the VoI threshold τ on planner performance, macro-



72 CHAPTER 4. VALUE OF INFORMATION AND MACRO-ACTION DISCOVERY IN POMDPS

action utilization, and the value of δB. Results are presented in Fig. 4.6. As τ increases, the
VoI macro-action policy acts in open-loop for a larger fraction of the planning horizon and
the value of δB decreases. The realized reward reflects the balance between these two terms,
initially increasing as δB decreases, before finally decreasing as the policy incorporates more
sub-optimal open-loop actions.

Base Base Base

Figure 4.6: Macro-action Discovery Results: (Left) Realized reward under Base CL and VoI
macro-action policies with increasing values of the VoI threshold τ . (Center) The proportion of the
planning horizon for which open-loop macro-actions are employed. (Right) The empirical value of
δB. Plots show mean and standard error in M = 500 trials.

We can further explore the planner behavior in the random walk and boundary dynamic
experiments presented in Table 4.1. Fig. 4.7 provides scatter plots comparing the performance
of the VoI macro-action policy and the best closed-loop policy. Each point in the scatter
plot represents a paired experiment with identical target dynamics. These plots highlight
the variability of the best closed-loop planner and the reduction in the empirical value of δB
under the VoI macro-action policy. Fig. 4.7 additionally presents histograms showing the
proportion of the planning horizon spent in open loop and the length of macro-actions taken
by the agent for each dynamic under the VoI macro-action policy. These plots highlight
the utility of using VoI to selectively act in open loop; the VoI macro-action policy acts in
open-loop for a large fraction of the planning horizon, using extended sequences of open-loop
actions, and yet performs at least as well as the best closed-loop planner.

For Experiment 2, we visualize the length of the discovered belief-dependent macro-
actions. To visualize macro-actions as a function of the high-dimensional belief space, for
each possible state in the world, we compute the length of the macro-action corresponding
to a belief where the target is localized to that state (the target probability mass function is
a Dirac delta function), averaged over all possible corresponding states of the agent. Results
are shown in Fig. 4.8. The effect of structure in the POMDP model on the discovered
macro-actions is evident — when the target is localized in the zone of interest (upper left
corner) or has just passed the zone and is moving clockwise due to the boundary dynamic,
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(A) Boundary Dynamic (B) Random-walk Dynamic

Figure 4.7: Macro-actions in (A) Boundary versus (B) Random Walk Dynamics: (Left)
Performance for the VoI MA policy versus the Best CL policy in paired experiments. In the top row,
points in the green region represent experiments for which VoI MA outperforms Best CL, achieving
higher realized reward. In the bottom row, points in the red region represent experiments for which
VoI MA outperforms Best CL, achieving lower values of δB. Color indicates point density (yellow
high density to blue low density). (Right) Histograms of the proportion of the planning horizon
the VoI MA planner spends in open loop and the length of all executed VoI macro-actions across
M = 500 experiments.

the agent can achieve high reward with open loop macroactions; when the target is in the
lower half of the world and moving towards the zone of interest, sensing is crucial. In this
experiment, the VoI MA policy achieves higher average reward (18.69) than the Base CL
(15.08) and Fixed MA (13.03) policies over M = 100 simulated trails.

4.8 Conclusion

This work presents value-of-information (VoI) as a novel metric for quantifying the benefit
of exploration or observation in a sequential decision-making task. When VoI is low, further
sensing (exploration) will not improve task performance and a planning agent should favor
action based on its current measurements and model (exploitation).

We leverage VoI to design open-loop macro-actions for planning under uncertainty. By
generating macro-actions using VoI, we can bound the regret of macro-action policies with
respect to the optimal, closed-loop policy. Leveraging open-loop macro-actions within
POMDP policies can reduce the size of a policy’s reachable belief space and thus the
complexity of planning. This has direct implications for the performance of point-based
POMDP policies, as we show theoretically in Theorem 4.6.2 and experimentally in a set of
dynamic tracking experiments. VoI macro-actions balance the planning complexity induced
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Zone of Interest

Macro-action Length Dark-Light Sensor Model

(A) (B)

Figure 4.8: Visualizing Belief-Dependent Macro-Actions: (A) For each state in the world
(shown spatially), the average length of the discovered VoI macro-action is denoted by color for each
possible state of the target. The bugtrap obstacle is shown in white. If the target is localized near the
upper-left corner of the world, the agent can confidently track the target in the zone of interest, and
long-horizon macro-actions are possible. Sensing is more important in the bottom half of the world;
the agent must move to the higher observability regions near the bottom of the world in order to
reduce target uncertainty before it enters the zone of interest. VoI macro-actions are also sensitive
to the state dynamics — for example, long-horizon macro-actions are possible when the target is
trapped in the bugtrap obstacle. (B) The dark-light sensor model; sensor noise increases linearly
from the bottom (light) to the top (dark) of the world.

by sensing with the value of the information provided by observations in partially observable
environments to enable efficient task execution in POMDPs.

The development of the VoI metric and the algorithms used to approximate it in this
chapter represent a step towards autonomous decision-makers that are able to balance
exploration and exploitation intelligently. The utility of such a metric is evident. In this
thesis, we use VoI to construct macro-actions with guaranteed performance. VoI could
also be used to determine when and how often agents should communicate in multi-agent
settings or under communication constraints [161]. The generality of the approach—directly
approximating the sensitivity of the POMDP value function to actions that reduce belief
uncertainty—means that this formulation of VoI can be applied to any scientific decision-
making problem, not only the dynamic tracking experiment explored here. Although the
presentation in this chapter relied on a piecewise-linear and convex approximation of the
POMDP value function in discrete problems, the general formulation would apply to any
value-function approximation. Additionally, the analytical computation of VoI presented here
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could be used as the basis of a learning algorithm that generalizes the value of information
across belief space more efficiently than direct approximation with point-based value function
estimates. These are promising directions for future work that would enable the approaches
presented here to be deployed in real-world oceanographic dynamic-tracking scenarios, such
as those presented at the start of this chapter.
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Chapter 5

Online Learning with Optimism and

Delay

The exploration and exploitation trade-off manifests in different forms throughout
decision-making problems. Chapter 3 and Chapter 4 work to balance exploration

and exploitation in sequential decision-making problems, where an agent with a persistent
state must use a model of the environment to accomplish some scientific task or objective
under uncertainty. These problems were modeled as partially observable Markov decision
processes, and task performance was used as the guide for trading off between exploration
and exploitation when solving for a POMDP policy.

This chapter considers a new manifestation of the exploration and exploitation trade-off
that arises in online learning. Online learning, sometimes called “learning with expert advice”
is a paradigm in which a learner is pitted against a potentially adversarial environment
[129, 152] and must learn from experience to make good decisions over time. In standard
online learning formulations, the underlying environment is assumed to be adversarial and
the learner does not maintain an explicit distribution over possible future outcomes. Unlike
the POMDP formulations we saw in previous chapters, the decision-maker does not have a
persistent state and the outcomes for each available action choice are fully observable at each
timestep. Uncertainty enters the problem instead due to the unpredictable and potentially
adversarial future behavior of the environment. The learner must strike a balance between
trusting information provided in previous experiences by playing actions that have performed
well in the past (exploitation) and hedging against potentially adversarial future outcomes
by playing diverse action choices (exploration). Online learning seeks to strike a trade-off
between exploration and exploitation that enables formal guarantees on the performance of
the learner. Namely, we often want to guarantee that the learner will eventually learn to

77
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identify and play the optimal choice from among the candidate action set; these algorithms
are known as “no-regret” algorithms.

The goal of this chapter is to develop online learning algorithms and corresponding
performance bounds that can be used for real-world, scientific applications. We show how
an online learner can optimally balance exploration and exploitation under several real-
world constraints: when the feedback provided by the environment is delayed or provided
incrementally; when the underlying environment has some predictability that should be
leveraged; and when the learner must provide robust performance without relying on difficult-
to-tune parameters. For each of these real-world challenges, we provide a novel, unified
algorithmic framework and performance analysis that shows how online learners should
adjust their exploration-exploitation balance to achieve asymptotically optimal performance.
The motivating scientific application in the chapter is real-time, subseasonal temperature
and precipitation forecasting, which is introduced in the following section.

Motivating Application: Model Selection for Subseasonal Forecasting. Improving our ability
to forecast the weather and climate is of interest to all sectors of the economy and government
agencies from the local to the national level. Weather forecasts 0-10 days ahead and climate
forecasts seasons to decades ahead are currently used operationally in decision-making, and
the accuracy and reliability of these forecasts has improved consistently in recent decades
[180]. However, many critical applications – including water allocation, wildfire management,
and drought and flood mitigation – require subseasonal forecasts (Fig. 5.1) with lead times
between these two extremes, generally from 2 to 6 weeks in advance [117, 190].

While short-term forecasting accuracy is largely sustained by physics-based dynamical
models, these deterministic methods have limited subseasonal accuracy due to the chaotic
nature of atmospheric dynamics [107]. Indeed, subseasonal forecasting has long been
considered a “predictability desert” due to its complex dependence on both local weather
and global climate variables [183]. Recent large-scale research efforts have advanced the
subseasonal capabilities of operational physics-based models [92, 136, 182], while parallel
efforts have demonstrated the value of machine learning and deep learning methods in
improving subseasonal forecasting [5, 31, 60, 68, 98, 166, 184, 187, 189, 194].

In real-time forecasting operations, we can play an ensemble of these state-of-the-art
subseasonal models to achieve improved forecast accuracy, selecting the models that, for
a given time and forecast horizon, minimize a chosen loss criteria. This requires striking
a balance between choosing models that have performed well in the past and monitoring
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Figure 5.1: Subseasonal Temperature and Precipitation: Examples of global temperature and
precipitation outcomes on the subseasonal (2-6 weeks) timescale from Mouatadid et al. [123].

low-performing models to ensure that they are leveraged if their performance improves.
Model performance may be highly variable: some models may perform best in winter,
others during a specific phase of the Madden Julien oscillation. Learning to produce a
high-performing ensemble of models requires real-time, adaptive decision making and can
be addressed with online learning methods.

Overview. Inspired by the demands of real-time climate and weather forecasting, the remain-
der of this chapter develops optimistic online learning algorithms that require no parameter
tuning and have optimal regret guarantees under delayed feedback. The algorithms—DORM,
DORM+, and AdaHedgeD—arise from a novel reduction of delayed online learning to op-
timistic online learning that reveals how optimistic hints can mitigate the regret penalty
caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic
learning that exposes its robustness to hinting errors and a new meta-algorithm for learning
effective hinting strategies in the presence of delay. We conclude by benchmarking our
algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative
to state-of-the-art forecasting models. This chapter is based on work appearing in Flaspohler
et al. [47].
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5.1 Online Learning with Optimism and Delay

Online learning is a sequential decision-making paradigm in which a learner is pitted against
a potentially adversarial environment [129, 152]. At time t, the learner must select a play
wt from some set of possible plays W. The environment then reveals the loss function `t
and the learner pays the cost `t(wt). The learner uses information collected in previous
rounds to improve its plays in subsequent rounds. Optimistic online learners additionally
attempt to leverage any underlying predictability in the potentially adversarial environment
by making use of side-information or “hints” about expected future losses to improve their
plays. Over a period of length T , the goal of the learner is to minimize regret, an objective
that quantifies the performance gap between the learner and the best possible constant play
in retrospect in some competitor set U:

RegretT = sup
u∈U

T∑
t=1

`t(wt)− `t(u). (5.1)

Adversarial online learning algorithms provide robust performance in many complex real-
world online prediction problems such as climate or weather forecasting.

In traditional online learning paradigms, the loss for round t is revealed to the learner
immediately at the end of round t. However, many real-world applications produce delayed
feedback, i.e., the loss for round t is not available until round t+D for some delay period D.1

Existing delayed online learning algorithms achieve optimal worst-case regret rates against
adversarial loss sequences, but each has drawbacks when deployed for real applications
with short horizons T . Some use only a small fraction of the data to train each learner
[74, 188]; others tune their parameters using uniform bounds on future gradients that are
often challenging to obtain or overly conservative in applications [66, 75, 86, 114, 144]. Only
the concurrent work of Hsieh et al. [66, Thm. 13] can make use of optimistic hints and only
for the special case of unconstrained online gradient descent.

In this work, we aim to develop robust and practical algorithms for real-world delayed
online learning. To this end, we introduce three novel algorithms—DORM, DORM+, and
AdaHedgeD—that use every observation to train the learner, have no parameters to tune,
exhibit optimal worst-case regret rates under delay, and enjoy improved performance when
accurate hints for unobserved losses are available. We begin by formulating delayed online

1Our initial presentation will assume constant delay D, but we provide extensions to variable and
unbounded delays in App. C.14.
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learning as a special case of optimistic online learning and use this “delay-as-optimism”
perspective to develop:

1. A formal reduction of delayed online learning to optimistic online learning (Lems. 5.4.1
and 5.4.2),

2. The first optimistic tuning-free and self-tuning algorithms with optimal regret guaran-
tees under delay (DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning regret bounds that reveals the
robustness of optimistic algorithms to inaccurate hints (Thms. 5.4.1 and 5.4.2),

4. The first general analysis of follow-the-regularized-leader (Thms. 5.4.3 and 5.7.1) and
online mirror descent algorithms (Thm. 5.4.4) with optimism and delay, and

5. The first meta-algorithm for learning a low-regret optimism strategy under delay
(Thm. 5.8.2).

We apply our algorithms on the problem of subseasonal forecasting in Sec. 5.9. Sub-
seasonal forecasting—predicting precipitation and temperature 2-6 weeks in advance—is a
crucial task for allocating water resources and preparing for weather extremes [190]. Model
selection for subseasonal forecasting can be posed as an online learning problem by allowing
the play vector wt to specify a convex ensemble of d different input forecasts from different
models. The set of possible plays W is then the (d− 1)-dimensional simplex, W = 4d−1.
We aim to control regret against a competitor set U that consists of the d basis vectors,
U = {ei}d−1

i=0 , each representing the forecast of one of the d input models. Controlling regret
against set U corresponds to playing an ensemble forecast that is at least as good as the
best input model, an important objective for a real-time forecasting algorithm.

Subseasonal forecasting presents several challenges for online learning algorithms. First,
real-time subseasonal forecasting suffers from delayed feedback: multiple forecasts are
issued before receiving feedback on the first. Second, the regret horizons are short: a
common evaluation period for semimonthly forecasting is one year, resulting in 26 total
forecasts. Third, forecasters cannot have difficult-to-tune parameters in real-time, practical
deployments. We demonstrate that our algorithms DORM, DORM+, and AdaHedgeD
successfully overcome these challenges and achieve consistently low regret compared to the
best forecasting models.

Notation Overview For integers a, b, we use the shorthand [b] , {1, . . . , b} and
ga:b ,

∑b
i=a gi. We say a function f is proper if it is somewhere finite and never −∞.
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We let ∂f(w) = {g ∈ Rd : f(u) ≥ f(w) + 〈g,u − w〉, ∀u ∈ Rd} denote the set of
subgradients of f at w ∈ Rd and say f is µ-strongly convex over a convex set W ⊆ int dom f

with respect to ‖·‖ with dual norm ‖·‖∗ if ∀w,u ∈ W and g ∈ ∂f(w), we have f(u) ≥
f(w) + 〈g,u−w〉+ µ

2‖w − u‖2. For differentiable ψ, we define the Bregman divergence
Bψ(w,u) , ψ(w) − ψ(u) − 〈∇ψ(u),w − u〉. We define diam(W) = infw,w′∈W ‖w −w′‖,
(r)+ , max(r, 0), and min(r, s)+ , (min(r, s))+.

5.2 Preliminaries: Standard and Optimistic Online Learning

The standard online learning algorithms, follow the regularized leader (FTRL) and online
mirror descent (OMD), were introduced in Sec. 2.2. Although these classical algorithms
provide optimal performance in the worst case, there is opportunity to improve both in
several regards. First, as mentioned previously, these algorithm rely on a difficult-to-tune
parameter λ that balances exploration and exploitation; each algorithm only achieves
optimal regret when λ is tuned appropriately. Second, many loss sequences encountered in
applications are not truly adversarial; real-world environments may produce losses that are
partially predictable based on past experience and we would like to exploit that predictability
to improve algorithm performance and provide tighter regret guarantees.

Optimistic online learning algorithms aim to improve performance when loss sequences
are partially predictable, while remaining robust to adversarial sequences [see, e.g., 10, 28,
147, 169]. In optimistic online learning, the learner is provided with a “hint” in the form of a
pseudo-loss ˜̀

t at the start of round t that represents a guess for the true unknown future loss.
The online learner can incorporate this hint before making play wt. In standard formulations
of optimistic online learning, the convex pseudo-loss ˜̀

t(wt) is added to the standard FTRL
or OMD regularized objective function and leads to optimistic variants of these algorithms:
optimistic FTRL [OFTRL, 146] and single-step optimistic OMD [SOOMD, 76, Sec. 7.2].
Let g̃t ∈ ∂ ˜̀

t(wt−1) and gt ∈ ∂`t(wt) denote subgradients of the pseudo-loss and true loss
respectively. The inclusion of an optimistic hint leads to the following linearized update
rules for play wt+1:

wt+1 = arg min
w∈W

〈g1:t + g̃t+1,w〉+ λψ(w), (OFTRL)

wt+1 = arg min
w∈W

〈gt + g̃t+1 − g̃t,w〉+ Bλψ(w,wt)

with g̃0 = 0 and arbitrary w0 (SOOMD)
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where g̃t+1 ∈ Rd is the hint subgradient, λ ≥ 0 is a regularization parameter, and ψ is proper
regularization function that is 1-strongly convex with respect to a norm ‖·‖. The optimistic
learner enjoys reduced regret whenever the error in the provided hint ‖gt+1 − g̃t+1‖∗ is
small [76, 146]. Common choices of optimistic hints include the last observed subgradient
or average of previously observed subgradients [146], but the hint could also be produced
by some auxiliary learning procedure that attempts to leverage seasonality or auxiliary
information to predict future losses. We note that the standard FTRL and OMD updates
can be recovered by setting the optimistic hints to zero.

5.3 Online Learning with Optimism and Delay: Algorithms

In the delayed feedback setting with constant delay of length D, the learner only observes
(`i)

t−D
i=1 before making play wt+1. In this setting, we propose counterparts of the OFTRL

and SOOMD online learning algorithms, which we call optimistic delayed FTRL (ODFTRL)
and delayed optimistic online mirror descent (DOOMD) respectively:

wt+1 = arg min
w∈W

〈g1:t−D + ht+1,w〉+ λψ(w) (ODFTRL)

wt+1 = arg min
w∈W

〈gt−D + ht+1 − ht,w〉+ Bλψ(w,wt)

with h0 , 0 and arbitrary w0, (DOOMD)

for hint vector ht+1. Our use of the notation ht+1 instead of g̃t+1 for the optimistic hint
here is suggestive. Our regret analysis in Thms. 5.4.3 and 5.4.4 reveals that, instead of
hinting only for the “future” missing loss gt+1, delayed online learners should uses hints ht
that guess at the summed subgradients of all delayed and future losses: ht =

∑t
s=t−D g̃s.

5.4 Online Learning with Optimism and Delay: Regret Bounds

While it is easy to define new online learning algorithms, such as ODFTRL and DOOMD, it
is often much more challenging to control the regret of the plays made by these algorithms.
Controlling an algorithm’s regret requires analyzing how the algorithm trades off between
exploiting previously observed losses to make targeted plays and hedging against future,
adversarial losses by making conservative plays.

To analyze the regret of the delayed ODFTRL and DOOMD algorithms, we make use of
the first key insight of this chapter, which reduces online learning with delay to optimistic
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online learning, connecting these two branches of online learning for the first time: Learning
with delay is a special case of learning with optimism. In particular, ODFTRL and DOOMD
are instances of OFTRL and SOOMD respectively with a particularly “bad” choice of
optimistic hint g̃t+1 that deletes the unobserved loss subgradients gt−D+1:t.

Lemma 5.4.1 (ODFTRL is OFTRL with a bad hint). ODFTRL is OFTRL with g̃t+1 =

ht+1 −
∑t

s=t−D+1 gs.

Lemma 5.4.2 (DOOMD is SOOMD with a bad hint). DOOMD is SOOMD with g̃t+1 =

g̃t + gt−D − gt + ht+1 − ht = ht+1 −
∑t

s=t−D+1 gs.

The implication of this reduction of delayed online learning to optimistic online learning
is that any regret bound shown for undelayed OFTRL or SOOMD immediately yields a
regret bound for ODFTRL and DOOMD under delay. As we demonstrate in the remainder
of the chapter, this novel connection between delayed and optimistic online learning allows
us to bound the regret of optimistic, self-tuning, and tuning-free algorithms for the first
time under delay.

It is worth reflecting on the key property of OFTRL and SOOMD that enables the
delay-to-optimism reduction: each algorithm depends on gt and g̃t+1 only through the sum
g1:t + g̃t+1.2 For the “bad” hints of Lems. 5.4.1 and 5.4.2, these sums are observable even
though gt and g̃t+1 are not separately observable at time t due to delay. A number of
alternatives to SOOMD have been proposed for optimistic OMD [28, 80, 146, 147]. Unlike
SOOMD, these procedures all incorporate optimism in two steps, as in the updates

wt+1/2 = arg min
w∈W

〈gt,w〉+ Bλψ(w,wt−1/2) and (5.2)

wt+1 = arg min
w∈W

〈g̃t+1,w〉+ Bλψ(w,wt+1/2) (5.3)

described in Rakhlin and Sridharan [146, Sec. 2.2]. It is unclear how to reduce delayed
OMD to an instance of one of these two-step procedures, as knowledge of the unobserved gt
is needed to carry out the first step.

5.4.1 Delayed and Optimistic Regret Bounds

To demonstrate the utility of our delay-as-optimism perspective, we first present the following
new regret bounds for OFTRL and SOOMD, proved in Apps. C.2 and C.3 respectively.

2For SOOMD, gt + g̃t+1 − g̃t = g1:t + g̃t+1 − (g1:t−1 + g̃t).
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Theorem 5.4.1 (OFTRL regret). If ψ is nonnegative, then, for all u ∈W, the OFTRL
iterates wt satisfy

RegretT (u) ≤ λψ(u) +
1

λ

T∑
t=1

huber(‖gt − g̃t‖∗, ‖gt‖∗). (5.4)

Theorem 5.4.2 (SOOMD regret). If ψ is differentiable and g̃T+1 , 0, then, ∀u ∈W, the
SOOMD iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) + (5.5)

1

λ

T∑
t=1

huber(‖gt − g̃t‖∗, ‖gt + g̃t+1 − g̃t‖∗). (5.6)

Both results feature the robust Huber penalty [67]

huber(x, y) ,
1

2
x2 − 1

2
(|x| − |y|)2

+ ≤ min(
1

2
x2, |y||x|) (5.7)

in place of the more common squared error term 1
2‖gt − g̃t‖2∗. As a result, Thms. 5.4.1

and 5.4.2 strictly improve the rate-optimal OFTRL and SOOMD regret bounds of Mohri
and Yang [119], Orabona [129], Rakhlin and Sridharan [146, Thm. 7.28] and Joulani et al.
[76, Sec. 7.2] by revealing a previously undocumented robustness to inaccurate hints g̃t. We
will use this robustness to large hint error ‖gt − g̃t‖∗ to establish optimal regret bounds
under delay.

As an immediate consequence of this regret analysis and our delay-as-optimism per-
spective, we obtain the first general analyses of FTRL and OMD with optimism and
delay.

Theorem 5.4.3 (ODFTRL regret). If ψ is nonnegative, then, for all u ∈W, the ODFTRL
iterates wt satisfy

RegretT (u) ≤ λψ(u) +
1

λ

T∑
t=1

bt,F for (5.8)

bt,F , huber(‖ht −
t∑

s=t−D
gs‖∗, ‖gt‖∗). (5.9)
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Theorem 5.4.4 (DOOMD regret). If ψ is differentiable and hT+1 , gT−D+1:T , then, for
all u ∈W, the DOOMD iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) +
1

λ

T∑
t=1

bt,O for (5.10)

bt,O , huber(‖ht −
t∑

s=t−D
gs‖∗, ‖gt−D + ht+1 − ht‖∗). (5.11)

Our results show a compounding of regret due to delay: the bt,F term of Thm. 5.4.3 is
of size O(D + 1) whenever ‖ht‖∗ = O(D + 1), and the same holds for bt,O of Thm. 5.4.4
if ‖ht+1 − ht‖∗ = O(1). An optimal setting of λ therefore delivers O(

√
(D + 1)T ) regret,

yielding the minimax optimal rate for adversarial learning under delay [188]. Thms. 5.4.3
and 5.4.4 also reveal the heightened value of optimism in the presence of delay: in addition to
providing an effective guess of the future subgradient gt, an optimistic hint can approximate
the missing delayed feedback (

∑t−1
s=t−D gs) and thereby significantly reduce the penalty of

delay. If, on the other hand, the hints are a poor proxy for the missing loss subgradients,
the novel huber term ensures that we still only pay the minimax optimal

√
D + 1 penalty

for delayed feedback.
Related work A classical approach to delayed feedback in online learning is the

so-called “replication” strategy in which D + 1 distinct learners take turns observing and
responding to feedback [1, 74, 118, 188]. While minimax optimal in adversarial settings,
this strategy has the disadvantage that each learner only sees T

D+1 losses and is completely
isolated from the other replicates, exacerbating the problem of short prediction horizons. In
contrast, we develop and analyze non-replicated delayed online learning strategies that use
a combination of optimistic hinting and self-tuned regularization to mitigate the effects of
delay while retaining optimal worst-case behavior.

We are not aware of prior analyses of DOOMD, and, to our knowledge, Thm. 5.4.3 and
its adaptive generalization Thm. 5.7.1 provide the first general analysis of delayed FTRL,
apart from the concurrent work of Hsieh et al. [66, Thm. 1]. Hsieh et al. [66, Thm. 13] and
Quanrud and Khashabi [144, Thm. 2.1] focus only on delayed gradient descent, Korotin et al.
[86] study General Hedging, and Joulani et al. [75, Thm. 4] and Quanrud and Khashabi [144,
Thm. A.5] study non-optimistic OMD under delay. Thms. 5.4.3, 5.4.4, and 5.7.1 strengthen
these results from the literature which feature a sum of subgradient norms (

∑t−1
s=t−D ‖gs‖∗

or D‖gt‖∗) in place of ‖ht −
∑t−1

s=t−D gs‖∗. Even in the absence of optimism, the latter
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can be significantly smaller: e.g., if the gradients gs are i.i.d. mean-zero vectors, the
former has size Ω(D) while the latter has expectation O(

√
D). In the absence of optimism,

McMahan and Streeter [114] obtain a bound comparable to Thm. 5.4.3 for the special case
of one-dimensional unconstrained online gradient descent.

In the absence of delay, Cutkosky [36] introduces meta-algorithms for imbuing learning
procedures with optimism while remaining robust to inaccurate hints; however, unlike
OFTRL and SOOMD, the procedures of Cutkosky [36] require separate observation of g̃t+1

and each gt, making them unsuitable for our delay-to-optimism reduction.

5.5 Online Learning with Optimism and Delay: Regularization Tuning

The online learning algorithms introduced so far all include a regularization parameter λ.
In theory and in practice, these algorithms only achieve low regret if the regularization
parameter λ is chosen appropriately. In standard FTRL, for example, one such setting

that achieves optimal regret is λ =

√ ∑T
t=1 ‖gt‖2∗

supu∈U ψ(u) . This choice, however, cannot be used in

practice as it relies on knowledge of all future unobserved loss subgradients. To make use of
online learning algorithms, the tuning parameter λ is often set using coarse upper bounds
on, e.g., the maximum possible subgradient norm. However, these bounds are often very
conservative and lead to poor real-world performance.

In the following sections, we introduce two strategies for tuning regularization with
optimism and delay. Sec. 5.6 introduces the DORM and DORM+ algorithms, variants of
ODFTRL and DOOMD that are entirely tuning-free. Sec. 5.7 introduces the AdaHedgeD
algorithm, an adaptive variant of ODFTRL that is self-tuning ; a sequence of regularization
parameters λt are set automatically using new, tighter bounds on algorithm regret. All
three algorithms achieve the minimax optimal regret rate under delay, support optimism,
and have strong real-world performance as shown in Sec. 5.9.

5.6 Tuning-free Learning with Optimism and Delay

Regret matching (RM) [20, 54] and regret matching+ (RM+) [177] are online learning
algorithms that have strong empirical performance. RM was developed to find correlated
equilibria in two-player games and is commonly used to minimize regret over the simplex.
RM+ is a modification of RM designed to accelerate convergence and used to effectively
solve the game of Heads-up Limit Texas Hold’em poker [22]. RM and RM+ support neither
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optimistic hints nor delayed feedback, and known regret bounds have a suboptimal scaling
with respect to the problem dimension d [26, 131]. To extend these algorithms to the delayed
and optimistic setting and recover the optimal regret rate, we introduce our generalizations,
delayed optimistic regret matching (DORM)

wt+1 = w̃t+1/〈1, w̃t+1〉 for (DORM)

w̃t+1 , max(0, (r1:t−D + ht+1)/λ)q−1

and delayed optimistic regret matching+ (DORM+)

wt+1 = w̃t+1/〈1, w̃t+1〉 for (DORM+)

h0 = w̃0 , 0,

w̃t+1 , max
(
0, w̃p−1

t + (rt−D + ht+1 − ht)/λ
)q−1

,

Each algorithm makes use of an instantaneous regret vector rt , 1〈gt,wt〉−gt that quantifies
the relative performance of each expert with respect to the play wt and the linearized loss
subgradient gt. The updates also include a parameter q ≥ 2 and its conjugate exponent
p = q/(q − 1) that is set to recover the minimax optimal scaling of regret with the number
of experts (see Cor. 5.6.1). We note that DORM and DORM+ recover the standard RM
and RM+ algorithms when D = 0, λ = 1, q = 2, and ht = 0, ∀t.

5.6.1 Tuning-free Regret Bounds

To bound the regret of the DORM and DORM+ plays, we prove that DORM is an instance
of ODFTRL and DORM+ is an instance of DOOMD. This connection enables us to
immediately provide regret guarantees for these regret-matching algorithms under delayed
feedback and with optimism. We first highlight a remarkable property of DORM and
DORM+ that is the basis of their tuning-free nature. Under mild conditions, the normalized
DORM and DORM+ iterates wt are independent of the choice of regularization parameter
λ.

Lemma 5.6.1 (DORM and DORM+ are independent of λ). If the subgradient gt and
hint ht+1 only depend on λ through (ws, λ

q−1w̃s, gs−1,hs)s≤t and (ws, λ
q−1w̃s, gs,hs)s≤t

respectively, then the DORM and DORM+ iterates (wt)t≥1 are independent of the choice of
λ > 0.



Sec. 5.6. Tuning-free Learning with Optimism and Delay 89

Lem. 5.6.1, proved in App. C.5, implies that DORM and DORM+ are automatically
optimally tuned with respect to λ, even when run with a default value of λ = 1. Hence,
these algorithms are tuning-free, a very appealing property for real-world deployments of
online learning.

To show that DORM and DORM+ also achieve optimal regret scaling under delay,
we connect them to ODFTRL and DOOMD operating on the nonnegative orthant with a
special surrogate loss ˆ̀

t (see App. C.4 for our proof):

Lemma 5.6.2 (DORM is ODFTRL and DORM+ is DOOMD). The DORM and DORM+
iterates are proportional to ODFTRL and DOOMD iterates respectively with W , Rd+,
ψ(w̃) = 1

2‖w̃‖2p, and loss ˆ̀
t(w̃) = 〈w̃,−rt〉.

Lem. 5.6.2 enables the following optimally-tuned regret bounds for DORM and DORM+
run with any choice of λ:

Corollary 5.6.1 (DORM and DORM+ regret). Under the assumptions of Lem. 5.6.1, for
all u ∈ 4d−1 and any choice of λ > 0, the DORM and DORM+ iterates wt satisfy

RegretT (u) ≤ inf
λ>0

λ
2‖u‖2p + 1

λ(p−1)

∑T
t=1 bt,q (5.12)

=
√
‖u‖2p

2(p−1)

∑T
t=1 bt,q ≤

√
d2/q(q−1)

2

∑T
t=1 bt,∞ (5.13)

where hT+1 , rT−D+1:T and, for each c ∈ [2,∞],

bt,c
(DORM)

= huber(‖ht −
t∑

s=t−D
rs‖c, ‖rt‖c) and (5.14)

bt,c
(DORM+)

= huber(‖ht −
t∑

s=t−D
rs‖2c , (5.15)

‖rt−D + ht+1 − ht‖c). (5.16)

If, in addition, q = arg minq′≥2 d
2/q′(q′−1), then RegretT (u) ≤

√
(2 log2(d)− 1)

∑T
t=1 bt,∞.

Cor. 5.6.1, proved in App. C.6, suggests a natural hinting strategy for reducing the
regret of DORM and DORM+: predict the sum of unobserved instantaneous regrets∑t

s=t−D rs. We explore this strategy empirically in Sec. 5.9. Cor. 5.6.1 also highlights
the value of the q parameter in DORM and DORM+: using the easily computed value
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q = arg minq′≥2 d
2/q′(q′ − 1) yields the minimax optimal

√
log2(d) dependence of regret on

dimension [26, 131]. By Lem. 5.6.2, setting q in this way is equivalent to selecting a robust
1
2‖·‖2p regularizer [50] for the underlying ODFTRL and DOOMD problems.

Related work Without delay, Farina et al. [42] independently developed optimistic
versions of RM and RM+ by reducing them to OFTRL and a two-step variant of optimistic
OMD (5.3). Unlike SOOMD, this two-step optimistic OMD requires separate observation of
g̃t+1 and gt, making it unsuitable for our delay-as-optimism reduction and resulting in a
different algorithm from DORM+ even when D = 0. In addition, their regret bounds and
prior bounds for RM and RM+ (special cases of DORM and DORM+ with q = 2) have
suboptimal regret when the dimension d is large [22, 201].

5.7 Self-tuned Learning with Optimism and Delay

In this section, we analyze an adaptive version of ODFTRL with time-varying regularization
λtψ and develop strategies for setting λt appropriately in the presence of optimism and
delay. We begin with a new general regret analysis of optimistic delayed adaptive FTRL
(ODAFTRL)

wt+1 = arg min
w∈W

〈g1:t−D + ht+1,w〉+ λt+1ψ(w) (ODAFTRL)

where ht+1 ∈ Rd is an arbitrary hint vector revealed before wt+1 is generated, ψ is 1-strongly
convex with respect to a norm ‖·‖, and λt ≥ 0 is a regularization parameter.

Theorem 5.7.1 (ODAFTRL regret). If ψ is nonnegative and λt is non-decreasing in t,
then, ∀u ∈W, the ODAFTRL iterates wt satisfy

RegretT (u) ≤ λTψ(u) +

T∑
t=1

min(
bt,F
λt

,at,F ) with (5.17)

bt,F , huber(‖ht −
t∑

s=t−D
gs‖∗, ‖gt‖∗) and (5.18)

at,F , diam(W) min
(
‖ht −

t∑
s=t−D

gs‖∗, ‖gt‖∗
)
. (5.19)

The proof of this result in App. C.7 builds on a new regret bound for undelayed optimistic
adaptive FTRL (OAFTRL). In the absence of delay (D = 0), Thm. 5.7.1 strictly improves
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existing regret bounds [76, 119, 146] for OAFTRL by providing tighter guarantees whenever
the hinting error ‖ht −

∑t
s=t−D gt‖∗ is larger than the subgradient magnitude ‖gt‖∗. In the

presence of delay, Thm. 5.7.1 benefits both from robustness to hinting error in the worst
case and the ability to exploit accurate hints in the best case. The bounded-domain factors
at,F strengthen both standard OAFTRL regret bounds and the concurrent bound of Hsieh
et al. [66, Thm. 1] when diam(W) is small and will enable us to design practical λt-tuning
strategies under delay without any prior knowledge of unobserved subgradients. We now
turn to these self-tuning protocols.

5.7.1 Conservative Tuning with Delayed Upper Bound

We must select a λt sequence the leads to optimal regret bounds for the ODAFTRL algorithm.
Setting aside the at,F bounded-domain factors in Thm. 5.7.1 for now, the adaptive sequence

λt =

√ ∑t
s=1 bs,F

supu∈U ψ(u) is known to be a near-optimal minimizer of the ODAFTRL regret bound

[115, Lemma 1]. However, this value is unobservable at time t. A common strategy is to

play the conservative value λt =

√
(D+1)B0+

∑t−D−1
s=1 bs,F

supu∈U ψ(u) , where B0 is a uniform upper bound

on the unobserved bs,F terms [75, 114]. In practice, this requires computing an a priori
upper bound on any subgradient norm that could possibly arise and often leads to extreme
over-regularization (see Sec. 5.9).

As a preliminary step towards fully adaptive settings of λt, we analyze in App. C.8 a
new delayed upper bound (DUB) tuning strategy which relies only on observed bs,F terms
and does not require upper bounds for future losses.

Theorem 5.7.2 (DUB regret). Fix α > 0, and, for at,F , bt,F as in (5.18), consider the
delayed upper bound (DUB) sequence

λt+1 =
2

α
max

j≤t−D−1
aj−D+1:j,F (DUB)

+
1

α

√√√√t−D∑
i=1

a2
i,F + 2αbi,F . (5.20)
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If ψ is nonnegative, then, for all u ∈W, the ODAFTRL iterates wt satisfy

RegretT (u) ≤
(ψ(u)

α
+ 1
)

(5.21)

(
2 max
t∈[T ]

at−D:t−1,F +

√√√√ T∑
t=1

a2
t,F + 2αbt,F

)
. (5.22)

As desired, the DUB setting of λt depends only on previously observed at,F and bt,F
terms and achieves optimal regret scaling with the delay period D. However, the terms at,F ,
bt,F are themselves potentially loose upper bounds for the instantaneous regret at time t.
In the following section, we show how the DUB regularization setting can be refined further
to produce AdaHedgeD adaptive regularization.

5.7.2 Refined Tuning with AdaHedgeD

As noted by de Rooij et al. [39], Erven et al. [40], Orabona [129], the effectiveness of an
adaptive regularization setting λt that uses an upper bound on regret (such as bt,F ) relies
heavily on the tightness of that bound. In practice, we want to set λt using as tight a
bound as possible. Our next result introduces a new tuning sequence that can be used
with delayed feedback and is inspired by the popular AdaHedge algorithm [40]. It makes
use of the tightened regret analysis underlying Thm. 5.7.1 to enable tighter settings of λt
compared to DUB, while still controlling algorithm regret (see proof in App. C.9).

Theorem 5.7.3 (AdaHedgeD regret). Fix α > 0, and consider the delayed AdaHedge-style
(AdaHedgeD) sequence

λt+1 = 1
α

∑t−D
s=1 δs for (AdaHedgeD)

δt , min(Ft+1(wt, λt)− Ft+1(w̄t, λt), 〈gt,wt − w̄t〉, (5.23)

Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉)+ (5.24)

with w̄t , arg minw∈W Ft+1(w, λt), (5.25)

ŵt , arg min
w∈W

Ft+1(w, λt) + (5.26)

min(
‖gt‖∗

‖ht − gt−D:t‖∗
, 1)〈ht − gt−D:t,w〉, (5.27)

and Ft+1(w, λt) , λtψ(w) + 〈g1:t,w〉. (5.28)
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If ψ is nonnegative, then, for all u ∈W, the ODAFTRL iterates satisfy

RegretT (u) ≤
(ψ(u)

α
+ 1
)

(5.29)

(
2 max
t∈[T ]

at−D:t−1,F +

√√√√ T∑
t=1

a2
t,F + 2αbt,F

)
. (5.30)

Remarkably, Thm. 5.7.3 yields a minimax optimal O(
√

(D + 1)T +D) dependence on
the delay parameter and nearly matches the Thm. 5.4.3 regret of the optimal constant λ
tuning. Although this regret bound is identical to that in Thm. 5.7.2, in practice the λt
values produced by AdaHedgeD can be orders of magnitude smaller than those of DUB,
granting additional adaptivity. We evaluate the practical implications of these λt settings in
Sec. 5.9.

As a final note, when ψ is bounded on U, we recommend choosing α = supu∈U ψ(u) so
that ψ(u)

α ≤ 1. For negative entropy regularization ψ(u) =
∑d

j=1 uj ln(uj) + ln(d) on the
simplex U = W = 4d−1, this yields α = ln(d) and a regret bound with minimax optimal√

ln(d) dependence on d [26, 131].
Related work Our AdaHedgeD δt terms differ from standard AdaHedge increments

[see, e.g., 129, Sec. 7.6] due to the accommodation of delay, the incorporation of optimism,
and the inclusion of the final two terms in the min. These non-standard terms are central
to reducing the impact of delay on our regret bounds. Prior and concurrent approaches to
adaptive tuning under delay do not incorporate optimism and require an explicit upper bound
on all future subgradient norms, a quantity which is often difficult to obtain or very loose
[66, 75, 114]. Our optimistic algorithms, DUB and AdaHedgeD, admit comparable regret
guarantees (Thms. 5.7.2 and 5.7.3) but require no prior knowledge of future subgradients.

5.8 Learning to Hint with Delay

As we have seen, optimistic hints play an important role in online learning under delay:
effective hinting can counteract the increase in regret under delay. In this section, we consider
the problem of choosing amongst several competing hinting strategies. We show that this
problem can again be treated as a delayed online learning problem. In the following, we
will call the original online learning problem the “base problem” and the learning-to-hint
problem the “hinting problem.”

Suppose that, at time t, we observe the hints g̃t of m different hinters arranged into a
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d×m matrix Ht. Each column of Ht is one hinter’s best estimate of the sum of missing loss
subgradients gt−D:t. Our aim is to output a sequence of combined hints ht(ωt) , Htωt with
low regret relative to the best constant combination strategy ω ∈ Ω , 4m−1 in hindsight.
To achieve this using delayed online learning, we make use of a convex loss function lt(ω)

for the hint learner that upper bounds the base learner regret.

Assumption 5.8.1 (Convex regret bound). For any hint sequence (ht)
T
t=1 and u ∈ Ω,

the base problem admits the regret bound RegretT (u) ≤ C0(u) + C1(u)
√∑T

t=1 ft(ht) for
C1(u) ≥ 0 and convex functions ft independent of u.

As we detail in App. C.11, Assump. 5.8.1 holds for all of the learning algorithms
introduced in this thesis. For example, by Cor. 5.6.1, if the base learner is DORM, we
may choose C0(u) = 0, C1(u) =

√
‖u‖2p

2(p−1) , and the O(D + 1) convex function ft(ht) =

‖rt‖q‖ht −
∑t

s=t−D rs‖q ≥ bt,q.3
For any base learner satisfying Assump. 5.8.1, we choose lt(ω) = ft(Htω) as our hinting

loss, use the tuning-free DORM+ algorithm to output the combination weights ωt on each
round, and provide the hint ht(ωt) = Htωt to the base learner. The following result, proved
in App. C.10, shows that this learning to hint strategy performs nearly as well as the best
constant hint combination strategy in retrospect.

Theorem 5.8.2 (Learning to hint regret). Suppose the base problem satisfies Assump. 5.8.1
and the hinting problem is solved with DORM+ hint iterates ωt, hinting losses lt(ω) =

ft(Htω), no meta-hints for the hinting problem, and q = arg minq′≥2m
2/q′(q′ − 1). Then

the base problem with hints ht(ωt) = Htωt satisfies

RegretT (u) ≤ C0(u) + C1(u)

√√√√ inf
ω∈Ω

T∑
t=1

ft(ht(ω)) (5.31)

+ C1(u)
(
(2 log2(m)− 1)(

1

2
ξT +

T−1∑
t=1

huber(ξt, ζt))
)1/4 (5.32)

for ξt , 4(D + 1)

t∑
s=t−D

‖γs‖2∞, γt ∈ ∂lt(ωt), (5.33)

and ζt , 4‖γt−D‖∞
t∑

s=t−D
‖γs‖∞. (5.34)

3The alternative choice ft(ht) = 1
2
‖ht −

∑t
s=t−D rs‖2q also bounds regret but may have size Θ((D+ 1)2).
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To quantify the size of this regret bound, consider again the DORM base learner with
ft(ht) = ‖rt‖q‖ht −

∑t
s=t−D rs‖q. By Lem. C.11.2 in App. C.11, ‖γt‖∞ ≤ d1/q‖Ht‖∞‖rt‖q

for ‖Ht‖∞ the maximum absolute entry of Ht. Each column of Ht is a sum D+1 subgradient
hints, so ‖Ht‖∞ is O(D + 1). Thus, for this choice of hinter loss, the huber(ξt, ζt) term is
O((D + 1)3), and the hint learner suffers only O(T 1/4(D + 1)3/4) additional regret from
learning to hint. Notably, this additive regret penalty is O(

√
(D + 1)T ) if D = O(T ) (and

o(
√

(D + 1)T ) when D = o(T )), so the learning to hint strategy of Thm. 5.8.2 preserves
minimax optimal regret rates.

Related work Rakhlin and Sridharan [146, Sec. 4.1] propose and analyze a method
to learn optimism strategies for a two-step OMD base learner. Unlike Thm. 5.8.2, the
approach does not accommodate delay, and the analyzed regret is only with respect to single
hinting strategies ω ∈ {ej}j∈[m] rather than combination strategies, ω ∈ 4m−1.

5.9 Experiments

We apply the online learning techniques developed in this thesis to the problem of adaptive
ensembling for subseasonal weather forecasting. Subseasonal forecasting is the problem
predicting meteorological variables, often temperature and precipitation, 2-6 weeks in
advance. These mid-range forecasts are critical for managing water resources and mitigating
wildfires, droughts, floods, and other extreme weather events [68]. However, the subseasonal
forecasting task is notoriously difficult due to the joint influences of short-term initial
conditions and long-term boundary conditions [190].

To improve subseasonal weather forecasting capabilities, the US Department of Recla-
mation launched the Sub-Seasonal Climate Forecast Rodeo competition [128], a yearlong
real-time forecasting competition for the Western United States. Our experiments are
based on Flaspohler et al. [48], a snapshot of public subseasonal model forecasts including
both physics-based and machine learning models. These models were developed for the
subseasonal forecasting challenge and make semimonthly forecasts for the contest period
(19 October 2019 – 29 September 2020).

To expand our evaluation beyond the subseasonal forecasting competition, we used
the forecasts in Flaspohler et al. [48] for analogous yearlong periods (26 semi-monthly
dates starting from the last Wednesday in October) beginning in Oct. 2010 and ending
in Sep. 2020. Throughout, we refer to the yearlong period beginning in Oct. 2010 – Sep.
2011 as the 2011 year and so on for each subsequent year. For each forecast date t, the
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models in Flaspohler et al. [48] were trained only on data available at time t and model
hyper-parameters were tuned to optimize average RMSE loss on the 3-year period preceding
the forecast date t. For a few of the forecast dates, one or more models had missing forecasts;
only dates for which all models have forecasts were used in evaluation.

5.9.1 Problem Definition

Denote the set of d = 6 input models {M1, . . .Md} with labels: llr (Model1), multillr
(Model2), tuned_catboost (Model3), tuned_cfsv2 (Model4), tuned_doy (Model5) and
tuned_salient_fri (Model6). On each semimonthly forecast date, each modelMi makes
a prediction for each of two meteorological variables (cumulative precipitation and average
temperature over 14 days) and two forecasting horizons (3-4 weeks and 5-6 weeks). For
the 3-4 week and 5-6 horizons respectively, the forecaster experiences a delay of D = 2 and
D = 3 forecasts. Each model makes a total of T = 26 semimonthly forecasts for these four
tasks.

At each time t, each input modelMi produces a prediction at G = 514 gridpoints in
the Western United States: xct,i ∈ RG = Mi(t) for task c at time t. Let Xc

t ∈ RG×d be
the matrix containing each input model’s predictions as columns. The true meteorological
outcome for task c is yct ∈ RG. As online learning is performed for each task separately, we
drop the task superscript c in the following.

At each timestep, the online learner makes a forecast prediction ŷt by playing wt ∈W =

4d−1, corresponding to a convex combination of the individual models: ŷt = Xtwt. The
learner then incurs a loss for the play wt according to the root mean squared (RMSE) error
over the geography of interest:

`t(wt) =
1√
G
‖yt −Xtwt‖2, (5.35)

∂`t(wt) 3 gt =


X>t (Xtwt−yt)√
G‖Xtwt−yt‖2

if Xtwt − yt 6= 0

0 if Xtwt − yt = 0
(5.36)

Our objective for the subseasonal forecasting application is to produce an adaptive
ensemble forecast that competes with the best input model over the yearlong period.
Hence, in our evaluation, we take the competitor set to be the set of individual models
U = {ei : i ∈ [d]}.

We evaluate the relative merits of the delayed online learning techniques presented by
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computing yearly regret and mean RMSE for the ensemble plays made by the online leaner
in each year from 2011-2020. Unless otherwise specified, all online learning algorithms use
the recent_g hint g̃s, which approximates each unobserved subgradient at time t with the
most recent observed subgradient gt−D−1.

See App. C.13 for algorithmic details and App. C.12 for extended experimental results.
A Python library for Optimistic Online Learning under Delay (PoolD) and experiment code
are available at https://github.com/geflaspohler/poold.

5.9.2 Results

Competing with the best input model The primary benefit of online learning in this setting
is its ability to achieve small average regret, i.e., to perform nearly as well as the best input
model in the competitor set U without knowing which is best in advance. We run our
three delayed online learners—DORM, DORM+, and AdaHedgeD—on all four subseasonal
prediction tasks and measure their average loss.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

−20

−10

0

10

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.726)

DORM (RMSE: 21.731)

DORM+ (RMSE: 21.675)

Figure 5.2: Overall Performance: Yearly cumulative regret under RMSE loss for the the Precip.
3-4w task. The zero line corresponds to the performance of the best input model in a given year.
Cumulative regret is reset to zero at the start of each year-long period (denoted with a dashed line)
and accumulates throughout the year. At the end of the year period, online learners with negative
cumulative regret values have successfully outperformed the best input model. The more negative the
value, the better the performance of the online learner.

The average yearly RMSE for the three online learning algorithms and the six input
models is shown in Table 5.1. The DORM+ algorithm tracks the performance of the best

https://github.com/geflaspohler/poold
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input model for all tasks except Temp. 5-6w. All online learning algorithms achieve negative
regret for both precipitation tasks. Fig. 5.2 shows the yearly cumulative regret (in terms
of the RMSE loss) of the online learning algorithms over the 10-year evaluation period.
There are several years (e.g., 2012, 2014, 2020) in which all online learning algorithms
substantially outperform the best input forecasting model (at the end of a year-long period,
the cumulative regret for a learner is negative). The consistently low regret year-to-year
of DORM+ compared to DORM and AdaHedgeD makes it a promising candidate for
real-world delayed subseasonal forecasting. Notably, RM+ (a special case of DORM+) is
known to have small tracking regret, i.e., it competes well even with strategies that switch
between input models a bounded number of times [177, Thm. 2]. We suspect that this is one
source of DORM+’s superior performance. We also note that the self-tuned AdaHedgeD
performs comparably to the optimally-tuned DORM, demonstrating the effectiveness of our
self-tuning strategy.

Table 5.1: Average RMSE of the 2011-2020 Semimonthly Forecasts: The average RMSE for
online learning algorithms (left) and input models (right) over a 10-year evaluation period with the
top-performing learners bolded and blue. In each task, the online learners compare favorably with the
best input model and avoid the performance of the lower-performing models by leaning to downweigh
them.

AdaHedgeD DORM DORM+ Best Input Model Worst Model

Precip. 3-4w 21.726 21.731 21.675 21.973 23.344
Precip. 5-6w 21.868 21.957 21.838 21.993 23.257
Temp. 3-4w 2.273 2.259 2.247 2.253 2.508
Temp. 5-6w 2.316 2.316 2.303 2.270 2.569

Impact of regularization We evaluate the impact of the three regularization strategies
developed in this thesis: 1) the upper bound DUB strategy, 2) the tighter AdaHedgeD
strategy, and 3) the DORM+ algorithm that is tuning-free. This tuning-free property has
evident practical benefits, as this section demonstrates.

Fig. 5.3 shows the yearly regret of the DUB, AdaHedgeD, and DORM+ algorithms.
A consistent pattern appears in the yearly regret: DUB has moderate positive regret,
AdaHedgeD has both the largest positive and negative regret values, and DORM+ sits
between these two extremes. If we examine the weights played by each algorithm (Fig. 5.4),
the weights of DUB and AdaHedgeD appear respectively over- and under-regularized
compared to DORM+ (the top model for this task). DUB’s use of the upper bound bt,F
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Figure 5.3: Regret of Regularizers: Yearly cumulative regret (in terms of the RMSE loss) for the
three regularization strategies for the Temp. 3-4w task.

results in a very large regularization setting (λT = 142.881) and a virtually uniform weight
setting. AdaHedgeD’s tighter bound δt produces a value for λT = 3.005 that is two orders
of magnitude smaller. However, in this short-horizon forecasting setting, AdaHedgeD’s
aggressive plays result in higher average RMSE. By nature of it’s λt-free updates, DORM+
produces more moderately regularized plays wt and negative regret.
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Figure 5.4: Impact of Regularization: The plays wt of online learning algorithms used to combine
the input models for the Temp. 3-4w task in the 2020 evaluation year. The weights of DUB and
AdaHedgeD appear respectively over and under regularized compared to DORM+ (the top model for
this task) due to their selection of regularization strength λt (right).

To replicate or not to replicate In this section, we compare the performance of replicated
and non-replicated variants of our DORM+ algorithm. Both algorithms perform well (see
App. C.12.3), but in all tasks, DORM+ outperforms replicated DORM+ (in which D + 1

independent copies of DORM+ make staggered predictions). Fig. 5.5 provides an example
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of the weight plots produced by the replication strategy in the Temp. 5-6w task with D = 3.
The separate nature of the replicated learner’s plays is evident in the weight plots and leads
to an average RMSE of 2.315, versus 2.303 for DORM+ in the Temp. 5-6w task.
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Replicated DORM+ weights wt

Figure 5.5: To Replicate or not to Replicate: The plays wt of standard DORM+ and replicated
DORM+ algorithms for the Temp. 5-6w task in the final evaluation year.

Learning to hint Finally, we examine the effect of optimism on the DORM+ algorithms
and the ability of our “learning to hint” strategy to recover the performance of the best
optimism strategy in retrospect. Following the hint construction protocol in App. C.13.2, we
run the DORM+ base algorithm with m = 4 subgradient hinting strategies: g̃s = gt−D−1

(recent_g), g̃s = gs−D−1 (prev_g), g̃s = D+1
t−D−1g1:t−D−1 (mean_g), or g̃s = 0 (none). We

also use DORM+ as the meta-algorithm for hint learning to produce the learned optimism
strategy that plays a convex combination of the four hinters. In Fig. 5.6, we first note that
several optimism strategies outperform the none hinter, confirming the value of optimism in
reducing regret. The learned variant of DORM+ avoids the worst-case performance of the
individual hinters in any given year (e.g., 2015), while staying competitive with the best
strategy (although it does not outperform the dominant recent_g strategy overall). We
believe the performance of the online hinter could be further improved by developing tighter
convex bounds on the regret of the base problem in the spirit of Assump. 5.8.1.

5.10 Conclusion

In this work, we confronted the challenge of balancing exploration and exploitation in online
learning with delayed feedback and short regret horizons. Making use of optimism, we
developed practical non-replicated, self-tuned and tuning-free algorithms with optimal regret
guarantees. Our “delay as optimism” reduction and our refined analysis of optimistic learning
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Figure 5.6: Learning to Hint: Yearly cumulative regret (in terms of the RMSE loss) for the
adaptive hinting and four constant hinting strategies for the Precip. 3-4w task.

produced novel regret bounds for both optimistic and delayed online learning and elucidated
the connections between these two problems. Within the subseasonal forecasting domain,
we demonstrated that delayed online learning methods can produce zero-regret forecast
ensembles that perform robustly from year-to-year. Our results highlighted DORM+ as a
particularly promising candidate due to its tuning-free nature and small tracking regret.

Adversarial online learning paradigms, such as were explored in this chapter, have
many potential applications for scientific problems, including model selection, adaptive
ensembling, and parameter tuning. Unlike the POMDP formulations explored in the previous
chapters, adversarial online learners make minimal assumptions about the nature of the loss
sequence that the environment will produce. In an application such as weather forecasting,
the underlying dynamics are fundamentally chaotic and putting a reasonable probability
distribution over potential outcomes is challenging. State-of-the-art model-based dynamical
forecasting models tend to underestimate real-world variability [96]. POMDP models, which
maximize expected reward given a belief, assume the distribution of current and future
state outcomes are captured accurately by the POMDP model. When these assumptions
are violated, POMDP policies may exhibit very little robustness. Online learning methods,
on the other hand, can provide regret guarantees under even adversarial realizations of the
environment. Adapting online learning algorithms to the bandit setting, where only the
loss of the selected action is observed, is often straightforward [94]. However, the bandit
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and online learning formulations have the disadvantage of being unable to reason explicitly
about future outcomes, which limits their application to certain scientific domains, such
as exploratory robotics, where predicting and planning with respect to future states and
rewards is critical.



Chapter 6

Conclusions and Future Directions

Developing autonomous computational systems that can perform scientific discovery requires
online decision-making under uncertainty. These decision-makers contend with an environ-
ment that is often modeled as being stochastic or adversarial. In the face of future outcomes
that are difficult to predict and uncertain, balancing exploration and exploitation is a key
issue for real-time decision-makers. This thesis considered the exploration and exploitation
trade-off in two different sequential decision-making formulations, online learning and par-
tially observable Markov decision processes, and demonstrated that carefully targeting a
specific task or loss function in exploration can lead to an efficient balance between exploring
and exploiting that enables planner performance guarantees and regret bounds.

6.1 Summary of Contributions

Chapters 3 and 4 dealt with the POMDP decision-making formulation and asked how a
robot or autonomous agent could place sensors in the right place at the right time and
collect the right data to inform model validation and development. In this formulation,
exploration corresponded to taking sensing actions that reduce state uncertainty but may
not make direct progress towards accomplishing an overall scientific task. Exploitation
corresponded to using the current knowledge of the state to collect useful observations
for the scientific objective. The key for balancing exploration and exploitation is the
appropriate valuation of information: in the face of significant state uncertainty, an agent
must recognize when reducing that uncertainty is essential for accomplishing a given task
and when state uncertainty does not affect task performance. These chapters introduced
two metrics for valuing information in decision-making contexts and used them to perform
targeted exploration and sequential decision-making.
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6.1.1 PLUMES: Source-Seeking with Targeted Information Rewards

Chapter 3 introduces the maximum-value information reward, a specific information measure
about a random variable—the maximum value in an environment—that was essential for
accomplishing a task. In these source-seeking applications, the task can be distilled to
reducing the uncertainty in the distribution of a few key random variables, i.e., the location
and value of the global maximum in the environment. We adapted the maximum-seeking
POMDP to use this heuristic reward to guide a robotic Monte Carlo tree search planner
and demonstrated that the maximum-value information reward drove the robot to collect
observations that efficiently identified the global maximum. Compared to baseline algorithms
that used, e.g,. UCB heuristics to balance exploration and exploitation, the PLUMES
algorithm performed much less unnecessary exploration and was less likely to get stuck in a
local maximum due to premature exploitation.

6.1.2 Value of Information and Macro-action Discovery in POMDPs

For the source-seeking problem, the valuation of information is somewhat straightforward.
A human algorithm designer may identify that exploration is only necessary to reduce
uncertainty about the key random variables of source location and value and design an
information reward that trades of exploration and exploitation appropriately. This simple
identification of key variables may not be possible in all tasks.

For example, consider the task of collecting samples buoyant stem of a deep sea hy-
drothermal plume, a variation of the problem considered in Chapter 3. The exact location
of the buoyant stem in the water column changes in ways that can be difficult to predict
precisely due to currents and turbulent mixing. What information is needed to accomplish
this task? It is not as simple as requiring the state of the buoyant stem to be perfectly
known. A specific robotic platform might actually move too slowly to track the buoyant
stem location, even if that evolution could be predicted. It may be sufficient to constrain
the evolution within a specific region and sample uniformly within that region. Or, it may
be enough to identify the location of the plume during slack tide, when current effects are
minimal. This complex interaction between information about state, the constraints of a
specific decision-maker (e.g,. robotic platform), and the specification of the task inspired
the approach in Chapter 4, which goes beyond the hand-designed information rewards of
Chapter 3 to introduce a general value of information metric.

Chapter 4 introduces a value of information (VoI) metric that directly approximates the
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sensitivity of the POMDP value function to information gathering actions. By measuring the
gap between the value (i.e., long term task performance) of taking an optimal, closed-loop
action from a given belief state and taking an optimal, open-loop action (which does not
provide an observation or reduce the uncertainty in the belief state), we can estimate how
valuable information is from a given belief state. Because this method makes use of a value
function approximation, it inherently accounts for factors such as decision-maker constraints
and task specification. As an application of the utility of VoI in balancing exploration and
exploitation in planning problems, we demonstrated that VoI can be used to construct
open-loop macro-actions—sequences of actions taken in open-loop that can be used to reduce
the effective horizon and complexity of planning. In a set of simulated tracking experiments,
we demonstrated that these open-loop macroaction policies effectively balance exploration
and exploitation in planning while maintaining performance guarantees with respect to the
optimal closed-loop policy.

The two strategies introduced in Chapters 3 and 4—one task-specific and one general—
demonstrated how specifically considering the question of the valuation of information can
lead to efficient planning algorithms with performance guarantees.

6.1.3 Online Learning with Optimism and Delay

Chapter 5 considered exploration and exploitation in online learning problems, a different
class of sequential decision-making problems in which a learner is pitted against an adversarial
environment. Online learning forms the basis of model selection and adaptive ensembling in
scientific applications. In this problem domain, the exploration and exploitation trade-off
allows the learner to balance between trusting the predictability of the environment, given
past experiences and forecasts for future states, while playing conservatively enough to
maintain performance guarantees under adversarial outcomes.

Within the framework of online learning, we considered the dual questions of:

• In an adversarial environment, how should an online algorithm balance exploration
and exploitation in the presence of delayed feedback?

• When the future state of the environment is partially predictable, how can an online
learning leverage that predictability, while maintaining performance guarantees in the
adversarial setting?

The key challenge in answering these questions is formulating algorithms that automatically
tuned the balance between exploration and exploitation based on observed performance.
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This chapter formulated three online learning algorithms—DORM, DORM+, and Ada-
HedgeD that automatically tuned their behavior to balance exploration and exploitation and
demonstrated, via novel analysis methods, that the regret of these algorithms is rate-optimal.
We demonstrated how these online learning algorithms can be used for real-world subseasonal
temperature and precipitation forecasting.

6.2 Recommendations for Future Work

This thesis presented three algorithms for sequential decision-making and applied each to a
real-world scientific problem. There are many promising areas of future work for both the
algorithms and application areas presented. We highlight several in this section.

6.2.1 Learning the Value of Information

Chapter 4 develops an analytical but approximate calculation for value of information in
planning problems. The experimental demonstration directly approximates the PWLC
POMDP value function with a finite set of α-vectors and measures the gap in the value
function under open- and closed-loop actions. As is true for all POMDP solvers, approxi-
mating the value function for large discrete or continuous state spaces is computationally
infeasible. As this value function approximations degrades, the VoI estimate also degrades.
In Chapter 4, we demonstrated VoI estimation for a problem with |S| = 10, 000, |A| = 5,
and |Z| = 100. The limited size of this experimental demonstration was driven by the
difficulty of efficient value function approximation for POMDPs.

Learning-based methods have shown promise for approximating the value function of
fully observable or partially observable problems based on simulated agent experiences.
Learning techniques could be used to approximate the POMDP value function and facilitate
the computation of VoI by circumvent the computational burden of exact POMDP planning.

Alternatively, approximating whether a given belief state has high or low VoI may be an
easier problem than learning the value of that belief state. A more promising approach may
be to directly learn the value of information based on experience. Previous methods, such
as Liu et al. [106], Stadler et al. [167], Stein et al. [168] have demonstrated that auxiliary
metrics of planning success, such as likelihood of a given exploratory action succeeding, can
be learned effectively from data. This style of learning framework may be a promising way
of scaling VoI approximations to large and continuous problems.
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6.2.2 Continuous POMDP Planning

Current state-of-the art POMDP planners have key limitations that make them poorly suited
to address real-world scientific tasks. Offline POMDP solvers have largely been limited to
small, discrete environments. Online POMDP solvers—which do allow for large continuous
state—require an agent to simulate system dynamics and perform inference in real-time while
planning. The computational cost of expensive dynamics models and inference procedures
makes online planning intractable in many scientific problems. To alleviate the cost of
online planners, we can use offline POMDP planners to approximate the POMDP value
function and limited look-ahead online planners to fine-tune plans in real-time. However,
this requires offline POMDP planners that can plan efficiently in continuous state, action,
and observation spaces.

The POMDP objective—optimizing expected reward under uncertainty—gives rise to a
value function that has been shown to have piecewise-linear and convex (PWLC) structure
in discrete finite- and infinite-time planning problems [160]. In continuous domains, PWLC
approximations of the value function are known only for certain classes of value function
(e.g., mixture of Gaussians [140, 162]). Developing scalable value function approximations
for large POMDPs that can leverage PWLC problem structure is a key step in improving
both offline and online planning under uncertainty.

6.2.3 Predictability and Adaptive Horizon Planning

Chapter 4 exposed an interesting connection between the predictability of a phenomenon
and the optimal planning strategy. When a phenomenon is highly predictable, “planning” is
useful: an open- or closed-loop planner can forecast the state over long horizons and select
high-reward actions. On the other hand, when a phenomenon is highly unpredictable, either
due to highly stochastic dynamics or significant state uncertainty, planning may be less
useful; the set of possible outcomes or contingencies which must be planned for is large.
This complicated closed-loop planning, and requires open-loop planners that can perform
well in average over all contingencies. Understanding the horizon over which a planner
can be effective and computationally feasible, given the predictability of the environment
and current state estimate, is a promising area for extending approaches such as the VoI
approximation method presented in Chapter 4.
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6.2.4 Efficient Information Planning in Sequential Problems

Applying information planning and optimal experimental design to real-world scientific
problems requires combining information-theoretic objectives with sequential decision-
making. Information rewards are known to be expensive to compute and often require
approximate estimators [199]. Developing decision-makers that reason about information
rewards may also require reasoning about the computational expense of obtaining those
reward estimates and choosing when to perform that evaluation selectively, as in Zheng
et al. [200]. Integrating information rewards into real-world, nonmyopic robotics planners
with state requires extending these ideas to online or offline POMDP planners [44], and
would enable scientific objectives to be specified in terms of information gained about a
specific variable or feature of interest.

6.2.5 Real-World Scientific Deployments for Oceanography

Oceanographic research expeditions require chartering a research vessel that can house
scientific teams for weeks at a time, facilitate deploying and recovering scientific instruments,
and transit many thousands of kilometers for any given expedition. Depth-capable AUV
assets, like AUV SENTRY operated by Woods Hole Oceanographic Institution (WHOI) and
the National Deep Submergence Facility (NDSF) [78], may be deployed on tens of expeditions
each year and operated approximately two-thirds of the year in total. A specialized team is
typically deployed with the vehicle, responsible for vehicle maintenance and working with
the scientific leader to design and execute missions while at sea.

Under these pressures, the efficiency and safety of AUV technologies like SENTRY are
essential. These AUVs are typically flown in fixed survey patterns (e.g., lawnmowers) that
can be easily verified before a dive and monitored while underway. Indeed, even rudimentary
adaptive behaviors are not an inherent ability of many AUVs, although they may be possible
with a human-in-the-loop. One of the difficulties in oceanographic science is the limited
communication bandwidth that exists between ship and AUV. Underwater, acoustic modems
are required. These are range-limited, can be lossy, and have severely limited bandwidth.

The algorithm in Chapter 3 assumed that closed-loop planning was possible. However,
the communication constraints discussed mean that AUVs for deep sea research are often
operated only in open-loop, and performing any closed-loop behaviors that are validated by
the ship requires expensive acoustic data transfer. The extreme cost of communication means
that algorithms such as those presented in Chapter 4 could be very valuable. Developing
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algorithms that enable an AUV to reason about when it requires an updated model and
plan to accomplish a given task, and when the current model and plan are sufficient is a
promising practical application of the ideas presented in this thesis. Any adaptation of these
algorithmic ideas to real-world oceanographic deployment require careful consideration of
the practical constraints of these vehicles and the ship environment.

6.3 Concluding Remarks

Observational data are our lens to the world around us. These data are a critical element
in scientific discovery, providing the ability validate physical theories or informing the
development of new models. The value of developing computational systems that can
enhance human-driven scientific experimentation and data collection is evident; this value
has already been realized in several application areas, from animal behavior monitoring
to renewable material synthesis to oceanographic exploration [45, 51, 55, 58, 198]. The
thesis identifies the exploration-exploitation trade-off as one of the key bottlenecks in
realizing autonomous scientific decision-making and proposes task-targeted exploration—
directly quantifying sensitivity of task performance to exploratory actions—as a potential
solution. The thesis then leverages task-targeted exploration to present three methodological
contributions in decision-making under uncertainty that are motivated by and applied to
real-world scientific applications. Each demonstrates how autonomous decision-making
can enhance human scientific discovery in complex domains by reasoning over noisy and
heterogeneous sensors and chaotic or stochastic structure to place a sensor in the right place
at the right time to validate a scientific hypothesis or to produce an accurate forecast 1

1This material is based upon work supported by the NSF Graduate Research Fellowship Program and
a Microsoft Research PhD Fellowship, as well as the Department of Energy / National Nuclear Security
Administration under Award Number DE-NA0003921, the Office of Naval Research under Award Number
N00014-17-1-2072, and DARPA under Award Number HR001120C0033.
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Appendix A

PLUMES: Source-Seeking with

Targeted Information Rewards

This appendix includes additional analysis not presented in the main text for clarity of the
exposition. App. A.1 introduces standard information measures and App. A.2 includes a
description of the rank-1 matrix updates used for streaming Gaussian processes in PLUMES.

A.1 Information Measures

In fields such as experimental design and informative path planning, the objective of the
agent is often to optimize some measure of “information” collected about a variable of interest.
There are several common measures from the field of information theory that can be used to
quantity the uncertainty or uncertainty reduction in a random variable. These fundamental
quantities are covered in detail in, e.g., Cover and Thomas [35]. Chapter 3 makes use of
mutual information for continuous random variables to choose promising sample points in
an underlying Gaussian process model.

Entropy and Differential Entropy Entropy is commonly used to measure the uncertainty of
a random variable. For discrete random variable X ∈ X , the Shannon entropy is defined as:

H(X) , −
∑
x∈X

P(X = x) logP(X = x) (A.1)

Given a second random variable Z ∈ Z that has joint distribution P(X,Z) with X, we
can define the joint entropy as:

H(X,Z) , −
∑
z∈Z

∑
zinX

P(X = x, Z = z) logP(X = x, Z = z) (A.2)
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We can condition the variable X on a Z taking value z ∈ Z and define the entropy:

H(X | Z = z) , −
∑
x∈X

P(X = x | Z = z) logP(X = x | Z = z). (A.3)

Finally, averaging over different values of Z gives the conditional Shannon entropy:

H(X | Z) ,
∑
z∈Z

P(Z = z)H(X | Z = z) (A.4)

= −
∑
z∈Z

P (Z = z)
∑
x∈X

P(X = x | Z = z) logP(X = x | Z = z). (A.5)

This expression is connected to the joint entropy by the following expression H(X,Z) =

H(X | Z) +H(Z) = H(Z | X) +H(X).
For continuous random variable Y ∈ Y with probability density function f(y), we can

define a continuous analog of Shannon entropy known as differential entropy :

H(Y ) , −
∫
y∈Y

f(y) log f(y) dy. (A.6)

Although this is a straightforward extension of Shannon entropy, it does not share many of
the appealing properties of the discrete expression. For example, differential entropy may
be negative and is not invariant under invertible mappings such as rescaling.

Mutual Information For two random variables X ∈ X and Z ∈ Z related by joint distribu-
tion P(X,Z), mutual information measures the entropy reduction in one random variable
caused by observation of the other. It is often defined as a difference in entropies:

I(X;Z) , H(X)−H(X | Z) = H(Z)−H(Z | X). (A.7)

This can be expressed directly in terms of the joint probability distribution:

I(X;Z) =
∑
x∈X

∑
z∈Z

P(X = x, Z = z) log
P(X = x, Y = y)

P(X = x)P(Y = y)
. (A.8)

For continuous random variables, the mutual information expression is exactly analogous
and is better behaved than differential entropy: for both discrete and continuous random
variables, mutual information is positive and invariant under invertible transformations of
the input random variables.
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A.2 Rank One Streaming Updates for Gaussian Processes

Generally, a Gaussian process (GP) model is parameterized by a prior mean µp(x) and
covariance function κ(x,x′). In the following, we assume the prior mean function is the
zero function. In the basic GP model, the measurement function is also Gaussian with some
fixed measurement noise σ2

n.
Given a dataset of observation location and observation pairs, D = {xi, zi}D−1

i=0 of size D,
the posterior predictive of the function f at a new location x′ ∈ X is given by the following
closed-form solution:

f(x′) | D ∼ N (µ(x′), σ2(x′)),where (A.9)

µ(x′) = κ(x′)>(K + σ2
nI)
−1z, (A.10)

σ2(x′) = κ(x′,x′)− κ(x′)>(K + σ2
nI)
−1κ(x′), (A.11)

where z = [z0, . . . , zD−1]>, K ∈ S+ is the positive semi-definite kernel matrix with K[i, j] =

κ(xi,xj) for all xi,xj ∈ D, and κ(x′) = [κ(x0,x
′), . . . , κ(xD−1,x

′)]>.
This simple, closed-form solution for the posterior predictive distribution enables the

mean and variance of the value of the environment at a new location to be predicted
efficiently, given a moderately-sized, fixed dataset D. However, evaluating (A.10) and
(A.11) require inverting the kernel matrix, which can become computationally expensive
(naively requires O(D3) operations; optimized libraries can provide ≈ O(D2.8074) improved
complexity [170]).

In this section, we focus on the challenges of incorporating streaming data into a Gaussian
process model. Streaming data arise commonly in robotics and online applications. Each
time a new data point is added to the set D, a corresponding row and column are added to
the D ×D kernel matrix. A naive implementation of a streaming Gaussian process model
would re-invert the kernel matrix at each timestep, despite the matrix only changing by a
single data point. Several techniques exist for scaling GP models to large, streaming datasets
[103] by approximating the kernel matrix. Here, we describe a simple, exact approach based
on the matrix inversion lemma.

Lemma A.2.1 (Matrix Inversion Lemma, Rasmussen and Williams [148], Section A.3).
Let Z be an n× n matrix, W be m×m, and U and V be of size n×m. Assume Z

−1 is
known and then Z undergoes a low-rank perturbation, i.e., Z′ = Z + UWV>, where m < n.
Then the Woodbury, Sherman, & Morrison formula allows the updated inverse Z′

−1

to be
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computed efficiently:

(Z + UWV>)
−1

= Z
−1 − Z

−1
U(W

−1
+ V>Z

−1
U)
−1
V>Z

−1
. (A.12)

This formula can be extended to invert a partitioned matrix.

Lemma A.2.2 (Inverse of a Partitioned Matrix (see, e.g., Rasmussen and Williams [148],
Section A.3). Let the n× n matrix A be invertible. Consider the block partitions:

A =

(
P Q

R S

)
, A

−1
=

(
P̃ Q̃

R̃ S̃,

)
(A.13)

where P and P̃ are n1 × n1 matrices and S and S̃ are n2 × n2 matrices, n = n1 + n2.
Define M = (S−RP

−1
Q)
−1. Then, the block entries of the matrix A

−1 are given by:

P̃ = P
−1

+ P
−1
QMRP

−1
(A.14)

Q̃ = −P−1
QM (A.15)

R̃ = −MRP
−1

(A.16)

S̃ = M (A.17)

An equivalent formulation is given by defining N = (P−QS
−1
R)
−1, resulting in:

P̃ = N (A.18)

Q̃ = −NQS
−1

(A.19)

R̃ = −S−1
RN (A.20)

S̃ = S
−1

+ S
−1
RNQS

−1
(A.21)

(A.22)

Consider receiving one additional, streaming observation at location x′ in a Gaussian
process model with kernel matrix and inverse given by K and K

−1 respectively. The new
kernel matrix is formed by adding an additional row and column to K:

K′ =

(
K κ(x′)

κ(x′)> κ(x′,x′),

)
(A.23)
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where κ(x′) is a rank-one matrix and κ(x′,x′) is a scalar, as defined in (A.10) and (A.11).
The updated kernel inverse K′

−1

can be computed using the first formulation in
Lem. A.2.2, with:

P = K (A.24)

Q = κ(x′) (A.25)

R = κ(x′)> (A.26)

S = κ(x′,x′), (A.27)

resulting in a value of M that is a scalar value.
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Appendix B

Value of Information and

Macro-action Discovery in POMDPs

This appendix includes additional analysis not presented in the main text for clarity of the
exposition. Section B.1 includes detailed derivations of Lemma 5.3, 5.4 and 5.5.

B.1 Analysis

The following section contains the detailed derivation of Lemmas 5.3-5.5 presented in the
main text.

B.1.1 Value Backup Error

Lemma 5.3 The horizon-H value function error caused by including open-loop actions in
backups whenever VoI < τ is bounded for beliefs in G by εH =

∥∥∥V̂ ∗H − V ∗H∥∥∥∞ ≤ 1−γH
1−γ (2LδB +

τ).

Proof. Consider any compact subset β of G; importantly, β can be different from the belief
set B used in planning. We define εh to be the maximum error in the value function on the
set β during the value iteration recursion at horizon h:

εh =
∥∥∥V ∗h (β)− V̂ ∗h (β)

∥∥∥
∞
, (B.1)

where we use the notation f(β) to denote the restriction of the function f to the domain β.
Then:

εh =
∥∥∥HV ∗h−1(β)− ĤV̂ ∗h−1(β)

∥∥∥
∞
, (B.2)

117
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Let bε ∈ β be the belief for which the value function error is maximized:

bε = arg max
b∈β

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥. (B.3)

Let δ be the minimum distance between a belief in B and bε: δ = minb∈B‖b− bε‖1 and
let belief b ∈ B be a minimizer. Because B forms a δB covering of β, we have that δ ≤ δB.

We bound εh as follows:

εh =
∥∥∥V ∗h (β)− V̂ ∗h (β)

∥∥∥
∞

(B.4)

=
∥∥∥HV ∗h−1(bε)− ĤV̂ ∗h−1(bε)

∥∥∥ (B.5)

=
∥∥∥HV ∗h−1(bε)−HV ∗h−1(b) +HV ∗h−1(b)− ĤV̂ ∗h−1(bε) + ĤV̂ ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥ (B.6)

≤
∥∥HV ∗h−1(bε)−HV ∗h−1(b)

∥∥+∥∥∥ĤV̂ ∗h−1(bε)− ĤV̂ ∗h−1(b)
∥∥∥+

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥

(B.7)

≤ 2L‖bε − b‖1 +
∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥. (B.8)

≤ 2LδB +
∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥. (B.9)

The term 2LδB represents the value-function error induced by the point-based approximation.
We will further examine the term HV ∗h−1(b)−ĤV̂ ∗h−1(b), which represents the value function
error due to the inclusion of potentially suboptimal macro-actions in the approximate backup
operator.

Without loss of generality, let a1 be the optimal action at belief b and a2 be the near-
optimal, open-loop action selected for backing up V̂ ∗h . Let Ha1 denote the standard value
function backup using action a1 and Ĥa2,OLP denote the macro-action backup using action
a2 in open loop.



Sec. B.1. Analysis 119

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥ =

∥∥∥Ha1V ∗h−1(b)− Ĥa2,OLP V̂ ∗h−1(b)
∥∥∥ (B.10)

≤
∥∥∥Ha2V ∗h−1(b) + τ − Ĥa2,OLP V̂ ∗h−1(b)

∥∥∥ (B.11)

≤
∥∥∥Ha2,OLP V ∗h−1(b) + τ − Ĥa2,OLP V̂ ∗h−1(b)

∥∥∥ (B.12)

≤ ‖Es∼b[R(s, a2)] + γV ∗h−1(ba2,∗) + τ−
Es∼b[R(s, a2)]− γV̂ ∗h−1(ba2,∗)‖

(B.13)

≤
∥∥∥γV ∗h−1(ba2,∗) + τ − γV̂ ∗h−1(ba2,∗)

∥∥∥ (B.14)

≤ γεh−1 + τ, (B.15)

where if ba2,∗ 6∈ G, we replace V ∗h−1(ba2,∗), V̂ ∗h−1(ba2,∗) with a valid lower-bound.
Because V ∗0 ≡ V̂ ∗0 , we have that ε0 = 0. Expanding the recursion εh ≤ γεh−1 + 2LδB + τ ,

we conclude that εH ≤ 1−γH
1−γ (2LδB + τ). �

B.1.2 Interpolating Macro-Actions

Lemma 5.4 (Lasota and Mackey [93]) The open-loop dynamics are a non-expansive mapping
in belief space. Consider two beliefs b1, b2 ∈ Π(S) such that ‖b1 − b2‖1 = δ. Then, for any
action a taken in open-loop, it follows that

∥∥ba,∗1 − ba,∗2

∥∥
1
≤ kδ for 0 ≤ k ≤ 1.

Proof. Following [93], let Ta be the Markov operator corresponding to the POMDP open-loop
transition dynamics under action a:

∥∥ba,∗1 − ba,∗2

∥∥
1

= ‖Tab1 − Tab2‖1 (B.16)

= ‖Ta(b1 − b2)‖1 (B.17)

≤ k‖b1 − b2‖1 = kδ, (B.18)

where 0 ≤ k ≤ 1 is the maximum contraction coefficient over actions a ∈ A and Eq. B.18 is
a property of Markov operators [93]. �

Lemma 5.5 The additional value function error of approximating the VoI macro-action at
belief b using its nearest neighbor b∗ under k-contractive open-loop dynamics is bounded by:

ηH =
∥∥∥V̂ ∗H − VMA

H

∥∥∥
∞
≤ 1− γH

1− γ
(
LδB +

RmaxδB
1− γk + LγkδB

)
. (B.19)
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Proof. Consider any compact subset β of G. Define ηh to be the maximum difference
between the value when utilizing optimal open-loop actions when VoI is low V̂ ∗h and the
value when performing macro-action chaining and interpolation VMA

h :

ηh =
∥∥∥V̂ ∗h (β)− VMA

h (β)
∥∥∥
∞

(B.20)

Without loss of generality, let b be the belief for which Eq. B.20 is maximized, let b∗
be it’s nearest neighbor in B, and let Al = {a1, . . . , al} be the length-l macro-action that is
optimal at b∗.

ηh =
∥∥∥V̂ ∗h (b)− VMA

h (b)
∥∥∥, (B.21)

≤
∥∥∥V̂ ∗h (b)− V̂ ∗h (b∗)

∥∥∥+
∥∥∥V̂ ∗h (b∗)− VMA

h (b)
∥∥∥, (B.22)

≤ LδB +
∥∥∥ l−1∑
i=0

γiE
s∼bA1:i
∗

[R(s, ai)] + γlV̂ ∗h−l(b
A1:l
∗ )

−
l−1∑
i=0

γiEs∼bA1:i [R(s, ai)]− γlVMA
h−l (bA1:l)

∥∥∥,
(B.23)

≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥

+ γl
∥∥∥V̂ ∗h−l(bA1:l

∗ )− VMA
h−l (bA1:l)

∥∥∥.
(B.24)

≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥

+ γl
(∥∥∥V̂ ∗h−l(bA1:l

∗ )− V̂ ∗h−l(bA1:l)
∥∥∥+

∥∥∥V̂ ∗h−l(bA1:l)− VMA
h−l (bA1:l)

∥∥∥)
(B.25)

≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥+ γl(LklδB + ηh−l) (B.26)

where Eqs. B.22 and B.25 follow by the triangle inequality, Eq. B.23 using the fact that Al
is the optimal macro-action for b∗ and will be applied to b under the macro-action policy,
and Eq. B.26 by the contractive property of the open loop dynamics.

The form of Eq. B.23 reflects the expected reward when following the macro-action Al
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from both belief b and b∗ and then reverting to the macro-action policy for the remainder
of the horizon from the resulting belief. We can bound the final term in Eq. B.26 by
further application of the non-expansive property to rewards collected during macro-action
execution: ∥∥∥∥∥

l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥ (B.27)

≤
l−1∑
i=0

γi
∥∥∥E

s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
∥∥∥ (B.28)

≤
l−1∑
i=0

γi
∫
S

∥∥R(s, ai)(b
A1:i
∗ (s)− bA1:i(s))

∥∥ds (B.29)

≤
l−1∑
i=0

γiRmax

∫
S

∥∥(bA1:i
∗ (s)− bA1:i(s))

∥∥ds (B.30)

≤
l−1∑
i=0

γiRmax
∥∥bA1:i
∗ − bA1:i

∥∥
1

(B.31)

≤
l−1∑
i=0

γiRmaxk
iδ =

1− γlkl
1− γk Rmaxδ (B.32)

Plugging this expression in to Eq. B.23, we have the recursion: ηh ≤ LδB+ 1−γlkl
1−γk RmaxδB+

γlLklδB + γlηh−l. This expression depends on l, the length of the optimal macro-action at
horizon h, in a complex way. Because l is variable and unknown a priori, we replace l with
its case value in each expression: ηh ≤ LδB + RmaxδB

1−γk + γLkδB + γηh−1. The result follows
by expanding this recursion with η0 = 0. �
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Appendix C

Online Learning with Optimism and

Delay

C.1 Extended Literature Review

We review here additional prior work not detailed in the main thesis text.

C.1.1 General online learning

We recommend the monographs of Orabona [129], Shalev-Shwartz [153] and the textbook
of Cesa-Bianchi and Lugosi [26] for surveys of the field of online learning and Joulani
et al. [76], McMahan [115] for widely applicable and modular analyses of online learning
algorithms.

C.1.2 Online learning with optimism but without delay

Syrgkanis et al. [176] analyzed optimistic FTRL and two-step variant of optimistic MD
without delay. The work focuses on a particular form of optimism (using the last observed
subgradient as a hint) and shows improved rates of convergence to correlated equilibria in
multiplayer games. In the absence of delay, Steinhardt and Liang [169] combined optimism
and adaptivity to obtain improvements over standard optimistic regret bounds.

C.1.3 Online learning with delay but without optimism

Overview Joulani et al. [74, 75], McMahan and Streeter [114] provide broad reviews of
progress on delayed online learning.

Delayed stochastic optimization Agarwal and Duchi [1], Liu and Wright [104], Liu et al.
[105], Nesterov [126], Recht et al. [149], Sra et al. [164] studied the effects of delay on

123
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stochastic optimization but do not treat the adversarial setting studied here.

FTRL-Prox vs. FTRL Joulani et al. [75] analyzed the delayed feedback regret of the FTRL-
Prox algorithm, which regularizes toward the last played iterate as in online mirror descent,
but did not study the standard FTRL algorithms (sometimes called FTRL-Centered)
analyzed in this work.

C.1.4 Self-tuned online learning without delay or optimism

In the absence of optimism and delay, de Rooij et al. [39], Koolen et al. [85], Orabona and
Pál [130] developed alternative variants of FTRL algorithms that self-tune their learning
rates.

C.1.5 Online learning without delay for climate forecasting

Monteleoni et al. [121] applied the Learn-α online learning algorithm of Monteleoni and
Jaakkola [120] to the task of ensembling climate models. The authors considered historical
temperature data from 20 climate models and tracked the changing sequence of which
model predicts best at any given time. In this context, the algorithm used was based
on a set of generalized Hidden Markov Models, in which the identity of the current best
model is the hidden variable and the updates are derived as Bayesian updates. This work
was extended to take into account the influence of regional neighboring locations when
performing updates [116]. These initial results demonstrated the promise of applying online
learning to climate model ensembling, but both methods rely on receiving feedback without
delay.

C.2 Proof of Thm. 5.4.1: OFTRL regret

We will prove the following more general result for optimistic adaptive FTRL (OAFTRL)

wt+1 = arg min
w∈W

〈g1:t + g̃t+1,w〉+ λt+1ψ(w), (OAFTRL)

from which Thm. 5.4.1 will follow with the choice λt = λ for all t ≥ 1.

Theorem C.2.1 (OAFTRL regret). If ψ is nonnegative and (λt)t≥1 is non-decreasing, then,
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∀u ∈W, the OAFTRL iterates wt satisfy,

RegretT (u) ≤ λTψ(u) +
T∑
t=1

δt (C.1)

≤ λTψ(u)+ (C.2)
T∑
t=1

min
( 1

λt
huber(‖gt − g̃t‖∗, ‖gt‖∗),diam(W) min(‖gt − g̃t‖∗, ‖gt‖∗)

)
(C.3)

for

δt , min(Ft+1(wt, λt)− Ft+1(w̄t, λt), 〈gt,wt − w̄t〉, (C.4)

Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉)+ with (C.5)

w̄t , arg min
w∈W

Ft+1(w, λt), Ft+1(w, λt) , λtψ(w) + 〈g1:t,w〉, and (C.6)

ŵt , arg min
w∈W

λtψ(w) + 〈g1:t + min(
‖gt‖∗

‖g̃t − gt‖∗
, 1)(g̃t − gt),w〉. (C.7)

Proof. Consider a sequence of arbitrary auxiliary subgradient hints g̃∗1, . . . , g̃
∗
T ∈ Rd and the

auxiliary OAFTRL sequence

w∗t+1 = arg min
w∗∈W

〈g1:t + g̃∗t+1,w
∗〉+ λt+1ψ(w∗) (C.8)

for 0 ≤ t ≤ T with g̃∗T+1 , 0 and λT+1 = λT . (C.9)

Generalizing the forward regret decomposition of [76] and the prediction drift decomposition
of [75], we will decompose the regret of our original (wt)

T
t=1 sequence into the regret of the

auxiliary sequence (w∗t )
T
t=1 and the drift between (wt)

T
t=1 and (w∗t )

T
t=1.

For each time t, define the auxiliary optimistic objective function F̃ ∗t (w) = Ft(w) +
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〈g̃∗t ,w〉. Fixing any u ∈W, we have the regret bound

RegretT (u) =
T∑
t=1

`t(wt)− `t(u) ≤
T∑
t=1

〈gt,wt − u〉 (C.10)

(since each `t is convex with gt ∈ ∂`t(wt)) (C.11)

=
T∑
t=1

〈gt,wt −w∗t 〉︸ ︷︷ ︸
drift

+
T∑
t=1

〈gt,w∗t − u〉︸ ︷︷ ︸
auxiliary regret

. (C.12)

To control the drift term we employ the following lemma, proved in App. C.2.1, which
bounds the difference between two OAFTRL optimizers with different losses but common
regularizers.

Lemma C.2.1 (OAFTRL difference bound). The OAFTRL and auxiliary OAFTRL iterates
(C.8), wt and w∗t , satisfy

‖wt −w∗t ‖ ≤ min(
1

λt
‖g̃t − g̃∗t ‖∗,diam(W)). (C.13)

Letting a = diam(W) ∈ R ∪ {∞}, we now bound each drift term summand using the
Fenchel-Young inequality for dual norms and Lem. C.2.1:

〈gt,wt −w∗t 〉 ≤ ‖gt‖∗‖wt −w∗t ‖ ≤ min
( 1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗, a‖gt‖∗

)
. (C.14)

To control the auxiliary regret, we begin by invoking the OAFTRL regret bound of
[129, proof of Thm. 7.28], the nonnegativity of ψ, and the assumption that (λt)t≥1 is
non-decreasing:

T∑
t=1

〈gt,w∗t − u〉 (C.15)

≤ λT+1ψ(u)− λ1ψ(w∗1) +
T∑
t=1

Ft+1(w∗t , λt)− Ft+1(w̄t, λt) + (λt − λt+1)ψ(w∗t+1)

(C.16)

≤ λT+1ψ(u)− λ1ψ(w∗1) +

T∑
t=1

Ft+1(w∗t , λt)− Ft+1(w̄t, λt). (C.17)
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We next bound the summands in this expression in two ways. Since w∗t is the minimizer of
F̃ ∗t , we may apply the Fenchel-Young inequality for dual norms to conclude that

Ft+1(w∗t , λt)− Ft+1(w̄t, λt) = F̃ ∗t (w∗t ) + 〈w∗t , gt − g̃∗t 〉 − (F̃ ∗t (w̄t) + 〈w̄t, gt − g̃∗t 〉) (C.18)

≤ 〈w∗t − w̄t, gt − g̃∗t 〉 ≤ ‖w∗t − w̄t‖‖gt − g̃∗t ‖∗ ≤ a‖gt − g̃∗t ‖∗.
(C.19)

Moreover, by [129, proof of Thm. 7.28] and the fact that w̄t minimizes Ft+1(·, λt) over W,

Ft+1(w∗t , λt)− Ft+1(w̄t, λt) ≤
‖gt − g̃∗t ‖2∗

2λt
. (C.20)

Our collective bounds establish that

δt(g̃
∗
t ) , Ft+1(w∗t , λt)− Ft+1(w̄t, λt) + 〈gt,wt −w∗t 〉 (C.21)

≤ min(
1

2λt
‖gt − g̃∗t ‖2∗, a‖gt − g̃∗t ‖∗) + min(

1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗, a‖gt‖∗) (C.22)

≤ 1

2λt
‖gt − g̃∗t ‖2∗ +

1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗. (C.23)

To obtain an interpretable bound on regret, we will minimize the final expression over all
convex combinations g̃∗t of gt and g̃t. The optimal choice is given by

ĝt = gt + c∗(g̃t − gt) for (C.24)

c∗ , min( ‖gt‖∗
‖g̃t−gt‖∗

, 1) = arg min
c≤1,g̃∗t=gt+c(g̃t−gt)

1
2λt
‖gt − g̃∗t ‖2∗ + 1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗ (C.25)

= arg minc≤1
c2

2λt
‖gt − g̃t‖2∗ + 1−c

λt
‖gt‖∗‖g̃t − gt‖∗. (C.26)
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For this choice, we obtain the bound

(δt(ĝt))+ ≤
1

2λt
‖gt − ĝt‖2∗ +

1

λt
‖gt‖∗‖ĝt − g̃t‖∗ (C.27)

=
c2
∗

2λt
‖gt − g̃t‖2∗ +

1− c∗
λt
‖gt‖∗‖gt − g̃t‖∗ (C.28)

=
1

2λt
min(‖gt − g̃t‖∗, ‖gt‖∗)2 +

1

λt
‖gt‖∗(‖gt − g̃t‖∗ − ‖gt‖∗)+ (C.29)

=
1

2λt
(‖gt − g̃t‖2∗ − (‖gt − g̃t‖∗ − ‖gt‖∗)2

+) (C.30)

=
1

λt
huber(‖gt − g̃t‖∗, ‖gt‖∗) (C.31)

and therefore

δt = min(δt(g̃t), δt(gt), δt(ĝt))+ ≤ min(
1

λt
huber(‖gt − g̃t‖∗, ‖gt‖∗), amin(‖gt − g̃t‖∗, ‖gt‖∗)).

(C.32)

Since g̃∗t is arbitrary, the advertised regret bounds follow as

RegretT (u) ≤ inf
g̃∗1,...,g̃

∗
T∈Rd

λT+1ψ(u) +

T∑
t=1

δt(g̃
∗
t ) (C.33)

= λT+1ψ(u) +
T∑
t=1

inf
g̃∗t∈Rd

δt(g̃
∗
t ) (C.34)

≤ λT+1ψ(u) +
T∑
t=1

min(δt(g̃t), δt(gt), δt(ĝt))+. (C.35)

�

C.2.1 Proof of Lem. C.2.1: OAFTRL difference bound

Fix any time t, and define the optimistic objective function F̃t(w) = λtψ(w)+
∑t−1

i=1〈gi,w〉+
〈g̃t,w〉 and the auxiliary optimistic objective function F̃ ∗t (w) = λtψ(w) +

∑t−1
i=1〈gi,w〉+



Sec. C.3. Proof of Thm. 5.4.2: SOOMD regret 129

〈g̃∗t ,w〉 so that wt ∈ arg minw∈W F̃t(w) and w∗t ∈ arg minw∈W F̃ ∗t (w). We have

F̃ ∗t (wt)− F̃ ∗t (w∗t ) ≥
λt
2
‖wt −w∗t ‖2 by the strong convexity of F̃ ∗t and (C.36)

F̃t(w
∗
t )− F̃t(wt) ≥

λt
2
‖wt −w∗t ‖2 by the strong convexity of F̃t. (C.37)

Summing the above inequalities and applying the Fenchel-Young inequality for dual
norms, we obtain

λt‖wt −w∗t ‖2 ≤ 〈g̃∗t − g̃t,wt −w∗t 〉 ≤ ‖g̃t − g̃∗t ‖∗‖wt −w∗t ‖, (C.38)

which yields the first half of our target bound after rearrangement. The second half follows
from the definition of diameter, as ‖wt −w∗t ‖ ≤ diam(W).

C.3 Proof of Thm. 5.4.2: SOOMD regret

We will prove the following more general result for adaptive SOOMD (ASOOMD)

wt+1 = arg min
w∈W

〈gt + g̃t+1 − g̃t,w〉+ λt+1Bψ(w,wt) (ASOOMD)

with arbitrary w0 and g0 = g̃0 = 0 (C.39)

from which Thm. 5.4.2 will follow with the choice λt = λ for all t ≥ 1.

Theorem C.3.1 (ASOOMD regret). Fix any λT+1 ≥ 0. If each (λt+1 − λt)ψ is proper and
differentiable, λ0 , 0, and g̃T+1 , 0, then, for all u ∈W, the ASOOMD iterates wt satisfy

RegretT (u) ≤
T∑
t=0

(λt+1 − λt)Bψ(u,wt)+ (C.40)

T∑
t=1

min
(

diam(W)‖gt − g̃t‖∗,
1

λt+1
huber(‖gt − g̃t‖∗, ‖gt + g̃t+1 − g̃t‖∗)

)
.

(C.41)

Proof. Fix any u ∈W, instantiate the notation of [76, Sec. 7.2], and consider the choices

• r1 = λ2ψ, rt = (λt+1 − λt)ψ for t ≥ 2, so that r1:t = λt+1ψ for t ≥ 1,

• qt = q̃t + 〈g̃t+1 − g̃t, ·〉 for t ≥ 0,
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• q̃0(w) = λ1Bψ(w,w0) and q̃t ≡ 0 for all t ≥ 1,

• p1 , r1 − q0 = r1 − q̃0 − 〈g̃1 − g̃0, ·〉 = λ2ψ − λ1Bψ(·,w0)− 〈g̃1 − g̃0, ·〉,

• pt , rt − qt−1 = rt − q̃t−1 − 〈g̃t − g̃t−1, ·〉 = (λt+1 − λt)ψ − 〈g̃t − g̃t−1, ·〉 for all t ≥ 2.

Since, for each t, δt = 0 and `t is convex, the Ada-MD regret inequality of [76, Eq. (24)]
and the choice g̃T+1 = 0 imply that

RegretT (u) =
T∑
t=1

`t(wt)−
T∑
t=1

`t(u) (C.42)

≤ −
T∑
t=1

B`t(u,wt) +
T∑
t=0

qt(u)− qt(wt+1) +
T∑
t=1

Bpt(u,wt) (C.43)

−
T∑
t=1

Br1:t(wt+1,wt) +
T∑
t=1

〈gt,wt −wt+1〉+
T∑
t=1

δt (C.44)

≤ λ1(Bψ(u,w0)− Bψ(w1,w0)) +
T∑
t=0

〈g̃t+1 − g̃t,u−wt+1〉 (C.45)

+
T∑
t=1

(λt+1 − λt)Bψ(u,wt) +
T∑
t=1

〈gt,wt −wt+1〉 − λt+1Bψ(wt+1,wt)

(C.46)

=

T∑
t=0

(λt+1 − λt)Bψ(u,wt) +

T∑
t=0

〈gt − g̃t,wt −wt+1〉 − λt+1Bψ(wt+1,wt).

(C.47)

To obtain our advertised bound, we begin with the expression (C.47) and invoke the 1-strong
convexity of ψ and the nonnegativity of Bλψ(w1,w0) to find

RegretT (u) ≤
T∑
t=0

(λt+1 − λt)Bψ(u,wt) +

T∑
t=0

〈gt − g̃t,wt −wt+1〉 − λt+1Bψ(wt+1,wt)

(C.48)

≤
T∑
t=0

(λt+1 − λt)Bψ(u,wt) +
T∑
t=1

〈gt − g̃t,wt −wt+1〉 −
λt+1

2
‖wt −wt+1‖2.

(C.49)
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We will bound the final sum in this expression using two lemmas. The first is a bound on
the difference between subsequent ASOOMD iterates distilled from [75, proof of Prop. 2].

Lemma C.3.1 (ASOOMD iterate bound [75, proof of Prop. 2]). If ψ is differentiable and
1-strongly convex with respect to ‖·‖, then the ASOOMD iterates satisfy

‖wt −wt+1‖ ≤
1

λt+1
‖gt + g̃t+1 − g̃t‖∗. (C.50)

The second, proved in App. C.3.1, is a general bound on 〈g,v〉 − λ
2‖v‖2 under a norm

constraint on v.

Lemma C.3.2 (Norm-constrained conjugate). For any g ∈ Rd and λ, c, b > 0,

sup
v∈Rd:‖v‖≤min( c

λ
,b)

〈g,v〉 − λ
2‖v‖2 = 1

λ min(‖g‖∗, c, bλ)(‖g‖∗ − 1
2 min(‖g‖∗, c, bλ)) (C.51)

≤ min(b‖g‖∗, 1
λ min(‖g‖∗, c)(‖g‖∗ − 1

2 min(‖g‖∗, c)))
(C.52)

= min(b‖g‖∗, 1
2λ(‖g‖2∗ − (‖g‖∗ −min(‖g‖∗, c))2)) (C.53)

= min(b‖g‖∗, 1
2λ(‖g‖2∗ − (‖g‖∗ − c)2

+)) (C.54)

≤ min( 1
2λ‖g‖2∗, 1

λc‖g‖∗, b‖g‖∗). (C.55)

By Lems. C.3.1 and C.3.2 and the definition of a , diam(W), each summand in our
regret bound (C.49) satisfies

〈gt − g̃t,wt −wt+1〉 − λt+1

2 ‖wt −wt+1‖2 (C.56)

≤ sup
v∈Rd:‖v‖≤min( 1

λt+1
‖gt+g̃t+1−g̃t‖∗,a)

〈gt − g̃t,v〉 − λt+1

2 ‖v‖2 (C.57)

= min
(
a‖gt − g̃t‖∗, 1

2λt+1
(‖gt − g̃t‖2∗ − (‖gt − g̃t‖∗ − ‖gt + g̃t+1 − g̃t‖∗)2

+)
)

(C.58)

yielding the advertised result. �
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C.3.1 Proof of Lem. C.3.2: Norm-constrained conjugate

By the definition of the dual norm,

sup
v∈Rd:‖v‖≤min( c

λ
,b)

〈g,v〉−λ
2
‖v‖2 (C.59)

= sup
a≤min( c

λ
,b)

sup
v∈Rd:‖v‖≤a

〈g,v〉 − λ
2a

2 = sup
a≤min( c

λ
,b)
a‖g‖∗ − λ

2a
2

(C.60)

= 1
λ min(‖g‖∗, c, bλ)(‖g‖∗ − 1

2 min(‖g‖∗, c, bλ)) (C.61)

≤ min(
1

λ
c‖g‖∗, b‖g‖∗). (C.62)

We compare to the values of less constrained optimization problems to obtain the final
inequalities:

sup
a≤min( c

λ
,b)
a‖g‖∗ − λ

2a
2 ≤ sup

a≤ c
λ

a‖g‖∗ − λ
2a

2 = 1
λ min(‖g‖∗, c)(‖g‖∗ − 1

2 min(‖g‖∗, c))

(C.63)

≤ sup
a>0

a‖g‖∗ − λ
2a

2 = 1
λ

1
2‖g‖2∗. (C.64)

C.4 Proof of Lem. 5.6.2: DORM is ODAFTRL and DORM + is DOOMD

Our derivations will make use of several facts about `p norms, summarized in the next
lemma.

Lemma C.4.1 (`p norm facts). For p ∈ (1,∞), ψ(w) = 1
2‖w‖2p, and any vectors w,v ∈ Rd
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and w̃0 ∈ Rd+,

∇ψ(w) = ∇1
2‖w‖2p = sign(w)|w|p−1/‖w‖p−2

p (C.65)

〈w,∇ψ(w)〉 = ‖w‖2p = 2ψ(w) (C.66)

ψ∗(v) = sup
w∈Rd

〈w,v〉 − ψ(w) = 1
2‖v‖2q for 1/q = 1− 1/p (C.67)

∇ψ∗(v) = sign(v)|v|q−1/‖v‖q−2
q (C.68)

ψ∗+(v) = sup
w∈Rd+

〈w,v〉 − ψ(w) (C.69)

= sup
w∈Rd

〈w, (v)+〉 − ψ(w) = 1
2‖(v)+‖2q (C.70)

∇ψ∗+(v) = arg max
w∈Rd+

〈w,v〉 − ψ(w) = arg min
w∈Rd+

ψ(w)− 〈w,v〉 (C.71)

= (v)q−1
+ /‖(v)+‖q−2

q (C.72)

min
w̃∈Rd+

Bλψ(w̃, w̃0)− 〈v, w̃〉 = λ(〈w̃0,∇ψ(w̃0)〉 − ψ(w̃0)− sup
w̃∈Rd+

〈w̃,∇ψ(w̃0) + v/λ〉 − ψ(w̃))

(C.73)

= λ(〈w̃0,∇ψ(w̃0)〉 − ψ(w̃0)− ψ∗+(∇ψ(w̃0) + v/λ)) (C.74)

= λ(ψ(w̃0)− ψ∗+(∇ψ(w̃0) + v/λ)) (C.75)

= λ(ψ(w̃0)− 1
2‖(∇ψ(w̃0) + v/λ)+‖2q) (C.76)

= λ(1
2‖w̃0‖2p − 1

2‖(w̃
p−1
0 /‖w̃0‖p−2

p + v/λ)+‖2q). (C.77)

Proof. The fact (C.65) follows from the chain rule as

∇j
1

2
‖w‖2p =

1

2
∇j(‖w‖pp)2/p =

1

p
(‖w‖pp)(2/p)−1∇j‖w‖pp =

1

p
‖w‖2−pp ∇j

d∑
j′=1

|wj′ |p (C.78)

=
1

p
‖w‖2−pp psign(wj)|wj |p−1 = sign(wj)|wj |p−1/‖w‖p−2

p . (C.79)

The fact (C.67) follows from Lem. C.3.2 as ‖·‖q is the dual norm of ‖·‖p. �

We now prove each claim in turn.
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C.4.1 DORM is ODAFTRL

Fix p ∈ (1, 2], λ > 0, and t ≥ 0. The ODAFTRL iterate with hint −ht+1, W , Rd+,
ψ(w̃) = 1

2‖w̃‖2p, loss subgradients gODAFTRL
1:t−D = −r1:t−D, and regularization parameter λ

takes the form

arg min
w̃∈Rd+

λψ(w̃)− 〈w̃,ht+1 + r1:t−D〉 (C.80)

= arg min
w̃∈Rd+

ψ(w̃)− 〈w̃, (ht+1 + r1:t−D)/λ〉 (C.81)

= ((r1:t−D + ht+1)/λ)q−1
+ /‖((r1:t−D + ht+1)/λ)+‖q−2

q by (C.72) (C.82)

= ((r1:t−D + ht+1)/λ)q−1
+ ‖((r1:t−D + ht+1)/λ)q−1

+ ‖p−2
p (C.83)

since (p− 1)(q − 1) = 1

= w̃t+1‖w̃t+1‖p−2
p (C.84)

proving the claim.

C.4.2 DORM+ is DOOMD

Fix p ∈ (1, 2] and λ > 0, and let (w̃t)t≥0 denote the unnormalized iterates generated
by DORM+ with hints ht, instantaneous regrets rt, regularization parameter λ, and
hyperparameter q. For p = q/(q−1), let (w̄t)t≥0 denote the sequence generated by DOOMD
with w̄0 = 0, hints −ht, W , Rd+, ψ(w̃) = 1

2‖w̃‖2p, loss subgradients gDOOMD
t = −rt,

and regularization parameter λ. We proceed by induction to show that, for each t, w̄t =

w̃t‖w̃t‖p−2
p .

Base case By assumption, w̄0 = 0 = w̃0‖w̃0‖p−2
p , confirming the base case.
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Inductive step Fix any t ≥ 0 and assume that for each s ≤ t, w̄s = w̃s‖w̃s‖p−2
p . Then, by

the definition of DOOMD and our `p norm facts,

w̄t+1 = arg min
w̄∈Rd+

〈−ht+1 + ht − rt−D, w̄〉+ Bλψ(w̄, w̄t) (C.85)

= arg min
w̄∈Rd+

λ(ψ(w̄)− ψ(w̄t)− 〈w̄ − w̄t,∇ψ(w̄t)〉) + 〈−ht+1 + ht − rt−D, w̄〉 (C.86)

= arg min
w̄∈Rd+

ψ(w̄)− 〈w̄,∇ψ(w̄t) + (rt−D − ht + ht+1)/λ〉 (C.87)

= arg min
w̄∈Rd+

ψ(w̄)− 〈w̄, w̄p−1
t /‖w̄t‖p−2

p + (rt−D − ht + ht+1)/λ〉 by (C.65)

(C.88)

= arg min
w̄∈Rd+

ψ(w̄)− 〈w̄, w̃p−1
t + (rt−D − ht + ht+1)/λ〉 by the inductive hypothesis

(C.89)

= (w̃p−1
t + (rt−D − ht + ht+1)/λ)q−1

+ /‖(w̃p−1
t + (rt−D − ht + ht+1)/λ)+‖q−2

q

(C.90)

by (C.72)

= (w̃p−1
t + (rt−D − ht + ht+1)/λ)q−1

+ ‖(w̃p−1
t + (rt−D − ht + ht+1)/λ)q−1

+ ‖p−2
p

(C.91)

since (p− 1)(q − 1) = 1

= w̃t+1‖w̃t+1‖p−2
p , (C.92)

completing the inductive step.

C.5 Proof of Lem. 5.6.1: DORM and DORM+ are independent of λ

We will prove the following more general result, from which the stated result follows
immediately.

Lemma C.5.1 (DORM and DORM+ are independent of λ). Consider either DORM or
DORM+ plays w̃t as a function of λ > 0, and suppose that for all time points t, the observed
subgradient gt and chosen hint ht+1 only depend on λ through (ws, λ

q−1w̃s, gs−1,hs)s≤t

and (ws, λ
q−1w̃s, gs,hs)s≤t respectively. Then if λq−1w̃0 is independent of the choice of

λ > 0, then so is λq−1w̃t for all time points t. As a result, wt ∝ λq−1w̃t is also independent
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of the choice of λ > 0 at all time points.

Proof. We prove each result by induction on t.

C.5.1 Scaled DORM iterates λq−1w̃t are independent of λ

Base case By assumption, h1 is independent of the choice of λ > 0. Hence λq−1w̃1 =

(h1)q−1
+ is independent of λ > 0, confirming the base case.

Inductive step Fix any t ≥ 0, suppose λq−1w̃s is independent of the choice of λ > 0 for all
s ≤ t, and consider

λq−1w̃t+1 = (r1:t−D + ht+1)q−1
+ . (C.93)

Since r1:t−D depends on λ only through ws and gs for s ≤ t −D, our λ dependence
assumptions for (gs,hs+1)s≤t; the fact that, for each s, ws ∝ λq−1w̃s; and our inductive
hypothesis together imply that λq−1w̃t+1 is independent of λ > 0.

C.5.2 Scaled DORM+ iterates λq−1w̃t are independent of λ

Base case By assumption, λq−1w̃0 is independent of the choice of λ > 0, confirming the
base case.

Inductive step Fix any t ≥ 0 and suppose λq−1w̃s is independent of the choice of λ > 0 for
all s ≤ t. Since (p− 1)(q − 1) = 1,

λq−1w̃t+1 = (λw̃p−1
t + rt−D − ht + ht+1)q−1

+ = ((λq−1w̃t)
p−1 + rt−D − ht + ht+1)q−1

+ .

(C.94)

Since rt−D depends on λ only through wt−D and gt−D, our λ dependence assumptions for
(gs,hs+1)s≤t; the fact that, for each s ≤ t, ws ∝ λq−1w̃s; and our inductive hypothesis
together imply that λq−1w̃t+1 is independent of λ > 0. �

C.6 Proof of Cor. 5.6.1: DORM and DORM+ regret

Fix any λ > 0 and u ∈ 4d−1, consider the unnormalized DORM or DORM+ iterates w̃t,
and define w̄t = w̃t‖w̃t‖p−2

p for each t. For either algorithm, we will bound our regret in
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terms of the surrogate losses

ˆ̀
t(w̃) , −〈rt, w̃〉 = 〈gt, w̃〉 − 〈w̃,1〉〈gt,wt〉 (C.95)

defined for w̃ ∈ Rd+. Since ˆ̀
t(u) = 〈gt,u−wt〉, ˆ̀

t(w̄t) = 0, and each `t is convex, we have

RegretT (u) =
T∑
t=1

`t(wt)− `t(u) ≤
T∑
t=1

〈gt,wt − u〉 =
T∑
t=1

ˆ̀
t(w̄t)− ˆ̀

t(u). (C.96)

For DORM, Lem. 5.6.2 implies that (w̄t)t≥1 are ODFTRL iterates, so the ODFTRL regret
bound (Thm. 5.4.3) and the fact that ψ is 1-strongly convex with respect to ‖·‖ =

√
p− 1‖·‖p

[see 152, Lemma 17] with ‖·‖∗ = 1√
p−1
‖·‖q imply

RegretT (u) ≤ λ

2
‖u‖2p +

1

λ(p− 1)

T∑
t=1

bt,q. (C.97)

Similarly, for DORM+, Lem. 5.6.2 implies that (w̄t)t≥0 are DOOMD iterates with w̄0 = 0,
so the DOOMD regret bound (Thm. 5.4.4) and the strong convexity of ψ yield

RegretT (u) ≤ Bλ
2
‖·‖2p

(u,0) +
1

λ(p− 1)

T∑
t=1

bt,q =
λ

2
‖u‖2p +

1

λ(p− 1)

T∑
t=1

bt,q. (C.98)

Since, by Lem. 5.6.1, the choice of λ does not impact the iterate sequences played by DORM
and DORM+, we may take the infimum over λ > 0 in these regret bounds. The second
advertised inequality comes from the identity 1

p−1 = q−1 and the norm equivalence relations
‖v‖q ≤ d1/q‖v‖∞ and ‖v‖p ≤ ‖v‖1 = 1 for v ∈ Rd, as shown in Lem. C.6.1 below. The
final claim follows as

inf
q′≥2

d2/q′(q′ − 1) = inf
q′≥2

22 log2(d)/q′(q′ − 1) ≤ 22 log2(d)/(2 log2(d))(2 log2(d)− 1) (C.99)

= 2(2 log2(d)− 1) (C.100)

since d > 1.

Lemma C.6.1 (Equivalence of p-norms). If x ∈ Rn and q > q′ ≥ 1, then ‖x‖q ≤ ‖x‖q′ ≤
n(1/q′−1/q)‖x‖q.

Proof. To show ‖x‖q ≤ ‖x‖q′ for q > q′ ≥ 1, suppose without loss of generality that
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‖x‖q′ = 1. Then, ‖x‖qq =
∑n

i=1 |xi|q ≤
∑n

i=1 |xi|q
′

= ‖x‖q′q′ = 1. Hence ‖x‖q ≤ 1 = ‖x‖q′ .
For the inequality ‖x‖q′ ≤ n1/q′−1/q‖x‖q, applying Hölder’s inequality yields

‖x‖q′q′ =
n∑
i=1

1 · |xi|q
′ ≤

(
n∑
i=1

1

)1− q
′
q
(

n∑
i=1

|xi|q
) q′

q

= n
1− q

′
q ‖x‖q′q , (C.101)

so ‖x‖q′ ≤ n1/q′−1/q‖x‖q. �

C.7 Proof of Thm. 5.7.1: ODAFTRL regret

Since ODAFTRL is an instance of OAFTRL with g̃t+1 = ht+1 −
∑t

s=t−D+1 gs, the
ODAFTRL result follows immediately from the OAFTRL regret bound, Thm. C.2.1.

C.8 Proof of Thm. 5.7.2: DUB Regret

Fix any u ∈W. By Thm. 5.7.1, ODAFTRL admits the regret bound

RegretT (u) ≤ λTψ(u) +

T∑
t=1

min(
1

λt
bt,F ,at,F ). (C.102)

To control the second term in this bound, we apply the following lemma proved in App. C.8.1.

Lemma C.8.1 (DUB-style tuning bound). Fix any α > 0 and any non-negative sequences
(at)

T
t=1, (bt)

T
t=1. If

∆∗t+1 , 2 max
j≤t−D−1

aj−D+1:j +

√√√√t−D∑
i=1

a2
i + 2αbi ≤ αλt+1 for each t (C.103)

then

T∑
t=1

min(b2t /λt, at) ≤ ∆∗T+D+1 ≤ αλT+D+1. (C.104)

Since λT ≤ λT+D+1, the result now follows by setting at = at,F and bt = bt,F , so that

RegretT (u) ≤ λTψ(u) + αλT+D+1 ≤ (ψ(u) + α)λT+D+1. (C.105)
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C.8.1 Proof of Lem. C.8.1: DUB-style tuning bound

We prove the claim

∆t ,
t∑
i=1

min(bi/λi, ai) ≤ ∆∗t+D+1 ≤ αλt+D+1 (C.106)

by induction on t.

Base case For t ∈ [D + 1],

t∑
i=1

min(bi/λi, ai) ≤ a1:t−1 + at ≤ 2 max
j≤t−1

aj−D+1:j +

√√√√ t∑
i=1

a2
i + 2αbi = ∆∗t+D+1 ≤ αλt+D+1

(C.107)

confirming the base case.

Inductive step Now fix any t+ 1 ≥ D + 2 and suppose that

∆i ≤ ∆∗i+D+1 ≤ αλi+D+1 (C.108)

for all 1 ≤ i ≤ t. We apply this inductive hypothesis to deduce that, for each 0 ≤ i ≤ t,

∆2
i+1 −∆2

i = (∆i + min(bi+1/λi+1, ai+1))2 −∆2
i (C.109)

= 2∆i min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2 (C.110)

= 2∆i−D min(bi+1/λi+1, ai+1) + 2(∆i −∆i−D) min(bi+1/λi+1, ai+1)

+ min(bi+1/λi+1, ai+1)2 (C.111)

= 2∆i−D min(bi+1/λi+1, ai+1) + 2

i∑
j=i−D+1

min(bj/λj , aj) min(bi+1/λi+1, ai+1)

+ min(bi+1/λi+1, ai+1)2 (C.112)

≤ 2αλi+1 min(bi+1/λi+1, ai+1) + 2ai−D+1:i min(bi+1/λi+1, ai+1) + a2
i+1

(C.113)

≤ 2αbi+1 + a2
i+1 + 2ai−D+1:i min(bi+1/λi+1, ai+1). (C.114)



140 APPENDIX C. ONLINE LEARNING WITH OPTIMISM AND DELAY

Now, we sum this inequality over i = 0, . . . , t, to obtain

∆2
t+1 ≤

t∑
i=0

(2αbi+1 + a2
i+1) + 2

t∑
i=0

ai−D+1:i min(bi+1/λi+1, ai+1) (C.115)

=

t+1∑
i=1

(2αbi + a2
i ) + 2

t+1∑
i=1

ai−D:i−1 min(bi/λi, ai) (C.116)

≤
t+1∑
i=1

(a2
i + 2αbi) + 2 max

j≤t
aj−D+1:j

t+1∑
i=1

min(bi/λi, ai) (C.117)

=
t+1∑
i=1

(a2
i + 2αbi) + 2∆t+1 max

j≤t
aj−D+1:j . (C.118)

Solving this quadratic inequality and applying the triangle inequality, we have

∆t+1 ≤ max
j≤t

aj−D+1:j +
1

2

√√√√(2 max
j≤t

aj−D+1:j)2 + 4
t+1∑
i=1

a2
i + 2αbi (C.119)

≤ 2 max
j≤t

aj−D+1:j +

√√√√ t+1∑
i=1

a2
i + 2αbi = ∆∗t+D+2 ≤ αλt+D+2. (C.120)

C.9 Proof of Thm. 5.7.3: AdaHedgeD Regret

Fix any u ∈ W. Since the AdaHedgeD regularization sequence (λt)t≥1 is non-decreasing,
Thm. C.2.1 gives the regret bound

RegretT (u) ≤ λTψ(u) +
T∑
t=1

δt = λTψ(u) + αλT+D+1 ≤ (ψ(u) + α)λT+D+1, (C.121)

and the proof of Thm. C.2.1 gives the upper estimate (C.32):

δt ≤ min
(bt,F
λt

,at,F

)
for all t ∈ [T ]. (C.122)
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Hence, it remains to bound λT+D+1. Since λ1 = · · · = λD+1 = 0 and α(λt+1 − λt) = δt−D

for t ≥ D + 1,

αλ2
T+D+1 =

T+D∑
t=1

α(λ2
t+1 − λ2

t ) =

T+D∑
t=D+1

(
α(λt+1 − λt)2 + 2α(λt+1 − λt)λt

)
(C.123)

=
T∑
t=1

(
δ2
t /α+ 2δtλt+D

)
by the definition of λt+1 (C.124)

=
T∑
t=1

(
δ2
t /α+ 2δtλt + 2δt(λt+D − λt)

)
(C.125)

≤
T∑
t=1

(
δ2
t /α+ 2δtλt + 2δt max

t∈[T ]
(λt+D − λt)

)
(C.126)

=
T∑
t=1

(
δ2
t /α+ 2δtλt

)
+ 2λT+D+1 max

t∈[T ]
δt−D:t−1 (C.127)

≤
T∑
t=1

(
a2
t,F /α+ 2bt,F

)
+ 2λT+D+1 max

t∈[T ]
at−D:t−1,F by (C.122). (C.128)

Solving the above quadratic inequality for λT+D+1 and applying the triangle inequality, we
find

αλT+D+1 ≤ max
t∈[T ]

at−D:t−1,F +
1

2

√√√√4(max
t∈[T ]

at−D:t−1,F )2 + 4

T∑
t=1

a2
t,F + 2αbt,F (C.129)

≤ 2 max
t∈[T ]

at−D:t−1,F +

√√√√ T∑
t=1

a2
t,F + 2αbt,F . (C.130)

C.10 Proof of Thm. 5.8.2: Learning to hint regret

We begin by bounding the hinting problem regret. Since DORM+ is used for the hinting
problem, the following result is an immediate corollary of Cor. 5.6.1.

Corollary C.10.1 (DORM+ hinting problem regret). With convex losses lt(ω) = ft(Htω)
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and no meta-hints, the DORM+ hinting problem iterates ωt satisfy, for each v ∈ 4m−1,

HintRegretT (v) ,
T∑
t=1

lt(ωt)−
T∑
t=1

lt(v) ≤

√√√√m2/q(q − 1)

2

T∑
t=1

βt,∞ for (C.131)

βt,∞ =

huber(‖∑t
s=t−D ρs‖∞, ‖ρt−D‖∞), for t < T

1
2‖
∑t

s=t−D ρs‖2∞, for t = T
(C.132)

where ρt , 1〈γt, ωt〉 − γt for γt ∈ ∂lt(ωt) (C.133)

is the instantaneous hinting problem regret.

If, in addition, q = arg minq′≥2m
2/q′(q′−1), then HintRegretT (v) ≤

√
(2 log2(m)− 1)

∑T
t=1 βt,∞.

Our next lemma, proved in App. C.10.1, provides an interpretable bound for each βt,∞
term in terms of the hinting problem subgradients (γt)t≥1.

Lemma C.10.1 (Hinting problem subgradient regret bound). Under the notation and
assumptions of Cor. C.10.1,

βt,∞ ≤

huber(ξt, ζt) if t < T

1
2ξt if t = T

, for (C.134)

ξt , 4(D + 1)

t∑
s=t−D

‖γs‖2∞ and (C.135)

ζt , 4‖γt−D‖∞
t∑

s=t−D
‖γs‖∞. (C.136)

Now fix any u ∈W. We invoke Assump. 5.8.1, Cor. C.10.1, and Lem. C.10.1 in turn to
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bound the base problem regret

RegretT (u) =
T∑
t=1

`t(wt)− `t(u) (C.137)

≤ C0(u) + C1(u)

√√√√ T∑
t=1

ft(ht(ωt)) by Assump. 5.8.1 (C.138)

≤ C0(u) + C1(u)

√√√√√ inf
v∈V

T∑
t=1

ft(ht(v)) +

√√√√(2 log2(m)− 1)
T∑
t=1

βt,∞ by Cor. C.10.1

(C.139)

≤ C0(u) + C1(u)

√√√√√ inf
v∈V

T∑
t=1

ft(ht(v)) +

√√√√(2 log2(m)− 1)(
1

2
ξT +

T−1∑
t=1

huber(ξt, ζt))

(C.140)

by Lem. C.10.1.

The advertised bound now follows from the triangle inequality.

C.10.1 Proof of Lem. C.10.1: Hinting problem subgradient regret bound

Fix any t ∈ [T ]. The triangle inequality implies that

‖ρt‖∞ = ‖γt − 1〈ωt, γt〉‖∞ ≤ ‖γt‖∞ + |〈ωt, γt〉| ≤ 2‖γt‖∞ (C.141)

since ωt ∈ 4m−1. We repeatedly apply this finding in conjunction with Jensen’s inequality
to conclude

‖
t∑

s=t−D
ρs‖2∞ ≤ (D + 1)

t∑
s=t−D

‖ρs‖2∞ ≤ 4(D + 1)
t∑

s=t−D
‖γs‖2∞ and (C.142)

‖ρt−D‖∞‖
t∑

s=t−D
ρs‖∞ ≤ ‖ρt−D‖∞

t∑
s=t−D

‖ρs‖∞ ≤ 4‖γt−D‖∞
t∑

s=t−D
‖γs‖∞. (C.143)
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C.11 Examples: Learning to Hint with DORM+ and AdaHedgeD

By Thm. 5.7.3, AdaHedgeD satisfies Assump. 5.8.1 with ft(ht) = ‖rt‖∗‖ht −
∑t

s=t−D rs‖∗ ≥
a2
t,F+2αbt,F

diam(W)2+2α
, C1(u) =

√
diam(W)2 + 2α, and C0(u) = 2 diam(W) maxt∈[T ]

∑t−1
s=t−D ‖gs‖∗.

By Cor. 5.6.1, DORM+ satisfies Assump. 5.8.1 with ft(h) = ‖rt−D + ht+1 − ht‖q‖h−
∑t

s=t−D rs‖q,
C0(u) = 0, and C1(u) =

√
‖u‖2p

2(p−1) .
These choices give rise to the hinting losses

lDORM+
t (ω) = ‖rt−D + ht+1 − ht‖q‖Htω −

t∑
s=t−D

rs‖q and (C.144)

lAdaHedgeDt (ω) = ‖gt‖q‖Htω −
t∑

s=t−D
gs‖q when ‖·‖∗ = ‖·‖q for q ∈ [1,∞]. (C.145)

The following lemma, proved in App. C.11.1, identifies subgradients of these hinting losses.

Lemma C.11.1 (Hinting loss subgradient). If lt(ω) = ‖ḡt‖q‖Htω − vt‖q for some ḡt,vt ∈
Rd and Ht ∈ Rd×m, then

γt =


‖ḡt‖q

‖Htω−vt‖q−1
q

H>t |Htω − vt|q−1sign(Htω − vt) if q <∞

‖ḡt‖∞sign(µ)H>t ek if q =∞
∈ ∂lt(ω) (C.146)

for k = arg maxj∈[d](Htω − vt)j and µ = maxj∈[d](Htω − vt)j.

Our next lemma, proved in App. C.11.2, bounds the ∞-norm of this hinting loss
subgradient in terms of the base problem subgradients.

Lemma C.11.2 (Hinting loss subgradient bound). Under the assumptions and notation of
Lem. C.11.1, the subgradient γt satisfies ‖γt‖∞ ≤ d1/q‖ḡt‖q‖Ht‖∞ for ‖Ht‖∞ the maximum
absolute entry of Ht.

C.11.1 Proof of Lem. C.11.1: Hinting loss subgradient

The result follows immediately from the chain rule and the following lemma.

Lemma C.11.3 (Subgradients of p-norms). Suppose w ∈ Rd and k ∈ arg maxj∈[d] |wj |.
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Then

∂‖w‖p 3


|w|p−1

‖w‖p−1
p

sign(w) if ‖w‖p 6= 0, p ∈ [1,∞)

eksign(wk) if ‖w‖p 6= 0, p =∞
0 if ‖w‖p = 0

. (C.147)

Proof. Since 0 is a minimizer of ‖·‖p, we have ‖u‖p ≥ ‖0‖p + 〈0,u− 0〉 for any u ∈ Rd and
hence 0 ∈ ∂‖0‖p.

For p ∈ [1,∞), by the chain rule, if ‖w‖p 6= 0,

∂j‖w‖p = ∂j
( n∑
k=1

|wk|p
)1/p

=
1

p

( n∑
k=1

|wk|p
)(1/p)−1

p|wj |p−1sign(wj) (C.148)

=
(( n∑

k=1

|wk|p
)1/p)−(p−1)

|wj |p−1sign(wj) (C.149)

=
( |wj |
‖w‖p

)p−1
sign(wj). (C.150)

For p =∞, we have that ‖w‖∞ = maxj∈[n] |wj |. By the Danskin-Bertsekas Theorem [38]
for subdifferentials, ∂‖w‖∞ = conv{∪∂|wj | s.t. |wj | = ‖w‖∞} = conv{∪sign(wj)ej s.t. |wj | =
‖w‖∞}, where conv is the convex hull operation. �

C.11.2 Proof of Lem. C.11.2: Hinting loss subgradient bound

If q ∈ [1,∞), we have

‖γt‖∞ =

∥∥∥∥∥ ‖ḡt‖q
‖Htω −

∑t
s=t−D gs‖

q−1
q

H>t |Htω −
t∑

s=t−D
gs|q−1sign(Htω −

t∑
s=t−D

gs)

∥∥∥∥∥
∞
(C.151)

≤
‖ḡt‖q maxj∈[d] ‖Htej‖q
‖Htω −

∑t
s=t−D gs‖

q−1
q

‖Htω −
t∑

s=t−D
gs‖q−1

q by Hölder’s inequality for (q, p)

(C.152)

≤ d1/q‖ḡt‖q‖Ht‖∞ by Lem. C.6.1. (C.153)
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If q =∞, we have

‖γt‖∞ =
∥∥∥‖ḡt‖∞sign(µ)H>t ek

∥∥∥
∞

= I[µ 6= 0]‖ḡt‖∞‖Ht‖∞ ≤ d1/q‖ḡt‖∞‖Ht‖∞. (C.154)

C.12 Extended Experimental Results

We present complete experimental results for the four experiments presented in the main
text (see Sec. 5.9).

C.12.1 Competing with the Best Input Model

Results for our three delayed online learning algorithms — DORM, DORM+, and Ada-
HedgeD— on the four subseasonal prediction tasks for the four optimism strategies described
in Sec. 5.9 (recent_g, prev_g, mean_g, none) are presented below. Each table and figure
shows the average RMSE loss and the annual regret versus the best input model in any
given year respectively for each algorithm and task.

DORM+ is a competitive model for all three hinting strategies and under the recent_g
hinting strategy achieves negative regret on all tasks except Temp. 5-6w. For the Temp.
5-6w task, no online learning model outperforms the best input model for any hinting
strategy. For the precipitation tasks, the online learning algorithms presented achieve
negative regret using all three hinting strategies for all four tasks. Within the subseasonal
forecasting domain, precipitation is often considered a more challenging forecasting task
than temperature [190]. The gap between the best model and the worst model tends to be
larger for precipitation than for temperature, and this could in part explain the strength of
the online learning algorithms for these tasks.

Table C.1: Hint recent_g: Average RMSE of the 2011-2020 semimonthly forecasts for online
learning algorithms (left) and input models (right) over a 10-year evaluation period with the top-
performing learners and input models bolded and blue. In each task, the online learners compare
favorably with the best input model and learn to downweigh the lower-performing candidates, like the
worst model.

recent_g AdaHedgeD DORM DORM+ Best Input Model Worst Input

Precip. 3-4w 21.726 21.731 21.675 21.973 23.344
Precip. 5-6w 21.868 21.957 21.838 21.993 23.257
Temp. 3-4w 2.273 2.259 2.247 2.253 2.508
Temp. 5-6w 2.316 2.316 2.303 2.270 2.569
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Figure C.1: Hint recent_g: Yearly cumulative regret under RMSE loss for the three delayed online
learning algorithms presented, over the 10-year evaluation period. The zero line corresponds to the
performance of the best input model in a given year.

Table C.2: Hint prev_g: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks
over a 10-year evaluation period.

prev_g AdaHedgeD DORM DORM+ Best Input Model Worst Input

Precip. 3-4w 21.760 21.777 21.729 21.973 23.344
Precip. 5-6w 21.943 21.964 21.911 21.993 23.257
Temp. 3-4w 2.266 2.269 2.250 2.253 2.508
Temp. 5-6w 2.306 2.307 2.305 2.270 2.569
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Figure C.2: Hint prev_g: Yearly cumulative regret under RMSE loss for the three delayed online
learning algorithms presented.

Table C.3: Hint mean_g: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks
over a 10-year evaluation period.

mean_g AdaHedgeD DORM DORM+ Best Input Model Worst Input

Precip. 3-4w 21.864 21.945 21.830 21.973 23.344
Precip. 5-6w 21.993 22.054 21.946 21.993 23.257
Temp. 3-4w 2.273 2.277 2.257 2.253 2.508
Temp. 5-6w 2.311 2.320 2.314 2.270 2.569
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Figure C.3: Hint mean_g: Yearly cumulative regret under RMSE loss for the three delayed online
learning algorithms presented.

Table C.4: Hint none: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks
over a 10-year evaluation period.

None AdaHedgeD DORM DORM+ Best Input Model Worst Input

Precip. 3-4w 21.760 21.835 21.796 21.973 23.344
Precip. 5-6w 21.860 21.967 21.916 21.993 23.257
Temp. 3-4w 2.266 2.272 2.258 2.253 2.508
Temp. 5-6w 2.296 2.311 2.308 2.270 2.569
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Figure C.4: Hint none: Yearly cumulative regret under RMSE loss for the three delayed online
learning algorithms presented.

C.12.2 Impact of Regularization

Results for three regularization strategies—AdaHedgeD, DORM+, and DUB—on all four
subseasonal prediction as described in Sec. 5.9. Fig. C.5 shows the annual regret versus the
best input model in any given year for each algorithm and task, and Fig. C.6 presents an
example of the weights played by each algorithm in the final evaluation year, as well as the
regularization weight used by each algorithm.

The under- and over-regularization of AdaHedgeD and DUB respectively compared
with DORM+ is evident in all four tasks, both in the regret and weight plots. Due to the
looseness of the regularization settings used in DUB, its plays can be seen to be very close to
the uniform ensemble in all four tasks. For this subseasonal prediction problem, the uniform
ensemble is competitive, especially for the 5-6 week horizons. However, in problems where
the uniform ensemble has higher regret, this over-regularization property of DUB would be
undesirable. The more adaptive plays of DORM+ and AdaHedgeD have the potential to
better exploit heterogeneous performance among different input models.



Sec. C.12. Extended Experimental Results 151

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

−20

−10

0

10

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.726)

DORM+ (RMSE: 21.675)

DUB (RMSE: 21.706)

Precipitation Weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

−4

−2

0

2

4

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.273)

DORM+ (RMSE: 2.247)

DUB (RMSE: 2.258)

Temperature Weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
−30

−20

−10

0

10

20

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.868)

DORM+ (RMSE: 21.838)

DUB (RMSE: 21.752)

Precipitation Weeks 5-6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
−4

−2

0

2

4
Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.316)

DORM+ (RMSE: 2.303)

DUB (RMSE: 2.286)

Temperature Weeks 5-6

Figure C.5: Overall Regret: Yearly cumulative regret under the RMSE loss for the three regular-
ization algorithms presented.
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Figure C.6: Impact of Regularization: The plays wt of online learning algorithms used to
combine the input models for all four tasks in the 2020 evaluation year. The weights of DUB
and AdaHedgeD appear respectively over and under regularized compared to DORM+ due to their
selection of regularization strength λt (right).
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C.12.3 To Replicate or Not to Replicate

We compare the performance of replicated and non-replicated variants of our DORM+
algorithm as in Sec. 5.9. Both algorithms perform well, but in all tasks, DORM+ outperforms
replicated DORM+ (in which D + 1 independent copies of DORM+ make staggered
predictions). Fig. C.7 provides an example of the weight plots produced by the replication
strategy for all for tasks.

The replicated algorithms only have the opportunity to learn from T/(D+ 1) plays. For
the 3-4 week horizons tasks D = 2 and for the 5-6 week horizons tasks D = 3. Because
our forecasting horizons are short (T = 26), further limiting the feedback available to each
online learner via replication could be detrimental to practical model performance.

Table C.5: Replication RMSE: Average RMSE of the 2010-2020 semimonthly forecasts for four
tasks over a 10-year evaluation period for replicated versus standard DORM+.

DORM+ Replicated DORM+ Best Input Model Worst Input

Precip. 3-4w 21.675 21.720 21.973 23.344
Precip. 5-6w 21.838 21.851 21.993 23.257
Temp. 3-4w 2.247 2.249 2.253 2.508
Temp. 5-6w 2.303 2.315 2.270 2.569
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Figure C.7: Replication Weights: The plays wt of DORM+ and replicated DORM+ for all four
tasks in the final evaluation year.

C.12.4 Learning to Hint

We examine the effect of optimism on the DORM+ algorithms and the ability of our
“learning to hint” strategy to recover the performance of the best optimism strategy in
retrospect as described in Sec. 5.9. We use DORM+ as the meta-algorithm for hint learning
to produce the learned optimism strategy that plays a convex combination of the three
constant hinters.

As reported in the main text, the regret of the base algorithm using the learned hinting
strategy generally falls between the worst and the best hinting strategy for any given year.
Because the best hinting strategy for any given year is unknown a priori, the adaptivity of
the hint learner is useful practically. Currently, the hint learner is only optimizing a loose
upper bound on base problem regret. Deriving loss functions for hint learning that more
accurately quantify the effect of the hinter on base model regret is an important next step
in achieving negative regret for online hinting algorithms.



Sec. C.12. Extended Experimental Results 155

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

−20

−10

0

10

Cumulative regret (RMSE loss)

learned (RMSE: 21.745)

mean g (RMSE: 21.830)

none (RMSE: 21.796)

prev g (RMSE: 21.727)

recent g (RMSE: 21.675)

Precipitation Weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

−4

−2

0

2

4

Cumulative regret (RMSE loss)

learned (RMSE: 2.252)

mean g (RMSE: 2.257)

none (RMSE: 2.258)

prev g (RMSE: 2.247)

recent g (RMSE: 2.247)

Temperature Weeks 3-4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
−20

−10

0

10

20

Cumulative regret (RMSE loss)

learned (RMSE: 21.878)

mean g (RMSE: 21.946)

none (RMSE: 21.916)

prev g (RMSE: 21.905)

recent g (RMSE: 21.838)

Precipitation Weeks 5-6

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

−2

0

2

4

Cumulative regret (RMSE loss)

learned (RMSE: 2.309)

mean g (RMSE: 2.314)

none (RMSE: 2.308)

prev g (RMSE: 2.310)

recent g (RMSE: 2.303)

Temperature Weeks 5-6

Figure C.8: Overall Regret: Yearly cumulative regret under the RMSE loss for DORM+ using the
three constant hinting strategies presented and the learned hinter, over the 10-year evaluation period.

C.12.5 Impact of Different Forms of Optimism

The regret analysis presented in this work suggest that optimistic strategies under delay can
benefit from hinting at both the “past” gt−D:t−1 missing losses and the “future” unobserved
loss gt. To study the impact of different forms of optimism on DORM+, we provide a
recent_g hint for either only the missing future loss gt, only the missing past losses
gt−D:t−1, or both past and future losses (the strategy used in this thesis) gt−D:t. Inspired
by the recommendation of an anonymous reviewer, we also test two hint settings that only
hint at the future unobserved loss but multiply the weight of that hint by 2D+1 or 3D+1,
effectively increasing the importance of the future hint in the online learning optimization.
Fig. C.9 presents the experimental results.

In this experiment, all settings of optimism improve upon the non-optimistic algorithm,
and, for all tasks, providing hints for missing future losses outperforms hinting at missing
past losses. For all tasks save Temp. 5-6w, hinting at both missing past and future losses
yields a further improvement. The 2D+1 and 3D+1 settings demonstrate that, for some
tasks, increasing the magnitude of the optimistic hint can further improve performance in
line with the online gradient descent predictions of Hsieh et al. [66, Thm. 13].
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Figure C.9: Hinting Regret: DORM+ average RMSE as in Table 5.1 as a function of optimism
strategy; see App. C.12.5 for details.

C.13 Algorithmic Details

C.13.1 ODAFTRL with AdaHedgeD and DUB tuning

The AdaHedgeD and DUB algorithms presented in the experiments are implementations
of ODAFTRL with a negative entropy regularizer ψ(w) =

∑d
j=1wj lnwj + ln d, which is

1-strongly convex with respect to the norm ‖·‖1 [152, Lemma 16] with dual norm ‖·‖∞.
Each algorithm optimizes over the simplex and competes with the simplex: W = U = 4d−1.
We choose α = supu∈U ψ(u) = ln(d). In the following, define ψt , λtψ for λt ≥ 0. Our
derivations of the update equations for AdaHedgeD and DUB make use of the following
properties of the negative entropy regularizer, proved in App. C.13.4.

Lemma C.13.1 (Negative entropy properties). The negative entropy regularizer ψ(w) =∑d
j=1wj lnwj + ln d with ψt = λtψ for λt ≥ 0 satisfies the following properties on the
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simplex W = 4d−1.

ψ∗W(θ) , sup
w∈W
〈w, θ〉 − ψ(w) = ln

( d∑
j=1

exp(θj)
)
− ln d, (C.155)

(λψ)∗W(θ) , sup
w∈W
〈w, θ〉 − λψ(w) =

λψ∗W(θ/λ) = λ ln(
∑d

j=1 exp(θj/λ))− λ ln d, if λ > 0

maxj∈[d] θj if λ = 0
,

(C.156)

w∗(θ, λ) ,


exp(θ/λ)∑d
j=1 exp(θj/λ)

if λ > 0

I[θ=maxj θj ]∑
k∈[d] I[θk=maxj θj ]

if λ = 0
∈ arg min

w∈W
λψ(w)− 〈w, θ〉 ⊆ ∂(λψ)∗W(θ).

(C.157)

Our next corollary concerning optimal ODAFTRL objectives follows directly from
Lem. C.13.1.

Corollary C.13.1 (Optimal ODAFTRL objectives). Instantiate the notation of Lem. C.13.1,
and define the functions Ft(w, λ) , λψ(w) + 〈g1:t−1,w〉 for w ∈W. Then

−(λψ)∗W(−(g1:t−1 + h)) = inf
w∈W

Ft(w, λ) + 〈h,w〉 and (C.158)

w∗(−(g1:t−1 + h), λ) = arg min
w∈W

Ft(w, λ) + 〈h,w〉. (C.159)

Using Lem. C.13.1 and Cor. C.13.1, we can derive an expression, proved in App. C.13.5,
for the AdaHedgeD δt updates.

Proposition C.13.1 (AdaHedgeD δt). Instantiate the notation of Thm. 5.7.3, and define
the auxiliary hint vector

ĥt , gt−D:t + σt(ht − gt−D:t) for σt , min(
‖gt‖∗

‖ht − gt−D:t‖∗
, 1) (C.160)

along with the scalars

c∗ = max
j:wt,j 6=0

ht,j − gt−D:t,j and ĉ∗ = max
j:ŵt,j 6=0

ĥt,j − gt−D:t,j (C.161)
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for

w̄t = arg min
w∈W

Ft+1(w, λt) =
exp(−g1:t/λt)∑d

j=1 exp(−g1:t,j/λt)
and (C.162)

ŵt = arg min
w∈W

Ft+1(w, λt) + 〈ĥt − gt−D:t,w〉 =
exp(−(g1:t−D−1 + ĥt)/λt)∑d

j=1 exp(−(g1:t−D−1,j + ĥt,j)/λt)

(C.163)

by Cor. C.13.1. If λt > 0,

δt = min(δ
(1)
t , δ

(2)
t , δ

(3)
t )+ for (C.164)

δ
(1)
t = Ft+1(wt, λt)− Ft+1(w̄t, λt) (C.165)

= λt ln(
∑
j∈[d]

wt,j exp((ht,j − gt−D:t,j)/λt)) + 〈gt−D:t − ht,wt〉 (C.166)

= λt ln(
∑
j∈[d]

wt,j exp((ht,j − gt−D:t,j − c∗)/λt)) + 〈gt−D:t − ht,wt〉+ c∗, (C.167)

δ
(2)
t = 〈gt,wt − w̄t〉, and (C.168)

δ
(3)
t = Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉 (C.169)

= λt ln(
∑
j∈[d]

ŵt,j exp((ĥt,j − gt−D:t,j)/λt)) + 〈gt−D:t − ĥt, ŵt〉+ 〈gt,wt − ŵt〉

(C.170)

= λt ln(
∑
j∈[d]

ŵt,j exp((ĥt,j − gt−D:t,j − ĉ∗)/λt)) + 〈gt−D:t − ĥt, ŵt〉+ ĉ∗ + 〈gt,wt − ŵt〉.

(C.171)

If λt = 0,

δt = min(δ
(1)
t , δ

(2)
t , δ

(3)
t )+ for (C.172)

δ
(1)
t = 〈g1:t,wt〉 −min

j∈[d]
g1:t,j , (C.173)

δ
(2)
t = 〈gt,wt − w̄t〉, and (C.174)

δ
(3)
t = 〈g1:t, ŵt〉 −min

j∈[d]
g1:t,j + 〈gt,wt − ŵt〉. (C.175)

Leveraging these results, we present the pseudocode for the AdaHedgeD and DUB
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instantiations of ODAFTRL in Algorithm 3.

C.13.2 DORM and DORM+

The DORM and DORM+ algorithms presented in the experiments are implementations of
ODAFTRL and DOOMD respectively that play iterates in W , 4d−1 using the default
value λ = 1. Both algorithms use a p-norm regularizer ψ = 1

2‖·‖2p, which is 1-strongly convex
with respect to ‖·‖ =

√
p− 1‖·‖p [see 152, Lemma 17] with ‖·‖∗ = 1√

p−1
‖·‖q. For the thesis

experiments, we choose the optimal value q = infq′≥2 d
2/q′(q′ − 1) to obtain ln(d) scaling in

the algorithm regret; for d = 6, p = q = 2. The update equations for each algorithm are
given in the main text by DORM and DORM+ respectively. The optimistic hinters provide
delayed gradient hints g̃t, which are then used to compute regret gradient hints r̃t, where
r̃t = 〈g̃t,wt〉 − g̃t and ht =

∑t−1
s=t−D r̃s + 〈g̃t,wt−1〉 − g̃t.

C.13.3 Adaptive Hinting

For the adaptive hinting experiments, we use the DORM+ as both the base and hint learner.
For the hint learner with DORM base algorithm, the hint loss function is given by (C.144)
with q = 2. The plays of the online hinter ωt are used to generate the hints ht for the base
algorithm using the hint matrix Ht ∈ Rd×m. The j-th column of Ht contains hinter j’s
predictions for the cumulative missing regret subgradients rt−D:t. The final hint for the
base learner is ht = Htωt. Pseudocode for the adaptive hinter is given in Algorithm 4.

C.13.4 Proof of Lem. C.13.1: Negative entropy properties

The expression of the Fenchel conjugate for λ > 0 is derived by solving an appropriate
constrained convex optimization problem for w = 4d−1, as shown in [129, Section 6.6].
The value of w∗(θ, λ) ∈ ∂(λψ)∗W(θ) uses the properties of the Fenchel conjugate [129, 150,
Theorem 5.5] and is shown in [129, Theorem 6.6].
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C.13.5 Proof of Prop. C.13.1: AdaHedgeD δt

First suppose λt > 0. The first term in the min of AdaHedgeD’s δt setting is derived as
follows:

δ
(1)
t , Ft+1(wt, λt)− Ft+1(w̄t, λt) by definition (5.25) (C.176)

= Ft−D(wt, λt) + 〈ht,wt〉+ 〈gt−D:t − ht,wt〉 − inf
w∈W

Ft+1(w, λt) by definition of w̄t

(C.177)

= Ft−D(wt, λt) + 〈ht,wt〉+ 〈gt−D:t − ht,wt〉+ λtψ
∗
W(−g1:t/λt) by Cor. C.13.1

(C.178)

= λtψ
∗
W(−g1:t/λt)− λtψ∗W((−ht − g1:t−D−1)/λt) + 〈gt−D:t − ht,wt〉 (C.179)

because wt ∈ arg min
w∈W

Ft−D(wt, λt) + 〈ht,wt〉 (C.180)

= λt(ln(
d∑
j=1

exp(−g1:t,j/λt))− λt(ln(
d∑
j=1

exp((−g1:t−D−1,j − ht,j)/λt)) + 〈gt−D:t − ht,wt〉

(C.181)

by Lem. C.13.1

= λt ln

 d∑
j=1

exp(−g1:t,j/λt)∑d
j=1 exp((−g1:t−D−1,j − ht,j)/λt)

+ 〈gt−D:t − ht,wt〉 (C.182)

= λt ln

 d∑
j=1

exp((−g1:t−D−1,j − ht,j)/λt) exp((ht,j − gt−D:t,j)/λt)∑d
j=1 exp((−g1:t−D−1,j − ht,j)/λt)

+ 〈gt−D:t − ht,wt〉

(C.183)

= λt ln

 d∑
j=1

wt,j exp((ht,j − gt−D:t,j)/λt)

+ 〈gt−D:t − ht,wt〉 (C.184)

by the expression for wt in Cor. C.13.1.

The expression for the third term in the min of AdaHedgeD’s δt setting follows from identical
reasoning.
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Now suppose λt = 0. We have

δ
(1)
t , Ft+1(wt, λt)− Ft+1(w̄t, λt) by definition (5.25) (C.185)

= 〈g1:t,wt〉 − inf
w∈W

Ft+1(w, λt) by definition of w̄t (C.186)

= 〈g1:t,wt〉 −min
j∈[d]

g1:t,j by Cor. C.13.1. (C.187)

Identical reasoning yields the advertised expression for the third term.

C.14 Extension to Variable and Unbounded Delays

In this section we detail how our main results generalize to the case of variable and potentially
unbounded delays. For each time t, we define last(t) as the largest index s for which g1:s is
observable at time t (that is, available for constructing wt) and first(t) as the first time s at
which g1:t is observable at time s (that is, available for constructing ws).

C.14.1 Regret of DOOMD with variable delays

Consider the DOOMD variable-delay generalization

wt+1 = arg min
w∈W

〈glast(t)+1:last(t+1) + ht+1 − ht,w〉+ Bλψ(w,wt)

(DOOMD with variable delays)

with h0 , 0 and arbitrary w0.

We first note that DOOMD with variable delays is an instance of SOOMD respectively
with a “bad” choice of optimistic hint g̃t+1 that deletes the unobserved loss subgradients
glast(t+1)+1:t.

Lemma C.14.1 (DOOMD with variable delays is SOOMD with a bad hint). DOOMD
with variable delays is SOOMD with g̃t+1 = g̃t + glast(t)+1:last(t+1) − gt + ht+1 − ht =

ht+1 +
∑t

s=1 glast(s)+1:last(s+1) − gs. = ht+1 − glast(t+1)+1:t.

The following result now follows immediately from Thm. 5.4.2 and Lem. C.14.1.

Theorem C.14.1 (Regret of DOOMD with variable delays). If ψ is differentiable and
hT+1 , glast(T+1)+1:T , then, for all u ∈W, the DOOMD with variable delays iterates wt
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satisfy

RegretT (u) ≤ Bλψ(u,w0) +
1

λ

T∑
t=1

b2
t,O, for (C.188)

b2
t,O , huber(‖ht −

t∑
s=last(t)+1

gs‖∗, ‖glast(t)+1:last(t+1) + ht+1 − ht‖∗). (C.189)

C.14.2 Regret of ODAFTRL with variable delays

Consider the ODAFTRL variable-delay generalization

wt+1 = arg min
w∈W

〈g1:last(t+1) + ht+1,w〉+ λt+1ψ(w). (ODAFTRL with variable delays)

Since ODAFTRL with variable delays is an instance of OAFTRL with g̃t+1 = ht+1 −∑t
s=last(t+1)+1 gs, the following result follows immediately from the OAFTRL regret bound,

Thm. C.2.1.

Theorem C.14.2 (Regret of ODAFTRL with variable delays). If ψ is nonnegative and λt
is non-decreasing in t, then, ∀u ∈W, the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) ≤ λTψ(u) +
T∑
t=1

min(
bt,F
λt

,at,F ) with (C.190)

bt,F , huber(‖ht −
t∑

s=last(t)+1

gs‖∗, ‖gt‖∗) and (C.191)

at,F , diam(W) min
(
‖ht −

t∑
s=last(t)+1

gs‖, ‖gt‖∗
)
. (C.192)

C.14.3 Regret of DUB with variable delays

Consider the DUB variable-delay generalization

αλt+1 = 2 max
j≤last(t+1)−1

alast(j+1)+1:j,F +
√∑last(t+1)

i=1 a2
i,F + 2αbi,F .

(DUB with variable delays)

Theorem C.14.3 (Regret of DUB with variable delays). Fix α > 0, and, for at,F , bt,F as
in (C.191), consider the DUB with variable delays sequence. If ψ is nonnegative, then, for
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all u ∈W, the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) ≤
(ψ(u)

α
+ 1
)

(C.193)(
2 max
t∈[T ]

alast(t)+1:t−1,F +
√∑T

t=1 a
2
t,F + 2αbt,F

)
(C.194)

Proof. Fix any u ∈W. By Thm. C.14.2, ODAFTRL with variable delays admits the regret
bound

RegretT (u) ≤ λTψ(u) +
T∑
t=1

min(
1

λt
bt,F ,at,F ). (C.195)

To control the second term in this bound, we apply the following lemma proved in App. C.8.1.

Lemma C.14.2 (DUB with variable delays-style tuning bound). Fix any α > 0 and any
non-negative sequences (at)

T
t=1, (bt)

T
t=1. If (λt)t≥1 is non-decreasing and

∆∗t+1 , 2 max
j≤last(t+1)−1

alast(j+1)+1:j +

√√√√last(t+1)∑
i=1

a2
i + 2αbi ≤ αλt+1 for each t (C.196)

then

T∑
t=1

min(bt/λt, at) ≤ ∆∗first(T ) ≤ αλfirst(T ). (C.197)

�

Since T ≤ first(T ), λT ≤ λfirst(T ), and last(first(T )) = T , the result now follows by
setting at = at,F and bt = bt,F , so that

RegretT (u) ≤ λTψ(u) + αλfirst(T ) ≤ (ψ(u) + α)λfirst(T ). (C.198)

C.14.4 Proof of Lem. C.14.2: DUB with variable delays-style tuning bound

We prove the claim

∆t ,
t∑
i=1

min(bi/λi, ai) ≤ ∆∗first(t) ≤ αλfirst(t) (C.199)
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by induction on t.

Base case For t = 1, since last(first(t)) ≥ t, we have

t∑
i=1

min(bi/λi, ai) ≤ a1 ≤ 2 max
j≤t−1

alast(j+1)+1:j +

√√√√ t∑
i=1

a2
i + 2αbi (C.200)

≤ 2 max
j≤last(first(t))−1

alast(j+1)+1:j +

√√√√last(first(t))∑
i=1

a2
i + 2αbi = ∆∗first(t) ≤ αλfirst(t)

(C.201)

confirming the base case.

Inductive step Now fix any t+ 1 ≥ 2 and suppose that

∆i ≤ ∆∗first(i) ≤ αλfirst(i) (C.202)

for all 1 ≤ i ≤ t. Since first(last(i+ 1)) ≤ i+ 1 and λs is non-decreasing in s, we apply this
inductive hypothesis to deduce that, for each 0 ≤ i ≤ t,

∆2
i+1 −∆2

i = (∆i + min(bi+1/λi+1, ai+1))2 −∆2
i = 2∆i min(bi+1/λi+1, ai+1)

+ min(bi+1/λi+1, ai+1)2 (C.203)

= 2∆last(i+1) min(bi+1/λi+1, ai+1) + 2(∆i −∆last(i+1)) min(bi+1/λi+1, ai+1)

+ min(bi+1/λi+1, ai+1)2 (C.204)

= 2∆last(i+1) min(bi+1/λi+1, ai+1) + 2

i∑
j=last(i+1)+1

min(bj/λj , aj) min(bi+1/λi+1, ai+1)

+ min(bi+1/λi+1, ai+1)2 (C.205)

≤ 2αλfirst(last(i+1)) min(bi+1/λi+1, ai+1) + 2alast(i+1)+1:i min(bi+1/λi+1, ai+1) + a2
i+1

(C.206)

≤ 2αλi+1 min(bi+1/λi+1, ai+1) + 2alast(i+1)+1:i min(bi+1/λi+1, ai+1) + a2
i+1

(C.207)

≤ 2αbi+1 + a2
i+1 + 2alast(i+1)+1:i min(bi+1/λi+1, ai+1). (C.208)
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Now, we sum this inequality over i = 0, . . . , t, to obtain

∆2
t+1 ≤

t∑
i=0

(2αbi+1 + a2
i+1) + 2

t∑
i=0

alast(i+1)+1:i min(bi+1/λi+1, ai+1) (C.209)

=

t+1∑
i=1

(2αbi + a2
i ) + 2

t+1∑
i=1

alast(i+1):i−1 min(bi/λi, ai) (C.210)

≤
t+1∑
i=1

(a2
i + 2αbi) + 2 max

j≤t
alast(j+1)+1:j

t+1∑
i=1

min(bi/λi, ai) (C.211)

=
t+1∑
i=1

(a2
i + 2αbi) + 2∆t+1 max

j≤t
alast(j+1)+1:j . (C.212)

We now solve this quadratic inequality, apply the triangle inequality, and invoke the relation
last(first(t+ 1)) ≥ t+ 1 to conclude that

∆t+1 ≤ max
j≤t

alast(j+1)+1:j +
1

2

√√√√(2 max
j≤t

alast(j+1)+1:j)2 + 4
t+1∑
i=1

a2
i + 2αbi (C.213)

≤ 2 max
j≤t

alast(j+1)+1:j +

√√√√ t+1∑
i=1

a2
i + 2αbi (C.214)

≤ 2 max
j≤last(first(t+1))−1

alast(j+1)+1:j +

√√√√last(first(t+1))∑
i=1

a2
i + 2αbi = ∆∗first(t+1) ≤ αλfirst(t+1).

(C.215)

C.14.5 Regret of AdaHedgeD with variable delays

Consider the AdaHedgeD variable-delay generalization

λt+1 =
1

α

last(t+1)∑
s=1

δs for δt defined in (5.25). (AdaHedgeD with variable delays)

Theorem C.14.4 (Regret of AdaHedgeD with variable delays). Fix α > 0, and consider
the AdaHedgeD with variable delays sequence. If ψ is nonnegative, then, for all u ∈W, the
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ODAFTRL with variable delays iterates satisfy

RegretT (u) ≤
(ψ(u)

α
+ 1
)

(C.216)

(
2 max
t∈[T ]

alast(t+1)+1:t,F +

√√√√ T∑
t=1

a2
t,F + 2αbt,F

)
. (C.217)

Proof. Fix any u ∈W, and for each t, define λ′t+1 = 1
α

∑t
s=1 δs so that α(λ′t+1 − λ′t) = δt.

Since the AdaHedgeD with variable delays regularization sequence (λt)t≥1 is non-decreasing,
last(T ) ≤ T , and hence λT ≤ λ′T+1, Thm. C.2.1 gives the regret bound

RegretT (u) ≤ λTψ(u) +
T∑
t=1

δt ≤ λTψ(u) + αλ′T+1 ≤ (ψ(u) + α)λ′T+1 (C.218)

and the proof of Thm. C.2.1 gives the upper estimate (C.32):

δt ≤ min
(bt,F
λt

,at,F

)
for all t ∈ [T ]. (C.219)
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Hence, it remains to bound λ′T+1. We have

αλ′T+1
2

=
T∑
t=1

α(λ′t+1
2 − λ′t

2
) =

T∑
t=1

(
α(λ′t+1 − λ′t)2 + 2α(λ′t+1 − λ′t)λ′t

)
(C.220)

=
T∑
t=1

(
δ2
t /α+ 2δtλ

′
t

)
by the definition of λ′t+1 (C.221)

=
T∑
t=1

(
δ2
t /α+ 2δtλt + 2δt(λ

′
t − λt)

)
(C.222)

≤
T∑
t=1

(
δ2
t /α+ 2δtλt + 2δt max

t∈[T ]
(λ′t − λt)

)
(C.223)

=
T∑
t=1

(
δ2
t /α+ 2δtλt

)
+ 2αλ′T+1 max

t∈[T ]
(λ′t − λt) (C.224)

=
T∑
t=1

(
δ2
t /α+ 2δtλt

)
+ 2λ′T+1 max

t∈[T ]
δlast(t+1)+1:t (C.225)

≤
T∑
t=1

(
a2
t,F /α+ 2bt,F

)
+ 2λ′T+1 max

t∈[T ]
alast(t+1)+1:t,F by (C.219). (C.226)

Solving the above quadratic inequality for λ′T+1 and applying the triangle inequality, we find

αλ′T+1 ≤ max
t∈[T ]

alast(t+1)+1:t,F +
1

2

√√√√4(max
t∈[T ]

alast(t+1)+1:t,F )2 + 4

T∑
t=1

a2
t,F + 2αbt,F (C.227)

≤ 2 max
t∈[T ]

alast(t+1)+1:t,F +

√√√√ T∑
t=1

a2
t,F + 2αbt,F . (C.228)

�



1: Parameter α = supu∈4d−1
ψ(u) = ln(d)

2: Initial regularization weight: λ0 = 0
3: if tuning is DUB then
4: Initial regularization sum: ∆0 = 0
5: Initial maximum: amax = 0
6: end if
7: Initial subgradient sum: g1:1 = 0 ∈ Rd
8: Dummy losses and iterates: g−D = · · · = g0 = 0 ∈ Rd, w−D = · · · = w0 = 0 ∈ Rd
9: for t = 1, . . . , T do

10: Receive hint ht ∈ Rd
11: Output wt = arg minw∈W Ft−D(w, λt) + 〈ht,w〉 as in Cor. C.13.1
12: Receive gt−D ∈ Rd and pay 〈gt−D,wt−D〉
13: Update subgradient sum g1:t−D = g1:t−D−1 + gt−D
14: if tuning is AdaHedgeD then
15: Compute the auxiliary play w̄t−D = arg minw∈W Ft−D+1(w, λt−D) as in Cor. C.13.1

16: Compute the auxiliary regret term δ
(1)
t−D = Ft−D+1(wt−D, λt−D) −

Ft−D+1(w̄t−D, λt−D) as in Prop. C.13.1
17: Compute the drift term δ

(2)
t−D = 〈gt−D,wt−D − w̄t−D〉

18: Compute the auxiliary hint (C.160) ĥt−D , gt−2D:t−D +

min(
‖gt−D‖∗

‖ht−D−gt−2D:t−D‖∗
, 1)(ht−D − gt−2D:t−D)

19: Compute the auxiliary play ŵt−D = arg minw∈W Ft−D+1(w, λt−D) +

〈ĥt−D − gt−2D:t−D,w〉 as in Cor. C.13.1
20: Compute the regret term δ

(3)
t−D = Ft−D+1(ŵt−D, λt−D) − Ft−D+1(w̄t−D, λt−D) +

〈gt−D,wt−D − ŵt−D〉 as in Prop. C.13.1
21: Update λt+1 = λt + 1

α min(δ
(1)
t−D, δ

(2)
t−D, δ

(3)
t−D)+ as in (5.25)

22: else if tuning is DUB then
23: Compute at−D,F = 2 min

(
‖gt−D‖∞, ‖ht−D −

∑t−D
s=t−2D gs‖∞

)
as in (5.18)

24: Compute bt−D,F = 1
2‖ht−D −

∑t−D
s=t−2D gs‖2∞ − 1

2(‖ht−D −
∑t−D

s=t−2D gs‖∞ −
‖gt−D‖∞)2

+ as in (5.18)
25: Update ∆t+1 = ∆t + a2

t−D,F + 2αbt−D,F
26: Update maximum amax = max(amax,at−2D:t−D−1,F )
27: Update λt+1 = 1

α(2amax +
√

∆t+1) as in DUB
28: end if
29: end for

Algorithm 3: ODAFTRL with W = 4d−1, ψ(w) =
∑d

j=1wj lnwj + ln(d), delay D ≥ 0, and tuning
strategy tuning = DUB or AdaHedgeD



1: Subgradient vector: g−D, · · · g0 = 0 ∈ Rd
2: Meta-subgradient vector: γ−D, · · · γ0 = 0 ∈ Rm
3: Initial instantaneous regret: r−D = 0 ∈ Rd
4: Initial instantaneous meta-regret: ρ−D = 0 ∈ Rm
5: Initial hint h0 = 0 ∈ Rd
6: Initial orthant meta-vector: ω̃0 = 0 ∈ Rm
7: for t = 1, . . . , T do
8: // Update online hinter using DORM+ with q = 2
9: Find optimal unnormalized hint combination vector ω̃t = max(0, ω̃t−1 + ρt−D−1)

10: Normalize: ωt =

{
1/m if ω̃t = 0

ω̃t/〈1, ω̃t〉 otherwise
11: Receive hint matrix: Ht ∈ Rd×m in which each column is a hint for

∑t
s=t−D rs

12: Output hint ht = Htωt
13: // Update DORM+ base learner and get next play
14: Output wt = DORM+(gt−D−1,ht)
15: Receive gt−D ∈ Rd and pay 〈gt−D,wt−D〉
16: Compute instantaneous regret rt−D = 1〈gt−D,wt−D〉 − gt−D
17: Compute hint meta-subgradient γt−D ∈ ∂lt−D(ωt−D) ∈ Rm as in (C.146)
18: Compute instantaneous hint regret ρt−D = 1〈γt−D, ωt−D〉 − γt−D
19: end for
Algorithm 4: Learning to hint with DORM+ (q=2) hint learner, DORM+ base learner, and delay
D ≥ 0
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