
COSMIC: A Model of Cellular Genetic

Interaction and Evolution

Thesis submitted in accordance with the

requirements of the University of Liverpool

for the degree of Doctor of Philosophy by

Richard Gregory

January 2004

Abstract

COSMIC: A Model of Cellular Genetic

Interaction and Evolution

by

Richard Gregory

Evolution has frequently been seen as a result of the continuous or discon-

tinuous accumulation of small mutations. Over the many years, it has been

found that simple point mutations are not the only mechanism driving ge-

nomic change, for example, plasmids, transposons, bacteriophages, insertion

sequences, deletion and duplication, and stress-sensitive mutation all have a

part to play in directing the genetic composition and variation of organisms

towards meeting the moving target that is the environmental ideal at any one

time. Considering the probability of single point mutations arising and repair

mechanisms that act to counteract their accumulation, it is unlikely that sim-

ple mutation can create rapid diversity. Evolutionary change depends more on

larger scale changes in genomic sequences caused by sexual and other forms of

horizontal gene transfer. These generate the variation necessary to allow rapid

evolutionary response to changing environmental conditions.

Predictive models of E.coli cellular processes already exist, these tools are

excellent models of behaviour. However, they suffer the same drawbacks; all

rely on actual experimental data to be input and more importantly, once input

that data are static. The aim of this study is to answer some of the questions

regarding bacterial evolution and the role played by genetic events using an

evolving multicellular and multispecies model that builds up from the scale of

the genome.

To test these questions, it is necessary to build a model that attempts to en-

il

compass what are considered the important qualities of bacterial evolution and

bacterial life, but not be overly specified as to constrain the results. The model

is therefore a careful balance of biological and computational realities with an

emphasis on open-endedness and individuality. The biological literature has

many examples of the possible forms of mechanism within the relatively ‘sim-

ple’ example of E.coli, but even this must be carefully constrained. It is clear

that computer models lack complexity when compared to real world processes.

In focusing attention on aspects of the E.coli system, new insights are

emerging from the disciplines of genomics and proteomics. The genome should

perhaps be regarded not as a book that is continually read from, but rather

a program that is continuously executed and adapted over the life time of

individual cells. From this it appears that interactions within cells involve the

combined effects of enzymes, structural and regulatory proteins acting on genes,

which in turn act on those enzymes and other proteins, creating a huge number

of both positive and negative feedback loops necessary for controlled execution.

The ideal model therefore is one that takes both these stages into account, each

genome being an implementation of what many conceive as the computational

cell. There are then three themes to the model: the environment, the genome

and functional proteins, all of which use an individual based philosophy. The

environment contains individual cells, each cell contains an individual genome

and each gene can lead to individual gene products each with their own spatial

and temporal parameters. This vast number of parameters and possibilities

adds another meaning to the name of the simulation, COSMIC : COmputing

Systems of Microbial InteraCtions.

This thesis describes the novel COSMIC model, the genetics background,

the parallel implementation and results showing the initial stages of evolution

towards the goal of learning to follow a food source gradient.

iil

Acknowledgements

My thanks go to Dr. Ray Paton for his invaluable help and advice and hu-

mour. Without which this research would surely have been very different. My

thanks also go to Prof. Q. Henry Wu for his support and guidance, and his

understanding when this work moved away from what was originally planned.

I also thank them both for the financial support when this project dragged on

past the three years for which the EPSRC had graciously funded.

My thanks go to Dr Jan-Ulrich Kreft for providing a detailed criticism of

this work which helped to focus COSMIC into the shape it is now.

My thanks also go to my family and friends who have had to cope with me

talking about COSMIC related matters more than was really necessary. Spe-

cial mention should be made of Peter Owens, who endured lengthy COSMIC

monologues for the duration of the project.

Finally, my thanks go to all the thousands of people who have written and

maintained the UNIX software which I depended on. I cannot imagine how

this work would have turned out had I not had access to such a wide range of

software tools.

Sadly, Dr. Ray Paton died suddenly shortly before binding this final version

of the thesis. He will always be remembered for his kindness, support and

understanding, it was these and many other qualities which made this thesis

possible. He leaves behind many areas of interesting work that had much

further to explore. COSMIC is one of these and so it is hoped COSMIC will

continue to provide a better viewpoint when modelling complex systems.

lv

Contents

List of Figures

List of Tables

1 Introduction

Tel) «Motivation... «9... : 6 6 we be oe ee me tw ee ee

RPP esis v@eeimek,.. ..-. po cin leds Foe ee ee ee ws es

2 A review of cell biology relevant to the COSMIC system

Do Meitroduction kek eee ele Fe ke le eli eek bok ee ee

De NVASGIA CATION so ke ee ee TU eign ae ue ee She Le

23” Excoletrachureé: 2.6.4 6 acede ok oe ee we Was 2k eee oe ee

2.4 Modelling Population Growth

2.0 DNA RNA randsProteiis 25 Sa. oc we ee ew ee ee

2.6 - “Transerption ave. 2 een oe ee eS eee we ee

2. SP TOCCHTOREUCLUTE: ¢)0h x cage elis a sleds © epoes a 6 He He

2.8 Optional Transcription-.....-2.+0-20--

2.9 “Phe tae Operom). = iac0is gee ee st oS sk ee we a

2.10 The trp Operon... .. 2... 02 ee ee

2.11 Operon Regulation2.-02. 2.000000.

2.12 RNA Polymerase-..- 0002 ee eee eee

2 ag “Promoter ott. ae cw ee ete ee
2.14 Other Sigma Factors-..-20.-22 0000.

2.15 Bacterial DNA Replication.-2...-

PAG NIGER ONI ooh. <n dives © cass 5 Yaw HS Sep e wlelwe ee

2.17 Plasmids, Viruses and Transposons

2.18 Further Background2...000.

219+ Summary “Sew lee DO ee ee eh we ee ee

3 Computing with Biological Metaphors

SeIECh MN ICCLe LIL. eR Meg oe eB a Recs Pee Nhat: volo. ss

3.2" Formal Process Models... 0...-. 44. e ew oes

1x

xili

3.3 Analysis Methods.................-00+58-008

3.4 Biologically Inspired Optimisation

and Learning 02022 e ee ee eee

3.5 Biological Metaphors and Simulations.

56) BuMMary on). . 2. See ee ee ee

The COSMIC Model

Dok MEUPEOCCMONE Bc Pe i be Met lee kw ue Gomes le me oe? Fk

4.2. The Model- An Outline2...20..........

1Seiodel Realisation .. 2. < Sle ea qos be wie RD ee

4.4 Implementation Overview-.200.4

4.5 Genome Representation... .. <2. coe ee i dp tele ee

4.6 Genome Mechanics - Background

4.7 Network Creation - Assigning type

4.8 Reaction Rates and Probabilities

48.1 Potency matrix-.....

4.8.2 Enzyme matching matrix - from non-reacting state

4.8.3 Enzyme matching matrix - from reacting state.

4.8.4 Protein matching matrix - direct compatibility.

4.8.5 Combining reactivity functions

49 Reaction PPE s 28. ln sb oe ee eee

4.9.1 Input regions, receptors and enzymes

4.9.2 Repressor proteins and operator regions

4.9.3 Promoter regions and sigma factors

4.9.4 Output regions and flagella activation proteins.

4.9.5 Anti-repressor/repressor interaction

4.9.6 Attenuator regions and repressor interactions.

4.9.7 Terminator regions and RNA polymerase.........

4.9.8 Individual enzyme ageing

4.10 Genome Mechanics - Run time interactions............

WAU Lp eAVAC DINGO Glee age ee cee Be wie Sw RDAs

4.10.2 Timed events - interaction state changes

4.10.3 Iteration final steps.2.0-225000-

4.11 Environment.-2. 2.2.00 ee eee eee eee

401.0 Introduction... > 9. . sn ee ela ew es

4.11.2 Cellinput0 2.0.0 eee ee ee es

4.11.3 Celloutput2.-2240 208 ee

4.11.4 Cell death .. 2.2... 0. ee et ee

4.11.5 Anexample environment..................

4.12 Cell Division. 2... 2.02. eee ee ee ee

4.13 Individual Initialisation.--..-.-.2..

At Meee ENOARIONN: se. or: Newel ome,» ae 4 Goal wore wale

AWS Summary 2... ale fe ee te ee ee

vi

Parallelisation 118

5.1 Introduction. 20.2002 eee eee ee ee 118

5.2 Simulation System2.. 20222004 119

5.3 The Process Tree0.2 202 eee eee eee 120

B.4 (Gell Division. ©. 00. 5. wc ee 126

Dom waaMerumeGtis.., 2. se Ms as OR ty ee ee He te 128

5.6 Non-private Access Clusters-..-..-.2-04- 129

DY pipporting Scale . 2... 2. ee es te ee ee 131

5.8 Other Limitations... . 2... 6. ee ee te ee 133

5.9 Saving State... 2... ee ee 134

halO Storing Data. di... 6 e Ohh ewe athe eee eee 135

5.11 Modifying Parameters-..-0+.2-0. 136

5.12 Parallel Efficiency--2.20 2022s 137

Sad Gummagryi. ig. 2 ee de oe ee Ee ea. 140

Visualisation 142

G.1 Introduction... 0... 2 6 else ek ee ews ee be we 142

6.2 Environment - Glucose concentration 143

6.3 Population lineage0.2.2.2.2. 2200000 153

6A. Celkstatistios ©. 2.8. Pa a we ee a te ee ele 154

Goth, "weSClNNaS =. gs lk ew ete eee 2 weds Ge a lee oe 156

6.4.2 Cell VOL . 2... algal. wc dee eee we ee 158

6.5 Gene Expression2..2 00 eee eee eeeee 158

6.0.1 S@eNQ238 «0 ee he we we ee ee 161

615-2 w Gellipos2 anise. 6 a bn ee ne es 162

65.3 CellO2l9 «2. 6b occa ct ew te mt ee le 162

6.5 AS mCelnO2040 oe . ee fe eh ete ee bs 162

65.5. Cell 0TI98 S.-i e ee Ee ew we ee ee 163

6.6 Gene Expression Pathways...............22000- 165

G7 co ninMAty, (Fe. oS te we Oe ek. ee ee ee 167

Results 169

7.1 Introduction... 2.0.00 2 eee eee eee 169

Oe aTamererses asa use ss % et tw Sy Bere we ns 170

“3 “The Data Sets 2.9. 1. ww ee ee ee ee ee es 179

(Ae Sintulabiomerun0ZOSO01.. ..cb4 206 Baw oe we ne Oe ee Ee ee 182

7.5 Simulationsun020516. . 0 0. kes eee bo ee Se ola 184

7.6 Simulation run020602...................2.2.208. 185

7.7 Simulation run020610..................2.22040. 187

7.8 Simulation run020623.................2.22.200. 188

7.9 Simulation run020813.................2...2224. 195

7.10 Simulation rmmO20820 .. 2. 6 ee ee 197

7.11 Simulation run020905.............2.... 22.2200. 199

vii

72 Simulation mmo 2002 . . 2 oe. a we ee ee 201

743 Simolation run03OV1IG. . . a kam ee ew 204

7.14 Simulation run030205...................2.000. 205

7.15 Summary ee ee, oe le 211

8 Conclusion 212

Be, EMSEORY ee oe ili a st + 6 us epee eS wite Ae ee Sten S. aches tabs 212

8.2" The COSMIC Model... ..025. 55 2 ee we ee 214

8.3 Outcomes 2.000 ce eee ee ee 216

8.4 Challenges. 2.2.2.2. 0 eee eee 217

Si Oomplenteumr. £!. o> to ds 5 a's fw 30k cae we wa be 219

8.6 Future Work.02. 0000002 eee eee 220

Sit Binal Word 3.0... s Wehoses «spf ee cee sw ee eee 220

Bibliography 222

vill

List of Figures

2.1

Due

2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

5.3

5.4

Single prokaryote cell... 2... 2. ee ee eee ee ee ee es 18

Double strand of DNA2. 2.002000 00% 20

Generalised transcription.200 20004 23

Conceptual outline of the network 64

Flat genome structure, static representation 70

Genome structure, static representation with higher level meaning 70

Possible “enzyme type” interactions. 81

Cumulative distribution of all random genes, from a sample of

S2mndwiauas Cenomes: oho. eG A SE sls ae @ Games coe 89

Gene interaction within a randomly initialised genome. Both

vertical and horizontal axes represent the same input receptors,

output receptors and the genome. Squares show there is a link

(a relation) between the pairing of genes or receptors. Input

and outputs do not interact direcly so the top left shows no

interactions occuring...2 0020s eee 90

Nassi-Schneiderman based diagrams depicting the overall struc-

ture handling each of the gene and enzyme process, namely bind-

ing and unbinding enzymes and genes, with high level sychroni-

sation between cells. .. 2...-2.-2.2+00-0200- 100

Example of population distribution with underlay of

nutrient availability. Differing sizes relate directly to cell volume

and so relative success, as the bigger the cell, the closer to the

onset of division and the creation of a genetically identical cell. . 112

Process synchronisation2.0+.2+02004 121

Environmental change after 212 minutes. 124

Process synchronisation at cell division 127

Population growth during a typical simulation........... 138

0.0

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Overall efficiency of a long simulation run, the upper line be-

ing the maximum available computation time. The lower line

being the actual usage at that time. The difference between

100% and the upper line comes from other processes started by

COSMIC but outside the auditing process, most likely during

cell division. The difference between the two lines comes from

process balancing errors inherit in PVM and its blind allocation

Of PYOCeSS@S. . 2. be ee ee 139

Efficiency of a single randomly chosen machine. 140

Population size and substrate concentration, 4.5mg glucose is

here shown normalised to 100...................-. 144

Environment at t+4000 (t+66.6 minutes), covering 0.2 mm square.
Living cells can be seen circled and uniquely numbered (Sec-

tion 5.12), allowing a cross reference to the other data sets.

Filled black circles are dead cells, only their previous effect on

the environment remains. In time the black diminishes as the

environment is replenished. Moving cells leave fading trails for

the same as their effect on the environment is slowly reduced.

Arrows indicate cells mentioned in the main text. 145

Environment at t+12000 (t+200 minutes), showing the prolif-

eration OFeells. .- 6 2 c's Se Sa ee oe ee ee 147

Environment at t+16000 (t+266.6 minutes), showing the con-

tinued proliferation of cells. 2...2008. 148

Environment at t+28000 (t+466.6 minutes). Shown with linear

brightness as black is now the dominant brightness. 150

Environmental time slices, part l.................. 151

Environmental time slices, part 2..................- 152

First 5 hour lineage of cell 0143.............-...... 155

Last 6 minutes lineage of cell 0143. Shown cut in half in improve

SESITEPIOGHCHON cays Spee: w we ele ee eee ee we ee 156

First 83 minute lineage of whole simulation. 157

General variables of cell 0143-0.4. 159

General variables of cell 0101... 2... 2.2... ee 160

Gene expression of cell 0238, showing very little expression. . . . 161

Gene expression of cell 0232, showing some strong gene expres-

sion but still suffering a fatal loss of expression latter on. 162

Gene expression of cell 0219, showing very some strong gene

expression and a lack of initialisation that could only mean this

cell is the result of acell division. 163

Gene expression of cell 0204, demonstrating the quickest cell

GeathipassiplG.TWL. G-. ocak tea eo eee ig 6 Bee eels ee 163

6.17

6.18

6.19

7.1

i

7.3

7.4

7.9

7.6

Te

7.8

¢.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

C17

7.18

7.19

7.20

7.21

1.22

Gene expression of cell 0193, an early success compared to the

others presented here... . 2... . 2... 2 eee ee ee ee 164

Continuing gene expression of cell 0193, an early success com-

pared to the others presented here.2+24. 164

Pathway over the life time of cell 0143 2... 2... 2 LL. 166

Simulation runs archived for later analysis. 180

First archived simulation result. The vertical axis represents

the total number of cells in the simulation, the horizontal axis

represents time in simulation seconds................ 182

Early failed simulation, parental PDF's were passed in error to

the daughter and so made the daughter cell effectively the same.

The vertical axis represents the total number of cells in the sim-

ulation, the horizontal axis represents time in simulation seconds. 185

Total number of cells per machine when simulation stopped. . . 186

First successful simulation showing cell growth and division.

This simulation was also the first multi-machine parallel sim-

ACR se ee ae, eR, te ee) 2 ee ole ire arin iz ors 187

Enabling 50:50 cytoplasm sharing at cell division. 189

Unrestrained exponential growth, highlighting some kind of syn-

chronisation artefact.-......0-.2.0200208520004 190

Timing differences between multiple peaks and troughs of run020623,

cell lineage 0143 during unrestricted exponential growth. 191

Whole lineage of cell 0143 in run020623, with unexpected syn-

chronised deaths.-..0-.2 00002 eee eee 191

Timing differences between multiple peaks and troughs of run020623,

cell lineage 0042 during unrestricted exponential growth. 192

Timing differences between multiple peaks and troughs of run020623,

cell lineage 0198 during unrestricted exponential growth. 192

Birth and death rates of run020623................. 194

Population of run020813.................-2.-0-.4 197

Ranked cell death counts for each cell of run020813. Counting

only deaths between times 440 - 500 minutes, to coincide with

the population drop at that time. 198

HopWATIOMOLTNOQUSZO COG 8s ae ae eh tle ee 200

Population of run020905..................2-04, 202

Population of run02110220.0, 204

Gene distribution of run030205 206

Enzyme distribution of run0302054.. 206

IO event activity of run030205..................4. 207

Event activity of run030205 207

Ratio of receptor events to substrate concentration over time . . 209

xi

7.23 Sparse ratio of receptor events to substrate concentration over

ERIE We a Sa ey 2 dea) Lb et ate Se oe ca diw ap ee Sets

7.24 Lumped ratio of receptor events to substrate concentration over

CRE eds re ee Reed oh Res ee ee. Be

Xii

List of Tables

2.1

2.2

2.3

4.1

4.2

4.3

4.4

Growth rates, per millimoles of glucose per hour per gram ... 14

Growth rates, per gram of glucose per minute per gram 15

Growth rates, average cell glucose use per second per gram... 15

Table of COSMIC parameters00.4- 76

Potency matrix, providing a coefficient of reaction rates... . . 86

Enzyme coefficients from a reacting state. 87

Enzyme coefficients from a non-reacting state 87

Xili

Chapter 1

Introduction

1.1 Motivation

Evolution has frequently been seen as a result of the continuous or discon-

tinuous accumulation of small mutations. Over the many years, it has been

found that simple point mutations are not the only mechanism driving ge-

nomic change, for example, plasmids, transposons, bacteriophages, insertion

sequences, deletion and duplication, and stress-sensitive mutation all have a

part to play [Sha97,Sha99] in directing the genetic composition and variation of

organisms [Koc93] towards meeting the moving target that is the environmen-

tal ideal at any one time. Considering the probability of single point mutations

arising and repair mechanisms that act to counteract their accumulation, it is

unlikely that simple mutation can create rapid diversity. It is clear that evo-

lutionary change depends more on larger scale changes in genomic sequences

caused by sexual and other forms of horizontal gene transfer. These gener-

ate the variation necessary to allow rapid evolutionary response to changing

environmental conditions.

Predictive models of E.colz cellular processes already exist, the E-Cell project

[Tomita et al., 1999] aims to use gene data directly in a mathematical model

of transcription. The Virtual Cell [SFSCL97, SL99] project makes use of user-

defined protein reactions to simulate compartments at the nucleus and cellular

1.1 Motivation 2

level. Gepasi3 [Men97] also models protein reactions, but from within an en-

closed box environment. The BacSim [KBW98] project simulates individual

cell growth at the population scale. Eos [BSS00] is also based at the population

scale, but is intended as a framework for testing idealised ecologies, represented

by evolutionary algorithms. These tools and those that they rely on are excel-

lent models of behaviour. However, they suffer the same drawbacks; all rely on

actual experimental data to be input and more importantly, once input that

data is static. The aim of this study is to answer some of the questions regard-

ing bacterial evolution and the role played by genetic events other than simple

point mutation using an evolving multicellular and multispecies model that

builds up from the scale of the genome. In effect, it is not bacterial evolution

that is being interrogated, but the co-evolution of bacteria and any organism

that has a direct effect on the genetics of those bacteria.

To test these questions, it is necessary to build a model that attempts to en-

compass what are considered the important qualities of bacterial evolution and

bacterial life, but is not overly specified as to constrain the results. The model

is therefore a careful balance of biological and computational realities [Way01]

with an emphasis on open-endedness [Kam96]. The biological literature has

many examples of the possible forms of mechanism within the relatively ‘sim-

ple’ example of E.coli, but even this must be carefully constrained. It is clear

that computational models lack computational power when compared to real

world processes.

In focusing attention on aspects of the E.coli system, it is clear that there

are two new insights provided by the emerging disciplines of genomics and

proteomics. Proteomics is the study of enzyme and protein interactions. Tra-

ditionally this meant differential equation models of interaction. However,

nowadays there seems also to be an implicit link with the application of pro-

tein descriptors derived from sequence information in identified genes [Karplus

et al., 1997], an application that has only recently become tractable with the

arrival of accurate genome data. Genomics is the study of genome structure,

interaction and encoding and has been stimulated by the Human Genome

COSMIC R. Gregory

1.1 Motivation 3

project [KH01] as well as whole genome sequencing projects for many other

organisms, notably those for numerous bacteria. From this it appears that in-

teractions within cells involve the combined effects of enzymes, structural and

regulatory proteins acting on genes, which in turn act on those enzymes and

other proteins, creating a huge number of both positive and negative feedback

loops necessary for controlled execution [Fre00]. The genome should perhaps be

regarded not as a book that is continually read from, but rather a program that

is continuously executed and adapted over the life time of individual cells, tis-

sues or entire organisms. The ideal model therefore is one that takes both these

stages into account and allows for the evolution of the genome in the presence of

other genomes, each genome being an implementation of what many conceive

as the computational cell [Bra90,Sha91, Bra95, Pat98, DHB00, RLM96, AR94].

There is a clear distinction between the clean world of abstraction and the

biology on which it is based. In any system there is always a tendency for

homogeneous structures, well defined parameters and reasonable assumptions;

biology is no different as these goals promote clear description, what is differ-

ent is the world that biology tries to explain. Biology is full of explanations of

mechanism, but like contemporary standards, there are so many to choose from.

This is not to say they are wrong, but in different circumstances assumptions

made by each in either measurement, environment or initial point of enquiry

can come to bear making one explanation less powerful than another expla-

nation. The reasons for this come from the problems of basic measurement,

sheer biodiversity and the change in scale making analogies essential - scale

referring both to time and space. This last point is actually quite important,

mechanisms acting outside of normal experience makes intuition irrelevant.

It is clear that life forms are far to complex for current understanding to

even scratch the surface, the concepts needed to grasp the complexities involved

are some way off. As a result, bacteria promised to be the most reasonable

starting point for asking fundamental questions about the development of evo-

lution and life itself. Fortunately recent years has seen an explosion of bacterial

research brought about by new technology, this has lead to new avenues of re-

COSMIC R. Gregory

1.2 Thesis Outline 4

search previously impossible through lack of data or computational power.

With this in mind, the simulation of bacterial adaptation has become this

authors goal, this thesis details a novel computational model linking bacterial

genetics, environmental response and survival techniques. In the future this

can in turn lead to more involved simulations or alternatively lead to simplified

simulations which aim to find the basic requirements for bacterial adaptation.

1.2 Thesis Outline

This section outlines the contents of each chapter, it is recommended the

chapters be read in numerical order.

Chapter 2 introduces the biology on which the COSMIC model is based.

The general structure of E.coli is discussed to give some appreciation of the

size of the organism and at the same time its complexity, this will then lead

onto modelling E.coli growth and the various parameters that are important.

Section 2.5 will then change scale and look at the genetics of E.coli. From the

static structure it will then move onto the mechanics that operate on the static

structure and allow the cell to produce chemical machinery. Section 2.8 intro-

duces the adaptive nature of the genome and the cell as a whole. Sections 2.9

and 2.10 give two well known specific examples of optional transcription which

represent typical examples of the genetic control that can be achieved. Sec-

tions 2.16 and 2.17 detail some of the causes of genetic mutation and long term

adaptation. Finally, section 2.18 pulls all these aspects together and puts for-

ward the case for a bacterial simulation that encompasses many of these these

topics.

Chapter 3 moves away from the biological material and instead focuses

on simulation and analysis of biological systems, specifically with a genetics

basis. Before COSMIC there have been many simulations of genetics, both for

the sake of biology itself and biologically inspired algorithms such as Genetic

Algorithms. This chapter mentions a few of those models and importantly

their limitations.

COSMIC R. Gregory

1.2 Thesis Outline 5

Chapter 4 makes use of the information from chapter 2 to build a compu-

tational model of bacterial growth and evolution. This is entirely based on the

idea of modelling the individual, be it individual cell or individual molecule,

and so will be explained in terms of sets and relations between sets and mem-

bers of sets. This chapter starts with section 4.2 and section 4.3 describing the

main biological phenomena that COSMIC models. Section 4.4 then discusses

more detail of how such a model could be implemented in such a way that com-

putation is feasible. Section 4.5 then starts with the model proper by detailing

the construction of a genome, from the genes and their encoding, the types

of genes, the construction of operons and finally the genome of an individual

cell. This section then goes on to specify the other constituent parts of a single

cell, building to a population of these cells in a specified environment. The

purpose of this section is to describe that static structure of the model, the

later sections then build on to include the dynamics.

Section 4.6 describes the dynamics within the context of chapter 2, this

highlights the important points of transcription and gives an overview of the

most important dynamic in COSMIC, namely the interaction diagram of fig-

ure 4.4. Section 4.7 then discusses how this dynamic aspect is incorporated

into the previous formal static representation. Section 4.8 and 4.9 describes the

mathematical functions that implement the state transition dynamics which

are applied to the structures of sections 4.5 to 4.7. Section 4.10 describes

the specifics of the interactions in the context of the representation and the

mathematical functions.

Section 4.11 moves to a different scale, that of the cell population, by dis-

cussing the details of the environment in which these cells live. Having now

described all the structures and possible interaction pathways, section 4.13 de-

scribes the initialisation of the system as a whole, how the original genomes

come about and how enzymes can exist when there are no enzymes to create

them. Finally, so that evolution may occur, section 4.14 describes the mutation

operator that is applied to the previously described structures.

Chapter 5 describes the parallel implementation of COSMIC and shows

COSMIC R. Gregory

1.2 Thesis Outline 6

that it is possible to map a dynamic problem such as this onto fixed resources.

The only way to achieve the necessary level of performance is with parallel

computers and a suitable designed implementation that maps the problem

onto the hardware, as shown in section 5.3. For real problems this mapping

can be non-trivial requiring careful consideration of the constraints in both the

system being modelled and the hardware that executes the model. For the

most part efficiency (discussed in section 5.12) is achieved by making use of

implicit multiplexing of resources and shows the importance of knowing where

to partition the problem between server and clients. Through this an efficient

simulation has been created, making maximal use of the available hardware

without constraining the model to require excessively specific resources.

Chapter 6 introduces the most common visualisations used to represent the

raw data generated by COSMIC. The two scales of COSMIC give the initial

division of the visualisations, the top level environment where the cells play

out their struggle for survival and ultimately demonstrate their evolution is

covered in sections 6.2 and 6.3. At the other scale there is the internals of each

cell, which contains the richest data but also the hardest to view in any one

way that captures all the changes. This is covered in sections 6.4 to 6.6. Some

of these visualisations are research topics in themselves as the data generated

by COSMIC is so rich that a single image only scratches the surface of what

interactions actually occurred.

With the previous chapter having introduced some of the visualisation tech-

niques used by COSMIC, chapter 7 then gives an account of some of the sim-

ulations. Not just the data obtained but also the evolution of the simulation

and its testing. Section 7.2 describes the overall control parameters that enable

aspects of COSMIC functionality. These provide overall control of the system

by specifying limits to the environment, cell growth, cell division, cell genome

size, genome mutation rates, enzyme half lives and genome-proteome interac-

tion rates. Section 7.3 introduces the data sets that make up the archived

COSMIC output. The testing phase of the simulation is then described in

sections 7.4 to 7.14. When simulation runs where made, problems were found

COSMIC R. Gregory

1.2 Thesis Outline y

and corrected and the bulk of the chapter is made up of those experiences.

This provides some idea of the subtle effects of programming errors and more

often, simple unforeseen consequences of some implementation decision. This

chapter finishes with a summary of the main outcomes in section 7.15.

Chapter 8 brings this thesis to a conclusion by summarising where COSMIC

started from in section 8.1 and in section 8.2 stating what it now is capable of.

Section 8.3 outlines the main outcomes of the work, with section 8.4 describing

what are considered the main challenges that were overcome by COSMIC.

Section 8.5 discusses a specific cause of complexity in COSMIC, with the view

that the complexity is necessary. Finally, section 8.6 outlines future directions

for COSMIC and work derived from it.

Note: This thesis is available as a full colour postscript file, available at:

http://www.csc.liv.ac.uk/~ greg/thesis.ps

COSMIC R. Gregory

Chapter 2

A review of cell biology relevant

to the COSMIC system

2.1 Introduction

There is a vast amount of information available on both eukaryote and

prokaryotic cells; and especially E.coli, the bacterium on which this study is

based. The following text is largely concerned with E.coli with some brief

details of eukaryote cells - largely to show there are similarities and differences

in modelling, depending on what is viewed as important.

The general structure of E.coli will be discussed to give some appreciation

of the size of the organism and at the same time its complexity, this will then

lead onto modelling E.coli growth and the various parameters that are im-

portant. Section 2.5 will then change scale and look at the genetics of E.coli.

From the static structure it will then move onto the mechanics that operate

on the static structure and allow the cell to produce chemical machinery. Sec-

tion 2.8 introduces the adaptive nature of the genome and the cell as a whole.

Sections 2.9 and 2.10 give two well known specific examples of optional tran-

scription. Sections 2.16 and 2.17 detail some of the causes of genetic mutation

and long term adaptation. Finally, section 2.18 pulls all these aspects together

and puts forward the case for a bacterial simulation that encompasses many of

2.2 Classification 9

these topics.

This chapter largely originated from the collection of papers found in Nei-

dhardt et al. [Nei96V1, Nei96V2], a well written general dictionary of biol-

ogy [TH96] and a concise overview of molecular biology [TMBW97], with more

up to date information from a variety of sources.

2.2 Classification

Eubacteria represent a subdivision of prokaryotes, the other group being

archaea which are similar in structure to eubacteria but have ribosomal RNA

molecules that have evolved differently. Prokaryotes are surrounded by a phos-

pholipid cell membrane through which small molecules can pass with the aid

of proteins. Usually, a single circular chromosome is contained inside the cy-

toplasm (or cytosol) and is attached to the cell membrane at a single point.

On the outside of the cell there can be both pili (hair like sticks for sticking)

and flagella. EF. coli has a genome size of 4600 kb, which amounts to around

3000 reproducible proteins [TMBW97, pp.2]. In contrast the genome of the

simplest bacterium called Mycoplasma genitalium is 580kb long and encodes

470 proteins.

2.3 E.colt Structure

[NU96] lists a variety of figures for the biochemical composition (per in-

dividual cell) of an average E.coli cell. To arrive at these figures an average

is taken as a population of E.coli (strain B/r) in balanced growth at 37°C in

aerobic glucose minimal medium with a mass doubling time of 40 minutes.

The quantities for a cell are then defined by dividing the total biomass, or the

amount of any of its measured components, by the total number of cells in

the population. This average cell is therefore approximately 44% through its

division cycle and assuming that increase in cell mass is exponential, is ap-

proximately 33% larger than when that cell was created. It should be noted

COSMIC R. Gregory

2.3 E.coli Structure 10

that this brings about a level of uncertainty in all figures, not least because the

strain and exact conditions are not always specified in the literature. Measure-

ments can be easier (or indeed possible) only for some strains and conditions,

so often these variables are in fact implicitly given by the type of experiment.

The main result is then many missing parameters for a given scenario and

strain, and so it natural to infer parameters based on related parameters and

assume they are close enough until there is evidence to the contrary.

Of the tables given in [NU96] the most important figure was the protein

molecules per cell of 2,350,000 with 1850 different kinds of those molecules',

this amounts to 55% of the total dry weight, and 156 Amt (107° grams) per

cell. DNA is quoted to have 2.1 molecules per cell (as it is being continuously

duplicated in the above conditions) and account for 3.1% of the total cell dry

weight, and 8.8 Amt (g. 10~'°) per cell. Metabolites, cofactors and ions (all in

the same grouping) account for 3% of total dry weight of the cell and 9.9 Amt

per cell.

[Mac96] gives a detailed account of E.coli flagella physiology, including

genes responsible for its environment. Of relevance to COSMIC are some fig-

ures and some general states of motility. The number of flagella per cell are in

the range 0 to 15, typically around 8 but different conditions bring on different

numbers from the same initial strain, the cost of flagella synthesis and oper-

ation come to bear in selection. Flagella lengths are in the range 0 to 20 wm

and are more typically around 5-10 ym. Each flagella base is positioned ran-

domly on the cell wall (peritrichous flagellation). Rotation speed of a flagella

bundle is around 100 Hz for a free swimming cell and saturated (125 milliVolt)

motor. Efficiency is presumed to be high at moderate to high load though no

data is available. Under high load, torque per motor is around 3x10- N m,

power output per motor is around 10~!© W at 20 Hz, power per cell is around

10-!° W under normal swimming conditions. Under conditions of cell growth,

total flagella operation amounts to 0.1% of total energy expenditure. Flagella

synthesis accounts for 2% of biosynthetic energy use. Note these figures are

‘Note this is lower than the 3000 figure given by [TMBW97, pp.2], these totals were
presumably calculated using different methods.

COSMIC R. Gregory

2.3 E.coli Structure 11

relative and total energy expenditure per cell is not available.

Broadly, E.coli has three observed states of movement, swimming, tumbling

and pausing. Swimming is accomplished by bundling all flagella into a single

axis. The flagella motor can rotate in both directions yet the flagella is normally

a left handed helix, a counter clockwise motor rotation rotates the flagella

creating a pushing against the cell. The combination of hydrodynamic and

mechanical forces force all the flagella to congregate into a single tail whose

axis is normally the same as the longest axis of the cell. The entire bundle

is able to rotate at 100 Hz, this amounts to 25 m/s in a liquid medium at

room temperature. Bear in mind that MacNab [Mac96] hints these are rather

specialised circumstances and that the speed is normally lower.

Tumbling occurs when the flagella motor changes direction. The shape of

each flagellum is polymorphic in that it can a left handed helix (normal) or

right handed helix (curly); the term curly comes from the observation that the

right handed helix has half the wavelength of the left handed. A reversal of

motor direction to clockwise rotation reorients the helix from the base outward,

forming the right handed helix. While this is happening on mass, flagella

that are partially converted will have kinks and tend to role over themselves

ensuring they are reoriented ready for another round of swimming. Pausing

is an observed behaviour that lacks a proven explanation. Observations show

that pausing is inversely proportional to frequency of reversal, suggesting that

pauses are in fact failed reversals. This is further supported by there being no

evidence of a physiological need for pausing.

In well energised cells motor switching and changes of motor direction are

always occurring regardless of any environmental gradient, each motor is in-

dependent. It is only when they are considered as a whole that the flagella

interaction becomes weighted, spending around 1 second swimming (i.e. uni-

form motor rotation) and 0.1 seconds tumbling.

The cause of rotation in either direction is proton potential around the

base. The microphysiological details of the process remain unclear, it has

been modelled in several forms and the actual motor must agree with all of

COSMIC R. Gregory

2.4 Modelling Population Growth 12

them but the details are unknown. The proton potential can come from either

chemical potential (pH difference) or electrical potential (mV difference). It

must be noted that this level of chemistry is far from the simulation level

and so has no hope of being incorporated into the simulation without massive

simplification; in the presence of free oxygen, the electron transport chain (i.e.

the general cell wide mechanism of electron transfer) under free swimming

conditions generates a potential larger than the motor saturation voltage, so the

motor speed does not really vary with changes in oxygen level. Without oxygen

(anaerobic), glycolysis takes place; this is a more specialised pathway that

starts with starch or glycogen and ends with production of two ATP molecules

per glucose molecule and production of either pyruvate (for the tricarboxylic

acid cycle) or lactate. The proton potential produced by this pathway is not

enough to saturate the motor and so it does not move as quickly.

For the purposes of simulation, the flagella clearly needs gross simplification

as it is intended to only provide a secondary effect of supporting evolution. As

a result the simulated flagella swim and tumble at the same time, also the

bacteria is assumed to be relying on glycoses and so encourages more careful

use of the flagella.

In [BD96], there is a recommendation that cell mass is used as the basic

parameter with which to compare cell stages. They are really all as bad as each

other because there is no one uniformly increasing parameter independent of

the others, but cell mass is easier to measure, being simpler, faster and more

accurate.

2.4 Modelling Population Growth

[KW82] specify some models of the relationship between glucose uptake

and growth rate. This formed the partial source of the BacSim growth rate

model, and is what the COSMIC environment was based on. Quantitative

comparisons are made between batch grown and continuous cultures, also and

importantly, the comparisons are also between explanatory equations that re-

COSMIC R. Gregory

2.4 Modelling Population Growth 13

late glucose concentration to cell growth velocity. Given here is the equation

used by COSMIC to link glucose concentration to velocity(growth rate). The

simplicity (and continuous nature) of the Monod based equation made it the

better choice for the present study.

The form given is of: v = VinarS/(Km +s) where v is the velocity relative

to maximum growth rate (i.e. 0 < v < 1)). Vimar is a slope parameter and

has the value 1.23 h~! for batch grown E.coli and 0.536 h7! for continuous

cultured E.coli. Ky, is the half-saturating constant, a constant that refers to

the half-way level of glucose; the initial batch grown value was 13M and the

continuous grown value was 0.597uM. s refers to the glucose concentration as

experienced by each bacterium, it was in the range 0 < s < 25uM.

In COSMIC, these figures have been changed to be per minute rather than

per hour, and per fg(femtogram) rather than per 1M. The original units are

traditional in the microbiological domain but are unusual and so have converted

to SI units. Vmax is then 0.0205 m~!, K,, is 2.34 mg and s is in the range

0<s< 0.0045 fg.

Vmax was also adjusted so that the equation output corresponded with

growth rate. This turned out to use the 0.4444 figure from BacSim, though

BacSim’s growth equation is not used.

Also, Vmaz is multiplied by the cell mass after being adjusted for the ex-

pected average cell mass. This amounts to a cell mass of 0.4 femtolitre (the

deterministic maximum) giving a maximum growth rate that grows a cell from

0.2 fl to 0.4 fl in 24 minutes.

The rest of the [KW82] is concerned with membrane uptake rates on con-

tinuous cultures and so is not really relevant. It does give the impression that

batch grown is avoided nowadays by bacterial researchers because it necessarily

means that conditions change over the course of experiment, this lead to the

assumption that parameters were constant when they are not.

Originally a reference from BacSim on the Yax parameter (fg dry mass

yield per fg glucose) and m, the apparent maintenance rate. [NTT96] cites

Monad that he found between 0.21 and 0.28 g dry mass per g substrate (none

COSMIC R. Gregory

2.4 Modelling Population Growth 14

P1000)
"156 80.0

03 4.08 BB 3.56 84.3

6.60 75.8 9.92 84.5

i : 912 | 768 | 827 | 846
[Yee | 79.4 85.4

P08) a EO |

Table 2.1: Growth rates, per millimoles of glucose per hour per gram

were glucose), and then cites Schulze and Lipe who in line with contemporary

parameters says the maximum conversion efficiencies for continuous glucose is

0.51 grams dry mass per gram glucose.

An important point to note is that in a continuous culture (as most are, this

is then a steady state situation) growth rate is proportional to dilution rate.

As a result, most tables show figures proportional to dilution rate, normally as

a fraction removed per hour.

However, as table 2.1 shows, the relationship is not constant or even linear.

This is for the E.coli strain C(PC-1000) and an unnamed strain, of the four

strains given by Neijssel et al. [NTT96] these represent the lowest and highest

growth rates, note their is not a great deal of change between them. Original

values are in Table 2.1.

Iglucose 18 in millimoles (note in error [NTT96] in [NU96] uses units of

nanomoles) of glucose per hour per gram (dry weight) of cells, Yelucose is

in grams (dry weight) of cells formed per mole of glucose consumed. Ymax

calculated maximum growth yield, corrected for maintenance and is in grams

(dry weight) of cells formed per mole of glucose and maintenance rate of glucose

consumption. m is extrapolated for 0 growth and is in nanomoles of glucose

per hour per gram (dry weight) of cells.

For use in COSMIC, these units are then converted from millimoles to

grams and hours to minutes. The result is in table 2.2.

dglucose is then grams glucose per minute per dry cell weight gram and

COSMIC R. Gregory

2.4 Modelling Population Growth 15

Dilution rate

C(CP-1000)

Yo lucose

0.44
0.468
0.469
0.47

[Yue | | oda [| ~OATA
09m [_[oaim=[

Table 2.2: Growth rates, per gram of glucose per minute per gram

PCT tucose
P1000)

04m
725m

 20.65m

34.34m
179m
0.406m *

Table 2.3: Growth rates, average cell glucose use per second per gram

Yelucose

For approximate comparison with COSMIC we then assume an average cell

is then grams dry weight per gram glucose consumed.

volume of 0.3 fl cell and convert femtograms to units of an average volume 0.3

fl cell (using the conversion coefficient of 290 fg fl-' which converts femtograms

to femtolitres [KBW98]) and also converting minutes to seconds throughout we

arrive at table 2.3.

Taking an example cell of volume c = 0.417388 fl, mass of 121.042434 fg and

fresh substrate of 0.0045 fg glucose fl~', calculated growth is Upate = 0.018847

fg/fl. Looking at the volume increase rate U;ate, doubling from 0.2 to 0.4 fl

per cell is achieved at ((c + u)/c)¥ = 2, or 33 mins. This should be around 24

mins or ((e+4u)/c) = 1.0004815 (uw = 0.041889) if there was maximum growth,

which is a dilution rate of around 0.82.

COSMIC R. Gregory

2.4 Modelling Population Growth 16

Another note says E.coli produce 0.21 to 0.28 grams of matter per gram of

glucose, so a maximum growth of 24 minute doubling, or ((c+v)/c) = 1.0004815

with c = 116 fg/fl of dry cell mass, v is then 0.04188 fg/fl of dry mass increase

per second. This amounts to (taking 0.25 as the mean of 0.21 and 0.28) as

0.1276 fg/fl of glucose use per second.

BacSim’s choice of m is slightly too high, but allowing for the above error it

is valid. Choosing a representative m from above we see it is slightly larger than

0.0006 fg glucose / fg dry mass per min. From the table, m = 0.9 mg glucose / g

dry mass per sec seems more appropriate, but, using glucose to mass conversion

efficiency of 0.25 (Neijssel et al 96 says 0.21 to 0.28), the fastest doubling time

of 24 mins, max growth per min is then 1.0293. An average cell volume of 0.3

fl gives an initial absolute increase of u = 2.549 fg/min (c = 0.3/1 « 290 fl/fg,

(c+u)/c = 1.0293). Using the 0.25 efficiency of conversion, a cell mass increase

of 2.549 fg/min equates to 10.2 fg glucose/min at the middle of the cycle, 6.8

fg glucose/min at the start and 13.6 fg glucose/min at the end. Or 245 fg per

cell per duplication cycle. COSMIC uses the corrected figure from [NTT96],

although originally based on BacSim, some of the formulae and parameters of

BacSim were abandoned in favour of using a function that directly links glucose

concentration with growth velocity, this is then modified to be also based on

the cell mass. Glucose usage is calculated by working backwards from the mass

increase using the 0.245 conversion efficiency approximation.

A strain of E.coli is continuously grown in a chemostat at a dilution rate

of 30% per hour, hence the growth rate is low at around 0.25 of maximum, or

doubling every 96 minutes. This is based on a maximum dilution rate of 0.82

and maximum doubling time of 24 minutes. According to BacSim and other

sources, a cell grows from 0.2 to 0.4 femtolitres and then divides, or in dry

weight terms, goes from 58 to 116 femto grams dry weight. Obviously a cell

doesn’t have to be inside these limits but they are typical and are enough for

this aspect of COSMIC.

is the glucose consumption rate at 4.08 millimoles of glucose per Yelucose

hour per gram (dry weight) of cells. Converting the units this amounts to 734

COSMIC R. Gregory

2.4 Modelling Population Growth 17

milligrams glucose per hour per gram (dry weight) of cells, or 12.2 milligrams

glucose per minute per gram of cells.

Yelucose

per mole of glucose consumed. Converting the units this amounts to 0.41 grams

is the total growth yield at 73.5 grams (dry weight) of cells formed

(dry weight) of cells per gram of glucose.

So over the growth time of a cell (96 minutes), the cell gains 116 — 58 = 58

fgrams, so it should use 58 fgq,,/0.41 = 141 fgrams of glucose - using the

Yelucose

Using the delucose figure requires some calculation. If a cell goes from 58

to 116 fgrams in 96 minutes, then it must gain by: 58*2°° = 116, x = 1.007246

figure.

per minute, so it must use (integrating): 58 fe « ((z°’ — 1)/Inx) * 12.2mg =

96.9x10~' grams of glucose. Which is smaller a value than for Yelucose-

BacSim [KBW98] was the original source of figures and environment for

COSMIC. BacSim, based on Gecko [Boo97], which is based on Swarm [Swa00],

tries to answer the question of how to best model a macroscopic world based on

data on microscopic entities. Other models are DE or cellular automata based.

Individually based modelling is different in that it returns more data, needs less

accurate parameters but also requires more computational power. The idea of

this model is to generate predictive results rather than fitting results based on

several growth models. It also mentions that two models by others used 22

and 200 parameters respectively, clearly outside the scope of COSMIC.

The BacSim model uses discrete time at 0.1 mins per iteration. Each it-

eration goes through a cycle of diffusion and uptake (modelled by equations),

metabolism (amounting to an increase in size based on update, derived from

an equation including update efficiency), death if below a minimum size, divi-

sion if size is a multiple of a requisite size (from [DR96]). The cells are then

moved to remove overlap and then the cycle continues. Cell division creates

two identical cells. Three variations of the D & R model were tested by Bac-

Sim. Variation of parameters was via a Gaussian distribution in the range

+2¢, with the positive of the result being used.

BacSim cell motion was achieved by taking a vector of required movement.

COSMIC R. Gregory

2.4 Modelling Population Growth 18

Cytoplasmic
Cell wall membrane Cyioplasm

Capsule

Flagellum

Pilus

Periplasmic
space Chromatophore

SS ta

Nucleoid Mesosome

Figure 2.1: Single prokaryote cell

Total area of biomass [Pir67] is then 77%, from 0.1 g dry mass ml“! of E. coli

- assuming a water content of 70% [NU96].

All parameters in BacSim were based on published data, only the diffusion

approximation (a grid of coefficients) needed to be tuned on a single parameter.

This made it an ideal basis for the development of the COSMIC model.

The median cell volume is given as 0.3 fl, which equates to 0.3 am. Given

a typical cell picture (from [NU96]), the length tip to tip is 20 units, length

cylinder to cylinder is 15 units and the diameter is 5 units, giving a cylinder

height to cylinder radius ratio of 6. Sphere volume is V = sr’, Cylinder

volume is V = IIhr?, so r = 0.235ym given 0.3am* = 2IIr3, h is then 1.41ym.

This agrees with 2m figure that is commonly given, more so if the mean is

taken as 0.4 fl.

Comparing the eukaryote cell and the prokaryote cell (Figure 2.1), prokary-

ote cell is visibly the simplest structure; being unicellular or filamentous and up

to 3 ym in length. It has no nucleus to contain DNA, the DNA is instead in a

compact area of the cell inside the cytoplasm (i.e. not covered by a separating

membrane). Propulsion for many is achieved using a tail (flagellum), which is

COSMIC R. Gregory

2.5 DNA, RNA and Proteins 19

rotated at high speed through proton motive force across the cell wall. Unlike

prokaryotes, eukaryotes have their DNA stored in at least one nucleus that is

separate from the cytoplasm.

2.5 DNA, RNA and Proteins

DNA is the carrier of genetic information for prokaryotic and eukaryotic

organisms. In its simplest representation DNA is a chain of four nucleic acids

that take the names C, A, T and G. Biological reality is more complicated,

consisting of phosphodiester bonds (sugar-phosphate) that form a regularly

spaced chain to which these nucleic acids can bind to. For each DNA strand

there is a complement strand that is attached at the nucleic acid bases using

a hydrogen bond. C complements G and A complements T (the relationship

is reciprocal). As only the bases stick but the bases on the same strand are

chained together; the complementary bases point to each other and the phos-

phodiester bonds run along the outer edges of the strand pair. The pair of

complementary strands wrap around each other in a coil, and this coil is it-

self regularly coiled. A good example of the scale involved comes from the

(eukarotic) human X chromosome. Based on the DNA from figure 2.2, this

double helix is then coiled around itself to a diameter of 11 nm, coiled around

itself again to a diameter of 30 nm, coiled again to a diameter of 300 nm and

then wound in a 700 nm diameter spring like formation. The end result forms

the ‘sticks’ that make up the chromosome i.e. 4 sticks joined at the same point

would make up an X chromosome, 1400 nm wide and containing 4x10° bases.

It is called X because at this scale it is big enough to see under a microscope

and really does look like an X; chromato meaning coloured and hence visible.

Prokaryotic genomes tend to be much smaller and so can never been seen us-

ing a standard microscope. The genome of E.Coli is around 4.6 Mbp long and

arranged in a loop, here bp is the most atomic unit of genetic measurement

that counts base pairs of DNA. The loop is actually many loops each 50 to

100 kbp long with the join being on a set of proteins and attached to the cell

COSMIC R. Gregory

2.6 Transcription 20

Figure 2.2: Double strand of DNA

membrane.

2.6 ‘Transcription

Part of the central dogma proposed by F.H.C.Crick in 1958 states that RNA

is created from DNA by a transcription phase, this RNA is known as mRNA

(messenger RNA). The transcription process is carried out by an RNA poly-

merase (enzymes specific to the creation of mRNA), unless otherwise stated.

In [Bec96], Beckwith gives an account of the evolving Operon concept,

the use of the operon as an explanation for gene expression. Jacob and Monad

based their original model on research of the lac operon, an area of genome that

had had a large amount of research effort put into it’s understanding. Based

on these findings, they came to a model that has a promoter site, followed by

a operator site and then followed by a gene sequence of many genes (in the

lac case it was 3 genes). The explanatory force of the operon idea together

with Jacob’s forceful style of reputing alternatives ensured its domination for

a number of years. Here, Beckwith [Bec96] points out that research into other

sites on the same genome shows that the operon model is only one example of

a gene regulation mechanism. The operon concept has essentially a negative

effect on gene transcription but research shows that other ‘operons’ have a

positive effect on gene transcription. The concluding statement is that the

COSMIC R. Gregory

2.6 Transcription 21

operon model managed to both create a new area of research and constrain

that area into a conceptual model that did not fit all circumstances, this is

clear from any simplified text which refers to the lac operon as if it is a defining

example.

The first step in the creation of a protein from the DNA is transcription,

this step being the transcription from DNA to mRNA. An RNA polymerase

(a complex protein based machine) (Section 2.12) catalyses the transcription,

the process requires the double stranded DNA as well as the nucleotides ATP,

GTP, CTP and UTP (i.e. fuel). Like replication, transcription is directional

and also starts at the 5’ end. The 5’ ended string is called the sense strand, the

other strand is called the anti-sense strand. As bases attract their opposites,

to duplicate the 5’ sense strand the 3’ antisense strand is actually read, the

result being a copy of the sense strand. In E.coli the RNA polymerase moves

at 40 bases per second at 37°C, transcribing as it moves.

To start the transcription event, an RNA polymerase binds to the double

stranded DNA, ideally at the promoter site. When the RNA polymerase has

acquired all of it’s cofactors it is referred to as a transcription complex. The

start of the transcribed region after the promoter is known as the +1 position,

the promoter and any operator sites are negative relative to this position.

Again, as with replication the DNA strand must be unwound.

Transcription stops at the terminator sequence. This sequence contains a

self-complementary region that can form a stem-loop or a hairpin structure

out of the RNA product. This structure hints that the transcription complex

should stop and bring on the dissociation of its constituent parts. The com-

pleted mRNA is released because there are four A residues on the DNA which

do not bind well with the U residues on the mRNA.

Transcription termination can also be Rho dependent. The rho (p) protein

appears to bind mRNA that is 72 nucleotides(nt) in length, it is expected that

this is done by shape rather than direct mRNA encoding. It moves along the

mRNA towards the transcription complex, where it forces the termination with

an unknown mechanism.

COSMIC R. Gregory

2.7 Protein Structure 22

2.7 Protein Structure

There are two classes of proteins, globular proteins can be regarded as

spherical particles as they are folded compactly. Most enzymes are globu-

lar. The other class are fibrous proteins which instead have a high axial ratio

(length/width) and are typically used in a structural role.

Given the chemical structure made up of a sequence of amino acids bonded

to form a polypeptide chain, the protein takes a shape dictated by the polypep-

tide encoding; this encoding has a given lowest energy conformation that com-

pels the polypeptide to form it’s own specific shape. The structure remains

stable because a variety of forces hold it together; hydrophilic side chains tend

to the outside and hydrophobic amino acids remain on the inside. There are

other forces too, as this is at the chemical level normally irrelevant forces have

an effect. The protein’s structure consists of several sections, an a helix and 6

sheets.

Except for catalytic RNA molecules an enzyme is almost certainly a pro-

tein. An enzyme is a catalyst for reactions that would occur but very slowly.

COSMIC considers them essential, the large difference in reaction rates makes

it not worth considering the case when the reaction occurs without the enzyme

- as a result COSMIC ignores the passive components and just models the

enzymes. Specificity from protein to protein can vary [TMBW97, p.22], from

an exact match (e.g. glucose oxidase binds only glucose) or group specific (e.g.

hexokinase binds a number of hexose sugars).

The encoding from DNA to protein function is ill defined (hence the protein

folding problem [Hau97, Karplus et al., 1997]) but some things can be specified.

The bases are read three at a time (the codons) and allows for the production of

20 different types of amino acid that chain to make the polypeptide. This means

that there are in fact 64 combinations, many more combinations than required

but it allows inclusion of the start codon, three stop codons and the use of 1-6

codons encoding each peptide. It is important to realise that although the base

alphabet is 20 letters in size, the polypeptide can form words of several hundred

peptides in length; this combined with the fact that the shape (influenced by

COSMIC R. Gregory

2.8 Optional Transcription 23

RNA polymerase = »
molecule Sal

P O Z T

GAATGGTCCATIGCGECGTGGTTACCTGTCCAGAATGTCAGCTGTAGTTGGTGITATGCCA

“/ codon l=

mRNA ———
molecule

Figure 2.3: Generalised transcription

the encoding) dictates the proteins role then makes nearly intractable the task

of determining the role of a real protein. The shape can take any imaginable

3D form (obviously the chain can not go through itself), using regular patterns

that change over its length.

2.8 Optional Transcription

To further the level of complexity, there is the idea of gene expression and

control, this is not some reference to the form of representation but implies the

transcription agents (the transcription enzymes) are involved in the regulation

of whether to transcribe a region of DNA into the required mRNA. With this

idea comes the controlling proteins that are either transcription activators or

transcription repressors - the activators having been found to allow themselves

to be controlled by other activators.

The process of gene expression is partly explained by the Jacob-Monod

theory, which is generally applied to prokaryotic gene expression rather than

eukaryotic gene expression. The theory uses the unit of the operon that is

made up of an adjacent group of structural genes known as cistrons (cistron

being effectively equivalent to gene in modern usage), preceded by an operator

region. The operator site forms a lock onto which a repressor protein (DNA-

COSMIC R. Gregory

2.8 Optional Transcription 24

binding protein) can attach. Once attached the RNA polymerase molecule

cannot start transcription and so the proteins (or the various mRNAs) in that

region are not created. If an inducer molecule is present it can bind to the

repressor molecule and null the repressors effect. There is also the case of the

corepressor in which the repressor will only stick to the operator region when it

has already combined with another repressor of the required type. The regions

on the DNA strand are shown in Figure 2.3 with Z representing the cistrons,

P representing the promoter and O representing the operator.

These repressing (or possibly activating) proteins are created elsewhere in

the cell, and so their presence or absence may indicate some environmental or

genotypic state, which is obviously the whole idea - creating fairly rapid com-

plex processing without a nervous system. Each operon type varies, Figure 2.3

shows the lac operon but it should not be taken as typical or even atypical,

rather an instance.

Gene expression in the eukaryotic case is similar but has important dif-

ferences. There are both short term and long term (irreversible) regulation

effects. Short term expression regulates inducible and/or repressible enzymes.

Hormones can bind receptor proteins and then enter the eukaryote’s nucleus

and activate transcription. Eukaryotes encode short term transcription factors

in their genes (again without being localised) that help the RNA polymerase

bind to the promoter and so lead to transcription. The long term signals are

those which make a cell divide or become a particular cell type. As such they

(and eukaryotes in general) are not as useful in this research, as they are too

complex to be understood well. They might well be a source of inspiration but

even genetic research (given the complexity) finds it hard to generate depend-

able results. Operon theory is hardly applicable to eukaryotes, it appears there

are few if any structured genes and so global operons would have no purpose.

COSMIC R. Gregory

2.9 The lac Operon 25

2.9 The lac Operon

The principal idea of optional transcription comes from research on the lac

operon found in E.coli. Gene expression research has historically been based on

the lac operon, as found in FE. coli. Many other operons exist but it seems that

supporters of the operon concept managed to put across their view so strongly

that operons that do not conform to the lac model are given less attention.

The lac example should be used as a guide of what can be rather than what

must be. Unfortunately the lac operon was originally taken to be the latter

and so has been taken too far and as well as being over simplified.

The Jac operon is concerned with the use of lactose as a carbon source, the

enzymes that can use lactose are only manufactured when lactose is available.

The lac operon consists of the structural genes lacZ encoding 6-galactosidase,

lacY encoding a galactoside permease and lacA encoding a thiogalactoside

transacetylase. $-galactosidase is an enzyme that hydrolyses lactose into galac-

tose and glucose. Galactoside permease aids in lactose transport through the

cell wall of the bacterium.

These three genes are encoded side by side in a single transcriptional unit

called lacZYA. Relative to this there is an operator site Oj, between -5 and

+21, just after the promoter site P,,,. If the operator site binds a lac repressor

protein then transcription is strongly repressed. The lac repressor protein itself

is encoded slightly upstream of the lac operons promoter in the lacl gene, this

gene is also part of the /ac operon. The lacI gene encodes the repressor protein

but the protein itself is active only as a tetramer, the gene product only works

when in groups of 4. Once this has taken place the repressor has a very strong

affinity for the lac operator and also a high affinity with non-operator DNA.

The lac operator site is in fact palindromic, it consists of 28 bp which read the

same starting at either the 5’ or the 3’ ends, the lac repressor has the same

symmetry when grouped in a four unit tetramer.

With the absence of lactose, the repressor protein binds to the operator

site, though it is thought that this does not stop the RNA polymerase from

binding and instead just stops its progress. Strangely, the binding of the lac

COSMIC R. Gregory

2.10 The trp Operon 26

repressor to the operator site increases by two orders of magnitude the affinity

of the RNA polymerase to the promoter site, making it quite likely that an

inhibited operon also has bound RNA polymerase.

When repressed the lac operon generates a very low level of gene product.

When lactose is present, the low level of expression allows its slow uptake,

some of which is converted to allolactose. Allolactose binds the lac repressor,

changing its affinity for the operator site and so forcing the unbinding of the

repressor. As the RNA polymerase will probably be already present, transcrip-

tion can start immediately. The removal of the lactose inducer leads to a quick

inhibition of transcription, as rebinding of the repressor is almost immediate

and the lacZYA RNA transcript is very unstable.

The promoter site Pj, and other related promoters do not by themselves

have a strong affinity for RNA polymerase, the -35 sequence can be weak and

even the -10 sequence can be weak. For high rates of transcription initiation,

to increase the rate requires a specific activator protein called a cAMP receptor

protein (CRP or Catabolite Activator Protein, CAP). CRP exists as a dimer

that cannot by itself have any effect on transcription rate. When glucose is

absent, the level of cAMP increases and CRP binds to cAMP producing a

CRP-cAMP complex that binds to the promoter site slightly upstream from

where the RNA polymerase would bind. The DNA is bent by the presence

of CRP, forming a 90° bend which is believed to multiply RNA polymerase

binding affinity by 50.

In practice the location of the CRP binding site can vary much more be-

tween operons than stated here, the site can be on the promoter, next to the

promoter or be much further upstream. The difference will obviously have

some effect but it is not known exactly what.

2.10 The trp Operon

The tryptophan operon encodes five structural genes which are required

for tryptophan synthesis. The RNA transcript produced is a single 7kb long

COSMIC R. Gregory

2.10 The trp Operon 27

strand, starting from the operator site Otyp. As with the expression of the

lac operon, the RNA product is unstable and so regulation of DNA quickly

regulates the protein end product, which in this case is tryptophan.

The trpR operon is the source of the trp repressor and is located upstream

of the trp operon. The operator sequence is symmetrical and forms the repres-

sor binding site, which also overlaps with the trp promoter site between bases

-21 and +3. The core repressor binding site is a palindrome 18 bp long. The

trp repressor only actively binds the operator site when it has itself formed a

complex with tryptophan. The repressor is a dimer and has a structural simi-

larity to CRP protein and the lac repressor, the dimer needs two tryptophans

to be complete. It is the tryptophan that gives the dimer structure the correct

distance between its two reading heads and its central core.

The five structural genes encode for enzymes that produce tryptophan,

tryptophan therefor inhibits its own synthesis by a magnitude of 70. Although

not specified it is assumed this was under artificial tryptophan conditions. Re-

gardless, this is much smaller than that caused by binding of the lac repressor.

The trp operon is like the lac operon, except that self inhibition is also

playing an active role. As well as the normal transcription controls there is

also an attenuator sequence following a leader sequence using around 162 nt

before the first structural gene trpE. The attenuator formed by the transcript

and is a short area rich in palindromic GC bases followed by each U bases. If

this sequence manages to form a hairpin structure in the transcribing RNA,

it will act as a terminator and force early termination at around 140 bp long,

stopping before the structural genes have been reached.

The leader itself also has a role to play; divided into 4 successive sequences, 1

and 2, 2 and 3, and 3 and 4 are complementary, and so can bind to themselves

to form a hairpin which stops further RNA transcription. If 2 and 3 bind

then this does form a hairpin but does not stop transcription. Under normal

conditions the binding of 1 to 2 and 3 are 4 are more favourable than 2 to 3.

Also in this leader is an efficient ribosome binding site and successive codons

encoding for tryptophan. Under conditions of low tryptophan availability the

COSMIC R. Gregory

2.11 Operon Regulation 28

ribosome would pause at this point. Since transcription and translation are

tightly coupled in E.coli, the net effect then is to negatively control tryptophan

transcription. In reality the hairpin formation between sequences 3 and 4 is

more likely when tryptophan level is high, the pause occludes sequence | leaving

sequence 2 to bind with sequence 3. In the alternative case, the pause occurs

at the start of sequence 2 and so sequence 2 is occluded allowing sequences 3

and 4 to form a hair pin.

The polypetide formed from the RNA of these tryptophan encoding codons

doesn’t seem to serve any other purpose.

Given both forms of optional transcription, tryptophan dependent repressor

and tryptophan dependent attenuation region, the total level of tryptophan can

be amplified by 700 times. The attenuation sequence giving a 10 fold increase

and the tryptophan dependent repressor giving a 70 fold increase. Generally,

attenuation is present in at least six other operons with a role in amino acid

synthesis. For example the his operon, but in this case the attenuation mech-

anism is the only means of control, there is no operator.

2.11 Operon Regulation

Becskei and Serrano [BS00] examines the effects of feedback in E. coli by

adding a fluorescence gene (EGFP) to tetR gene. The tetR gene having di-

rect feedback onto it’s own operon sites. Three cases were tested, using an

unregulated system, this feedback system and a mutated system. The results

were obviously that the regulated system was able to control its own output,

whereas the mutated version was less able and the unregulated was unable to

regulate its output.

The numeric simulation used binding constants for the repressor (2x10!! M7’)

and polymerase (1.5x10'° M~*), repressor degradation rate (10~° s~!), concen-

tration of RNA polymerase (100 nM), promoter isomerisation rate from closed

to initiating complex (0.3 nMs~*) and proportion of mRNA over protein con-

centration (3.3). Most interesting was the use of more parameters than COS-

COSMIC R. Gregory

2.11 Operon Regulation 29

MIC. COSMIC considers proportions and concentrations to come from the

integration of manufacture rate and degradation rate.

The relatively early paper by [Gil87] puts some perspective on the time

scale of research into the genome. In it there is the surprising mention that

introns are in the range 50 to 50000 bases long and yet exons peak at around

40 to 50 amino acids in length, this is in the context of their existence being

only just realised and it is now known that exons are longer.

Generalising useful properties of the intron-exon structure, Gilbert cites

that recombination is more likely using large introns, as a successful recombi-

nation need only be within the 10000 length of an intron, rather than on the

exon boundary.

Gilbert then goes on to guess about the use of exons as modules. Using

the idea of almost independent modules Gilbert then goes on to quantify the

029° amino acids and the likelihood of chance mutation bringing about the 2

207° exon modules - a much more likely scenario.

Bhalla [Bha00] discusses some of the factors that affect the feedback loop.

These factors (these signals) can change the bistable region of a switch like

action, a factor of 7 for P2A (Protein Phosphatase 2A) and a factor of 2 for

MKP-1 (Map Kinase Phosphatase 1).

Bhalla shows the stable points in feedback reaction between MAPK (Mito-

gen Activated Protein Kinase) (ranging 0.1 f{M to 100 nM, log scale) and PKC

(Protein Kinase C) (ranging from 0 to 0.4 uM, linear scale), in the presence

of different levels of PP2A (0.05 uM, .224 uM, 0.4 uM) (the response of PKC

and MAPK was not directly affected). There is an negative-exponential like

rise (with top end flattening) of the PKC/MAPK reaction, and intersections

with different levels of PP2A show the stable points. For instance, PP2A=0.05

uM leaves a stable state at 110 nM MAPK/0.29 uM PKC and PP2A=0.4 uM

leaves only one stable state at 0.0003 nM MAPK/0.9 uM PKC).

The above steady state results then transferred to a time series test on the

scale of minutes, with 83 minutes between state changes. Given these different

levels of stable points, the reaction can be pushed into lower or higher stable

COSMIC R. Gregory

2.11 Operon Regulation 30

areas of reaction rate, if those pushes push past the threshold level.

Also shown was the hysteresis of the MKP-1 (Map Kinase Phosphatase 1)

reaction with PKC (Protein Kinase C). As MKP-1 varies slowly around 0.0025

to 0.0035 uM, PKC level is static until it changes sharply from 0.1 uM to 0.25

uM.

There are dynamic responses as well. PKC responds to calcium changes

in seconds. —The MAPK cascade creates an inertia with its multiple stages

of phosphorylation, this creates a delay of around 5-10 minutes. MAPK is

affected by it’s regulator MKP-1, one of the results is that MKP-1 lasts longer

(over 2 hours). Another slower result is that translocation of MAPK into the

nucleus leads to synthesis of MKP-1, which is hinted could be the mechanism

for cell proliferation or other major developments. The overall conclusion is

one of stable reaction systems that can respond to small chemical changes.

Although this was eukaryotic example, the same is true of prokaryotes.

Collado-Vides et al [CGE98] cite the example of the ginALG operon, which

is in fact more complex than they described it. There is a regulatory region

with two promoters 0 glnAp1 and o™ glnAp2; and there are three genes,

glnA, glnL and glnG, encoding glutamine synthetase, a nitrogen modulator II

called NR-II, and a transcriptional regulator NR-I. NRI negatively regulates

glnAp1 and positively regulates glnAp2. Also, after glnA there is a terminator

followed by o”° promoter glnLp that is negatively regulated by NRI. Using

their notation this is described by concatenating two transcriptional units but

still suffers the problem that, in practice the glbALG can still be transcribed

by a promoter further upstream of the two given promoters.

In another example that opposes the lac operon, Glansdorff [Gla96] enu-

merate the dispersed operon Arginine, one of the first to be found. It uses two

promoters that face each other, gene amplification mechanisms that reactivate

silent genes and a proven case where a transposon (IS3) carries a promoter -

as well as a few other features of this pathway.

Pulling out from the large amount of detail, he gives the expression level

ratios (micromoles per hour per milligram of protein) for all gene products

COSMIC R. Gregory

2.12 RNA Polymerase ok

when the final gene product arginine is present (100 jug of arginine added) and

when none is added. Ignoring the minor details, argA is 50, argCBH is 60, argE

is 60, argD is 16, argF is 150-200, argl is 300-400, argG is unknown, argR is

15 and carAB is 50. This shows just how much the gene expression levels can

vary, these effects come down to the layout of genes around the promoters and

operators as well as other effects outside of transcriptional control.

2.12 RNA Polymerase

This section describes RNA polymerase as it exists in the cell. E.coli RNA

polymerase is one of the largest enzymes in the cell and consists of 5 or more

subunits. These subunits have the type names a, £, §’, w and o, when ina

complete polymerase they are collectively called the holoenzyme. This holoen-

zyme combines the types in the pattern a2(/'wo, the entire enzyme being

required for initiation of transcription. For elongation of the transcript only

the a286’w (the core enzyme) is used and the o is released to go elsewhere.

The polymerase covers a length of 60 bp but the binding site itself is estimated

to be only 16 bp long.

The role of subunit varies and also the knowledge of that role varies.

e The a subunits are encoded by the rpoA gene. They have a role as

central assembly points but the evidence from phage T4 infection only

additionally suggests its role is in binding affinity.

e The @ subunit is encoded by the rpoB gene and is thought to be the

catalytic centre of the RNA polymerase, evidence comes from antibiotics

studies.

e The £' subunit is encoded by the rpoC gene. It binds two Zn?+ ions

which are suspected of being involved with polymerase catalytic func-

tion. Evidence suggests that this subunit’s role is binding to the DNA

template.

COSMIC R. Gregory

2.13 o” Promoter 32

e For the purpose of simulating transcription, the o factor subunit is the

most important. When the sigma factor binds to the RNA polymerase

to form the holoenzyme, the affinity for the promoter site increases by a

factor of 10? and decreases by 104 for non-specific DNA sites. Each type

of sigma factor changes the affinity for a subset of the genome promoters,

hence the optional transcription that COSMIC simulate. Unfortunately

there are not as many sigma factors as there are promoters, there are

only a few sigma factors and so only a few high level system states - no

quantity estimate is mentioned.

After initiation and the RNA chain reaches around 8 to 9 nt in length, the

sigma factor is released and free to complex with another polymerase, this is

important as there is not enough sigma factor for all polymerase. Polymerase

out numbers sigma factor by 2:1.

As a side note, not all RNA polymerases consist of multiple subunits, the

bacteriophages T3 and T7 encode for smaller single polypetides, these can also

transcribe RNA at around 200 nt per second at 37°C.

Of the five subunits that make up RNA polymerase, only the sigma factor is

considered important and so modelled in COSMIC. The other subunits provide

some unknown enabling mechanism and so COSMIC assumes they exist. The

next section gives details on a specific sigma factor.

2.13 o” Promoter

The most common E.coli sigma factor is 0“, 70 comes the molecular mass

of 70kDa. The o” promoter is a sequence of between 40 and 60 bp, the region

around -55 to 20 has been shown to bind the polymerase. Studies have shown

that it is only the sequences around -40 to 0 that are critical and that two 6

bp sequences around -10 and -35 are especially important.

The -10 sequence is TATAAT, with the initial TA and the final T being

even more conserved. This can be referred to as the Pribnow box, after its

discovery by Pribnow in 1975. Although the following 5-8 nt to the start of

COSMIC R. Gregory

2.14 Other Sigma Factors 33

transcription are not important, there number is.

The -35 sequence is TTGACA, with the first three bases being the most

conserved. There is a 16-18 bp gap between this and the above -10 sequence,

though this is not actually important despite occurring in 90% of all promoters.

The last few paragraphs have described the strong promoters. In reality

there is much more variability in promoter efficiency, possibly as much 1000

times. Summing up, the -35 sequence is a recognition region and a site for

the sigma factor; the -10 region is for DNA unwinding, which isn’t reproduced

here as it isn’t seen as important; and finally the sequence at +1 for around

30 bases also influences transcription rate. The encoding affects the rate of

separating the double strands and so has in indirect effect on the transcription

rate when looking at a population of promoter sites. In E.coli the holoenzyme

binds to promoters extremely rapidly, too fast to be explained by the binding

and unbinding inside a liquid. Instead it is believed that the polymerase slides

along the DNA looking for promoter sites.

2.14 Other Sigma Factors

The o factor is required for the RNA polymerase to identify the -35 and -10

consensus elements of the promoter and so be ready for transcription. General

control of transcription is achieved through repression mechanisms as found in

the lac operon, but global large scale state changes can be brought about by

a change in the availability of different types of sigma factor which have an

affinity for different subsets of the genome.

Heat shock is an example of a major shift in transcriptional priority. Under

conditions of extreme heat a new set of approximately 17 proteins are created.

The cause of this is a unique RNA polymerase holoenzyme that contains sigma

factor o°”, this sigma factor is specific to heat shock genes. In E.coli a tran-

sition from 37 to 42°C transiently triggers this protein response, under more

extreme heat when the E.colz can not function this protein response is the only

mechanism still functioning.

COSMIC R. Gregory

2.15 Bacterial DNA Replication 34

B. subtilis cells create bacterial spores ([PS84]) when the environment be-

comes hostile. The RNA polymerase is functionally identical to that of E.coli

though here there is a “diverse set” of sigma factors, both for normal growth

and sporation.

In the case of bacteriophages (for instance bacteriophage T7), it carries

only its specific sigma factors (phage T4 in E.coli and SPO1 in B.subtilis).

The latter is known to encode a series of sigma factors, each factor bringing

on a stage of infection, the middle stage is brought on by the presence of 07°

which then activates genes 33 and 34.

2.15 Bacterial DNA Replication

Replication of the chromosome is tightly coupled with the growth cycle

(and of growth at all). The £.coli initiation site (origin) is in the locus oriC

and is bound to the cell membrane and hence the protein forming the junction

with all DNA domains. OriC has 4 binding sites each 9bp in length for the

initiator protein DnaA, this protein acts in proportion to growth rate making

replication proportional to growth rate. When growth rate is high a second

round of replication at the two new origins can occur before the first round is

completed.

A sufficiently large concentration of the DnaA protein forms a complex of

30-40 molecules, each of which itself binds to an ATP molecule. This complex is

then enveloped by the oriC DNA. Three AT-rich sequences 13 bp long are then

melted, allowing the entry of the DnaB protein (DNA helicase). The helicase is

a class of enzyme that melts double stranded RNA and DNA using the energy

from ATP hydrolysis. This leaves a small gap between the normally bonded

double helix, the amino acids in this gap are covered with single stranded

binding protein to prevent base pairs from reannealing (renaturing). A DNA

primase enzyme then attaches to the DNA and creates a short RNA primer

that starts the leading strand of the replication. Bidirectional replication then

follows, both strands of the circular DNA are followed. The process stops when

COSMIC R. Gregory

2.16 Mutagenesis 35

the replication forks meet at around 180 degrees opposite the oriC site.

2.16 Mutagenesis

The previous section discussed the mechanics of genetics, the next two

sections mention what can go wrong and what are then the sources of evolution.

The introduction to the genome earlier in this chapter points to the potential

adaptation brought about by redundant information and helpful (or otherwise)

plasmids.

Mutation is the permanent random alteration of bases caused by a variety

of error sources including point mutation, replication error (1:10'°), radiation

damage and chemical damage (which causes a mismatching of base pairs, most

such chemicals are carcinogenic). There are many other specific causes of

mutation, including the problems of encoding information with DNA. We will

however concentrate on the more typical causes.

Point mutation is a single base change leading to it’s paired base changing.

The phenotypic effect varies, a mutation of non-encoding DNA will have no

effect, mutation in the third base pair of a codon might also have no effect

as the third base is not used as much as the first two. If the mutation has

no effect then it is said to be silent. If the mutation has an effect, it could

vary anywhere from not much to lethality. A mutation that generates a new

stop codon is called a missense mutation and obviously leads to a short protein

product.

In [Koc93] Koch outlines speculations and some findings of active adapta-

tion in prokaryote bacteria. The work was with respect to extreme conditions,

mainly starvation but also temperature shock. These being the typical method

of changing the otherwise static environment of the agar plate.

As an introduction to the possibilities, Koch lists the following reactions to

extreme conditions (generally termed unfavourable growth conditions):

e inducing metabolic mechanisms to utilise alternate resources

e expressing regulons for heat shock and other extreme conditions

COSMIC R. Gregory

2.16 Mutagenesis 36

e becoming able to move (motile)

e acquiring resistance to heat or dessication

e producing spores - in order to reproduce

e producing antimetabolities and other metabolites

e becoming competent - that is make themselves open to alteration by

foreign DNA that survives internal restriction enzymes

e allowing invasion by plasmids, viruses, transposons.

Here Koch is not concerned with transported (external) genetic changes,

only prepared genes, i.e. using the inactive genetic material from past chal-

lenges. It is initially aimed at the non-genetics, mechanistic side of bacterial

survival - seemingly the production of spores that survive the challenge, but

moves onto starvation response and mechanisms for directed mutation.

Koch cites experimental evidence for starvation inducing a metabolic brak-

ing function. This is brought about by a lack of, or non-functionality of pro-

teins, ribosomes or enzymes. Koch also speculates the mechanisms for gen-

erating ‘directed’ mutations, but suggests that reverse transcription leading

to a large gene change is probably not plausible as it requires large amounts

of energy and will probably be lethal. This is suggested as a last measure,

though the large amount of required energy would seem to make this impossi-

ble [COM89a].

Another source of directed mutation is the DNA repair mechanism during

starvation. Repair of DNA requires a great deal of energy, and so during star-

vation (except for photoreactivation) DNA changes will go unrepaired. Under

the assumption that the changes are positive, then the return of resources al-

lows the changes to be repaired, either ignoring or using the changes. In an

experiment it appears that repair has priority over replication, as improved

resources lead to more mutants [Sta88]

Mutation rate can also be increased by the transcription mechanism itself.

There is a non-generalised result that transcribing DNA is more mutable, as

COSMIC R. Gregory

2.16 Mutagenesis 37

the transcription is taking place on only one strand. The effect of this mutation

source is unclear, it would seem to affect the average phenotype, if only slightly.

Koch does however mention that there are repair mechanisms that deal with

currently transcribing DNA [Dav89]. It would appear this is a secondary effect

at most.

Taking simple mutation further, a model from [Hal91] shows the short term

losses and long term gains of mutation by relying on a two stage mutation. The

first mutation probably being lethal but almost certainly moving the phenotype

away from it’s optimum. The second taking the individual to an unoccupied

space and so possibly a better optimum. Given reasonable conditions, the

model predicts an unexplained huge increase in the second phase mutants.

Hall also found that there is a general increase in the mutation rate when

bacteria are under extreme starvation conditions. This mutation is probably

lethal but in very cases it will lead to survival.

Koch [Koc93] finishes with the idea of the living genome with reference to

mutation, that there exists physiological controls of selectivity. Koch suggests

that the genes themselves have an effect on the mutation rate and on the

transcription process. The example given is one of lactose uptake and the

effect of lactose presence in the past on the lac operon. It appears this is a

case of delayed feedback between the environment and the operon though Koch

takes this further.

Looking at the role of mutation in more detail, {[Rai99] makes the point

that more rapid bacterial evolution isn’t necessarily brought about by more

rapid mutation, instead it has a more complex relationship. It was generally

regarded that a mutator strain would only survive above a certain level of

proportionality in the population, but lately (1995) it has been found that E.

coli spontaneously develop mutator strains over long term lab experiments. A

model by [Taddei et al., 1997] shows that the relationship between fitness value

and mutation rate isn’t perfect; there are rules to the population size and the

population’s degree of fitness to the environment.

Evidence from [Sha97] goes against the positive mutation ideas. It seems

COSMIC R. Gregory

2.16 Mutagenesis 38

that bacterial mutagenesis gives two results; a lot of encoding effort is placed

on the repair on genome, indicating that bacteria cannot survive mutation at

a normal rate; and that cells possess a variety of biochemical systems capable

of reorganising or changing DNA sequences (termed “natural genetic engi-

neering”). The suspected mechanisms being both plasmids and transposons;

therefore having the advantage of transmitting good material into other bac-

terial or other chromosomes - leading to a potentially large mutation in one

step.

Shapiro supports Koch in the general conclusion that mutagenesis can be

triggered by stress. Here mutagenesis means more than just mutation - it

implies the bacteria actively incorporates the Mu phage under these stressful

conditions. One result showed that the Mu phage didn’t actually get incorpo-

rated in anything like its full form and so lost out overall. The process requires

quite a few chemical factors to be present so would seem to be unlikely to occur

by chance. Despite this, mutagenesis is speculated to be a widely occurring

phenomena.

There is however no evidence that mutation causing agents from the envi-

ronment or other cells actually targets specific areas of the genome, the adap-

tive view just states that more mutation will occur under certain circumstances.

In the closing statement Shapiro describes his view of the genome as a source

of massive computational power. The DNA is a storage mechanism and it is

the action of internal and external influences that can activate this storage.

In [[S00] Imhof and Schlotterer evolve Z.coli in nutrient rich conditions and

found 66 advantageous mutations over 10,000 generations with 10 parallel in-

dependent growths. This works out to 4x10~° advantageous mutations per cell

per generation. Interestingly, this is the same number as found with experi-

ments in a minimal mixture. Also, it is thought that deleterious mutation rate

is of the the order 10~*, shadowing the cells that suffered both a deleterious

mutation and an advantageous mutation. Not surprisingly, mutation effects

followed an exponential distribution, the more dramatic the change the less

often it occurred. Also shown is the decline in population diversity that also

COSMIC R. Gregory

2.17 Plasmids, Viruses and Transposons 39

occurs when using genetic algorithms, good solutions occur but are suppressed

by other better solutions; unlike those they cited, competition was always mea-

sured against the evolved population rather than against a non-evolved strain.

[RBLO1] is another practical demonstration of E.coli adaptation. The test

was for evolutionary change to the relatively high temperature of 41.5 degrees,

over 2000 generations. The experiment identified five changes in expression

level that were attributed to long gene replications rather than base mutation.

High density DNA microarrays were used to measure the expression level

of all ORFs in the genome every 200 generations. The data shows three of the

duplications where at least 23.7 kbp long and at 2.85 Mb on the chromosome,

suggesting that this area is responsible for heat shock. Control E.coli at 37

degrees did not have this mutation. The paper then goes on to use further

DNA analysis (Southern Blot) to conclude that all six cultures had evolved

to the higher temperature but three had done so in a different way that the

analysis didn’t show.

2.17 Plasmids, Viruses and Transposons

This section briefly discusses some of the more recent thinking behind bac-

terial evolution that provoked this study, put simply the idea states that evolu-

tion is powered by the transfer of genetic information horizontally, rather than

vertically through inheritance. Viruses and other forms of microscopic invaders

that parasitise the cells of other living things are one source of this horizontal

transfer, as are cases where a cell absorbs DNA from the environment. The

original support for these ideas came from the seemingly obvious calculations

showing random mutation is unlikely to be the sole cause of adaptive evolution.

Viruses are infectious agents about 20-300 nm long or wide, unable to mul-

tiply except in the living cell of a host; they are otherwise inert. A virus

contains the genetic information in the form of DNA or RNA (but not both)

along with the necessary virus specific (reverse) transcription factors that can

be transcribed and so replicated by the host. mRNA viruses come in many

COSMIC R. Gregory

2.17 Plasmids, Viruses and Transposons 40

subtypes, but ultimately convey their message using some form of mRNA that

is taken up during the transcription phase. The virus mRNA would typically

take over the host cell, shutting down the original transcription processes but

inserting itself into the host chromosome (using reverse transcription). It would

then have the cell replicate copies of itself and then at some point late in the

infection process, a dissolving enzyme would be produced that removes the cell

wall and so allows the newly created multitude of virus mRNA to spread into

the dead cells environment.

DNA viruses on the other hand are thought to have originated as plasmids

- that is DNA encoding something beneficial to the organism (having evolved

alongside the organism) but which is separate from its chromosomes - this

genetic information presumably spreads like a helpful virus from cell to cell.

The DNA virus is the example of a mutation making the plasmid turn on its

creator, using the host for its own survival rather than for the good of the host.

Both mRNA and DNA viruses are good, bare bones examples of the selfish

genes theory - this states that every living thing only exists to bring about the

survival of the genes of that organism. It must be said though that viruses are

not considered to be alive, since they are inert outside of the host cell, not that

this seems to matter for basic survival.

A simpler plasmid like device is known as a transposable element and is also

thought to have generated more rapid genetic adaptation than simple mutation

alone. Unlike the plasmid, the transposon contains only 750 to 40K base pairs

and consists of only DNA, there are no self contained transcription promoters.

Transposable elements can infect more than just a host cell, plasmids and

viruses can also be infected - this and plasmids in general are the cause of

antibiotic resistance. A crucial difference in transposon action is that it has a

less aggressive relationship with the host, it does not take over; the genome is

altered by its insertion and this might well kill the host but if it doesn’t then

the survivor has a permanently altered genome that may be beneficial.

As these mechanisms were the original inspiration for COSMIC, it might be

expected that they feature among the simulated mechanisms. Unfortunately,

COSMIC R. Gregory

2.18 Further Background 41

the complexity of implementing the more basic mechanisms meant there was

never time for these mechanisms, despite the results being much more interest-

ing. This is however considered future work and as such there are many hooks

inside the implementation by which these features can be added.

2.18 Further Background

Using the ideas talked about in in this chapter, namely the fact that DNA

transformation has a hierarchical structure that comes into being through the

presence of sigma factors and repressing / promoting enzymes (the logic enabling

mechanism). We can then conclude with the view that the genome amounts to

a hierarchical network of interacting genes, that synchronise the manufacture

of necessary proteins in order for a cell to survive and replicate in its environ-

ment. This network being sensitive to its own internal state and the effects of

the environment. It has been suggested that this network forms the chemical

equivalent of a nervous system, having the same attributes but working on a

slower time scale.

Work on replicating this exact structure seems to be sparse. There is work

on evolving recurrent networks [PSD99] but not in a biological context. There

is similar work on chemical reaction chambers and actual bacterial response (

[BS00]; [HP'TW95]; [BL97]), none of these use any kind of DNA like framework

as the initial basis for representation. Work on replicating the structure does

exist but it is by biologists for the representation and recording of known

transcriptional data, complete genomes are available. There is no known work

that tries to evolve a genome based network using a genome like representation

and transcription mechanism.

Sticking to the biological evolution viewpoint, there are some questions

that can be asked, such as how this structure came about, given the seemingly

intractable process of creating such a network through random mutation -

which is an improbably event. There must then be some additional mechanism,

such as horizontal gene transfer that can adapt bacteria (the organism of study)

COSMIC R. Gregory

2.18 Further Background 42

to different and changing environments.

It has been noted many times in the literature that mutation alone is un-

likely to have the power to cross species water sheds, requiring many mutations

at the correct loci to be effective. Putting this in the context of there being

4000 Kbases in the E.coli bacteria makes its correct change (even using natu-

ral selection on huge numbers of bacteria) very unlikely indeed. To solve this

problem in the general case of sexual organisms, the traditional approach has

been to say that sexual crossover will bring together mutations and so allow

the offspring to obtain very different gene sets. This would still seem to be

difficult to justify, especially in the context of bacteria as they are generally

asexual.

Pointing to an entirely different answer to adaptation, the horizontal gene

transfer theory says that external polynucleotide sequences will be incorporated

into bacteria; these sequences will have come from other bacteria and so be

loosely compatible. Research has suggested that bacteria have some partial

control over their ability to pick up or reject these environmental sequences;

depending on the bacteria’s current level of health and the strain in question.

Research has also noted that all bacteria seem to be able to incorporate foreign

sequences and still maintain functionality. This in itself has three answers,

bacterial cells can overcome the effect of the use of external sequences, or those

foreign sequences really are compatible, or those sequences are not compatible

and the cell dies - which is a traditional selectionist view.

Ochman et al. [OLG00] brings together some of the basic facts associated

with common bacteria genome size and transposon rates. The main point being

that different bacteria have different pickup rates depending on their environ-

ment (or lifestyle), but one of the larger genomes (that of E.coli) has 16% of its

genetic material from external sources. Putting this into context, there is the

proviso that this took place over 1 million years but this figure doesn’t however

take account of the fact that new information is being continually incorporated

and old material lost - so the sequences that make up the 16% are continuously

changing.

COSMIC R. Gregory

2.18 Further Background 43

Considering only traditional adaptation mechanisms, there is also the ques-

tion of how the chemical network is affected by mutation (hence the term

dynamic mutation from Koch [Koc93] which is then countered by Shapiro

[Sha97]). They talk about the hierarchical genome and mention the relative

likelihood and evidence for various classifications of mutation. In the absence of

experimental or even theoretical results, the conclusion would seem to be that

bacteria (and probably any other species) puts a high priority on the repair of

DNA. This implies that mutation is not good, but on the other hand, consid-

ering the ultimate source of genetic diversity, mutation is probably essential.

Another aspect to mutation rate is that it places an upper limit on complexity,

and so mutation repair mechanisms are required if more complexity is required.

As mutation would appear to not be the source of adaptation and trans-

posons appear too infrequent, the question of adaptation still remains open. Ig-

noring the asexual characteristic of many bacteria, there is the use of crossover

which would change parts of the chemical network. But then even if this form of

insertion (a kind of super horizontal transfer event) was allowed, there are then

the questions of how the network is robust enough to cope with the insertion of

different sub-networks. There is also the question of redundancy - how much of

a given network specification is actually useful for anything (i.e. used during 10

years of a bacterial family line). According to Ochman et al. [OLG00] most of

this redundancy (at the level of DNA analysis) is somehow removed using nat-

ural selection despite that material being selectively neutral. It would appear

that competition between genes for space on the genome somehow forces out

genes that are of no use. How such a balance between useful and useless genes

is achieved is unknown but the evidence says that most bacterial genomes are

a constant length for a given species.

Linking in with the question of the source of adaptation and the selection

against useless genes, there is the more abstract questions of how the network

adapts to novel circumstances and then remembers those circumstances? How

does the network organise itself so that remembered environmental circum-

stances could be reinstated?

COSMIC R. Gregory

2.19 Summary 44

Given the principle of the selfish gene, how does the enzyme activity manage

to regulate itself in a way that forces it’s metabolism (and ribosome/enzyme

creation) to stay under control and not be overwhelmed by either its own genes

or the genes taken from another species. Of course these events occur in the

form of viruses, but a bacteria suffering from mutation or horizontal transfer

of genetic material must also survive.

For our own ends, it would be useful to answer the above questions so that

an artificially evolving network can do some computation. Of course in the form

of artificial neural networks it already can; the above would provide another

evolutionary neural network model, hopefully improving on the performance of

current models by including all the right facets of biological evolution namely

occasional feedback and evolutionary network design.

2.19 Summary

This chapter has covered the basic physical structure of E.coli, the genetic

structure on which it is based and introduced the idea that this structure is

a repository for solutions to adverse conditions. We have also discussed the

sources of genetic diversity and the problem of where diversity and evolution

comes from. The final proposition then is to build a model that can simulate

E.coli at the genetic level and so test theories of evolution. That model become

known as COSMIC.

COSMIC R. Gregory

Chapter 3

Computing with Biological

Metaphors

This chapter moves away from biological material and instead focuses on

simulation and analysis of biological systems, specifically with a genetics ba-

sis. Before COSMIC there have been many simulations of genetics, both for

the sake of biology itself and biologically inspired algorithms such as Genetic

Algorithms. This chapter mentions a few of those models and importantly

their limitations. Analysis of the genetic output of COSMIC was also seen

as important, and so this chapter also covers some methods that should be

applicable.

3.1 Cell Models

COSMIC is not the only model based on cells, there are others but they

all have different aims, different abilities and very different levels of funding.

The vast majority aim to simulate single phenomena using the simplest tools

deemed fit for the purpose. This would be a reasonable approach in engineering,

but the biological problem has always been how to put the single parts (single

processes) back together again.

Given in [SL99] is the general overview of the Virtual Cell. It starts by

45

3.1 Cell Models 46

justifying its position as an open ended framework for simulation rather than

a fixed simulation. This avoids the problem of reinventing the wheel, should

make testing more rigorous and ensures that all variables, equations and data

are in one place and accessible. Obviously there are limitations to what can be

simulated but the target of cell physiology and enzyme kinetics is open ended

in that they can be specified through a HTML user interface.

The system encompasses a user defined cell physiology, using pictures as

input in either 2D or 3D. The cell can then be compartmentalised into the

cytoplasm, the exocellular region and nuclei. Each of these regions contains

user defined molecules which can then further specified using kinetic equations.

The diffusion between regions and inside regions is also definable. All of this

is entered via the HTTP interface into a distributed server which can convert

the data into executable C++ code, compile it, execute it and store the results

along with the model in a database - there is however no way to query the DB

despite some mentions of data analysis.

This model is quite large in scope, though it doesn’t aim to be E.coli and

doesn’t really have the scope, it does try to be a framework for a generic single

cell and as far as can be seen much effort has gone into making what it does

do mathematically rigorous and yet be open ended with an accessible user

interface.

There are things that it does not do, there is no reference to multiple

cells and cell interaction , the processes are based entirely on enzyme kinetics

without a genome. There is no scope for evolution, the model cell is specified

and run, with the option of looking at the results. There is a mention of

manually stepping through the solution to the reaction equations. Only a

vague outline could be found as the author had so much to cover in very little

space.

Moving in the direction of biologically inspired models, Eos [BSS00] is a

population level simulation, a rapid prototyping framework for the simula-

tion and experimentation of hybrid evolutionary algorithms and ecosystems.

Uses object orientated techniques and Java, with plugins to extend the ba-

COSMIC R. Gregory

3.1 Cell Models 47

sic framework. The object frame work uses three main types, environment,

sub-populations and individuals. The code is parallelisable using Java remote

invocation and Voyager distributed agent tool.

Also included in the system are classes representing genomes, mutation,

recombination, selection and replacement; all the evolutionary ingredients on

top of the population classes that hold together the mixed groups of individuals

in the environment.

Configuration is via configuration files, which are used to replace default

values in each class. To aid rapid development, the classes not only have default

values but now also have a front end.

Aerial placement for mobile networks - an example. Used a real valued

genome, the only part that needed to be externally supplied was the fitness

function. There was also a graphical front end that could be wrapped around

the simulation, this was itself part of the simulation and allowed the automatic

visualisation of the results.

Ecosystem simulation was based on Echo [JM93]. Individuals interact,

trade, mate and fight inside the Eos space and interaction framework. The

framework provides the ability to put the individuals in any space, 3D or

something completely different. The only change then being the visualisation.

Co-evolutionary function optimisation, an optimum finding algorithm in

a 2D landscape, the oddity being that there are three populations that fight

between each other, the hope being that local optima will be more likely to

be avoided as they aren’t worth fighting over. The main reason for this is

a demonstration of Eos implementing a different example of an evolutionary

algorithm with little extra effort.

As well as these generic features, features such as graph space (a graph ex-

tension to the space framework) and a network simulator has been added. The

network simulator is itself extended by a traffic simulator. These components

leading to a simulation of network growth.

The HERBY system by Devine et al. [DPa97, DPb97, DPc97, DPd97] is an

ecosystem simulator, but unusually is also individually based. Agents evolve

COSMIC R. Gregory

3.1 Cell Models 48

in a discrete world, search for food and reproduce when successful. The agents

are controlled using a learning classifier system, i.e. An evolving population of

control rules in each agent. The agents never tried to model any one organism,

here the goal was modelling adaptive behaviour. This project was a predecessor

of COSMIC, and as such has passed on some traits such as individuality and

modelling adaptive behaviour. HERBY was however extremely abstract and

that limited its application to real world data.

Ziegler et al. [ZDB97] used a more biologically abstract approach, giving

an example showing signal paths from receptor input to flagella and involving

9 different enzymes in the simplified case and 20 nodes, 30 edges in the more

complete case. There are around 20 receptors, 4-5 are used for chemotaxis,

enzymes can be either inhibitory or excitory. Enzyme reactions overlap, A can

affect D, E and F, and B can affect F and G. In short, this is something like

COSMIC but on a smaller scale of implementation.

Shackleton and Winter [SW97] give another biocomputation model in which

enzymes (no DNA component) can catalyse and have binding sites. Here, other

enzymes represent data (operands) to the other enzymes binding site. There

is also a binding site, which is supposed to convey function (in the real thing).

They believe that the system will not need to be programmed, but give

a manually described example system of sorting that uses enzymes which can

break a string of numbered tags if vy, < vy < vu, how v, comes about is not clear,

possibly a cause/effect of the need for topping up. And a joining enzyme which

joins if vy, < v,. There are many multiple data sets and data is given a velocity,

and more unit length lists were added during the simulation to maintain 100

unit length data items in the sac - there was just 8 unique numbers.

Round 40 produced complete solutions, as shown in population graphs for

each length. As unit lengths were used quickly, the ratio of joiners to breakers

were changed 2:1 but had no noticeable effect. Stopping joiners from joining

after already joining (for a short time only) had a better effect and unit length

strings lasted longer.

The main focus was to use a GA to evolve the program. They talk about us-

COSMIC R. Gregory

3.2 Formal Process Models 49

ing a mapping from enzyme sequence to type of function (similar to COSMIC),

but also mentions the differences between the primary structure (sequence) to

tertiary structure (shape) and locality effects. In these terms the system is

very much like COSMIC, but in the details their system has a much more

computational than biological basis.

In [Holter et al., 2001], Holter et al. put a mathematical model on real

gene expression data. Three sources of data are used and it shows the ability

to reproduce that data and also (importantly) to simplify it, in so doing this

demonstrates how few of the genes need to interact.

In closing they reiterate that the mathematics fails when the number of

genes exceeds the number of samples, and it always will fail; the solution

is undetermined. The level of fit was high, though it does leave the reader

wondering how many genes it was applied to. The data suggests 6 in one

case, but the gene expression diagram seems to have a much higher resolution.

Overall this shows what can be achieved given adequate data, but also that

there are circumstances where that data will likely never exist to make the

method practical.

3.2 Formal Process Models

A number of attempts have been made to formalise biological systems. Here

two approaches and a general graphical representation are given as examples.

Duan et al. describe [DHB00] a formal language for biological systems,

an initial assumption being that bio systems are best modelled as a mixture

of continuous non-global variables (following differential equations) and non-

global discrete variables. Discrete variables used for input/output of the system

and in the test to determine if a state should be left. In each state there is a

different set of equations for the system variables, but as they are differential

they follow on from the previous state with ease. They propose a formal

computable logic to specify the X-machine, the logic is based on the parallel

processing formalism [DKH94] but includes time rather than the “time frame”

COSMIC R. Gregory

3.2 Formal Process Models 50

approach and is applicable to this model. The reason for this logic is to avoid

(but still make possible) simulations, and instead find real mathematical facts

based on the model.

Reddy et al. [RLM96] gives some of the alternatives to modelling, the de-

scriptions are vague but seems to have much in common with Petri Nets. They

state that the problem of reliable data means that quantitative analysis is dif-

ficult and qualitative analysis is the best compromise. To this problem steps

the basic Petri net with weighted edges and some associated vector and ma-

trix equations to relate state changes with some properties. These properties

are largely unneeded but that is all the net seems to offer; given a starting

marking (one of many possible) identify the deadlock situations or bounds on

concentrations of each chemical.

The figures per place indicate a maximum of around 5 tokens representing

the various levels, it is not shown but presumably the weights are chosen to

act at specific knee points of the various reactions. The given example is of

a metabolic pathway in erythrocytes (red blood cells), input to the system is

glucose and ADP and the output is mainly lactose with ADP. The reaction

path is linear except for the reliance on ATP.

The conclusion amounts to saying the above, that the net can qualitatively

model biological processes but the inclusion of more power in the net (i.e.

inhibitor arcs) means reducing the decidability of the final Petri net model.

For a more broad view of formal languages, Usher [Ush99] gives an overview

of Petri Nets. Chapter 3 introduces different types of Petri Nets, starting with

the simplest and then adding other features as the basic Petri Net was found

to have limitations over the course of research. An interesting point was that

Petri Nets with an inhibitor arcs have the same computational power as a

Turing machine.

Of the types mentioned, some include some of the features that would be

required for a biological model. Namely a temporal aspect and a hierarchy, but

not at the same time. As the complexity of the types increase they start to look

more like an object model with a Petri net providing the flow control between

COSMIC R. Gregory

3.3 Analysis Methods 51

objects or a Petri net providing the internal object control. This could only

mean Petri Nets do not scale up without the help of the object paradigm, and so

Petri Nets could not help with the formalisation of COSMIC. As shown later, it

was the object paradigm that gave enough flexibility to specify COSMIC data

structures but no known formalism had the scope to specify reactions between

objects.

3.3. Analysis Methods

In order to help explain or at least analyse COSMIC results, it was hoped

that some form of information theory would allow some understanding of the

raw output data. This section therefor gives a brief introduction to information

theory and then other related measures [Fel98, Hay99].

Given a random variable X on a discrete p.d.f., the Shannon entropy is:

H[X] = — >> Pr(2) log,(Pr(z)).
rEX

The logarithm base sets the units, in this case bits. H[X] here means the value

of entropy for the p.d.f. X over all x, not for the variable instance X. It gives

a measure of the overall uncertainty of the distribution, 0 being totally certain,

1 being a coin toss, H[X] tending to inf as the number of x increase. It does

not say what will be next or how predictable the next is given the past, each

x is independent. The text also defines joint and conditional entropy, which

might be important were it applied.

H can also be calculated from a continuous distribution:

He[X] = — f f(z) logl2]f(x)de.

H also represents the most efficient coding of a given p.d.f., hence the

famous Shannon source code theorem:

wy (Average Length of an Optimal Binary Code on X) = H[X].

COSMIC R. Gregory

3.3 Analysis Methods 52

Entropy density is a measure of the uncertainty over a substring L from an

infinite string S. If L was S then H[X] will diverge, so the energy density is

 defined as hy, = | Which doesn’t diverge despite appearing too.

Following on from this is computational mechanics, which bring together

entropy density and Markov chains (effectively probabilistic finite state ma-

chines). A matrix of transition probabilities and a set of transition states is

required, this then allows the calculation of the entropy density but is not given

here.

Considering information density in an encoding, they all have the same basis

- a known p.d.f. from which the basic measures can be calculated. Measuring

probabilities in terms of states requires the states to be known, the mathematics

seems to be able to stretch over infinite sets but this obviously is not practical.

To find the states, we would need to artificially create state sets, each state

containing many of the same simulation states. Without reducing the states

there would never be a large enough sample to estimate the p.d.f., assuming

there is a p.d.f. behind the interactions. This approach appears possible but

is a topic in itself.

Haykin [Hay99] also gives some time to information theory, or information

entropy. This is similar to above, importantly Haykin goes into more detail on

mutual information. For application to COSMIC, this seems the most relevant.

Mutual information is a measure of how much extra information knowing

r.v. Y gives to X, first there is the condition entropy:

A(X|Y) = A(X, Y) - A(Y).

with 0 < H(X|Y) < A(X) and:

H(X,Y)=— >) >) p(c,y) log p(s, y).
TEX yey

where p(x, y) is the joint probability function of the random variables X and

Y and 4, J are their alphabets. The difference between the entropy of X and

the conditional entropy of X given Y leads the uncertainty of the system input

that is removed by observing the system output. The is called the mutual

COSMIC R. Gregory

3.3 Analysis Methods 53

information between random variables X, and Y and is:

I(X; Y) = H(X) — H(X|Y).

I(X; Y) = H(Y) — H(Y|X).

I(x; Y)=I1(Y; X).

The problem with using this appears to be the p.d-f., figures could be obtained

the p.d.f. was known but it is not. In fact it is an over simplification to consider

the distribution a p.d.f.. Also the alphabet is hard to ascertain, if it is a vector

then the mathematics is beyond the scope of this work. Continuous variables

might lead to a solution, but it is impossible to guess that approach would

be easier in practice. A p.d.f. could possibly be built up from a large sample

(which could extracted), but that still does not deal with the random variable

problem and the fact that a p.d.f is simply not appropriate. At any instance

in time we could ask what is the probability of gene product x existing when y

exists. That is the simplest case but probability does not take into account all

the effects that play a role. And what information we could hope to calculate

is seemingly contained in the linkage matrix.

Also given are equations related to special circumstances of continuous mu-

tual distributions, these rely on the marginal probability - probability when

there is no independence between p.d.f.s. A result from this is helpful in blind

source separation, and on the surface this is what COSMIC requires, but in

others (complex maths, hard optimisation problem to solve, continuous p.d.f.s.)

seems far removed what what would help COSMIC. Quite obvious is the use

(and assumption) of Normally distributed input vectors in all examples, this

cannot be realistic in all cases of a biological simulation. The conclusion from

this approach is that it could provide some measures of evolution speed and

COSMIC R. Gregory

3.4 Biologically Inspired Optimisation

and Learning 54

convergence but its application is a research topic in itself, the theory makes

important assumptions that simply are not true in the COSMIC model.

3.4 Biologically Inspired Optimisation

and Learning

This section brings together some of the wide variety of papers on bio-

logically inspired optimisation. The inspiration has not just come from the

genome, it comes from a wide range of scales. There is the ant metaphor by

Dorigo and Gambardella; Dorigo, Maniezzo and Colorni. There is the species

diversity metaphor by Marin and R.V. Solé; and there are the models of ecolog-

ical process [DPb97]. There is also other, less direct models or algorithms, such

as alternative GA replacement or the multi-level classifier [DC94, Dor95, CD98].

In an approach to identify measures of diversity for use in COSMIC, the

work by Cao and Wu [CW98a] was considered. Here they demonstrate a GA

that uses population diversity to control parameters, here it is incorporated

into the selection function.

Firstly, the Hamming distance between two strings v; = (bi,..., bi) and

v; = (bj,...,b/), where b € 0,1 and J is the length of the strings, is:

l 5 -

H(v;,0;) = >< by, © bf
k=1

where @ is the binary exclusive-or operator. The normalised Hamming distance

is then:
zr H 4749 (vi, v5) = we

which limits H(v;,v;) to the interval [0,1]. Using this normalised figure the

population diversity can be estimated with:

where m(m — 1)/2 is the total number of H function evaluations. Using this

measure, the replacement policy of replacing the most similar strings was

COSMIC R. Gregory

3.4 Biologically Inspired Optimisation

and Learning 55

adopted as opposed to replaced one of the parents or replacing at random.

The measure showed that this policy lead to the higher diversity.

Cao & Wu then goes on to make this selection via a cellular automata.

The reasons look vague, what is actually happening seems to be choosing a

string, sorting this string on fitness and calling it one dimension, and then

sorting on hamming distance (but bounded by the fitness boundary of the

chosen string). Scaling of fitness to fit the automata matrix is not discussed.

Those other strings in squares next to the chosen string (neighbours) are said

to be the most similar strings. The algorithm then says to pick another string

outside the neighbourhood and do the selection again. All very vague, it talks

about separating the fitness of strings in two groups more or less of the current

strings, then sorting the two subsets on ascending order of hamming distance

to the chosen string. Then says this creates a mapping onto the 2D cellular

automata with which we can pick the neighbourhood; it not clear how.

In [CW98b] give two improvements to the basic Evolutionary Programming

algorithm, firstly in initialisation and secondly in adaptive mutation rate. Ini-

tialisation seems to be ignored in most texts, there is a massive search space

and 50 individuals and so the variance in the population is very high. The

technique here uses quasi-random numbers to generate the initial population.

This simple deterministic hashing function has potential use in COSMIC, but

will not be talked about further until COSMIC makes use of it.

The numbers are generated based on the way numbers are represented in

the normal Arabic numeric notation. Given a natural number gq and radix p,

q can be expression as series of coefficients such that 0 < a; < p in the form

q = a) + ayp + agp? +---+amp™, m = [log[p](q)]. The quasi-random number

is then ¢)(q) = aop~' +aip-* +---+am,p~™. In decimal notation p is obviously

10, the Halton QRS method requires that p is prime. In this application, a

different prime is used for each dimension of the EP problem, g is simply the

individuals number, i.e. 1,2,3,...,m. For any values of g and p, 0 < $)(q) <1

but obviously this can be linearly scaled. An example in the paper shows how

much better the spread is, though is still random.

COSMIC R. Gregory

3.4 Biologically Inspired Optimisation

and Learning 56

The next improvement uses the Euclidean space between solutions to calcu-

late diversity. As with the previous Cao & Wu paper, the distance is normalised

over the maximum distance and then a mean found be comparing all members

of the the population to each other. This results is a diversity measure D(P),

of the string population P. In this application, the diversity measure was then

used to control the mutation rate per iteration by using it as a coefficient of

the variance. The more converged it becomes, the lower the mutation rate.

Some examples are given that show this algorithm was better than standard

EP, not just in terms of fitness but also in number of iterations required. The

most important finding was of the importance of initialisation and the evenly

distributed but random initial population. This series of papers was also a

demonstration of hamming distances between strings, something that turned

out to be very important for COSMIC.

Using ants as the inspiration, Dorgio, Maniezzo, Colorni and others have

created a group of algorithms initially aimed at solving the T.S.P. using a

distributed co-operation scheme with agents modelled on ants [DMC96]; each

agent leaves a trail along edges of a T.S.P. graph. This chemical marker called

a pheromone signals that an ant has used an edge but it also evaporates over

time. Ants given no other information will use choose the shortest path (or

random walk behaviour if path length has been withheld), but the pheromone

will guide it along some path. The effect of evaporating pheromone is to guide

ants along shorter paths. This particular paper thoroughly describes the ant

colony system and its variations. Ant-cycle, which updates pheromone on

ending of tour; Ant-density, updating of pheromone on crossing each edge -

pheromone level taking no account of edge length and Ant-quality, in which

pheromone on each edge is updated as it is crossed. All three are compared in a

T.S.P. with various parameters. Ant-cycle comes out slightly better but there is

only 0.5% difference. This is explained by Ant-cycle using global information,

though it isn’t mentioned that the others use emergent global information in

the form of the pheromone. Further tests are then carried out only on the

ant-cycle algorithm, which is tested on the Oliver30 problem [WSF89].

COSMIC R. Gregory

3.4 Biologically Inspired Optimisation

and Learning 57

A sub-conclusion is that a balance of a and 6 (evaporation versus persis-

tence) is required to achieve the right mix of following previous ant trials and

applying the ant’s internal greedy algorithm. Given the right parameters the

algorithm will converge but without it will either converge too quickly on a

sub-optimal cycle or never converge on any reasonable cycle. This would ap-

pear to imply a lack of robustness but trials did show that these parameters

are relatively constant for problem size. Another good point is that the search

does not stagnate even when the optimal is found, assuming the parameters

are well chosen.

Another comparison used elitism. The best tour was given increased phoneme

by increasing the normal phoneme increase parameters for some constant num-

ber of ants. This lead to much quicker convergence, but it is hinted that

premature convergence is more likely.

Compared to other results, it is said to produce just as good solutions

as special purpose algorithms and does reasonably well on asymmetric T.S.P.

(asymmetric being the harder variety) in which the special purpose algorithms

find difficult. However, the computation time was always longer than the spe-

cial purpose algorithms. More detailed studies and slightly different approaches

are in [CDM92, DG97] and [DG96] respectively.

Changing scale in thinking, [MS99] took an unusual population approach

to single function optimisation. The population was in fact a kind of food web,

with interdependent species that depend on each other for food. The network

is formed by a matrix, elements determining levels of reliance (randomly ini-

tialised) and the sum of each row indicating the level of survivability - 0 or less

indicating that there are insufficient prey to feed that predator. A mapping to

the Macroevolutionary algorithm makes a link between species dependent on

fitness and Euclidean distance between species. As well as general proofs of

performance, it is shown to perform better than a GA and it maintains more

diversity and an average better solution. Even the time displayed in ticks

(rather than generations) shows quicker convergence to good solutions.

Changing the scale again to something akin to a single agent, Autonmouse

COSMIC R. Gregory

3.5 Biological Metaphors and Simulations 58

by [DC94] was a trained robot using a multi-level classifier system. The au-

thors go to great efforts to put this robot in the real world, as well as defining

a notation system by which they classify types of behaviour, i.e. a sequence,

a sub-task (a combination of tasks are required for some behaviour), multi-

ple independent tasks and the suppression of one task in favour of another.

The structure of the problem was predefined, and a multi-layer classifier was

statically assigned to the problem with a controlling classifier to oversee the

co-ordination. Among the conclusions drawn were that it showed initial design

helped the learning task. It must be said that this was a real world trial and

so there were other aspects to the design (such as the sensor input) which is

not mentioned here. It is also true that real world simulation is much harder

than computer simulation.

In [CD98] the above work is summarised. It summarises all their robots

and approaches, and states their main belief - that AI is truly hard and yet

despite this it is worth tackling harder problems using real robots. They also

try to define what an agent is and how much it has in common with a real

agent. It is similar in that it must survive to perform its goal, and similar in

that there are degrees in which it does this.

3.5 Biological Metaphors and Simulations

This section briefly mentions some of the ecological simulations that could

be applied to bacterial interaction. This includes work in [DPA97, DPa97,

DPb97] on modelling a classifier controlled agent, [HJF97] on modelling agents

in a food web and [MK97] who simulate large scale mutation and transposon

action. Not mentioned is work more closely related to the current work in chap-

ter 4, this being BacSim [KBW98], Gecko [Boo97], Swarm [Swa00], simulation

logic [DHBO0] and reaction chamber languages [OLGO0].

The Echo model [HJF97] was used to test ideas about the essential sim-

ulation characteristics of an ecosystem. Discreteness and spatial heterogene-

ity [DL94] effect the predictive power of conventional models such as ordinary

COSMIC R. Gregory

3.5 Biological Metaphors and Simulations 59

differential equations and reaction-diffusion (Turing) systems in a classical bi-

ology problem and so this model was used to avoid these problems.

The model consists of agents with an internal genotype, an external appear-

ance, a single resource to trade and a reservoir of internal resources. Agents can

fight, trade (for other resources) or reproduce. Tests for which type of interac-

tion to carry out are done in this fixed order. Reproduction is activated when

a agent reaches some global resource level (fixed in the simulation), crossover

is in the form of two point crossover but is done at the gene level. Genes

are variable length as the mutation algorithm includes insertion and deletion.

Trading is based on an exchange of spare resources, it includes a form of bluff-

ing as either/both can give nothing if it has nothing to spare. Hraber says this

should be a good thing, but as implemented it favoured the bluffers as those

that lose out in the transaction will be selected against. Migration occurs when

an agent wants nothing from the current site and gained nothing in the last

round. The world itself is a grid, only agents at the same point in the grid can

interact. Each position on the grid holds resources and requires resources, in

the form of a probabilistic tax.

To test the diversity of the agents the Preston distribution was used. The

log of the number in each species is plotted on the x axis and the number of

species in that size range are plotted on the y axis. Diversity then appears

as a log-normal distribution of the form y = yoe~(*®)” where y is the number

of species falling into the Rth octive, yo is the distribution mode and a is a

constant related to the logarithmic standard deviation a: a = (2c)?. Given

that a is about 0.2 [Pre48] it was possible to estimate relative numbers of

species given the number of individuals or the number of species.

A further prediction came from the species-area scaling relation [Pre62].

Given an isolated region with an area A, the total number of species S' is

given by S = cA’, where c and z are regression constants and for empirical

ecological communities (assuming it uses a log-normal distribution) z is around

1/4. According to [HJF97] both this relation and the value of z can be predicted

using the Preston distribution. In the natural world this relation does have

COSMIC R. Gregory

3.5 Biological Metaphors and Simulations 60

exceptions, on a very large scale (continental) it does not hold true. Using

the Preston distribution [HJF97] was able to determine if the evolution of the

agents was due to evolution or just some effect of random processes.

When talking about neutral models there is no mention that the environ-

ment affects species diversity. Regardless, mating was made random to discover

if this does create species diversity. The results show that the original (limited

interaction) model favours new (and single) species. This is shown on a Pre-

ston curve for both models, but is then avoided because of the distributions

problems.

The conclusion drawn is that the model and real ecosystems are far apart

and are likely to stay that way for every model. Abstraction, scale and un-

necessary discreteness all play their part in distorting any possible conclusions

that could be drawn.

In [MK97] a GA algorithm with transposon action is compared to a tradi-

tional GA - traditional except that there is no crossover. It is shown empirically

that local convergence is avoided on a multi-modal function but also included

are some vague concepts of food and competition. Food per peak was limited,

so each peak could support only a limited number of agents. Therefore, the

measure of multi-modal converge was that the total population went up and

this was observed.

Each agent carried with it a mutation rate for both the micro-mutation (nor-

mal bit mutation) and transposon mutation. The standard ‘micro-mutation’

emulates base substitutions, small deletions, insertions and rearrangements,

expansion and contraction of triplet repeats, and others.

Replication was controlled using food, those that obtain food (based on

distance to food carrying peaks) can create a daughter per food unit. The

calculation of the distance to a peak appears over complicated; the difference

between a peak (ideal genome) and the agents is taken and raised to some

power (‘pressure’) giving the creatures proximity.

COSMIC R. Gregory

3.6 Summary 61

3.6 Summary

As this chapter demonstrates, there is a long history of simulating bacteria

and using the mechanisms of bacterial as a source of inspiration in solving

more abstract problems that are not related to biology. What can also be seen

from, for example, [CW98b] is how simple and abstract evolution can be, and

in presenting models in the this form, equally how far from reality they can

be. In building a model there is always the obvious temptation to simplify.

This simplification brings clarity but it must also remove many of the possible

interactions that may be important. It was this view, that a holistic approach

on the limit of computational power, was the best method of simulating such

a complex system as bacteria.

COSMIC R. Gregory

Chapter 4

The COSMIC Model

4.1 Introduction

Using the biological information from chapter 2, this chapter builds a com-

putational model of bacterial growth and evolution. It does this starting from

the scale of genetics while also including the scale of bacterial populations

based in an environment. This is all based on the idea of modelling the indi-

vidual, be it individual cell or individual molecule, and so will be explained in

terms of sets and relations between sets and members of sets. However, this

chapter starts with section 4.2 and section 4.3 describing the main biological

phenomena that COSMIC models. Section 4.4 then discusses more detail of

how such a model could be implemented in such a way that computation is

feasible. Section 4.5 then starts with the model proper by detailing the con-

struction of genome, from the genes and their encoding, the types of genes,

the construction of operons and finally to the genome of an individual cell.

This section then goes on to specify the other constituent parts of a single cell,

building to a population of these cells in a specified environment. The purpose

of this section was to describe that static structure of the model, which the

later sections then build on to include the dynamics.

Section 4.6 describes the dynamics within the context of chapter 2, this

highlights the important points of transcription and gives an overview of the

62

4.2 The Model - An Outline 63

most important dynamic in COSMIC, namely the interaction diagram of fig-

ure 4.4. Section 4.7 then discusses how this dynamic aspect is incorporated

into the previous formal static representation. Section 4.8 and 4.9 describes the

mathematical functions that implement the state transition dynamics which

are applied to the structures of sections 4.5 to 4.7. Section 4.10 describes

the specifics of the interactions in the context of the representation and the

mathematical functions.

Section 4.11 moves to a different scale, that of the cell population, by dis-

cussing the details of the environment in which these cells live. Having now

described all the structures and possible interaction pathways, section 4.13 de-

scribes the initialisation of the system as a whole, how the original genomes

come about and how enzymes can exist when there are no enzymes to create

them. Finally, so that evolution may occur, section 4.14 describes the mutation

operator that is applied to the previously mentioned structures.

4.2 The Model - An Outline

It is possible to think of the genome as a large data bank of protein cre-

ation instructions, and instructions for all the other cell processes such as

division/replication, formation, tactics for environmental stress, environmen-

tal input, nourishment and so forth. This DNA or RNA data both creates

the processors of the data and supplies data to be processed. Comparing to a

tradition formal structure, it would appear to be a kind of Boltzmann network,

except that the state is much harder to define. The message passing connec-

tions would appear to be proteins, but then actuators of some action (be it

DNA transcription, movement, etc.) are also proteins.

If it was to represented on a graph such as Figure 4.1 then could be modelled

using a node for each transcription site, activated by some edges representing

and connected to positive and negative activation factors, these activation fac-

tors are themselves coming from other transcription sites. In the diagram

the functions (marked f()) in each node represent the DNA transcription de-

COSMIC R. Gregory

4.2 The Model - An Outline 64

oO.
ome

Oe

OO,
Figure 4.1: Conceptual outline of the network

pending on transcription activating proteins (the edges representing inputs).

Nodes marked J are continuously transcribed and sensitive to environmental

conditions. The outputs of each function are proteins which move inside the

cytoplasm to activate other functions. System output is much harder to define,

in an organism the output is the correct metabolism for the environment - this

does not fit in the model.

The blocked nature of the diagram indicates a kind of context. Based

on [YD02] it can be assumed that the hierarchical activation of transcription

areas is massively layered, so allowing a kind of context to be activated; the all

encompassing system looking like a hierarchically activated, loosely connected

Boltzmann network that could could easily be well beyond any understanding.

Still, all this then looks surprisingly like a programming language, with context

maintained by the presence or absence of proteins.

COSMIC R. Gregory

4.3 Model Realisation 65

As seen from the above references there is already work on computational

models of biological systems, but there is a lot of variety when it comes to

biological metaphor and it is questionable whether they have any value at all.

It is hoped that COSMIC includes enough individual phenomena to be able to

say it has many similarities - it will never be the same.

4.3. Model Realisation

In forming a model, yet more questions need to be answered. It is clear

that biological processes can use massive parallelism and pattern matching ca-

pabilities without complex synchronisation. Including all the possible traits

such as temporal delays, temporal dependencies, spatial positioning, varying

enzyme concentration (generally implying a probabilistic activation function)

and multiple inputs or outputs per gene all play their role in making a sim-

ulation intractable - so the question is which are the most important for an

artificial simulation.

Implementing such a network also asks the question of how to go about

training the network when a network of useful size will have a huge number

of nodes and possible interaction modes - in other words there is the issue of

survival goals and the concept of fitness.

The representation would seem to be a good place to start. Taking the

example of E.coli which has a genome of 4000Kb. That is obviously a large

number, but there is a redundancy from the genes being encoded loosely, there

is no such thing as a gene template that can be overlaid onto the structure to

read its meaning. As an example of this loose structure, it is known that in-

tron/exon sequences in prokaryotes start with a repetition of TA bases around

30 bases before the sequence and an A rich area (though including some T

bases) after. Note this suggests some sort of probabilistic identification, each

base increasing the probability of that point being the start or end of an in-

tron/exon sequence. Little information is available on the specifics of optional

(i.e. repressor controlled) transcription, but this almost certainly works in a

COSMIC R. Gregory

4.3 Model Realisation 66

similar way.

Needless to say, such a faithful representation will not be computable and

yet there is definitely a need for a variable length representation if the size

of the genome is to be allowed to grow a network of some (as yet not talked

about) configuration. As a result, we suggest it is necessary to move away from

the anonymous storage mechanism of DNA and move to a much more labelled

representation. The labelling being chosen so that computability is conceivable

but also the genome expressiveness is not constrained.

Genetic Programming might well look applicable at this point, its basis is

the mutation of a program representation which appears similar to a genomic

program. However, research would seem to indicate that GP relies on finding

the optimal using a non-optimising Genetic Algorithm like algorithm, hence

requiring huge amounts of power and a careful design to reduce the search

space. This stems from the search for a correct program when it is obvious to

any programmer that there is huge gulf between correct and nearly correct.

Bearing in mind that a typical Genetic Program tree is only a representation

of some program, be it machine language or mathematical function, and that

there is no framework for execution as this is done by the fitness function, then

is clear that the problem with GP lies in the method of execution. The model

proposed here does away with the sequential execution machine and instead

executes a network of chemical interactions as specified by a GP program

tree, the tree being very flat. An enzyme network at its most abstract level

is an ideal machine for fitness evaluation, avoiding the halting problem by

implicitly limiting execution tree depth. The only questions remaining are

then which biological aspects to include in this machine, i.e. finding answers

to the questions highlighted above. It is my belief that this machine could

provide the power of an analogue computer, though to remain computable this

would not be immediately apparent. Using a neural network like structure

with some level of feedback, built from modules of primitive networks it must

surely be possible to emulate a whole variety of behaviours found in all living

things; or to be more tractable, bacteria and artificial systems.

COSMIC R. Gregory

4.4 Implementation Overview 67

As neural architectures contain a huge number of parameters, a suggestion

taken from GP is to use Automatically Defined Functions (ADFs) to do the

work of many smaller networks and so limit search space by removing a large

number of the primitives. In the context of ANNs, this means first showing that

it is possible to evolve simple ANNs, such as basic op-amp like configurations

involving feedback or simple multiple input summation, difference, differentia-

tion or integration; and then emulating their function by Automatically Defined

Neural Networks. Although conceptually attractive from a computational view

point, implementing ADFs poses problems equivalent to simulating a mixture

of individual particles and particle masses; the particle mass is only an ac-

ceptable simplification if the mass takes into account its member particles but

that then voids the computational benefits of treating as a whole. In short, it

would have to be possible to switch between scales of view while maintaining

coherence between the two views. Through implementation experience it has

been found that maintaining coherence between views requires exponentially

increasing implementation code for each common element.

4.4 Implementation Overview

The proceeding sections represented the rational for this work, such a model

obviously needs to be implemented to find how feasible each facet actually

is. The first stage would seem to be identifying the basic attributes of the

network as mentioned above. Clearly the very most basic requirement is the

use of transcription repressors which can be simulated using bit strings (or real

valued strings) as tags that map the output of a gene to a repressor site that it

restrains. The basic question here being how exact a match would be required

and how many repressors are required. Standard options for DNA matching

such as using the hamming or Euclidean distance being less than some € are

reasonably computable but it remains to be seen if they are accurate.

These simple questions only amount to deciding how well connected the

graph or ANN actually needs to be, or in a biological sense, appears to need.

COSMIC R. Gregory

4.4 Implementation Overview 68

The matching tags acting as edges only form part of the basic outline, a sec-

ondary question is the choice of output function. As mentioned above, the

transcription of a gene depends on many things, not necessarily just the re-

pressors. Even the simplest choice of function would need to include the spatial

and temporal aspects while using some simple exponential function. Intuitively

this seems close to biological reality. It was hoped that a form of computa-

tional penalty for phenotype size would not be required, and that genotype

size would instead be selected for or against.

So far the talk has been of a single bacterial cell, it’s genome and the

chemical network created from that genome i.e. the basic framework for a single

bacterial cell. Any changes brought about by the genome network, (sequence

insertion and deletion) have affected the single cell. Assuming the simplest

case of a single celled prokaryotic bacteria then it could well be one of millions

of individual cells, each trying to survive in some environment. The effects

bacteria have on each other (aside from indirect effects of depleting the same

energy source) have not really been looked at. The population of solutions

approach is clearly the only way to create an evolved network, this is hardly

an issue. The real issue is identifying just what the network is supposed to

be evolving toward. As mentioned above, this could mean evolving analogue

circuits consisting of op-amps, capacitors and the required control resisters;

avoiding transistors and difficult to model components. In this case fitness is

easy to define - though not necessarily easy to find.

The model could however be evolving realistic bacteria, in which case ana-

logues of direct chemical processes are evolved to allow the whole to survive.

Fitness in this evolutionary context is much harder to define, to simulate such

a growth needs some additional environment as well as information relating to

energy level and the ways in which it could be increased and decreased. Even

for a first generation simulation this would be difficult, but this first realisation

of COSMIC has achieved this in a reductionist way to leave only one survival

goal.

There is also the question of just what are bacterial inputs and outputs.

COSMIC R. Gregory

4.5 Genome Representation 69

They are known to take up and seek out calcium among other substances,

but the only output would appear to be life. Metabolism of the surrounding

nutrients is their fitness function but their abilities in achieving this through

interaction with the environment are difficult to model. Glucose is a typical

food source and yet goes through many stages of conversion, both to enter the

cell and then to power it. The power glucose provides is very much chemical in

nature and yet this simulation is trying to simulate evolution, the specifics of

nutrient uptake are an unnecessary detail. The solution to this whole paragraph

of difficult points was to identify what single high level feature could lead to

life, and that was the uptake of nutrients leading to growth and finally division.

4.5 Genome Representation

The implementation of the genome and cell will be presented using a se-

lection of set relations and functions representing reaction probabilities; this

representation is in direct correspondence with the implementation. Also de-

scribed is the environment and the input/output relations that link the indi-

vidual cells to the environment. Simulations have shown that this model is

tractable with current technology, a single machine simulates a single celled

environment fifty times faster than real time.

Figure 4.2 shows a partial example of a model genome with a representative

interpretation. The concatenation of string types is what is found in all living

cells. To remain computable the boundaries are known and the tags seen in

Figure 4.2 are set when a genome is created. Initial genomes are random, since

initialisation must come from somewhere. Offspring genomes are derived from

the parent, Figure 4.3 shows an example of type assignment to genes. Briefly

put, the type is assigned by comparing the data sequence assigned to each

of the fixed types of Figure 4.2. A strong anti-matching between gene and

fixed type sets a genes type based on matched fixed type, as a result typing is

dynamic and genes can have multiple types as shown in the example.

The strings used in the figures have a regular structure, the genome alpha-

COSMIC R. Gregory

4.5 Genome Representation 70

Figure 4.2: Flat genome structure, static representation

Metabolite

Repressor Receptor Sigma Factor Metabolite
oa a i ee — SE

Antirepressor Sigma Factor

Receptor Metabolite Metabolite Receptor Repressor Receptor
se

Figure 4.3: Genome structure, static representation with higher level meaning

COSMIC R. Gregory

4.5 Genome Representation 71

bet is defined as L = {1,2,...,4}. This is obviously based on the number of

alleles per base of DNA. However L = {1, 2, ..., 20} is just as valid because real

DNA undergoes a two stage translation process leading to 20 different inter-

pretations of the 64 combinations of 3 adjacent bases. This simulation ignores

the RNA stage for reasons of computability and so the option is open to use

either. The latter was chosen, mainly because it creates more diversity with

shorter strings and can be more quickly calculated.

A single gene is defined as:

[T =<< L>,p,7,t > where 0 < \ <0

This includes a measure of distance p relative to the start of the genome and a

type 7 which records the attributes of this gene, attributes being the types of

gene product that this gene transcribes. When transcribed I also is also used

as a gene product, in this case the position p becomes the spatial position in the

cytoplasm and ¢ is an individual time since creation to allow for degradation

using the half-life functions described below.

An operon is defined as:

U=<<S>°,T>

Where:

0<a<o

S={P,0O,T,A,T}

{P,0,A,T} eT

o is the length of operon U. P is a promoter sequence having the same

characteristics as a gene (i.e. a string representing translated RNA) but is

never transcribed, only serving as a start point for RNA Polymerase. In this

model the sigma factor plays the role of the complete polymerase complex.

O represents an operon sequence, A represents an attenuator sequence and

T represents a terminator sequence. Again they all have the same character-

istics as a gene sequence but are never transcribed, these strings only serves

COSMIC R. Gregory

4.5 Genome Representation 72

as a site for binding repressors, or in the case of the terminator, stopping the

polymerase. The specifics of how binding is simulated and what constraints

are followed are given later, here only the data representation and an outline

interaction is being defined.

The gene products of genes [are SF’, Re, An, F and I itself. Strings have

the following relationships:

SF €T andanti — match P

Re €T andanti — match O and A

An €T andanti — match Re

F €T andanti — match Q

The degree of matching d is based on the individual string instances, the func-

tion defining this is given later. A genome is then defined as:

G=<<U>"> where 0<k<0o

To allow some path between the environment and the system there are

genes (in representation) called input and output strings:

Oy and Q.,

Where:

0 < ¢,w < 0o

6e<T,a>?

Qe<T,a>”.

ais a activation level associated with the input and a is a use level associated

with the output. a is intended to allow for basic fitness testing by allowing the

genomes cell to be placed in a competitive environment.

The possible interactions within the system are recorded by binary relations

between strings, Gi =< Ij, T',%,d >, with d being a record of the anti-matching

function value. A set of relations is then defined as:

Gn = {Gi;, Gi, ...} where 0 < |Gn| < |G|? — |G|

COSMIC R. Gregory

4.5 Genome Representation 73

The total set of possible system interactions are divided into groups depending

on the individual interaction type, giving the ordered set:

Ci =< PSF,ORe, RAn, ARe, ®1,0F >

Where PSF,ORe, RAn, ARe, ®1,QF € Gn represent promoter-sigma factor

interactions, operator-repressor interactions, repressor-anti-repressor interac-

tions, attenuator-repressor interactions, input-gene interactions and output-

flagella activation protein interactions. Note that entries are not unique across

Ci as genes have multiple types in their type mask 7,. Creation of the type

mask 7, is explained later.

System state is a record of the interactions between enzymes that origi-

nated from the genome (transcriptional products), the promoter, operator and

attenuator sites on the genome, and/or the enzyme that represent inputs and

outputs. These are called the active interactions, the inactive interactions are

the enzyme that at that instant are not involved with another protein.

Stated in a similar way to Gi, for active interactions this is defined as:

Sr =< 0,0 s,t,p >

Where t is the time since the interaction started and p is the mutual position

in space. A set of interacting (bound) molecules is then defined as Srn =

S11, Sro,..., |Srn| being the current combined balance point between protein

decay and transcription of proteins on both sides of the interaction. When a

protein isn’t currently involved in an interaction it is considered inactive and

waits using a structure:

ou =< Fo,t.p>

with ¢t and p defined in the same way.

A set of unbound proteins is then:

Sun = {Suj, Suz, ...}

|Sun| being the combined balance points of enzyme decay and transcription.

Summing the occurrences of a particular enzyme in both the active Srn list

COSMIC R. Gregory

4.5 Genome Representation 74

and the inactive Sun list gives a figure for the current balance between decay

and transcription for that particular gene product. Again, it is worth pointing

of that “enzyme” refers not just to actual molecules in the form of sigma

factors, flagella activation proteins, etc., but of molecules binding sites such

as the operator sites. This softening of the distinction between molecules and

DNA allows for a more homogeneous definition of the interaction whose only

downside is the unneeded time variables associated with each gene; in short it

was a simplification for the purpose of specification.

The time and position fields in both the unbound molecules Su (¢ and p),

bound molecules Sr (¢ and p) and the position and type fields in the genes

I are discussed later, these values are part of the initialisation and runtime

process.

Combining the above states gives a total cell state:

S =<T, FO, AnR, SFP, ReO, ReA®*, 05,15 >

Where [®, FQ, AnR, SFP, ReO,ReA € Srn represent interactions of input

- gene, output flagella activation protein, anti-repressor - repressor, sigma

factor - promoter and repressor - operator. 6°,0°,T°% € Sun and represent

idle molecules of system inputs and system outputs, 5 being the gene products

(flagella activation proteins (FAPs), repressors, anti-repressors, genes) and gene

products/proteins promoters, operators and attenuators.

The cells state, interaction network and the genome are then contained in

a cell that takes the form:

C =< G, Ci, S,é, p, p,1 >

Where € records organism energy level and y recording matter level (cell mass).

Movement and actions using or transforming the genome will change both the

energy level and matter level. Movement by itself will change the position

vector f, the first two elements record the x and y position of the cell and

the third @ representing an angle of orientation. f is a secondary concern and

exists to enable placing the cell in an environment, bacterial tumble has been

COSMIC R. Gregory

4.5 Genome Representation 75

simplified to this degree for this reason. 7 is the cells unique identifier, used to

separately record cell heredity by the environment.

The environment is defined as:

Bo2<6 2b CAL fe =

For testing purposed |7| (cell population) is initialised to 20, environmental

constraints then dictate the population size, which is dynamic. FE is spatial

lattice of the nutrients with an area of 1 but a resolution that allows the cell

to feel a difference between receptors on different parts of its cell wall. ¢ is the

current time of the simulation, used as an absolute time from which all relative

time events can be calculated. At is the fine grain iteration time step. t” is

the round time after which environmental state is synchronised between cells.

P is the set of control parameters that allow for the effect but not the details

of effects on the periphery of the model. It is:

P =e t, tf, ie — a, ar“, fF em", e s*; ey me’, |L|, |®|, |Q\, Umax) Ks, m >

where the values are given in table 4.1:

t” would normally be 42 bases per second, but COSMIC enzymes are very

short in length. In E.coli an average enzyme is coded from the range of 1500

bases long, taking 35 seconds. COSMIC genes are 10 to 15 codons in length

but should still take 35 seconds. Because an average gene of 12.5 codons this

leads to 2.8 simulation seconds per codon.

Ymax is already taken into account in max. c” is in fact 0.05 of the above

figure, the above figure refers to free swimming in liquid. This adjustment also

effectively changes the environment size to 2mm? from 0.2 mm’.

Initial genome distribution is of the ratios: Promoter:2, Operator:6, Ter-

minator:6, Attenuator:3, Gene:48; this is one of the few distributions that is

important but has no backup reference. There is no known quantifiable ratio

of genes of given types.

t®, t”, r®, a®, ar®, s° and s™ are not currently used, ideally they should be

but it remains to be seen how they can be used while maintaining a link with

COSMIC R. Gregory

4.5 Genome Representation 76

Comment

Transcription rate (modified for alphabet)
Energy decrement per gene transcription

Matter decrement per gene transcription

Energy decrement per repression event

Energy decrement per attenuation event

ar Energy decrement per anti-repression event

gel epc —eyen™ [nag ecteen peengelsnae TT
Gn) (7

3.125x10"
5 [= | Bnergy decrement SY

090072_[___s* | Matter reduction coefficient —_—S—s
5x10

ke f Initial cell volume with uniform distribution

Initial uniform distribution

be 0.0

00 ene
0.0]

NS

Oo or

0.2 — 0.4

2

) | 10-15 codons gene~!
20 Max loci per codon

| [O]| 50 integers Number of cell input receptors

Naber of fag
0.046 Maximum cell growth rate

Ww

og”

mb

2.8m ig
0.4444 fg(dm) fg7! Yield, dry cell mass per glucose

6x10~* | fg(gl) (f{g(dm)-min)~! | Maintenance rate
ee ee a Cell dry mass density to volume coefficient

Table 4.1: Table of COSMIC parameters

COSMIC R. Gregory

4.6 Genome Mechanics - Background 77

reality. Following talks with Kreft these parameters are important but in the

context of COSMIC are far too complex (being chemical in nature) to combine

with the existing simulation, they would add an additional level of complexity

that is considered simply unnecessary.

4.6 Genome Mechanics - Background

To explain the basic interaction mechanics that take place around the

genome, the RNA polymerase, repressor and the DNA strings need to be

explained in the context of the the more formal framework of the previous

section.

The process needs an initiator that allows it to start running, one of the

most important of these is the sigma factor, such as SF, from genome G;

transcribed from gene [,. In a real biological system the transcription complex

that decodes the DNA is composed of two logical units, the sigma factor and

the RNA polymerase (core enzyme). It is the sigma factor that makes the

RNA polymerase specific to a kind of promoter, without the sigma factor the

RNA polymerase would bind with low probability to any part of the genome.

In a real cell, once transcription has started the sigma factor leaves the core

enzyme and is free to move to another waiting core enzyme. Given that the

RNA polymerase is the machinery and the sigma factor is the enabling element,

the simulation does not have an RNA polymerase as an object, it is assumed to

exist. As the RNA polymerase outnumbers the sigma factor by 3:1 [TMBW97]

and as the sigma factor is free to continue once it has started transcription, it

is reasonable to make this simplification.

So then, given a molecule called a sigma factor SF, that is a model of Su

and was originally transcribed from a gene by a RNA polymerase. The sigma

factor molecule will probabilistically match and stick to a promoter sequence

P,;,. In COSMIC this matching is based on anti-string sequence matching and

the spatial distance between the loose sigma factor molecule and the static DNA

string where the promoter site is found; matching functions and all possible

COSMIC R. Gregory

4.6 Genome Mechanics - Background 78

combinations of gene type matching are given later.

As the existence of the RNA polymerase is assumed, when the sigma factor

has completed its role of transcription initiation it is released back into the

cytoplasm. Starting at sequence P,, the virtual RNA polymerase machinery

will slowly move along the genome. As it moves it can come across five types of

DNA sequence, they are: another promoter, an operator, an attenuator, a gene

(or sequence of genes) and a terminator. Genomes are either random (when

there is no parent, see 4.13) or based on the parent, in either case the ordering

is not known.

If this promoter represented the start of a lac operon then it would be

followed by a operator sequence O,+1, and genes I',40, [443 and [y44. If the

operator wasn’t blocked by an attached repressor (which had been transcribed

from a gene sequence elsewhere on the genome) then the RNA polymerase

would continue along the genome and transcribe the three genes that follow

the operator, these three genes would instantly be placed into the cytoplasm

and be allowed to interact with any other enzymes that match in their reaction

relations Gi;, Gi, Gio, Gip, etc., any of these genes could be sigma factors for

this promoter, for another promoter or for no promoter in the cells genome.

If the operator had an attached repressor then the RNA polymerase would

cease in its transcription effort and unbind from the genome. Note that the

lac operon has no immediate terminator. Also note that biological evidence

suggests that polymerase moves along the genome rather than ‘swimming’

around it, transcription is too fast for it to be done any other way; references

to blocking and removing are more metaphorical than actual but the simulation

takes them literally as the true mechanism can only be guessed at.

If the promoter represented the start of a trp operon then it would be

followed by a operator sequence O,41, an attenuator sequence A; and five

genes [',13,..., 447, all of which go together to encode for tryptophan at the

RNA stage. As this model doesn’t attempt to take account of the subtleties

of the RNA stage it would be more accurate to use a single gene sequence

I',43. This operon is quite different to the Jac operon, not only does it have an

COSMIC R. Gregory

4.6 Genome Mechanics - Background 79

attenuator sequence but the operator is a co-repressor and the sole transcription

product has a negative feedback effect on transcription of this operon. The

attenuator sequence works like an operator except that it is more probabilistic

in its action. A repressor bound to an attenuator has the effect of creating

a 10:1 chance that the RNA polymerase will cease transcription, in the case

of the trp operon the gene product is itself the repressor. COSMIC follows

the 10:1 attenuator probability but obviously the negative self feedback is not

specified and is left to evolution.

The operator in the real trp operon is a co-repressor that includes negative

self feedback. The repressor comes from elsewhere on the genome, the co-

repressor is tryptophan, the gene product of the trp operon. Without both

binding together they cannot individually bind to the operator. COSMIC has

no co-repressor type and its effect cannot be brought about directly. This

alternative was chosen so as to reduce implementation complexity without

penalising expressiveness.

Also included in the model is a repressor and anti-repressor interaction,

neither example operon includes this latter type but it is known to exist and

so can only enhance the expressiveness of the genome; one of the goals when

identifying the interaction paths in the genome was to include a variety of in-

verting effects and allow evolution to select the interactions. The anti-repressor

Ang, is the sole means for removing a bound repressor Reg from an operator

Ox+:, obviously an important role for what should be bistable transcription.

Disregarding the lac and trp operons, in the real cell the transcribed gene

sequences will (after conversion via RNA) become the RNA polymerases, sigma

factors, repressors and anti-repressors necessary for continuous optional tran-

scription, as well as creating the other necessary enzymes (complex proteins)

to metabolise nutrients and so allow the survival of the genome contained in

an individual bacterial cell. In COSMIC the same is true, the cell goes part of

the way to surviving when transcription of the sigma factors, repressors and

anti-repressors regenerates those lost to decay.

The other key to cell survival is a sustained correct response to environmen-

COSMIC R. Gregory

4.6 Genome Mechanics - Background 80

tal stimuli. In COSMIC this is achieved through a very much simplified model

of receptors, cell mass and flagella culminating in a set of inputs ®,, ®p, ...

and outputs Q), Qe, Each input receptor ®; has a position on the cell wall

which, to make the simulation fair and genomes transferable, are in identical

positions on all cells. Based on the cell position and the receptor position the

value of a for each ®; can be calculated. a is then used as a probability of

matching input ®; to a receptive gene product [;. Probability rather than the

real case of existence or non-existence is a necessary simplification as many in-

puts would otherwise be needed. In the real biological case the receptors would

be the start of a conversion process that makes energy and matter, the basic

building blocks underlying transcription. The simulation cannot hope to take

into account the chemical process and instead a bound transcription product

I; cannot be bound with anything else.

Outputs Q;, have a position on the cell and are linked directly to flagella

in the environment. If a flagella activation protein (FAP) I’; was to bind an

output 2; then the environment simulates motion. At the moment motion is

calculated by summing a vector of all flagella positions, ideally this should be

perpendicular to the cell to simulate a tumble rather than a push.

The combination of input reward based on cell position and cell position

based on flagellum output produces an indirect reward based system that is

the basis on which the simulated E.coli evolve.

A summary of possible interactions, sources of transcription products and a

map of indirect or direct attenuation is shown in figure 4.4. Each type is created

from the same genes above and as mentioned before, the assignment of type

of based on the anti-matching of genes to operators, promoters, attenuators,

inputs or outputs rather than being specified at (for instance) initialisation.

This chart is discussed more fully in section 4.8 where the edges are tabu-

lated with weights and depend on both molecule age, degree of anti-matching

and distance in space between molecules.

COSMIC Rk. Gregory

4.6 Genome Mechanics - Background 81

f

modifies’
;

attenuates*

Figure 4.4: Possible “enzyme type” interactions

COSMIC R. Gregory

4.7 Network Creation - Assigning type 82

4.7 Network Creation - Assigning type

The relationships introduced above in figure 4.4 link transcription products,

areas of genome and system input/output into a list of possible reactions, that

list being occasionally referred to as a network; or more specifically a template

for network creation. This is done on the type 7, associated with gene sequence

T,, be it a real gene sequence in the case of the genome (P, O, A, T, I) or

imitation gene sequence in the case of the input and outputs (®, Q), all these

relations define the contents of the set C72 in C.

As has already been mentioned, type assignment is dynamic and defined

in terms of what each gene sequence can bind with. This does not however

make the assignment arbitrary as some gene sequences already have type as-

signments; input and output gene sequences are marked as such during ini-

tialisation. Promoter, operator, attenuator and terminator sequences are all

of a fixed type. All that remains is the assignment of type to the gene prod-

ucts themselves; possible types being sigma factors, repressors, anti-repressors,

flagella activation proteins (FAPs), receptors and ‘genes’. This latter type is

a default for gene products that do not fit any other types. Note that some

static type assignment is necessary, without it only a matching between [; and

[, could be found, whether this represented an input/receptor, output/FAP,

sigma factor/promoter etc. cannot be known, one side of the interactive pair

must be given to resolve this ambiguity.

As promoters are known, their sigma factor counterparts are identified by

being valid anti-matches to the promoters. This amounts to identifying the

subset of gene sequences from the set of all sequences [; in G, testing each

possible pairing of promoter to gene sequence. This gives:

PSF ={< Py,Tg >,...} where VP, € G,W[g € G, match(P,,T'g) <

match() being the anti-base matching function defined below and «€ being the

match tolerance, 85 for test purposes (giving a high interaction level) and

around 15 for use during the simulation - an ideal value of 1 is far too low for

computable evolution.

COSMIC R. Gregory

4.7 Network Creation - Assigning type 83

Repressors can also be easily identified by being a valid anti-match to oper-

ator sequences. Again this amounts to identifying the subset of gene sequences

from all possible sequences, including those gene sequences that were found to

be sigma factors. Testing each pair of gene sequence to operator sequence gives

the set:

ORe = {< Og, Tg >,...} where VOg € G,WPg € G, match(O,,T'g) < €

match() and € being the same as above.

Repressors that bind to attenuators can also easily be identified by being

valid anti-matches to attenuator sequences. Again this amounts to identifying

the subset of gene sequences from all possible sequences, including those gene

sequences that were found to be sigma factors, repressors, etc. Testing each

pair of gene sequence to attenuator sequence gives the set:

ARe = {< Ag, Tg >,...} where VA, € G,VEg € G, match(Ag,Tg) <€

match() and ¢€ being the same as above.

System inputs bind to any gene that can become a transcription product

(i.e. VE € G) regardless of any type already assigned, so identifying gene

sequences affected by input sequences involves using the anti-base matching

function on the set of all possible sequences ®xI € G. This results in the set:

Ol = {< ®,,Ig >,...} where V6,, V's € G, match(®.,T's) < €

match() and € being the same as above. Note that this relationship has been

given the name input-gene, despite gene itself being a generic term.

System outputs also bind to any gene sequence that can become a transcrip-

tion product regardless of any already assigned type, so again identifying gene

sequences (FAPs) affected by output sequences uses the anti-base matching

function on the set of all possible gene sequences. This gives the set

QF =< Q,0g > where VO., VP's € G, match(Q.,T's) < €

match() and € being the same as before.

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 84

Anti-repressors might cause a problem, they represent the only interaction

that has no fixed type on either side. One approach to this is to wait until all

repressors have been identified using the above and then use the now familiar

method of creating a working set - this remains the current method. This gives

the interaction set:

AnR = {<Tq,Ig >,...} where WPo,0g € G, match(I,, Pg) < € and tp, = Repressor

match() and € being the same as before.

For the future there is the possibility that anti-repressors are identified by

the sole condition of being an anti-base match to a gene sequence. That is,

gene sequences are matched to gene sequences and if the anti-base matching is

within tolerance then that is considered a valid relationship regardless of the

possibility of there being no operator affected by the repressor. Of course, there

is then the question of which is the repressor and which is the anti-repressor.

If the repressor is not involved with an operator then it is of no concern and so

this form of identification remains a practical possibility. It is plausible to use

this mechanism to penalise genomes whose loose matching creates islands of

activity; this activity can be set-up to use cell energy and so reduce the cell’s

fitness. This approach remains a possibility.

Terminators are not involved in any direct interactions, there was the pos-

sibility of having the the virtual RNA polymerase test sequences with the

terminator but this is not biologically accurate; in reality the RNA polymerase

machinery is stopped by the terminator by virtue of the terminators coding

sequence snagging the machine, so the gene sequence reads as stop no matter

how it compares to the polymerase.

4.8 Reaction Rates and Probabilities

This section discusses the construction of tables that specify the probabili-

ties of transfer from an unreactive molecule state to a mutually reactive state,

these functions simulate a half life as well as taking into account some other

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 85

details such as molecule position. In effect these probabilities reflect the use of

edges from figure 4.4 at the level of the individual. Also included are functions

for deciding molecule removal based on probability and degree of matching (or

rather the degree of anti-matching). In the future it would seem more accurate

to place less emphasis on a probability density function (p.d.f.) based on type

and instead use a mapping function from gene encoding to p.d.f. that is also

(to a lesser degree) based on type - otherwise identical enzymes will have vastly

different life times, as is the case at the moment.

4.8.1 Potency matrix

This matrix is read as “y directly affects potency of x” with non-interaction

shown as —. This is a time dependent molecule degeneration as a function of:

p(t) = e-** Where ¢ is the age of that molecule. A value of 0 indicates there

is a relationship but has no effect in that direction. Some points to note

are that the inputs, outputs and the gene based imitation enzymes (operator,

promoter, attenuator and terminator) are timeless. The input and output

enzymes represent the interface to the environment and so there is nothing to

be gained from ageing and then replacing them - which would also have to be

done using a mechanisms outside the transcriptional mechanism. The latter

are part of the gene, which ages along with the cell’s genome. In this model

the genome is considered to be static in most time frames so the elements of

the genome are static and therefore timeless. Evolution is implemented as an

entirely independent stage and should not be considered here.

In Table 4.2 the first column shows degeneration of an idle molecule, other

columns show the degeneration rate under that given relationship, with ¢t being

the ages of both individual enzymes. Here the gene I is used as a central point

of interaction between the other string types, it could be said they are the

centre of the system.

The individual potency coefficients in the Self field are used for ageing of

individual enzymes, all other uses of potency are for the binding or unbinding

between pairs and so uses the relevant pair to obtain the coefficient. The choice

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 86

| Oper | Promo | Met |
fa ra le ee ee a ae |
fem ele ed) ee Sule | Oe
| Operat |— | - | - | — | — joor] — | - | -~ [|= | = | = |
| Promot|-| - | — | - [| - [| - Joor] - | - | - | - [— |

eS el ee ee ee Be eee ee 2
| Rep |-| - [oor] - | -|- | — [oo] — |

gest teat tt tet | Anti [-[- | = | = oorf - |- | - | -~][- J] 0 |
pape fis |=) ee | A ee Ee Pn S| epee POS) arabs:

Se

Table 4.2: Potency matrix, providing a coefficient of reaction rates

of row/column or column/row generally follows the same pattern; the row is

the enzyme that ages, the column is the imitation enzyme that does not age.

The only exception is the anti-repressor/repressor reaction, as both age the

ordering is more arbitrary but is ultimately fixed - the repressor is the row.

4.8.2 Enzyme matching matrix - from non-reacting state

A probability (or rate) of matching another enzyme is given by:

b(d) =e #4

taken as a function of 8 and depending on d - the distance between the proteins

in space (|Pa — py|). — shows there is no chance of interaction. As gene types

(i.e. what an enzyme can react with) are determined solely by their encoding, a

single gene can be (for instance) both a FAP and a repressor. In this situation

s(d) is calculated for each case.

4.8.3. Enzyme matching matrix - from reacting state

When in an interacting(reactive) state the probability is given by:

b(t) =e"%

and provides one coefficient of remaining in that state. ¢ represents the age

of the reaction. This is the same as the above matrix, though a brief mention

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 87

Table 4.4: Enzyme coefficients from a non-reacting state

by Kauffman [Kau93] suggests that repressors remain attached to the genome

until actively removed. This has been implemented but is beyond the scope of

this matrix.

4.8.4 Protein matching matrix - direct compatibility

As well as the time and space dependent probability functions for state

change, there is also a probability state change based on direct protein match-

ing - that is direct anti-matching of gene sequences. As each gene [is poten-

tially a different length, this must be taken into account as the expectation of

the difference in length. A close match is the basic requirement for the above

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 88

interaction probabilities to take place. This matching defines the interaction

paths (Gz) between potential individual enzymes in the system. Once calcu-

lated, the other interaction probabilities above can play their part until such

a time as the network (Gi) becomes out of date. This is a necessary step as

calculating the anti-matching degree for all possible genes is computationally

expensive. As a result, this step is carried out when the genome is first created

and then as any new additions are added to the genome, such as sequence

insertion, or from future extensions to COSMIC such as plasmid mechanisms.

The anti-matching function is defined on the set of all gene pairs ['y,I'g

with the function:

T.—l rE

(2)?((Pal — [Pal)? + mings?!" [D4 be(a44x)XOR. Bj, b)?|
match(T,,0s) = Tal

a

Where |[,| > |I'g|, 6 is the number of alleles per locus and bc(z, b) returns

the normalised number of mismatched alleles (bits) per loci, i.e. normalised by

b = 4 or b = 20, depending on chosen DNA sequence model. (2)?(|L'a| — |I's|)?

is included to remove the bias for genes of different lengths. This gives the

expected random error that is equivalent to extending the shorter gene to be

as long as the longer gene. Without this the shorter sequences would obviously

dominate by matching more easily.

Figure 4.5 shows an unnormalised cumulative distribution of 32 random

genomes with an average of 1000 genes each. Frequency is on the vertical

axis and distance on the horizontal axis, exact units are not meaningful. It is

expected that this sort of graph will give an indication of convergence, as the

average distance between genes will increase taking the mode to higher values.

As can be seen, even increasing the genome sizes to 1000 still produces a large

amount of sampling error, which is removed by the curve showing the overall

trend.

Building on the text of section 4.8.4, the connections of the network are

defined using the condition d = match(T,,Tg) < ¢. € being the cut-off point

deciding if there is an edge between gene sequence I’, and gene sequence Ig.

It is hoped that € can be small and results suggest that 0.15 is appropriate to

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 89

800000

700000

600000

500000

400000

G
e
n
e

Di
ff

er
en

ce

300000

200000

100000
5 10 15 20 25 30 35 40

Frequency

Figure 4.5: Cumulative distribution of all random genes, from a sample of 32

individual genomes.

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 90

Input Output
‘Genes’ ‘Genes’ Genome
—A A—

Input ‘Genes’

Output “Genes’

Promoter
Operator
Gene |
Gene 2
Gene 3

Genome

Figure 4.6: Gene interaction within a randomly initialised genome. Both ver-

tical and horizontal axes represent the same input receptors, output receptors

and the genome. Squares show there is a link (a relation) between the pairing

of genes or receptors. Input and outputs do not interact direcly so the top left

shows no interactions occuring.

ensure the network is loosely connected enough to be computable. Obviously,

the network will be updated whenever some new sequence is added to the

genome but this only requires n* steps per genome per iteration and n* during

genome initialisation rather than a quick initialisation and n* steps per genome

per iteration. A quantitative figure on the connectivity of the E.coli genome

is not available, but it is considered to be low.

To enable visual inspection of running simulations, the simulation soft-

ware can display the gene connection network. An example using random (i.e.

non-converged) genes is given in figure 4.6. This shows 10 inputs © (first 10

COSMIC R. Gregory

4.8 Reaction Rates and Probabilities 91

columns), 5 outputs 2 and a genome of 90 genes [. The term gene refers to

a sequence rather than a gene that leads to a transcription product. As all

interactions are reciprocal, this adjacency matrix is symmetric - it is shown in

it’s full form to allow for debugging of what would otherwise be a large amount

of data.

The colours are solely to help readability on what would otherwise be a

mass of black squares. Each adjacent square is a different shade ensuring that

no two adjacent genes are the same shade, again to be readable. In cases

where there is much more gene interaction, and so more filled in squares, the

difference would be stark.

A small operon is annotated, possible interaction paths are shown between

the operon towards the end and an operon around a third from the start of

the genome. Without obtaining more detail, this example shows the operons

promotor interacts in some way with a gene at the end of the genome, so we

can assume that gene at the end of the genome as a sigma factor. As is the

gene toward the start of the genome, on the same horizontal position as the

promoter.

4.8.5 Combining reactivity functions

During the simulation run, the above functions (p(t), b(d) (bind enzymes),

b(t) (release enzymes) and match([,,Ig)) need to be combined to give an

overall probability of state change. The probabilistic steps are there to add the

stochastic effects of existence inside the cytoplasm.

The probabilities potency(t), bind(d) and release(t) are then used through-

out the lifetime of the network C7 as the weights in the probabilistic reaction,

or more specifically as probabilities for enzyme state changes. Each enzyme

instance has two basic states, it is either reacting with some other enzyme

(including being attached to the genome) or it is idle. In the latter case, the

probability of it reacting is:

p" (Ta, T's) = f"(potency(t,), bind(d), potency(tg), bind(d))

COSMIC R. Gregory

4.9 Reaction P.D.F.s 92

and the probability of it ceasing to react is:

p’ (Ta, 0g) = f’ (potency(t,), release(ta), potency(tg), release(t,))

The simplest function for both f"() and f*() is the product of pairs, and

this has been used. Other options are min(a, b), max(a,b) and a+b—ab - each

calculated for each pair of the gene and then for the combination of the genes.

4.9 Reaction P.D.F.s

The implementation uses the following formulas to calculate both probabil-

ities used for stochastic decision making and in stochastic forcasting of future

events, this being an effort to remove the overhead that comes with continu-

ously generating random numbers and testing against a probability function.

The simulation supports a variable sized time iteration, this detail is not shown

in the functions that follow but is taken into account so that probabilities re-

main effectively constant. These following sections build on the previous sec-

tions in that they state the formula used in each reaction type, whereas the

above sections have defined the same formula in terms of other formula.

It should be noted that the choice of the exponential function as used

throughout is based on ease of computation rather than any biological reality.

This function was chosen because its inverse can easily be found and computed

in either direction. The exact function for simulating these reactions in this

scenario is unknown, reassuringly what can be seen from biology is that any

and all functions are used at some point. As a result, some function had to be

used and linear seems inappropriate, exponential was the only choice.

The same should be noted of the reaction parameters. There is no absolute

correct parameter set for these reactions, the can never be one in such an

abstract scenario. The best solution was to combine the known quantities

in a way that was fair and so give all the enzymes the same chance. As all

enzymes and cells operate by the same rules there is no strong bias, all reaction

parameters are combined without any one dominating.

COSMIC R. Gregory

4.9 Reaction P.D.F.s 93

4.9.1 Input regions, receptors and enzymes

The stochastic unbinding of input region-receptive gene products is calcu-

lated using the formula:

Pree?
Op + Yr

Receptive gene products being repressors, anti-repressors, FAPs and/or sigma

factors. p is a random variable in the range (0, 1] and a,, 7, are rate coefficients

from the potency matrix of table 4.2 and y, from the unbinding matrix of table

4.8.3. The result ¢, is then the time to unbind relative to the gene’s time of

creation; not the current simulation time. This is to avoid digitising effects. If

t, < current_time then the enzyme will never be bound in the first place. The

above equation comes from the integral of the unbinding probability:

p — ewer Ir eta Or

The stochastic binding of input region-receptive gene products can be cal-

culated using the formula:

_ log(p) + d6,
—Oy

t,

Where p is a random variable in the range (0,1] and a, is from the potency

table 4.2 and , is from the binding table 4.8.2. This formula isn’t currently

used, instead the following formula is used to make a probabilistic decision at

any given instant.

— p—aBr —trar p=e “re

The problem with this approach is the continuous stochastic checks of all pos-

sible pairs of enzymes. It would be much better to calculate t, but that then

creates a conflict for when ¢, expires it could be the case that it has already

expired with another input enzyme. In the implementation there are more

options to avoid the continuous testing of probabilities, however it would be

difficult to show that randomising artefacts did not perturb the model.

COSMIC R. Gregory

4.9 Reaction P.D.F.s 94

4.9.2 Repressor proteins and operator regions

The stochastic binding of operator region with repressor gene product is

decided on the following probability:

Pp = e Br eo er or

Where d is the physical distance between operator and gene product, t, is the

age of the repressor in question (operators have no age), a, is the operator-

repressor coefficient in the potency matrix and 6, is the operator-repressor

coefficient in the binding matrix.

The stochastic unbinding of operator with repressor is calculated with the

following formula:

_ —log(p)
- Vr + Oy

Where t, is the time the binding will end, relative to the repressor’s time of

Tr

creation. p is a random variable in the range (0, 1], 7; is the operator-repressor

coefficient taken from the unbinding matrix and a, is the operator-repressor

coefficient taken from the potency matrix. This formula is based on the integral

of the following:

p= eT tr e—trar

Where t, is the current age of the repressor.

Note that natural repressors do not willingly break their hold on the DNA,

repressor binding is stable. The repressor must be actively removed by an anti-

repressor; as a result 7, is very small to ensure t, is very long, longer than the

cell is reasonably expected to live.

4.9.3 Promoter regions and sigma factors

The stochastic binding of promoter and sigma factors is essentially the same

as the previous interaction, note that the presence of RNA polymerase can be

reasonably assumed. Only the sigma factor ages, the promoter is timeless.

Binding and hence transcription initiation is based on the following probabilis-

tic decision:

p= e tBsf e—tsf Osh

COSMIC R. Gregory

4.9 Reaction P.D.F.s 95

Where d is the physical distance between gene and sigma factor inside the

cytoplasm, t,, is the age of the sigma factor instance, as; is the promoter/sigma

factor coefficient in the potency matrix and §,, is the promoter/sigma factor

coefficient in the binding matrix.

Stochastic unbinding is generally not used, a transcription rate defines the

number of bases per unit time that can be transcribed. i.e. |[|-tr . Except for

the operator and attenuator effects it is guaranteed that the RNA polymerase

will reach the end of the operon and so transcribe all genes. Once the sigma

factor has bound, the initiation stage has been reached and the sigma factor is

almost instantly ready to be reused, taking |P|-tr simulation seconds to return

to the unbound set.

The case where the operator has an active repressor serves as the exception.

An initiated polymerase will wait for the repressor to be removed but it waits

a finite time, this p.d.f. provides that finite time and takes on a similar form

to that of the operator/repressor using the formula:

cele)
Ysf + Osf

Where t,r is the time the binding will end, relative to the time of transcrip-

tion initiation. p is a random variable in the range (0,1], ys5 is the pro-

moter/sigma factor coefficient taken from the unbinding matrix and a, is the

promoter/sigma factor coefficient taken from the potency matrix. This formula

is based on the integral of:

p= e 'sfIsf e—tsf%sf

Where t;r is the current age of the sigma factor. Note that ts, > |P|- tr will

be taken as t,f = |P|-tr and so early termination before initiation will not

occur. Failure during transcription of a single gene is likely to create more

problems than diversity. In effect it could be argued that this possibility of

failure is similar to the use of attenuation sequences, but this implementation

route would be so restrictive as to obscure the case without it and not be

strong enough to support the case for it; there does not seem to be any value

COSMIC R. Gregory

4.9 Reaction P.D.F.s 96

in entirely probabilistic termination. There is also the problem of supporting

partial strings which are assumed to be exactly based on the given instance

gene type, in this model any form of termination occurs on the gene boundaries

so partial gene products are never produced.

4.9.4 Output regions and flagella activation proteins

Binding of the output region and flagella activation gene product is a prob-

abilistic decision based on:

— p—dBm ,—tmam p=e e€

Where d is the physical distance between protein inside the cytoplasm, t,, is

the age of the protein instance, a,, is the output region-FAP coefficient in the

potency matrix and £,, is the output region-FAP coefficient in the binding

matrix.

Stochastic unbinding takes the same form as the operator/repressor inter-

action probabilities. The formula is:

_ —log(p)
Ym + Am

m

Where t,,, is the time the binding will end, relative to the FAP’s time of creation.

pis arandom variable in the range (0, 1], ym is the output/FAP coefficient taken

from the unbinding matrix and a, is the output/FAP coefficient taken from

the potency matrix. This formula is based on the integral of:

p= e im Im elm am

Where ¢,, is the current age of the FAP instance.

4.9.5 Anti-repressor/repressor interaction

Binding of the anti-repressor with repressors is a probabilistic decision based

on:

D = e tbr e tae e tr ar

COSMIC R. Gregory

4.9 Reaction P.D.F.s 97

Where d is the physical distance between enzymes inside the cytoplasm, t, is

the age of the anti-repressor instance, t, is the age of the repressor instance,

Q, is the anti-repressor/repressor coefficient in the potency matrix and £, is

the anti-repressor/repressor coefficient in the binding matrix. a, is the same

as the a, coefficient but from the point of view of the repressor.

Stochastic unbinding uses the formula:

f, =. in) eee)
—(Ya + Oa + Yr +r)

Where ¢, is the time the binding will end, relative to the anti-repressors’

time of creation. p is a random variable in the range (0,1]. 4, is the re-

pressor/ anti-repressor coefficient taken from the unbinding matrix, a, is the

anti-repressor/ repressor coefficient taken from the potency matrix. a, and 7,

are the same coefficients but taken from repressor’s point of view. k is the age

difference between the anti-repressor and the repressor. Should t, indicate a

bind time less than the current time, the binding never occurs. This formula

is based on the integral of:

Dp — ea Ya er or e faa

Where ¢, is the current age of the repressor and t, is the current age of the

anti-repressor.

4.9.6 Attenuator regions and repressor interactions

Binding of the attenuator region and repressor gene product is a probabilis-

tic decision based on:

D — e tr err

Where d is the physical distance between enzyme inside the cytoplasm, t, is the

age of the repressor instance, a, is the attenuator region/repressor gene product

coefficient in the potency matrix and £, is the attenuator region/repressor gene

product coefficient in the binding matrix.

Note that an attenuator repressor is known as a enzyme, this makes it

unambiguous in the table but confusing if used anywhere else.

COSMIC R. Gregory

4.9 Reaction P.D.F.s 98

Stochastic unbinding takes the same form as the output/FAP interaction

probabilities. The formula is:

— log(p)
tp = ———_

Ye + Op

Where t, is the time the binding will end, relative to the repressor’s time of cre-

ation. p is a random variable in the range (0, 1], 7, is the attenuator/repressor

coefficient taken from the unbinding matrix and a, is the attenuator/repressor

coefficient taken from the potency matrix. This formula is based on the integral

of:

p= er Ir er Or

Where ¢, is the current age of the repressor.

4.9.7 ‘Terminator regions and RNA polymerase

Transcription terminators have no other effect than stopping the RNA poly-

merase from continuing with transcription. There are no probabilities with this

as the natural terminator mechanism is taken to be reliable. Natural termi-

nation is either rho dependent or rho independent, termination in the model

is always rho independent. Rho dependence could be simulated using another

gene product type or by some external level parameter. Both of these option

were discounted, the later because it is far too artificial and the former because

terminators would then be another form of attenuator and the distinction be-

tween the two would be too small for terminators to be worth considering as

a separate type. Therefore, attenuators can be considered as essentially rho

dependent terminators but with biased termination probability.

4.9.8 Individual enzyme ageing

When all enzymes are created each enzyme is assigned a time to live based

on the p.d.f.:

p=e

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 99

Where 4 is the coefficient taken from the potency table 4.2 and t is the time

to live relative to the current time. Since an enzyme has multiple types A is

calculated as the mean of the type coefficients. As with the others, this is

integrated to form:

t = —log(p)/A

giving the correct relative value for a random variable p in the range (0, 1]. As

with the above integrated forms, this avoids the need for stochastic checking

of enzyme removal events.

The figures in the potency matrix give an average half life of 99 seconds,

this is slightly shorter than can be found in E.coli but not much shorter. As

mentioned in [TMBW97], half lives vary considerably and regulatory enzymes

have the shortest half lives of 2-30 minutes. For COSMIC a short half life

is necessary simply to speed up the response of input to output and reduce

unnecessary computation.

4.10 Genome Mechanics - Run time interac-

tions

This section brings together ideas from the last few sections to create the

main simulation algorithm. As has been noted before, there are many scales

to this simulation, this scale is that of the genome to the transcription engine.

Later we will move onto the interface to the cell wall that represents another

scale.

During a typical simulation step, the algorithm goes through the phases of

enzyme binding, timed event handling and removal of defunct enzymes. En-

zyme binding being initiation of any of the enzyme interactions mentioned at

length previously. Nothing happens during binding so the only states COS-

MIC considers are binding and unbinding, unbinding being implemented as

a timed event that has a known time to activate, thus allowing unbinding to

be implemented without polling a set of all bound enzyme pairs. A Nassi-

Schneiderman based diagram of this is shown in figure 4.7, the fine level detail

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 100

Cell Fine Grained Loop

Main Loop

Iterate over 1 second, 0.05

seconds per step

Call Fine Grained Loop

Send Cell Statistics

Want for syncronise signal

For each sorted relation

If there exist unbound instance

For each instance pair

Test the probability of

this reaction occuring

Move pair into

bound set Initialisation

For each interaction type

i i Assign random number

For each interaction type

For each type

For each bound pair

Test if interaction should

come to an end

 Move pair into

unbound sets

Figure 4.7: Nassi-Schneiderman based diagrams depicting the overall structure

handling each of the gene and enzyme process, namely binding and unbinding

enzymes and genes, with high level sychronisation between cells.

is then discussed in the following sections. The main point to note here is that

all relations dealing with interaction between enzymes and genes are sorted on

a random number to remove biases introduced by the order of execution.

4.10.1 Enzyme binding

The first phase is binding, this is carried out on a per type basis for each of

the possible interaction paths (as defined by the interaction network set C2).

All Gn lists have a random ordering so as not to bias the interaction, this is

fixed for the life time of the cell.

Given a promoter P and sigma factor SF pair, the number of available

enzymes are tested as zero sigma factors makes the reaction impossible. For

each pair of unbound (available) enzymes, the combined binding probability is

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 101

calculated using the above reaction matrices and then tested against a random

variable. Should a binding occur then that pair of enzymes are moved from the

two Sus (both of which are in 2 in S) to SFP (also in S). Apart from SFP

recording a bound pair I’, and Ig, the Su and Sr types are distinct because

most interaction paths deal with unbound enzymes, so the wasted effort of

searching through lists of bound enzymes is avoided. At the point of binding

the time at which the sigma factor and promoter site will part is calculated as

|P|-tr simulation seconds, where tr is the transcription rate in bases per second

- suitably adjusted to take account of the COSMICs shorter than natural gene

length. Once this time has passed the sigma factor will unbind from the genome

and return to Su and the sigma factor entry ['g in Sr is set to @. The position

of the sigma factor instance psp is set to the promoter position pp. RNA

polymerase doesn’t explicitly exist in the model but it is assumed to exist,

this will start transcribing genes; the timing generally determined by the gene

length and in this case is based on calculating with |P|-tr and later |['|-tr where

I is an operator, attenuator, terminator, a simple gene or another promoter.

In order to put a cost on every interaction, |I| - te is subtracted from the cell’s

energy € in C; during binding. This being an attempt to put a price on every

interaction.

Following P on the genome G; of C;, there could be an operator site O.

If the operator O exists and if it can be found in ORe then the operator has

an attached repressor and so pauses transcription - assuming there is an RNA

polymerase on the adjacent promoter to pause. When paused by a repressor the

RNA polymerase stays on the promoter site and either unbinds through timing

out via stochastic unbinding or continues transcription after the repressor has

been removed by an anti-repressor. When the RNA polymerase has moved

from the promoter site, the promoter is moved from Sr in S and placed back

into ['° to await another transcription initiation, I, in Sr is set to @ to indicate

that the promoter instance has moved back into I'S. This results in Sr having

no references to enzyme instances, it remains as a state variable showing the

position p on the genome and so therefore the current position of the RNA

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 102

polymerase during transcription.

The case of the operator and repressor is less involved as there is no

movement of the mobile RNA polymerase, once the repressor has finished it

simply detaches, Sr is removed. The overall approach is the same as the

promoter/sigma factor interaction, the possible interaction network ORe is

scanned and for each pair of enzymes O and Re, the combined probability

is calculated and then compared to a random variable. If this pair is chosen

then the operator O and the repressor Re enzymes are moved from Su to

Sr. These two enzymes are represented by two IS entries of type Su, binding

brings them together in a single Sr. The interaction time is calculated using

the reverse probability function given in 4.9 and this event then waits for that

time to occur - a time that is quite long to account for the correct behaviour of

anti-repressors (inducers). In the meantime the given operator site is blocked

from other repressors and the adjacent promoter site is forced to pause any

polymerase trying to transcribe genes. In the same way as for promoters, an

operator which is already in use stops another repressor from binding until

the current repressor is removed when its probabilistically determined time is

reached. One effect of the binding is to reduce the cell’s energy according to

the function tr - |O|, this being an attempt to put cost on all interactions.

The repressor unbinding time is long because the biological case shows that

repressor attachment to the genome is stable and so only an anti-repressor

enzyme can remove the repressor. This is therefore another interaction path

and unlike the other paths, both the list of bound and unbound repressors

is read through to enable binding events with repressors that are currently

repressing. Compatible reaction paths are read from the interaction network

ARe in Ci, individual enzymes in the cytoplasm are read from both I’? (the

unbound list) and ReO (the bound repressors list). Successful comparison of

the binding function given in 4.9 with a random variable leads to the enzymes

being moved from which ever state they were in and bound together in an

Sr, which is then placed in ReA in S. Unbinding time is calculated using the

unbinding p.d.f. function given in 4.9 together with a random variable. When

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 103

unbinding occurs, the two enzyme instances are moved from Sr to individual

Su entries in I’, to allow rebinding and the repressor position pre is set equal

to the operator position po.

The attenuator interaction path is unusual in that it is potentially destruc-

tive. When binding unbound attenuators, the list of potential interactions is

read from ARe in Ci as usual and enzyme instances of these types are located

in T'S in S. Each possible pair from I'% (Su) is given the chance for binding

using the p.d.f. function in section 4.9. A bound pair is then moved from the

T° unbound list into Sr and the unbinding time calculated from a random vari-

able based on the inverse p.d.f. unbinding function. This is the same process

as for the operator/repressor interaction. The destructive aspect comes from

the RNA polymerase that will come across the attenuator site. When a RNA

polymerase reaches the attenuator site it is stochastically stopped or continues

transcription after the attenuator, in either case the repressor bound to the

attenuator is removed and destroyed. The attenuator in Sr is put back in I’?

and the repressor instance in Sr is removed altogether. In the case of normal

timed unbinding, both instances are moved from Sr and placed in I’, ready

for another chance to rebind. The attenuator reaction does not affect the cell

energy level, but should the repressor survive, the repressor location pre is set

to the attenuator location p,.

Interactions involving the input receptors (modelled as static genes [) in-

volve the same steps as those for the operator. The interaction network ®I is

stepped through in a random but fixed order for each iteration of the simula-

tion, each possible enzyme pair that fits the type specification in ° and ®°

has their mutual probability determined and is then tested against a random

variable. If the pair is chosen then the input instance Su from ®° in S and

gene instance Su from I’ is moved to acommon Sr inI'®. The reaction time

for this pair is calculated using an inverse p.d.f. and random variable. When

unbinding occurs, the enzymes in Sr are put into their respective unbound lists

and the position of the enzyme pr which bound to the receptor is set equal to

receptor p®. The inputs represent the environments input to the system and

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 104

so need to reflect this input. This is achieved by combining the normal bind-

ing probability with a probability value that represents environmental input.

Details and justification are in the environment section 4.11.

The output is the only interaction that leads to movement of the cell and

so positive matter level increase for the cell as a whole. As with the others,

the interaction network QF is cycled through in a random but fixed order. A

compatible pair of idle enzymes in the form of the output receptor 2 and the

FAP F are found using the combined probability of their characteristics, this

probability being tested against a random variable. A positive outcome moves

the two enzymes from their respective lists Q € S and F' € S into the mutual

list FQ. When unbinding occurs, the enzyme in Sr are put into their respective

unbound lists and the position of the receptive enzyme pr is set equal to po.

The reaction time is also calculated so that the binding can be stopped, as

with the others this time is stochastic, based on the inverse of the combined

probability functions.

The sixth interaction path is that of the repressors and anti-repressors.

Again the interaction network RAn is cycled through in a random but fixed

order and enzyme pairs repressors Re and anti-repressors An are tested using a

combined probability function against a random variable. Should the compar-

ison succeed, both enzymes are moved from their sets and placed together in

AnR which is a record of when the reaction will end and the two enzymes will

no longer be bound. As both enzymes involved in this reaction poses a time

and therefore decay, the end time of the reaction is based on min(t4n, tre). In

other words, it is possible for a selected pair to not actually interact at all, the

moment they are identified they can be dropped because one of the pair is too

old. When unbinding does occur, both enzymes are positioned at a point half

way between both of them, that is repressor enzyme p,4, and anti-repressor Pre

is set equal to $(Pan + Pre):

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 105

4.10.2 Timed events - interaction state changes

The above section lists all the possible interaction paths that are initiated

by the simulation, assuming an initial state of no interacting enzymes. This

section reiterates what was lead onto in the binding section by covering all

instances when an interaction ends or changes state into another interacting

pair of enzymes. All timed events are sorted in earliest first order, allowing

them to be checked with the smallest amount of effort; each event set from

S (that is T®, FQ, AnR, SFP, ReO, ReA) is checked in a round robin order

until no events remain to be processed (ie. Their unbinding action is carried

out), for this current time frame. This is a fairer scheme to that used above,

the round robin approach assures that no one interaction type (such as the

promoter-ribosome interaction) dominates by having the first chance to try all

of its possibilities. It is assumed that the low probability of binding ensures

no binding artefacts are present, so despite not being strictly fair this scheme

does not show in the results.

The sole multi-state event is the sigma factor-promoter state, the sigma

factor is placed back into the cytoplasm soon after transcription initiation and

is replaced by an RNA polymerase. As the RNA polymerase can move, its

state is defined by the gene type it is currently over. Each timed event signals

the move from one gene to the next. This new event is placed in the time

sorted event queue SF'P € S; this event is made up of the null sigma factor

) and the gene IT’, that followed the promoter P; the promoter P and sigma

factor SF is placed back into € S for the next usage. The new time of this

event is taken from the first gene [and is simply tr - |[',| - for efficiency the

operator state is assumed to have occurred, it is essentially taken to be part of

the promoter’s state.

When a post promoter event in SFP times out, the gene [; is transcribed

and a new enzyme based on the template [; is created and placed in the

unbound queue of [€ S. The next event time is calculated as ¢r - |[';4;|, and

T;41 is placed in SFP instead of [;. If [; is a terminator then the Sr entry is

removed from SFP € S. If T; is an attenuator and that attenuator is in ReA

COSMIC R. Gregory

4.10 Genome Mechanics - Run time interactions 106

then transcription is stochastically terminated in the ratio 1:10 (as per the trp

operon example).

When an event in ReO times out, the repression operation has done its job

of blocking a promoter and so has no further work to do. The repressor Re

and operator O are placed back in T € S and the ReO entry removed. This

contradicts the biological case and so the bound time is very long.

When an event in AnR times out, the interaction has completed its task of

blocking a repressor from binding to an operator. The repressor Re and the

anti-repressor An are placed back in I, and the event in AnR is removed.

When an event in ['® times out, the interaction has completed its task

of both blocking enzyme [- by using it elsewhere. Regardless, as with the

other simple interaction types the input ® is placed back into ® € S, the gene

T is placed back into [€ S and the event in ['® is removed. In the future

the number of inputs is expected to be used as a source of inputting external

information into the transcription simulation, the number having a negative

effect on the enzymes available for other uses - such as transcription, but also

for repression, anti-repression and acting as a FAP. When an event in FQ) times

out, the effect in terms of set movement is identical to that of the input.

4.10.3 Iteration final steps

The above two sections cover most of the time spent by the algorithm,

binding enzymes and unbinding enzymes with occasional enzyme creation. All

enzymes have a time to live that starts when each is first created, when an

enzyme reaches the end of its life it is removed from the cytoplasm represented

by ['° € S. The time of death is determined stochastically at the time of birth

and though the exact time can occur while an enzyme is bound to another, the

enzyme is only removed when it is not bound. The exact time is determined

by the enzyme type, which is an average of the applicable types in the potency

matrix 4.2. As inputs and outputs do not age and only unbound enzymes are

moved, only the set [°inS can contain enzymes to be removed.

Once a single iteration is complete, the cardinality of each set in S is

COSMIC R. Gregory

4.11 Environment 107

recorded. Also recorded is the combined (bound and unbound) cardinality

of each transcription product from G that are found across all of S and the

bound inputs/outputs from ® and Q found in the sets [® and MQ.

The final step is to increment the simulation time internal to the next value.

Tests have revealed that a value of At = 0.02 is a small enough for all the above

events to be discrete. Depending on the probability coefficients in the reaction

tables, this figure could well be larger without granularity artefacts.

4.11 Environment

4.11.1 Introduction

The simulation as defined so far consists of a collection of cells, each cell

C having an individual state and dynamically defined state changes. In order

to evolve the cells towards some goal, an environment is necessary to provide

open ended evolution. The environment can never be completely open ended

(Kreft, personal comm.); evolution towards something must surely mean there

is some global optimum being sought, even though that optimum is implicit and

defined by the interaction between the environment and the cells themselves.

The work of Kreft et al. represents a good basis for both open ended evolution

and further extension to the simulation framework. Kreft et al. [KBW98]

describe an environment in which E.coli grow on a glucose enriched medium;

the main purpose of the work is to demonstrate cell growth patterns formed

by the growing population. The growth patterns largely depend on accurately

modelling the growth rate of individual cells as they deplete their localised

glucose source. For use in our simulation, the important points are i) this is an

environment in which to build on (as already stated) and ii) the modelling is

quantitative and based on a small set of differential equations and parameters,

making them sufficiently accurate but also highly computable.

The environment as modelled by Kreft et al. [KBW98] is used as an arena in

which COSMIC simulated E.coli cells must evolve to co-ordinate their flagella

in response to the local environment under each cell. The implicit fitness

COSMIC R. Gregory

4.11 Environment 108

function is therefore to seek out glucose rich areas either by path following or

through risk taking.

The environment therefore creates a longer time scale in which multiple cells

exist in a shared space. Cells are created and die, in between they interact and

try to live as best as their genomes allow. Each genome is computationally

intensive but relatively isolated over the short term and so genome simulation

is implemented as a distributed system. The cells are periodically considered

as a real population in order to pass on combined environmental effects. This

synchronisation time is t” in E, comparing this to the per cell fine grained

time of At shows synchronisation time to be around two orders of magnitude

greater, hence synchronisation with the environment and peers is a long term

effect that allows for the genome to respond to its environment.

4.11.2 Cell input

The cell interaction comes about through the depletion of environmental

energy E in E during the environmental synchronisation phase. All cells are

rewarded by growth proportional to glucose level under each cell. This depends

on the condition of the environment immediately under the cell and the current

mass of the cell, mass leading to diameter by the formula:

Q11(/. * 0.75/II)?

The diameter can then be shown in the visualisations and be used as a size

attribute with which to decrease the substrate concentration in the environ-

ment. When the cell is given a reward, the reward comes from the cells current

position in the environment and so the same location will give less reward in

the next cell synchronisation phase, obviously all parameters are automatically

adjusted to take account of changes in the synchronisation window size and the

resolution of the glucose matrix FE. Over the long term the environment re-

covers at a rate set by global parameter me” in P. A static cell will soon

deplete all the locally available resources; thus static cells are selected against

in favour of moving cells, and randomly moving or fixed trajectory cells are

COSMIC R. Gregory

4.11 Environment 109

selected against in favour of intelligently moving cells.

Qualitative information and accurate parameters for glucose were taken

from accurate biology literature as cited by Kreft et al. [KBW98], these be-

ing [BD96, TN84, KW82, NTT96]. The main effect to be modelled is the link

between cell growth and glucose concentration, this can be approximated with

the following relationship:
_ £+ Vax? S

Kn+8

This is a Monad [KW82] based equation and takes the values [KW82] Vinax =

0.342ms~—+ (maximum growth velocity) and K,, = 2.3mg glucose (half-saturating

constant). S is the glucose concentration relative to the individual and starts

at 4.5 mg glucose. «x is the current cell volume in grams, converted ([SLD79])

from cell mass in litres. v is the volume increase in g s7!. Glucose use is

then found from the average efficiency ([NTT96]) of 0.245 g cell volume per

g glucose. In the future this may instead use an equation based on [KBW98]

which accounts for the non-linearity of glucose take-up efficiency, this effect is

currently considered too small to have any impact on COSMIC.

v and v/0.245 can then be scaled according to t” and the environment

updated along with the cell, the cell also uses energy for non-growth which is

lumped into the maintenance term qn.

4.11.3 Cell output

Cell growth comes from the environment and can be considered an input

to the cell; cell output makes use the each cells set of flagella. The activation

probability for each input receptor in @ € [@+ * is set according to the

glucose level under each receptor, this is a more direct form of input to the cell

but has no effect on the well being of the cell. The position and orientation of

each cell combined with the position of each receptor on the cell wall gives a

position in the glucose matrix FE, the level at that position is then directly used

as the value for a in each ©. Note that in order to enforce some phenotype

regularity, positions of each receptor ® and of each flagella Q are identical on

all cells.

COSMIC R. Gregory

4.11 Environment 110

During the normal simulation of the cell, receptive proteins will bind with

the inputs ®, the actual number bound is not important as COSMIC makes a

departure from reality and instead makes use of those proteins which haven’t

bound. In effect, the inputs form a sink and those proteins that remain free

are available to continue as before; to put it another way, the input is inverted.

However the genome responds, the output will be in the form of bound flag-

ella activation proteins. The average number of binds to (2, over the time t”

indicates the activation level of the each flagella. The cell position is changed

by using the activation level of each flagella, cell movement is the vector sum

of each of the activation levels multiplied by that flagella’s position vector.

This total movement vector is then reoriented according to the cell’s orienta-

tion and then added to the cell’s current position. Orientation of the cell is

not changed, the movement vector is sufficient. The movement this achieves

is not biologically realistic, the reality of bacterial chemotaxis is mechanically

stochastic reorientation and swarming of flagella into one identically rotating

tail. An accurate model of this is outside the scope of the simulation, environ-

mental feedback is essential to include a form of fitness measure but considered

a secondary part of the model.

The maximum speed of travel in a liquid solution ([Mac96]) is around

25ums~!, this amounts to around 10 body length per second. COSMIC con-

siders the environment to be an agar plate to allow for 2D resources in the

implementation and visualisation, as a result the maximum speed is somewhat

lower and is set by parameter c”. Note that energy for chemotaxis is assumed

to exist, simulating the exact biochemistry is beyond the scope of COSMIC.

4.11.4 Cell death

Once the environment has updated its substrate map, all cells are informed

of their new cell mass and position and are then free to continue with the next

t’ /At iterations. The algorithm cycles around again; looping until 0 = |['5| €

S, uw <0 or e€ < 0, at this point it is known for certain that the feedback

mechanism has failed at the scale of the genome (0 = |I°|) or the genomes

COSMIC R. Gregory

4.12 Cell Division 111

interaction with the environment (j and €) has failed. As a result the entire

cell is removed from the simulation, whatever nutrients it contained is not

released into the environment.

4.11.5 An example environment

COSMIC provides a view of the population as in Figure 4.8, this shows

the presences of cells through their effect on the environment. This is a typical

early example with 20 initial random genomes, the darker the area the lower the

glucose level. A time series of pictures like this show the cells moving. Here the

different sizes show relate to the differences in cell mass, it must be noted that

this figure is artificial and the difference has been exagerated. In most cases the

non-converged genomes all have the same effect on the environment, the cell is

motionless and eventually runs out enzymes or mass falls below a critical level.

In either case, the simulation removes the cell from the environment leaving

the black circle of substrate use. Chapter 7 gives a series of pictures taken

directly from COSMIC, unlike Figure 4.8 these show the cells with realistic

dimentions and the state of the environment.

4.12 Cell Division

In comparison to the cell itself, the simulation of cell division is a simple

process that aims to fairly distribute the contents of the parent cell between

the two daughter cells. The most technically challenging aspect is the division

of the gene products. Gene products exist as many instances of each gene and

at division each daughter cell should have a fair share of the same types of

gene products. For COSMIC, this is achieved by considering each individual

gene product in turn and metaphorically flipping a coin to decide which parent

that gene product will transfer to. Given many trials of cell division, the result

follows the Normal distribution with a mean of half the gene products. Thus

the process is generally fair, and rarely harsh enough to kill the most brittle

cell.

COSMIC R. Gregory

4.12 Cell Division 112

i

1

I

I Sasa =
!

i

i

i 1 i i i i i 1 i
Figure 4.8: Example of population distribution with underlay of
nutrient availability. Differing sizes relate directly to cell volume and so relative
success, as the bigger the cell, the closer to the onset of division and the creation
of a genetically identical cell.

COSMIC R. Gregory

4.13 Individual Initialisation 113

For example, given a single gene type with 10 gene products of the same

type, each of those products has a 50:50 chance of being with one or the other

daughter. The probability of all 10 gene products going to the same cell is then

very low at 0.2%, which then means cell death through division should be a

rare event. Most gene types have many more gene products and so we would

expect only the most brittle cells to suffer death from division. This is not a

bad result in itself as we are seeking robust transcription networks.

The final change to the daughter cells is a halving of mass. This is deter-

ministic and set to exactly half that of the parent cell. Nothing could be gained

from making this step noisy.

In every other respect, the two daughter cells are identical in content. Both

have the same genome and both have the same input receptors and output

responses. In the environment the daughter cells are moved a small distance

away from the parent, so that they do not compete for resources and to be

visible in the environment snapshots.

4.13 Individual Initialisation

Each individual cell in the population contains a genome and derived gene

products, COSMIC initialises each genome uniquely and so the population

is effectively multiple species but sharing the same physiology. If a cell is

successful then its genome will be passed on to more offspring and so create

populations of a single closely related species. The first stage is important, as

artificially populating the simulation with related cells first means identifying

good genomes. As has been said before, the definition of good genome has

never been clear and so it was always better to have the simulation decide. The

results later show that a good-enough solution will take over the population,

and so choosing the good genome is effectively a race to be the first good

enough genome.

The input and the output set of proteins are shared by all cells and so are

created first. All enzyme templates share the same gene length distribution,

COSMIC R. Gregory

4.13 Individual Initialisation 114

it is a uniform distribution over the range 10-15 that gives each gene’s 4,

this figure is loosely proportional to the expected size of the network, though

changing the binding tolerance € would also account for small changes. The

strings that make up ® and 2 are mutually exclusive (®NQ = @) but are

otherwise random.

|®| is set so as to give a reasonable number of receptors given the genome

size and enzyme population size. As the number of simulation enzymes is

much smaller than the real number, so is the number of receptors. A figure

of 50 is currently used, this is quite arbitrary but is obviously many orders of

magnitude away from the real figure.

|Q| follows the average number of flagella. In E.coli this figure is in the

range 0-15, the simulation uses the average of 8 that was found on wild strain

normals [Mac96].

The lengths of the genes (I) are set using the same uniform distribution

as the length of the input/output sets. Any difference is obviously penalised

by the matching function and so a difference in lengths of input/output sets

requires that the gene lengths be distributed inside that length range. The

initial content of the genes is again randomly distributed over the set L.

The size of the genome (in units of genes) is a complicated issue with no

clear answer. Genome size is intended to be flexible enough to allow COSMIC

to converge on a reasonable number, factors that come into play are the genome

duplication time, and energy usage for duplication and transcription. As the

enzyme interactions work by detaining metabolites, the genome size must also

take into account input and output size, as these are necessarily fixed. A rea-

sonably starting point would seem to be the square of the minimum cardinality

of the sets ® and 2. The main point here is to identify the relationship between

the figures so they don’t become yet more tuning parameters, this point could

be said for all the ill defined parameters. Regardless, a uniform distribution

of 70 — 120 seems a reasonable starting point and was not changed for all the

simulation runs.

COSMIC R. Gregory

4.14 Genome Mutation 115

4.14 Genome Mutation

None of the text so far has described genome length change or any other

form of mutation. COSMIC implements one form of mutation, sequence dele-

tion and insertion. Both sequence insertion and deletion modify the length

of the genome G, and update any reactions that may have been involved on

the chosen strand of genome. Insertion is based on a uniform distribution of

genome length marking the start point, the same distribution marking the end

point, and the same distribution marking the insertion point. Deletions use

the same distribution to find start and end points on the genome G. That sec-

tion is then immediately removed and complications resolved based on what

was bound with that segment of genome. The solution to this is type spe-

cific but ultimately means preserving the enzymes involved with the genome.

These large mutations could well be deleterious but considering how reason-

able solutions dominate the population (as shown in later chapters) the loss of

cells to these large charges seems balanced when compared to the possibility

of increasing the population fitness at a faster rate. Note the original goal of

COSMIC was the simulation of evolution with all the varied forms of evolution,

yet this version of COSMIC includes this single operator. This was due to time

constraints, the above framework took so long to implement that a broad set

of mutation operators had to be left for future work. With that in mind, the

above model has scope for these operators.

4.15 Summary

This chapter has described a formal mathematical model E.coli that in-

cludes the scales of genetics and a multicellular population of individual cells.

The model is described using a combination of set theory, relations and prob-

ability density functions, realising an entirely individual-based model. This

model then forms an open-ended framework onto which mutation operators

can be applied.

Using supporting evidence from chapter 2 we state that optional transcrip-

COSMIC R. Gregory

4.15 Summary 116

tion is the most important aspect of E.coli when considering the modelling of

evolution and so COSMIC should be based on this mechanism, with supporting

mechanisms where necessary.

The model is described using a representation based on a hierarchy of sets,

at the highest level there is the environment set containing the cells, the en-

vironment and high level parameters. The cell is then an ordered set, each

containing a genome set, a gene product set and a multiple sets storing inter-

action relationships between elements of the gene product set and the genome

set. Relations between elements of sets is then determined by functions whose

inputs are parameters of the individual elements. An optional transcription

mechanism for producing gene products (considered by COSMIC to immedi-

ately become enzymes) from genes then completes the self supporting cycle of

enzyme creation, allowing the cell to be considered alive if the cycle continues.

The cells are placed in an environment in which they compete with each

other on a continuous basis for available substrate - used directly by cells for

growth, but importantly the substrate is reduced by a cells presence. Cells

divide when they reach a critical size, in doing so pass on their individual

genome and half their gene products. This in total provides an implicit fitness

function by which cells compete against each other, a cell must be motile to

remain in high substrate areas and this motility depends on the genome. The

more controlled the motility the higher average substrate and so the quicker

the growth, leading to the quicker reproduction of the genome that brought

about quicker cell division in the first place. Note the term quicker, as cell

division speed is relative.

The genome of each cell is subject to mutation on a continuous basis, se-

quence insertion and deletion over the whole genome is possible with a small

probability. This is the source of evolution by which cells are to evolve better

motility.

Finally we note that the COSMIC model presented in this form is compu-

tationally feasible despite the large number of component parts. This is largely

the result of careful consideration during the implementation of the set struc-

COSMIC R. Gregory

4.15 Summary 117

tures and the model being executed in parallel due to the vast differences in

time scales being modelled.

COSMIC R. Gregory

Chapter 5

Parallelisation

5.1 Introduction

Large simulations of bacterial colonies require vast amounts of computa-

tional time. The only way to achieve the necessary level of performance is

with parallel computers and a suitably designed implementation that maps

the problem onto the hardware. For real problems this mapping can be non-

trivial requiring careful consideration of the constraints in both the system

being modelled and the hardware that executes the model.

This chapter describes the parallel implementation of COSMIC and shows

that it is possible to map a dynamic problem such as this onto fixed resources,

for the most part by making use of implicit multiplexing of resources and

showing the importance of knowing where to partition the problem between

server and clients. Through this an efficient simulation has been created, mak-

ing maximal use of the available hardware without constraining the model to

require excessively specific resources.

An individual based modelling approach has large populations of enzymes

multiplied by the large populations of cells that combine to give a system of

some 9 million individual entities!. This simulation needs to run on a possi-

bly hetrogeneous system, involving machines of different speeds and varying

1Summed over approximately 280 cells as found in a recent simulation.

118

5.2 Simulation System 119

communication latencies.

To make the system more extensible and realistic the genome and the pro-

teins exists inside a cell wall, demarcating what belongs to that cell and so

making a clear cell boundary. This has further advantages in terms of exten-

sibility, following the same concepts of increasing scale allows the inclusion of

other concepts later on, the cell becoming a container for all things related

to the cell. This helped enforce an ideal boundary of cells and environment,

making the division at a clearly defined boundary in the model improves the

structure of the overall implementation.

The computational architecture takes these factors into account by follow-

ing the client server model combined with coarse grained synchronisation of

processes. Each process varies in execution time but there are vastly more pro-

cesses than processors. The environment containing the cells is considered the

server and cells inside the environment are the clients, or individual processes.

This ensures efficient parallelisation as cell intercommunication is rare in the

current COSMIC revision and the environment has minimal processing needs,

the overall result being a linear growth in computational nodes allowing a lin-

ear growth in the product of simulation speed and total simultaneous number

of cells.

5.2 Simulation System

The simulation was first compiled using Gnu GCC 3.0.4, compiled for Linux

2.2.21 running on a 640 megabyte Pentium3 666 Mhz. No Linux specific in-

structions were used and so the simulation will run on any GCC platform

(i.e. almost any architecture in existence) or any C++ compiler once compiler

idiosyncrasies have been dealt with.

Memory requirements vary dramatically. As the simulation is essentially a

particle simulation, each particle being an enzyme, the connectivity of the net-

work defines the memory usage and simulation speed. A massively connected

network will use around 320K bytes per bacterial cell, and so in a population

COSMIC R. Gregory

5.3 The Process Tree 120

of many this amounts to a lot of memory and time. Fortunately the networks

convergence will bring with it an exponential speed increase and exponential

decrease in memory usage.

The entire COSMIC system has been implemented using the Parallel Vir-

tual Machine system [GBDJMS94], allowing the distribution of computation to

other machines. In theory this allows COSMIC to can scale up to run hundreds

or thousands of cells, this being a more realistic figure for dependable results.

The practice of this remains to be seen, PVM has interface limitations which

constrain performance and C++ can make inter-process control and commu-

nication very verbose. The alternative parallelising system, MPI has problems

of its own and was rejected early in development.

Execution currently consists of merely running the application which rep-

resents the environment, this application then creates cells as separate UNIX

processes via the PVM system. Execution continues up to a (currently) fixed

global time though the possibility of restarting a stopped simulation has been

implemented. Saving object state is an excellent idea but C++ does not do

this automatically.

5.3. The Process Tree

The division between server and client is obvious as cells don’t directly

interfere with each other, the cells can then be clients and have relative au-

tonomy for the fine grained process of computing the contents of the cell and

its response to the environment. With the current COSMIC implementation

intercell communication only occurs when cells divide, this is a rare event com-

pared to the fine grained computation of enzymes. This strategy also limits

data duplication by clearly separating which object has access to data and

which object needs only an average, time scale difference being the important

metric. Message passing is also kept to a minimum because synchronisation

across all cells is coarse grained, the client-server synchronisation time scale is

much longer than the internal cell time scale used for enzyme interactions.

COSMIC R. Gregory

5.3 The Process Tree 121

Server

cm: =

Environment

<— > Message Passing JN oossceeeceecceceneentneeneseensneeernenetnes ?

> Object : :
posses ‘ i

|:

eS : Process Boundary
Cae) ——- ’ Machine Boundary

Salaa Inheritance \

* Simplified Object

Figure 5.1: Process synchronisation

Figure 5.1 shows the logical structure and the physical mapping onto ma-

chines. The environment and all the cells are individual UNIX processes, the

environment process is started and then this (via PVM’) starts the client cells.

It is a limitation of PVM (i.e. hidden load balancing) that each cell is a pro-

cess even if residing on the same physical machine. Considering the time scales,

the environment and cells can share the same machine as the environment’s

processor usage is always low when compared to the sum of cell processes.

As occasional statistics and values are passed between server and clients,

the main processes all have lightweight objects (Figure 5.1 marked with a *) to

store these miscellaneous values without resorting to duplicate but cut down

objects.

'Parallel Virtual Machine is a message passing library for parallelising applications, sup-

porting data sharing and remote execution primitives.

COSMIC R. Gregory

5.3 The Process Tree 122

COSMIC requires strict synchronisation to ensure no cell runs through

more iterations than any other cell. As a result there is a potential for wasted

computation time as all cells must pause at some point and come to a common

mark point while slower cells complete that same time frame.

The following steps help avoid this by keeping the synchronisation time to

an absolute minimum.

1. The environment process waits for each cell in the population to return

a result, the environment process iterates steps 2-3 until all cells have

reported in their results.

2. The environment process receives data values indicating what the cell

did in the environment during the fine grained execution of the enzyme

processing. Also passed are more general statistics about internal cell

activity.

3. Values indicating how far the cell has moved and new glucose concen-

trations from around the cell are then passed to the cell so that it can

respond to the new environmental conditions.

4. With all cells waiting on the environment process, the environment pro-

cess then makes a life or death decision based on the received per cell

statistics. Each cell can either carry on living or be told to die (i.e. re-

move itself from the system) or divide into two cells. A message is sent

to each cell individually, if the message allows the cell to continue living

then that cell continues executing by running another set of fine grained

enzymatic iterations.

5. COSMIC has provision to periodically save the entire state of the simu-

lation, as the environment decides when this is to happen each cell has

to be informed. As saving of state is predictable, this message can be

pre-empted to shorten the idle time of cell processes that would otherwise

still be waiting on the environment process.

COSMIC R. Gregory

5.3 The Process Tree 123

6. Using per cell statistics and cell chemotaxis rate obtained from the cell

process, a specific location in the environment is distorted to show the

glucose use and general presence of the cell. Figure 5.2 is an example of

this.

7. The environment then properly modifies it’s glucose map, as the cells are

now already running autonomously this comparatively lengthy operation

has time to complete before the cycle starts again with cells returning

their next round of results.

This execution strategy allows for a hetrogeneous execution environment,

automatic load balancing tending to place more cells on comparatively faster

machines. The ideal load balancing does however have an unknown component,

the execution time of a cell varies over time and so ideally process migration

is also required for 100% efficiency.

This tight synchronisation comes at a cost, all cells will at some point in

time come to a halt and wait for a very short duration for the environment

process to respond. Considering network latencies this is actually very low

because a 100 Mbit network can send a 10 byte message to 500 cells in around

77 msec. Although this a long time in computational terms there is little waste

when 500 cells are spread across much fewer machines, the message to continue

executing will be heard by some cells well ahead of the majority. These cells

then have a few milliseconds to run before having to share the processor with

the many more cells that will start running again in this 77 msec period. This

combined with the long resynchronisation window of several seconds makes the

actual overhead very small.

The main problem lies in general reliability. Each cell is required to return

its result data before the environment can proceed, so cells on slow machines or

slow networks will slow down the whole simulation. In the average case, where

all machines are used equally, this is not an issue, but experience has shown

that processor or network load caused by other jobs varies across machine and

also varies with time over many days. Even worse, the loss of a machine will

COSMIC R. Gregory

5.3 The Process Tree 124

40

60

80

10
0u

m
=:1

20
14
0

16
0

18
0

2
0
0
m

20
 O

u
m

Oum 20 40 60 80 100um 120 140 160 180 200m

Figure 5.2: Environmental change after 212 minutes.

COSMIC R. Gregory

5.3 The Process Tree 125

kill all the cells that occupied that machine and force COSMIC to hang forever

waiting for the results that will never arrive. It is for this reason that COSMIC

supports state saving, if a problem terminates the simulation it can simply be

restarted from a point in the near past with no loss of information. This

avoids total simulation failure but the dynamics of the network are a much

more pervasive problem.

Ideally this is solved with more dynamic load balancing. The role of load

balancing in the present implementation is limited to making a best guess

to which machine a new cell should be created and spend its lifetime. As a

result, external changes in machine or network load cannot be accounted for

and the simulation is then held back. Parallelism is implemented using PVM,

which is a message passing interface with an at-execution load balancer. This

provides a good basic framework but is limited when executing in a real world

dynamic environment, leading to the non-optimal distribution of computation.

For clusters of PCs the solution to this is process migration based on automatic

dynamic load balancing algorithms such as provided by the MOSIX patches

available for Linux or dynamic load balancing provided with some commercial

UNIX machines. Migration of processes between processors should improve

load balancing to a near optimal point because processes are no longer fixed

to where they started but can instead be exported to another co-operating

processor. The only limitation is the time and resources required to stop,

move and restart a process.

Process migration is expected to work for uneven processor load, network

load balancing is however a much more difficult problem. The transient nature

of network traffic and the effort in identifying bottlenecks make this an opti-

misation problem in itself. Fortunately the course grained synchronisation in

COSMIC avoids the worst effects.

COSMIC R. Gregory

5.4 Cell Division 126

5.4 Cell Division

The most involved process of a running COSMIC system is the division

of a cell once it has matched the division criteria. Typical communication

patterns involve only the environment and the cells, all of which are contacted

individually, cell division is different in that three parties are involved and cells

must synchronise with each other.

Typically a running cell will receive a continue message from the envi-

ronment after sending its updated attributes. These attributes include the

cell mass, based on this mass the environment decides (solely on a threshold

level of 0.4fl) that the cell is large enough to divide, it instead sends a divide

message, this is figure 5.3, edge 1. This signal will eventually lead to the cell

running through another iteration, first it will go through the necessary steps

to entirely divide itself in half:

1. The cell contents are marked by a 50:50 probability. These contents

include all the currently transcribed gene products, all active reactions

and any interactions between the genome and the gene products - such

as sigma factors. The genome is not halved but identically duplicated.

2. Using the marking, outbound gene products and all their interactions are

then saved to file store, figure 5.3, edge 2. This small group of around 15

files completely describe the properties of the new cell. Aside from the

individual molecules, cell mass is halved and an adjacent environmental

position is computed. In the parent (donor?) cell the same marked

components are removed and the cell mass is halved.

3. The environment (always acting as overseer) initiates a new cell process

via PVM (figure 5.3, edge 5) and instructs the daughter cell to await a

signal from the parent (figure 5.3, edge 3), this signal ensures that the

file data is complete before full cell initialisation.

4. Once informed by the parent, the daughter then reads the file store (fig-

ure 5.3, edge 4), initialises its data structures and runs as part of the

COSMIC R. Gregory

5.4 Cell Division 127

<> Object ~ Daughter Cell
A .: Process Boundary

<—~> Message Passing :

) Machine Boundary

aaa Inheritance
* — Simplified Object

Figure 5.3: Process synchronisation at cell division

whole population. The halved parent completes an iteration as usual

and the daughter is left to complete its first iteration.

This whole process is much more involved in terms of recording cell state rather

than inter-cell communication per se. Communication is limited to processes

synchronisation required through the use of file store. It is a limitation of

C++ that code reuse is limited when saving objects, the lack of serialisation

capabilities forces custom procedures for each object and each form of output

stream.

The biggest challenge here was to ensure the division scheme fitted effi-

ciently with the normal synchronisation of all cells with the environment. To

this end cell division causes little bottleneck when used with a high popula-

tion, running the cell process and reading the files takes much less time than

an iteration of the fine grained internal cellular simulation.

COSMIC R. Gregory

5.5 Dynamic Effects 128

5.5 Dynamic Effects

The previous sections gave the parallel algorithms as currently used by

COSMIC. These algorithms seemed reasonable in terms of efficiency of execu-

tion and robustness to adverse conditions. In running the simulation it became

clear there were three stages of development in the execution patterns. This

cast a new light on what appeared to be good solutions, the practice of inves-

tigating how load could better be balanced and then implementing a solution

all took time to be developed as the significance of dynamic effects became

apparent.

The execution of the simulation can then be regarded as three phases. The

first is a search phase where the simulation maintains a minimum of 20 cells

and regularly needs to add new cells as the current population fails to achieve

the basic evolutionary aims. At this point the computational system is very

lightly loaded with at most one cell per processor. The simulation then runs

at many iterations per second and finds at least one valid cell by around 200

simulation minutes, 2 hours and 8 minutes minutes of wall clock time. This

marks the beginning of the next phase, that of growth.

During the growth stage the cell population rapidly expands at a rate of

3 cells every 5 simulated minutes. There are quickly many more cells than

processors and so the load balancer becomes very important in maintaining

cluster efficiency.

The final stage is then saturation, there are so many cells that random

placement of cells during load balancing would have no effect. The system

moves extremely slowly, using all computational resources regardless of nice?

setting and taking 30+ seconds per iteration. At this time any load balancing

with other processes is useless, when running other processes are starved, when

not running there is the realisation that the pausing for 50% of the time run

twice as slowly, and unimpeded is already too slow. This stage develops rather

“UNIX prioritises running processes according to their level of niceness. A value of 0 is

the default and requests that as much CPU time as possible be given to this process. A

value of 19 requests that only spare CPU time is used by that process.

COSMIC R. Gregory

5.6 Non-private Access Clusters 129

than being arrived at, but once present the cluster can then be regarded as over

loaded and that number of cells is too many. Fortunately this only occurred

on the student access cluster, and shortly afterwards a private cluster of much

higher specification was obtained. Although the problem must surely still be

present, when using this new cluster it has not been witnessed.

5.6 Non-private Access Clusters

Despite the benefits of near optimal load balancing, practical situations

can also bring a requirement for load limiting. When used on a cluster not

dedicated for use by COSMIC but in fact used by users for real-time day to day

tasks, COSMIC must then take second place. Initial attempts obviously made

use of system priorities to put COSMIC processes at the end of the process

schedulers queue. Surprisingly this doesn’t actually work, if the number of

low priority processes outnumber the normal priority processes the user will

still feel the difference, giving each low priority process 0.1% of system time

has significant impact when there are 1000 low priority processes on the same

processor. The end result was insufficient load control, the real time uses were

still slowed down by a large margin whenever the simulation grew beyond the

initial search phase.

To address these problems a second solution attempted to implement a

course grained load balancer where by all processes were paused for x minutes

and then left to run for y minutes. This was implemented by using the UNIX

signals SIGSTOP(pause) and SIGCONT(continue). However, it was consid-

ered too intensive an operation to signal all processes (including gzip and ssh),

or even the environment and the cells. Exploiting the requirement of strict

synchronisation only the environment process need be paused, all other pro-

cesses will then pause when they return their results. This minimised overhead

and ensured that the minority of cells which take up most of the time could

have chance to finish their iteration without being unduly paused.

In effect then, this gave more time to the longer running cells while stop-

COSMIC R. Gregory

5.6 Non-private Access Clusters 130

ping the mass of quickly executing cells that defeated the nice flag given to

the scheduler and seemed to be an ideal solution; except that COSMIC is mod-

elling evolution and so the scenario changed. The cells which take a long time

to execute tend to be the most successful, and so over the course of days their

number grows to the point where this scheme becomes ineffective 3. Ideally

this scheme could have been more fine grained and signalled the cells directly,

the added network overhead is small compared to the need for greater control.

It would have required a daemon process to send the signals, as the cells them-

selves only respond to PVM messages between iterations but this could well

have been worth the end result.

The previous method focused on time slices based on the current time of

day, it could be said this only worked for the middle phase of execution where

something could be gained by other users. The static table that converted

time of day to execution/pause ratios was held back when in the first phase

of simulation and irrelevant to the latter stage. A more dynamic control was

needed and for this it seemed appropriate to compute total computation time

across all cells and then use this figure to ensure less than 100

Except that it in practice it did not work. The jiffies computation is always

distorted by the strong synchronisation requirement and by other user pro-

cesses delaying a niced cell. Total jiffies was always much lower in an active

simulation than expected, worse still the figure bore little resemblance to clus-

ter wide system load. During the early phase jiffie total was 50% of maximum,

during the second stage it was also 50% of maximum.

Ultimately all these schemes failed to work through either lack of suitable

control mechanisms, or at least control mechanisms that scale up, or by an

interplay of strong interprocess synchronisation and the random demands of

other system users. The arrival of an effectively dedicated cluster made all this

a moot point. The take home message is that load balancing is much harder

than it seems, the information to make decisions on is always out of date, the

3With hindsight, this technique was only ineffective because the demand for computa-

tional power greatly exceeded supply. It would take many minutes for a cell to complete its

iteration and so pausing the environment process had no effect.

COSMIC R. Gregory

5.7 Supporting Scale 131

course of action based on the information takes time to take effect, and in

many scenarios of high load the mechanisms offered by the OS have no effect

anyway.

5.7 Supporting Scale

In using a cluster the restrictions and shear awkwardness come to bare,

single machines have a large set of tools supporting process monitoring and

control, with a few clicks or key presses a process can be killed or stopped,

associated open files located or just determine memory usage. The introduc-

tion of a cluster then suddenly makes these tasks much more difficult, although

available for each machine the lack of unification adds another level of com-

plexity.

In attempting to deal with this problem, a set of scripts were created that

ran common tools on all nodes of the cluster and then collated the results.

At this time the primary cluster was the Computer Science Linux farm that

served students and staff, computational capabilities varied between machines

and over the day and over the year. To make matters worse, some machines

are taken out of service without notice.

The most general tool that developed over time was tstcluster.sh, this

script passes a given set of bash commands onto all machines in turn, first

checking if that machine was up and accepting connections in a reasonable

time. For the check the script opened a timed ssh connection to a machine,

if the connection succeeded within 10 seconds the machine was considered

up and unloaded, if not then the machine is considered down or otherwise

uncommunicative regardless of what ping would indicate.

Using this script some useful functions can be implemented:

./tstcluster.sh ps -A -o pcpu "|" sort -gr "|" head -n 1

will find the most active process on each machine, indicating if a machine

is available but not used by COSMIC. Requesting just the load average is

COSMIC R. Gregory

5.7 Supporting Scale 132

misleading as it does not take page swapping into account. A machine low on

memory should be avoided just as much as a machine with many users.

The line:

./tstcluster.sh "find /proc/ -maxdepth 1 -user greg \

-printf \"find %p/fd/ -not -type d\n\" | sh 2>/dev/null | we"

counts the open file descriptors for each machine in the cluster. Compiled

into Linux is a limit of 1024, above this value files cannot be opened and

processes cannot be started.

Another useful tool is pymtouch.sh which updates on all machines the

time stamp for all PVM files owned by greg (this author), thereby avoiding

tmpwatch* deleting temporary files that are still in use by long running simula-

tions. The temporary file in question is a regular file containing the process ID

of the PVM daemon and the path to a UNIX socket by which the PVM con-

sole based client communicates with the daemon. Without the file the client

assumes there is no daemon and so starts another daemon, effectively loosing

contact with the COSMIC simulation that continues to execute.

Other useful commands developed out of necessity are pvmadd.sh which

adds a working set of machines to the PVM machine list. More machines can

be added over time, but not deleted. Unfortunately PVM has no mechanism

that allows a machine to be removed from the available list but not delete any

running PVM processes on that machine. pvmadd.sh is edited by hand using

the results of the above availability check.

netlog.sh logs network load between the server machine (which also acts

as a client) and the majority of clients. It was expected this would show mo-

ments of network saturation or some pattern of usage. In practice neither

occurred, the processes exchange little data and what data there is is surpris-

ingly stochastic, removing any pattern.

mkdirs.sh makes a new set of result directories, based on a given initial

path. Normally current/ and then post simulation is renamed to the format:

4tmpwatch is a system utility that is run periodically to remove temporary files that

appear unused.

COSMIC R. Gregory

5.8 Other Limitations 133

run[Year] [Month] [Day]/ Which is used for indexing and archiving past sim-

ulations. The results are partitioned into type to reduce the number of files

per directory, although generally unlimited ext2(the standard Linux filesys-

tem) incurs a performance penalty for every file in a directory, on the order of

O(n?). This imposes a practical limit of 10,000 files, fewer if read performance

is paramount. Partitioning into directories avoids this limit for all simulations

so far executed. Further partitioning is done on the environmental state pic-

tures as 10,000 pictures amounts to 100,000 iterations, or over 27 hours of

simulated time. In this case case the data is partitioned into sets of 1000 files

- the last four digits of time, recording every tenth.

During development some cell processes crashed and although all forms of

process IO were recorded on an individual cell basis, finding that cell amongst

the hundreds or thousands of other cells was a tedious task. scanssytems.sh

solved this problem by first asking PVM for a list of running cells and then

using that list to confirm the process actually existed on the given machine.

The lack of confirmation pointed out the failed process and so the failed cell

number, the number then leading a logged stderr of the cell and to clues of

failure.

All of these small utilities help to greatly reduce the development time,

by removing errors from otherwise tedious tasks or by finding what would

otherwise be a needle in a haystack of machines. It is only when one works

on a cluster that the problems of organisation and communication become

apparent. Nothing is in the one place, that requires a mental paradigm shift

and the above selection of programs to make the transition easier.

5.8 Other Limitations

Linux uses the concept of UNIX file descriptors to refer to files and link

processes via pipes. There is a limit of 1024 file descriptors compiled into the

Computer Science Linux farm and although this might seem enough when for

example 400 cells runs across 20 machines, there are more factors to take into

COSMIC R. Gregory

5.9 Saving State 134

account. Firstly, cell population per machine can vary anywhere from 0 to

the some future maximum population size and although these extremes are

obviously unlikely it does increase the chances of reaching the file descriptor

limit if an extreme is approached. Secondly, each cell process starts 10 other

processes (gzip and ssh) to compress and return results. Each of these processes

uses at least 3 file descriptors. The numbers then speak for themselves, 400 cells

across 20 machines implies around 20 cells per machine, each machine needing

660 file descriptors. This assumes even distribution, which won’t occur and

so the limit become probabilistic at around 27 cells per machine, assuming

negligible use by other users. To find if this limit is being approached:

./tstcluster.sh "find /proc/ -maxdepth 1 -user greg -printf \

\"find Z%p/fd/ -not -type d\\\n\" | sh 2>/dev/null | we -1"

Asks each machine how many greg owned file descriptors are used, and so

how close to the limit the simulation is. It would have been quicker to check

/proc/sys/fs/file-nr but the correlation between these figures and the man-

ually obtained figure was not clear.

5.9 Saving State

With the recognition that COSMIC requires considerable amounts of com-

putational time and the unreliable state of resources available at the time,

check-pointing was deemed vital. This is the saving of the entire simulation

state to file store in such a way that the entire simulation can be restarted

from this state image. Strong parallels exist with the cell division process, as

a newly created simulation is no different from a daughter cell from a parent,

but for the 50:50 enzyme division. The saving itself was then all but the same,

the real challenge came from synchronising all the processes to save at the

same time while not troubling the client processes with unnecessary synchro-

nisation messages between iterations, namely to not save state. Client cells

do not know when this is as only the environment decides if state should be

COSMIC R. Gregory

5.10 Storing Data 135

saved. The solution was pre-emptive messages that took into account the over-

all client-server synchronisation and never forced client cells to synchronise a

second time for each iteration, the message was passed immediately after the

main synchronisation message. When state was to be saved, the message was

delayed to better fit with division logic but as state saving is a time consuming

process this extra small delay is immaterial.

5.10 Storing Data

The shear amount of data generated by COSMIC is enough to fill available

storage within very little time. Of the data sets generated some have high

information content when measured per kilobyte whereas others have very

little information content. All the information could be useful and knowing

what is important should always be something for later examination. Clearly

too much resolution is possible, but what resolution is required can only be

guessed at. There are several problems here, getting the data from the client

cell to the possible remote disk, issues of compression capability and choice of

date format.

Since resolution is not known, some output streams use the maximum res-

olution of one sample per fine grained iteration. This then records all informa-

tion possible but is largely redundant. The solution to this was multiple stages

of compression that reduced the output to 1.6% of its original size. This is

partly attributed to the use of ASCII text string and mainly attributed to the

high redundancy of the data.

Later the COSMIC system also started to use a more ideal format in which

tags representing events and parameters concerned were recorded in temporal

order. This retained the resolution but was more compact as only changes are

recorded and not system wide state®. Tags and associated data are all output

as ASCII text strings and so are compressible to a ratio of 10

Using either format, once compressed the data stream must be moved to

5This is in the sense of a set of all possible measures in a given domain, typically the

individual enzyme totals for each expressible gene.

COSMIC R. Gregory

5.11 Modifying Parameters 136

main host system for information extraction. In the ideal case where all ma-

chines in a cluster share the same file store via some networked file system, this

simple involves witting out the stream to a file name. Setting this up requires

system privileges that were not available when using the shared access cluster®.

For this ssh was used to open a connection back the main file store host (which

wasn’t under the same administrative control as the shared access cluster) and

write the data stream.

All this compression and transport was achieved through running external

processes in a pipe line, with lines such as:

gzip | gzip | ssh babbage cat ’’>’’ datafile

where babbage is the file store machine and the file name datafile was based

on the type of data stream and the cell number. Starting external processes and

attaching to printf () style formated output functions is very simple in a UNIX

environment, the popen() system call runs the given string as a command to be

executed and associates a standard buffered file descriptor with this executed

command, attaching say fprintf() to the stdin of (for example) gzip.

5.11 Modifying Parameters

Simulation control is done via parameter files which record all the global

variables and p.d.f.s. During simulation execution they are read periodically,

the exact period coming from each file’s place in the program hierarchy. Mon-

itoring is done by log files and log pictures. Viewing the output is a batch

process, a suite of conversion programs read the event logs and convert them

to pictures and graphs as found in Section 5.12 and much more fully in Chap-

ters 7 and 6.

SA loosely coupled set of machine made available for students to use as X servers and

generally access their UNIX accounts via remote access.

COSMIC R. Gregory

5.12 Parallel Efficiency 137

5.12 Parallel Efficiency

The execution environment of COSMIC has changed over the years of its

development, in the beginning COSMIC ran on a single machine with a view

to running of the farm of loosely coupled machines. The experiences in the last

few sections have been largely came from using the farm. COSMIC currently

runs on a Grid-enabled cluster of 12 node dual processor Athlon XP 2000+

machines. This leads to a rapid simulation but is still slower than real time,

on the order of 7:1. In the space of 9 days COSMIC had evaluated 2132

bacterial cells (this is the sum of cells created with random genomes and cells

resulting from the cell division process), with 298 cells still living at the point

the simulation ended. The final environment had turned into a bacterially

challenging patchwork of nutrients, average final genomes were in the range

42 to 1023 genes long (185 mean), with 10 to 107542 enzymes per cell (13473

mean). CPU utilisation varied in the range 1-100% creating around 3 gigabytes

of data per day.

The output from the simulation clearly has two distant scales, the envi-

ronment state and the state of each cell. The architecture ultimately allows

a never-ending simulation in which state can be recorded and reloaded while

changing the global and local parameters. From the recorded data a variety of

visualisations can be constructed, the common feature is the abstract nature

of the labels in that real proteins are not simulated and so data can be isomor-

phic but not easily comprehensible. These being per cell gene expression charts

and network graphs representing interacting genes. Also generated are per cell

graphed averages of major parameters and snapshots of the environment at

the population level as well as charts showing the lineage of all cells. All these

chart types will be described in Chapter 6 and again in Chapter 7.

The labelling system of cells is based on an ever increasing unique identifier

that a cell obtains upon creation as either a daughter or a newly initialised cell.

When a cell divides the parent retains the original identifier and the daughter

receives the next unused identifier. At that instant both cells are the same

in terms of genetics but differ in the share of enzymes as each enzyme has a

COSMIC R. Gregory

5.12 Parallel Efficiency 138

Experiment run030205

T T 1

substrate ------
Tea

population ------
births) .-—----

deaths

 350

 300

250

200 =

150 ‘Al

T00R |

N
u
m
b
e
r

of

Ce
ll
s

De SES me — aes ot} Feat ae Uy

iit rita ating Hinstietaitte Trek ——— al 4

0 200 400 600 800 1000 1200 1400

Simulation Time (minutes)

Figure 5.4: Population growth during a typical simulation.

50:50 chance of staying with the parent. It is an implementation decision that

parents retain their identifier rather than obtain another identifier.

Simulation load is not constant, the ever changing number of processes per

machine is constantly changing. Figure 5.4 shows the rise of the cell population

and hence the rise in process numbers. Each cell equating to around 9 pro-

cesses, the main cell and output data compression processes. There needs to

be many more cells than processors before efficiency can be attempted. Notice

also the stable number of births, the system is forced to synchronise to these

new cells and we would expect to have an impact on efficiency, but as shown

later efficiency is too variable for this to be a cause.

Figure 5.5 shows the efficiency of the whole simulation system over the

course of a long run lasting around 2 weeks of wall clock time. This graph

shows several measures, the upper line is the maximum available computation

time. Computed from the maximum processor usage across all processes at

that instant. The noisy nature of this plot implies more could be executing

COSMIC R. Gregory

5.12 Parallel Efficiency 139

Experiment run030205

Ef
fi

ci
en

cy

Simulation Time (minutes)

Figure 5.5: Overall efficiency of a long simulation run, the upper line being the

maximum available computation time. The lower line being the actual usage

at that time. The difference between 100% and the upper line comes from

other processes started by COSMIC but outside the auditing process, most

likely during cell division. The difference between the two lines comes from

process balancing errors inherit in PVM and its blind allocation of processes.

than is accounted for, each machine in the cluster (except for the main node)

is dedicated to COSMIC and so should never themselves hold back the sim-

ulation. However, the main node is shared with other people and processes,

this could easily account for some of the drops in available resources. The

other possibility is simply unaccounted processes during cell division, the syn-

chronisation bottleneck of cell division and starting another process forces the

simulation to momentarily pause. This pause was deemed insignificant during

design but here it seems this and the presence of other users can have a big

impact, much bigger than it was thought.

The lower line of the same figure depicts the actual processor usage of

COSMIC, as can be seen this closely follows the available level. The difference

between both lines comes from process balancing errors inherit in PVM and its

blind allocation of processes combined with the dynamic needs of the processes

and lack of process migration. Shown as small dots amongst figure 5.5 are

the data sets that make up the maximum and actual efficiency values. Each

represents the processor usage at that instant, and so if processor usage was

the bottleneck we would expect at least one of these to be 100%, with the

COSMIC R. Gregory

5.13 Summary 140

Experiment run030205-comp08.csc.liv.ac.uk

100 T +

° —e 1

0 200 400 600 800 1000 1200 1400

Simulation Time (minutes)

Figure 5.6: Efficiency of a single randomly chosen machine.

lowest being the most idle processor. Idleness is caused by cells on a machine

being quick to execute in comparison to other cells, quick execution followed

by the environment-cell synchronisation requirement requires that a cell waits.

Picking out a machine at random from the 10 available, figure 5.6 shows

how variable utilisation is, varying from nearly 0% to nearly 100%. Comparing

against figure 5.5 we can see load balancing had a large part to play. While this

machine was idle there was still a significant level of load, often around the 50%

boundary. At the early stage this is telling, comparing to the cell population

of figure 5.4 the population was rather small and each processor could have

approximately been used by only one cell. The increase in peak efficiency

then comes with the increase in the number of cells, allowing a better global

balancing of load though still far from optimal.

5.13 Summary

The COSMIC model is a vast tool for modelling evolution at the genetic

scale, the parallelisation of this model has been completed and been shown here

to perform adequately on a small cluster. Output data suggests several causes

and solutions for the lower than expected efficiency. The most compelling is the

load balancing of cells with a dynamic execution time, this has several broad

COSMIC R. Gregory

5.13 Summary 141

solutions. Firstly, the load balancing of PVM could be improved to better take

account of the expected load brought about by each cell, this requires writing

a load balancing function for PVM and finding a reasonable measure of cell

complexity. Another option is to use MOSIX or another Single System Image

software solution’. Other options lie in either better parallel API implementa-

tions or perhaps a more standardised MOSIX like system. This latter option

would be an ideal feature of future GRID middleware that has yet to arrive

in GRID. Regardless of the efficiency issues, the parallelisation of COSMIC

has made the individual based modelling approach feasible and practical while

still covering several scales. This is no panacea, in a few years time what is

practical only on a cluster will be practical on a desktop machine, the cluster

only raises the bar by around 20 times, a bad algorithm will always be slow

regardless of the machines used.

7Generally a Linux kernel patch which supports the migration of running processes be-

tween machines. This completely solves the load balancing problem but creates another

problem through being highly OS dependent

COSMIC R. Gregory

Chapter 6

Visualisation

6.1 Introduction

This chapter introduces the most common visualisations used to represent

the raw data generated by COSMIC. It would be expected that many of these

ideas come directly from their biological counterpart, but as was hinted dur-

ing the chapter on biological background, biology can be severely limited by

what can be measured. Available data dictates what visualisations can be con-

structed with any degree of usefulness and so the legacy of practical biology

leaves COSMIC waiting for a distant future of biology; there is so much more

detail available from COSMIC at every level of measurement than there could

be from years of wet lab research. This then makes full validation near im-

possible but for this chapter it also means there is the opportunity to create

something new that allows access to manageable data sets at a time when the

real world is some way behind.

The two scales of COSMIC give the initial division of the visualisations,

the top level environment where the cells play out their struggle for survival

and ultimately demonstrate their evolution. These are covered in sections 6.2

and 6.3. At the other scale there is the internals of each cell, which contains

the richest data but also the hardest to view in any one way that captures all

the changes. This is covered in sections 6.4 to 6.6.

142

6.2 Environment - Glucose concentration 143

6.2 Environment - Glucose concentration

As the environment is what cells should be differentially responding to

(i.e. the selector), it is important to ensure there is sufficient information

in the environment to make evolution possible. The COSMIC system saves

snapshots of the environment in terms of glucose concentration every 10 seconds

of simulated time. From this we can identify cells, trends in motility and trends

in substrate use/replenishment. For each of these snapshots, white equates to

a glucose level of 4.5 mg, black equates to absence of glucose. The dimensions

of the square are 0.2 mm. Filled black circles represent bacteria that have not

moved through lack of connection with their flagella, grey streaks show moving

bacteria. (Note: Bacteria in this system cannot move without leaving some

visible trail because they always consume a visible level of substrate). Per cell

glucose use has been exaggerated to better motivate evolutionary change, real

E.coli use such a small proportion of substrate per cell that one hundred times

more cells would be needed to sufficiently modify the environment. Clearly

there are insufficient resources for that number of cells and so substrate usage

was increased one hundred times. The environment is made up of a 500x500

array of floats, giving cells enough resolution to have a reasonable chance of

sensing gradients while also not consuming vast amounts of space when saving

snapshots.

Using these snapshots it is also possible to generate an overview of the rise

in population and the fall in substrate, as shown in Figure 6.1. This shows

quite clearly the different phases of COSMIC simulation; the search phase that

looks for a solution genome which can at the very least move its host cell, even

if there is no control; once that cell is found it then exponentially takes over the

population; finally that cell linage has consumed most of the substrate in the

environment and the population is restrained to slow growth. Each of these

phases are discussed below, with an example of the environment at the time.

The environmental views can be shown as a time series by stepping through

in either direction as a movie showing the deforming environment, or looked at

more closely by annotating the image with legible cell numbers. Both types are

COSMIC R. Gregory

6.2 Environment - Glucose concentration 144

Experiment run030205

Nu
mb

er

of

Ce
ll
s

0 100 200 300 400 500 600 700

Simulation Time (minutes)

Figure 6.1: Population size and substrate concentration, 4.5mg glucose is here
shown normalised to 100.

presented here. Figures 6.2, 6.3, 6.4, 6.5 show four views of the environment

over a widely spaced period of time. These show the searching phase, the knee

of the exponential growth, during exponential growth and some time afterwards

when the environment has become nutrient restricted in most areas.

Figure 6.2 show a typical view of the environment during the initial search-

ing phase. Cells sense substrate level on a linear scale but the view presented

here has been adjusted to emphasise the grey'. COSMIC maintains a cell pop-

ulation of at least 20 cells, this is important during the search phase because

the random genomes lead to frequent cell deaths. Without this maintenance

the cell population would normally reach 0 in a matter of minutes. There are

around 20 cells shown here, living cells can be seen circled and uniquely num-

bered(Section 5.12), allowing a cross reference to the other data sets. Filled

black circles are dead cells, only their previous effect on the environment re-

mains. In time the black diminishes as the environment is replenished. Moving

cells leave fading trails for the same reason. Overall then we see cells that are

1Through experience it was found that light grey very easily looks pure white when there

is no known pure white with which to compare.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 145

Figure 6.2: Environment at t+4000 (t+66.6 minutes), covering 0.2 mm square.

Living cells can be seen circled and uniquely numbered (Section 5.12), allowing
a cross reference to the other data sets. Filled black circles are dead cells, only

their previous effect on the environment remains. In time the black diminishes

as the environment is replenished. Moving cells leave fading trails for the same

as their effect on the environment is slowly reduced. Arrows indicate cells

mentioned in the main text.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 146

either alive or the effects of cells that were recently alive - without this re-

plenishment the environment would quickly become useless as a scenario for

evolving chemotaxis.

Some cells in Figure 6.2 are apparently doing well, they are moving unlike

the majority that don’t move at all. Cell 0115 (note all these cells have been

clearly marked on the figure) near the middle moving generally up and right

would seem to be a good candidate, as would cell 0122 on the bottom right

and cell 0124. Looking at the mass of black from where 0124 came, it seems

reasonable that this cell was the result of a recent division and the parent died

in the process. Unfortunately the data confirming this has been lost, this is

however a common effect.

Figure 6.3 then shows the environment at around the start of the exponen-

tial growth with the finding of one cell which has the ability to move, regardless

of any control. This shows several dark stripes left by cells resulting from a

divided pair moving in the same direction but at different speeds, cells 0225,

0265 on the top middle and cells 0266, 0249 (bottom middle) and possibly 0273

and 0257 are related, though the latter two move in different directions. An-

other related pair can be seen on the bottom left of middle, moving down; 0255

and 0271 (all 8 are marked with a plain arrow). At this point the daughters

of cell 0143 (marked with a starred arrow) are already starting to take over

the population, 10 of the cells here belong to that lineage, they are cells 0193,

0225, 0248, 0249, 0253, 0263, 0265, 0266, 0268 and 0269.

Figure 6.4 shows the environment 66 minutes later, with the daughters of

cell 0143 taking over the total population. There are now dark streaks created

by groups of cells moving in the same direction, in this case the darkest streak

is caused by the same group of cells wrapping around the environment. Later

on this effect will dominate as more cells have motility. There are now 40 cells

belonging to the 0143 linage, to many to list. There are, however, some other

lineages here amongst the growing number of 0143 related cells, these are left

over from when the cell population was around 20 and continually seeded with

new Cells. In this struggle, the growth rate of the 0143 related population must

COSMIC R. Gregory

6.2 Environment - Glucose concentration 147

Figure 6.3: Environment at t-+12000 (t+200 minutes), showing the prolifera-

tion of cells.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 148

Figure 6.4: Environment at t+16000 (t+266.6 minutes), showing the continued
proliferation of cells.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 149

eventually wipe them out short of a major change in the genetics of those other

lineages.

The final detailed view of the environment is shown in figure 6.5, here we

can see immediately the environment has become depleted to the point of all

cell indicators showing as white, meaning the average concentration in those

locations has fallen to less than 50% of the start condition. Unlike the other im-

ages, this image is presented without brightness distortion(linear brightness).

This point marks the end of the exponential rise and large drop in average

environmental nutrients, together with the first drop in population. The pop-

ulation has dropped to 126 cells at time 28000s, from 137 at 23500s, actually

dropping to 117 cells at 26800s. Of the 137 cells, 116 belong to the 0143 lin-

eage. So, even at this point the smaller lineages still manage to linger.

Multiple views of the environment are shown in figure 6.6 and continuing

in figure 6.7. These images show the environment over successive time steps.

Time steps of 10, 200, 2000 and 4000 seconds are shown, from then on time

steps are in 4000 seconds. Time 12000 marks the start of the population

explosion, we would then expect to see some signs of more intelligent behaviour.

Intelligent behaviour is too difficult to see when there are many cells, instead

cells need to be considered on an individual basis.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 150

/

\ = ox
inte

Figure 6.5: Environment at t+28000 (t+466.6 minutes). Shown with linear

brightness as black is now the dominant brightness.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 151

t+32000

¢t+40000 t+44000 t+48000 t+52000

Figure 6.6: Environmental time slices, part 1.

COSMIC R. Gregory

6.2 Environment - Glucose concentration 152

t+56000 ++60000 t+64000 t+68000

t+72000 t+76000 t+80000 t+84000

t+88000 t+92000 ¢+96000 t+10000

t+10400 t+10800 t+11200 t+11600

Figure 6.7: Environmental time slices, part 2.

COSMIC R. Gregory

6.3 Population lineage 153

6.3. Population lineage

Cell division brings about the possibility of recording relatedness between

cells, this can then be shown as a digraph of parenthood, with the parent at the

top and daughters below. On top of this other data can be incorporated, such

as the times the division events occurred. Shown in figure 6.8 is an example

of this drawing, showing the top section cell lineage 0143. As there were 2000

cell divisions and nearly 2000 cell deaths attributed to this one lineage, the

full diagram is huge and unwieldy and would use around 4000 lines to display,

so only the first few tens of lines are given. The generation of these diagrams

makes some attempt to make them of usable size by ensuring the graphs have

less then a given area of nodes, making the diagrams shorter as they get wider.

In this example, the lineage is headed with some general information on the

tree size, followed by the cell number leading that lineage - cell 0143. On the

left there are then time stamps for when the event on the line occurred and

the time difference between this event and the last event. On the right there

are numbers representing cells that lead to other cells, i.e. the divisions. In

the diagram itself the numbers represent deaths of that given cell. Bold lines

mark every tenth line to try to ensure some readability.

As the number of related cells grows the lineage becomes increasingly con-

gested, as figure 6.9 shows. Here the time ranges from 1601 to 1607 minutes,

just 6 minutes and yet there the large number of events per cell with no syn-

chronisation means that each event will have its own line, greatly increasing

the required space. The result in this case is barely readable and is here only

as an illustration of the problem. It could well be that a less structured dia-

gram with only local labelling and no synchronisation between unrelated but

identical events will compress this to something more manageable.

This can be made even more congested by showing all the cells that existed

at the same time rather than from a lineage, as shown in figure 6.10. Here the

structure between cells is necessary, at least in the beginning of each new cells

life, and so the diagram is bound to be large. The obvious addition here are

new cells being introduced on the right to maintain the minimum population,

COSMIC R. Gregory

6.4 Cell statistics 154

as cells die those cells then tend to move to the left. It was considered if the

graph would be better shown as a time line in which height was time (generally

as is the case now) but that cells never moved left and the related lineage hung

under the original ancestor. This would have been easier to interpret but used

vastly more space, on average occupying a diagonal. The per lineage diagrams

carry most of the meaning but save space by keeping the lineages separate.

Even in its basic form, this is a novel structure that has yet to be introduced

into mainstream biology, presumably because the figures on which it is based

are impossible to obtain. Figures could be obtained using genome sequence

analysis, which would give a general lineage, never as specific as found in

COSMIC but even this is too time consuming to yet be realistic. As shown by

COSMIC, this method is not without its problems, approaches to scaling up

this visualisation represent future work.

6.4 Cell statistics

The previous sections were concerned with the environmental scale and so

the population of cells as a whole. This section and those that follow change the

scale of view to that of the cells internals, where we find most of the challenges

to visualisation.

This section shows some of the general dynamic parameters associated with

each cell. Each graph normally covers the time of the cells life, unless the cell

went onto live a long time, in which case the graph is a maximum of 7.5 hours.

These graphs can be useful in finding the high level reason for a cells death or

its popularity as they show key indicators of the state of transcription.

All graphs show cell mass to start at some value determined by the random

uniform initialisation. The mass then increases according to Section 4.11 to

the maximum of around 0.4 femtolitres, which then triggers cell division and

the volume of this cell is halved as well as halving the enzyme concentration.

The z and y position graphs correspond to the position in the environment

as shown later. (0,0) is top left and (200,200) covers the 2mm x 2mm area.

COSMIC R. Gregory

6.4 Cell statistics

Figure 6.8: First 5 hour lineage of cell 0143.

COSMIC

155

R. Gregory

6.4 Cell statistics 156

SY _ Wy L : a y . a | | : y ee ;

a
Q

"
\ ni ayy »

a a BG _. _ . _ oo \ |. a R a

iat EL:
Figure 6.9: Last 6 minutes lineage of cell 0143. Shown cut in half in improve

its reproduction.

a

The enzyme population graph plots both the minimum and maximum num-

ber of enzymes in each time frame, the line thickness is the same for all graphs

and yet all enzyme populations shows that a small difference persists

The input figures come from an average of all activated receptors, hence a

typical figure of 0.02 = x = || (i.e. the input receptors) shows one receptor to

be used in a given time interval - x is the maximum of all time instants in that

interval. Clearly this value must be expected to increase during convergence.

The output figure is based on |Q| (i.e. the flagella activation receptors) but

is otherwise the same as the input. There is always a strong link between this

value and changes in the (x,y) values. Ideally there should be a strong link

between the output and glucose concentration in the environment.

6.4.1 Cell 143

As the original ancestor of the lineage that will take over the whole sim-

ulation, cell 0143 in figure 6.11 would be expected to have all the qualities

that enable it to survive the environment and avoid the early termination al-

gorithm. The survivability of this cell comes across from all these graphs, the

cell volume is growing at near maximal rate and so dividing at near maximal

rate of 22 minutes. The «/y positions in the environment show the cell to be

moving at speed and so always being positioned over fresh environment - at

least while the environment is sparsely populated. The enzyme level is high,

seemingly high enough to survive cell division 3 times, it was the 4th division

COSMIC R. Gregory

6.4 Cell statistics 157

COSMIC

—

Ei
ga
se
en
zz
ge
2

eE
Ee

.

E
N
E

R
e
e
s

3
H
e

-
\A

a

-
®

»
.

B
et

[
/

A

;
:

>
‘

:

:
;

Coo
RN

EEE
e
o

P
A
N
E

4
—
\
—

.
~

S
E

.
es
as

=
;

LEN
RNN

CN
SS

‘
YS

<
RE

E
N
E
E
S

-
R
S

NRO

O
D

2

:
.

.
NS

N
VA

N
S
A
N

NS

“

YS

<
SS

a
s

On
NY

‘
SS

S
N

SS

Y
S

:
S
R
S

\
;

.
RE

AR

SE
AN

NS

S
&

.
;

A
S
S

‘
»

.
»

.
.

S\

~
.

:
SA

Y
RS

~

‘
aN

i‘
»

SN

we

xi

‘

~
;

>
SS
S

YS
.

it
S

*
.

Y
.

NS
*

.
ts

SS

=
SN

‘

L
y

.
.

M
M
U

KS

S
O
N
Y

‘
NS

‘
S

SS
:

S
S
h

S
S
E

S
E
N
N
A

cs

S
h

s
3

D
P
W

S
A
V

S
M
A

B
R
S

S
S
S

;
t {

=e

fs
NE
EU
Ua
ne
te
en
ee
cy

ee
r

e
p
e
e

ee
e

i
n

a
i
l

i
Hn

Figure 6.10: First 83 minute lineage of whole simulation.

R. Gregory

6.5 Gene Expression 158

that caused a failure of the cell, the enzyme graph shows the steady decline in

enzymes shortly after the 4th division. As this is plotted on a log scale, this

steady decline represents the natural decay of enzyme half-lives. The Output

graph shows why the cell was moving so quickly, on average one of the flagella

was activated most of the time, this pattern only stops shortly after the 4th

cell division. This cell also looks promising because of its connection to the

receptors, suggesting that a link between input and output is at least possible

even if it doesn’t exist at this moment.

6.4.2 Cell 101

The cell in figure 6.12 typifies a cell containing futile cycles, this cell makes

no connection to the environment (as shown in the input/output graphs) de-

spite having a steady enzyme population (as shown in the enzyme population

graph) after initialisation. The cell grows using only the nutrients in its im-

mediate environment, but as there is no movement the environment becomes

depleted and so the growth rate slows (volume graph). The lack of movement

fits the criteria of a failed cell and so is killed off early by COSMIC heuristics

that attempt to remove useless cells.

6.5 Gene Expression

The expression level of individual genes can be useful information when

accessing the genetic quality of a cell. This section demonstrates such a vi-

sualisation. The figures show the gene expression level over a period of time.

Looking closely, each picture is made up of several rows, each row representing

15 minutes of the gene transcription, with each line (or lack of a line) in that

row representing a given gene. Rows are read from left to right, top to bottom.

As shown on the left of each row is time frame relative to the cell whose number

COSMIC R. Gregory

6.5 Gene Expression 159

Experiment run030205-00000143
H
O
N
S

to
tw
to
ww
D

N
i
w
a
”

VO
RA
Go

C
O
N
N

A
M
O
W
N
A
M
D
O
L

R
N

N
W
W
W
w
W
W
W

e
s
s
s
s
s
s
s
s
s
s
s

co

Ce
ll

Vo
lu
me

(fl
)

o_

o
o
o
o
c

_
c
o
o
e

80 100 120 140 160

Cell Simulation Time (minutes)

200 =
180 x-position
160 position ---

140
120
100
80
60
40
20

Ce
ll

Po

si
ti

on

(j
zm

)

80 100 120 140 160

Cell Simulation Time (minutes)

7000 7000

6000 6000

5000 5000

4000 4000

3000 3000

2000 2000

1000 1000

En
zy
me

Po
pu

la
ti

on

(n

um
be

r
of

)

80 100 120 140 160

Cell Simulation Time (minutes)

0.12 0.12

s 0.1 0.1

g 0.08 0.08

= 0.06 | 0.06

Z 0.04 : | | | | | 0.04

= 0.02 0.02
li | HLA i l | | a i tt HL Ll 0 0

80 100 120 140 160
Cell Simulation Time (minutes)

0.25 | 0.25

@ 0.2 0.2

8
5 0.15 | | 0.15
- |
2 olf] | | | 0.1

S 0.05 | | | | 0.05
| | We ML

° 80 100 : 120 140 160 :
Cell Simulation Time (minutes)

Figure 6.11: General variables of cell 0143

COSMIC R. Gregory

6.5 Gene Expression 160

Experiment run030205-00000101

0.345 0.345
— 0.3 0.34
= 0.335 0.335
2 03 0.33
— 0.325 0.325
5 0.32 0.32
> 0.315 0.315
= 0.31 0:31
S 0.305 0.305

0.3 0.3
0.295 0.295

51 52 53 54 55 56 57 58 59
Cell Simulation Time (minutes)

110

‘e 100
& = 90
So

= 80

a 70
3 60

50
51 52 53 54 55 56 57 58 59

S Cell Simulation Time (minutes)

5 900 900
2 800 800
2 700 700
= 600 600
3 500 500

S 400 400
8. 300 300
& 200 200
3g 100 100
> 0 0
& 51 52 53 54 55 56 57 58 59

Cell Simulation Time (minutes)

1 1

BZ 05 0.5

5 2 0 0
Bg

a.
& -0.5 -0.5

-1 -1
51 52 53 54 55 56 57 58 59

Cell Simulation Time (minutes)

1 i

g 05 0.5
&
2 0 0
2

&
5 -0.5 -0.5
°

BI -1
51 52 53 54 55 56 57 58 59

Cell Simulation Time (minutes)

Figure 6.12: General variables of cell 0101

COSMIC R. Gregory

6.5 Gene Expression 161

+0 +1 ¥ + +4 +; +6 4] +8 +9 +}0 +l +2 +)3 +4 +45
HiT PEDetgpgypeeeenar 234 * St SU CET EERET ERATE ET RATT TATTLE TEEGATE EEL ELLE et ‘90

aes a a TT nn a = an <——- o.

15

3

REEUEQOLEGLLERED TOP e eee eeeeebertateter 100

a OT "_.. o rrrrr—ro—

38

— — 9

Figure 6.13: Gene expression of cell 0238, showing very little expression.

is between the time frame. On the right hand side are the gene numbers, the

first gene being at the bottom of the row. When shown in colour, colour and

shade denotes number of gene products present in the cytoplasm at that time,

white denotes no expression, blue denotes 1-3 gene products, red denotes 4-20

gene products and green denotes 21-1029 gene products. Notice they are on

the logarithmic scale to take account of the vast difference in volume of gene

products.

In all cases cells are initialised as described in Section 4.13, there are 5 gene

products for each identified gene.

Note that in cases where the cell was terminated and transcriptional data

stopped, the unused area is removed. Also note that as sequence insertion and

deletion change the size of the genome, so to does the height of each row. As

the genome is inserted from the bottom, the top end point of the genome can

vary. In this case the individual genes are painted from the bottom of their

respective rows, and any space remaining at the top is padded with vertical

alternately coloured bars.

6.5.1 Cell 0238

Figure 6.13 shows a typical example of a failed cell, after initialisation there

is little activity. Looking closely the expression level can be seen on the first

few genes and around gene 85. Enough remain for the simulation to consider

the cell alive, simply because COSMIC is lenient in the heuristic decision to

kill a cell that does not seem to be motile.

COSMIC R. Gregory

6.5 Gene Expression 162

Figure 6.14: Gene expression of cell 0232, showing some strong gene expression

but still suffering a fatal loss of expression latter on.

6.5.2 Cell 0232

Cell 0232 in figure 6.14 is similar to cell 238, the main difference is the

more sustained transcription level involving more genes. This cell also shows

fluctuations in the expression of these genes, for example at time 38 minutes.

What seemed a stable network of transcription then somehow fails, ending at

time 62 minutes when the cytoplasm is effectively empty.

6.5.3 Cell 0219

Figure 6.15 shows a cell with even more activity than the previous cell.

Looking more closely we see multiple fluctuations at many points in time.

This cell is also notably for having no visible initialisation at time 0 minutes,

so this cell must be the result of a cell division.

6.5.4 Cell 0204

Cell 0204 in figure 6.16 clearly demonstrates an inactive cell. Initialisation

occurs like other cells but no transcription occurs leaving the cell to a fate

of death. The rapid death was dictated by enzyme life times, here chance

dictated there would be no long lasting enzymes when initialised and so the

cell is terminated when there are no enzymes remaining, at around the shortest

COSMIC R. Gregory

6.5 Gene Expression 163

Figure 6.15: Gene expression of cell 0219, showing very some strong gene

expression and a lack of initialisation that could only mean this cell is the

result of a cell division.

Figure 6.16: Gene expression of cell 0204, demonstrating the quickest cell death

possible.

time possible.

6.5.5 Cell 0193

Figures 6.17 and 6.18 show an early success, the cell is clearly well con-

nected and is also showing patterns of transcription across many genes. The

number of some genes goes up by many times over a short time frame, this is

caused by many of the right sigma factors being by the same gene at the same

time. Notice the large changes in genome size caused by sequence insertion

and deletion. Also note this cell is the result of a cell division, as there is no

visible initialisation phase.

COSMIC R. Gregory

6.5 Gene Expression 164

Figure 6.17: Gene expression of cell 0193, an early success compared to the

others presented here.

Figure 6.18: Continuing gene expression of cell 0193, an early success compared

to the others presented here.

COSMIC R. Gregory

6.6 Gene Expression Pathways 165

6.6 Gene Expression Pathways

It is possible to create digraphs of gene expression pathways using the

linkage diagram shown in figure 4.6 and the gene expression data as shown

above. The linkage create the graph structure, after folding common genes,

removing dead ends and so on; and the expression data then quantifies the use

of each pathway. This can then be divided into slices of time, or as shown in

figure 6.19. This example shows cell 0143 in run030205 over the course of its

life, this being the cell that parented the lineage which went onto take over the

population in run030205.

Nodes represent genes and gene products. Ovals are specifically for genes

and gene products from the genome, boxes represent FAP receptors and ovals

represent input receptors. In each node are two lines of text, the top line is

the gene sequence used in the anti-match function, which is useful for cross

referencing. The bottom line is an abbreviated gene type that corresponds to

the types in figure 4.4. Edges are numbered with a use count, binding events

followed by unbinding events.

The kind of diagram is the starting point for examining the cell at the

highest resolution possible. The problem comes from dealing with its size,

making reading the graph a time consuming process. It should also be possible

to highlight edges or groups of edges and graph time series of changes, as cross

referencing to other datasets remains cumbersome. It is also be possible to

combine two graphs from different time frames, and generate from these two

a difference graph of what has changed. This is ultimately a data mining

problem, in that there is no generic method that will take apart this large

structure without at the same time destroying its value. As a result this is a

research topic in itself, the most obvious starting point being a graphical user

interface.

COSMIC R. Gregory

6.7 Summary 167

6.7 Summary

Here we introduce the most common visualisations used to represent the

raw data generated by COSMIC. It would be expected that many of these ideas

come directly from their biological counterpart, but as was hinted during the

biology background, biology can be severely limited by what can be measured.

Available data dictates what visualisations can be constructed with any degree

of usefulness and so the legacy of practical biology leaves COSMIC in the

position of having to find visualisations for data sets that do not exist in biology.

There is also the issue of data set size, which is largely avoided above by giving

a few examples of the thousands of possible images.

To give some idea of scale, the visualisations are presented in the order

of largest to smallest scale. Starting with environmental view, which consists

of pictures of the substrate condition. Onto this image is placed each cell

represented by a circle proportional in diameter to the mass of the cell. This

image, or rather a series of images then shows which cells are moving and the

change of substrate distribution.

As COSMIC records all relationships between the object sets, so to are

the cell relationships. This means it is possible to draw a lineage chart in

either direction of time rooted at any cell. From this it can be seen what

cells are related and by how many generations. Useful where comparing the

performance of cells that are genetically related.

There are however situations that require more tradition approaches, this is

the case when considering the parameters related to the cell at the highest level.

Shown are the important parameters of volume, total enzyme count, position

in the environment and the activity of the input and output receptors. When

searching for cells of interest, this can be a quick method of accessing the

quality of a cell.

At much lower level, COSMIC can plot the expression levels of each gene on

the genome over any period of time while taking account of sequence insertion

and deletion events. Thess diagrams clearly show which areas of the genome

are responsible for the success of a cell. Importantly they also give clues as to

COSMIC R. Gregory

6.7 Summary 168

the failure of cells, as cells fail for many reasons.

Changing dimensionality, this data can also be shown as a digraph. This

then indicates which genes interacted with which other genes and how many

times, over any given time frame. This gives the most detailed view but also the

biggest challenges in terms of visualisation, as one static graph only represents

the surface detail of the actual interactions.

COSMIC R. Gregory

Chapter 7

Results

7.1 Introduction

The previous chapter introduced some of the visualisation techniques used

in this chapter. Some of those visualisations are research topics in themselves

as the data generated by COSMIC is so rich that a single image only scratches

the surface of what interactions actually occurred. They were separate from

this chapter as a result of this. This chapter instead gives an account of some

of the simulations, not just the data obtained but also the evolution of the

simulation and its testing.

The key difference between COSMIC and all other simulators available is

the implementation of detailed genetic interactions combined with evolutionary

concepts, and with this the use of multiple scales in the same simulation. The

behaviours of the system as a whole and the individuals are then very spread

out, the size of the system makes it very much akin to examining a real world

system, except that this system is different in nature and so needs different

approaches from those learned over the years. This system gives the detailed

genetic data that real world processes must approximate, but on the other hand

offers no clue as to how real world methods can be used to read this data.

The results from COSMIC are difficult to classify, the whole simulation

tries to be integrative with no clear boundaries between interactions that occur

169

7.2 Parameters 170

inside the cell, obviously the implementation is still modular but the parts are

so interconnected it can be difficult to see effects of the parts. That said, the

approach here is give an overview of some of the simulations. The open ended

nature of COSMIC ultimately meant there was no single result that showed

evolution taking place. The single result was a simulation system that should

have the ability to show evolution taking place. There has been data suggesting

there is a slight overall improvement in fitness, but it is unknown whether this

is a reliable indicator given that this data possibly a biased average.

Before experiments are described, the overall parameters will be explained

in section 7.2. These provide overall control of the system by specifying limits to

the environment, cell growth, cell division, cell genome size, genome mutation

rates, enzyme half lives and genome-proteome interaction rates. Some of these

are changed to vary the experiment and will be listed separately.

Section 7.3 introduces the data sets that make up the archived COSMIC

output. The testing phase of the simulation is then described in sections 7.4 to

7.14. When simulation runs where made, problems were found and corrected

and the bulk of the chapter is made up of those experiences. This provides

some idea of the subtle effects of programming errors and more often, sim-

ple unforeseen consequences of some implementation decision. This chapter

finishes with a summary of the main outcomes in section 7.15.

7.2 Parameters

Note. Each parameter is preceded by the C++ source file that it came from

and the line number.

cell.C:266://options .OperatorGene=options.OperatorLink = 0;

Controls the inclusion/exclusion of operators when a genome is randomly ini-

tialised. Here for testing the implementation and showing operators do have

an effect. Operators were tested long before simulations were recorded (there

would never have been enough room) and so those returns are not shown, I’d

like to do some more tests to show this. There are two controls, *Gene (i.e. any

COSMIC R. Gregory

7.2 Parameters 171

control ending in Gene) enables the creation of genes of this type, and *Link

enables the operators in the genetic network (Repressor-Operator interaction),

without which operator genes would just be extremely short introns.

cell.C:267:options.PromoterGene = options.PromoterLink = 1;

Controls the inclusion/exclusion of promoters when a genome is randomly ini-

tialised, same as for operators.

cell.C:268:options.InducerGene = options.InducerLink = 1;

Controls the inclusion/exclusion of inducers (anti-repressors) when a genome

is randomly initialised, same as for operators.

cell.C:269:options.AttenuatorLink i

1; options .AttenuatorGene

Controls the inclusion/exclusion of attenuators when a genome is randomly

initialised, same as for operators.

cell.C:270:options.InputGene = options.InputLink = 0;

cell.C:270:options.OutputGene = options.OutputLink = 0;

Controls the inclusion/exclusion of input receptors and output receptors when

a genome is randomly initialised, same as for operators.

Cell1.C:271: options .CreateCytoEnzymes=1 ;

Turns on the creation of the proteins based on the genome of the newly ini-

tialised cell, these being necessary to bootstrap the cell which would otherwise

have no active proteins acting on the gene network with which to create new

proteins. The number of proteins created per type is set elsewhere, normally

5 proteins for all expressible genes and 1 receptor per input and output.

cell.C:271:options.EnzymeDeath = 1;

Turns off the half-lives of all enzymes, ensuring that all enzymes live forever.

COSMIC R. Gregory

7.2 Parameters 172

This is largely a debugging switch as the system soon becomes clogged with

enzymes.

cell.C:272:options .EnzymeBinding = 1;

Turns on all gene-protein and protein-protein binding, leaving only initiali-

sation of the cells. This is largely a debugging switch that allows testing of

initialisation knowing that the systems dynamics will not be activated.

cell.c:272:options.IterateCytoplasm = 0;

Disables entirely effects of dynamics by not checking for possible protein bind-

ing and not taken action on protein unbinding. This is even more far reaching

than the above.

cell.C:273:options.ConsumeSubstrate = 0;

Stops the cells from consuming substrate, the environment is not altered and

the cells gain no glucose. Defaults to True. Note this is on a per cell basis, a

similar flag for the environment sets the entire simulation.

cell.C:273:options.KillUnviable = 0;

True enables heuristics intended to speed up evolution by killing cells con-

sidered unviable. That is cells with less than options.viable_generat...

enzyme population to transcribable genes, negative cell mass or has made no

recent response to or sensing of the environment.

cell.C:278:options.insertion_rate = 0.0025;

cell.C:279:options.insertion_shape = -0.01;

cell.C:280:options.insertion_max = 0.1;

cell.C:283:options.deletion_rate = 0.0025;

cell.C:284:options.deletion_shape = -0.01;

cell.C:285:options.deletion_max = 0.1;

Gene sequence insertion/deletion parameters controlling the frequency and size

COSMIC R. Gregory

7.2 Parameters 73

of these events. Normally set to a relatively high rate but can also be turned

off using these same controls.

cell.C:929:pd_geneinsertion=new ProbDist(0.0,1.0);

cell.C:939:pd_genedeletion=new ProbDist(0.0, 1.0);

Both these functions generate uniform distributions which are then used to

test if insertion/deletion should occur and if so what position and size. p here

is then tested or multiplied by the relevant scalars, this is an implementation

issue that removes the need for many distribution generators.

cell.C:289:options.longterm_in[Cell0pt: : Inflate]=0.002;

cell.C:290:options.longterm_in[Cell0pt: :Minimum]=-1.0;

cell.C:291:options.longterm_in[Cell0pt: :Maximum]=1.0;

cell.C:292:options.longterm_out [Cell0pt: :Inflate]=0.001;

cell.C:293:options.longterm_out [Cell0pt: :Minimum]=-1.0;

cell.C:294:options.longterm_out [Cell0pt: :Maximum]=1.0;

Parameters defining the above cell viability check heuristic for connectivity

with environment. Allows for a peried of no activity at all, by setting a counter

to Minimun if there is activity and always incrementing the counter by Inflate.

If the counter reaches Maximum then the heuristic considers the cell not viable.

cell.C:297:options.viable_generatio = 0.05;

This figure multiplied by the genome size gives the minimum number of gene

products, if the cell should have fewer then it is considered not viable.

cell.C:970:pd_genematch=new ProbDist(0.015,0.015) ;

When finding gene-gene interaction paths the hamming distance was originally

taken as potentially probabilistic, or more precisely, fuzzy. Hamming distances

in this region (here 0 as this feature is unused) would be compared against

values from this distribution. Thereby making some pathways probabilistic

when initialised. This was felt to be create an implementation bias and so was

COSMIC R. Gregory

7.2 Parameters 174

not used.

cell.C:980:pd_potbindunbind=new ProbDist(0.0, 1.0);

Distribution generated for the potency coefficient and binding and unbinding

times. For all instances of e* in molecular interactions. Uniform as e* returns

the required function.

cell.C:990:pd_randomqueuing=new ProbDist(0.0, 1.0);

The implementation services events in a well defined way that is static over the

course of a single cells execution and passed onto daughter cells. This ordering

is initially defined by this random distribution. All possible pairs of pathway

interactions are sorted on this random number to ensure no biases from the

creation of the interaction pathway set.

cell.C:999:pd_genomelength=new ProbDist(70.0,130.0);

Newly created cells with no parent have a genome size (including control se-

quences) defined by this uniform distribution.

cell.C:1009:pd_genetype=new ProbDist(0, 4);

cell.cC: 1012:float arr_pd_genetype[]={0.33, 1.0, 1.0, 0.5, 8.0};

cell .¢: 1019:pd_genelength=new ProbDist (10,15) ;

celdl.¢: 1029:pd_locusvalues=new ProbDist(0,env->numloci-1) ;

Genome generation pdfs, the first selects one of the 5 gene types (4 control, 1

gene product) and the associated array then gives a distribution of the rela-

tive frequencies. That is, promoter, operator, attenuator, terminator and gene

product. Once type is known, pd_genelength determines the length of that

individual gene and then pd_locus_value generates the letters within the al-

phabet. These are then used in the hamming distance function to compute

interaction paths.

cell.C:1965:int nomi_geneprod=5;

COSMIC R. Gregory

7.2 Parameters 175

Cell bootstrapping requires gene products be created somewhere. Under steady

state conditions gene products create a newer generation of gene products, the

initial state is to generate nomi_geneprod gene products with the creation of

a new random cell to start the transcription process.

cell.C:1966:int nomi_glucose=1;

cell.C:1967:int nomi_flagel=1;

Input receptors and flagella receptors are internally modelled as timeless gene

products of static genomes. There is the option for multiple substrate receptors

and multiple flagella receptors in the same physical space. This was never

used in practice though could be useful to simulate larger enzyme populations

without increasing search space, as each resultant gene product has the same

encoding.

cellstate.C:858:int partialdivide=TRUE;

Boolean indicating the realism of the cell division process. Normally the en-

zyme population of the parent cell is divided equally among the daughters,

False indicates that both daughters should receive all the enzymes the parent

had. This is a physical impossibility but useful for debugging, given the same

enzyme population both cells should perform similarly well and so is useful for

testing.

enviro.C:98:options.RefreshSubstrate = 1;

Boolean indicating the environment glucose level should be increased every

iteration to ensure the environment contains some new glucose source. Without

this the environment is emptied of glucose, making growth of cells impossible.

enviro.C:99:options.KillUnviable = 1;

Simulation wide flag enabling the use of the cell viability heuristic. For viability

to be checked, both this and the cell option must be True. The two options

give the possibility to give some cells move chance at survival, by making it

COSMIC R. Gregory

7.2 Parameters 176

easier to to implement exceptions to the rule.

enviro.C:100:options.RecordSubstrate = 1;

Boolean controlling the saving to hard disk of environmental pictures. True

generates a jpeg of the current environment every 10 course grained iterations

(10 seconds), saved with a filename based on the simulation time.

enviro.C:110:pd_cellposition=new ProbDist(0.0,0.0002) ;

When creating a new cell the initial cell position is obtained from this pdf. It

can then be placed anywhere inside the 200jm square that is the environment.

This can then also be used to place cells in a corner of the environment and so

easily see which cells have been motile from a single view of the environment.

enviro.C:127:pd_volumelvl=new ProbDist (0.2*F_FEMTO,0.4*F_FEMTD) ;

When creating a new cell the cell volume is obtained from this pdf, placing

the cell inside the bounds of normal steady growth between 0.2 and 0.4 fem-

tolitres in volume. This potentially places cells within easy reach of division

immediately after creation but does not give any real advantage to the cell.

enviro.C:160:pd_ioposition=new ProbDist(-0.000002,0.000002) ;

Receptors on the cell wall must be given a position, this pdf determines receptor

positions relative to the cell for all cells - this same physical distribution is given

to all cells to reduce search space and increase the chance of viability across

generations.

enviro.C:344:sim_time_delta=0.02;

enviro.C:346:secondsperround=1.0;

Fined grained and course grained iteration times, sim_time_delta increments

simulation time for each fine grained intra cell iteration. On reaching seconds-

perround the process synchronises with the environment. As a result, these

parameters are simulation wide and set the possible resolution on the one hand

COSMIC R. Gregory

7.2 Parameters eae

and sensitivity to cluster network congestion and load balancing on the other

hand.

enviro.C:356:transcription_rate=0.025;

The RNA polymerase doing the transcribing moves at a specific speed, here

it is specific in genes per second, adjusted to account for the size difference

between COSMIC genes and real genes. The end result is transcription at

approximately the correct speed.

enviro.C:362:transcription_matter=0;

A potential cost in terms of matter was placed on transcription to provide

selection pressure against futile cycles. Calibration was a problem and so this

constraint was never used.

enviro.C:367:chemotaxis_rate=0 .000025/8*secondsperround;

Chemotaxis is computed as a vector, combining all the forces of each flagella.

The maximum swimming speed is known to be 25 uM per second and this

maximum is taken as the maximum the vector can total to, hence the division

by 8 flagella. The real mechanism of chemotaxis [CP97] is chemical and so

beyond the scope of COSMIC.

enviro.C:371:f_maxgrowth_rate=0.0205/0.4444;

enviro.C:372:f_maxyield_ratio=0. 4444;

enviro.C:373:f_saturation_const=0.00234;

enviro.C:376:f_maintainance_rate=5.791e-15;

enviro.C:379:f£_volume2drymass=290;

Cell growth parameters based on [KBW98, NTT96, KW82]. These reduce cell

growth over time to a function based on available glucose substrate. As a result

they fit exactly with the requirement of COSMIC.

enviro.C:382:chemotaxis_rate*=1;

COSMIC R. Gregory

7.2 Parameters 178

Reducing this value gives the opportunity to increase the effective surface area

of the environment without also having to increase the resolution. Increas-

ing the resolution is best avoided as modifying the environment involves sub-

tracting a floating point number from a 2 dimensional array of floating point

numbers, this will take a long time with a high resolution.

enviro.C:393: matrixenergy_rate=1e-6*secondsperround ;

This parameter sets the glucose replenishment rate to ensure the environment

contains some glucose. This ultimately sets the size of exponential population

growth, higher values ensuring the population can grow further before lack

of nutrients limits growth. The exponential growth is mostly created by the

initial environment, as this value would need to increase exponentially as the

population explodes.

enviro.C:400:map_glucose.init_uniform(0.0002, 0.0002, 2500000,

0.0, 0.0045, 0.0045))

These group of parameters define the dimensions in meters, resolution in pixels

per meter and glucose level in terms of minimum possible, maximum possible

and initial value, all in nanograms/litre. This amount to initialising the envi-

ronment to 500x500 pixels with absolute limits of 0.0 to 200 uM with bounded

values of 0.0 to 0.0045 and a value of 0.0045 nanagrames/litre all over.

enzymerates.C:25:#define HALF 0.0058

Gene product half life is defined by this value and by the follow tables. This

sets the half life to around 2 minutes. It is known that gene product half life

varies across gene product species, some lasting hours, some lasting minutes.

For simulation purposes a brief half-life was chosen to reduce delays in the

pathway cascade, making reaction to the environment potentially faster and

so consuming less computing power. The more long lived gene products are of

no interest to this simulation, for the most part they are not involved in rapid

response cascades.

COSMIC R. Gregory

7.3 The Data Sets 179

Three tables describe the reaction rates for the set of interactions, the above

HALF is used by most of them, some have been reduced. Rather than reproduce

them here, these are the same matrices as found in figures 4.2, 4.8.2 and 4.8.3.

world.C:170:createinitialcells(environ, 20))

This parameter sets the initial population size. This is largely the result of

the implementation generating one line of output per iteration per cell, so was

large enough for testing but small enough to easily fit all the cell output in one

small terminal window. There has never been any reason to change this figure

as it also fitted well with the number of CPUs in the cluster.

world.C:216:while(environ->ms_cells.size()<20)

This parameter sets the minimum population size, which is essential for the

initial searching phase that looks for a viable cell. For the same reasons as the

parameter above, this figure was chosen for ease of use and never changed.

world.C:415:if(((long long)rint(environ->sim_time) % 2000) !=0)

This parameter sets the state saving interval of the entire simulation. Should

COSMIC fail due to a failed node in the cluster, the simulation can be restarted

from any one of these save points.

world.C:555:} while(environ->sim_time<500000.0

Finally, this parameter sets the total maximum run time in simulated seconds.

Though it is not required that this time actually be reached.

7.3 The Data Sets

There have been at least 10 experiments testing the environment, popula-

tion growth, survival times and parallelisation. These simulations were orig-

inally based solely on the one machine. Later the simulation was run on the

Computer Science farm, and starting with runs021102 the simulation used a

COSMIC R. Gregory

7.3 The Data Sets 180

Duration(Days) Cells

paso Ra ade | Sia a
Prunozosorf 16 | 7 | 243 | | 85 |__| Increase env, replenishment rate |
run020516 ? 0.94 48 Increased cell division diversion angle

run020610| 8 |_4 | 06 |i; uo> 77]
run020623] 5 | 2 | 0.28 | 1437 | 310

1485 | 165 [Compare direction against previous |
Prund2iioz| 4 [4 __|

34

Figure 7.1: Simulation runs archived for later analysis.

dedicated cluster. These simulation runs are tabulated in figure 7.3. There

was also a large number of experiments before there was any useful recording,

these were to test the interaction paths and made use of what are now the

control variables above.

As each run was made, errors were found and the simulation evolved, re-

moving artefacts of the simulation process and some more standard errors. As

can be seen from the table above, all runs took a significant amount of time to

compute, usually to the point that the sought after answer was known. Before

hand there were many many more runs but constraints on storage space mean

that only the more recent and therefore the most error free remain.

Simulated time is a function of cell complexity, number of cells and obvi-

ously total simulation time. Short simulations seem more effective than long

simulations, this is simply a result of longer running simulations containing

more cells, all simulation runs go through a phase of rapid simulation, but

once viable cells are found the pace slows rapidly. It should be noted that a

change in the cluster hardware significantly changed the ratio of real and simu-

lated time, on the order of 1.8 per machine and with more machines. The real

simulation time for runs before the large cluster have been reduced to better

reflect the time it would have taken on the large cluster.

Simulated time was overall a little disappointing, in a completely realis-

tic environment there is little opportunity for cells to evolve in such a short

time frame. Fortunately this was expected and provision to better guide the

COSMIC R. Gregory

7.3 The Data Sets 181

evolution process was made early on. Parallelisation in chapter 5 is part of

the answer, using viability heuristics, limiting cell numbers and putting costs

on cell interactions and activities are other avenues. The latter two were not

used, all references described the cost of interactions as negligible. Limiting cell

numbers seems too artificial, with or without some kind of elitist strategy. The

two most important qualities were parallelisation, and the viability heuristic.

Limiting cell numbers would have a confounding effect on interpreting results

and so it was felt better to allow the simulation to slow and wait longer for

reliable results.

The first two data sets show rapid simulated time for short simulation

duration, this is a direct result of the cells never reaching an exponential state,

for the most part there were 20 cells at any one time over the course of these

two simulation. With the problem isolated and corrected all other data sets

went exponential at some stage and so have much lower total simulated times.

Totalling the cells produced by each simulation gives some idea of simula-

tion size and cell lineage success against whatever restrictions imposed by the

environment. Each division process creates two daughters, and initialisation of

a new cell to maintain a population of 20 creates one cell; this value is the total

of both. For all available figures new cells account for around 150 of that total,

cell division was the main mechanism for growth and so there were major cell

lineages all containing similar genetic codes.

Initial simulation success can be seen from peak cell populations, before suc-

cess can be measured in terms of finding glucose gradients it must be measured

in terms of growth. These figures and more convincingly the charts demon-

strate this success in a limiting environment. The high peak of run020820

came about with an unlimited environment to test for exponential growth.

Dataset size is given here as a guide to the shear size of the simulation, the

individual approach creates this potential problem. Fortunately this raw data

can be mined using a set a scripts to produce more focused data. It might be

expected that size correlates with total cell numbers, as the data is compressed

there will be variation in size actually used simply through some data sets being

COSMIC R. Gregory

7.4 Simulation run020501 182

"run020501 -pop.txt"
"run020501-sub.txt"
a ~ » Ape os, ae ast MR ene ov ',

N
u
m
b
e
r

of

Ce
ll
s

0 500 1000 1500 2000 2500 3000 3500

Simulation Time(minutes)

Figure 7.2: First archived simulation result. The vertical axis represents the
total number of cells in the simulation, the horizontal axis represents time in

simulation seconds.

more compressible, maybe the most popular cell line was also quite active in

some simulations. For instance, run020205 compressed 546Gbyte to 93Gbyte,

whereas run021102 compressed 65Gbyte to 10Gbyte. Even with these large

averages there was still a significant variance in compression ratios.

7.4 Simulation run020501

This section covers the finding of the first simulation that was recorded

and archived. It was run over the period 01/05/02 -16/05/02 and is shown in

figure 7.2. It was planned to run for a few days but was left running longer

after some cells looked promising. Note the naming scheme of this section

(and those that follow) is based on the date the simulation was executed, as

described in section 5.7.

COSMIC R. Gregory

7.4 Simulation run020501 183

The main focus of this simulation was to increase the environment replen-

ishment rate from 0 to fast, as previously all cells died off. The result of

this was that the environment is replenished fast enough to keep up, but not

so fast that a cell can stay in the same place. However, the cells still don’t

proliferate, they divide for a short while but even better genomes always die

out. The parameters used for this simulation were the same as above, but for

the addition of energy parameters that were later removed. The next step was

then to try splitting enzyme numbers 100/100 rather than 50/50 when a cell

divides.

Looking over the resultant data, such as some successful cells (0357, 0415),

it seems they fail because the cytoplasm division takes away important proteins

that don’t exist in the new cell in enough numbers to sustain it.

Cell 0357 leads to 7 cells, but at its height (time window 19420-13815) with

6 cells existing over 1815 iterations, they then all die out with 29 iterations.

Cell 0357 had regular connections with the environment until some time after

the last division, when it lost connection with both inputs and outputs and the

enzyme population went into rapid decline only limited by enzyme half life, the

cell was killed through lack of enzyme population. 0386 is 357’s first daughter

that lasts 1820 iterations before dying, the status shows the enzyme population

recovered slightly but then faded away in two falls, at the end of the first fall

the connection to the environment was lost, by the end of the second fall there

were no enzymes remaining.

0411 is the daughter after 0386 and was among the last of this line to die off

as well as having two daughter of its own. The general status graph shows the

cause of death identical to 0357, at a point some 1000 iterations after division

an enzyme population of 5000 enzymes declines at the maximum rate to 0, at

the start of the decline the connection to the environment is lost. Cell 0411

confirms division timing, the cell is clearly moving at high speed and so is

growing at approximately maximum rate. Division occurs at 1500 iterations,

or 25 minutes.

In the 0415 case, the cell population is sustained but the connection to the

COSMIC R. Gregory

7.5 Simulation run020516 184

input and later the output is lost, forcing COSMIC to kill it. 0464 (descendant

of 0415) died for the same reason, though the protein population was diving

regardless. The cell halved and shortly after it lost its connection to input

receptors, then shortly after to lost any connection to the output receptors.

Cell 0481 (descendant of 0464) was identical to 0464.

Cell 0143 was very successful, though had for some reason gone unnoticed

until much later. This one cell lead to 12 offspring over a maximum generation

depth of 6. This result pointed out the need for more checking, to find out why

it proved so successful but then died. In light of p.d.f. problem and the divide

direction problem, it is presumed that this one cell was very inactive both in

motility and transcription, making it divide quickly enough to survive the cell

division process.

7.5 Simulation run020516

This section covers the finding of the partially recorded simulation, made

over the period 16/05/02 -22/05/02. The main focus of this simulation was

to increase the cell divergence angle of divided cells as a test if it improves

life time. The divergence angle comes from a cell division, cells are initialised

with a random orientation but at cell division the new cell must be given a

new direction. This is based on the parent orientation, the parent orientation

is incremented by this value and the new cell is set to the parent orientation

minus this angle. Also, both cells offspring receive 100% of the parent cells

contents. The parameters used for this simulation were the same as above, but

partialdivide flag being set to false.

As shown in figure 7.3 this had no effect, suggesting the problem is else-

where. Without further analysis of the resultant data set, it was noticed that

all daughter receive the same PDF set and initial seed as their parents. Given

the same initial conditions and the same random events the daughter cell is

destined to follow the exact same execution path as the parent. This does not

entirely explain the failure as good parents should lead to good daughter and

COSMIC R. Gregory

7.6 Simulation run020602 185

"run020516- pop: me a
"run020516-su

N
u
m
b
e
r

of

Ce
ll
s

 0 200 400 600 800 1000 1200 1400

Simulation Time(minutes)

Figure 7.3: Early failed simulation, parental PDFs were passed in error to

the daughter and so made the daughter cell effectively the same. The vertical

axis represents the total number of cells in the simulation, the horizontal axis

represents time in simulation seconds.

so an overall growth, albeit at a reduced growth rate.

7.6 Simulation run020602

The need for further testing lead to run020602, which is the first simulation

in which all the data is available even if some of that data used an output

format no longer supported by the COSMIC data mining utilities, which gener-

ate the various graphs and pictures. It took 3 attempts to run this simulation,

finally covering the dates 06/06/02-10/06/02. The main focus here was to give

each cell its own seed value and random number generator, the seed is based

on the 8 digit cell id (which is here shown as 4 digits for brevity) and so is both

random for each cell but deterministic should the simulation be run again with

COSMIC R. Gregory

7.6 Simulation run020602 186

15

10
id
im
10

il?

12

12

13

0

 | == 10s} _~—sddinux118.esc.liv.ac.uk
| == 9 sss Tin x17.esc.liv.ac.uk

Figure 7.4: Total number of cells per machine when simulation stopped.

the same start conditions.

The initial problem was one of file descriptors as discussed in chapter 5,

brought about by running the simulation on a parallel machine for the first

time. As the parallel machine was in fact a loosely coupled cluster of student

access machines, the file descriptor problem was much worse than it would

otherwise as been. Of course, the alternative viewpoint was it being a good

test of the COSMIC implementation.

No parameters were changed as this was essentially a bug fix. Both parent

and daughter cell still receive a full set of enzymes as in the previous run, i.e.

Gene products are not shared between them but copied to the new daughter

cell.

While running the simulation for the third time, the host machine ran out

of hard drive space. Storage space was then recovered but the result was taken

as it stood. This run stopped on iteration 42150 with 154 cells, cell density per

machine is given in figure 7.6. Notice cell load is relatively evenly distributed

among the machines.

The overall result then is a successful simulation, having found a cell that

COSMIC R. Gregory

7.7 Simulation run020610 187

Experiment run020602

Substrate
Population
Births
Deaths

N
u
m
b
e
r

of

Ce
ll
s

Simulation Time (minutes)

Figure 7.5: First successful simulation showing cell growth and division. This

simulation was also the first multi-machine parallel simulation.

fits the initial viability criteria and reproduced that cell to produce a large

lineage that takes over the environment and creates a self induced limit on

growth rate. As shown in figure 7.5 and unlike figure 7.3 we can see a char-

acteristic exponential growth curve followed by a slowing down as the glucose

was consumed.

This was also a success for the parallel implementation, which showed that

it worked well enough to support a simulation of this size at a reasonable

efficiency - although quantitative efficiency data was not yet recorded it could

be sampled, this and the numbers of cells per machine suggested efficiency can

be high at least some of the time.

7.7 Simulation run020610

Following the success of the previous simulation, that is success in terms of

the population increasing, the obvious next step was to run the simulation again

but with the sharing of enzymes at cell division enabled (partialdivide=True).

COSMIC R. Gregory

7.8 Simulation run020623 188

This was a return to the normal mode of operation and will provide evidence

that the PDF initialisation bug was the root cause of cell failure.

The simulation was then allowed to run for 2 hours short of 8 days. Unlike

when using the same PDFs, these cells proliferate once a good cell is found.

Only around two successful lineages where created and then these took over. It

would seem exponential growth does not show as expected, the large effect of

each cell on the environment («10° increase in glucose usage) has a self limiting

effect on the overall growth rate - the net effect looks effectively linear, from

a flat search phase, to a linear increase, to a slight boom-bust cycle once the

environment reaches saturation.

The difference between this and the previous run can easily be considered a

result of the partialdivide flag. This run, shown in figure 7.6, has the same

linear curve over a longer time frame, 460 minutes to create 115 new cells,

previously 145 minutes to create 100 cells. The slower growth rate is the result

of a higher failure rate in cell division, caused by a brittle genetic pathway.

This can also be seen in earlier runs as brief spikes, these lineages achieve a

rapid growth and then an instantaneous death. The effect of division can also

be seen in the shape of the population increase, run020602 is continuously

increasing during the linear increase phase yet run020610 increases overall but

sometimes declines.

7.8 Simulation run020623

As the growth rate of the previous simulation was more linear than it should

have been, it then seemed prudent to test if and how how quickly exponential

growth could be found. In an unconstrained environment we would expect to

see perfect exponential growth, even with the effects of brittle genetic pathways.

The consume substrate control parameter (options. ConsumeSubstrate) was set

to false and the simulation was run for three days.

The result was clear exponential growth after the usual searching phase

delay. The growth peaked at around 330 cells before the simulation had to be

COSMIC R. Gregory

7.8 Simulation run020623 189

Experiment run020610

Substrate

Births
Deaths

Nu
mb

er

of

Ce

ll
s

0 400 200 300 400 500 600 700 800
Simulation Time (minutes)

Figure 7.6: Enabling 50:50 cytoplasm sharing at cell division.

stopped - the server machine had run out of process space with there being so

many incoming ssh connections from the Linux cluster.

Since then some of this process overhead was removed to support around

500 cells with ssh and 680 cells with NFS. Regardless of this limitation, 330

cells was enough to see another artefact of the simulation, there were large

fluctuations in the population size during the exponential growth as shown in

figure 7.7. This can be explained by the synchrony of all cells, since a homoge-

neous environment makes all cells grow at exactly the same rate. However it

can be more thoroughly explained when considering the cell division process.

At the end of the simulation there were 3 large lineages, the original cell of

each would have its own size, but all cells coming from each parent would from

then on be created at the same time, grow at the same rate and so divide at

the same time. The end result being three sets of cells, the contents of each

set being closely synchronised. What this does not explain is why so many

cells die in the first place, it could simply be enzyme splitting bringing out the

brittleness of the transcription network.

Looking at the lineages generated, most consisted of only three cells, the

COSMIC R. Gregory

7.8 Simulation run020623 190

Experiment run020623

Substrate

Nu
mb
er

of

Ce
ll
s

0 50 100 150 200 250 300

Simulation Time (minutes)

Figure 7.7: Unrestrained exponential growth, highlighting some kind of syn-
chronisation artefact.

original and two daughters that are either siblings or daughters and grand-

daugthers. The five exceptions that accounted for the vast majority are cell

0211 with 5 daughters, 0160 with 43, 0198 with 117, 0042 with 119 and 0143

with 300.

Looking at the lineage of cell 0143 in figure 7.9, the timing between boom

and bust hardly changes as the general size of that lineage increases. Starting

at time 9460, with 22 cells and then measuring the time between cycles we see

the clear patten of table 7.8.

The lineage of cell 0042 shows a near identical pattern in table 7.8. It starts

at time 9068 with 2 cells and so less well established as lineage 0143 but this

does not appear to matter. The lineage of cell 0198 in table 7.8 again shows

the same pattern. This does however contain more noise as the decline time

in the third row is clearly very different to the norm. This lineage started at

time 11621 with 14 cells.

But for the initial increase and one case of noise, the period of decline is the

same for the whole of the three lineages. As this environment is unconstrained,

COSMIC R. Gregory

7.8 Simulation run020623 191

Pop. Decline Pop. Increase

Fe

Figure 7.8: Timing differences between multiple peaks and troughs of

run020623, cell lineage 0143 during unrestricted exponential growth.

N
a
a
t

B
a
y

P
W
S

S
N
Y

I
N

Y

t
t
a

t
“

| ue

E
R

N
N

o
o

y/|
B
o
 S
Y

S
a

e
g

B
e

Se > So
yyy

Wy
22 caine ie

one >

L
L

44

W
A

W
Z

N
4

Y
Y

T
.

S
V

x

D
E
Y

oe
<&

nD

ee

—
1 CK oc LL oy
Figure 7.9: Whole lineage of cell 0143 in run020623, with unexpected synchro-

nised deaths.

C
L
R

COSMIC R. Gregory

7.8 Simulation run020623 192

 Pop. Increase

Tals
ea a
ar

21

in

="

a

[1976 |

59

45

30

95

59

Figure 7.10: Timing differences between multiple peaks and troughs of

run020623, cell lineage 0042 during unrestricted exponential growth.

Figure 7.11: Timing differences between multiple peaks and troughs of

run020623, cell lineage 0198 during unrestricted exponential growth.

COSMIC R. Gregory

7.8 Simulation run020623 193

doubling will occur every 22 minutes or 1320 seconds. The dynamics of these

growth cycles are then related to the doubling time. Looking more closely at

the timing of deaths and division there is another pattern, cell division occurs

at around the same time (+1 second) and then while all cells are growing at

maximum speed some are killed because they are regardless considered non-

viable. As a result, the population increase timespan is quite arbitrary as it

only records the last cell death before the next growth cycle. Also, cell death

can be from a previous growth cycle, so although it can be said that death

occurred in that cycle, the cycle is an interpretation placed on the data to

explain the pattern. Deaths happen all the time, but are more likely before

the next cycle.

This data does then allow us to calculate the best case growth rate in the

presence of brittle genomes, what proportion of new cells will fail to themselves

divide and hopefully some hint that evolution is increasing the survival rate

and so working to avoid brittleness of genome.

Figure 7.7 shows the same exponential growth but with a uniform time step.

Figure 7.12 shows the same graph but with the vertical axes focused on the cell

birth and death rates. As can be seen, the population increase is proportional

to the total population size. This is expected since all cells live in a maximum

growth environment. The death rate however appears linear, at the final time

step there were 280 cells, and 80 deaths; at 275 minutes there were half as

many deaths but 120 cells. If the cells are not dying at an increasing rate then

genome evolution must be making the genomes less brittle. This is surprising

considering the selective pressure is minimal.

Non-viable cells are terminated after 8.33 minutes of continuous inactivity,

inactivity occurring either immediately after division or some time after, fol-

lowing the ‘death’ of an unmaintained enzyme. Cell termination must occur

before cell division or the inactivity counter is reset and the cell gets another

chance. Enzyme half-life is the only mechanism that can delay cell death. As

this is around 2 minutes and the minimum doubling time is 22 minutes, there

is a high probability that inactive cells are killed. We fail to see an exponential

COSMIC R. Gregory

7.8 Simulation run020623 194

Experiment run020623

Nu
mb

er

of

Ce
ll
s

0 50 100 150 200 250 300 350

Simulation Time (minutes)

Figure 7.12: Birth and death rates of run020623.

increase in death rates and yet this mechanism must surely scale up, the only

conclusion is then improved pathways, by this mechanism killing cells that are

more brittle than others.

At this point the host system had effectively run out of hard disk space,

short of deleting results a new hard drive needed. This took some time, and in

the mean time the results of first two simulation runs were lost to a mistake.

While in temporary storage space they were deleted by the system, configured

to delete temporary files over a week old. Unbeknown to this author, the

data sets were considered old the moment they were moved, the move did not

reset the access date and so in the early hours of the next morning the first

two datasets (run020501 and run020516) were lost. It is at least fortunate that

these where the earliest part of the testing phase and considering the significant

bugs had the least value.

With the arrival more hard dish space, the results of the previous run

could then be considered. There was the option to either test the above with

100/100 enzyme sharing and so compare the death rate, or modify the cell

division criteria so that division varies around 0.4 fg, rather than exactly 0.4

COSMIC R. Gregory

7.9 Simulation run020813 195

fg in all cases. This would then test the probable cause of division synchrony.

The latter option was chosen as the next experiment, this was considered much

more of a bug than the expected loss of cells through brittleness.

7.9 Simulation run020813

Before this simulation a change to COSMIC was then needed, the thresh-

old of cell division based on cell mass was changed so that each cell had an

individual threshold of 0.4fg + 10%. This simulation was also looking at the

“jiffies” computation algorithm (chapter 5) for better CPU time throttling to

help COSMIC coexist with other users.

This simulation ran for 6 days but revealed an over sight with substrate

consumption, it was enabled and so there was no chance of exponential growth.

It is quite likely this was deliberate; following complaints from the Linux farm

administrator that these simulation were having a big impact on the users

of those machines. This complicated the simulation, not only did it need to

simulate but it must also be considerate of other users. This aspect was taken

further in chapter 5.

As this was then effectively a bug fixed COSMIC with a constrained en-

vironment it gave a result in itself. As expected there was smoother growth

and decline of the population, especially in line with environment nutrients.

The result looks nothing like the previous run, the regular cycle in population

size has gone. As this was a nutrient limited environment we can expect large

differences in population size but would still expect the cycle to be present had

the cause not been found and corrected. The only oddity comes from the popu-

lation drop at time 500 minutes as shown in figure 7.13, this hardly shows when

looking at the lineage, either at the whole population or at cell 0143. This cell

accounted for 629 cells of the 915 cells tested. It is suspected that some genetic

event had started to take effect at around time 440 minutes. Identifying all

the deaths at this time and checking for a ancestor in which the death rates on

both sides of the cell division are difficult. Would require writing a program

COSMIC R. Gregory

7.9 Simulation run020813 196

to count lineage depths, heights, deaths per lineage and then computing death

ratios, and another to extract all the death events that occurred in that time

frame, and another to combine the result and so pick out all cell death ratios at

that time. There did not appear to be any way of doing this. What is known

is that there were 81 deaths over this time span, 37 had a balanced tree, 7 were

within 50% (looking at the relative balance of each lineage tree), 24 had an

100% imbalance, 5 had an 200% imbalance, 7 had an 300% imbalance and only

one had an 400% imbalance. 29 were right leaning, 15 were left leaning and

37 were balanced. This one cell would suggest an insertion or deletion event

caused a deleterious cell line that survived along side other cells for some time

but eventually its brittleness came to show. This was cell 0225, the tenth in

the lineage. Cell 0255 is the eleventh and had 5 offspring, cell 0536 had one

offspring, so clearly the ratio by itself is misleading as the death of 6 cells is

insignificant compared to the 81 deaths. There needs to be an algorithm that

can trace back to a ancestor or the most common ancestor, that would seem

to be the most reliable. Alas it is also not clear how this could be done, as it

cannot be done by hand it certainly cannot be done by machine.

This could potentially mean looking for nodes that lead to a lot more deaths

than typical, yet only counting nodes from this window of time. The cleanest

approach is then to plot the entire lineage for cell 0143 and rank each daughter

cell based on the number of deaths that occurred in the time window. The

effect is then a cumulative rise in the number of deaths going back to the

original founding cell. It was hoped this would then show a knee point where

a cell increased the death rate. As seen in figure 7.14 there is a knee when

plotted on a logarithmic axis. The first cell after the knee is cell 0193 in the

third generation with 94 deaths, before the knee is cell 0193 in the second

generation with 140 deaths. How real this knee actually is is unclear, cell

0193 in the second generation also lead to cell 0253 with 46 cumulative deaths.

It could be that these three cells represent some random event and then the

death rates amount to some meaningless summation of death rates, nearer the

founding cell there are fewer summations summing larger figures and so the

COSMIC R. Gregory

7.10 Simulation run020820 197

Experiment run020813

Nu
mb
er

of

Ce
ll
s

0 100 200 300 400 500 600

Simulation Time (minutes)

Figure 7.13: Population of run020813.

result is bound to be more noisy.

The only solid conclusion then is the difficulty in finding a suitable metric

regardless of having access to the complete data set. The compounding feature

is the lack of any steady states with which to compare, this data set starts

and represents an exponential rise in cell numbers so is as far from stable as is

possible.

7.10 Simulation run020820

As the previous simulation was run with a constrained environment by

mistake, this simulation corrects that mistake by giving the environment un-

restricted substrate. A hardcoded limit of 200 cells was placed in the code to

stop the simulation running away with itself as the last exponential run showed

it was important to limit the impact on the machines it executes on.

This simulation ran for 3 days, the limit of 200 cells was never acted on, the

wrong variable was being compared and so the simulation went exponential.

In the end around 490 cells were active, though very slowly as the server had

COSMIC R. Gregory

7.10 Simulation run020820 198

Ce
ll

De

at
hs

 1 2 4 8 16 32 64 128 256 512

Tree Depth

Figure 7.14: Ranked cell death counts for each cell of run020813. Counting
only deaths between times 440 - 500 minutes, to coincide with the population

drop at that time.

COSMIC R. Gregory

7.11 Simulation run020905 199

reached its maximum process limit and used around 1Gbyte of memory, ie. well

into swap space and having to access the HD on every server(i.e. environment)

iteration. PVM reset on the server took an hour to flush all the local processes

and recover from this drain on resources. Nobody else was affected by this as

the simulation was based on a single machine, had the 200 limit been acted on

even this machine would have been able to cope.

Looking at the growth in general in figure 7.15, it is clear there is still a

synchronous event tying together the cells. The lineage charts show one cell line

(cell 0143) dominated and the population chart shows a repetitive shape to the

large rise, small wobble and fall. The small size of the fall is very different to

past simulations, suggesting the pattern isn’t growth synchrony but something

else, possibly related to the division of enzymes. Division of enzymes has been

tested before, but at that time the growth synchrony problem existed in its

main force - division at exactly >0.399 fg). To further ensure synchrony is not

caused by division, the implementation was tested. The overall finding was

that although the client cells never have their own cell division level, the server

based minimal copies do and it is this copy that the division decision is based

on. This proves that synchrony is caused by some other mechanism, there are

no clues as to what that mechanism is.

It was also considered that the cause could be too little variation of the di-

vision level, resulting in the maximal cell growth rate always triggering division

in the same round. But cell division is tested every second, which is a maxi-

mum growth rate of 0.15 attol and that is much smaller than the individual

variation of +20 al.

7.11 Simulation run020905

The lack of explanation then forced a search for a more serious problem.

The simulation was run again with consumption of substrate (options. ConsumeSubstrate)

enabled, to compare with run020813. This is because past runs have taken on

a different shape of growth (run020813 seemed much smoother than past runs)

COSMIC R. Gregory

7.11 Simulation run020905 200

Experiment run020820

Nu
mb

er

of

Ce
ll
s

0 50 100 150 200 250 300

Simulation Time (minutes)

Figure 7.15: population of run020820

despite the changes should have made no difference.

Running COSMIC then turned out to be difficult, the PVM logs reported

what it called bogus packets followed by messages saying that the server ma-

chine was unreachable. These messages were recorded on the server machine so

something was clearly wrong. Client machines seemed to lock up, normal pings

of 0.6-9 msecs were replaced by pings of 5.0-6.0 msecs, with no possibility of

logging on to further identify the problem. All things pointed to a kernel prob-

lem and so before triggering the flaw a check was made on the kernel version

and it showed it had been recently updated. Further emails confirmed it was

an NFS kernel bug in the kernel running on the Linux farm and so COSMIC

had to wait while the technical support staff found the solution.

After the problem was resolved COSMIC ran without any of these messages

in the logs and so ran reliably. This run was meant to compare run run020813

(the first variable division run, in a dynamic environment), whose main feature

was a period of mass death.

As shown in figure 7.16 the overall growth rate was similar, as would be

expected. However there was no large population drop, so in that sense this

COSMIC R. Gregory

7.12 Simulation run021102 201

run was very different in terms of outcome. As the cause of the drop was never

found, the reason for the lack of a drop in what should be an identical run is

also beyond the analysis here, only a detailed examination of the genetics can

hope to give any reasons.

There were also initial similarities, again there was only one dominate lin-

eage and again cell 0143 was the founding cell. This seems to be a common

event, given the same set of random numbers the simulation is determinis-

tic enough to lead to the same cell number gaining the advantage, the non-

deterministic effects come later and hence the overall divergence.

In the mean time, the possibility of heterogeneous environments was added

to the simulation. Rather than resupply all areas of the environment with the

same glucose level, this allows a picture to make that specification. The lighter

the area of picture the more that area of environment is replenished. All based

on a linear pixel value to femtolitre mapping.

Also added was the ability to scroll this replenishment map over time and

so force cells to follow its movement, the scroll rate is specified at a sub map

resolution giving cells time to evolve this skill. To this date this feature goes

unused, a more complex environment was the not required when the data is so

difficult to analysis at the moment.

7.12 Simulation run021102

Although run020905 did not match run020813 as it should have, this did

not seem too much of a problem. Between simulations there are often minor

changes that could change the output. It would never have been expected that

such a big change could occur, but COSMIC is a complex system and it quickly

becomes hard to say either way without running the same simulation again.

Events outside of COSMIC meant there were other areas to test, a new cluster

arrived that was initially dedicated to running COSMIC.

On 02/11/02 COSMIC was tested on the cluster for the first time, it ran

from around 4 days. In that time the simulation went through 48500 iterations

COSMIC R. Gregory

7.12 Simulation run021102 202

Experiment run020905

Substrate
Population
Births
Deaths

Nu
mb

er

of

Ce
ll
s

-40
0 100 200 300 400 500 600

Simulation Time (minutes)

Figure 7.16: Population of run020905.

(13 hours, 28 minutes) of simulation, much faster than the general purpose

Linux farm ever managed. When taking into consideration only the speed

increase the new cluster it is still far faster than the public Linux farm. The

reasons for this are not clear, the cluster is faster per CPU on the order of

25%, has slightly faster networking and is not held back by other users. NFS

replaces ssh as the file transport but the trickle of data should never have

made that a factor. In 4 days and with 26 CPUs the cluster simulated 13.5

hours, on the general purpose farm this would have taken 11+ days, normally

never actually getting there because some problem on the Linux farm forced a

halt to the simulation.

Ideally the simulations would need to use total cell complexity integrated

with cell population for true accuracy, but that figure can itself only be es-

timated. Instead we use days simulated as the main measure of work done.

From run020905 we see took 21 days to simulate .42 days on the farm, and

run021102 took 4 days to simulate 0.55 days on the cluster, this amounts to a

per system speed increase of 6.88 and so nearly transforms a week of simula-

tion into a day. This is despite simulation run020905 on the farm spending less

COSMIC R. Gregory

7.12 Simulation run021102 203

time with a large population, simulating fewer cells in total and ending with a

smaller population.

Looking at the systems themselves, the 26 dedicated CPUs need to be com-

pared to the variable but always increasing number of CPUs used in the farm

1 Counting the total number of machines used in the farm run reveals there

were 10, one acting as host for both clients and server. Taking into account

the number of machines reduces this to 2.6 and then taking into account the

relative speed of the CPUs gives an overall increase of 2.1.

The reason for the large speed increase would then seem to be mainly

the larger number of nodes by a factor of 2.6 and the lack of other users

slowing down the whole simulation by a factor of 2.1. Though this latter

point also includes ssh overhead (especially when starting a new cell). The

effect of starting a new cell is usually to pause for a second or more while that

new cell starts and creates result files on the server by using ssh, NFS shows

comparatively no pause. Considering the situation where there are many cell

processes per node and so nodes are heavily loaded, even a pause of several

seconds is insignificant as many cells will still be completing their iteration. So

the effects of ssh seem minimal, only really showing in the initial stages of the

simulation.

Also notice how little difference the speed of the processor actually makes.

Comparing the prices of complete systems and the speeds of CPUs shows that

although speed might be doubling at a pace, the cost of a faster CPU does not

justify the speed increase when compared to many slightly slower machines.

The downside is of course that multiple machines requires parallel algorithms,

more space and more infrastructure.

Coming back to the simulation itself we see again in figure 7.17 the same

characteristic shape of population growth and again the equally characteris-

tic differences when given the same conditions. This time the growth rate is

1 Always increasing since PVM ensures CPUs can’t be removed from a running simulation,

only added. Machines were added when the load generated by other users had dropped to

minimal. They could then be added under the assumption users would not choose to log

into a heavily loaded machine.

COSMIC R. Gregory

7.13 Simulation run030116 204

Experiment run021102

Nu
mb

er

of

Ce
ll
s

0 100 200 300 400 500 600 700 800 F

Simulation Time (minutes)

Figure 7.17: Population of run021102

arguably more aggressive.

7.13 Simulation run030116

As the parallel efficiency was deemed important enough to measure, this

simulation was set up solely measure efficiency. An accurate measure meant

simulating for a long time and so the simulation ran for 21 days in a restricted

substrate environment. To calculate efficiency, a measure of jiffy usage per

round for each client was converted to per second and passed back to the server.

Under Linux there are 100 jiffies per second per CPU that the scheduler then

distributes among processes wanting to run. COSMIC totals the jiffies used

by each CPU, leading to an overall efficiency per CPU and then a total for the

system as a whole can be calculated. This required some small additions to the

existing code as system resource were previously unmonitored, largely because

nothing can be done with the knowledge to aid the current simulation and so

was not initially planned for. Not only is there no mechanism to pass more

accurate load balancing hints to the PVM client spawning function, there is

COSMIC R. Gregory

7.14 Simulation run030205 205

no also way to change what turns out to be a bad load balance.

Unfortunately, after the 21 days were up the data was examined to find

there was a bug in the jiffies calculator that made the result useless, it was

fixed and quickly restarted to obtain the real data. The bug was simply %d

instead of %f in the final printf() call. Regardless of this error the results had

to be kept in some form as they also represented the latest output and so were

used in a publication.

7.14 Simulation run030205

This run represents the last recorded simulation of COSMIC. More have

been made since then but there was never the storage space to really check the

results. In hindsight it was a mistake to run this simulation for so long and

so use so much storage space. The main focus was the same as the previous

simulation, to calculate efficiency, but keeping it running also allowed a chance

to see how far the system runs, long term evolution having always been cut

short in the past by some constraint of the underlying hardware.

COSMIC ran for just over a month, evaluated 3131 cells with around 410

coexisting when the simulation was stopped. It generated 100 gig of compressed

raw data. Enzyme numbers were in the ranges 25-260000 enzymes per cell with

a mean of 10000 (figure 7.19). Genome sizes were in the ranges 70-20000 genes

(figure 7.18), with a slow tendency to grow in size over the population ending

with a mean of 800. This growth approximately follows the function:

g= 1.9(t-400)/1700 +og 80

A constant exponential growth despite gene insertion and deletion being unbi-

ased. Even if there were a bias it should still be manifested as a linear increase.

The length of this simulation should have allowed evolution the chance

to show itself more strongly, the signs of this should then have shown in the

external sensing and reactionary controls regardless of finding direct evidence of

change amongst a cells regulation network. Looking at the total IO levels over

COSMIC R. Gregory

206 7.14 Simulation run030205

Experiment run030205

(seue6)
yyBue7

ewoues

1500 1000
Simulation Time (minutes)

Figure 7.18: Gene distribution of run030205

1e+06

Experiment run030205

18+06

Fea
H i

 (sewAzue

#) junog
ewAzu3

1500 1000

‘Simulation Time (minutes)

Figure 7.19: Enzyme distribution of run030205

R. Gregory COSMIC

7.14 Simulation run030205 207

Nu
mb
er

of

|O

Ev
en
ts

0 500 1000 1500 2000

Simulation Time (minutes)

Figure 7.20: IO event activity of run030205

Experiment run030205

Simulation Time (minutes)

Figure 7.21: Event activity of run030205

time (figure 7.20) and the internal gene interactions over time (figure 7.21), the

large number of failed offspring show cells can easily become damaged at cell

division or possibly because of some mutation event. A successful cell needs to

be motile, yet even when offspring of cell 0143 are dominating the population

there are still many cells that suddenly don’t move or suddenly stop sensing

their environment.

These figures show overall IO activity diverged with cells increasingly mov-

ing more but sensing their environment less. The reduction in receptor ac-

tivity is to be expected as this also relates directly to the substrate in the

environment, dividing the receptor(input) average by the substrate concentra-

COSMIC R. Gregory

7.14 Simulation run030205 208

tion should then remove this bias and so show any real effect. The rise in the

output events is presumably a result of the artificial selection for more motile

cells, the increase is slow, noisy and linear during the stable population growth

phase. In an ideal simulation the increase in motility would be caused by an

increase in receptor activity over and above the rate in which the environment

depleted (the receptor/environment ratio), then showing evolution is heading

toward the full goal. If that ratio is constant then the only cause remaining

is simply the artificial selection pressure for motility. If it should be negative

then that would surely indicate the evolutionary pressure is failing to act and

evolution to the full goal is impossible.

Note. The probability of receptor activity is based directly on the substrate

concentration, with all other variables constant this relationship is linear.

The ratio of receptor activity to environment substrate over time was then

obtained and is presented in figure 7.22. The obvious pattern comes from

there being so few events that each band is an integer number of events and

as substrate decreases, receptor activity ratio is pushed higher. The bands

make it clear that this increase is not an actual increase in receptor activity

as a constant substrate would render each rise as an unchanging integer. The

overall result then leads to the belief that the ratio is falling and the drop in

receptor activity is real and so evolutionary pressure is not working to force

input receptor use.

However, what cannot be seen is the concentration of each band, there are

too many data points to discern the concentration of each band. To give some

idea, figure 7.23 shows figure 7.22 but only shows every 7th data point, here the

band of ratio 0.2 comes out move clearly as a probable most popular average.

There are few receptor events per cell in many cases and too many data points

at the same time, so to be sure figure 7.24 shows the same information but sums

together data points that occur at the same time. This should then average out

the noisy receptor activity before the ratio is taken, making an average total

of events per time frame that is lower than the maximum seen in figure 7.22

and leave the substrate unchanged (as the average of identical numbers is the

COSMIC R. Gregory

7.14 Simulation run030205 209

Experiment run030205

In
pu

t
Ev

en
ts

/
Su
bt
ra
te

Co
nc
en
tr
at
io
n

a al ata a saiaHaMBEN HHUA rE sw a i f 0
0 500 1000 1500 2000 2500

Simulation Time (minutes)

Figure 7.22: Ratio of receptor events to substrate concentration over time

only result). This avoids there being many cells having no receptor events and

so showing as a ratio of 0 in a very crowded row, also reducing the average.

Strangely this shows the opposite scenario where the effective receptor ac-

tivity increase more than the environment substrate decreases and so leads

to the opposite conclusion. There is always the chance that the data mining

script written to extract this information may be in error, as might any of the

many scripts, but in this case the effect would seem to be real. Showing the

scattering of receptor activity was misleading because it was too crowded to

highlight the most popular trend. From this then I would conclude there is

reason to believe that both the receptor activity and motility is increasing over

and above modulating factors and so the COSMIC system is evolving toward

the intended goal.

The original purpose of COSMIC was to test for evolution. What the

previous sections have shown is that in a large computational system this

can be hard to show. There are many reasons for this, the holistic approach

to modelling, the size of the data sets, the possibility of modelling errors,

both intended simplifications necessary for the model and unintended errors

normally called bugs. There are also problems related to the hardware and

software layers around the simulation, especially when using a parallel system.

COSMIC R. Gregory

7.14 Simulation run030205 210

Experiment run030205

0.5

0.45

0.4

0.35

03

0.25

0.2

0.15

In
pu
t

Ev
en
ts

/
Su
bt
ra
te

Co
nc
en
tr
at
io
n

0.1

0.05

0 500 1000 1500 2000 2500

Simulation Time (minutes)

Figure 7.23: Sparse ratio of receptor events to substrate concentration over

time

Experiment run030205

0.3 ——<______—_____— r

ml

¢

xo + 3 os

i 0.2- + + “+ J

8 Pe = % + + ab a cf + 2 + 7 1 + SS eat

g IE ape i +* e+ = 5 0.15 +4, h + At +F + ty + + = +t + + ea 4
2) +h+ ee i iy, Sw te CF eet Tit
= Pi ae Megs 5 gt ee ia at eee,

+ eae ++ z at t+

a 0.1 - Reus Bee ae tee TF: f+ Hey et Fy # + Fy t+
* + + FH ag *

2 + ~ ‘4 = ie? r+ + *
£ ++. + * % + ++ + -

+ + 4, +
0.05 - * Fy, ote

a 4* +

et th + + F
4 ye fi %

OW tenth + 4 1 1 b 0

0 500 1000 1500 2000 2500

Simulation Time (minutes)

Figure 7.24: Lumped ratio of receptor events to substrate concentration over

time

COSMIC R. Gregory

7.15 Summary 211

These problems have demonstrated that this kind of model is both hard to write

and takes a long time to implement, even when the simulation is seemingly well

defined. These problems and the new questions brought about through running

COSMIC have meant the original goal of finding evolution was in fact only one

of many possible avenues to explore.

7.15 Summary

This chapter has brought together a large collection of output data from

the COSMIC simulation, and demonstrated a thread of development that ulti-

mately highlighted how ambitious the goals of COSMIC are. The single result

was a simulation system that should have the ability to show evolution taking

place, if only the data sets could be mined for that information. Considering

the bigger picture, COSMIC has gone beyond most simulations in that it is

also a generic framework of bacterial growth and development, taking it closer

to wide range of applications and other scenarios.

The problem of analysis was originally intended to be a central part of COS-

MIC. As time progressed it became increasingly clear that COSMIC is not the

whole solution to simulating evolution and maybe no single system can. The

complex holistic interactions between genes, gene products and the changing

genome they come from make this a topic of research in itself, as are efficient

parallelisation, effective visualisation, implementation quality and modelling it-

self. In the beginning it was thought partial solutions to the analysis problem

already existed, of the solutions seen they are certainly not applicable inside a

time frame of a few years work.

COSMIC R. Gregory

Chapter 8

Conclusion

8.1 History

Many months were spent searching the literature looking for some optimi-

sation approach that is novel, technically possible and would lead to something

bigger rather than be a conclusion in itself. The idea of COSMIC had yet to be

formed but it was clear that the fields of Genetic Algorithms, Evolutionary Al-

gorithms, Evolutionary Strategies were already crowded and all had something

in common, a simple abstract structure that used very few ideas to implement.

At the same time, experiences with the biological field showed that you could

never truly distil a real world system down to an abstraction and still have it

perform in the same way, biological systems were always complex and never

existed inside a black box with clear boundaries between model, input and

output.

During this same period the field of genetics seemed to be gaining public

popularity, with the human genome nearing completion and the sequencing

techniques that project had developed being more accessible. It appeared we

were on the verge of a new age of genetics spurred on by the possibility of being

able to read genetic information in enough detail to make some understanding

possible. On reading the genetics literature, genetics seemed to be made of

up of apparently simple structures and yet at the same time was so hard to

212

8.1 History 213

decipher and measure. There were also frank talks by biologists who said they

cannot use a computer, that programming was a personal nightmare’. Seeing

their computer based work that was no exaggeration, there is a clear difficulty

in being expert in multiple areas. As genetics was obviously a transformed

field, there was a gap in which a Computer Scientist could fit.

There was however a choice of directions, optimisation or simulation. Hav-

ing initially come from optimisation there was a clear application of using

biological information to add something to the current evolutionary optimisa-

tion algorithms. This seemed plausible, there were many possible evolutionary

mechanisms available beyond mutation and crossover (which boldly takes no

account of the difference of scale in crossing over chromosomes and crossing

over parameters). -

However, on reading of the No Free Lunch theorem [WM97] the future

direction became much more biased. For me this amounted to saying there was

no better global optimiser as each method is extremely application specific. As

a result, there was no point in applying novel biological evolutionary operators

when they can all be as good or bad as each other, each depending on the exact

scenario.

There was also the stark difference between evolution in biology and evo-

lution for optimisation, and that is biological evolution never tries to optimise

to an global optimum. Normally optimisation (or specialisation as it could be

termed) is bad for the organism concerned, a change in environment leads to

its death. Nature is instead a trier with infinite patience.

These two points reinforced the need to move in the genetics direction.

Especially the problem of dealing with measurement. Being based in Electrical

Engineering some of their approaches seemed applicable, if reality cannot be

measured directly then build a model and measure the model. Originally the

thinking was of simulating genetic networks with neural networks, but rather

than there being a clear input and output, the network would be a network

of networks which ultimately fed back into itself. Again this came from an

1Often publicly stated by biologists at multidisciplinary conferences such as IPCAT and

MIPNETS.

COSMIC R. Gregory

8.2 The COSMIC Model 214

engineering viewpoint. As neural networks take a long time to train, it was

also thought that the sub-networks should be predefined units having some

known function. This approach had its advantages of being clear and abstract,

but at the same time had the disadvantage that the representation did not

really fit with known genetics. There seems to be a better analogy to brain

function, with higher and lower levels.

The deep-seated belief that to be a reasonable model it also had to be

simple meant the simplest organism possible had to be used, this was not the

time for considering brain function, or even familiar animals.

The ideas of neural networks remained while it became clear that bacte-

rial genetics and optional transcription could be considered in the same way.

The best choice for a model organism was clearly E.coli, being comparatively

simple but also one of the most widely researched organisms. In the context

of the above neural networks approach, here the higher level functions define

themselves through evolution rather than being defined before hand. It was

at this point that the outline of an internal COSMIC cell was created, with a

view to evolving optional transcription pathways on the genome.

8.2 The COSMIC Model

COSMIC needed to be designed in such a way that would be an open-ended

genetic simulation. Firstly it needed a representation that was extremely open

ended to support evolution, but at the same time was machine readable. From

this came the idea of genes having an encoding like real genes but also a high

level meaning that essentially told the reader that it was a gene of some kind.

Secondly it needed some form of gene product that avoids the protein folding

problem but still makes gene products specific to some genes, and those rela-

tionships had to be stable over time and across generations if evolution was

to be possible. This came back to the low level encoding placed on each gene,

matching genes to gene products based on a deterministic matching rule gives

a stable relationship that can be inherited across generations. Thirdly, this

COSMIC R. Gregory

8.2 The COSMIC Model 215

same representation could also support transcription by having a transcription

mechanism which was sensitive to gene and gene product type, effectively im-

plementing promoter sites, RNA polymerase and sigma factors. Yet another

relationship could then easily represent the action of repressors and operator

control genes. Lastly, the actions of these could also be modelled on this rep-

resentation using stochastic functions that take parameters directly from the

gene and gene products.

This early COSMIC model appeared to have the potential for exploring

many genetic issues of real bacteria, largely evolution of the genome and adap-

tation to adverse conditions. Simulating evolution is such detail is an extremely

novel approach, nobody has tried to couple evolution to the fine grained sim-

ulator of genetics. As a result, COSMIC then focused on this area by also

including all the other aspects that were required.

In simulating evolution it is clear that evolution takes place in the cell

but needs something to push it there, this is true for all of us and is the

space where we live. A bacterial environment is not so complex. As BacSim

[KBW98] showed, bacteria might only require one source of food, and if they

share that environment then they are also effectively in competition with each

other for that food. Looking at BacSim also showed that bacterial growth with

competition could also be considered a kind of roulette wheel selection as found

in genetic algorithms. BacSim had no concept of genetics, but in the context

of COSMIC, the cells that grow faster will divide sooner and so pass on their

genetic information more often.

The required step was to link the transcriptional network to the environ-

ment, and this was done using receptors on the cell wall that sensed substrate

(food) concentration, and other receptors that activate a swimming action.

This stage then forms a feedback loop in which the cells use their genetic net-

work to sense the environment and initiate an action. This is something of

a departure from how real E.coli achieve motility, the process is chemically

driven and random. These facts make realistic motility out of the scope of

COSMIC and would massively increase computation time, when COSMIC is

COSMIC R. Gregory

8.3 Outcomes 216

already a highly computationally demanding application. This was a very nec-

essary simplification. The incorporation of the environment and so linking it

with genetics made COSMIC novel in another way, the interaction of multiple

scales in the same model. This is new for genetics and the environment.

With the addition of an environment was the chance to simulate evolution

in a much more realistic way. Although still abstract there is much more detail

in COSMIC than normally found. It was expected that powerful mutation

operators could be applied to the genomes of each cell - transposons, sequence

insertion, plasmids, bacteriophages, the latter making COSMIC a multi species

simulation. Unfortunately the complexity and time involved in actually imple-

menting the few paragraphs above meant most could not be implemented.

Sequence insertion and deletion was implemented as a proof of concept, the

others represent future work. Regardless of the type of evolutionary opera-

tor, the current state of COSMIC still puts it well ahead of any other genetic

simulation simply by combining some evolvability with genetics.

In the beginning COSMIC was envisaged as a simulator of evolution, but it

has become a framework for simulating bacteria-like genetics, one application

of which is evolution. It was expected that sequence insertion and deletion

should provide the cells and their genomes with enough adaptive ability to

evolve the task of following substrate gradients. The evidence supporting this

remains inconclusive and highlights how ambitious the COSMIC project is,

and so how much of an achievement it was to take COSMIC this far.

8.3 Outcomes

Rather than finding an instance of evolution, the outcomes of COSMIC

have become much more interesting, even though not always expected. This

project has created the COSMIC framework, which is modular and would

allow another similar model to be built, or the current COSMIC improved on.

COSMIC was always considered a system that required additions, looking at

biology there were always new processes to add, so COSMIC was written with

COSMIC R. Gregory

8.4 Challenges 217

modularity and extendibility it mind.

There is currently support from the DTI to port the COSMIC system to a

Grid enabled cluster”, with option of free time on one of the countries largest

clusters as well as time on a research companies cluster. The process of porting

is expected to give the opportunity to further expand the scope of COSMIC,

both by increasing cell numbers and making it more applicable to known bac-

terial problems.

There have been three publications [@PSW03a, GPSW03b, VGPSW04] de-

rived from the output of COSMIC, the topics have been both in terms of

simulating evolution and reducing simulation time to a practical level. Many

more publications could come from COSMIC, the visualisation aspect has yet

to be published as has the detailed cell model. Aspects of the transcription

network representation are also worthy publication topics.

8.4 Challenges

In conceiving the COSMIC model there have been a significant number

of challenging problems which have been overcome. Like so many aspects of

carrying out a design, there were some problems that seemed to be solved

only to find later that reality has more limitations than can accounted for by

reasoning and design alone.

The modelling of genetics is itself a major piece of work. COSMIC brings

together the genes, optional transcription mechanism and the possibility of

many kinds of mutation mechanism; all in a form that is computable, while

also being a very good analogy to real bacterial mechanisms. Solving this

challenge has meant COSMIC can then be applied to any similar problem.

Combining the genetics with an environment was also a challenge that had

to be solved in order to complete the feedback loop for evolution. Apart from

cell population density averaging and substrate diffusion, the COSMIC model

of the environment is just as complete as BacSim and yet effectively couples

2DTI (e-Science support), reference THBB/008/00134C.

COSMIC R. Gregory

8.4 Challenges 218

these two scales.

Making COSMIC computable was another major challenge. Unlike any

other known genetic level simulator, COSMIC was designed and implemented

for a parallel machine, as it was clear computers are pitifully slow when com-

pared to real world processes, even after simplification. This in fact created

three challenges, actually implementing the system to some degree, making it

efficient enough to be worth the added effort of using a parallel system and

making COSMIC more robust in the light of reliability problems inherent in

using clusters.

With the detailed interactions occurring inside the cell, one of the unfore-

seen problems was recording the data in a form that could later be retrieved.

Not knowing the required resolution of output meant recording all data, and

arranging the data so that it can be cross referenced to other data. The visu-

alisations that appear throughout this work are all based on that data. The

main problem is not knowing what was important, in an open-ended simulation

such as COSMIC it cannot be seen before hand. As a result, the visualisations

were created after some experience had been gained, but this cannot be taken

to an extreme as past examples can be bad examples. The main experience

gained from this is in designing simple textual file formats that are readable

by common utilities, with a file format for each possible kind of output. Using

bit stream compression then avoids the problem of recording unnecessary res-

olution as it automatically removes redundancy. Recording the data was only

one side of the storage task. Data also had to partitioned in a form that was

accessible for years to come despite many other simulations. Recording also

had to avoid underlying limitations of the file system. Experience showed the

best indexing scheme, based on date, cell number and type of data.

The final major challenge was obviously visualisation and analysis. This

has been the biggest challenge of all, and in many respects will always be

incomplete. This comes from COSMIC capturing much more than wet lab

experiments can hope to capture. The various visualisations provide views of

the simulation during its execution, with different visualisations for each scale.

COSMIC R. Gregory

8.5 Complexity 219

In the context of real biology the data is not available to draw these diagrams,

and so they do not exist. The COSMIC project had to find ways of extracting

indicators from the many data files and translate them into something under-

standable. This has been done but we then find that being understandable is

not enough, and the data must be manually mined using yet more visualisa-

tions that are highly specific to the question being asked. So, following this

challenge we realise that the real challenge then is not to create visualisations

but to create something that will easily create user specified visualisations.

It was also soon realised that analysis was beyond the scope of the COS-

MIC project even though it would have been a huge help in finding evidence

of evolution. Of the mathematical methods researched they all made funda-

mental assumptions that were not true of COSMIC. It could be that those

methods were more generic than they appeared, if that is the case then they

are themselves research topics.

8.5 Complexity

The Individual based modelling paradigm is used throughout the COSMIC

simulation. This approach considers all elements of the system to be indi-

viduals, with their own state. For COSMIC this means that the genes were

individuals linked together with their own set of events at a given time. The

gene products are also individuals that exist inside the cytoplasm of the cell,

and interact with each other and with the genome on an individual by indi-

vidual basis. At the level of the environment, all the cells are individuals with

their own genomes and their own set of gene products, in their own position

in the environment.

It is a consequence of this that the COSMIC model had to use a parallel

implementation, as even with careful design this requires a significant increase

in computing resources. The advantage of this approach is that the simu-

lation and the data sets are much richer in information than they would be

if differential equations were used. Differential equations only give averages,

COSMIC R. Gregory

8.6 Future Work 220

but we consider the individual variations to be very important. Using this

approach means we could potentially track every interaction that ever occurs

and consider if it represents a source of evolution.

Another consequence has been the difficulty in understanding the inter-

actions involved. We can watch a population of thousands, we can watch an

individual, but it can easily be some other individual (be it cell or gene product)

that is responsible for change.

8.6 Future Work

There are now many avenues which COSMIC can travel. As part of a

separate project, COSMIC is currently being ported to Grid enabled cluster.

Standards are converging on Grid so this would seem to be prudent. During

that time it is also expected that the full COSMIC model will be published.

Inclusion of the originally planned plasmids, phages and simple mutation

are also welcome additions, as it is hoped these additional mechanisms will

improve the chances of seeing evolution.

There has always been an interest in taking COSMIC toward a more specific

application, such as the modelling of biofilms at the genetic level or bacterial

drug resistance. Each would required extensions to COSMIC but are quite

possible.

Finally, and has been said many times, visualisation and analysis present

the next major hurdles to understanding what is happening in a COSMIC

simulation. This is in both areas of visualisation based analysis methods and

mathematical analysis methods. It is hard to see which would be the more

fruitful.

8.7 Final Word

This material might seem far removed from typical engineering but in the

long term it is impossible to say. In around 1936, Otto M. Schmitt completed

COSMIC R. Gregory

8.7 Final Word 221

his doctoral thesis on Electronic Computer Simulation of the Nerve Action

Impulse. Many years later he found those ideas have been incorporated into

common place devices such as the Schmitt trigger, emitter-follower, the differ-

ential amplifier and the heat pipe [Sch93]. This shows how simple ideas from a

biological source can have huge applications in engineering, and any other field

too. I do not claim that COSMIC will be seen in the same light, but do I do

claim that many aspects of the COSMIC approach are useful for truly complex

real world problems.

COSMIC R. Gregory

Bibliography

[AR94] Arkin, A. & Ross J. (1994). “Computational Functions in Biological

Reaction Networks”. In Biophysical Journal, 67, pp. 560-578.

[BD96] Bremer, H. & Dennis, P.P. (1996). “Modulation of Chemical Compo-

sition and Other Parameters of the Cell by Growth Rate”. In Escherichia

coli and Salmonella: Cellular and Molecular Biology, F.C. Neidhardt et al

(Eds) Volume 2. 2nd Ed. ASM Press. pp. 1553-1569.

[Bec96] Beckwith, J. (1996). “The Operon: An Historical Account”. In Es-

cherichia coli and Salmonella: Cellular and Molecular Biology, F.C. Nei-

dhardt et al (Eds) Volume 1. 2nd Ed. ASM Press. pp. 1227-1231.

[Bha00] Bhalla, U.S. (2000). The Many Faces of a Biological Switch. In Compu-

tation in Cells: Proceedings of an EPSRC Emerging Computing Paradigms

Workshop. Hamid Bolouri, Raymond C. Paton (Eds). Tech Report 345,

April 2000, pp. 33-36.

[BL97] Barkai, N. & Leibler, S. (1997). “Robustness in simple biochemical

networks”. In Nature 387. pp. 913-917.

[Boo97] Booth, G. (1997). “Gecko: a continuous 2-D world for ecological mod-

eling”. In Artificial Life 3, pp. 147-163.

[Bra90] Bray, D. (1990). “Intercellular signalling as a Parallel Distributed Pro-

cess”. In Journal of Theoretical Biology, 143, 215-231.

[Bra95] Bray, D. (1995). “Protein molecules as computational elements in liv-

ing cells”. In Nature, Vol. 376. July.

222

BIBLIOGRAPHY 223

[BS00] Becskei, A. & Serrano, L. (2000). Engineering stability in gene networks

by autoregulation. Nature 405, pp. 590-593.

[BSS00] Bonsma, E., Shackleton, M. & Shipman, R. (2000). “Eos - an evolu-

tionary and Ecosystem research platform”. In BT Technology Journal Vol

18, No. 4. October 2000, pp. 24-31.

[CD98] Colombetti, M. & Dorigo, M. (1998). “Evolutionary computation in

behavior engineering”. In Evolutionary Computation: Theory and Appli-

cations, X. Yao (Ed.), World Scientific Publ. Co., Singapore, in press.

BC.03-WORLD98.ps.gz (834K) (Also Tech. Rep. TR/IRIDIA/1996-1,

IRIDIA, Université Libre de Bruxelles.)

[CDM92] Colorni, A., Dorigo, M. & Maniezzo, V. (1992). “An investigation of

some properties of an “Ant algorithm””. In Proceedings of Fourth Inter-

national Conference on Parallel Problem Solving From Nature. Elservier

Publishing, 509-520.

[CGE98] Collado-Vides, J., Gutiérrez-Rios, R.M. & Bel-Enguix, G. (1998).

“Networks of transcriptional regulation encoded in a grammatical model” .

In BioSystems, V47, No.1,2. pp. 103-118.

[COM89a] Cairns, J., Overbauch, J. & Miller, S. (1989a). “The origin of mu-

tants”. In Nature 335, 142-148.

[CP97] Clark, L. & Paton, R.C. (1997). “Toward Computational Models of

Chemotaxis in Escherichia Coli”. In Information Processing in Cells and

Tissues, Mike Holcombe and Ray Paton (Eds). pp. 39-45.

[CW98a] Cao, Y.J. & Wu, Q.H. (1998). “A Cellular Automata Based Genetic

Algorithm and Its Application in Mechanical Designed Optimisation”. In

Proceedings of UKCCA, International Conference Control, 1-4 September

1998, University of Wales, Swansea, U.K., Vol.2, pp.1593-1598.

COSMIC R. Gregory

BIBLIOGRAPHY 224

[CW98b] Cao, Y.J. & Wu, Q.H. (1998). “An Improved Evolutionary Program-

ming Approach to Economic Dispatch”. In International Journal of En-

gineering Intelligent Systems.

[Dav89] Davis, B.D. (1989). “Transcription bias: a non-Lamarckian mecha-

nism for substrate-induced mutations”. In Proc. natn. Acad. Sci. U.S.A.

86, 5005-5009.

[DC94] Dorigo, M. & Colombetti, M. (1994). “Robot Shaping: Developing

Autonomous Agents through Learning”. In Artificial Intelligence, 71, 2,

321-370.

[DG96] Dorigo, M. & Gambardella, L.M. (1996). “A Study of Some Properties

to Ant-Q”. In Proceedings of Fourth International Conference on Parallel

Problem Solving From Nature. N.-H. Voigt, W. Ebeling, I. Rechenberg

and H.-S. Schwefel (Eds.), Springer-Verlag, Berlin, 656-665.

[DG97] Dorigo, M. & Gambardella, L.M. (1997). “Ant Colony System: A

Cooperative Learning Approach to the Travelling Salesman Problem”. In

IEEE Transactions on Evolutionary Computation, V1, N1.

{[DHB00] Duan, Z., Holcombe, M. & Bell, A. (2000). “A logic for biological

systems”. In BioSystems 55, pp. 93-105.

[DKH94] Duan, Z., Koutny, M. & Holt, C. (1994). ”Projection in temporal

logic programming”. In Proceedings of Logic Programming and Automated

Reasoning, Lecture Notes in Artificial Intelligence, a subseries of LNCS.

Pfenning, F. (Ed.). Springer Verlag, Vol. 822, pp. 333-344.

DL94] Durret, R. & Levin, S.A. (1994). “The importance of being discrete &

(and spatial)”. In Theoretical Population Biology, 46, 363-394.

[DMC96] Dorigo, M., Maniezzo, V. & Colorni, A. (1996). “The Ant System:

Optimization by a colony of cooperating agents”. In IEEE Transactions

on Systems, Man, and Cybernetics-Part B, Vol. 26, No. 1, 1996, pp. 1-33.

COSMIC R. Gregory

BIBLIOGRAPHY 225

[Dor95] Dorigo, M. (1995). “Alecsys and the AutonoMouse: Learning to Con-

trol a Real Robot by Distributed Classifier Systems”. In Machine Learn-

ing, 19, 3, 209-240.

[DPa97] Devine, P. & Paton, R.C. (1997). “Biologically-inspired Computa-

tional Ecologies: a Case Study”. In Corne D & Shapiro, J. (eds) LNCS

Springer: Berlin.

[DPA97] Devine, P., Paton, R.C. & Amos, M. (1997). “Adaptation of Evolu-

tionary Agents in Computational Ecologies”. In Biocomputing and emer-

gent computation: Proceedings of BCEC97. World Scientific. ISBN 981-

02-3262-4. Dan Lundh, Bjrn Olsson, Ajit Narayanan (Eds.), pp. 66-75.

[DPb97] Devine, P. & Paton, R.C. (1997). “Herby, an Evolutionary Artificial

Ecology”. In IEEE International Conference on Evolutionary Computa-

tion, USA.

[DPc97] Devine, P. & Paton, R.C. (1997). “Individual Based Modelling in

an Explicitly Spatio-temporal Ecosystem”. In Proceedings of IMACS 97

World Congress, Berlin.

[DPd97] Devine, P. & Paton, R.C. (1997). “Adaptation of Evolutionary Agents

in Computational Ecologies”. In BioComputing and Emergent Computa-

tion Conference, Sweden.

[DR96] Donachie, W. H. and Robinson, A. C. (1996). “Cell division: parameter

values and the process”. In Escherichia coli and Salmonella: Cellular and

Molecular Biology, F.C. Neidhardt et al (Eds) Volume 2. 2nd Ed. ASM

Press. pp. 1578-1593.

[Fel98] Feldman, D. (1998). “Information Theory, Excess Entropy and Com-

putational Mechanics”. In http://leopard.ucdavis.edu/dave/index.html,

5/2001.

COSMIC R. Gregory

BIBLIOGRAPHY 226

[Fos95] Foster, I.T., (1995). “Designing and Building Parallel Programs: Con-

cepts and Tools for Parallel Software Engineering”. Addison-Wesley, Read-

ing (Mass.).

[Fre00] Freeman, M. (2000). “Feedback control of intercellular signalling in

development”. In Nature, 408, pp. 313-319.

[GBDJMS94] Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,

Mancheck, R. & Sunderam, V. (1994). “Parallel Virtual Machine -

A Users Guide and Tutorial for Networked Parallel Computing”. In

http://www.netlib. org/pum3/book/pum-book. html.

[Gil87] Gilbert, W. (1987). “The Exon Theory of Genes”. In Symposia on

Quantitative Biology, Vol. 52, 1987, 901-905.

[Gla96] Glansdorff, N. (1996). “Biosynthesis of Arginine and Polyamines”. In

Escherichia coli and Salmonella, cellular and molecular biology. Second

Edition, Volume 1, pp. 408-433.

[GPSW03a] Gregory, R., Paton, R.C., Saunders, J.R. & Wu, Q.H. (2003). “A

model of bacterial adaptability based on multiple scales of interaction”,

Computation in Cells and Tissues - Perspectives and Tools of Thought.

Edited by: Ray Paton, Hamid Bolouri, Mike Holcombe, Howard Parish

& Richard Tateson. Springer-Verlag: Heidelberg. Natural Computation

series.

[GPSW03b] Gregory, R., Paton, R.C., Saunders, J.R. & Wu, Q.H. (2003).

“Parallelising a Model of Bacterial Interaction and Evolution”. In Fifth

International Workshop on Information Processing in Cells and Tissues.

September 2003. To appear in BioSystems.

{Hal91] Hall, B.G. (1991). “Adaptive evolution that requires multiple sponta-

neous mutations: mutations involving base substitutions”. In Proc. natn.

Acad. Sci. U.S.A. 88, 5882-5886.

COSMIC R. Gregory

BIBLIOGRAPHY 227

[Hau97] Haussler, D. (1997). “A Brief Look at Some Machine Learning Prob-

lem in Genetics”. In Proceeding of COLT 97.

[Hay99] Haykin, S. (1999). “Neural Networks - A Comprehensive Foundation”.

Prentice Hall.

[HJF97] Hraber, P.T., Jones, T., Forrest, S. (1997). “The ecology of echo”. In

Artificial Life 1997 Summer;3(3), pp.165-90

[Holter et al., 2001] Holter, N.S., Maritan, A., Cieplak, M., Fedoroff, N.V. &

Banavar, J.R. (2001). “Dynamic modeling of gene expression data”. In

PNAS, February 13,2001. Vol. 98, #4. pp. 1693-1698.

[HPTW95] Hjelmfelt, A., Postma, P.W., Tommassen, J. & Westerhoff, H.W.

(1995). “Signal transduction in bacterial phospho-neural network(s) in

escherichia coli?”. In Federation of Microbiological Societies. Microbiology

Review, 16. pp. 309-321.

[IS00] Imhof, M., Schl‘otterer, C. (2000). ” Fitness effects of advantageous mu-

tations in evolving Escherichia coli populations”. In PNAS, January 30,

2001. Vol. 98. #3, pp. 1113-1117.

[JM93] Jones, T. and Mitchell, M. (1993). “Introduction to the ECHO model”,

Springer-Verlag, Berlin, pp. 704-720.

[Kam96] Kampis, G. (1996). “Self-modifying systems: a model for the con-

structive origin of information”. In BioSystems, 38, pp. 119-125.

[Kau93] Kaufmann, S.A. (1993). “The Origins of Order”. Oxford University

Press.

[KBW98] Kreft, J-U, Booth, G., & Winpenny, J.W.T. (1998). “BacSim, a

simulator for individual-based modelling of bacterial colony growth”. In

Microbiology, 144, pp. 3275-3287.

[KH01] Kent, W.J. & Haussler, D. (2001). “GigAssembler: An Algorithm for

the Initial Assembly of the Human Genome”. Jn press.

COSMIC R. Gregory

BIBLIOGRAPHY 228

[Koc93] Koch, A.L. (1993). “Genetic Response of Microbes to Extreme Chal-

lenges”. In Journal of Theoretical Biology, 160, pp. 1-21.

[Karplus et al., 1997] Karplus, K., Sj‘olander, K., Barret, C., Cline, M., Haus-

sler, D., Hughey, R., Holm, R., Sander, C. (1997). ”Predicting protein

Structure using hidden Markov models”. In Proteins: Structure, Func-

tion, and Genetics. pp.134-139, Supplement 1.

[KW82] Koch, A.L. & Wang, C.H. (1982). “How Close to the Theoretical

Diffusion Limit do Bacterial Uptake Systems Function?”. In Archives of

Microbiology Volume 131, pp. 36-42.

[Mac96] MacNab, R.M. (1996). “Flagella and Motility”. In Escherichia coli

and Salmonella, cellular and molecular biology. Second Edition, Volume

1, pp. 123-144.

[Men97] Mendes, P. (1997). “GEPASI: a software package for modeling the

dynamics, steady states and control of biochemical and other systems.” ,

In Trends in Biochemical Science, 22, pp.361-363.

[MK97] McFadden, J. & Knowles, G. (1997). “Escape From Evolutionary Sta-

sis by Transposon-meditated Deleterious Mutations”. In Journal of theo-

retical Biology, (1997) 186, pp. 441-447.

[MS99] Marin, J. & Solé, R.V. (1999). “Macroevolutionary Algorithms: A New

Optimization Method on Fitness Landscapes”. In IEEE Transactions on

Evolutionary Computation, Vol 3, No. 4, Nov. 1999.

[Nei96V1] Neidhardt, F.C. Ed. (1996). “Escherichia coli. Cellular and Molec-

ular biology, Volume 1”. ASM Press, Washington, D.C., Second Edition.

[Nei96V2] Neidhardt, F.C. Ed. (1996). “Escherichia coli. Cellular and Molec-

ular biology, Volume 2”. ASM Press, Washington, D.C., Second Edition.

[NTT96] Neijssel, O.M., Teixeira De Mattos, M.J. & Tempest, D.W. (1996).

“Growth Yield and Energy Distribution”. In Escherichia coli and

COSMIC R. Gregory

BIBLIOGRAPHY 229

Salmonella: Cellular and Molecular Biology, F.C. Neidhardt et al (Eds)

Volume 2. 2nd Ed. ASM Press. pp. 1683-1692.

[NU96] Neidhardt, F.C. & Umbarger, H.E. (1996). “Chemical Composition of

Escherichia colt”. In Escherichia coli and Salmonella, cellular and molec-

ular biology. Second Edition, Volume 1, pp. 13-16.

[OLG00] Ochman, H., Lawrence, J.G. & Groisman, E.A. (2000). “Lateral gene

transfer and the nature of bacterial innovation”. In Nature, 18th May 2000,

pp. 299-304.

[Pat98] Paton, R.C. (1998). “The Ecologies of Hereditary Information”. In

Cybernetics €& Human Knowing: A Journal of Second Order Cybernetics,

Autopoiesis € Cyber-Semiotics, 5, No.4, pp. 31-44.

[Pir67] Pirt, S.J. (1967). “A kinetic study of the mode of growth of surface

colonies of bacteria and fungi”. In J Gen Microbiol, 47, 181-197

[Pre48] Preston, F.W. (1948). “The commonness, and rarity, of species”. In

Ecology, 29(3), pp.254-283.

[Pre62] Preston, F.W. (1962). “The canonical distribution of commonness and

rarity: Part I”. In Ecology, 43(2), pp.185-215.

[PS84] Prigogine, I. & Stengers, I. (1984). “Order out of Chaos: Man’s new

dialogue with nature”. Flamingo, London.

[PSD99] Pasemann, F., Steinmetz, U. & Dieckman, U. (1999). “Evolving

Structure and Function of Neurocontrollers”. In Congress on Evolutionary

Computation 1999, volume 2, pp. 1973-1978.

[Rai99] Rainey, P.B. (1999). “The economics of mutation”. In Current Biology,

9:R371-R373.

[RBLO1] Riehle, M.M., Bennett, A.F. & Long, A.D. (2001). “Genetic archi-

tecture of thermal adaptation in Escherichia colt”. In PNAS, January 16,

vol. 98, #2. pp. 525-530.

COSMIC R. Gregory

BIBLIOGRAPHY 230

[RLM96] Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L. (1996). “Quali-

tative analysis of biochemical reaction systems”. In Computers in Biology

and Medicine 26(1) pp. 9-24.

[Sch93] Schmitt, O.M. (1993). Personal communications with Paton, R.C.

[SFSCL97] Schaff, J., Fink, C.C., Slepchenko, B., Carson, J.H. & Loew, L.M.

(1997) “A General Computational Framework for Modeling Cellular Struc-

ture and Function”, In Biophysical Journal,, 73, pp. 1135-1146.

[Sha91] Shapiro, J.A. (1991). “Genomes as smart systems”. In Genetica, 84,

pp. 3-4.

[Sha97] Shapiro, J.A. (1997). “Genome organization, natural genetic engineer-

ing and adaptive mutation”. In Trends in Genetics 13 (3). pp. 98-104.

[Sha99] Shapiro, J.A. (1999). “Genome System Architecture and Natural Ge-

netic Engineering in Evolution”, In Annals of New York Academy of Sci-

ences, May 1999, 870, pp. 23-35.

[SL99] Schaff, J., Loew, L.M. (1999). “The Virtual Cell”.

In Pacific Symposium on Biocomputing, 4. pp. 228-239.

http://www.nrcam.uchc. edu/publications/vcell_publications.html

[SLD79] Shuler, M.L., Leung, $.K. & Dick, C.C. (1979). “A mathematical

model for growth of a single bacterial cell”. In Ann N Y Acad Sci 326,

pp. 35-55.

[Sta88] Stahl, F. (1988). “A unicorn in the garden”. In Nature, 335, pp. 112-

Se

[SW97] Shackleton, M. & Winter, C. (1997). “A Computational Architecture

Based on Cellular Processing”. In Information Processing in Cells and

Tissues, Holcombe, M. and Paton, R.C. (Eds). pp. 261-271.

[Swa00] “Swarm Development Group”, 2000. hitp://www.swarm.org/.

COSMIC R. Gregory

BIBLIOGRAPHY 231

[TH96] Thain, M. & Hickman, M. (1996). “Penguin Dictionary of Biology,

Ninth Edition”. Penguin Books.

[Tomita et al., 1999] Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.,

Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.

C., Hutchison, C. (1999). “E-CELL: Software environment for whole cell

simulation”. Bioinformatics, 15, pp.72-84.

[TMBW97] Turner, P.C., McLennan, A.G., Bates, A.D. & White, M.R.H.

(1997). “Instant Notes in Molecular Biology”. BIOS Scientific Publishers.

[TN84] Tempest, D.W. & Neijssel, O.M. (1984). “The Status of Yapp and

Maintenance Energy as Biologically Interpretable Phenomena”. In Annual

Review of Microbiology Volume 48, pp. 459-486.

[Taddei et al., 1997] Taddei, F., Radman, M, Maynard Smith, J., Toupance,

B., Gouyon, P.H. & Godelle, B. (1997). “Role of mutator alleles in adaptive

evolution”. In Nature, 387, pp.700-702.

[Ush99] Usher, M.M. (1999). “A Concurrent Visual Language Based on Petri

Nets”. In Ph.D. thesis, Liverpool University.

[Way01] Way, E.C. (2001). “The role of computation in modeling evolution”.

In BioSystems, 60, pp. 85-94.

[VGPSW04] Vlachos, C., Gregory, R., Paton, R.C., Saunders, J.R. & Wu,

Q.H. (2004). “Individual-Based Modelling of Bacterial Ecologies and Evo-

lution”. To appear in Compartative and Functional Genomics, February

2004.

[WM97] WolPert, D.H. & Macready, W.G. (1997). “No Free Lunch Theorems

for Optimization”. In JEEE Transactions on Evolutionary Computation,

V1, N1.

[WSF89] Whitley, D., Starkweather, T. & Fuquay, D. (1989). “Scheduling

Problems and Travelling Salesman: the Genetic Edge Recombination Op-

COSMIC R. Gregory

aS

BIBLIOGRAPHY 232

erator”. In Proceedings of the Third International Conference on Genetic

Algorithms, Morgan Kaufmann, 1989.

[YD02] Yanai, I. & DeLisi, C. (2002). “The society of genes: networks of

fuctional links between genes from comparative genomics”. In Genome

Biology 3(11), pp. 1-12.

[ZDB97] Ziegler, J., Dittrich, P. & Banzhaf, W. (1997). “Towards a Metabolic

Robot Control System”. In Information Processing in Cells and Tissues,

Holcombe, M. & Paton, R.C. (Eds). pp. 305-317.

COSMIC R. Gregory

