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Abstract
The search for underwater threats in littoral regions is a problem that has been re-searched for nearly a century. However, recent developments in autonomy and roboticshave made this issue more complex. The advent of capable autonomous underwatervehicles presents a 21st century flare to this traditional problem. These vehicles can besmaller, quieter, and expendable. Therefore, new methods and tactics used to detectand track these vehicles are needed. The use of a swarm of marine robots can in-crease the likelihood of uncovering these threats. This thesis provides various Voronoipartition-based methods to autonomously control a swarm of identically capable au-tonomous surface vessels in a limited coverage and tracking problem. These methodsincrease the probability of interdiction of an adversary vehicle crossing a defined re-gion. The results achieved from Monte Carlo simulations demonstrate how differentprotocols of swarm movement can improve detection probability as compared to a sta-tionary swarm provided the detection capability does not change. The swarm controlalgorithms are employed on Clearpath Heron USVs to validate the autonomy algorithms.
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1 Introduction
"There is, one knows not what sweet mystery
about this sea, whose gently awful stirrings seems
to speak of some hidden soul beneath" -Herman
Melville in Moby Dick

Since the onset of submarine warfare in WW1, control of the seas has extended below
the surface. The advances in sub surface threats and the effectiveness of submarine
warfare throughout the 20th century has impacted many parts of society. From the
films of the early 1900s that depicted the threat of German U-Boats to blockbuster
movies centered around the submarines of the Cold War, the dangers of submarine
warfare have been continuously imprinted on the public psyche. Further, the reality
that a sub-surface threat could be lurking just off one’s own shore has permeated gen-
erations. However, in many ways, the advances of the 21st century are still not under-
stood or appreciated by the public. Technological advances in undersea robotics and
artificial intelligence have brought about a new age in subsurface warfare and defense.
These advances both necessitate an evolution in defense strategy and give rise to the
technology that makes such an evolution possible.
Throughout history every advancement in weaponry or military technology has ne-

cessitated that any competing party also advance. In order to remain competitive, the
counterparty must either adopt the new technology themselves or better the original
advancement (Turchin et al., 2021). Therefore, as the threat of autonomous underwater
vehicles in coastal defense become a reality, the need for an advanced counter technol-
24. Turchin, P. et al., 2021, Rise of the war machines: Charting the evolution of military technologies
from the Neolithic to the Industrial Revolution.
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ogy is required. The use of autonomous defense vehicles working together to detect
and track sub surface threats is needed in order to counter the risk of AUVs.
This thesis evaluates and improves the effectiveness of a swarm of autonomous sur-

face vessels in a detection limited area coverage and tracking scenario, which is fun-
damental to the harbor defense problem. Specifically, this thesis proposes and evalu-
ates various Voronoi based deployment strategies to improve the swarm’s probability
of detecting a threat crossing an established region. These Voronoi based methods
are evaluated through a series of Monte Carlo simulations to evaluate their effective-
ness at detecting a threat crossing the swarm occupied region. Moreover, the ability of
each method to produce an actionable estimated target speed and heading is examined.
Lastly, the methods developed for this thesis are employed on Clearpath M300 USVs
in a hardware in the loop simulation to demonstrate the deployability of this thesis’s
algorithms.

1.1 Motivation

Control and defense of the seas is an age-old problem. As soon as the first marine ves-
sel created a military advantage, the ability to detect and defend against a marine threat
became an essential element of harbor safety. The technology and capabilities that are
available in the 21st century have made this an even more difficult challenge. Offensive
marine vessels have continued to evolve. Now the threat of unmanned autonomous
vehicles (UxVs) capable of intelligence gathering or munitions deployment must be ac-
counted for in harbor defense. As the capabilities of AUVs become more advanced, the
need to effectively detect and track AUVs in littoral regions is paramount.
The detection and tracking of underwater threats has been thoroughly researched

since the first vessel was sunk by a submarine in WWI. Historically, submarines have
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been countered by both surface vessels and submarines (Newbolt, 1919). While sub-
marines are still countered from the surface and below, the methods have evolved sig-
nificantly throughout the years. During WWI, naval warfare was largely surprised by
the onset of German U-Boats. Tactics for anti-submarine warfare (ASW) consisted of
methods of evasion or attacking the submarine when it surfaced (Newbolt, 1919). How-
ever, as naval warfare and submarines advanced, the methodology of ASW did as well.
The use of piezoelectric transducers in active sonar became a go to tool for submarine
detection as well as radar. Following WWII, ASW evolved to include air, surface, and
submerged assets. These assets brought in the capability of radar, passive acoustics,
active acoustics, as well as other electronic warfare measures (ESM). However, the task
of locating and tracking submarines is still an extreme challenge.
The 21st century has brought about the most capable underwater threats. While the

quantity and quality of these threats have increased, the US Navy’s ASW platforms have
declined post Cold War (Ketter, 2004). The overall cost of ASW tools and platforms has
caused a draw down in US Navy capabilities (Ketter, 2004). Therefore, a cost-effective
tool capable of combating the 21st century threats of today is needed to execute the
ten steps (Table 1.1) of anti-submarine warfare as defined by Captain William J. Toti,
U.S. Navy (Retired). This thesis provides a methodology that can be used to enable
priority 5 (Toti, 2014).

1.2 Literature Review

The principles of underwater surveillance are vastly researched and continues to be a
priority research area. In fact, Terracciano et al. explains that underwater surveillance
continues to be a top priority on a global scale with interested parties including the
15. Newbolt, H. J., 1919, Submarine and anti-submarine
14. Ketter, T., 2004, Anti-Submarine Warfare in the 21st Century.
23. Toti, W. J., 2014, The Hunt for Full-Spectrum ASW.
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1 Create conditions where an adversary chooses not to employ submarines
2 Defeat submarines in port
3 Defeat submarines’ shore-based command and control (C2) capability
4 Defeat submarines near port, in denied areas
5 Defeat submarines in choke points
6 Defeat submarines in open ocean
7 Draw enemy submarines into ASW "kill boxes", to a time and place of our choosing
8 Mask our forces from submarine detection or classification
9 Defeat the submarine in close battle
10 Defeat the incoming torpedo

Table 1.1: The Ten Threads of Full-Spectrum ASW (Toti, 2014).

US Navy and NATO (Terracciano et al., 2020). Throughout history many methods have
been used to search the underwater environment. These approaches have ranged from
manned single submarine search missions to teams of autonomous vehicles (Ferri et al.,
2017). In this section the current schemes of underwater surveillance and the use of
robot teams in search problems are reviewed.
Terracciano et al. and Ferri survey the current state of underwater surveillance using

robots and categorizes the common methods employed (Terracciano et al., 2020)(Ferri
et al., 2017). Both authors discuss the importance of robots and unmanned vehicles in
underwater surveillance. AUVs are commonly used in underwater surveillance and ASW
type missions due to their ability to traverse the water column, which permits effective
use of the acoustic environment. However, using AUVs for surveillance missions comes
with many limitations. The underwater vehicle is severely limited in communications
and naturally must exist in the harsh subsea environment (Ferri et al., 2017). These are
two areas mitigated by using USVs. In fact, Terracciano et al. notes the promising use of
expanding the search mission by using teams of robots on the surface (Terracciano et al.,

2020).

21. Terracciano, D. S. et al., 2020, Marine Robots for Underwater Surveillance.
11. Ferri, G. et al., 2017, Cooperative Robotic Networks for Underwater Surveillance: an Overview.
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The use of USVs in underwater surveillance is an active area of research. Moreover,
the use of USVs in littoral surveillance missions is an increasingly popular research field
(Healey et al., 2007)(Simetti et al., 2010)(Vencatasamy et al., 2018). Healy evaluates the ca-
pability of various unmanned craft and promotes USVs as a highly capable surveillance
vessel in areas where stealth is not essential (Healey et al., 2007). Harbor defense and
littoral operations are a key area where ASVs can be an effective surveillance tool. Al-
gorithms for establishing secure areas of a harbor using vehicles operating on the 2D
plane will be essential in the future of harbor defense (Healey et al., 2007)(Vencatasamy
et al., 2018). This thesis focuses on the development of these algorithms and their ap-
plicability to USV teams.
The way many harbor defense scenarios are researched flow from a classical set of

search problems. Robin and Lacroix define these problems as coverage or tracking prob-
lems for which the standard breakdown can be seen in fig. 1.1 (Robin & Lacroix, 2015).
However, Robin and Lacroix explain there is a subset of problems that focus both on
coverage and tracking. The simultaneous coverage and tracking problem is more com-
plex and not as well researched. Pimenta et. al explored the problem of simultaneous
coverage and tracking. In the paper titled Simultaneous Coverage and Tracking (SCAT)

of Moving Targets with Robot Networks, Pimenta et al. demonstrates the effectiveness
of covering a region using centroidal Voronoi tessellations (CVT) (Pimenta et al., 2009).
Once the area is covered using CVTs, the robots are set to track any intruder enter-
ing its Voronoi region. However, Pimenta et al. did not explore the effectiveness of a
swarm’s coverage when the region cannot be fully occupied with sensor coverage.
13. Healey, A. J. et al., 2007, Collaborative Unmanned Systems for Maritime and Port Security Opera-
tions.
19. Simetti, E. et al., 2010, Towards the Use of a Team of USVs for Civilian Harbour Protection: USV
Interception of Detected Menaces.
25. Vencatasamy, K. et al., 2018, Secure a Zone from Intruders with a Group Robots
18. Robin, C. et al., 2015, Multi-robot target detection and tracking: taxonomy and survey.
17. Pimenta, L. C. A. et al., 2009, Simultaneous Coverage and Tracking (SCAT) of Moving Targets with Robot
Networks
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Figure 1.1: Target Management breakdown (Robin & Lacroix, 2015)

.
(Ben Slimane & Tagina, 2021)(D’ Acunto, 2020)(Cortes et al., 2004) have all discussed the

use of Voronoidal dispersion to cover a region. Further, (Guruprasad &Ghose, 2011)(Teruel
et al., 2019)(XIONG et al., 2019)(Pimenta et al., 2009) have shown the effectiveness of CVTs
for robotic dispersion in a cover problem. In these various implementations of Voronoi
partitioning, it assumed that there are adequate sensors within the distribution to cover
2. Ben Slimane, N. et al., 2021, Proposition of a Distributed Voronoi Partitioning Approach Enhanced
with a Dispersion Phase for a Multirobot System.
9. D’ Acunto, M., 2020, Optimized Dislocation of Mobile Sensor Networks on Large Marine Environ-
ments Using Voronoi Partitions.
8. Cortes, J. et al., 2004, Coverage control for mobile sensing networks.
12. Guruprasad, K. R. et al., 2011, Automated Multi-Agent Search Using Centroidal Voronoi Configura-
tion.
22. Teruel, E. et al., 2019, A distributed robot swarm control for dynamic region coverage.
27. XIONG, C. et al., 2019, Path planning of multiple autonomous marine vehicles for adaptive sampling
using Voronoi-based ant colony optimization.
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the desired area. Further, once the members are distributed, the sensors are considered
omnipotent in their assigned Voronoi partition. In this thesis, the cover and tracking
problem is examined when the search area cannot be completely covered without gaps
in detection area. Thus, holes exist in the network that cannot be adequately covered at
every discrete time step. Further, this thesis investigates and improves a swarm’s ability
to detect and track a threat in a region when the ability of any one vehicle to detect the
threat is probabilistic based on range to the target.

1.3 Contributions of this Thesis

1. The effectiveness of distributing vehicles in a Centroidal Voronoi Tessellation over
a constant density region in "detecting" an adversary vehicle in limited coverage and
tracking scenario is quantified, examined, and improved through the use of Monte Carlo
simulation testing.
2. A probabilistic sensor is modeled to reflect real world limitations of underwater de-
tection to examine the effectiveness of the proposed search methods and is deployed
alongside a Kalman filter application to develop tracking solutions with limited data.
3. The various search methods are deployed on robotic vehicles to demonstrate the
feasibility of the proposed methods, validate the data from simulation, and demonstrate
the ability to deploy the search methods on autonomous marine vehicles.

1.4 Thesis Overview

Chapter 2 of this thesis provides the background information on the development
of Centroidal Voronoi Tessellations, MOOS-IvP and CVTs, and coverage and search
methodology. Chapter 3 defines the problem that will be examined as well as the appli-
cations that were developed for this thesis. Chapter 4 provides the results and analysis
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for the elements proposed in Chapter 3. Lastly, Chapter 5 provides conclusions and
avenues for future work.
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2 Background

This chapter explains the function and methodology of CVTs, as well as the the MOOS-
IvP implementation of the Lloyd algorithm. Then the principles of coverage and tracking
are discussed. Lastly, the basics of active sonar and the basis of probabilistic detection
are summarized.

2.1 Voronoi Application

2.1.1 Voronoi Diagrams

A voronoi diagram is geometrical solution to partitioning a space based off each node’s
nearest neighbor. In a Voronoi decomposition, a region is divided into cells occupied by
each node with the cell boundaries defined by half the Euclidean distance to its nearest
neighbors(Berg et al., 1997). Figure 2.1 demonstrates the construct of a Voronoi diagram
(Aurenhammer, 1991). In this diagram it can be seen that the individual wall of each
partition is defined by the perpendicular line that is drawn at half the Euclidean distance
to its closest neighbor. Thus, the region with n nodes is divided into n regions based
on the node locations. Voronoi diagrams are widely researched in the computational

5. Berg, M. et al., 1997, Computational Geometry
1. Aurenhammer, F., 1991, Voronoi Diagrams—a Survey of a Fundamental Geometric Data Structure.
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geometry domain and are applicable over large set of mathematical, computer science,
and natural science domains (Aurenhammer, 1991)(Du et al., 1999).

Figure 2.1: Voronoi Diagram (Aurenhammer, 1991).

Computing the Voronoi diagram of a region Q with nodes P can be seen in the al-
gorithm 1, derived from the explanation in Computational Geometry by Berg et al. (Berg
et al., 1997).

Data: A set P = Pi, ..., Pn of point sites in the plane Q

Result: The Voronoi diagram V (P )

for Each Point k in P doDraw perpendicular line at half the Euclidean distance from Pk to Pn

Retain all line segments that are closest to point Pk within Q

Define Pk’s Voronoi cell vertices as the intersection points of all the closest
line segments.

end
Algorithm 1: Voronoi Diagram Algorithm (Berg et al., 1997)

10. Du, Q. et al., 1999, Centroidal Voronoi Tessellations: Applications and Algorithms.
5. Berg, M. et al., 1997, Computational Geometry
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2.1.2 Centroidal Voronoi Tessellation and the Lloyd Algorithm

Centroidal Voronoi Tessellations is a form of Voronoi diagram where the generators are
located in the center of the cell. A Voronoi diagram for ten generators in a square is
shown in Fig. 2.2. Here the circles represent the center of mass of the cell and the point
is the generator. The generators need to be placed at the center of mass of the cell it
occupies to be a CVT. The Lloyd algorithm provides an iterative process to establish a
CVT for a given set of generators. Du et al. describes the Lloyd algorithm as a three step
process seen in table 2.1 (Du et al., 1999). Fig. 2.3 shows the initial and final locations for
the generators in the ten point example following the completion of the Lloyd Algorithm
(Du et al., 1999).

Figure 2.2: Voronoi Diagram with dots as initial generators and center of mass denoted by
open circles (Du et al., 1999)

26



1 Determine the Voronoi Diagram.
2 Calculate center of mass for each Voronoi Cell, then use calculated center in step 1.
3 Repeat the previous steps until completion parameter met.

Table 2.1: Lloyds Algorithm (Du et al., 1999).

Figure 2.3: Initial and final Voronoi diagram using the Lloyd algorithm (Du et al., 1999)

2.2 MOOS-IvP

MOOS-IvP is a software suite for robot autonomy. MOOS-IvP is a combination of
MOOS (Mission Oriented Operating Suite) a middle-ware that institutes a publish and
subscribe architecture and IvP (Interval Programming), which is a multi objective opti-
mizer and solver. IvP implements pHelmIvP (Helm) that produces an objective function
that is a solution to a multi objective problem. The helm includes different autonomous
behaviors that provide input to the multi-objective solver.
MOOS is a publish and subscribe ecosystem that operates aMOOSDB (MOOSDatabase),

which is the central hub that hosts all published variables. The architecture can be seen
in fig. 2.4 (Newman, 2003). The MOOSDB is the central application that processes all
16. Newman, P., 2003, MOOS - Mission Orientated Operating Suite.
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mail and can be accessed by any application. This allows applications to be designed
for a specific purpose, and the MOOSDB will serve the application based off of its
subscriptions. Each application can publish and subscribe to any variables contained
in the MOOSDB. Therefore, special utility applications can run in the background and
publish an output variable that another application is dependent on. This provides an
ecosystem of MOOS applications and a MOOSDB that can work together to execute
the desired mission.

Figure 2.4: MOOS Architecture (Newman, 2003)

Building upon the foundations of MOOS, IvP implemented a special case for the
Helm as pHelmIvP. The IvP helm then serves as a solver for multi objective optimization
problems. This allows multiple behaviors to produce specific objective functions based
on each of their individual decision criteria for both course and speed. Once the IvP
solver receives the independent objective functions from each behavior and associated
priority weights, it then optimally solves for the desired speed and heading. An example
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of a course and speed objective function that has been optimizedwith the pHelmIvP can
be seen in fig. 2.5. This objective function is produced from the waypoint behavior with
the speed peak set to 4 m/s and heading peak set to 180 degrees. The IvP Helm then
publishes the heading and speed requirements for the robot controller. This process
is done recursively at a defined time interval; thereby, continually updating parameters
needed for individual behaviors to produce objective functions. The IvP Helm then
solves the optimization problem to publish speed and heading decisions every iteration.
The information flow path for the IvP Helm can be seen in fig 2.6 (Benjamin et al., 2009).

Figure 2.5: Example Objective Function

3. Benjamin, M. R. et al., 2009, An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm
Autonomy Software.
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Figure 2.6: IvP Helm Architecture (Benjamin et al., 2009). 1. The MOOSDB sends all required
mail to IvP Helm’s Info Buffer. 2. The activeModes are determined from Info Buffer
variable-value pairs as defined in the behavior file. 3 Appropriate IvP Behaviors are
activated and produce Individual IvP functions. 4. Each IvP function is delivered
to the IvP Solver for Optimization. 5. MOOS variable-value pairs are published to
the MOOSDB as required by the IvP Behaviors and the IvP Solver. This process is
repeated at the designated IvP Helm frequency.

MOOS-IvP is delivered with an open-source set of autonomous behaviors and ap-
plications, which can be employed in self designed missions. Further, the MOOS-IvP
package also provides a convenient way to extend the autonomous capabilities of the
software by creating new helm behaviors or MOOS applications. This thesis makes use
of this incredibly powerful tool to generate autonomous helm behaviors and MOOS
applications. Moreover, the MOOS-IvP package provides a method to run large scale
simulations and retain the data, which can be efficiently employed on hardware for fol-
low on testing. These tools allow this thesis to provide results that are transferable to
real world robotic systems.
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2.2.1 MOOS-IvP CVT Implementation

As discussed earlier, MOOS-IvP can be easily extended to provide autonomy for user
specific priorities. One such extension is the moos-ivp-swarm tree. The swarm tree was
written by Dr. Michael Benjamin and provides useful tools for operating robotic systems
in swarms. The swarm tree includes the tools to disperse a set of vehicles in a polygon
region in a CVT dispersion. This is done using one MOOS application pProxonoi and
one behavior BHV_Voronoi. These applications work in tandem to execute a version
of the Lloyd algorithm with robotic platforms as the generators. The function of each
application is discussed below. The combination of the pProxonoi app and the Voronoi
behavior serve as the foundation for the analysis performed in this thesis.

pProxonoi

The pProxonoi app manages and provides the individual vehicle’s tessellation. This
is done with a combination of geometry tools available in the MOOS-IvP base code.
MOOS-IvP has a robust set of methods to handle polygons as objects. Therefore, pProx-
onoi is initialized with the entire state space as a "proxonoi" polygon. Then each vehicle
broadcasts its location to all vehicles within communication range. As each vehicle re-
ceives the location information of others in the swarm, it "chops" its proxonoi polygon
at half the Euclidean distance to its nearest neighbors. Thus, each vehicle generates its
own individual Voronoi cell within the operation region. The pProxonoi app then posts
the voronoi cell polygon to its associated MOOSDB for the behavior BHV_Voronoi to
respond to. pProxonoi executes this process iteratively on an interval designated by
the app user. Each pProxonoi iteration is conducted using the vehicles updated loca-
tion and locations of its neighbors. An example of the initial Voronoi diagram generated
from each vehicle’s self-generated proxonoi polygon can be seen in fig. 2.7.
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Figure 2.7: Voronoi diagram using individual vehicle generated proxonoi polygons

Voronoi Behavior

The Voronoi behavior subscribes to the proxonoi polygon definition which is the output
of the pProxonoi application. Once the Voronoi behavior ingests a new polygon region it
finds the centroid of that region and produces an objective function directing the vehicle
to the centroid. As the vehicle moves towards the centroid, the pProxonoi app continues
to generate new proxonoi polygons based off the vehicle’s current position. Therefore,
the voronoi behavior reprocesses the new proxonoi region and navigates towards the
new centroid. This process is repeated until the vehicle enters a "capture radius", which
is the distance sufficiently close to the centroid to be considered stable. This radius is
a configuration variable determined by the mission writer. The back and forth between
the pProxonoi app and the Voronoi behavior replicate the Lloyd algorithm, with the
exception that a new Voronoi tessellation and centroid are calculated for each vehicle
prior to it actually achieving the centroid of the previous region. This adjustment allows
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the vehicle to maintain continual movement. An example of the initial, transitional, and
final step for the Voronoi behavior can be seen in fig. 2.8
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(a) Initial Voronoi Tessellation

(b) Moving towards centroid

(c) Final CVT

Figure 2.8: The Voronoi Behavior
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2.3 Coverage and Tracking

The area coverage and tracking problem presented in this thesis differs from many of
the classical search problems. For instance, most commonly explored problems require
prior knowledge of the target in order to develop a probabilistic search model (Stone et

al., 2016). The prior knowledge provides the searching entity a sound starting point and
subsequent search options. Further, many game theory problems assume the target is
present in the search space. For this thesis, the searching swarm has no prior knowledge
of the target and therefore the probability of locating the target is uniform across the
search space. Additionally, the target is not always present in the search space and
only crosses the region at an unknown time. This prevents many search algorithms
from being effectively employed. No particular point in the search space has any higher
probability of detection; therefore, the swarm is dispersed to optimally cover the region
with a CVT. Further, each vehicle is limited in its ability to detect the target vehicle
within its tessellation by restricting its detection range.
The goal of this thesis is to show that a swarm is able to detect a target and produce

an estimated target solution that can be used in traditional search algorithms. Thus, the
target solution could ultimately serve as the prior knowledge and probabilistic search
criteria for a follow on sophisticated search team. While many traditional forms of
search theory are not deployable in this scenario, Stone et al. present one similar solv-
able problem in Optimal Search for Moving Targets. A background of the specifics of this
type of search problem and the details of it are found in the section below.

20. Stone, L. et al., 2016, Optimal Search for Moving Targets
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2.3.1 One Sided Search of a Moving Target

This thesis addresses a one sided search of a moving target (Benkoski et al., 1991). This
form of search problem has been investigated since the 1940’s; however, the solution
for a variety of moving target problems did not get addressed until much later and can
be quite contrived (Benkoski et al., 1991). In this particular problem, the target being
searched for does not respond to being tracked, nor does it operate evasively in the
presence of the searcher. Further, restricting the searcher to operate like a real world
vessel greatly inhibits the use of traditional search algorithms. Many of the previous
optimal solutions do not restrict the searcher and instead permit a search in any sec-
tor of the search field at each time step (Benkoski et al., 1991). The use of traditional
assumptions allow the detection probability to be modeled with solvable mathematics.
The constraints of this thesis can not be quantified as such, and therefore must be de-
duced by Monte Carlo simulations. The remainder of this section is dedicated to a one
sided search of a moving target, whereby it can be modeled and solved.
Stone et al. in Optimal Search for Moving Targets present a one sided search problem

where the initial location of the target is unknown. Specifically, a channel is modeled
where the target traverses a straight line through the channel at an unknown time.
Stone et al. solve for the target detection probability given three detection vehicles
with sufficiently constrained operating parameters. Fig. 2.9 shows the setup of the
search problem. The ability of the search vessel to detect the target is calculated us-
ing a Poisson Scan Model with a detection radius of 5 units. The detection vehicles
are programmed to complete a figure eight pattern while searching. This pattern is
then compared to an optimally generated path. The detection probability is determined
through direct integration of the problem presented in eqn. 2.1 instead of Monte Carlo

4. Benkoski, S. J. et al., 1991, A survey of the search theory literature.
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testing (Stone et al., 2016). This analytical solution can be obtained due to the exact
constraints of the problem.

X(t, ω) = Target position at time t and uncertainty ω

y(t) = Single vessel position at time t

r(X, y) = Poisson Scan Model Detection given X and y

P = E

[
exp

(
−
∫ T

0

r(X(t, ω), y(t)) dt

)]
(2.1)

β = Scan Rate
Φ = Standard normal distribution function
F = Sensor Parameter
X = X(t, ω)

y = y(t)

||X − y||2 − b = Signal loss
σ = Variability
r(X, y) = βΦ

(
F − ||X − y||2 − b

σ

)

(2.2)

20. Stone, L. et al., 2016, Optimal Search for Moving Targets
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Figure 2.9: Channel Search Problem

The fig. 2.10 shows the paths used by the three vehicles to determine detection
probability. The dashed lines in this figure show the pre-programmed paths and the
solid line shows the optimally solved solution in order to maximize detection. The paths
show each vehicle essentially partitioned the space evenly and performed a search in
its associated region. Further, each vehicle moved about the center of its associated
region and maintained movement. The detection probability results are shown in table
2.2(Stone et al., 2016).

Figure 2.10: Search Vehicle Patterns (Stone et al., 2016)
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Figure Eight .90335
Optimized Solution .94086

Table 2.2: Channel Problem Detection Probabilities.

This problem captures much of the goals of this thesis; however, the problem as-
sessed for this thesis does not assume a singular travel channel. The results of this
thesis are derived from a target moving in a singular direction but the symmetry of the
setup allows for this case to provide results indicative of east-west and north-south
travel. This added layer of complexity make the Monte Carlo simulation essential in the
quantification of detection probability.

2.3.2 CVTs in Cover and Tracking Scenarios

Below is a summary of different uses of CVTs in cover and tracking scenarios. First, an
application of CVTs and the Lloyd’s algorithm is shown to be used in a group of robots to
maneuver through a large region while maintaining the CVT of a smaller convex region.
Then the use of a weighted CVTs in a region search problem is examined. Lastly, a CVT
method to cover a region and track a target is summarized.
Teruel et al. demonstrate a method to improve CVT convergence of a robot swarm

as it transitions through a large region by a means of smaller convex regions (Teruel et al.,
2019). This allows a swarm to effectively search an entire region through a series of
smaller steps. Each smaller step is a new polygon in which the swarm achieves a new
CVT of this region. An example of this methodology can be seen in fig. 2.11 (Teruel
et al., 2019). The results provided in this study highlight an efficient method to control
swarms in different CVT regions with limited communications. The method of coverage
proposed in this experiment works well for searching a region for a stationary target
22. Teruel, E. et al., 2019, A distributed robot swarm control for dynamic region coverage.
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where the search region requires adaptability; however, this methodology focuses more
on the efficiency of achieving a CVT not as an effective search tool.

Figure 2.11: Depiction of the transitioning Voronoi polygonswhere black points are generators
and dashed lines represent communication channels. Each frame demonstrates
the stability of the CVT at the final time step before it transitions to the next
polygon. A total of five polygons are traversed over the region. The shift in times
steps, size, and orientation show the convergence efficiency.

AutomatedMulti-Agent SearchUsing Centroidal Voronoi Configuration proposes amethod
to deploy a group of robots and search a region. The strategy involves a series of two
step actions to reduce the uncertainty of a region search function. The first step is to
achieve a CVT of the region with the robots acting as generators, and then the indi-
vidual agents perform a search in each region. This is then repeated until the region
uncertainty is reduced. Each vehicle starts with the same uncertainty function defi-
nition, which serves as the basis for each follow on search iteration. The cover and
search methodology was shown to effectively reduce the uncertainty through Matlab
simulations (Guruprasad & Ghose, 2011).

12. Guruprasad, K. R. et al., 2011, Automated Multi-Agent Search Using Centroidal Voronoi Configura-
tion.
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The simultaneous cover and tracking problem is presented and evaluated by Pimenta
et al.. This problem is related to the scenario examined in this thesis. A swarm of vehicles
is distributed in a region using CVTs. The swarm then detects and tracks intruders in the
region. In this system, vehicles are assigned as cover or tracking vehicles. Each vehicle
maintains a time varying density function that weights the task assignment for each
vehicle. Therefore, each vehicle will balance its task assignment based on the need to
track the vessel or to ensure coverage of the region. A vehicle is assigned as a tracker
when the target appears within "tracking range" of a cover vehicle. It is assumed that a
vehicle can identify the target vehicle’s speed and position if it is within its Voronoi cell.
Further, is assumed that each vehicle can determine the target’s location and speed
if it is within a designated distance from the Voronoi cell. Thus, region coverage is
maintained at all times and the ability to track intruders is refined (Pimenta et al., 2009).
Pimenta et al. consider the simultaneous cover and tracking problem as two separate

tasks. In this scenario each vehicle is a fully capable tracking vessel and has the ability
to formulate independent tracking solutions of the intruder. This assumption leads to
the swarm acting as a cover mechanism and individuals as capable trackers. In this
thesis, the swarm vehicles are only capable of developing tracking solutions by individual
detections within the swarm. Therefore, in order to develop a target tracking solution
the swarm needs two or more detections spaced out in time.

2.4 Active Sonar and Sonar Detection Probability

Active sonar detection in ASW has been in use since the early 1900s. However, there
are countless use cases for active sonar: fish counters, fish finders, and bathymetric
mapping. It is especially useful in scenarios where the object being detected provides
17. Pimenta, L. C. A. et al., 2009, Simultaneous Coverage and Tracking (SCAT) of Moving Targets with Robot
Networks
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consistent high strength returns. In this section an overview of the principles of active
sonar are discussed with emphasis on the probability of detection. These principles
present the foundation of the probabilistic detection model used for this thesis. The
probabilistic nature of active sonar provides justification for implementing a probabilistic
sensor in simulation, and this assumption reflects real world swarm detection capability.

Figure 2.12: Single Beam Sonar Beam Pattern (Yongjie, 2019)

Active sonar is simply a two way transducer that is used to produce a ping of a known
source frequency and then listens for the return of the reflected transmission. Fig. 2.12
shows the beam pattern for a single beam transducer (Yongjie, 2019). Most transducers,
or echo sounders, use piezoelectric ceramic materials. The ceramic material functions
similarly to traditional piezoelectric crystal. Therefore, deflections in the physical struc-
ture produces a potential difference and vice versa. Thus, an oscillating voltage will
cause the ceramic to physically oscillate, which is used to produce a pressure wave in
the water. The echo sounder produces a pressure wave of a known frequency and
28. Yongjie, S., 2019, Underwater Acoustic Transducers.
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when the pressure wave reflection returns it is converted to a measurable current (But-
ler & Sherman, 2016). The actual return strength of the pressure wave is given by the
active sonar equation presented in eqn. 2.3 (Wagner et al., 1999).

SL = Source Level
TS = Target Strength
TL = Transmission Loss
SE = Signal Excess
NS = Noise Level
SE = SL− 2TL+ TS −NS

(2.3)

In order to determine the probability of a particular active sonar device to produce
a signal excess with the strength to break the threshold of detection is dependent on
each of the terms in the sonar equation. The source strength is a design characteristic
of the particular device in use. The transmission loss is directly related to the distance
between the source and the target, while the target strength is largely dependent on
the material, the presented surface, and location within the beam. A generic example
of the detection probability in a static setting can be seen in fig. 2.13, where the width
of the single beam sonar is a design feature (Bureau ofNaval Personnel, 1953). The data in
these sources suggest that detecting a target can be modeled as a probabilistic function
of the distance from the source and the target and the perpendicular distance from the
center of the beam to the target. In this thesis, the probabilistic function is assumed to
be Gaussian. Further discussion is provided in Chapter 3.

7. Butler, J. L. et al., 2016, Transducers and Arrays for Underwater Sound. 2nd ed.
26. Wagner, D. et al., 1999, Naval Operations Analysis
6. Bureau ofNaval Personnel, N., 1953, Naval Sonar
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Figure 2.13: Probability of Detection in Sonar Beam (Bureau ofNaval Personnel, 1953)
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3 Application and Scenario

Development in MOOS-IvP

This chapter provides an explanation of the behaviors and applications created for this
thesis. Then, the test case scenario that is analyzed for this thesis is defined.

3.1 MOOS-IvP Applications

3.1.1 uFldSearchDetect

uFldSearchDetect is an application that is launched on the shoreside MOOSDB in order
to monitor the number of discrete "detections" of an adversary vehicle. The shoreside
computer is themission control platform that produces the visual display pMarineViewer
and routes all communications. The uFldSearchDetect application tracks all vehicle lo-
cations including the adversary. It makes use of the CPAMonitor class to determine
the closest point of approach between the adversary vehicle and any member of the
swarm in order to determine if the adversary was "detected". A detection is defined as
the adversary coming within a configured discrete "detection" range of a swarm vehi-
cle. uFldSearchDetect is configured to trigger a detection report if the adversary comes
within the detection range of a swarm vehicle. uFldSearchDetect is further capable of
tracking various range thresholds for detection. Fig. 3.1 demonstrates the detection
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threshold for uFldSearchDetect set to 10 m and 20 m. The inner ring in the figure
corresponds to the 10m detection range and the outer ring to the 20 m.

Figure 3.1: Detection Rings.

The uFldSearchDetect application provides a method to analyze how close the adver-
sary vehicle gets to each swarm vehicle during a crossing. It tracks the number of "detec-
tions" at each configured range increment for follow on analysis. Fig. 3.2 demonstrates
the top down probability of detection for a single vessel using the uFldSearchDetect
application with a set max detection radius.
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Figure 3.2: Top Down Discrete Detection

3.1.2 pSonarSimDetect

The pSonarSimDetect app is a probabilistic sensor that mimics the behavior of an ac-
tive sonar. The application is configured with a desired frequency, beam width, and
the target vehicle’s name. The target vehicle’s name is only necessary if the simulated
adversary vessel type is not designated as UUV in the adversary’s Node Report. Addi-
tionally, the app may be configured with the target vehicle’s depth if the sim vehicle’s
depth is not properly included in the target’s node report.
pSonarSimDetect subscribes to all Node Reports posted to a vehicle’s MOOSDB. The

application then processes the node reports to determine if the node report belongs
to a UUV or the target name designated at configuration. Further, the application only
processes node reports that are published at the assigned sonar frequency. After the
node report is validated, the planar distance is then calculated to the target. After which,
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the application applies the limitations of the beam width to determine the maximum
detection radius at the target’s depth, which is determined by eqn. 3.3. The sonar
beam is assumed to be a cone shape with beam width defined by depth, which can be
seen in fig. 3.3. This is a simplification of the actual beam pattern which was shown
in Chapter 2. Once the maximum detection radius is calculated, it is compared to the
target vehicle’s planar distance. If the distance to the target vehicle is less than the
maximum detection radius, the detection probability is determined.

Figure 3.3: Sonar Beam

θ = BeamAngle/2 (3.1)

BeamWidth = 2× TargetDepth× tan(θ) (3.2)

MaxDetectionRadius = BeamWidth/2 (3.3)

The maximum detection radius is used as the zero-probability detection distance limit
for the pSonarSimDetect app. The app takes a Gaussian normal distribution with the

48



mean set at the detection vehicle’s current position. The detection probability asso-
ciated with a target directly underneath the detection vessel is set to 1. The dis-
tribution for the detection probability, which is based off target vehicle distance to
the center of the detection vehicle, is shown in fig. 3.4. In this example the maxi-
mum detection radius is set to 10m. In order to create a Gaussian distribution with a
drop off to near zero probability at the max detection radius, the standard deviation is
σ = MaxDetectionradius/3. Therefore, the distribution over the region accounts for
approximately 99%. Any distance outside the max detection radius is programmed to
have a zero probability of detection.

Figure 3.4: Active Sonar Probabilistic Detection Curve

Once the Guassian function is established, the detection probability value is deter-
mined for the distance to the target vehicle. A random number between zero and
one is then generated. If the random number is less than the detection probability
value, the target is considered detected. If the target is detected, a detection report is

49



generated and shared with the swarm. Since a single beam echo sounder cannot ac-
curately determine where the target is within the beam, the detection report contains
the position information of the detection vehicle and the time of detection in the form
"XDetectionV ehicle;YDetectionV ehicle;time of detection". The detection report can contain sig-
nificant positional error, considering the detection vehicle’s position is used to represent
the target vehicle’s location. The process described above is applied to each target ve-
hicle node report received. Therefore, multiple detection reports can be generated by
the pSonarSimDetect app; however, the detection reports are limited by the assigned
sonar frequency.
The ability for a sonar to detect a target vehicle as a Gaussian distribution was es-

tablished based of the discussions of active sonar detection in (Wagner et al., 1999) and
(Bureau ofNaval Personnel, 1953). (Wagner et al., 1999) describes the ability of an active
sonar to detect a vessel as probabilistic based on range, while (Bureau ofNaval Person-
nel, 1953) describes detection within the beam as probabilistic based off location in the
beam. Further, the test case outlined by (Stone et al., 2016) based its detection results on
the Poisson Scan Model that emulates similar sensors and is normal distribution based.
Therefore, in order to model an active sonar, pSonarSimDetect assumes that the ability
of a vessel to detect a target vessel is probabilistic and Gaussian from the center of the
beam to the max detection radius.
Fig. 3.5 is a top down view depicting the probabilistic detection capability of a single

vehicle in its designated cell using the pSonarSimDetect application.

26. Wagner, D. et al., 1999, Naval Operations Analysis
6. Bureau ofNaval Personnel, N., 1953, Naval Sonar
20. Stone, L. et al., 2016, Optimal Search for Moving Targets
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Figure 3.5: Top Down Probabilistic Detection

3.1.3 pKalmanSolutionGen

The pKalmanSolutionGen app is a MOOS application that subscribes to the detection
report, which is posted by the pSonarSimDetect app and produces an estimate of the
target’s heading and speed with associated variance. The application uses a Kalman
filter with the detection report acting as the update field. The application tracks the
x position, y position, veloctiy in the x direction (ẋ), and velocity in the y direction (ẏ).
Each detection report includes an x position, y position, and time. The mathematical
implementation of the Kalman filter for the x position and ẋ velocity is provided in the
equation sequence below, which is founded on the work in (Zekavat & Buehrer, 2019).
The y position and velocity are calculated in the exact same way as the x. After each
update step, the position (x,y) and velocity(ẋ,ẏ) are used to determine the target’s head-
29. Zekavat, R. et al., 2019, An Introduction toKalmanFiltering Implementation for Localization andTracking
Applications

51



ing and speed with a last location of (x,y). These estimated values can then be used to
produce a time dependent probabilistic position estimate for follow on search behav-
iors.
The x⃗ and error P0 are initialized with the form seen in eqn.3.4. The values chosen

to initialize the position and speed come from the first detection report. The velocity is
a complete guess as there is no initial measurement of velocity, therefore the variance
associated with the ẋ is sufficiently large to account for this error. The initial speed
estimate is a configuration variable that is designated based off the assumed speed of
the target vehicle.

x⃗0 =

x0

ẋ0


P0 =

σ2
xinit

0

0 σ2
ẋinit


(3.4)

The eqns. in 3.5 show the kinematic modelH , the prediction noise variancematrixwk,
and the measurement noise matrix vk. These values are used to influence the estimate
xest under a Gaussian noise.

H =

1 ∆t

0 1


wk =

σ2
xpred

0

0 σ2
ẋpred


vk =

σ2
xmeas

0

0 σ2
ẋmeas


(3.5)
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The flowchart found in fig. 3.6 shows the application of the Kalman Filter (Zekavat
& Buehrer, 2019). The simplified equations in 3.4, 3.6, 3.7, and 3.8 show the governing
equations for each step of the Kalman filter.

x⃗est = Hx⃗0

Pest = HP0H
T + wk

(3.6)

K = Pest(Pest + vk)
−1 (3.7)

P0 = (I −K)Pest

x⃗0 = K(x⃗meas − x⃗est)

(3.8)

29. Zekavat, R. et al., 2019, An Introduction toKalmanFiltering Implementation for Localization andTracking
Applications
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Initialize eqn. 3.4

Propagation eqn. 3.6

Calculate Kalman gain eqn. 3.7

Update state vector and covariance from eqn. 3.5

Post Estimate
Figure 3.6: Kalman Filter Implementation steps

3.1.4 Region Search Control Behavior

The RegionSearchControl behavior is a behavior that governs how the vehicles operate
once the CVT is achieved. There are three configurations for the RegionSeachControl
behavior: The CVT cell rotation, the stochastic heading only approach, and the stochas-
tic free. Each of these methods are run independently of the Voronoi behavior. They
rely on the output CVT cell for each vehicle from the pProxonoi app. However, once
the behavior is active, it no longer adjusts the associated vehicle’s cell. Therefore, this
behavior relies on the vehicles to first be dispersed in a CVT configuration from the
Voronoi behavior and the pProxonoi app. Once stability in the CVT is achieved the
RegionSearchControl behavior is activated. The RegionSearchControl behavior mode
must not be active alongside the Voronoi behavior mode. For each mode of this behav-
ior the speed can be set via the speed configuration variable. Additionally, each mode
allows the vehicle to set the peak utility speed of the objective function randomly. An
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example of the region search control behavior objective function can be seen in fig. 3.7,
where the peak desired heading and speed is 250 degrees and 1.5 m/s respectively. A
description for each configuration mode is detailed below.

Figure 3.7: Region Search Objective Function

Rotation in Cell

If the RegionSearchControl behaviormode is set to "rotate", the CVT cell rotationmethod
will be employed. When configured in the rotate mode, the behavior policy for gener-
ating successive objective functions will cause the vehicle to circle the centroid of its
associated CVT cell. The algorithmic steps for the rotate method can be seen in Alg.
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2. The radius of the circle, which vehicle will maintain, is a percentage of the maximum
radius of the polygon region.
while CV T ̸= stable

do

Execute Voronoi Behavior;
end

if All swarm vehicles stable

then

Set Rotate to active;
end

while Rotate = active

do

Set Heading to Heading to Region Center;
if Distance to center < Spin Radius;

then

Heading = Heading + 180;
else

D = Distance to Center - Spin Radius;
F is a scaling factor;
Heading = Heading + 90− (F ×D);

end

end
Algorithm 2: Rotate in Cell Method

Fig. 3.8 shows a swarm of 7 vehicles in a polygon region with the rotate mode of the
RegionSearchControl behavior active. The speed for the peak of the objective function
is set with the configuration variable speed.
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Figure 3.8: Cell Rotation Example

Stochastic Heading in Cell

If the RegionSearchControl behavior mode is set to "stochastic_heading", the stochas-
tic heading method will be executed. Alg.3 summarizes the heading decision for the
stochastic heading method. In order to properly execute the behavior, the vehicle looks
ahead an established amount of time steps in the future to see if at the current speed
the vehicle will proceed outside of the CVT cell. If it is determined that the vehicle will
travel outside of the cell it turns and returns to the center. The vehicle will alternate
taking a random heading to the edge of its CVT cell and traversing back towards the
center.
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while CV T ̸= stable

do

Execute Voronoi Behavior;
end

if All swarm vehicles stable

then

Set Stochasticheading to active;
end

while Stochasticheading = active

do

Set Heading to Previous Heading;
if Distance to center < Capture Distance & Status = Returning;

then

Heading = Random;
end

if Projected to leave Cell in x time steps;

then

Heading = Heading to Region Center;
Set Status to Returning;

end

end
Algorithm 3: Stochastic Heading in Cell Method

Fig. 3.9 shows a swarm of 7 vehicles in a polygon region with the stochastic heading
method of the RegionSearchControl behavior active. The speed for the peak of the
objective function is set with the configuration variable speed.
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Figure 3.9: Cell Stochastic Heading Method Example

Stochastic Free Mode in Cell

If the RegionSearchControl behavior mode is set to "stochastic_free", the stochastic
free method will be executed. The decision making process can be seen in the Alg. 4.
The vehicle’s position is projected out in time using its current speed and heading. If
it is determined that it will be leaving the CVT in this time increment, the vehicle will
set a new random heading. The vehicle will also determine if it will leave the cell in an
established drop dead time. If it is determined it will leave within the drop dead time or if
the vehicle actually exits the cell it will return towards the center until the above criteria
is satisfied. This is required in the case that the calculated random headings continue to
drive the vehicle towards leaving the cell. At times this results in the vehicle traversing
a boundary of the cell, but overall, the vehicle maintains stochastic headings within its
assigned region.

59



while CV T ̸= stable

do

Execute Voronoi Behavior;
end

if All swarm vehicles stable

then

Set Stochasticfree to active;
end

while Stochasticfree = active

do

Set Heading to Previous Heading;
if Projected to leave Cell in ≤x+ytimesteps

then

Heading = Random;
end

if Projected to leave Cell in x time steps or Out of Cell

then

Heading = Heading to Region Center;
end

end
Algorithm 4: Stochastic Free in Cell Method

Fig. 3.10 shows a swarm of 7 vehicles in a polygon region with the stochastic free
method of the RegionSearchControl behavior active. It can be seen that the path each
vehicle drives is random and generally covers the assigned region. The speed for the
objective function is set with the configuration variable speed.
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Figure 3.10: Cell Stochastic Free Method Example

3.1.5 Vector Field CVT

The Vector Field behavior is a behavior that overlays a constant speed rotational vec-
tor field with a polygon region. The objective function produced from the vector field
behavior will cause the vehicle to rotate around the center of the operation region. The
objective function produced by the vector field behavior can be seen in fig. 3.11, where
the peak desired heading and speed is set to 5 degrees and 1.5 m/s respectively. An
example of a constant speed vector field can be seen in fig. 3.12.
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Figure 3.11: Vector Field Objective Function
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Figure 3.12: Constant Speed Vector Field

The vector field behavior is meant to be run alongside the Voronoi behavior. There-
fore, while the vehicles rotate in the vector field, they will also attempt to stay in a CVT
configuration. The objective functions for the Voronoi behavior as well as the Vector
Field behavior are sent to the pHelmIvP for an optimal solution. This allows the vehi-
cles to continue to rotate around the region center while maintaining the CVT. However,
there can be instances when the vehicle strays far enough from the center of its Voronoi
cell that it must travel against the Vector Field to maintain proper dispersion. Fig. 3.13
shows the swarm with both the Vector Field behavior and the Voronoi behavior running
simultaneously. The vehicle trails are shown with the trailing white dots.
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Figure 3.13: Vector Field and Voronoi Behavior Operating

3.2 Experimental Test Setup

The purpose of this test setup is to demonstrate the capability of a swarm to cover an
open region, detect a threat passing through from any angle, and develop a tracking so-
lution for the threat target. In order to accomplish this goal a simulated 200m by 200m
square region was chosen as the cover region. A swarm of nine surface vehicles were
initialized inside this region, and an adversary vehicle is set to cross the square region
from one side to the other. Each swarm vehicle is limited in its detection capability,
which leads to imperfect coverage of the region.
The Simulations were conducted with the following parameters in order to compare

the effectiveness of the swarm to "detect" the adversary using the search methods
described above.
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1. A swarm of 9 vehicles with identical applications (detection capability) were em-
ployed with the capabilities listed in table 3.1.

1 Unlimited Communications
2 Differential Thrust
3 Maximum Speed = 5 m/s
4 Probabilistic Sensor pSonarSimDetect
5 Solution Generation application pKalmanSolutionGen

Table 3.1: Simulated Vehicle Capabilities.

2. The adversary is simulated with the capabilities listed in table 3.2.

1 Depth of 40m
2 Reports Location at 6 Hz
3 Maximum Speed = 5 m/s

Table 3.2: Simulated Adversary Vehicle Capabilities.

The scenario is initialized with the setup shown in fig. 3.14, where the starting posi-
tion of the adversary is a random location inside the western ellipse. Once the vehicles
are initialized, the voronoi behavior is initiated to distribute the vehicles as a CVT of the
region as shown in fig. 3.15.
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Figure 3.14: The initial test setup.

Figure 3.15: The final CVT configuration.

After the vehicles are distributed in a CVT, the specific behavior under test is activated
and the "Adversary" vehicle crosses the region, which an example can be seen in fig.
3.16. In order to evaluate the effectiveness of the swarm at detecting the adversary
vessel, the uFldSearchDetect and pSonarSimDetect applications are employed. Once
the adversary completely crosses the region and enters the ellipse to the east, it resets to
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a new start point within the ellipse to thewest of the square region seen in figs. 3.14 and
3.15. The adversary vehicle then crosses the region to the east with a new random end
point in the eastern ellipse. While this test setup has the adversary crossing in only one
direction, the symmetry of the problem produces results that would be representative
of crossing from either side of the region. The general test flow can be seen in fig. 3.17.

Figure 3.16: The in progress mission.
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(a) Swarm Vehicles Starting Postion (b) CVT with Detection Radius

(c) Random Adversary Start (d) Swarm Vehicle Detects Adversary

(e) Adversary Crosses Region (f) New Adversary Initiates Region Crossing

Figure 3.17: A step by step example of the test setup
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As the adversary crosses the region two independent methods for a swarm vehi-
cle detecting it are employed. Throughout the simulation pSonarSimDetect is used to
simulate probabilistic detection, and uFldSearchDetect is employed to provide discrete
detection results. The uFldSearchDetect application is configured to track discrete de-
tections at a 1 m interval from 1m to 20m. The pSonarSimDetect was used to report
detections based of the adversary vehicles depth using a single 30 degree beam. Both
methods are deployed side by side in order to compare the detection data using two dif-
ferent methods. Each method produces detection reports with a unique variable-value
pair. Therefore, the data from each detection method can be analyzed individually and
compared.

(a) Probabilistic detection for pSonarSimDetect (b) Discrete Detection Rings 1m to 20m

Figure 3.18: Simulation Detection Methods

3.3 Monte Carlo Test Procedure

TheMonte Carlo simulations were deployed usingMOOS-IvP’s organic batch simulation
script xlaunch.sh. This script executes the launch script for the mission and brings it
down when an exit criterion is met. This is done by using the MOOS-IvP application
uQueryDB, which serves as a method to query the associated MOOSDB for specified
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variable values. Once the exit criterion is met, uQueryDB will post the termination
request inside the xlaunch script. For the simulated test scenario of this thesis, the
number of times that the adversary vehicle crosses the op region is used as the query
variable. Once the vehicle crosses the region a designated number of times the mission
is brought down. This method permits various scenarios to be launched by consecutive
calls to xlaunch. This was the method employed for this thesis.
After the adversary crossed the op region a designated number of times, the sce-

nario was restarted with a change to one of the tested parameters. This allowed the
simulations to be run in a headless configuration with no display GUIs at a much higher
time warp. Thereby, the tests were run in an automated method to acquire the results
displayed in the results section. The required source code and the automated launch
mission scripts can be obtained and run in accordance with the instructions provided in
the Appendix.

3.4 Hardware Test

The purpose of the hardware test is to demonstrate the deployability of the search
algorithms on actual autonomous vehicles. To this end, the hardware testing for this
thesis was conducted using the Clearpath M300 ASV. Fig. 3.19 is a photograph of the
M300 ASV. The vessel has a "front seat" computer that is responsible for all networking
and control features, while a "back seat" computer contains the MOOS-IvP framework
and produces all control commands. Each vessel is connected via a local wifi network
with a shoreside computer that acts as a message handler between vehicles as well as
local scenario control for the operator.
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Figure 3.19: Heron USV.

The scenario tested in the Monte Carlo simulations was replicated at a slightly smaller
scale with a fleet of 7 Heron USVs shown in fig. 3.21. The cover region was designed
as a 150 meter by 150 meter box. This was done to accommodate the vessel traffic
on the Charles River near MIT. The location of the cover region can be seen in the
Google Earth image found in fig. 3.22. It is important to note that a 7 vehicle group
can generate a differing CVT diagram for each deployment. Further, the variation in
the CVT diagram can lead to asymmetrical configurations. An example of which can
be seen in fig. 3.20. This is significant because symmetry was the assumption used
to justify why the adversary vehicle only crosses the cover region in one direction for
testing. However, the purpose of the hardware test is to demonstrate the deployability
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of the algorithms, not to determine the probability of detection. In order to determine
the probability of detection for this specific scenario, the simulation would need to be
altered. The adversary vehicle would need to cross the region from any direction to
correct for the lack of symmetry in the vehicle dispersion.

Figure 3.20: 7 Vehicle CVT Partition

For the hardware test, each vehicle was deployed with the pertinent applications
listed in table 3.3, and the shoreside computer hosted the applications listed in 3.4.
The shoreside applications listed in table 3.4 are included on the shoreside to easily
consolidate the solution data; however, these applications could be deployed on each
vehicle. The UUV adversary was simulated on a local laptop with the fleet of Herons
carrying out the search mission. This setup demonstrates the deployability of the search
algorithms.
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Figure 3.21: The 7 Heron USVs used for Testing.

Figure 3.22: Hardware Test Cover Region from Google Earth Image.

1 pSonarSimDetect
2 Region Search Behavior
3 Vector Field Behavior
4 Voronoi Behavior

Table 3.3: Heron Hosted Applications.
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1 uFldSearchDetect
2 pKalmanSolutionGen

Table 3.4: Shoreside Computer Hosted Applications.
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4 Results

This chapter presents the results from both the Monte Carlo simulation testing and the
hardware deployment testing outlined in Chapter 3. The Various search methods of the
previous chapter are compared to each other, and they are ultimately evaluated against
the stationary swarm in a CVT partitioned region.
The simulation results include the discrete detection results and the probabilistic sen-

sor results. For each search method the swarm speed to adversary speed ratio was
changed in order to demonstrate the search algorithm effectiveness and limitations.
Each search method was tested using speed ratios Speedswarm/SpeedAdversary of 3.0,
1.5, 1.0, .75, .6, and .5. All simulation results presented are based on the Monte Carlo
simulation setup described in Chapter 3, where each search method was evaluated at
each speed ratio for 500 adversary crossings. The simulation results are presented for
the convergence analysis, the discrete detections using uFldSearchDetect, the proba-
bilistic sensor detections, and the Kalman filter solution generation. Then the simulation
results are ultimately compared.
The hardware results present the search methods deployed on 7 heron USVs. Each

method was deployed alongside a simulated adversary. The Adversary was set to cross
the cover region 5 times for each scenario in order to demonstrate the detection appli-
cations functioning in a hardware scenario. The speed ratio for the hardware test was
set at 1 for every search method.
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4.1 Monte Carlo Simulation Convergence

The assumption that 500 adversary crossings is a sufficient number of crossings to draw
comparison conclusions from is explained in this section. A series of simulations were
conducted ranging from 10 crossings to one thousand crossings. The results of proba-
bilistic detection for each simulation batch are shown in Fig.4.1. Probabilistic detection
was chosen as the convergence test parameter due to it containing the most random
variability in all test cases. Fig.4.1 shows the weighted mean detection probability and
standard deviation for the set of batch runs. Upon examining Fig.4.1, we can see that
after 100 test runs are completed, the variability of detection decreases substantially,
to less than one standard deviation from the mean of the batch. Therefore, to provide a
buffer between this lower value and to reduce the time of each Monte Carlo simulation,
500 crossings were chosen.
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Figure 4.1: Convergence Data Plot
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The mean and standard deviation for discrete detections using a stationary swarm
are presented in Fig. 4.2. The stationary swarm was tested using 500 crossings for
increasing target speeds to demonstrate the variance of the test scenario. As the speed
ratio between the swarm and target vessel does not change, the probability of detection
for each test batch simulation should be the same. The variance seen in fig. 4.2 is
indicative of the repeatability of the results. The average standard deviation over the
detection distances is 0.015.

Figure 4.2: Deviation of Stationary Swarm Detection

4.2 Discrete Distance Dectection Simulation Results

4.2.1 Stationary Swarm Simulation Results

This section provides the results that were obtained for adversary "detection" using a
stationary swarm in a CVT partitioned space. The stationary CVT partitioned space can
be seen in fig 4.3. This is the first step discussed in the test procedure of the previous
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chapter. The results of the stationary swarm in this section are used as the standard
by which the other search methods are measured against in the simulation comparison
section of this chapter.

Figure 4.3: The final CVT configuration depicting the 10m and 20m detection radius.

Fig.4.4 shows the numerical results for the number of discrete detections that the
swarm achieved for varying adversary speeds. It is clear that the number of detections
increases as the detection radius increases. Further, fig. 4.4 shows that changing the
speed of the adversary vehicle does not noticeably effect the number of detections.
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Figure 4.4: Raw counts of interactions for discrete distances for Stationary Swarm

Fig.4.5 plots the probability of detection for increasing the adversary speed. The
individual probability values are found in table 4.1 Considering the swarm is always
stationary the speed ratio remains the same and is equal to zero. Therefore, the ability
of the swarm to detect the adversary should not vary with speed. Thus, the variation
in detection probability shown is directly related to the convergence variance of the
Monte Carlo simulations using 500 test runs. Further, the adversary positional data was
reported at the same frequency across all simulations. Therefore, the fact that the 0.5
m/s adversary simulation had a slightly higher detection probability than the rest could
be due to the smaller distance between adversary reports. This would lead to a higher
fidelity on adversary position. However, The plot lines are generally well grouped. The
error induced by the adversary position reporting is grouped with the convergence error
of the Monte Carlo simulation to represent the accuracy limitations of the test setup.
In order to account for this, the mean results are used as the standard of comparison in
the comparison section. The plot of mean detection probability is given in fig. 4.6.
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Figure 4.5: Probability of Interaction at Discrete Distances for Stationary Swarm
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Figure 4.6: Average Probability for Stationary Swarm
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Table 4.1: Probability of Interaction at Discrete Distances for Varying Adversary Speeds.

Ad.v 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0. 10.0

m/s m m m m m m m m m m
0.500 0.070 0.149 0.235 0.311 0.369 0.422 0.478 0.530 0.578 0.624
1.000 0.062 0.143 0.213 0.277 0.329 0.367 0.432 0.480 0.530 0.582
1.500 0.076 0.167 0.235 0.309 0.369 0.398 0.456 0.492 0.534 0.568
2.000 0.054 0.157 0.233 0.313 0.357 0.402 0.470 0.510 0.548 0.580
2.500 0.086 0.171 0.239 0.303 0.367 0.428 0.472 0.502 0.530 0.566
3.000 0.054 0.151 0.219 0.315 0.367 0.420 0.468 0.512 0.542 0.580
Ad.v 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0. 20.0

m/s m m m m m m m m m m
0.500 0.655 0.703 0.735 0.759 0.793 0.831 0.865 0.876 0.890 0.906
1.000 0.627 0.657 0.691 0.717 0.759 0.789 0.813 0.835 0.851 0.873
1.500 0.604 0.635 0.675 0.713 0.753 0.779 0.801 0.833 0.851 0.882
2.000 0.604 0.659 0.699 0.727 0.751 0.779 0.809 0.837 0.861 0.884
2.500 0.596 0.631 0.667 0.699 0.729 0.757 0.787 0.803 0.825 0.847
3.000 0.620 0.655 0.683 0.719 0.761 0.779 0.795 0.815 0.847 0.878

4.2.2 Vector Field Simulation Results

The simulation results for the Monte Carlo simulations with the vector field search be-
havior enacted are presented in this section. The raw count data is displayed in fig. 4.7.
The probability of detection at the discrete intervals are shown in fig. 4.8 and table 4.2.
It can be seen that the speed ratio plays a significant role in the detection capability
of the swarm. As the speed ratio decreases (Target vessel gains speed advantage), the
probability of detection also decreases. The lower speed ratios tend to converge within
the accuracy of the simulation as discussed above.
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Figure 4.7: Raw counts of interactions for discrete distances for Vector Field Method
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Figure 4.8: Probability of Interaction at Discrete Distances for Vector Field Method
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Table 4.2: Probability of Interaction at Discrete Distances for Varying Speed Ratios for Vector
Field Method.

SR 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0. 10.0

m m m m m m m m m m
3.000 0.295 0.524 0.655 0.753 0.833 0.888 0.918 0.942 0.958 0.974
1.500 0.169 0.303 0.412 0.508 0.580 0.649 0.711 0.749 0.795 0.831
1.000 0.104 0.239 0.337 0.438 0.504 0.572 0.633 0.685 0.735 0.761
0.750 0.097 0.211 0.328 0.414 0.489 0.549 0.614 0.664 0.718 0.751
0.600 0.074 0.173 0.271 0.345 0.416 0.468 0.548 0.606 0.677 0.723
0.500 0.060 0.177 0.279 0.382 0.470 0.544 0.602 0.659 0.713 0.757
SR 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0. 20.0

m m m m m m m m m m
3.000 0.976 0.978 0.982 0.988 0.992 0.994 0.994 0.994 0.994 0.994
1.500 0.863 0.884 0.908 0.928 0.942 0.958 0.966 0.970 0.980 0.986
1.000 0.803 0.815 0.857 0.882 0.902 0.916 0.924 0.938 0.950 0.958
0.750 0.785 0.811 0.859 0.871 0.883 0.897 0.917 0.932 0.938 0.952
0.600 0.765 0.799 0.835 0.857 0.876 0.896 0.908 0.912 0.928 0.938
0.500 0.793 0.825 0.835 0.867 0.884 0.896 0.916 0.930 0.938 0.946

4.2.3 CVT Rotation Simulation Results

The simulation results for theMonte Carlo simulations for the search behavior with CVT
rotation enacted are presented in this section. The raw count data is displayed in fig. 4.9.
The probability of detection at the discrete intervals are shown in fig. 4.10 and table 4.3.
It can be seen that the highest speed ratio greatly increases the detection probability
of the swarm; however, beyond the largest speed ratio the detection probability stays
more constrained than that of the vector field.
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Figure 4.9: Raw counts of interactions for discrete distances for CVT Rotation
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Figure 4.10: Probability of Interaction at Discrete Distances for CVT Rotation
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Table 4.3: Probability of Interaction at Discrete Distances for Varying Adversary Speeds.

SR 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0. 10.0

m m m m m m m m m m
3.000 0.149 0.343 0.510 0.651 0.771 0.839 0.902 0.938 0.964 0.974
1.500 0.153 0.279 0.363 0.450 0.508 0.578 0.655 0.713 0.767 0.803
1.000 0.106 0.205 0.325 0.404 0.452 0.500 0.560 0.633 0.681 0.739
0.750 0.074 0.179 0.258 0.356 0.433 0.483 0.543 0.602 0.638 0.680
0.600 0.092 0.203 0.307 0.380 0.456 0.520 0.592 0.635 0.687 0.725
0.500 0.064 0.177 0.269 0.347 0.418 0.486 0.564 0.616 0.667 0.711
SR 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0. 20.0

m m m m m m m m m m
3.000 0.984 0.988 0.992 0.998 0.998 0.998 0.998 0.998 0.998 0.998
1.500 0.843 0.869 0.884 0.902 0.924 0.948 0.954 0.962 0.970 0.982
1.000 0.783 0.809 0.827 0.849 0.890 0.902 0.914 0.934 0.944 0.954
0.750 0.716 0.742 0.783 0.809 0.827 0.853 0.865 0.893 0.911 0.920
0.600 0.769 0.797 0.831 0.845 0.859 0.878 0.880 0.896 0.906 0.922
0.500 0.755 0.783 0.827 0.847 0.873 0.882 0.894 0.904 0.920 0.938

4.2.4 Stochastic Heading

The results for the Monte Carlo simulations for the search behavior with Stochastic
Heading method are presented in this section. The raw count data is displayed in fig.
4.11. The probability of detection at the discrete intervals are shown in fig. 4.12 and
table 4.4. The speed ratio has a similar effect as shown in the above methods. The
lower speed ratios tend to merge to within the simulation accuracy.
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Figure 4.11: Raw counts of interactions for discrete distances for Stochastic Heading
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Figure 4.12: Probability of Interaction at Discrete Distances for Stochastic Heading
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Table 4.4: Probability of Interaction at Discrete Distances for Varying Adversary Speeds.

SR 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0. 10.0

m m m m m m m m m m
3.000 0.183 0.369 0.520 0.624 0.705 0.779 0.831 0.876 0.904 0.916
1.500 0.120 0.271 0.371 0.446 0.524 0.588 0.647 0.697 0.747 0.777
1.000 0.118 0.243 0.325 0.398 0.452 0.532 0.586 0.627 0.673 0.723
0.750 0.087 0.197 0.278 0.354 0.441 0.501 0.565 0.614 0.666 0.696
0.600 0.076 0.167 0.247 0.335 0.432 0.488 0.554 0.592 0.631 0.687
0.500 0.084 0.167 0.245 0.339 0.404 0.474 0.526 0.574 0.631 0.671
SR 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0. 20.0

m m m m m m m m m m
3.000 0.940 0.948 0.952 0.964 0.966 0.980 0.982 0.984 0.984 0.986
1.500 0.799 0.847 0.871 0.888 0.904 0.922 0.936 0.952 0.958 0.972
1.000 0.751 0.789 0.815 0.849 0.875 0.894 0.902 0.914 0.928 0.940
0.750 0.736 0.783 0.815 0.843 0.873 0.899 0.913 0.936 0.952 0.952
0.600 0.729 0.763 0.799 0.827 0.841 0.863 0.882 0.904 0.920 0.938
0.500 0.719 0.767 0.787 0.813 0.841 0.867 0.892 0.908 0.926 0.936

4.2.5 Stochastic Free

The results for theMonte Carlo simulations for the search behavior with Stochastic Free
method are presented in this section. The raw count data is displayed in fig. 4.13. The
probability of detection at the discrete intervals are shown in fig. 4.14 and table 4.5.
The detection probability differs very little from the Stochastic Heading method.
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Figure 4.13: Raw counts of interactions for discrete distances for Stochastic Free
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Figure 4.14: Probability of Interaction at Discrete Distances for Stochastic Free
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Table 4.5: Probability of Interaction at Discrete Distances for Varying Adversary Speeds.

SR 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0. 10.0

m m m m m m m m m m
3.000 0.231 0.404 0.560 0.673 0.745 0.815 0.855 0.892 0.914 0.932
1.500 0.141 0.263 0.343 0.452 0.524 0.598 0.655 0.705 0.739 0.787
1.000 0.092 0.217 0.313 0.388 0.454 0.534 0.572 0.641 0.677 0.717
0.750 0.085 0.177 0.278 0.356 0.414 0.461 0.515 0.579 0.634 0.682
0.600 0.078 0.177 0.277 0.365 0.434 0.498 0.574 0.631 0.681 0.727
0.500 0.068 0.189 0.263 0.339 0.406 0.482 0.560 0.606 0.651 0.707
SR 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0. 20.0

m m m m m m m m m m
3.000 0.948 0.966 0.972 0.978 0.984 0.992 0.994 0.994 0.994 0.994
1.500 0.833 0.861 0.876 0.900 0.916 0.932 0.950 0.964 0.968 0.970
1.000 0.763 0.797 0.829 0.853 0.890 0.900 0.918 0.932 0.946 0.958
0.750 0.736 0.769 0.809 0.841 0.861 0.899 0.915 0.930 0.940 0.946
0.600 0.757 0.783 0.821 0.845 0.867 0.880 0.900 0.914 0.918 0.928
0.500 0.743 0.775 0.793 0.827 0.849 0.867 0.896 0.914 0.918 0.928

4.3 Probabilistic Sensor Simulation Results

In the section, results are presented from the pSonarSimDetect app and the pKalman-
SolutionGen app. The results are presented from the Monte Carlo simulations with 500
adversary crossings for each speed ratio.

4.3.1 Probability of Detection and Solution Generation

Each search method was executed using the probabilistic detection application pSonar-
SimDetect. pSonarSimDetect produced detection reports used by the pKalmanSolu-
tionGen app for solution development. The pKalmanSolutionGen app was employed
on the shoreside MOOSDB. The results in this section show the probability of detec-
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tion using the sonar sim app along with the probability that a solution is produced. In
order to generate a solution at least two detection reports that are a minimum of 10m
apart are required. The distance between detections is the only restriction pKalmanSo-
lutionGen places on using a detection report. The detection reports can be generated
by the same vehicle as long as the detection reports are greater than 10m apart. This
allows a moving swarm vehicle to report a detection on a second encounter with the ad-
versary vehicle. Therefore, the number of solutions generated is a mark of the swarm’s
ability to obtain more than one detection over space. Thus, instead of the swarm simply
producing an expanding area of uncertainty plot, it can produce a solution to be used
for follow on search and target tracking.
While target speed should not impact the detection probability for the stationary

swarm using the discrete detection application uFldSearchDetect, it does impact detec-
tion probability for pSonarSimDetect. The sonar simulation application has a designated
frequency; therefore, the number of detection opportunities increases as the time the
adversary exists within the sonar detection radius increases. Thus, the sonar application
will get more opportunities for detection at slower adversary speeds. This result can
be seen in fig. 4.15. Further, this additional factor impacts the results for each search
method. In fact, the frequency limitation on the sonar application can have a greater
impact on the search methods employed in this thesis. The speed ratio tested relates
the maximum speed of the swarm to the adversary speed, but does not account for the
direction the speed is in. Therefore, if the swarm vehicle’s velocity is in the opposite
direction of the adversary’s velocity, the exposure time the sonar has to the adversary
vehicle is even less than the stationary swarm. So while the discrete detection plots us-
ing uFldSearchDetect show a much higher probability to encounter the adversary with
a moving swarm, the additional encounters do not fully translate to increased sonar
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detection. The sonar application for this thesis was set at 2Hz frequency, therefore
increasing this frequency would minimize this effect.
The detection radius limit using the pSonarSimDetect app was approximately 10m

assuming a 40m deep target. Therefore, the data presented in this section reflect detec-
tions that were Gaussian with a max detection radius of 10m. The detection probability
results in this section do not always decrease monotonically. However, if the sonar re-
sults for these methods are compared to the discrete detections results, it can be seen
that in the under 10 m detection threshold these same inconsistencies exist. The vari-
ability between the speed ratios at the less than 10m detection threshold were small
and can be attributed to the overall accuracy limitations of the Monte Carlo Simulation.

Probability of Detection and Solution Generation for STATIONARY Search Method
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Figure 4.15: Probabilistic Sensor Detections for Stationary Swarm
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Figure 4.16: Probabilistic Sensor Detections for Swarm with Vector Field
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Figure 4.17: Probabilistic Sensor Detections for Swarm with CVT Rotation
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Probability of Detection and Solution Generation for STOCHASTIC HEADING Search Method
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Figure 4.18: Probabilistic Sensor Detections for Swarm with Stochastic Heading
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Figure 4.19: Probabilistic Sensor Detections for Swarm with Stochastic Free Method
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4.3.2 Solution Accuracy

The solutions generated from the pKalmanSolutionGen app can vary in accuracy. The
quality of the estimates produced is reliant on the quality of the data being supplied.
This section provides analysis of the quality of the estimates produced for each search
method.

Stationary Swarm

The stationary swarm produced the speed and heading estimate results shown in figs.
4.20 and 4.21. The speed estimate produced was the closest estimate to actual speed
of any of the search methods below. Speed is estimated from the location and time
of detection reports. Therefore, the swarm speed can influence the difference in de-
tection reports generated by swarm vehicles. The stationary swarm did not have this
error added to the speed and heading estimates. This lead to fairly accurate speed and
heading estimates.
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Figure 4.20: Speed Estimate
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Figure 4.21: Heading Error

CVT Rotatation

The CVT Rotation search method produced the results shown in figs. 4.22 and 4.23.
The Heading and speed error for estimates where the adversary speed was less than
the swarm speed tended to be more accurate. As the speed ratio decreased the speed
estimates became more poor and were continuously under estimated.
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Figure 4.22: CVT Rotation Speed Estimate
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Figure 4.23: CVT Rotation Heading Error

Stochastic Heading

Figs. 4.25 and 4.24 shows the speed and heading estimate results for the Stochastic
Heading method. The results obtained show that the speed estimate gets consistently
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under estimated as the target speed increases. However, the heading estimate had a
relatively consistent average error.
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Figure 4.24: Stochastic Heading Speed Estimate
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Figure 4.25: Stochastic Heading Heading Error
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Stochastic Free

The speed estimates and heading error averaged over each speed ratio for the Stochas-
tic Free search method is shown in figs. 4.27 and 4.26. The results obtained are similar
to the stochastic heading. The speed estimate gets consistently under estimated as
target speed increases, while the heading error remains low.
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Figure 4.26: Stochastic Free Speed Estimate
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Figure 4.27: Stochastic Free Heading Error

Vector Field

The Vector Field speed and heading estimates are depicted in fig. 4.29 and 4.28. The
results followed the trend set by the stochastic related search methods. However, the
heading error average is lower than any other search method.
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Figure 4.28: Vector Field Speed Estimate

3   1.5 1   0.75 0.6 0.5 3   1.5 1   0.75 0.6 
Speed Ratio

-80

-60

-40

-20

0

20

40

60

80

He
ad

in
g 

Er
ro

r d
eg

re
es

Mean Heading Error for Vector Field  Search Stategy

Mean Heading Error Mean +/- Standard ErrorMean Heading Error

Figure 4.29: Vector Field Heading Error
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4.3.3 Simulation Data Conclusions

In this section the results for each search method and speed ratio are averaged and
compared. The individual speed ratio comparisons can be found in the appendix. From
the results it can be seen that the the vector field search method produces the highest
possible discrete detection probability. Further, the Vector Field method produces the
greatest balance between discrete detection, probabilistic detection, and solution gen-
eration. Although the Vector Field method generated more detections and solutions,
the solutions had the greatest average error over speed and heading. It is clear that
any search method that involves motion increases the ability of the swarm to detect
the passing adversary. However, the quality of the speed and heading estimates pro-
duced by the swarm deteriorate. Therefore, it is assumed that if there were adequate
vehicles to provide complete coverage of the region without movement, the stationary
swarm would produced the most accurate solution estimate. However, in the coverage
limited problem, methods that involve motion produce the best results. The margin of
error, when the various speed ratios are averaged, prevent a definitive second choice
from being chosen between the Stochastic Free, Stochastic Heading, and CVT Rotation
methods. If the the speed ratio is known, then the most effective search method can
be discerned. These direct speed ratio comparisons are shown in the appendix.
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Mean Detection Probability Over all Speed Ratios
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Figure 4.30: Mean Probability of Detection for all Methods
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Figure 4.31: Mean Probability of Detection for all Methods with Standard Deviation
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Probabilistic Sensor Average Summary
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Figure 4.32: Probabilistic Sensor Results Summary

4.4 Hardware Test

The results for the hardware test scenario described in Chapter 3 are presented for each
search method in this section. For each search method a simulated adversary vehicle
crossed the hardware test region five times. The number of crossings was set at five in
order to balance the demonstration of detection probability with the physical run time
on the Charles River. The river traffic constrained the length of time each scenario was
able to run. The swarm speed was set to 1 m/s with an the simulated adversary speed
also set to 1 m/s. Therefore, the speed ratio of the hardware test was 1.0. The scenario
was conducted in the 150m by 150m cover area defined in Chapter 3. Fig. 4.33 shows
an example of a 7 vehicle CVT in the cover region. The rings indicate the 10 m and 20
m detection rings. It can be seen that the 20 m ring provides far more area coverage
than the scenario tested in simulation.
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Figure 4.33: 7 Vehicle CVT in the 150m by 150m cover region with 10m and 20m detection
rings.

The results for the number of detections of the simulated vehicle for each search
method are presented here for completeness. However, the purpose of the hardware
test was to demonstrate the deployability of the search algorithms on an autonomous
platform. It was not the goal to replicate the number of batch simulations conducted
in the Monte Carlo simulations. Therefore, the probability of detection for each search
method should be inferred from theMonte Carlo simulation. The data presented here in
the hardware section should be viewed as validation for the deployability of the system
used in simulation.

4.5 Hardware Results

Fig. 4.34 shows the fleet of 7 Heron vehicles on the Charles River deployed for the
test scenario.
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Figure 4.34: Heron Vehicles on Charles River

4.5.1 CVT Rotation

The image in fig. 4.35 shows the actual GPS position history of the 7 vehicle swarm on
the Charles River. The green vehicle tails are shown in the image to demonstrate the
path each vehicle maintained during testing. It can be seen that the vehicles accurately
achieved a CVT of the region and executed the CVT Rotation behavior. The small dis-
ruptions to a perfectly circular path is attributed to physical condition on the river as
well as GPS navigation. The overall behavior was executed successfully.
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Figure 4.35: CVT Rotation search method operating on the Heron USVs as seen from
pMarineViewer during the hardware test. The inner square region is the estab-
lished 150m by 150m cover region. The Outer square region is the operational
safety boundary established for the hardware test. The east and west ovals are
the start and finish regions for the simulated adversary vehicle.

Figs. 4.36 and 4.37 show the detection counts and detection probability of the sim-
ulated adversary over five region crossings. A similar trend can be seen in the simulated
data. Table 4.6 shows the results for the simulated sonar detection and solution gener-
ation.
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Figure 4.36: Bar Graph of Detections for CVT Rotation Method on Hardware
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Figure 4.37: Detection Probability plot for CVT Rotation Method on Hardware
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Sonar Detections 2
Number of Solutions 1
Heading Error 16.75 degrees
Speed Error -.017 m/s

Table 4.6: Simulated Sonar Sensor Results for CVT Rotation Hardware Test.

4.5.2 Stochastic Heading

The image in fig. 4.38 shows the actual GPS position history of the 7 vehicle swarm
on the Charles River while executing the Stochastic Heading search method. The green
vehicle trails are shown in the image to demonstrate the path each vehicle maintained
during testing. The region was first partitioned into a CVT diagram based off vehicle
position. Then, each vehicle executed the stochastic Heading search method within
its associated partition. The image shows the flower shaped pattern that the stochastic
heading search method produces. However, it can be seen that a few of the vehicles did
not maintain a perfectly continuous heading while attempting to maintain the ordered
heading. This can occur when the vehicle’s perceived heading is unstable, which can
be caused by a weak GPS connection or poor IMU heading depending on the current
mode for heading estimation. The overall behavior was executed successfully.
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Figure 4.38: Stochastic Heading search method operating on the Heron USVs as seen from
pMarineViewer during the hardware test. The inner square region is the estab-
lished 150m by 150m cover region. The Outer square region is the operational
safety boundary established for the hardware test. The east and west ovals are
the start and finish regions for the simulated adversary vehicle.

Figs. 4.39 and 4.40 show the detection counts and detection probability of the sim-
ulated adversary over five region crossings. A similar trend can be seen in the simulated
data. Table 4.7 shows the results for the simulated sonar detection and solution gener-
ation.
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Figure 4.39: Bar Graph of Detections for Stochastic Heading Method on Hardware
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Figure 4.40: Detection Probability plot for Stochastic Heading Method on Hardware
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Sonar Detections 2
Number of Solutions 1
Heading Error -13.11651 degrees
Speed Error 0.382 m/s

Table 4.7: Simulated Sonar Sensor Results for Stochastic Heading Hardware Test.

4.5.3 Stochastic Free

The image in fig. 4.41 shows the actual GPS position history of the 7 vehicle swarm
on the Charles River while executing the Stochastic Free search method. The green
vehicle trails are shown in the image to demonstrate the path each vehicle maintained
during testing. The region was first partitioned into a CVT diagram based off vehicle
position. Then, each vehicle executed the stochastic free search method within its
associated partition. Any boundary that was penetrated got quickly corrected. The
overall behavior was executed successfully.
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Figure 4.41: Stochastic Free search method operating on the Heron USVs as seen from
pMarineViewer during the hardware test. The inner square region is the estab-
lished 150m by 150m cover region. The Outer square region is the operational
safety boundary established for the hardware test. The east and west ovals are
the start and finish regions for the simulated adversary vehicle.

Figs. 4.42 and 4.43 show the detection counts and detection probability of the sim-
ulated adversary over five region crossings. A similar trend can be seen in the simulated
data. Table 4.8 shows the results for the simulated sonar detection and solution gener-
ation.
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Figure 4.42: Bar Graph of Detections for Stochastic Free Method on Hardware
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Figure 4.43: Detection Probability plot for Stochastic Free Method on Hardware
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Sonar Detections 2
Number of Solutions 1
Heading Error 49.47068 degrees
Speed Error -.22034 m/s

Table 4.8: Simulated Sonar Sensor Results for Stochastic Free Hardware Test.

4.5.4 Vector Field

The image in fig. 4.44 shows the actual GPS position history of the 7 vehicle swarm on
the Charles River. The green vehicle trails show the path the vehicle has taken to its
current location. The image shows the Voronoi behavior operating alongside the Vector
Field behavior. An example of what occurs when the vector field behavior pushes a
swarm vehicle beyond the activation radius of the Voronoi behavior can be seen on
the vehicle Fin. Fin is in the southwest region and is steering against the vector field to
regain its Voronoi partition. Overall, the Vector Field search method operated identically
on the hardware as it did in simulation.
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Figure 4.44: Vector field and Voronoi behavior operating on the Heron USVs as seen from
pMarineViewer during the hardware test. The inner square region is the estab-
lished 150m by 150m cover region. The Outer square region is the operational
safety boundary established for the hardware test. The east and west ovals are
the start and finish regions for the simulated adversary vehicle.

Figs. 4.45 and 4.46 show the detection counts and detection probability of the sim-
ulated adversary over five region crossings. A similar trend can be seen in the simulated
data. Table 4.9 shows the results for the simulated sonar detection and solution gener-
ation.
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Figure 4.45: Bar Graph of Detections for Vector Field Method on Hardware
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Figure 4.46: Detection Probability plot for Vector Field Method on Hardware
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Sonar Detections 3
Number of Solutions 0
Heading Error N/A
Speed Error N/A

Table 4.9: Simulated Sonar Sensor Results for Vector Field Hardware Test.

4.5.5 Hardware Data Conclusions

The hardware test successfully demonstrated the deployability of the algorithms pre-
sented in this thesis. While the detection results are limited, the similarity to the results
achieved through simulation can be seen. One notable difference is that the Vector
Field method performed the worst in detection capability. However, this is likely due to
the limited number of crossings and the asymmetry of the CVT for the other methods.
Therefore, the hardware test cannot be relied upon to determine search method effec-
tiveness. Rather, the hardware test demonstrated that a swarm of real world ASVs can
be effectively be deployed as a cover and search team. Further, it was demonstrated
that developing swarm algorithms, testing through Monte Carlo simulation, and deploy-
ing aboard real world vehicles can efficiently be done in the MOOS-IvP framework.
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5 Conclusions

5.1 Review and Conclusion

The work in this thesis ultimately proposed and evaluated the effectiveness of a swarm
of autonomous vehicles using different Voronoi based search methods in an area cov-
erage and tracking problem. The methods were analyzed using Monte Carlo simulation,
which determined the probability of detection for each method. Moreover, the ability
to generate target solutions from a simulated sensor with a normal distribution detec-
tion model was presented. Lastly, the search algorithms were deployed on autonomous
surface vessels to demonstrate the deployability and feasibility of the simulated mis-
sion. Through these methods of evaluation, the potential for a swarm of USVs to serve
as a detection and alert mechanism in a harbor defense setting is better understood.
Through Monte Carlo simulation, it was shown that the probability of the swarm to

detect a passing intruder is increased when search methods involving swarm motion is
included. When the measurement criteria is compared between each proposed search
method, there is not a clear definitive best. However, the Vector Field search method
demonstrated the highest possible mean detection probability in simulation. Thereby,
without any prior knowledge of the threat vessel, the Vector Field search method was
determined to be the method with the greatest potential. While the determination
of the best search method for a setting with limited prior knowledge lacks complete
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conviction, this experiment demonstrated that every search method proposed is more
effective at detecting an intruder than a stationary swarm. Therefore, a swarm of mobile
surface vessels enacting Voronoi based search methods will increase the probability of
detecting a threat passing through a cover region.
The use of traditional search methods for a moving target often rely on a time de-

pendent target location probability. Optimally, a swarm employed in an area coverage
and tracking scenario would provide this level of information. This thesis showed that
a swarm with a simulated active sonar application was able to produce an actionable
target solution on average. This was accomplished using crude error prone detection
reports. Therefore, a swarm equipped with inexpensive simple detection mechanisms
can provide useful target information.
The Monte Carlo simulations used for this thesis provided useful data to predict the

effectiveness for each of the tested swarm search methods. However, simulations do
not always capture the complexity of algorithm execution on real world platforms. This
thesis demonstrated that the Voronoi search methods proposed and tested in simula-
tion, in fact, can be employed effectively on autonomous surface vessels. The hardware
test was not used to determined the best search method. This is because the asym-
metry of the 7 vehicle distribution and the limited number of target vessel crossings
prevented a definitive conclusion. However, this was the purpose of the Monte Carlo
Simulations. All in all, the MOOS-IvP environment provided a mature ecosystem that
enabled the smooth transition from algorithm development, to simulation validation,
and ultimately to hardware execution.
As the rapid development in robotic systems and artificial intelligence flow into adver-

sarial marine vehicles, the need for equally capable defense systems is required. This
thesis examined and quantified the effectiveness of a swarm of autonomous surface
vehicles in detecting and tracking an adversarial AUV. Further, the work in this thesis
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demonstrated a novel approach to increase the probability of detecting a threat vehicle,
to generate an actionable target solution, and to employ these methods on a robotic
platform. The use of Voronoi based methods proved to be a deployable and effective
method for area coverage and tracking.

5.2 Future Work

While the work in this thesis proposes and evaluates novel autonomous marine vehicle
control methods, further testing and data collection would provide a more complete
assessment of Voronoi based search methods. The work in this thesis focuses on the
speed ratio between adversary and swarm. However, another useful metric would in-
clude evaluating the ratio of swarm coverage to region area. Varying the number of
vehicles inside the cover region would provide a measurement of this ratio. Then, the
combination of the speed ratio and area coverage ratio data would provide a method
to estimate swarm detection probability given a region, detection range, number of
vehicles, and speed ratio. In fact, this additional data would provide a mechanism to
estimate any one of the above variables given the others. This would provide a mission
designer a tactical decision aid with data backed estimates.
The hardware employment conducted for this thesis accurately demonstrated the

deployability of the proposed search algorithms; however, the ability of the swarm to
detect a vessel was estimated using a simulated active sonar and simulated target ve-
hicle. For future work, it would be beneficial to execute the search algorithms using
a single beam echo sounder and a UUV platform to validate the sensor model. The
tools developed for this thesis are ready to be evaluated with this real world upgrade.
Further, the conclusions drawn from the simulated active sonar could be appropriately
challenged and compared.
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The Monte Carlo simulations were conducted with a 9 vehicle swarm and tested us-
ing a target crossing in one direction. The symmetry of the 9 vehicle swarm permitted
this assumption. However, in order to properly report the detection probability of a
swarm with an adversary crossing from any direction, the simulation must be altered.
The simulation scenario would be more robust and would not require a symmetry as-
sumption, if the adversary could cross the region from any direction. Therefore, the
simulation would benefit from this change in the future.
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Acronyms

ASV Autonomous Surface Vehicle
ASW Anti-Submarine Warfare
AUV Autonomous Underwater Vehicle
AxV Unmanned Autonomous Vehicle
BHV Behavior
CVT Centroidal Voronoi Tesselations
IvP Interval Programming
MOOS Mission Oriented Operating Suite
MOOSDB MOOS Data Base
SCAT Simultaneous Coverage and Tracking
UUV Unmanned Underwater Vehicle
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Appendix

1 Batch Simulation Instructions

Below is the instructions for executing the batch simulations that provided the results
for all simulations used to obtain the results of this thesis.
First all source code dependencies are required to be downloaded and built.
1. MOOS-IvP - found at https://oceanai.mit.edu/moos-ivp
2. moos-ivp-swarm extend tree
3. moos-ivp-voronoi-batch extend tree - found at https://github.com/ncevans/moos-

ivp-voronoi-batch.git
A copy of the README associated with the moos-ivp-voronoi-batch tree is provide

below
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############################################################################## 
# FILE:        moos-ivp-voronoi-batch/README 
# DATE:        2022/06/22 
#Modified from README provided from the MOOS-IVP extend tree checkout README 
############################################################################## 
 
#============================================================================= 
# Introduction 
#============================================================================= 
This extend tree for MOOS-IvP contains all the source code and scripts to execute 
the batch simulations ran for the thesis entitled A Practical Underwater Search with Voronoi 
Distributed Autonomous Swarms. 
 
#============================================================================= 
# Voronoi Batch Description and Usage details 
#============================================================================= 
To execute the batch simulations the missions/VORONOI_BATCH_SIM/zlaunch.sh is used. 
 
      
#============================================================================= 
      # zlaunch usage and parameters 
      
#============================================================================= 
      COMMAND LINE ARGUMENTS 
       
      SWARM RELATED ARGUMENTS 
      --mode  #Sets the swarm behavior mode to use the Vector Field or Region Search BHV 
         --mode=VECTOR #Vector Field 
         --mode=SEARCH #Region Search 
      --search #Sets the mode of the Region Search BHV  
         --search=ROTATE #Enacts the CVT Rotation method 
         --search=STOCHASTIC_HEADING #Enacts the center oriented Stochastic Method 
         --search=STOCHASTIC_FREE #Enacts the CVT complete Stochastic Method 
         --search=STOCHASTIC #Enacts the center oriented Stochastic Method with changing 
random speeds 
         --search=STOCHASTIC_FREE_SPEED #Enacts the complete stochastic method with random 
changing speeds 
      --startvehicle #Sets the number of starting swarm vehicles to run the scenario with 
         --startvehicle=5 #Runs the simulation with 5 swarm vehicles 
      --endvehicle #Sets the amount of swarm vehicle to stop simulating. 
         mission runs for startvehicle to endvehicle incremented by 1. 
         --endvehicle=10 with start=5 the scenario will run for 5,6,7,8,9,10 swarm vehicles 
            the data will be stored in data/veh_num0, data/veh_num1,... and so on 
      --minspd #Sets the initial starting speed of the swarm 



      --spdsteps #sets the number of times swarm speed will be increased ZERO INDEXED 
         --spdsteps=1 # this produce 2 simulations minspd, minspd+(1*spdsteps) 
      --scalespeed #is the multiple each time step will increase speed by 
          
      ADVERSARY RELATED ARGUMENTS 
         MISSION LENGTH 
            The mission length is determined by the number of region crosses that the Adversary 
vehicle 
            completes. Therefore, the number of crosses is the variable uQueryDB uses to terminate 
the simulation 
             
            --cross #designates the number of adversary crosses 
               --cross=100 #The mission will stay running until the adversary crosses the op region 
100 times 
                
         Adversary Speed: the simulations are ran for (speedstart) to (speedend) in (numsteps). 
Each speed  
            is held constant for the designated number of crosses. 
            Therefore if speedstart=.5, numsteps=6, and stepsize=.5 the sim will run 6 times for 
adversary speeds= 
            .5, 1.0, 1.5, 2.0, 2.5, 3.0. Each speed the adversary will cross the region for designate #of 
crosses 
             
               --speedstart # Initializes the Adversary speed for the starting simulation 
                  --speedstart=.5 #The adversary speed will start at .5 
               --numsteps #sets the number of times the adversary changes speed THIS IS ZERO 
INDEXED 
                 --numsteps=1 # this produce 2 simulations speedstart, speedstart+(1*stepsize) 
               --stepsize #The value of the speed increase for each step 
                
      MISSION BASED ARGUMENTS 
       
         --loc #designates whether the sailing pavilion mission or saxis mission is executed 
            --loc=saxis #Runs the saxis mission 
         --headless #takes no argument, will run simulations without pMarineViewer 
         Time warp is designate with a int value on command line with flag required 
            example. ./zlaunch.sh 10 #will run time warp 10 
            
           
                
 
 
#============================================================================= 
# Directory Structure 



#============================================================================= 
The directory structure for the moos-ivp-extend is described below: 
 
bin              - Directory for generated executable files 
build            - Directory for build object files 
build.sh         - Script for building moos-ivp-extend 
CMakeLists.txt   - CMake configuration file for the project 
lib              - Directory for generated library files 
missions         - Directory for the thesis mission  
README           - Contains helpful information - (this file). 
src              - Directory for source code 
 
 
#============================================================================= 
# Build Instructions 
#============================================================================= 
 
To build on Linux and Apple platforms, execute the build script within this 
directory: 
 
   $ ./build.sh 
 
To build without using the supplied script, execute the following commands 
within this directory: 
 
   $ mkdir -p build 
   $ cd build 
   $ cmake ../ 
   $ make 
   $ cd .. 
 
 
#============================================================================= 
# Environment variables 
#============================================================================= 
The moos-ivp-extend binaries files should be added to your path to allow them 
to be launched from pAntler.  
 
In order for generated IvP Behaviors to be recognized by the IvP Helm, you 
should add the library directory to the "IVP_BEHAVIOR_DIRS" environment  
variable. 
 
############################################################################## 
                                                                  END of README 



2 Comparison Data

Table 1: Probability of Interaction at Discrete Distances for Adversary Speed=.5m/s.

Distance Stochastic Stochastic Heading Rotate Vector Stationary
m % % % % %
1.000 23.108 18.327 21.557 29.482 6.673
2.000 40.438 36.853 42.116 52.390 15.671
3.000 55.976 51.992 57.285 65.538 22.908
4.000 67.331 62.351 70.060 75.299 30.445
5.000 74.502 70.518 80.240 83.267 35.923
6.000 81.474 77.888 85.629 88.845 40.637
7.000 85.458 83.068 90.818 91.833 46.282
8.000 89.243 87.649 94.012 94.223 50.432
9.000 91.434 90.438 95.808 95.817 54.349

10.000 93.227 91.633 98.004 97.410 58.300
11.000 94.821 94.024 98.802 97.610 61.753
12.000 96.614 94.821 99.601 97.809 65.704
13.000 97.211 95.219 99.800 98.207 69.190
14.000 97.809 96.414 99.800 98.805 72.244
15.000 98.406 96.614 100.000 99.203 75.764
16.000 99.203 98.008 100.000 99.402 78.552
17.000 99.402 98.207 100.000 99.402 81.142
18.000 99.402 98.406 100.000 99.402 83.300
19.000 99.402 98.406 100.000 99.402 85.392
20.000 99.402 98.606 100.000 99.402 87.849
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Table 2: Probability of Interaction at Discrete Distances for Adversary Speed=1.0m/s.

Distance Stochastic Stochastic Heading Rotate Vector Stationary
m % % % % %
1.000 14.143 11.952 13.546 16.932 6.673
2.000 26.295 27.092 25.100 30.279 15.671
3.000 34.263 37.052 37.052 41.235 22.908
4.000 45.219 44.622 44.821 50.797 30.445
5.000 52.390 52.390 54.382 57.968 35.923
6.000 59.761 58.765 61.753 64.940 40.637
7.000 65.538 64.741 66.932 71.116 46.282
8.000 70.518 69.721 70.120 74.900 50.432
9.000 73.904 74.701 73.108 79.482 54.349

10.000 78.685 77.689 77.092 83.068 58.300
11.000 83.267 79.880 80.876 86.255 61.753
12.000 86.056 84.661 84.064 88.446 65.704
13.000 87.649 87.052 87.052 90.837 69.190
14.000 90.040 88.845 88.048 92.829 72.244
15.000 91.633 90.438 89.044 94.223 75.764
16.000 93.227 92.231 90.637 95.817 78.552
17.000 95.020 93.625 92.231 96.614 81.142
18.000 96.414 95.219 93.825 97.012 83.300
19.000 96.813 95.817 94.223 98.008 85.392
20.000 97.012 97.211 95.219 98.606 87.849
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Table 3: Probability of Interaction at Discrete Distances for Adversary Speed=1.5m/s.

Distance Stochastic Stochastic Heading Rotate Vector Stationary
m % % % % %
1.000 9.163 11.753 11.155 10.359 6.673
2.000 21.713 24.303 21.912 23.904 15.671
3.000 31.275 32.470 30.478 33.665 22.908
4.000 38.845 39.841 36.853 43.825 30.445
5.000 45.418 45.219 45.020 50.398 35.923
6.000 53.386 53.187 51.992 57.171 40.637
7.000 57.171 58.566 57.371 63.347 46.282
8.000 64.143 62.749 62.948 68.526 50.432
9.000 67.729 67.331 66.335 73.506 54.349

10.000 71.713 72.311 70.916 76.096 58.300
11.000 76.295 75.100 73.904 80.279 61.753
12.000 79.681 78.884 78.685 81.474 65.704
13.000 82.869 81.474 80.876 85.657 69.190
14.000 85.259 84.861 84.064 88.247 72.244
15.000 89.044 87.450 86.255 90.239 75.764
16.000 90.040 89.442 87.649 91.633 78.552
17.000 91.833 90.239 89.243 92.430 81.142
18.000 93.227 91.434 90.837 93.825 83.300
19.000 94.622 92.829 91.833 95.020 85.392
20.000 95.817 94.024 94.024 95.817 87.849
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Table 4: Probability of Interaction at Discrete Distances for Adversary Speed=2.0m/s.

Distance Stochastic Stochastic Heading Rotate Vector Stationary
m % % % % %
1.000 8.549 8.748 9.960 9.742 6.673
2.000 17.694 19.682 22.510 21.074 15.671
3.000 27.833 27.833 30.279 32.803 22.908
4.000 35.586 35.388 36.454 41.352 30.445
5.000 41.352 44.135 44.024 48.907 35.923
6.000 46.123 50.099 50.996 54.871 40.637
7.000 51.491 56.461 56.375 61.431 46.282
8.000 57.853 61.431 62.351 66.402 50.432
9.000 63.419 66.600 68.127 71.769 54.349

10.000 68.191 69.583 72.112 75.149 58.300
11.000 73.559 73.559 76.494 78.529 61.753
12.000 76.938 78.330 79.482 81.113 65.704
13.000 80.915 81.511 82.072 85.885 69.190
14.000 84.095 84.294 84.462 87.078 72.244
15.000 86.083 87.276 86.653 88.270 75.764
16.000 89.861 89.861 88.845 89.662 78.552
17.000 91.451 91.252 91.833 91.650 81.142
18.000 93.042 93.638 93.227 93.241 83.300
19.000 94.036 95.229 94.223 93.837 85.392
20.000 94.632 95.229 95.618 95.229 87.849
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Table 5: Probability of Interaction at Discrete Distances for Adversary Speed=2.5m/s.

Distance Stochastic Stochastic Heading Rotate Vector Stationary
m % % % % %
1.000 7.769 7.570 8.167 7.371 6.673
2.000 17.729 16.733 19.522 17.331 15.671
3.000 27.689 24.701 28.884 27.092 22.908
4.000 36.454 33.466 37.849 34.462 30.445
5.000 43.426 43.227 43.825 41.633 35.923
6.000 49.801 48.805 50.996 46.813 40.637
7.000 57.371 55.378 56.574 54.781 46.282
8.000 63.147 59.163 59.960 60.558 50.432
9.000 68.127 63.147 66.335 67.729 54.349

10.000 72.709 68.725 69.522 72.311 58.300
11.000 75.697 72.908 72.709 76.494 61.753
12.000 78.287 76.295 76.295 79.880 65.704
13.000 82.072 79.880 78.685 83.466 69.190
14.000 84.462 82.669 80.677 85.657 72.244
15.000 86.653 84.064 83.267 87.649 75.764
16.000 88.048 86.255 85.458 89.641 78.552
17.000 90.040 88.247 87.450 90.837 81.142
18.000 91.434 90.438 88.247 91.235 83.300
19.000 91.833 92.032 90.239 92.829 85.392
20.000 92.829 93.825 91.633 93.825 87.849
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Table 6: Probability of Interaction at Discrete Distances for Adversary Speed=3.0m/s.

Distance Stochastic Stochastic Heading Rotate Vector Stationary
m % % % % %
1.000 6.773 8.367 6.175 5.976 6.673
2.000 18.924 16.733 19.522 17.729 15.671
3.000 26.295 24.502 30.279 27.888 22.908
4.000 33.865 33.865 38.446 38.247 30.445
5.000 40.637 40.438 45.020 47.012 35.923
6.000 48.207 47.410 50.996 54.382 40.637
7.000 55.976 52.590 55.578 60.159 46.282
8.000 60.558 57.371 61.355 65.936 50.432
9.000 65.139 63.147 65.737 71.315 54.349

10.000 70.717 67.131 68.725 75.697 58.300
11.000 74.303 71.912 71.912 79.283 61.753
12.000 77.490 76.693 74.701 82.470 65.704
13.000 79.283 78.685 78.685 83.466 69.190
14.000 82.669 81.275 82.271 86.653 72.244
15.000 84.861 84.064 84.661 88.446 75.764
16.000 86.653 86.653 86.653 89.641 78.552
17.000 89.641 89.243 89.243 91.633 81.142
18.000 91.434 90.837 90.239 93.028 83.300
19.000 91.833 92.629 91.434 93.825 85.392
20.000 92.829 93.625 92.629 94.622 87.849
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2.1 Speed Ratio of 3.0

Figure 1: Probability of Interaction at Discrete Distances
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Table 7: Probability Improvement from Stationary Swarm at Discrete Distances for Adversary
Speed=.5m/s.

Detection Distance Stochastic Stochastic Heading Rotate Vector Field
m % % % %
1.000 16.434 11.653 14.884 22.809
2.000 24.768 21.182 26.445 36.720
3.000 33.068 29.084 34.377 42.629
4.000 36.886 31.906 39.615 44.854
5.000 38.579 34.595 44.317 47.344
6.000 40.837 37.251 44.991 48.207
7.000 39.177 36.786 44.537 45.551
8.000 38.811 37.218 43.580 43.792
9.000 37.085 36.089 41.459 41.467

10.000 34.927 33.333 39.704 39.110
11.000 33.068 32.271 37.049 35.857
12.000 30.910 29.117 33.897 32.105
13.000 28.021 26.029 30.610 29.017
14.000 25.564 24.170 27.556 26.560
15.000 22.643 20.850 24.236 23.440
16.000 20.651 19.456 21.448 20.850
17.000 18.260 17.065 18.858 18.260
18.000 16.102 15.106 16.700 16.102
19.000 14.011 13.015 14.608 14.011
20.000 11.554 10.757 12.151 11.554
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Table 8: Probability Improvement Average from Stationary Swarm for Adversary Speed=.5m/s.

Stochastic Free Stochastic Heading Rotate Vector Field
% % % %

28.068 25.847 30.551 32.012

2.2 Speed Ratio of 1.5

Data for Adversary Speed = 1.0

Figure 2: Probability of Interaction at Discrete Distances
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Table 9: Probability Improvement from Stationary Swarm at Discrete Distances for Adversary
Speed=1.0m/s.

Detection Distance Stochastic Stochastic Heading Rotate Vector Field
m % % % %
1.000 7.470 5.279 6.873 10.259
2.000 10.624 11.421 9.429 14.608
3.000 11.355 14.143 14.143 18.327
4.000 14.774 14.177 14.376 20.352
5.000 16.467 16.467 18.459 22.045
6.000 19.124 18.127 21.116 24.303
7.000 19.256 18.459 20.651 24.834
8.000 20.086 19.290 19.688 24.469
9.000 19.555 20.352 18.758 25.133

10.000 20.385 19.389 18.792 24.768
11.000 21.514 18.127 19.124 24.502
12.000 20.352 18.958 18.360 22.742
13.000 18.459 17.862 17.862 21.647
14.000 17.795 16.600 15.803 20.584
15.000 15.870 14.675 13.280 18.459
16.000 14.675 13.679 12.085 17.264
17.000 13.878 12.483 11.089 15.471
18.000 13.114 11.919 10.525 13.712
19.000 11.421 10.425 8.831 12.616
20.000 9.163 9.363 7.371 10.757
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Table 10: Probability Improvement Average from Stationary Swarm for Adversary
Speed=1m/s.

Stochastic Stochastic Heading Rotate Vector Field
% % % %

15.767 15.060 14.831 19.343

2.3 Speed Ratio of 1

Data for Adversary Speed = 1.5

Figure 3: Probability of Interaction at Discrete Distances
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Table 11: Probability Improvement from Stationary Swarm at Discrete Distances for Adversary
Speed=1.5m/s.

Detection Distance Stochastic Stochastic Heading Rotate Vector Field
m % % % %
1.000 2.490 5.080 4.482 3.685
2.000 6.042 8.632 6.242 8.234
3.000 8.367 9.562 7.570 10.757
4.000 8.400 9.396 6.408 13.380
5.000 9.495 9.296 9.097 14.475
6.000 12.749 12.550 11.355 16.534
7.000 10.890 12.284 11.089 17.065
8.000 13.712 12.317 12.517 18.094
9.000 13.380 12.981 11.985 19.157

10.000 13.413 14.011 12.616 17.795
11.000 14.542 13.347 12.151 18.526
12.000 13.977 13.181 12.981 15.770
13.000 13.679 12.284 11.687 16.467
14.000 13.015 12.616 11.819 16.003
15.000 13.280 11.687 10.491 14.475
16.000 11.487 10.890 9.097 13.081
17.000 10.691 9.097 8.101 11.288
18.000 9.927 8.134 7.537 10.525
19.000 9.230 7.437 6.441 9.628
20.000 7.968 6.175 6.175 7.968

142



Table 12: Probability Improvement Average from Stationary Swarm for Adversary
Speed=1.5m/s.

Stochastic Stochastic Heading Rotate Vector Field
% % % %

10.837 10.548 9.492 13.645

2.4 Speed Ratio of .75

Data for Adversary Speed = 2.0

Figure 4: Probability of Interaction at Discrete Distances
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Table 13: Probability Improvement from Stationary Swarm at Discrete Distances for Adversary
Speed=2.0m/s.

Detection Distance Stochastic Stochastic Heading Rotate Vector Field
m % % % %
1.000 1.875 2.074 3.287 3.068
2.000 2.023 4.011 6.839 5.403
3.000 4.925 4.925 7.371 9.895
4.000 5.142 4.943 6.009 10.907
5.000 5.429 8.212 8.101 12.984
6.000 5.486 9.462 10.359 14.233
7.000 5.210 10.180 10.093 15.150
8.000 7.421 11.000 11.919 15.970
9.000 9.070 12.251 13.778 17.420

10.000 9.891 11.282 13.811 16.849
11.000 11.806 11.806 14.741 16.776
12.000 11.235 12.626 13.778 15.409
13.000 11.725 12.321 12.882 16.695
14.000 11.851 12.050 12.218 14.833
15.000 10.320 11.513 10.890 12.507
16.000 11.308 11.308 10.292 11.110
17.000 10.309 10.110 10.691 10.508
18.000 9.742 10.338 9.927 9.940
19.000 8.644 9.837 8.831 8.445
20.000 6.784 7.380 7.769 7.380
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Table 14: Probability Improvement Average from Stationary Swarm for Adversary
Speed=2.0m/s.

Stochastic Stochastic Heading Rotate Vector Field
% % % %
8.010 9.381 10.179 12.274

2.5 Speed Ratio of .6

Data for Adversary Speed = 2.5

Figure 5: Probability of Interaction at Discrete Distances
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Table 15: Probability Improvement from Stationary Swarm at Discrete Distances for Adversary
Speed=2.5m/s.

Detection Distance Stochastic Stochastic Heading Rotate Vector Field
m % % % %
1.000 1.096 0.896 1.494 0.697
2.000 2.058 1.062 3.851 1.660
3.000 4.781 1.793 5.976 4.183
4.000 6.009 3.021 7.404 4.017
5.000 7.503 7.304 7.902 5.710
6.000 9.163 8.167 10.359 6.175
7.000 11.089 9.097 10.292 8.499
8.000 12.716 8.732 9.529 10.126
9.000 13.778 8.798 11.985 13.380

10.000 14.409 10.425 11.222 14.011
11.000 13.944 11.155 10.956 14.741
12.000 12.583 10.591 10.591 14.177
13.000 12.882 10.691 9.495 14.276
14.000 12.218 10.425 8.433 13.413
15.000 10.890 8.300 7.503 11.886
16.000 9.495 7.703 6.906 11.089
17.000 8.898 7.105 6.308 9.695
18.000 8.134 7.138 4.947 7.935
19.000 6.441 6.640 4.847 7.437
20.000 4.980 5.976 3.785 5.976
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Table 16: Probability Improvement Average from Stationary Swarm for Adversary
Speed=2.0m/s.

Stochastic Stochastic Heading Rotate Vector Field
% % % %
9.153 7.251 7.689 8.954

2.6 Speed Ratio of .5

Data for Adversary Speed = 3.0

Figure 6: Probability of Interaction at Discrete Distances
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Table 17: Probability Improvement from Stationary Swarm at Discrete Distances for Adversary
Speed=3.0m/s.

Detection Distance Stochastic Stochastic Heading Rotate Vector Field
m % % % %
1.000 0.100 1.693 −0.498 −0.697
2.000 3.254 1.062 3.851 2.058
3.000 3.386 1.594 7.371 4.980
4.000 3.420 3.420 8.001 7.802
5.000 4.714 4.515 9.097 11.089
6.000 7.570 6.773 10.359 13.745
7.000 9.695 6.308 9.296 13.878
8.000 10.126 6.939 10.923 15.505
9.000 10.790 8.798 11.388 16.965

10.000 12.417 8.831 10.425 17.397
11.000 12.550 10.159 10.159 17.530
12.000 11.786 10.989 8.997 16.766
13.000 10.093 9.495 9.495 14.276
14.000 10.425 9.031 10.027 14.409
15.000 9.097 8.300 8.898 12.683
16.000 8.101 8.101 8.101 11.089
17.000 8.499 8.101 8.101 10.491
18.000 8.134 7.537 6.939 9.728
19.000 6.441 7.238 6.042 8.433
20.000 4.980 5.777 4.781 6.773
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Table 18: Probability Improvement Average from Stationary Swarm for Adversary
Speed=3.0m/s.

Stochastic Stochastic Heading Rotate Vector Field
% % % %
7.779 6.733 8.088 11.245
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