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Abstract 

COSMIC: A Model of Cellular Genetic 

Interaction and Evolution 

by 

Richard Gregory 

Evolution has frequently been seen as a result of the continuous or discon- 

tinuous accumulation of small mutations. Over the many years, it has been 

found that simple point mutations are not the only mechanism driving ge- 

nomic change, for example, plasmids, transposons, bacteriophages, insertion 

sequences, deletion and duplication, and stress-sensitive mutation all have a 

part to play in directing the genetic composition and variation of organisms 

towards meeting the moving target that is the environmental ideal at any one 

time. Considering the probability of single point mutations arising and repair 

mechanisms that act to counteract their accumulation, it is unlikely that sim- 

ple mutation can create rapid diversity. Evolutionary change depends more on 

larger scale changes in genomic sequences caused by sexual and other forms of 

horizontal gene transfer. These generate the variation necessary to allow rapid 

evolutionary response to changing environmental conditions. 

Predictive models of E.coli cellular processes already exist, these tools are 

excellent models of behaviour. However, they suffer the same drawbacks; all 

rely on actual experimental data to be input and more importantly, once input 

that data are static. The aim of this study is to answer some of the questions 

regarding bacterial evolution and the role played by genetic events using an 

evolving multicellular and multispecies model that builds up from the scale of 

the genome. 

To test these questions, it is necessary to build a model that attempts to en- 
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compass what are considered the important qualities of bacterial evolution and 

bacterial life, but not be overly specified as to constrain the results. The model 

is therefore a careful balance of biological and computational realities with an 

emphasis on open-endedness and individuality. The biological literature has 

many examples of the possible forms of mechanism within the relatively ‘sim- 

ple’ example of E.coli, but even this must be carefully constrained. It is clear 

that computer models lack complexity when compared to real world processes. 

In focusing attention on aspects of the E.coli system, new insights are 

emerging from the disciplines of genomics and proteomics. The genome should 

perhaps be regarded not as a book that is continually read from, but rather 

a program that is continuously executed and adapted over the life time of 

individual cells. From this it appears that interactions within cells involve the 

combined effects of enzymes, structural and regulatory proteins acting on genes, 

which in turn act on those enzymes and other proteins, creating a huge number 

of both positive and negative feedback loops necessary for controlled execution. 

The ideal model therefore is one that takes both these stages into account, each 

genome being an implementation of what many conceive as the computational 

cell. There are then three themes to the model: the environment, the genome 

and functional proteins, all of which use an individual based philosophy. The 

environment contains individual cells, each cell contains an individual genome 

and each gene can lead to individual gene products each with their own spatial 

and temporal parameters. This vast number of parameters and possibilities 

adds another meaning to the name of the simulation, COSMIC : COmputing 

Systems of Microbial InteraCtions. 

This thesis describes the novel COSMIC model, the genetics background, 

the parallel implementation and results showing the initial stages of evolution 

towards the goal of learning to follow a food source gradient. 
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Chapter 1 

Introduction 

1.1 Motivation 

Evolution has frequently been seen as a result of the continuous or discon- 

tinuous accumulation of small mutations. Over the many years, it has been 

found that simple point mutations are not the only mechanism driving ge- 

nomic change, for example, plasmids, transposons, bacteriophages, insertion 

sequences, deletion and duplication, and stress-sensitive mutation all have a 

part to play [Sha97,Sha99] in directing the genetic composition and variation of 

organisms [Koc93] towards meeting the moving target that is the environmen- 

tal ideal at any one time. Considering the probability of single point mutations 

arising and repair mechanisms that act to counteract their accumulation, it is 

unlikely that simple mutation can create rapid diversity. It is clear that evo- 

lutionary change depends more on larger scale changes in genomic sequences 

caused by sexual and other forms of horizontal gene transfer. These gener- 

ate the variation necessary to allow rapid evolutionary response to changing 

environmental conditions. 

Predictive models of E.colz cellular processes already exist, the E-Cell project 

[Tomita et al., 1999] aims to use gene data directly in a mathematical model 

of transcription. The Virtual Cell [SFSCL97, SL99] project makes use of user- 

defined protein reactions to simulate compartments at the nucleus and cellular
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level. Gepasi3 [Men97] also models protein reactions, but from within an en- 

closed box environment. The BacSim [KBW98] project simulates individual 

cell growth at the population scale. Eos [BSS00] is also based at the population 

scale, but is intended as a framework for testing idealised ecologies, represented 

by evolutionary algorithms. These tools and those that they rely on are excel- 

lent models of behaviour. However, they suffer the same drawbacks; all rely on 

actual experimental data to be input and more importantly, once input that 

data is static. The aim of this study is to answer some of the questions regard- 

ing bacterial evolution and the role played by genetic events other than simple 

point mutation using an evolving multicellular and multispecies model that 

builds up from the scale of the genome. In effect, it is not bacterial evolution 

that is being interrogated, but the co-evolution of bacteria and any organism 

that has a direct effect on the genetics of those bacteria. 

To test these questions, it is necessary to build a model that attempts to en- 

compass what are considered the important qualities of bacterial evolution and 

bacterial life, but is not overly specified as to constrain the results. The model 

is therefore a careful balance of biological and computational realities [Way01] 

with an emphasis on open-endedness [Kam96]. The biological literature has 

many examples of the possible forms of mechanism within the relatively ‘sim- 

ple’ example of E.coli, but even this must be carefully constrained. It is clear 

that computational models lack computational power when compared to real 

world processes. 

In focusing attention on aspects of the E.coli system, it is clear that there 

are two new insights provided by the emerging disciplines of genomics and 

proteomics. Proteomics is the study of enzyme and protein interactions. Tra- 

ditionally this meant differential equation models of interaction. However, 

nowadays there seems also to be an implicit link with the application of pro- 

tein descriptors derived from sequence information in identified genes [Karplus 

et al., 1997], an application that has only recently become tractable with the 

arrival of accurate genome data. Genomics is the study of genome structure, 

interaction and encoding and has been stimulated by the Human Genome 
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1.1 Motivation 3 

project [KH01] as well as whole genome sequencing projects for many other 

organisms, notably those for numerous bacteria. From this it appears that in- 

teractions within cells involve the combined effects of enzymes, structural and 

regulatory proteins acting on genes, which in turn act on those enzymes and 

other proteins, creating a huge number of both positive and negative feedback 

loops necessary for controlled execution [Fre00]. The genome should perhaps be 

regarded not as a book that is continually read from, but rather a program that 

is continuously executed and adapted over the life time of individual cells, tis- 

sues or entire organisms. The ideal model therefore is one that takes both these 

stages into account and allows for the evolution of the genome in the presence of 

other genomes, each genome being an implementation of what many conceive 

as the computational cell [Bra90,Sha91, Bra95, Pat98, DHB00, RLM96, AR94]. 

There is a clear distinction between the clean world of abstraction and the 

biology on which it is based. In any system there is always a tendency for 

homogeneous structures, well defined parameters and reasonable assumptions; 

biology is no different as these goals promote clear description, what is differ- 

ent is the world that biology tries to explain. Biology is full of explanations of 

mechanism, but like contemporary standards, there are so many to choose from. 

This is not to say they are wrong, but in different circumstances assumptions 

made by each in either measurement, environment or initial point of enquiry 

can come to bear making one explanation less powerful than another expla- 

nation. The reasons for this come from the problems of basic measurement, 

sheer biodiversity and the change in scale making analogies essential - scale 

referring both to time and space. This last point is actually quite important, 

mechanisms acting outside of normal experience makes intuition irrelevant. 

It is clear that life forms are far to complex for current understanding to 

even scratch the surface, the concepts needed to grasp the complexities involved 

are some way off. As a result, bacteria promised to be the most reasonable 

starting point for asking fundamental questions about the development of evo- 

lution and life itself. Fortunately recent years has seen an explosion of bacterial 

research brought about by new technology, this has lead to new avenues of re- 
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search previously impossible through lack of data or computational power. 

With this in mind, the simulation of bacterial adaptation has become this 

authors goal, this thesis details a novel computational model linking bacterial 

genetics, environmental response and survival techniques. In the future this 

can in turn lead to more involved simulations or alternatively lead to simplified 

simulations which aim to find the basic requirements for bacterial adaptation. 

1.2 Thesis Outline 

This section outlines the contents of each chapter, it is recommended the 

chapters be read in numerical order. 

Chapter 2 introduces the biology on which the COSMIC model is based. 

The general structure of E.coli is discussed to give some appreciation of the 

size of the organism and at the same time its complexity, this will then lead 

onto modelling E.coli growth and the various parameters that are important. 

Section 2.5 will then change scale and look at the genetics of E.coli. From the 

static structure it will then move onto the mechanics that operate on the static 

structure and allow the cell to produce chemical machinery. Section 2.8 intro- 

duces the adaptive nature of the genome and the cell as a whole. Sections 2.9 

and 2.10 give two well known specific examples of optional transcription which 

represent typical examples of the genetic control that can be achieved. Sec- 

tions 2.16 and 2.17 detail some of the causes of genetic mutation and long term 

adaptation. Finally, section 2.18 pulls all these aspects together and puts for- 

ward the case for a bacterial simulation that encompasses many of these these 

topics. 

Chapter 3 moves away from the biological material and instead focuses 

on simulation and analysis of biological systems, specifically with a genetics 

basis. Before COSMIC there have been many simulations of genetics, both for 

the sake of biology itself and biologically inspired algorithms such as Genetic 

Algorithms. This chapter mentions a few of those models and importantly 

their limitations. 
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Chapter 4 makes use of the information from chapter 2 to build a compu- 

tational model of bacterial growth and evolution. This is entirely based on the 

idea of modelling the individual, be it individual cell or individual molecule, 

and so will be explained in terms of sets and relations between sets and mem- 

bers of sets. This chapter starts with section 4.2 and section 4.3 describing the 

main biological phenomena that COSMIC models. Section 4.4 then discusses 

more detail of how such a model could be implemented in such a way that com- 

putation is feasible. Section 4.5 then starts with the model proper by detailing 

the construction of a genome, from the genes and their encoding, the types 

of genes, the construction of operons and finally the genome of an individual 

cell. This section then goes on to specify the other constituent parts of a single 

cell, building to a population of these cells in a specified environment. The 

purpose of this section is to describe that static structure of the model, the 

later sections then build on to include the dynamics. 

Section 4.6 describes the dynamics within the context of chapter 2, this 

highlights the important points of transcription and gives an overview of the 

most important dynamic in COSMIC, namely the interaction diagram of fig- 

ure 4.4. Section 4.7 then discusses how this dynamic aspect is incorporated 

into the previous formal static representation. Section 4.8 and 4.9 describes the 

mathematical functions that implement the state transition dynamics which 

are applied to the structures of sections 4.5 to 4.7. Section 4.10 describes 

the specifics of the interactions in the context of the representation and the 

mathematical functions. 

Section 4.11 moves to a different scale, that of the cell population, by dis- 

cussing the details of the environment in which these cells live. Having now 

described all the structures and possible interaction pathways, section 4.13 de- 

scribes the initialisation of the system as a whole, how the original genomes 

come about and how enzymes can exist when there are no enzymes to create 

them. Finally, so that evolution may occur, section 4.14 describes the mutation 

operator that is applied to the previously described structures. 

Chapter 5 describes the parallel implementation of COSMIC and shows 
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that it is possible to map a dynamic problem such as this onto fixed resources. 

The only way to achieve the necessary level of performance is with parallel 

computers and a suitable designed implementation that maps the problem 

onto the hardware, as shown in section 5.3. For real problems this mapping 

can be non-trivial requiring careful consideration of the constraints in both the 

system being modelled and the hardware that executes the model. For the 

most part efficiency (discussed in section 5.12) is achieved by making use of 

implicit multiplexing of resources and shows the importance of knowing where 

to partition the problem between server and clients. Through this an efficient 

simulation has been created, making maximal use of the available hardware 

without constraining the model to require excessively specific resources. 

Chapter 6 introduces the most common visualisations used to represent the 

raw data generated by COSMIC. The two scales of COSMIC give the initial 

division of the visualisations, the top level environment where the cells play 

out their struggle for survival and ultimately demonstrate their evolution is 

covered in sections 6.2 and 6.3. At the other scale there is the internals of each 

cell, which contains the richest data but also the hardest to view in any one 

way that captures all the changes. This is covered in sections 6.4 to 6.6. Some 

of these visualisations are research topics in themselves as the data generated 

by COSMIC is so rich that a single image only scratches the surface of what 

interactions actually occurred. 

With the previous chapter having introduced some of the visualisation tech- 

niques used by COSMIC, chapter 7 then gives an account of some of the sim- 

ulations. Not just the data obtained but also the evolution of the simulation 

and its testing. Section 7.2 describes the overall control parameters that enable 

aspects of COSMIC functionality. These provide overall control of the system 

by specifying limits to the environment, cell growth, cell division, cell genome 

size, genome mutation rates, enzyme half lives and genome-proteome interac- 

tion rates. Section 7.3 introduces the data sets that make up the archived 

COSMIC output. The testing phase of the simulation is then described in 

sections 7.4 to 7.14. When simulation runs where made, problems were found 
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and corrected and the bulk of the chapter is made up of those experiences. 

This provides some idea of the subtle effects of programming errors and more 

often, simple unforeseen consequences of some implementation decision. This 

chapter finishes with a summary of the main outcomes in section 7.15. 

Chapter 8 brings this thesis to a conclusion by summarising where COSMIC 

started from in section 8.1 and in section 8.2 stating what it now is capable of. 

Section 8.3 outlines the main outcomes of the work, with section 8.4 describing 

what are considered the main challenges that were overcome by COSMIC. 

Section 8.5 discusses a specific cause of complexity in COSMIC, with the view 

that the complexity is necessary. Finally, section 8.6 outlines future directions 

for COSMIC and work derived from it. 

Note: This thesis is available as a full colour postscript file, available at: 

http://www.csc.liv.ac.uk/~ greg/thesis.ps 
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Chapter 2 

A review of cell biology relevant 

to the COSMIC system 

2.1 Introduction 

There is a vast amount of information available on both eukaryote and 

prokaryotic cells; and especially E.coli, the bacterium on which this study is 

based. The following text is largely concerned with E.coli with some brief 

details of eukaryote cells - largely to show there are similarities and differences 

in modelling, depending on what is viewed as important. 

The general structure of E.coli will be discussed to give some appreciation 

of the size of the organism and at the same time its complexity, this will then 

lead onto modelling E.coli growth and the various parameters that are im- 

portant. Section 2.5 will then change scale and look at the genetics of E.coli. 

From the static structure it will then move onto the mechanics that operate 

on the static structure and allow the cell to produce chemical machinery. Sec- 

tion 2.8 introduces the adaptive nature of the genome and the cell as a whole. 

Sections 2.9 and 2.10 give two well known specific examples of optional tran- 

scription. Sections 2.16 and 2.17 detail some of the causes of genetic mutation 

and long term adaptation. Finally, section 2.18 pulls all these aspects together 

and puts forward the case for a bacterial simulation that encompasses many of
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these topics. 

This chapter largely originated from the collection of papers found in Nei- 

dhardt et al. [Nei96V1, Nei96V2], a well written general dictionary of biol- 

ogy [TH96] and a concise overview of molecular biology [TMBW97], with more 

up to date information from a variety of sources. 

2.2 Classification 

Eubacteria represent a subdivision of prokaryotes, the other group being 

archaea which are similar in structure to eubacteria but have ribosomal RNA 

molecules that have evolved differently. Prokaryotes are surrounded by a phos- 

pholipid cell membrane through which small molecules can pass with the aid 

of proteins. Usually, a single circular chromosome is contained inside the cy- 

toplasm (or cytosol) and is attached to the cell membrane at a single point. 

On the outside of the cell there can be both pili (hair like sticks for sticking) 

and flagella. EF. coli has a genome size of 4600 kb, which amounts to around 

3000 reproducible proteins [TMBW97, pp.2]. In contrast the genome of the 

simplest bacterium called Mycoplasma genitalium is 580kb long and encodes 

470 proteins. 

2.3 E.colt Structure 

[NU96] lists a variety of figures for the biochemical composition (per in- 

dividual cell) of an average E.coli cell. To arrive at these figures an average 

is taken as a population of E.coli (strain B/r) in balanced growth at 37°C in 

aerobic glucose minimal medium with a mass doubling time of 40 minutes. 

The quantities for a cell are then defined by dividing the total biomass, or the 

amount of any of its measured components, by the total number of cells in 

the population. This average cell is therefore approximately 44% through its 

division cycle and assuming that increase in cell mass is exponential, is ap- 

proximately 33% larger than when that cell was created. It should be noted 
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that this brings about a level of uncertainty in all figures, not least because the 

strain and exact conditions are not always specified in the literature. Measure- 

ments can be easier (or indeed possible) only for some strains and conditions, 

so often these variables are in fact implicitly given by the type of experiment. 

The main result is then many missing parameters for a given scenario and 

strain, and so it natural to infer parameters based on related parameters and 

assume they are close enough until there is evidence to the contrary. 

Of the tables given in [NU96] the most important figure was the protein 

molecules per cell of 2,350,000 with 1850 different kinds of those molecules', 

this amounts to 55% of the total dry weight, and 156 Amt (107° grams) per 

cell. DNA is quoted to have 2.1 molecules per cell (as it is being continuously 

duplicated in the above conditions) and account for 3.1% of the total cell dry 

weight, and 8.8 Amt (g. 10~'°) per cell. Metabolites, cofactors and ions (all in 

the same grouping) account for 3% of total dry weight of the cell and 9.9 Amt 

per cell. 

[Mac96] gives a detailed account of E.coli flagella physiology, including 

genes responsible for its environment. Of relevance to COSMIC are some fig- 

ures and some general states of motility. The number of flagella per cell are in 

the range 0 to 15, typically around 8 but different conditions bring on different 

numbers from the same initial strain, the cost of flagella synthesis and oper- 

ation come to bear in selection. Flagella lengths are in the range 0 to 20 wm 

and are more typically around 5-10 ym. Each flagella base is positioned ran- 

domly on the cell wall (peritrichous flagellation). Rotation speed of a flagella 

bundle is around 100 Hz for a free swimming cell and saturated (125 milliVolt) 

motor. Efficiency is presumed to be high at moderate to high load though no 

data is available. Under high load, torque per motor is around 3x10- N m, 

power output per motor is around 10~!© W at 20 Hz, power per cell is around 

10-!° W under normal swimming conditions. Under conditions of cell growth, 

total flagella operation amounts to 0.1% of total energy expenditure. Flagella 

synthesis accounts for 2% of biosynthetic energy use. Note these figures are 

‘Note this is lower than the 3000 figure given by [TMBW97, pp.2], these totals were 
presumably calculated using different methods. 
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relative and total energy expenditure per cell is not available. 

Broadly, E.coli has three observed states of movement, swimming, tumbling 

and pausing. Swimming is accomplished by bundling all flagella into a single 

axis. The flagella motor can rotate in both directions yet the flagella is normally 

a left handed helix, a counter clockwise motor rotation rotates the flagella 

creating a pushing against the cell. The combination of hydrodynamic and 

mechanical forces force all the flagella to congregate into a single tail whose 

axis is normally the same as the longest axis of the cell. The entire bundle 

is able to rotate at 100 Hz, this amounts to 25 m/s in a liquid medium at 

room temperature. Bear in mind that MacNab [Mac96] hints these are rather 

specialised circumstances and that the speed is normally lower. 

Tumbling occurs when the flagella motor changes direction. The shape of 

each flagellum is polymorphic in that it can a left handed helix (normal) or 

right handed helix (curly); the term curly comes from the observation that the 

right handed helix has half the wavelength of the left handed. A reversal of 

motor direction to clockwise rotation reorients the helix from the base outward, 

forming the right handed helix. While this is happening on mass, flagella 

that are partially converted will have kinks and tend to role over themselves 

ensuring they are reoriented ready for another round of swimming. Pausing 

is an observed behaviour that lacks a proven explanation. Observations show 

that pausing is inversely proportional to frequency of reversal, suggesting that 

pauses are in fact failed reversals. This is further supported by there being no 

evidence of a physiological need for pausing. 

In well energised cells motor switching and changes of motor direction are 

always occurring regardless of any environmental gradient, each motor is in- 

dependent. It is only when they are considered as a whole that the flagella 

interaction becomes weighted, spending around 1 second swimming (i.e. uni- 

form motor rotation) and 0.1 seconds tumbling. 

The cause of rotation in either direction is proton potential around the 

base. The microphysiological details of the process remain unclear, it has 

been modelled in several forms and the actual motor must agree with all of 
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them but the details are unknown. The proton potential can come from either 

chemical potential (pH difference) or electrical potential (mV difference). It 

must be noted that this level of chemistry is far from the simulation level 

and so has no hope of being incorporated into the simulation without massive 

simplification; in the presence of free oxygen, the electron transport chain (i.e. 

the general cell wide mechanism of electron transfer) under free swimming 

conditions generates a potential larger than the motor saturation voltage, so the 

motor speed does not really vary with changes in oxygen level. Without oxygen 

(anaerobic), glycolysis takes place; this is a more specialised pathway that 

starts with starch or glycogen and ends with production of two ATP molecules 

per glucose molecule and production of either pyruvate (for the tricarboxylic 

acid cycle) or lactate. The proton potential produced by this pathway is not 

enough to saturate the motor and so it does not move as quickly. 

For the purposes of simulation, the flagella clearly needs gross simplification 

as it is intended to only provide a secondary effect of supporting evolution. As 

a result the simulated flagella swim and tumble at the same time, also the 

bacteria is assumed to be relying on glycoses and so encourages more careful 

use of the flagella. 

In [BD96], there is a recommendation that cell mass is used as the basic 

parameter with which to compare cell stages. They are really all as bad as each 

other because there is no one uniformly increasing parameter independent of 

the others, but cell mass is easier to measure, being simpler, faster and more 

accurate. 

2.4 Modelling Population Growth 

[KW82] specify some models of the relationship between glucose uptake 

and growth rate. This formed the partial source of the BacSim growth rate 

model, and is what the COSMIC environment was based on. Quantitative 

comparisons are made between batch grown and continuous cultures, also and 

importantly, the comparisons are also between explanatory equations that re- 
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late glucose concentration to cell growth velocity. Given here is the equation 

used by COSMIC to link glucose concentration to velocity(growth rate). The 

simplicity (and continuous nature) of the Monod based equation made it the 

better choice for the present study. 

The form given is of: v = VinarS/(Km +s) where v is the velocity relative 

to maximum growth rate (i.e. 0 < v < 1) ). Vimar is a slope parameter and 

has the value 1.23 h~! for batch grown E.coli and 0.536 h7! for continuous 

cultured E.coli. Ky, is the half-saturating constant, a constant that refers to 

the half-way level of glucose; the initial batch grown value was 13M and the 

continuous grown value was 0.597uM. s refers to the glucose concentration as 

experienced by each bacterium, it was in the range 0 < s < 25uM. 

In COSMIC, these figures have been changed to be per minute rather than 

per hour, and per fg(femtogram) rather than per 1M. The original units are 

traditional in the microbiological domain but are unusual and so have converted 

to SI units. Vmax is then 0.0205 m~!, K,, is 2.34 mg and s is in the range 

0<s< 0.0045 fg. 

Vmax was also adjusted so that the equation output corresponded with 

growth rate. This turned out to use the 0.4444 figure from BacSim, though 

BacSim’s growth equation is not used. 

Also, Vmaz is multiplied by the cell mass after being adjusted for the ex- 

pected average cell mass. This amounts to a cell mass of 0.4 femtolitre (the 

deterministic maximum) giving a maximum growth rate that grows a cell from 

0.2 fl to 0.4 fl in 24 minutes. 

The rest of the [KW82] is concerned with membrane uptake rates on con- 

tinuous cultures and so is not really relevant. It does give the impression that 

batch grown is avoided nowadays by bacterial researchers because it necessarily 

means that conditions change over the course of experiment, this lead to the 

assumption that parameters were constant when they are not. 

Originally a reference from BacSim on the Yax parameter (fg dry mass 

yield per fg glucose) and m, the apparent maintenance rate. [NTT96] cites 

Monad that he found between 0.21 and 0.28 g dry mass per g substrate (none 
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Table 2.1: Growth rates, per millimoles of glucose per hour per gram 

        
  

  

were glucose), and then cites Schulze and Lipe who in line with contemporary 

parameters says the maximum conversion efficiencies for continuous glucose is 

0.51 grams dry mass per gram glucose. 

An important point to note is that in a continuous culture (as most are, this 

is then a steady state situation) growth rate is proportional to dilution rate. 

As a result, most tables show figures proportional to dilution rate, normally as 

a fraction removed per hour. 

However, as table 2.1 shows, the relationship is not constant or even linear. 

This is for the E.coli strain C(PC-1000) and an unnamed strain, of the four 

strains given by Neijssel et al. [NTT96] these represent the lowest and highest 

growth rates, note their is not a great deal of change between them. Original 

values are in Table 2.1. 

Iglucose 18 in millimoles (note in error [NTT96] in [NU96] uses units of 

nanomoles) of glucose per hour per gram (dry weight) of cells, Yelucose is 

in grams (dry weight) of cells formed per mole of glucose consumed. Ymax 

calculated maximum growth yield, corrected for maintenance and is in grams 

(dry weight) of cells formed per mole of glucose and maintenance rate of glucose 

consumption. m is extrapolated for 0 growth and is in nanomoles of glucose 

per hour per gram (dry weight) of cells. 

For use in COSMIC, these units are then converted from millimoles to 

grams and hours to minutes. The result is in table 2.2. 

dglucose is then grams glucose per minute per dry cell weight gram and 
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Table 2.3: Growth rates, average cell glucose use per second per gram 

     

    

Yelucose 

For approximate comparison with COSMIC we then assume an average cell 

is then grams dry weight per gram glucose consumed. 

volume of 0.3 fl cell and convert femtograms to units of an average volume 0.3 

fl cell (using the conversion coefficient of 290 fg fl-' which converts femtograms 

to femtolitres [KBW98]) and also converting minutes to seconds throughout we 

arrive at table 2.3. 

Taking an example cell of volume c = 0.417388 fl, mass of 121.042434 fg and 

fresh substrate of 0.0045 fg glucose fl~', calculated growth is Upate = 0.018847 

fg/fl. Looking at the volume increase rate U;ate, doubling from 0.2 to 0.4 fl 

per cell is achieved at ((c + u)/c)¥ = 2, or 33 mins. This should be around 24 

mins or ((e+4u)/c) = 1.0004815 (uw = 0.041889) if there was maximum growth, 

which is a dilution rate of around 0.82. 
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Another note says E.coli produce 0.21 to 0.28 grams of matter per gram of 

glucose, so a maximum growth of 24 minute doubling, or ((c+v)/c) = 1.0004815 

with c = 116 fg/fl of dry cell mass, v is then 0.04188 fg/fl of dry mass increase 

per second. This amounts to (taking 0.25 as the mean of 0.21 and 0.28) as 

0.1276 fg/fl of glucose use per second. 

BacSim’s choice of m is slightly too high, but allowing for the above error it 

is valid. Choosing a representative m from above we see it is slightly larger than 

0.0006 fg glucose / fg dry mass per min. From the table, m = 0.9 mg glucose / g 

dry mass per sec seems more appropriate, but, using glucose to mass conversion 

efficiency of 0.25 (Neijssel et al 96 says 0.21 to 0.28), the fastest doubling time 

of 24 mins, max growth per min is then 1.0293. An average cell volume of 0.3 

fl gives an initial absolute increase of u = 2.549 fg/min (c = 0.3/1 « 290 fl/fg, 

(c+u)/c = 1.0293 ). Using the 0.25 efficiency of conversion, a cell mass increase 

of 2.549 fg/min equates to 10.2 fg glucose/min at the middle of the cycle, 6.8 

fg glucose/min at the start and 13.6 fg glucose/min at the end. Or 245 fg per 

cell per duplication cycle. COSMIC uses the corrected figure from [NTT96], 

although originally based on BacSim, some of the formulae and parameters of 

BacSim were abandoned in favour of using a function that directly links glucose 

concentration with growth velocity, this is then modified to be also based on 

the cell mass. Glucose usage is calculated by working backwards from the mass 

increase using the 0.245 conversion efficiency approximation. 

A strain of E.coli is continuously grown in a chemostat at a dilution rate 

of 30% per hour, hence the growth rate is low at around 0.25 of maximum, or 

doubling every 96 minutes. This is based on a maximum dilution rate of 0.82 

and maximum doubling time of 24 minutes. According to BacSim and other 

sources, a cell grows from 0.2 to 0.4 femtolitres and then divides, or in dry 

weight terms, goes from 58 to 116 femto grams dry weight. Obviously a cell 

doesn’t have to be inside these limits but they are typical and are enough for 

this aspect of COSMIC. 

is the glucose consumption rate at 4.08 millimoles of glucose per Yelucose 

hour per gram (dry weight) of cells. Converting the units this amounts to 734 
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milligrams glucose per hour per gram (dry weight) of cells, or 12.2 milligrams 

glucose per minute per gram of cells. 

Yelucose 

per mole of glucose consumed. Converting the units this amounts to 0.41 grams 

is the total growth yield at 73.5 grams (dry weight) of cells formed 

(dry weight) of cells per gram of glucose. 

So over the growth time of a cell (96 minutes), the cell gains 116 — 58 = 58 

fgrams, so it should use 58 fgq,,/0.41 = 141 fgrams of glucose - using the 

Yelucose 

Using the delucose figure requires some calculation. If a cell goes from 58 

to 116 fgrams in 96 minutes, then it must gain by: 58*2°° = 116, x = 1.007246 

figure. 

per minute, so it must use (integrating): 58 fe « ((z°’ — 1)/Inx) * 12.2mg = 

96.9x10~' grams of glucose. Which is smaller a value than for Yelucose- 

BacSim [KBW98] was the original source of figures and environment for 

COSMIC. BacSim, based on Gecko [Boo97], which is based on Swarm [Swa00], 

tries to answer the question of how to best model a macroscopic world based on 

data on microscopic entities. Other models are DE or cellular automata based. 

Individually based modelling is different in that it returns more data, needs less 

accurate parameters but also requires more computational power. The idea of 

this model is to generate predictive results rather than fitting results based on 

several growth models. It also mentions that two models by others used 22 

and 200 parameters respectively, clearly outside the scope of COSMIC. 

The BacSim model uses discrete time at 0.1 mins per iteration. Each it- 

eration goes through a cycle of diffusion and uptake (modelled by equations), 

metabolism (amounting to an increase in size based on update, derived from 

an equation including update efficiency), death if below a minimum size, divi- 

sion if size is a multiple of a requisite size (from [DR96]). The cells are then 

moved to remove overlap and then the cycle continues. Cell division creates 

two identical cells. Three variations of the D & R model were tested by Bac- 

Sim. Variation of parameters was via a Gaussian distribution in the range 

+2¢, with the positive of the result being used. 

BacSim cell motion was achieved by taking a vector of required movement. 
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Figure 2.1: Single prokaryote cell 

Total area of biomass [Pir67] is then 77%, from 0.1 g dry mass ml“! of E. coli 

- assuming a water content of 70% [NU96]. 

All parameters in BacSim were based on published data, only the diffusion 

approximation (a grid of coefficients) needed to be tuned on a single parameter. 

This made it an ideal basis for the development of the COSMIC model. 

The median cell volume is given as 0.3 fl, which equates to 0.3 am. Given 

a typical cell picture (from [NU96]), the length tip to tip is 20 units, length 

cylinder to cylinder is 15 units and the diameter is 5 units, giving a cylinder 

height to cylinder radius ratio of 6. Sphere volume is V = sr’, Cylinder 

volume is V = IIhr?, so r = 0.235ym given 0.3am* = 2IIr3, h is then 1.41ym. 

This agrees with 2m figure that is commonly given, more so if the mean is 

taken as 0.4 fl. 

Comparing the eukaryote cell and the prokaryote cell (Figure 2.1), prokary- 

ote cell is visibly the simplest structure; being unicellular or filamentous and up 

to 3 ym in length. It has no nucleus to contain DNA, the DNA is instead in a 

compact area of the cell inside the cytoplasm (i.e. not covered by a separating 

membrane). Propulsion for many is achieved using a tail (flagellum), which is 
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rotated at high speed through proton motive force across the cell wall. Unlike 

prokaryotes, eukaryotes have their DNA stored in at least one nucleus that is 

separate from the cytoplasm. 

2.5 DNA, RNA and Proteins 

DNA is the carrier of genetic information for prokaryotic and eukaryotic 

organisms. In its simplest representation DNA is a chain of four nucleic acids 

that take the names C, A, T and G. Biological reality is more complicated, 

consisting of phosphodiester bonds (sugar-phosphate) that form a regularly 

spaced chain to which these nucleic acids can bind to. For each DNA strand 

there is a complement strand that is attached at the nucleic acid bases using 

a hydrogen bond. C complements G and A complements T (the relationship 

is reciprocal). As only the bases stick but the bases on the same strand are 

chained together; the complementary bases point to each other and the phos- 

phodiester bonds run along the outer edges of the strand pair. The pair of 

complementary strands wrap around each other in a coil, and this coil is it- 

self regularly coiled. A good example of the scale involved comes from the 

(eukarotic) human X chromosome. Based on the DNA from figure 2.2, this 

double helix is then coiled around itself to a diameter of 11 nm, coiled around 

itself again to a diameter of 30 nm, coiled again to a diameter of 300 nm and 

then wound in a 700 nm diameter spring like formation. The end result forms 

the ‘sticks’ that make up the chromosome i.e. 4 sticks joined at the same point 

would make up an X chromosome, 1400 nm wide and containing 4x10° bases. 

It is called X because at this scale it is big enough to see under a microscope 

and really does look like an X; chromato meaning coloured and hence visible. 

Prokaryotic genomes tend to be much smaller and so can never been seen us- 

ing a standard microscope. The genome of E.Coli is around 4.6 Mbp long and 

arranged in a loop, here bp is the most atomic unit of genetic measurement 

that counts base pairs of DNA. The loop is actually many loops each 50 to 

100 kbp long with the join being on a set of proteins and attached to the cell 
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Figure 2.2: Double strand of DNA 

membrane. 

2.6 ‘Transcription 

Part of the central dogma proposed by F.H.C.Crick in 1958 states that RNA 

is created from DNA by a transcription phase, this RNA is known as mRNA 

(messenger RNA). The transcription process is carried out by an RNA poly- 

merase (enzymes specific to the creation of mRNA), unless otherwise stated. 

In [Bec96], Beckwith gives an account of the evolving Operon concept, 

the use of the operon as an explanation for gene expression. Jacob and Monad 

based their original model on research of the lac operon, an area of genome that 

had had a large amount of research effort put into it’s understanding. Based 

on these findings, they came to a model that has a promoter site, followed by 

a operator site and then followed by a gene sequence of many genes (in the 

lac case it was 3 genes). The explanatory force of the operon idea together 

with Jacob’s forceful style of reputing alternatives ensured its domination for 

a number of years. Here, Beckwith [Bec96] points out that research into other 

sites on the same genome shows that the operon model is only one example of 

a gene regulation mechanism. The operon concept has essentially a negative 

effect on gene transcription but research shows that other ‘operons’ have a 

positive effect on gene transcription. The concluding statement is that the 
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operon model managed to both create a new area of research and constrain 

that area into a conceptual model that did not fit all circumstances, this is 

clear from any simplified text which refers to the lac operon as if it is a defining 

example. 

The first step in the creation of a protein from the DNA is transcription, 

this step being the transcription from DNA to mRNA. An RNA polymerase 

(a complex protein based machine) (Section 2.12) catalyses the transcription, 

the process requires the double stranded DNA as well as the nucleotides ATP, 

GTP, CTP and UTP (i.e. fuel). Like replication, transcription is directional 

and also starts at the 5’ end. The 5’ ended string is called the sense strand, the 

other strand is called the anti-sense strand. As bases attract their opposites, 

to duplicate the 5’ sense strand the 3’ antisense strand is actually read, the 

result being a copy of the sense strand. In E.coli the RNA polymerase moves 

at 40 bases per second at 37°C, transcribing as it moves. 

To start the transcription event, an RNA polymerase binds to the double 

stranded DNA, ideally at the promoter site. When the RNA polymerase has 

acquired all of it’s cofactors it is referred to as a transcription complex. The 

start of the transcribed region after the promoter is known as the +1 position, 

the promoter and any operator sites are negative relative to this position. 

Again, as with replication the DNA strand must be unwound. 

Transcription stops at the terminator sequence. This sequence contains a 

self-complementary region that can form a stem-loop or a hairpin structure 

out of the RNA product. This structure hints that the transcription complex 

should stop and bring on the dissociation of its constituent parts. The com- 

pleted mRNA is released because there are four A residues on the DNA which 

do not bind well with the U residues on the mRNA. 

Transcription termination can also be Rho dependent. The rho (p) protein 

appears to bind mRNA that is 72 nucleotides(nt) in length, it is expected that 

this is done by shape rather than direct mRNA encoding. It moves along the 

mRNA towards the transcription complex, where it forces the termination with 

an unknown mechanism. 
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2.7 Protein Structure 

There are two classes of proteins, globular proteins can be regarded as 

spherical particles as they are folded compactly. Most enzymes are globu- 

lar. The other class are fibrous proteins which instead have a high axial ratio 

(length/width) and are typically used in a structural role. 

Given the chemical structure made up of a sequence of amino acids bonded 

to form a polypeptide chain, the protein takes a shape dictated by the polypep- 

tide encoding; this encoding has a given lowest energy conformation that com- 

pels the polypeptide to form it’s own specific shape. The structure remains 

stable because a variety of forces hold it together; hydrophilic side chains tend 

to the outside and hydrophobic amino acids remain on the inside. There are 

other forces too, as this is at the chemical level normally irrelevant forces have 

an effect. The protein’s structure consists of several sections, an a helix and 6 

sheets. 

Except for catalytic RNA molecules an enzyme is almost certainly a pro- 

tein. An enzyme is a catalyst for reactions that would occur but very slowly. 

COSMIC considers them essential, the large difference in reaction rates makes 

it not worth considering the case when the reaction occurs without the enzyme 

- as a result COSMIC ignores the passive components and just models the 

enzymes. Specificity from protein to protein can vary [TMBW97, p.22], from 

an exact match (e.g. glucose oxidase binds only glucose) or group specific (e.g. 

hexokinase binds a number of hexose sugars). 

The encoding from DNA to protein function is ill defined (hence the protein 

folding problem [Hau97, Karplus et al., 1997]) but some things can be specified. 

The bases are read three at a time (the codons) and allows for the production of 

20 different types of amino acid that chain to make the polypeptide. This means 

that there are in fact 64 combinations, many more combinations than required 

but it allows inclusion of the start codon, three stop codons and the use of 1-6 

codons encoding each peptide. It is important to realise that although the base 

alphabet is 20 letters in size, the polypeptide can form words of several hundred 

peptides in length; this combined with the fact that the shape (influenced by 

  

COSMIC R. Gregory



2.8 Optional Transcription 23 

RNA polymerase = » 
molecule Sal 

P O Z T 
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Figure 2.3: Generalised transcription 

the encoding) dictates the proteins role then makes nearly intractable the task 

of determining the role of a real protein. The shape can take any imaginable 

3D form (obviously the chain can not go through itself), using regular patterns 

that change over its length. 

2.8 Optional Transcription 

To further the level of complexity, there is the idea of gene expression and 

control, this is not some reference to the form of representation but implies the 

transcription agents (the transcription enzymes) are involved in the regulation 

of whether to transcribe a region of DNA into the required mRNA. With this 

idea comes the controlling proteins that are either transcription activators or 

transcription repressors - the activators having been found to allow themselves 

to be controlled by other activators. 

The process of gene expression is partly explained by the Jacob-Monod 

theory, which is generally applied to prokaryotic gene expression rather than 

eukaryotic gene expression. The theory uses the unit of the operon that is 

made up of an adjacent group of structural genes known as cistrons (cistron 

being effectively equivalent to gene in modern usage), preceded by an operator 

region. The operator site forms a lock onto which a repressor protein (DNA- 
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binding protein) can attach. Once attached the RNA polymerase molecule 

cannot start transcription and so the proteins (or the various mRNAs) in that 

region are not created. If an inducer molecule is present it can bind to the 

repressor molecule and null the repressors effect. There is also the case of the 

corepressor in which the repressor will only stick to the operator region when it 

has already combined with another repressor of the required type. The regions 

on the DNA strand are shown in Figure 2.3 with Z representing the cistrons, 

P representing the promoter and O representing the operator. 

These repressing (or possibly activating) proteins are created elsewhere in 

the cell, and so their presence or absence may indicate some environmental or 

genotypic state, which is obviously the whole idea - creating fairly rapid com- 

plex processing without a nervous system. Each operon type varies, Figure 2.3 

shows the lac operon but it should not be taken as typical or even atypical, 

rather an instance. 

Gene expression in the eukaryotic case is similar but has important dif- 

ferences. There are both short term and long term (irreversible) regulation 

effects. Short term expression regulates inducible and/or repressible enzymes. 

Hormones can bind receptor proteins and then enter the eukaryote’s nucleus 

and activate transcription. Eukaryotes encode short term transcription factors 

in their genes (again without being localised) that help the RNA polymerase 

bind to the promoter and so lead to transcription. The long term signals are 

those which make a cell divide or become a particular cell type. As such they 

(and eukaryotes in general) are not as useful in this research, as they are too 

complex to be understood well. They might well be a source of inspiration but 

even genetic research (given the complexity) finds it hard to generate depend- 

able results. Operon theory is hardly applicable to eukaryotes, it appears there 

are few if any structured genes and so global operons would have no purpose. 
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2.9 The lac Operon 

The principal idea of optional transcription comes from research on the lac 

operon found in E.coli. Gene expression research has historically been based on 

the lac operon, as found in FE. coli. Many other operons exist but it seems that 

supporters of the operon concept managed to put across their view so strongly 

that operons that do not conform to the lac model are given less attention. 

The lac example should be used as a guide of what can be rather than what 

must be. Unfortunately the lac operon was originally taken to be the latter 

and so has been taken too far and as well as being over simplified. 

The Jac operon is concerned with the use of lactose as a carbon source, the 

enzymes that can use lactose are only manufactured when lactose is available. 

The lac operon consists of the structural genes lacZ encoding 6-galactosidase, 

lacY encoding a galactoside permease and lacA encoding a thiogalactoside 

transacetylase. $-galactosidase is an enzyme that hydrolyses lactose into galac- 

tose and glucose. Galactoside permease aids in lactose transport through the 

cell wall of the bacterium. 

These three genes are encoded side by side in a single transcriptional unit 

called lacZYA. Relative to this there is an operator site Oj, between -5 and 

+21, just after the promoter site P,,,. If the operator site binds a lac repressor 

protein then transcription is strongly repressed. The lac repressor protein itself 

is encoded slightly upstream of the lac operons promoter in the lacl gene, this 

gene is also part of the /ac operon. The lacI gene encodes the repressor protein 

but the protein itself is active only as a tetramer, the gene product only works 

when in groups of 4. Once this has taken place the repressor has a very strong 

affinity for the lac operator and also a high affinity with non-operator DNA. 

The lac operator site is in fact palindromic, it consists of 28 bp which read the 

same starting at either the 5’ or the 3’ ends, the lac repressor has the same 

symmetry when grouped in a four unit tetramer. 

With the absence of lactose, the repressor protein binds to the operator 

site, though it is thought that this does not stop the RNA polymerase from 

binding and instead just stops its progress. Strangely, the binding of the lac 
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repressor to the operator site increases by two orders of magnitude the affinity 

of the RNA polymerase to the promoter site, making it quite likely that an 

inhibited operon also has bound RNA polymerase. 

When repressed the lac operon generates a very low level of gene product. 

When lactose is present, the low level of expression allows its slow uptake, 

some of which is converted to allolactose. Allolactose binds the lac repressor, 

changing its affinity for the operator site and so forcing the unbinding of the 

repressor. As the RNA polymerase will probably be already present, transcrip- 

tion can start immediately. The removal of the lactose inducer leads to a quick 

inhibition of transcription, as rebinding of the repressor is almost immediate 

and the lacZYA RNA transcript is very unstable. 

The promoter site Pj, and other related promoters do not by themselves 

have a strong affinity for RNA polymerase, the -35 sequence can be weak and 

even the -10 sequence can be weak. For high rates of transcription initiation, 

to increase the rate requires a specific activator protein called a cAMP receptor 

protein (CRP or Catabolite Activator Protein, CAP). CRP exists as a dimer 

that cannot by itself have any effect on transcription rate. When glucose is 

absent, the level of cAMP increases and CRP binds to cAMP producing a 

CRP-cAMP complex that binds to the promoter site slightly upstream from 

where the RNA polymerase would bind. The DNA is bent by the presence 

of CRP, forming a 90° bend which is believed to multiply RNA polymerase 

binding affinity by 50. 

In practice the location of the CRP binding site can vary much more be- 

tween operons than stated here, the site can be on the promoter, next to the 

promoter or be much further upstream. The difference will obviously have 

some effect but it is not known exactly what. 

2.10 The trp Operon 

The tryptophan operon encodes five structural genes which are required 

for tryptophan synthesis. The RNA transcript produced is a single 7kb long 
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strand, starting from the operator site Otyp. As with the expression of the 

lac operon, the RNA product is unstable and so regulation of DNA quickly 

regulates the protein end product, which in this case is tryptophan. 

The trpR operon is the source of the trp repressor and is located upstream 

of the trp operon. The operator sequence is symmetrical and forms the repres- 

sor binding site, which also overlaps with the trp promoter site between bases 

-21 and +3. The core repressor binding site is a palindrome 18 bp long. The 

trp repressor only actively binds the operator site when it has itself formed a 

complex with tryptophan. The repressor is a dimer and has a structural simi- 

larity to CRP protein and the lac repressor, the dimer needs two tryptophans 

to be complete. It is the tryptophan that gives the dimer structure the correct 

distance between its two reading heads and its central core. 

The five structural genes encode for enzymes that produce tryptophan, 

tryptophan therefor inhibits its own synthesis by a magnitude of 70. Although 

not specified it is assumed this was under artificial tryptophan conditions. Re- 

gardless, this is much smaller than that caused by binding of the lac repressor. 

The trp operon is like the lac operon, except that self inhibition is also 

playing an active role. As well as the normal transcription controls there is 

also an attenuator sequence following a leader sequence using around 162 nt 

before the first structural gene trpE. The attenuator formed by the transcript 

and is a short area rich in palindromic GC bases followed by each U bases. If 

this sequence manages to form a hairpin structure in the transcribing RNA, 

it will act as a terminator and force early termination at around 140 bp long, 

stopping before the structural genes have been reached. 

The leader itself also has a role to play; divided into 4 successive sequences, 1 

and 2, 2 and 3, and 3 and 4 are complementary, and so can bind to themselves 

to form a hairpin which stops further RNA transcription. If 2 and 3 bind 

then this does form a hairpin but does not stop transcription. Under normal 

conditions the binding of 1 to 2 and 3 are 4 are more favourable than 2 to 3. 

Also in this leader is an efficient ribosome binding site and successive codons 

encoding for tryptophan. Under conditions of low tryptophan availability the 
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ribosome would pause at this point. Since transcription and translation are 

tightly coupled in E.coli, the net effect then is to negatively control tryptophan 

transcription. In reality the hairpin formation between sequences 3 and 4 is 

more likely when tryptophan level is high, the pause occludes sequence | leaving 

sequence 2 to bind with sequence 3. In the alternative case, the pause occurs 

at the start of sequence 2 and so sequence 2 is occluded allowing sequences 3 

and 4 to form a hair pin. 

The polypetide formed from the RNA of these tryptophan encoding codons 

doesn’t seem to serve any other purpose. 

Given both forms of optional transcription, tryptophan dependent repressor 

and tryptophan dependent attenuation region, the total level of tryptophan can 

be amplified by 700 times. The attenuation sequence giving a 10 fold increase 

and the tryptophan dependent repressor giving a 70 fold increase. Generally, 

attenuation is present in at least six other operons with a role in amino acid 

synthesis. For example the his operon, but in this case the attenuation mech- 

anism is the only means of control, there is no operator. 

2.11 Operon Regulation 

Becskei and Serrano [BS00] examines the effects of feedback in E. coli by 

adding a fluorescence gene (EGFP) to tetR gene. The tetR gene having di- 

rect feedback onto it’s own operon sites. Three cases were tested, using an 

unregulated system, this feedback system and a mutated system. The results 

were obviously that the regulated system was able to control its own output, 

whereas the mutated version was less able and the unregulated was unable to 

regulate its output. 

The numeric simulation used binding constants for the repressor (2x10!! M7’) 

and polymerase (1.5x10'° M~*), repressor degradation rate (10~° s~!), concen- 

tration of RNA polymerase (100 nM), promoter isomerisation rate from closed 

to initiating complex (0.3 nMs~*) and proportion of mRNA over protein con- 

centration (3.3). Most interesting was the use of more parameters than COS- 
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MIC. COSMIC considers proportions and concentrations to come from the 

integration of manufacture rate and degradation rate. 

The relatively early paper by [Gil87] puts some perspective on the time 

scale of research into the genome. In it there is the surprising mention that 

introns are in the range 50 to 50000 bases long and yet exons peak at around 

40 to 50 amino acids in length, this is in the context of their existence being 

only just realised and it is now known that exons are longer. 

Generalising useful properties of the intron-exon structure, Gilbert cites 

that recombination is more likely using large introns, as a successful recombi- 

nation need only be within the 10000 length of an intron, rather than on the 

exon boundary. 

Gilbert then goes on to guess about the use of exons as modules. Using 

the idea of almost independent modules Gilbert then goes on to quantify the 

029° amino acids and the likelihood of chance mutation bringing about the 2 

207° exon modules - a much more likely scenario. 

Bhalla [Bha00] discusses some of the factors that affect the feedback loop. 

These factors (these signals) can change the bistable region of a switch like 

action, a factor of 7 for P2A (Protein Phosphatase 2A) and a factor of 2 for 

MKP-1 (Map Kinase Phosphatase 1). 

Bhalla shows the stable points in feedback reaction between MAPK (Mito- 

gen Activated Protein Kinase) (ranging 0.1 f{M to 100 nM, log scale) and PKC 

(Protein Kinase C) (ranging from 0 to 0.4 uM, linear scale), in the presence 

of different levels of PP2A (0.05 uM, .224 uM, 0.4 uM) (the response of PKC 

and MAPK was not directly affected). There is an negative-exponential like 

rise (with top end flattening) of the PKC/MAPK reaction, and intersections 

with different levels of PP2A show the stable points. For instance, PP2A=0.05 

uM leaves a stable state at 110 nM MAPK/0.29 uM PKC and PP2A=0.4 uM 

leaves only one stable state at 0.0003 nM MAPK/0.9 uM PKC). 

The above steady state results then transferred to a time series test on the 

scale of minutes, with 83 minutes between state changes. Given these different 

levels of stable points, the reaction can be pushed into lower or higher stable 
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areas of reaction rate, if those pushes push past the threshold level. 

Also shown was the hysteresis of the MKP-1 (Map Kinase Phosphatase 1) 

reaction with PKC (Protein Kinase C). As MKP-1 varies slowly around 0.0025 

to 0.0035 uM, PKC level is static until it changes sharply from 0.1 uM to 0.25 

uM. 

There are dynamic responses as well. PKC responds to calcium changes 

in seconds. —The MAPK cascade creates an inertia with its multiple stages 

of phosphorylation, this creates a delay of around 5-10 minutes. MAPK is 

affected by it’s regulator MKP-1, one of the results is that MKP-1 lasts longer 

(over 2 hours). Another slower result is that translocation of MAPK into the 

nucleus leads to synthesis of MKP-1, which is hinted could be the mechanism 

for cell proliferation or other major developments. The overall conclusion is 

one of stable reaction systems that can respond to small chemical changes. 

Although this was eukaryotic example, the same is true of prokaryotes. 

Collado-Vides et al [CGE98] cite the example of the ginALG operon, which 

is in fact more complex than they described it. There is a regulatory region 

with two promoters 0 glnAp1 and o™ glnAp2; and there are three genes, 

glnA, glnL and glnG, encoding glutamine synthetase, a nitrogen modulator II 

called NR-II, and a transcriptional regulator NR-I. NRI negatively regulates 

glnAp1 and positively regulates glnAp2. Also, after glnA there is a terminator 

followed by o”° promoter glnLp that is negatively regulated by NRI. Using 

their notation this is described by concatenating two transcriptional units but 

still suffers the problem that, in practice the glbALG can still be transcribed 

by a promoter further upstream of the two given promoters. 

In another example that opposes the lac operon, Glansdorff [Gla96] enu- 

merate the dispersed operon Arginine, one of the first to be found. It uses two 

promoters that face each other, gene amplification mechanisms that reactivate 

silent genes and a proven case where a transposon (IS3) carries a promoter - 

as well as a few other features of this pathway. 

Pulling out from the large amount of detail, he gives the expression level 

ratios (micromoles per hour per milligram of protein) for all gene products 
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when the final gene product arginine is present (100 jug of arginine added) and 

when none is added. Ignoring the minor details, argA is 50, argCBH is 60, argE 

is 60, argD is 16, argF is 150-200, argl is 300-400, argG is unknown, argR is 

15 and carAB is 50. This shows just how much the gene expression levels can 

vary, these effects come down to the layout of genes around the promoters and 

operators as well as other effects outside of transcriptional control. 

2.12 RNA Polymerase 

This section describes RNA polymerase as it exists in the cell. E.coli RNA 

polymerase is one of the largest enzymes in the cell and consists of 5 or more 

subunits. These subunits have the type names a, £, §’, w and o, when ina 

complete polymerase they are collectively called the holoenzyme. This holoen- 

zyme combines the types in the pattern a2(/'wo, the entire enzyme being 

required for initiation of transcription. For elongation of the transcript only 

the a286’w (the core enzyme) is used and the o is released to go elsewhere. 

The polymerase covers a length of 60 bp but the binding site itself is estimated 

to be only 16 bp long. 

The role of subunit varies and also the knowledge of that role varies. 

e The a subunits are encoded by the rpoA gene. They have a role as 

central assembly points but the evidence from phage T4 infection only 

additionally suggests its role is in binding affinity. 

e The @ subunit is encoded by the rpoB gene and is thought to be the 

catalytic centre of the RNA polymerase, evidence comes from antibiotics 

studies. 

e The £' subunit is encoded by the rpoC gene. It binds two Zn?+ ions 

which are suspected of being involved with polymerase catalytic func- 

tion. Evidence suggests that this subunit’s role is binding to the DNA 

template. 
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e For the purpose of simulating transcription, the o factor subunit is the 

most important. When the sigma factor binds to the RNA polymerase 

to form the holoenzyme, the affinity for the promoter site increases by a 

factor of 10? and decreases by 104 for non-specific DNA sites. Each type 

of sigma factor changes the affinity for a subset of the genome promoters, 

hence the optional transcription that COSMIC simulate. Unfortunately 

there are not as many sigma factors as there are promoters, there are 

only a few sigma factors and so only a few high level system states - no 

quantity estimate is mentioned. 

After initiation and the RNA chain reaches around 8 to 9 nt in length, the 

sigma factor is released and free to complex with another polymerase, this is 

important as there is not enough sigma factor for all polymerase. Polymerase 

out numbers sigma factor by 2:1. 

As a side note, not all RNA polymerases consist of multiple subunits, the 

bacteriophages T3 and T7 encode for smaller single polypetides, these can also 

transcribe RNA at around 200 nt per second at 37°C. 

Of the five subunits that make up RNA polymerase, only the sigma factor is 

considered important and so modelled in COSMIC. The other subunits provide 

some unknown enabling mechanism and so COSMIC assumes they exist. The 

next section gives details on a specific sigma factor. 

2.13 o” Promoter 

The most common E.coli sigma factor is 0“, 70 comes the molecular mass 

of 70kDa. The o” promoter is a sequence of between 40 and 60 bp, the region 

around -55 to 20 has been shown to bind the polymerase. Studies have shown 

that it is only the sequences around -40 to 0 that are critical and that two 6 

bp sequences around -10 and -35 are especially important. 

The -10 sequence is TATAAT, with the initial TA and the final T being 

even more conserved. This can be referred to as the Pribnow box, after its 

discovery by Pribnow in 1975. Although the following 5-8 nt to the start of 
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transcription are not important, there number is. 

The -35 sequence is TTGACA, with the first three bases being the most 

conserved. There is a 16-18 bp gap between this and the above -10 sequence, 

though this is not actually important despite occurring in 90% of all promoters. 

The last few paragraphs have described the strong promoters. In reality 

there is much more variability in promoter efficiency, possibly as much 1000 

times. Summing up, the -35 sequence is a recognition region and a site for 

the sigma factor; the -10 region is for DNA unwinding, which isn’t reproduced 

here as it isn’t seen as important; and finally the sequence at +1 for around 

30 bases also influences transcription rate. The encoding affects the rate of 

separating the double strands and so has in indirect effect on the transcription 

rate when looking at a population of promoter sites. In E.coli the holoenzyme 

binds to promoters extremely rapidly, too fast to be explained by the binding 

and unbinding inside a liquid. Instead it is believed that the polymerase slides 

along the DNA looking for promoter sites. 

2.14 Other Sigma Factors 

The o factor is required for the RNA polymerase to identify the -35 and -10 

consensus elements of the promoter and so be ready for transcription. General 

control of transcription is achieved through repression mechanisms as found in 

the lac operon, but global large scale state changes can be brought about by 

a change in the availability of different types of sigma factor which have an 

affinity for different subsets of the genome. 

Heat shock is an example of a major shift in transcriptional priority. Under 

conditions of extreme heat a new set of approximately 17 proteins are created. 

The cause of this is a unique RNA polymerase holoenzyme that contains sigma 

factor o°”, this sigma factor is specific to heat shock genes. In E.coli a tran- 

sition from 37 to 42°C transiently triggers this protein response, under more 

extreme heat when the E.colz can not function this protein response is the only 

mechanism still functioning. 
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B. subtilis cells create bacterial spores ( [PS84]) when the environment be- 

comes hostile. The RNA polymerase is functionally identical to that of E.coli 

though here there is a “diverse set” of sigma factors, both for normal growth 

and sporation. 

In the case of bacteriophages (for instance bacteriophage T7), it carries 

only its specific sigma factors (phage T4 in E.coli and SPO1 in B.subtilis). 

The latter is known to encode a series of sigma factors, each factor bringing 

on a stage of infection, the middle stage is brought on by the presence of 07° 

which then activates genes 33 and 34. 

2.15 Bacterial DNA Replication 

Replication of the chromosome is tightly coupled with the growth cycle 

(and of growth at all). The £.coli initiation site (origin) is in the locus oriC 

and is bound to the cell membrane and hence the protein forming the junction 

with all DNA domains. OriC has 4 binding sites each 9bp in length for the 

initiator protein DnaA, this protein acts in proportion to growth rate making 

replication proportional to growth rate. When growth rate is high a second 

round of replication at the two new origins can occur before the first round is 

completed. 

A sufficiently large concentration of the DnaA protein forms a complex of 

30-40 molecules, each of which itself binds to an ATP molecule. This complex is 

then enveloped by the oriC DNA. Three AT-rich sequences 13 bp long are then 

melted, allowing the entry of the DnaB protein (DNA helicase). The helicase is 

a class of enzyme that melts double stranded RNA and DNA using the energy 

from ATP hydrolysis. This leaves a small gap between the normally bonded 

double helix, the amino acids in this gap are covered with single stranded 

binding protein to prevent base pairs from reannealing (renaturing). A DNA 

primase enzyme then attaches to the DNA and creates a short RNA primer 

that starts the leading strand of the replication. Bidirectional replication then 

follows, both strands of the circular DNA are followed. The process stops when 
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the replication forks meet at around 180 degrees opposite the oriC site. 

2.16 Mutagenesis 

The previous section discussed the mechanics of genetics, the next two 

sections mention what can go wrong and what are then the sources of evolution. 

The introduction to the genome earlier in this chapter points to the potential 

adaptation brought about by redundant information and helpful (or otherwise) 

plasmids. 

Mutation is the permanent random alteration of bases caused by a variety 

of error sources including point mutation, replication error (1:10'°), radiation 

damage and chemical damage (which causes a mismatching of base pairs, most 

such chemicals are carcinogenic). There are many other specific causes of 

mutation, including the problems of encoding information with DNA. We will 

however concentrate on the more typical causes. 

Point mutation is a single base change leading to it’s paired base changing. 

The phenotypic effect varies, a mutation of non-encoding DNA will have no 

effect, mutation in the third base pair of a codon might also have no effect 

as the third base is not used as much as the first two. If the mutation has 

no effect then it is said to be silent. If the mutation has an effect, it could 

vary anywhere from not much to lethality. A mutation that generates a new 

stop codon is called a missense mutation and obviously leads to a short protein 

product. 

In [Koc93] Koch outlines speculations and some findings of active adapta- 

tion in prokaryote bacteria. The work was with respect to extreme conditions, 

mainly starvation but also temperature shock. These being the typical method 

of changing the otherwise static environment of the agar plate. 

As an introduction to the possibilities, Koch lists the following reactions to 

extreme conditions (generally termed unfavourable growth conditions): 

e inducing metabolic mechanisms to utilise alternate resources 

e expressing regulons for heat shock and other extreme conditions 
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e becoming able to move (motile) 

e acquiring resistance to heat or dessication 

e producing spores - in order to reproduce 

e producing antimetabolities and other metabolites 

e becoming competent - that is make themselves open to alteration by 

foreign DNA that survives internal restriction enzymes 

e allowing invasion by plasmids, viruses, transposons. 

Here Koch is not concerned with transported (external) genetic changes, 

only prepared genes, i.e. using the inactive genetic material from past chal- 

lenges. It is initially aimed at the non-genetics, mechanistic side of bacterial 

survival - seemingly the production of spores that survive the challenge, but 

moves onto starvation response and mechanisms for directed mutation. 

Koch cites experimental evidence for starvation inducing a metabolic brak- 

ing function. This is brought about by a lack of, or non-functionality of pro- 

teins, ribosomes or enzymes. Koch also speculates the mechanisms for gen- 

erating ‘directed’ mutations, but suggests that reverse transcription leading 

to a large gene change is probably not plausible as it requires large amounts 

of energy and will probably be lethal. This is suggested as a last measure, 

though the large amount of required energy would seem to make this impossi- 

ble [COM89a]. 

Another source of directed mutation is the DNA repair mechanism during 

starvation. Repair of DNA requires a great deal of energy, and so during star- 

vation (except for photoreactivation) DNA changes will go unrepaired. Under 

the assumption that the changes are positive, then the return of resources al- 

lows the changes to be repaired, either ignoring or using the changes. In an 

experiment it appears that repair has priority over replication, as improved 

resources lead to more mutants [Sta88] 

Mutation rate can also be increased by the transcription mechanism itself. 

There is a non-generalised result that transcribing DNA is more mutable, as 
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the transcription is taking place on only one strand. The effect of this mutation 

source is unclear, it would seem to affect the average phenotype, if only slightly. 

Koch does however mention that there are repair mechanisms that deal with 

currently transcribing DNA [Dav89]. It would appear this is a secondary effect 

at most. 

Taking simple mutation further, a model from [Hal91] shows the short term 

losses and long term gains of mutation by relying on a two stage mutation. The 

first mutation probably being lethal but almost certainly moving the phenotype 

away from it’s optimum. The second taking the individual to an unoccupied 

space and so possibly a better optimum. Given reasonable conditions, the 

model predicts an unexplained huge increase in the second phase mutants. 

Hall also found that there is a general increase in the mutation rate when 

bacteria are under extreme starvation conditions. This mutation is probably 

lethal but in very cases it will lead to survival. 

Koch [Koc93] finishes with the idea of the living genome with reference to 

mutation, that there exists physiological controls of selectivity. Koch suggests 

that the genes themselves have an effect on the mutation rate and on the 

transcription process. The example given is one of lactose uptake and the 

effect of lactose presence in the past on the lac operon. It appears this is a 

case of delayed feedback between the environment and the operon though Koch 

takes this further. 

Looking at the role of mutation in more detail, {[Rai99] makes the point 

that more rapid bacterial evolution isn’t necessarily brought about by more 

rapid mutation, instead it has a more complex relationship. It was generally 

regarded that a mutator strain would only survive above a certain level of 

proportionality in the population, but lately (1995) it has been found that E. 

coli spontaneously develop mutator strains over long term lab experiments. A 

model by [Taddei et al., 1997] shows that the relationship between fitness value 

and mutation rate isn’t perfect; there are rules to the population size and the 

population’s degree of fitness to the environment. 

Evidence from [Sha97] goes against the positive mutation ideas. It seems 
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that bacterial mutagenesis gives two results; a lot of encoding effort is placed 

on the repair on genome, indicating that bacteria cannot survive mutation at 

a normal rate; and that cells possess a variety of biochemical systems capable 

of reorganising or changing DNA sequences (termed “natural genetic engi- 

neering”). The suspected mechanisms being both plasmids and transposons; 

therefore having the advantage of transmitting good material into other bac- 

terial or other chromosomes - leading to a potentially large mutation in one 

step. 

Shapiro supports Koch in the general conclusion that mutagenesis can be 

triggered by stress. Here mutagenesis means more than just mutation - it 

implies the bacteria actively incorporates the Mu phage under these stressful 

conditions. One result showed that the Mu phage didn’t actually get incorpo- 

rated in anything like its full form and so lost out overall. The process requires 

quite a few chemical factors to be present so would seem to be unlikely to occur 

by chance. Despite this, mutagenesis is speculated to be a widely occurring 

phenomena. 

There is however no evidence that mutation causing agents from the envi- 

ronment or other cells actually targets specific areas of the genome, the adap- 

tive view just states that more mutation will occur under certain circumstances. 

In the closing statement Shapiro describes his view of the genome as a source 

of massive computational power. The DNA is a storage mechanism and it is 

the action of internal and external influences that can activate this storage. 

In [[S00] Imhof and Schlotterer evolve Z.coli in nutrient rich conditions and 

found 66 advantageous mutations over 10,000 generations with 10 parallel in- 

dependent growths. This works out to 4x10~° advantageous mutations per cell 

per generation. Interestingly, this is the same number as found with experi- 

ments in a minimal mixture. Also, it is thought that deleterious mutation rate 

is of the the order 10~*, shadowing the cells that suffered both a deleterious 

mutation and an advantageous mutation. Not surprisingly, mutation effects 

followed an exponential distribution, the more dramatic the change the less 

often it occurred. Also shown is the decline in population diversity that also 
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occurs when using genetic algorithms, good solutions occur but are suppressed 

by other better solutions; unlike those they cited, competition was always mea- 

sured against the evolved population rather than against a non-evolved strain. 

[RBLO1] is another practical demonstration of E.coli adaptation. The test 

was for evolutionary change to the relatively high temperature of 41.5 degrees, 

over 2000 generations. The experiment identified five changes in expression 

level that were attributed to long gene replications rather than base mutation. 

High density DNA microarrays were used to measure the expression level 

of all ORFs in the genome every 200 generations. The data shows three of the 

duplications where at least 23.7 kbp long and at 2.85 Mb on the chromosome, 

suggesting that this area is responsible for heat shock. Control E.coli at 37 

degrees did not have this mutation. The paper then goes on to use further 

DNA analysis (Southern Blot) to conclude that all six cultures had evolved 

to the higher temperature but three had done so in a different way that the 

analysis didn’t show. 

2.17 Plasmids, Viruses and Transposons 

This section briefly discusses some of the more recent thinking behind bac- 

terial evolution that provoked this study, put simply the idea states that evolu- 

tion is powered by the transfer of genetic information horizontally, rather than 

vertically through inheritance. Viruses and other forms of microscopic invaders 

that parasitise the cells of other living things are one source of this horizontal 

transfer, as are cases where a cell absorbs DNA from the environment. The 

original support for these ideas came from the seemingly obvious calculations 

showing random mutation is unlikely to be the sole cause of adaptive evolution. 

Viruses are infectious agents about 20-300 nm long or wide, unable to mul- 

tiply except in the living cell of a host; they are otherwise inert. A virus 

contains the genetic information in the form of DNA or RNA (but not both) 

along with the necessary virus specific (reverse) transcription factors that can 

be transcribed and so replicated by the host. mRNA viruses come in many 
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subtypes, but ultimately convey their message using some form of mRNA that 

is taken up during the transcription phase. The virus mRNA would typically 

take over the host cell, shutting down the original transcription processes but 

inserting itself into the host chromosome (using reverse transcription). It would 

then have the cell replicate copies of itself and then at some point late in the 

infection process, a dissolving enzyme would be produced that removes the cell 

wall and so allows the newly created multitude of virus mRNA to spread into 

the dead cells environment. 

DNA viruses on the other hand are thought to have originated as plasmids 

- that is DNA encoding something beneficial to the organism (having evolved 

alongside the organism) but which is separate from its chromosomes - this 

genetic information presumably spreads like a helpful virus from cell to cell. 

The DNA virus is the example of a mutation making the plasmid turn on its 

creator, using the host for its own survival rather than for the good of the host. 

Both mRNA and DNA viruses are good, bare bones examples of the selfish 

genes theory - this states that every living thing only exists to bring about the 

survival of the genes of that organism. It must be said though that viruses are 

not considered to be alive, since they are inert outside of the host cell, not that 

this seems to matter for basic survival. 

A simpler plasmid like device is known as a transposable element and is also 

thought to have generated more rapid genetic adaptation than simple mutation 

alone. Unlike the plasmid, the transposon contains only 750 to 40K base pairs 

and consists of only DNA, there are no self contained transcription promoters. 

Transposable elements can infect more than just a host cell, plasmids and 

viruses can also be infected - this and plasmids in general are the cause of 

antibiotic resistance. A crucial difference in transposon action is that it has a 

less aggressive relationship with the host, it does not take over; the genome is 

altered by its insertion and this might well kill the host but if it doesn’t then 

the survivor has a permanently altered genome that may be beneficial. 

As these mechanisms were the original inspiration for COSMIC, it might be 

expected that they feature among the simulated mechanisms. Unfortunately, 
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the complexity of implementing the more basic mechanisms meant there was 

never time for these mechanisms, despite the results being much more interest- 

ing. This is however considered future work and as such there are many hooks 

inside the implementation by which these features can be added. 

2.18 Further Background 

Using the ideas talked about in in this chapter, namely the fact that DNA 

transformation has a hierarchical structure that comes into being through the 

presence of sigma factors and repressing / promoting enzymes (the logic enabling 

mechanism). We can then conclude with the view that the genome amounts to 

a hierarchical network of interacting genes, that synchronise the manufacture 

of necessary proteins in order for a cell to survive and replicate in its environ- 

ment. This network being sensitive to its own internal state and the effects of 

the environment. It has been suggested that this network forms the chemical 

equivalent of a nervous system, having the same attributes but working on a 

slower time scale. 

Work on replicating this exact structure seems to be sparse. There is work 

on evolving recurrent networks [PSD99] but not in a biological context. There 

is similar work on chemical reaction chambers and actual bacterial response ( 

[BS00]; [HP'TW95]; [BL97]), none of these use any kind of DNA like framework 

as the initial basis for representation. Work on replicating the structure does 

exist but it is by biologists for the representation and recording of known 

transcriptional data, complete genomes are available. There is no known work 

that tries to evolve a genome based network using a genome like representation 

and transcription mechanism. 

Sticking to the biological evolution viewpoint, there are some questions 

that can be asked, such as how this structure came about, given the seemingly 

intractable process of creating such a network through random mutation - 

which is an improbably event. There must then be some additional mechanism, 

such as horizontal gene transfer that can adapt bacteria (the organism of study) 
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to different and changing environments. 

It has been noted many times in the literature that mutation alone is un- 

likely to have the power to cross species water sheds, requiring many mutations 

at the correct loci to be effective. Putting this in the context of there being 

4000 Kbases in the E.coli bacteria makes its correct change (even using natu- 

ral selection on huge numbers of bacteria) very unlikely indeed. To solve this 

problem in the general case of sexual organisms, the traditional approach has 

been to say that sexual crossover will bring together mutations and so allow 

the offspring to obtain very different gene sets. This would still seem to be 

difficult to justify, especially in the context of bacteria as they are generally 

asexual. 

Pointing to an entirely different answer to adaptation, the horizontal gene 

transfer theory says that external polynucleotide sequences will be incorporated 

into bacteria; these sequences will have come from other bacteria and so be 

loosely compatible. Research has suggested that bacteria have some partial 

control over their ability to pick up or reject these environmental sequences; 

depending on the bacteria’s current level of health and the strain in question. 

Research has also noted that all bacteria seem to be able to incorporate foreign 

sequences and still maintain functionality. This in itself has three answers, 

bacterial cells can overcome the effect of the use of external sequences, or those 

foreign sequences really are compatible, or those sequences are not compatible 

and the cell dies - which is a traditional selectionist view. 

Ochman et al. [OLG00] brings together some of the basic facts associated 

with common bacteria genome size and transposon rates. The main point being 

that different bacteria have different pickup rates depending on their environ- 

ment (or lifestyle), but one of the larger genomes (that of E.coli) has 16% of its 

genetic material from external sources. Putting this into context, there is the 

proviso that this took place over 1 million years but this figure doesn’t however 

take account of the fact that new information is being continually incorporated 

and old material lost - so the sequences that make up the 16% are continuously 

changing. 
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Considering only traditional adaptation mechanisms, there is also the ques- 

tion of how the chemical network is affected by mutation (hence the term 

dynamic mutation from Koch [Koc93] which is then countered by Shapiro 

[Sha97]). They talk about the hierarchical genome and mention the relative 

likelihood and evidence for various classifications of mutation. In the absence of 

experimental or even theoretical results, the conclusion would seem to be that 

bacteria (and probably any other species) puts a high priority on the repair of 

DNA. This implies that mutation is not good, but on the other hand, consid- 

ering the ultimate source of genetic diversity, mutation is probably essential. 

Another aspect to mutation rate is that it places an upper limit on complexity, 

and so mutation repair mechanisms are required if more complexity is required. 

As mutation would appear to not be the source of adaptation and trans- 

posons appear too infrequent, the question of adaptation still remains open. Ig- 

noring the asexual characteristic of many bacteria, there is the use of crossover 

which would change parts of the chemical network. But then even if this form of 

insertion (a kind of super horizontal transfer event) was allowed, there are then 

the questions of how the network is robust enough to cope with the insertion of 

different sub-networks. There is also the question of redundancy - how much of 

a given network specification is actually useful for anything (i.e. used during 10 

years of a bacterial family line). According to Ochman et al. [OLG00] most of 

this redundancy (at the level of DNA analysis) is somehow removed using nat- 

ural selection despite that material being selectively neutral. It would appear 

that competition between genes for space on the genome somehow forces out 

genes that are of no use. How such a balance between useful and useless genes 

is achieved is unknown but the evidence says that most bacterial genomes are 

a constant length for a given species. 

Linking in with the question of the source of adaptation and the selection 

against useless genes, there is the more abstract questions of how the network 

adapts to novel circumstances and then remembers those circumstances? How 

does the network organise itself so that remembered environmental circum- 

stances could be reinstated? 
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Given the principle of the selfish gene, how does the enzyme activity manage 

to regulate itself in a way that forces it’s metabolism (and ribosome/enzyme 

creation) to stay under control and not be overwhelmed by either its own genes 

or the genes taken from another species. Of course these events occur in the 

form of viruses, but a bacteria suffering from mutation or horizontal transfer 

of genetic material must also survive. 

For our own ends, it would be useful to answer the above questions so that 

an artificially evolving network can do some computation. Of course in the form 

of artificial neural networks it already can; the above would provide another 

evolutionary neural network model, hopefully improving on the performance of 

current models by including all the right facets of biological evolution namely 

occasional feedback and evolutionary network design. 

2.19 Summary 

This chapter has covered the basic physical structure of E.coli, the genetic 

structure on which it is based and introduced the idea that this structure is 

a repository for solutions to adverse conditions. We have also discussed the 

sources of genetic diversity and the problem of where diversity and evolution 

comes from. The final proposition then is to build a model that can simulate 

E.coli at the genetic level and so test theories of evolution. That model become 

known as COSMIC. 
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Chapter 3 

Computing with Biological 

Metaphors 

This chapter moves away from biological material and instead focuses on 

simulation and analysis of biological systems, specifically with a genetics ba- 

sis. Before COSMIC there have been many simulations of genetics, both for 

the sake of biology itself and biologically inspired algorithms such as Genetic 

Algorithms. This chapter mentions a few of those models and importantly 

their limitations. Analysis of the genetic output of COSMIC was also seen 

as important, and so this chapter also covers some methods that should be 

applicable. 

3.1 Cell Models 

COSMIC is not the only model based on cells, there are others but they 

all have different aims, different abilities and very different levels of funding. 

The vast majority aim to simulate single phenomena using the simplest tools 

deemed fit for the purpose. This would be a reasonable approach in engineering, 

but the biological problem has always been how to put the single parts (single 

processes) back together again. 

Given in [SL99] is the general overview of the Virtual Cell. It starts by 
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justifying its position as an open ended framework for simulation rather than 

a fixed simulation. This avoids the problem of reinventing the wheel, should 

make testing more rigorous and ensures that all variables, equations and data 

are in one place and accessible. Obviously there are limitations to what can be 

simulated but the target of cell physiology and enzyme kinetics is open ended 

in that they can be specified through a HTML user interface. 

The system encompasses a user defined cell physiology, using pictures as 

input in either 2D or 3D. The cell can then be compartmentalised into the 

cytoplasm, the exocellular region and nuclei. Each of these regions contains 

user defined molecules which can then further specified using kinetic equations. 

The diffusion between regions and inside regions is also definable. All of this 

is entered via the HTTP interface into a distributed server which can convert 

the data into executable C++ code, compile it, execute it and store the results 

along with the model in a database - there is however no way to query the DB 

despite some mentions of data analysis. 

This model is quite large in scope, though it doesn’t aim to be E.coli and 

doesn’t really have the scope, it does try to be a framework for a generic single 

cell and as far as can be seen much effort has gone into making what it does 

do mathematically rigorous and yet be open ended with an accessible user 

interface. 

There are things that it does not do, there is no reference to multiple 

cells and cell interaction , the processes are based entirely on enzyme kinetics 

without a genome. There is no scope for evolution, the model cell is specified 

and run, with the option of looking at the results. There is a mention of 

manually stepping through the solution to the reaction equations. Only a 

vague outline could be found as the author had so much to cover in very little 

space. 

Moving in the direction of biologically inspired models, Eos [BSS00] is a 

population level simulation, a rapid prototyping framework for the simula- 

tion and experimentation of hybrid evolutionary algorithms and ecosystems. 

Uses object orientated techniques and Java, with plugins to extend the ba- 
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sic framework. The object frame work uses three main types, environment, 

sub-populations and individuals. The code is parallelisable using Java remote 

invocation and Voyager distributed agent tool. 

Also included in the system are classes representing genomes, mutation, 

recombination, selection and replacement; all the evolutionary ingredients on 

top of the population classes that hold together the mixed groups of individuals 

in the environment. 

Configuration is via configuration files, which are used to replace default 

values in each class. To aid rapid development, the classes not only have default 

values but now also have a front end. 

Aerial placement for mobile networks - an example. Used a real valued 

genome, the only part that needed to be externally supplied was the fitness 

function. There was also a graphical front end that could be wrapped around 

the simulation, this was itself part of the simulation and allowed the automatic 

visualisation of the results. 

Ecosystem simulation was based on Echo [JM93]. Individuals interact, 

trade, mate and fight inside the Eos space and interaction framework. The 

framework provides the ability to put the individuals in any space, 3D or 

something completely different. The only change then being the visualisation. 

Co-evolutionary function optimisation, an optimum finding algorithm in 

a 2D landscape, the oddity being that there are three populations that fight 

between each other, the hope being that local optima will be more likely to 

be avoided as they aren’t worth fighting over. The main reason for this is 

a demonstration of Eos implementing a different example of an evolutionary 

algorithm with little extra effort. 

As well as these generic features, features such as graph space (a graph ex- 

tension to the space framework) and a network simulator has been added. The 

network simulator is itself extended by a traffic simulator. These components 

leading to a simulation of network growth. 

The HERBY system by Devine et al. [DPa97, DPb97, DPc97, DPd97] is an 

ecosystem simulator, but unusually is also individually based. Agents evolve 
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in a discrete world, search for food and reproduce when successful. The agents 

are controlled using a learning classifier system, i.e. An evolving population of 

control rules in each agent. The agents never tried to model any one organism, 

here the goal was modelling adaptive behaviour. This project was a predecessor 

of COSMIC, and as such has passed on some traits such as individuality and 

modelling adaptive behaviour. HERBY was however extremely abstract and 

that limited its application to real world data. 

Ziegler et al. [ZDB97] used a more biologically abstract approach, giving 

an example showing signal paths from receptor input to flagella and involving 

9 different enzymes in the simplified case and 20 nodes, 30 edges in the more 

complete case. There are around 20 receptors, 4-5 are used for chemotaxis, 

enzymes can be either inhibitory or excitory. Enzyme reactions overlap, A can 

affect D, E and F, and B can affect F and G. In short, this is something like 

COSMIC but on a smaller scale of implementation. 

Shackleton and Winter [SW97] give another biocomputation model in which 

enzymes (no DNA component) can catalyse and have binding sites. Here, other 

enzymes represent data (operands) to the other enzymes binding site. There 

is also a binding site, which is supposed to convey function (in the real thing). 

They believe that the system will not need to be programmed, but give 

a manually described example system of sorting that uses enzymes which can 

break a string of numbered tags if vy, < vy < vu, how v, comes about is not clear, 

possibly a cause/effect of the need for topping up. And a joining enzyme which 

joins if vy, < v,. There are many multiple data sets and data is given a velocity, 

and more unit length lists were added during the simulation to maintain 100 

unit length data items in the sac - there was just 8 unique numbers. 

Round 40 produced complete solutions, as shown in population graphs for 

each length. As unit lengths were used quickly, the ratio of joiners to breakers 

were changed 2:1 but had no noticeable effect. Stopping joiners from joining 

after already joining (for a short time only) had a better effect and unit length 

strings lasted longer. 

The main focus was to use a GA to evolve the program. They talk about us- 
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ing a mapping from enzyme sequence to type of function (similar to COSMIC), 

but also mentions the differences between the primary structure (sequence) to 

tertiary structure (shape) and locality effects. In these terms the system is 

very much like COSMIC, but in the details their system has a much more 

computational than biological basis. 

In [Holter et al., 2001], Holter et al. put a mathematical model on real 

gene expression data. Three sources of data are used and it shows the ability 

to reproduce that data and also (importantly) to simplify it, in so doing this 

demonstrates how few of the genes need to interact. 

In closing they reiterate that the mathematics fails when the number of 

genes exceeds the number of samples, and it always will fail; the solution 

is undetermined. The level of fit was high, though it does leave the reader 

wondering how many genes it was applied to. The data suggests 6 in one 

case, but the gene expression diagram seems to have a much higher resolution. 

Overall this shows what can be achieved given adequate data, but also that 

there are circumstances where that data will likely never exist to make the 

method practical. 

3.2 Formal Process Models 

A number of attempts have been made to formalise biological systems. Here 

two approaches and a general graphical representation are given as examples. 

Duan et al. describe [DHB00] a formal language for biological systems, 

an initial assumption being that bio systems are best modelled as a mixture 

of continuous non-global variables (following differential equations) and non- 

global discrete variables. Discrete variables used for input/output of the system 

and in the test to determine if a state should be left. In each state there is a 

different set of equations for the system variables, but as they are differential 

they follow on from the previous state with ease. They propose a formal 

computable logic to specify the X-machine, the logic is based on the parallel 

processing formalism [DKH94] but includes time rather than the “time frame” 
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approach and is applicable to this model. The reason for this logic is to avoid 

(but still make possible) simulations, and instead find real mathematical facts 

based on the model. 

Reddy et al. [RLM96] gives some of the alternatives to modelling, the de- 

scriptions are vague but seems to have much in common with Petri Nets. They 

state that the problem of reliable data means that quantitative analysis is dif- 

ficult and qualitative analysis is the best compromise. To this problem steps 

the basic Petri net with weighted edges and some associated vector and ma- 

trix equations to relate state changes with some properties. These properties 

are largely unneeded but that is all the net seems to offer; given a starting 

marking (one of many possible) identify the deadlock situations or bounds on 

concentrations of each chemical. 

The figures per place indicate a maximum of around 5 tokens representing 

the various levels, it is not shown but presumably the weights are chosen to 

act at specific knee points of the various reactions. The given example is of 

a metabolic pathway in erythrocytes (red blood cells), input to the system is 

glucose and ADP and the output is mainly lactose with ADP. The reaction 

path is linear except for the reliance on ATP. 

The conclusion amounts to saying the above, that the net can qualitatively 

model biological processes but the inclusion of more power in the net (i.e. 

inhibitor arcs) means reducing the decidability of the final Petri net model. 

For a more broad view of formal languages, Usher [Ush99] gives an overview 

of Petri Nets. Chapter 3 introduces different types of Petri Nets, starting with 

the simplest and then adding other features as the basic Petri Net was found 

to have limitations over the course of research. An interesting point was that 

Petri Nets with an inhibitor arcs have the same computational power as a 

Turing machine. 

Of the types mentioned, some include some of the features that would be 

required for a biological model. Namely a temporal aspect and a hierarchy, but 

not at the same time. As the complexity of the types increase they start to look 

more like an object model with a Petri net providing the flow control between 
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objects or a Petri net providing the internal object control. This could only 

mean Petri Nets do not scale up without the help of the object paradigm, and so 

Petri Nets could not help with the formalisation of COSMIC. As shown later, it 

was the object paradigm that gave enough flexibility to specify COSMIC data 

structures but no known formalism had the scope to specify reactions between 

objects. 

3.3. Analysis Methods 

In order to help explain or at least analyse COSMIC results, it was hoped 

that some form of information theory would allow some understanding of the 

raw output data. This section therefor gives a brief introduction to information 

theory and then other related measures [Fel98, Hay99]. 

Given a random variable X on a discrete p.d.f., the Shannon entropy is: 

H[X] = — >> Pr(2) log,(Pr(z)). 
rEX 

The logarithm base sets the units, in this case bits. H[X] here means the value 

of entropy for the p.d.f. X over all x, not for the variable instance X. It gives 

a measure of the overall uncertainty of the distribution, 0 being totally certain, 

1 being a coin toss, H[X] tending to inf as the number of x increase. It does 

not say what will be next or how predictable the next is given the past, each 

x is independent. The text also defines joint and conditional entropy, which 

might be important were it applied. 

H can also be calculated from a continuous distribution: 

He[X] = — f f(z) logl2]f(x)de. 

H also represents the most efficient coding of a given p.d.f., hence the 

famous Shannon source code theorem: 

wy (Average Length of an Optimal Binary Code on X) = H[X]. 
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Entropy density is a measure of the uncertainty over a substring L from an 

infinite string S. If L was S then H[X] will diverge, so the energy density is 

  defined as hy, = | Which doesn’t diverge despite appearing too. 

Following on from this is computational mechanics, which bring together 

entropy density and Markov chains (effectively probabilistic finite state ma- 

chines). A matrix of transition probabilities and a set of transition states is 

required, this then allows the calculation of the entropy density but is not given 

here. 

Considering information density in an encoding, they all have the same basis 

- a known p.d.f. from which the basic measures can be calculated. Measuring 

probabilities in terms of states requires the states to be known, the mathematics 

seems to be able to stretch over infinite sets but this obviously is not practical. 

To find the states, we would need to artificially create state sets, each state 

containing many of the same simulation states. Without reducing the states 

there would never be a large enough sample to estimate the p.d.f., assuming 

there is a p.d.f. behind the interactions. This approach appears possible but 

is a topic in itself. 

Haykin [Hay99] also gives some time to information theory, or information 

entropy. This is similar to above, importantly Haykin goes into more detail on 

mutual information. For application to COSMIC, this seems the most relevant. 

Mutual information is a measure of how much extra information knowing 

r.v. Y gives to X, first there is the condition entropy: 

A(X|Y) = A(X, Y) - A(Y). 

with 0 < H(X|Y) < A(X) and: 

H(X,Y)=— >) >) p(c,y) log p(s, y). 
TEX yey 

where p(x, y) is the joint probability function of the random variables X and 

Y and 4, J are their alphabets. The difference between the entropy of X and 

the conditional entropy of X given Y leads the uncertainty of the system input 

that is removed by observing the system output. The is called the mutual 
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information between random variables X, and Y and is: 

I(X; Y) = H(X) — H(X|Y). 

I(X; Y) = H(Y) — H(Y|X). 

I(x; Y)=I1(Y; X). 

The problem with using this appears to be the p.d-f., figures could be obtained 

the p.d.f. was known but it is not. In fact it is an over simplification to consider 

the distribution a p.d.f.. Also the alphabet is hard to ascertain, if it is a vector 

then the mathematics is beyond the scope of this work. Continuous variables 

might lead to a solution, but it is impossible to guess that approach would 

be easier in practice. A p.d.f. could possibly be built up from a large sample 

(which could extracted), but that still does not deal with the random variable 

problem and the fact that a p.d.f is simply not appropriate. At any instance 

in time we could ask what is the probability of gene product x existing when y 

exists. That is the simplest case but probability does not take into account all 

the effects that play a role. And what information we could hope to calculate 

is seemingly contained in the linkage matrix. 

Also given are equations related to special circumstances of continuous mu- 

tual distributions, these rely on the marginal probability - probability when 

there is no independence between p.d.f.s. A result from this is helpful in blind 

source separation, and on the surface this is what COSMIC requires, but in 

others (complex maths, hard optimisation problem to solve, continuous p.d.f.s.) 

seems far removed what what would help COSMIC. Quite obvious is the use 

(and assumption) of Normally distributed input vectors in all examples, this 

cannot be realistic in all cases of a biological simulation. The conclusion from 

this approach is that it could provide some measures of evolution speed and 
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convergence but its application is a research topic in itself, the theory makes 

important assumptions that simply are not true in the COSMIC model. 

3.4 Biologically Inspired Optimisation 

and Learning 

This section brings together some of the wide variety of papers on bio- 

logically inspired optimisation. The inspiration has not just come from the 

genome, it comes from a wide range of scales. There is the ant metaphor by 

Dorigo and Gambardella; Dorigo, Maniezzo and Colorni. There is the species 

diversity metaphor by Marin and R.V. Solé; and there are the models of ecolog- 

ical process [DPb97]. There is also other, less direct models or algorithms, such 

as alternative GA replacement or the multi-level classifier [DC94, Dor95, CD98]. 

In an approach to identify measures of diversity for use in COSMIC, the 

work by Cao and Wu [CW98a] was considered. Here they demonstrate a GA 

that uses population diversity to control parameters, here it is incorporated 

into the selection function. 

Firstly, the Hamming distance between two strings v; = (bi,..., bi) and 

v; = (bj,...,b/), where b € 0,1 and J is the length of the strings, is: 

l 5 - 

H(v;,0;) = >< by, © bf 
k=1 

where @ is the binary exclusive-or operator. The normalised Hamming distance 

is then: 
zr H 4749 (vi, v5) = we 

which limits H(v;,v;) to the interval [0,1]. Using this normalised figure the 

population diversity can be estimated with: 

where m(m — 1)/2 is the total number of H function evaluations. Using this 

measure, the replacement policy of replacing the most similar strings was 
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adopted as opposed to replaced one of the parents or replacing at random. 

The measure showed that this policy lead to the higher diversity. 

Cao & Wu then goes on to make this selection via a cellular automata. 

The reasons look vague, what is actually happening seems to be choosing a 

string, sorting this string on fitness and calling it one dimension, and then 

sorting on hamming distance (but bounded by the fitness boundary of the 

chosen string). Scaling of fitness to fit the automata matrix is not discussed. 

Those other strings in squares next to the chosen string (neighbours) are said 

to be the most similar strings. The algorithm then says to pick another string 

outside the neighbourhood and do the selection again. All very vague, it talks 

about separating the fitness of strings in two groups more or less of the current 

strings, then sorting the two subsets on ascending order of hamming distance 

to the chosen string. Then says this creates a mapping onto the 2D cellular 

automata with which we can pick the neighbourhood; it not clear how. 

In [CW98b] give two improvements to the basic Evolutionary Programming 

algorithm, firstly in initialisation and secondly in adaptive mutation rate. Ini- 

tialisation seems to be ignored in most texts, there is a massive search space 

and 50 individuals and so the variance in the population is very high. The 

technique here uses quasi-random numbers to generate the initial population. 

This simple deterministic hashing function has potential use in COSMIC, but 

will not be talked about further until COSMIC makes use of it. 

The numbers are generated based on the way numbers are represented in 

the normal Arabic numeric notation. Given a natural number gq and radix p, 

q can be expression as series of coefficients such that 0 < a; < p in the form 

q = a) + ayp + agp? +---+amp™, m = [log[p](q)]. The quasi-random number 

is then ¢)(q) = aop~' +aip-* +---+am,p~™. In decimal notation p is obviously 

10, the Halton QRS method requires that p is prime. In this application, a 

different prime is used for each dimension of the EP problem, g is simply the 

individuals number, i.e. 1,2,3,...,m. For any values of g and p, 0 < $)(q) <1 

but obviously this can be linearly scaled. An example in the paper shows how 

much better the spread is, though is still random. 
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The next improvement uses the Euclidean space between solutions to calcu- 

late diversity. As with the previous Cao & Wu paper, the distance is normalised 

over the maximum distance and then a mean found be comparing all members 

of the the population to each other. This results is a diversity measure D(P), 

of the string population P. In this application, the diversity measure was then 

used to control the mutation rate per iteration by using it as a coefficient of 

the variance. The more converged it becomes, the lower the mutation rate. 

Some examples are given that show this algorithm was better than standard 

EP, not just in terms of fitness but also in number of iterations required. The 

most important finding was of the importance of initialisation and the evenly 

distributed but random initial population. This series of papers was also a 

demonstration of hamming distances between strings, something that turned 

out to be very important for COSMIC. 

Using ants as the inspiration, Dorgio, Maniezzo, Colorni and others have 

created a group of algorithms initially aimed at solving the T.S.P. using a 

distributed co-operation scheme with agents modelled on ants [DMC96]; each 

agent leaves a trail along edges of a T.S.P. graph. This chemical marker called 

a pheromone signals that an ant has used an edge but it also evaporates over 

time. Ants given no other information will use choose the shortest path (or 

random walk behaviour if path length has been withheld), but the pheromone 

will guide it along some path. The effect of evaporating pheromone is to guide 

ants along shorter paths. This particular paper thoroughly describes the ant 

colony system and its variations. Ant-cycle, which updates pheromone on 

ending of tour; Ant-density, updating of pheromone on crossing each edge - 

pheromone level taking no account of edge length and Ant-quality, in which 

pheromone on each edge is updated as it is crossed. All three are compared in a 

T.S.P. with various parameters. Ant-cycle comes out slightly better but there is 

only 0.5% difference. This is explained by Ant-cycle using global information, 

though it isn’t mentioned that the others use emergent global information in 

the form of the pheromone. Further tests are then carried out only on the 

ant-cycle algorithm, which is tested on the Oliver30 problem [WSF89]. 
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A sub-conclusion is that a balance of a and 6 (evaporation versus persis- 

tence) is required to achieve the right mix of following previous ant trials and 

applying the ant’s internal greedy algorithm. Given the right parameters the 

algorithm will converge but without it will either converge too quickly on a 

sub-optimal cycle or never converge on any reasonable cycle. This would ap- 

pear to imply a lack of robustness but trials did show that these parameters 

are relatively constant for problem size. Another good point is that the search 

does not stagnate even when the optimal is found, assuming the parameters 

are well chosen. 

Another comparison used elitism. The best tour was given increased phoneme 

by increasing the normal phoneme increase parameters for some constant num- 

ber of ants. This lead to much quicker convergence, but it is hinted that 

premature convergence is more likely. 

Compared to other results, it is said to produce just as good solutions 

as special purpose algorithms and does reasonably well on asymmetric T.S.P. 

(asymmetric being the harder variety) in which the special purpose algorithms 

find difficult. However, the computation time was always longer than the spe- 

cial purpose algorithms. More detailed studies and slightly different approaches 

are in [CDM92, DG97] and [DG96] respectively. 

Changing scale in thinking, [MS99] took an unusual population approach 

to single function optimisation. The population was in fact a kind of food web, 

with interdependent species that depend on each other for food. The network 

is formed by a matrix, elements determining levels of reliance (randomly ini- 

tialised) and the sum of each row indicating the level of survivability - 0 or less 

indicating that there are insufficient prey to feed that predator. A mapping to 

the Macroevolutionary algorithm makes a link between species dependent on 

fitness and Euclidean distance between species. As well as general proofs of 

performance, it is shown to perform better than a GA and it maintains more 

diversity and an average better solution. Even the time displayed in ticks 

(rather than generations) shows quicker convergence to good solutions. 

Changing the scale again to something akin to a single agent, Autonmouse 
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by [DC94] was a trained robot using a multi-level classifier system. The au- 

thors go to great efforts to put this robot in the real world, as well as defining 

a notation system by which they classify types of behaviour, i.e. a sequence, 

a sub-task (a combination of tasks are required for some behaviour), multi- 

ple independent tasks and the suppression of one task in favour of another. 

The structure of the problem was predefined, and a multi-layer classifier was 

statically assigned to the problem with a controlling classifier to oversee the 

co-ordination. Among the conclusions drawn were that it showed initial design 

helped the learning task. It must be said that this was a real world trial and 

so there were other aspects to the design (such as the sensor input) which is 

not mentioned here. It is also true that real world simulation is much harder 

than computer simulation. 

In [CD98] the above work is summarised. It summarises all their robots 

and approaches, and states their main belief - that AI is truly hard and yet 

despite this it is worth tackling harder problems using real robots. They also 

try to define what an agent is and how much it has in common with a real 

agent. It is similar in that it must survive to perform its goal, and similar in 

that there are degrees in which it does this. 

3.5 Biological Metaphors and Simulations 

This section briefly mentions some of the ecological simulations that could 

be applied to bacterial interaction. This includes work in [DPA97, DPa97, 

DPb97] on modelling a classifier controlled agent, [HJF97] on modelling agents 

in a food web and [MK97] who simulate large scale mutation and transposon 

action. Not mentioned is work more closely related to the current work in chap- 

ter 4, this being BacSim [KBW98], Gecko [Boo97], Swarm [Swa00], simulation 

logic [DHBO0] and reaction chamber languages [OLGO0]. 

The Echo model [HJF97] was used to test ideas about the essential sim- 

ulation characteristics of an ecosystem. Discreteness and spatial heterogene- 

ity [DL94] effect the predictive power of conventional models such as ordinary 
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differential equations and reaction-diffusion (Turing) systems in a classical bi- 

ology problem and so this model was used to avoid these problems. 

The model consists of agents with an internal genotype, an external appear- 

ance, a single resource to trade and a reservoir of internal resources. Agents can 

fight, trade (for other resources) or reproduce. Tests for which type of interac- 

tion to carry out are done in this fixed order. Reproduction is activated when 

a agent reaches some global resource level (fixed in the simulation), crossover 

is in the form of two point crossover but is done at the gene level. Genes 

are variable length as the mutation algorithm includes insertion and deletion. 

Trading is based on an exchange of spare resources, it includes a form of bluff- 

ing as either/both can give nothing if it has nothing to spare. Hraber says this 

should be a good thing, but as implemented it favoured the bluffers as those 

that lose out in the transaction will be selected against. Migration occurs when 

an agent wants nothing from the current site and gained nothing in the last 

round. The world itself is a grid, only agents at the same point in the grid can 

interact. Each position on the grid holds resources and requires resources, in 

the form of a probabilistic tax. 

To test the diversity of the agents the Preston distribution was used. The 

log of the number in each species is plotted on the x axis and the number of 

species in that size range are plotted on the y axis. Diversity then appears 

as a log-normal distribution of the form y = yoe~(*®)” where y is the number 

of species falling into the Rth octive, yo is the distribution mode and a is a 

constant related to the logarithmic standard deviation a: a = (2c)?. Given 

that a is about 0.2 [Pre48] it was possible to estimate relative numbers of 

species given the number of individuals or the number of species. 

A further prediction came from the species-area scaling relation [Pre62]. 

Given an isolated region with an area A, the total number of species S' is 

given by S = cA’, where c and z are regression constants and for empirical 

ecological communities (assuming it uses a log-normal distribution) z is around 

1/4. According to [HJF97] both this relation and the value of z can be predicted 

using the Preston distribution. In the natural world this relation does have 
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exceptions, on a very large scale (continental) it does not hold true. Using 

the Preston distribution [HJF97] was able to determine if the evolution of the 

agents was due to evolution or just some effect of random processes. 

When talking about neutral models there is no mention that the environ- 

ment affects species diversity. Regardless, mating was made random to discover 

if this does create species diversity. The results show that the original (limited 

interaction) model favours new (and single) species. This is shown on a Pre- 

ston curve for both models, but is then avoided because of the distributions 

problems. 

The conclusion drawn is that the model and real ecosystems are far apart 

and are likely to stay that way for every model. Abstraction, scale and un- 

necessary discreteness all play their part in distorting any possible conclusions 

that could be drawn. 

In [MK97] a GA algorithm with transposon action is compared to a tradi- 

tional GA - traditional except that there is no crossover. It is shown empirically 

that local convergence is avoided on a multi-modal function but also included 

are some vague concepts of food and competition. Food per peak was limited, 

so each peak could support only a limited number of agents. Therefore, the 

measure of multi-modal converge was that the total population went up and 

this was observed. 

Each agent carried with it a mutation rate for both the micro-mutation (nor- 

mal bit mutation) and transposon mutation. The standard ‘micro-mutation’ 

emulates base substitutions, small deletions, insertions and rearrangements, 

expansion and contraction of triplet repeats, and others. 

Replication was controlled using food, those that obtain food (based on 

distance to food carrying peaks) can create a daughter per food unit. The 

calculation of the distance to a peak appears over complicated; the difference 

between a peak (ideal genome) and the agents is taken and raised to some 

power (‘pressure’) giving the creatures proximity. 
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3.6 Summary 

As this chapter demonstrates, there is a long history of simulating bacteria 

and using the mechanisms of bacterial as a source of inspiration in solving 

more abstract problems that are not related to biology. What can also be seen 

from, for example, [CW98b] is how simple and abstract evolution can be, and 

in presenting models in the this form, equally how far from reality they can 

be. In building a model there is always the obvious temptation to simplify. 

This simplification brings clarity but it must also remove many of the possible 

interactions that may be important. It was this view, that a holistic approach 

on the limit of computational power, was the best method of simulating such 

a complex system as bacteria. 
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Chapter 4 

The COSMIC Model 

4.1 Introduction 

Using the biological information from chapter 2, this chapter builds a com- 

putational model of bacterial growth and evolution. It does this starting from 

the scale of genetics while also including the scale of bacterial populations 

based in an environment. This is all based on the idea of modelling the indi- 

vidual, be it individual cell or individual molecule, and so will be explained in 

terms of sets and relations between sets and members of sets. However, this 

chapter starts with section 4.2 and section 4.3 describing the main biological 

phenomena that COSMIC models. Section 4.4 then discusses more detail of 

how such a model could be implemented in such a way that computation is 

feasible. Section 4.5 then starts with the model proper by detailing the con- 

struction of genome, from the genes and their encoding, the types of genes, 

the construction of operons and finally to the genome of an individual cell. 

This section then goes on to specify the other constituent parts of a single cell, 

building to a population of these cells in a specified environment. The purpose 

of this section was to describe that static structure of the model, which the 

later sections then build on to include the dynamics. 

Section 4.6 describes the dynamics within the context of chapter 2, this 

highlights the important points of transcription and gives an overview of the 
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most important dynamic in COSMIC, namely the interaction diagram of fig- 

ure 4.4. Section 4.7 then discusses how this dynamic aspect is incorporated 

into the previous formal static representation. Section 4.8 and 4.9 describes the 

mathematical functions that implement the state transition dynamics which 

are applied to the structures of sections 4.5 to 4.7. Section 4.10 describes 

the specifics of the interactions in the context of the representation and the 

mathematical functions. 

Section 4.11 moves to a different scale, that of the cell population, by dis- 

cussing the details of the environment in which these cells live. Having now 

described all the structures and possible interaction pathways, section 4.13 de- 

scribes the initialisation of the system as a whole, how the original genomes 

come about and how enzymes can exist when there are no enzymes to create 

them. Finally, so that evolution may occur, section 4.14 describes the mutation 

operator that is applied to the previously mentioned structures. 

4.2 The Model - An Outline 

It is possible to think of the genome as a large data bank of protein cre- 

ation instructions, and instructions for all the other cell processes such as 

division/replication, formation, tactics for environmental stress, environmen- 

tal input, nourishment and so forth. This DNA or RNA data both creates 

the processors of the data and supplies data to be processed. Comparing to a 

tradition formal structure, it would appear to be a kind of Boltzmann network, 

except that the state is much harder to define. The message passing connec- 

tions would appear to be proteins, but then actuators of some action (be it 

DNA transcription, movement, etc.) are also proteins. 

If it was to represented on a graph such as Figure 4.1 then could be modelled 

using a node for each transcription site, activated by some edges representing 

and connected to positive and negative activation factors, these activation fac- 

tors are themselves coming from other transcription sites. In the diagram 

the functions (marked f()) in each node represent the DNA transcription de- 
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Figure 4.1: Conceptual outline of the network 

pending on transcription activating proteins (the edges representing inputs). 

Nodes marked J are continuously transcribed and sensitive to environmental 

conditions. The outputs of each function are proteins which move inside the 

cytoplasm to activate other functions. System output is much harder to define, 

in an organism the output is the correct metabolism for the environment - this 

does not fit in the model. 

The blocked nature of the diagram indicates a kind of context. Based 

on [YD02] it can be assumed that the hierarchical activation of transcription 

areas is massively layered, so allowing a kind of context to be activated; the all 

encompassing system looking like a hierarchically activated, loosely connected 

Boltzmann network that could could easily be well beyond any understanding. 

Still, all this then looks surprisingly like a programming language, with context 

maintained by the presence or absence of proteins. 
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As seen from the above references there is already work on computational 

models of biological systems, but there is a lot of variety when it comes to 

biological metaphor and it is questionable whether they have any value at all. 

It is hoped that COSMIC includes enough individual phenomena to be able to 

say it has many similarities - it will never be the same. 

4.3. Model Realisation 

In forming a model, yet more questions need to be answered. It is clear 

that biological processes can use massive parallelism and pattern matching ca- 

pabilities without complex synchronisation. Including all the possible traits 

such as temporal delays, temporal dependencies, spatial positioning, varying 

enzyme concentration (generally implying a probabilistic activation function) 

and multiple inputs or outputs per gene all play their role in making a sim- 

ulation intractable - so the question is which are the most important for an 

artificial simulation. 

Implementing such a network also asks the question of how to go about 

training the network when a network of useful size will have a huge number 

of nodes and possible interaction modes - in other words there is the issue of 

survival goals and the concept of fitness. 

The representation would seem to be a good place to start. Taking the 

example of E.coli which has a genome of 4000Kb. That is obviously a large 

number, but there is a redundancy from the genes being encoded loosely, there 

is no such thing as a gene template that can be overlaid onto the structure to 

read its meaning. As an example of this loose structure, it is known that in- 

tron/exon sequences in prokaryotes start with a repetition of TA bases around 

30 bases before the sequence and an A rich area (though including some T 

bases) after. Note this suggests some sort of probabilistic identification, each 

base increasing the probability of that point being the start or end of an in- 

tron/exon sequence. Little information is available on the specifics of optional 

(i.e. repressor controlled) transcription, but this almost certainly works in a 
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similar way. 

Needless to say, such a faithful representation will not be computable and 

yet there is definitely a need for a variable length representation if the size 

of the genome is to be allowed to grow a network of some (as yet not talked 

about) configuration. As a result, we suggest it is necessary to move away from 

the anonymous storage mechanism of DNA and move to a much more labelled 

representation. The labelling being chosen so that computability is conceivable 

but also the genome expressiveness is not constrained. 

Genetic Programming might well look applicable at this point, its basis is 

the mutation of a program representation which appears similar to a genomic 

program. However, research would seem to indicate that GP relies on finding 

the optimal using a non-optimising Genetic Algorithm like algorithm, hence 

requiring huge amounts of power and a careful design to reduce the search 

space. This stems from the search for a correct program when it is obvious to 

any programmer that there is huge gulf between correct and nearly correct. 

Bearing in mind that a typical Genetic Program tree is only a representation 

of some program, be it machine language or mathematical function, and that 

there is no framework for execution as this is done by the fitness function, then 

is clear that the problem with GP lies in the method of execution. The model 

proposed here does away with the sequential execution machine and instead 

executes a network of chemical interactions as specified by a GP program 

tree, the tree being very flat. An enzyme network at its most abstract level 

is an ideal machine for fitness evaluation, avoiding the halting problem by 

implicitly limiting execution tree depth. The only questions remaining are 

then which biological aspects to include in this machine, i.e. finding answers 

to the questions highlighted above. It is my belief that this machine could 

provide the power of an analogue computer, though to remain computable this 

would not be immediately apparent. Using a neural network like structure 

with some level of feedback, built from modules of primitive networks it must 

surely be possible to emulate a whole variety of behaviours found in all living 

things; or to be more tractable, bacteria and artificial systems. 
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As neural architectures contain a huge number of parameters, a suggestion 

taken from GP is to use Automatically Defined Functions (ADFs) to do the 

work of many smaller networks and so limit search space by removing a large 

number of the primitives. In the context of ANNs, this means first showing that 

it is possible to evolve simple ANNs, such as basic op-amp like configurations 

involving feedback or simple multiple input summation, difference, differentia- 

tion or integration; and then emulating their function by Automatically Defined 

Neural Networks. Although conceptually attractive from a computational view 

point, implementing ADFs poses problems equivalent to simulating a mixture 

of individual particles and particle masses; the particle mass is only an ac- 

ceptable simplification if the mass takes into account its member particles but 

that then voids the computational benefits of treating as a whole. In short, it 

would have to be possible to switch between scales of view while maintaining 

coherence between the two views. Through implementation experience it has 

been found that maintaining coherence between views requires exponentially 

increasing implementation code for each common element. 

4.4 Implementation Overview 

The proceeding sections represented the rational for this work, such a model 

obviously needs to be implemented to find how feasible each facet actually 

is. The first stage would seem to be identifying the basic attributes of the 

network as mentioned above. Clearly the very most basic requirement is the 

use of transcription repressors which can be simulated using bit strings (or real 

valued strings) as tags that map the output of a gene to a repressor site that it 

restrains. The basic question here being how exact a match would be required 

and how many repressors are required. Standard options for DNA matching 

such as using the hamming or Euclidean distance being less than some € are 

reasonably computable but it remains to be seen if they are accurate. 

These simple questions only amount to deciding how well connected the 

graph or ANN actually needs to be, or in a biological sense, appears to need. 
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The matching tags acting as edges only form part of the basic outline, a sec- 

ondary question is the choice of output function. As mentioned above, the 

transcription of a gene depends on many things, not necessarily just the re- 

pressors. Even the simplest choice of function would need to include the spatial 

and temporal aspects while using some simple exponential function. Intuitively 

this seems close to biological reality. It was hoped that a form of computa- 

tional penalty for phenotype size would not be required, and that genotype 

size would instead be selected for or against. 

So far the talk has been of a single bacterial cell, it’s genome and the 

chemical network created from that genome i.e. the basic framework for a single 

bacterial cell. Any changes brought about by the genome network, (sequence 

insertion and deletion) have affected the single cell. Assuming the simplest 

case of a single celled prokaryotic bacteria then it could well be one of millions 

of individual cells, each trying to survive in some environment. The effects 

bacteria have on each other (aside from indirect effects of depleting the same 

energy source) have not really been looked at. The population of solutions 

approach is clearly the only way to create an evolved network, this is hardly 

an issue. The real issue is identifying just what the network is supposed to 

be evolving toward. As mentioned above, this could mean evolving analogue 

circuits consisting of op-amps, capacitors and the required control resisters; 

avoiding transistors and difficult to model components. In this case fitness is 

easy to define - though not necessarily easy to find. 

The model could however be evolving realistic bacteria, in which case ana- 

logues of direct chemical processes are evolved to allow the whole to survive. 

Fitness in this evolutionary context is much harder to define, to simulate such 

a growth needs some additional environment as well as information relating to 

energy level and the ways in which it could be increased and decreased. Even 

for a first generation simulation this would be difficult, but this first realisation 

of COSMIC has achieved this in a reductionist way to leave only one survival 

goal. 

There is also the question of just what are bacterial inputs and outputs. 
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They are known to take up and seek out calcium among other substances, 

but the only output would appear to be life. Metabolism of the surrounding 

nutrients is their fitness function but their abilities in achieving this through 

interaction with the environment are difficult to model. Glucose is a typical 

food source and yet goes through many stages of conversion, both to enter the 

cell and then to power it. The power glucose provides is very much chemical in 

nature and yet this simulation is trying to simulate evolution, the specifics of 

nutrient uptake are an unnecessary detail. The solution to this whole paragraph 

of difficult points was to identify what single high level feature could lead to 

life, and that was the uptake of nutrients leading to growth and finally division. 

4.5 Genome Representation 

The implementation of the genome and cell will be presented using a se- 

lection of set relations and functions representing reaction probabilities; this 

representation is in direct correspondence with the implementation. Also de- 

scribed is the environment and the input/output relations that link the indi- 

vidual cells to the environment. Simulations have shown that this model is 

tractable with current technology, a single machine simulates a single celled 

environment fifty times faster than real time. 

Figure 4.2 shows a partial example of a model genome with a representative 

interpretation. The concatenation of string types is what is found in all living 

cells. To remain computable the boundaries are known and the tags seen in 

Figure 4.2 are set when a genome is created. Initial genomes are random, since 

initialisation must come from somewhere. Offspring genomes are derived from 

the parent, Figure 4.3 shows an example of type assignment to genes. Briefly 

put, the type is assigned by comparing the data sequence assigned to each 

of the fixed types of Figure 4.2. A strong anti-matching between gene and 

fixed type sets a genes type based on matched fixed type, as a result typing is 

dynamic and genes can have multiple types as shown in the example. 

The strings used in the figures have a regular structure, the genome alpha- 
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Figure 4.2: Flat genome structure, static representation 
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Figure 4.3: Genome structure, static representation with higher level meaning 
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bet is defined as L = {1,2,...,4}. This is obviously based on the number of 

alleles per base of DNA. However L = {1, 2, ..., 20} is just as valid because real 

DNA undergoes a two stage translation process leading to 20 different inter- 

pretations of the 64 combinations of 3 adjacent bases. This simulation ignores 

the RNA stage for reasons of computability and so the option is open to use 

either. The latter was chosen, mainly because it creates more diversity with 

shorter strings and can be more quickly calculated. 

A single gene is defined as: 

[T =<< L>,p,7,t > where 0 < \ <0 

This includes a measure of distance p relative to the start of the genome and a 

type 7 which records the attributes of this gene, attributes being the types of 

gene product that this gene transcribes. When transcribed I also is also used 

as a gene product, in this case the position p becomes the spatial position in the 

cytoplasm and ¢ is an individual time since creation to allow for degradation 

using the half-life functions described below. 

An operon is defined as: 

U=<<S>°,T> 

Where: 

0<a<o 

S={P,0O,T,A,T} 

{P,0,A,T} eT 

o is the length of operon U. P is a promoter sequence having the same 

characteristics as a gene (i.e. a string representing translated RNA) but is 

never transcribed, only serving as a start point for RNA Polymerase. In this 

model the sigma factor plays the role of the complete polymerase complex. 

O represents an operon sequence, A represents an attenuator sequence and 

T represents a terminator sequence. Again they all have the same character- 

istics as a gene sequence but are never transcribed, these strings only serves 
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as a site for binding repressors, or in the case of the terminator, stopping the 

polymerase. The specifics of how binding is simulated and what constraints 

are followed are given later, here only the data representation and an outline 

interaction is being defined. 

The gene products of genes [ are SF’, Re, An, F and I itself. Strings have 

the following relationships: 

SF €T andanti — match P 

Re €T andanti — match O and A 

An €T andanti — match Re 

F €T andanti — match Q 

The degree of matching d is based on the individual string instances, the func- 

tion defining this is given later. A genome is then defined as: 

G=<<U>"> where 0<k<0o 

To allow some path between the environment and the system there are 

genes (in representation) called input and output strings: 

Oy and Q., 

Where: 

0 < ¢,w < 0o 

6e<T,a>? 

Qe<T,a>”. 

ais a activation level associated with the input and a is a use level associated 

with the output. a is intended to allow for basic fitness testing by allowing the 

genomes cell to be placed in a competitive environment. 

The possible interactions within the system are recorded by binary relations 

between strings, Gi =< Ij, T',%,d >, with d being a record of the anti-matching 

function value. A set of relations is then defined as: 

Gn = {Gi;, Gi, ...} where 0 < |Gn| < |G|? — |G| 
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The total set of possible system interactions are divided into groups depending 

on the individual interaction type, giving the ordered set: 

Ci =< PSF,ORe, RAn, ARe, ®1,0F > 

Where PSF,ORe, RAn, ARe, ®1,QF € Gn represent promoter-sigma factor 

interactions, operator-repressor interactions, repressor-anti-repressor interac- 

tions, attenuator-repressor interactions, input-gene interactions and output- 

flagella activation protein interactions. Note that entries are not unique across 

Ci as genes have multiple types in their type mask 7,. Creation of the type 

mask 7, is explained later. 

System state is a record of the interactions between enzymes that origi- 

nated from the genome (transcriptional products), the promoter, operator and 

attenuator sites on the genome, and/or the enzyme that represent inputs and 

outputs. These are called the active interactions, the inactive interactions are 

the enzyme that at that instant are not involved with another protein. 

Stated in a similar way to Gi, for active interactions this is defined as: 

Sr =< 0,0 s,t,p > 

Where t is the time since the interaction started and p is the mutual position 

in space. A set of interacting (bound) molecules is then defined as Srn = 

S11, Sro,..., |Srn| being the current combined balance point between protein 

decay and transcription of proteins on both sides of the interaction. When a 

protein isn’t currently involved in an interaction it is considered inactive and 

waits using a structure: 

ou =< Fo,t.p> 

with ¢t and p defined in the same way. 

A set of unbound proteins is then: 

Sun = {Suj, Suz, ...} 

|Sun| being the combined balance points of enzyme decay and transcription. 

Summing the occurrences of a particular enzyme in both the active Srn list 
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and the inactive Sun list gives a figure for the current balance between decay 

and transcription for that particular gene product. Again, it is worth pointing 

of that “enzyme” refers not just to actual molecules in the form of sigma 

factors, flagella activation proteins, etc., but of molecules binding sites such 

as the operator sites. This softening of the distinction between molecules and 

DNA allows for a more homogeneous definition of the interaction whose only 

downside is the unneeded time variables associated with each gene; in short it 

was a simplification for the purpose of specification. 

The time and position fields in both the unbound molecules Su (¢ and p), 

bound molecules Sr (¢ and p) and the position and type fields in the genes 

I are discussed later, these values are part of the initialisation and runtime 

process. 

Combining the above states gives a total cell state: 

S =<T, FO, AnR, SFP, ReO, ReA®*, 05,15 > 

Where [®, FQ, AnR, SFP, ReO,ReA € Srn represent interactions of input 

- gene, output flagella activation protein, anti-repressor - repressor, sigma 

factor - promoter and repressor - operator. 6°,0°,T°% € Sun and represent 

idle molecules of system inputs and system outputs, 5 being the gene products 

(flagella activation proteins (FAPs), repressors, anti-repressors, genes) and gene 

products/proteins promoters, operators and attenuators. 

The cells state, interaction network and the genome are then contained in 

a cell that takes the form: 

C =< G, Ci, S,é, p, p,1 > 

Where € records organism energy level and y recording matter level (cell mass). 

Movement and actions using or transforming the genome will change both the 

energy level and matter level. Movement by itself will change the position 

vector f, the first two elements record the x and y position of the cell and 

the third @ representing an angle of orientation. f is a secondary concern and 

exists to enable placing the cell in an environment, bacterial tumble has been 
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simplified to this degree for this reason. 7 is the cells unique identifier, used to 

separately record cell heredity by the environment. 

The environment is defined as: 

Bo2<6 2b CAL fe = 

For testing purposed |7| (cell population) is initialised to 20, environmental 

constraints then dictate the population size, which is dynamic. FE is spatial 

lattice of the nutrients with an area of 1 but a resolution that allows the cell 

to feel a difference between receptors on different parts of its cell wall. ¢ is the 

current time of the simulation, used as an absolute time from which all relative 

time events can be calculated. At is the fine grain iteration time step. t” is 

the round time after which environmental state is synchronised between cells. 

P is the set of control parameters that allow for the effect but not the details 

of effects on the periphery of the model. It is: 

P =e t, tf, ie — a, ar“, fF em", e s*; ey me’, |L|, |®|, |Q\, Umax) Ks, m > 

where the values are given in table 4.1: 

t” would normally be 42 bases per second, but COSMIC enzymes are very 

short in length. In E.coli an average enzyme is coded from the range of 1500 

bases long, taking 35 seconds. COSMIC genes are 10 to 15 codons in length 

but should still take 35 seconds. Because an average gene of 12.5 codons this 

leads to 2.8 simulation seconds per codon. 

Ymax is already taken into account in max. c” is in fact 0.05 of the above 

figure, the above figure refers to free swimming in liquid. This adjustment also 

effectively changes the environment size to 2mm? from 0.2 mm’. 

Initial genome distribution is of the ratios: Promoter:2, Operator:6, Ter- 

minator:6, Attenuator:3, Gene:48; this is one of the few distributions that is 

important but has no backup reference. There is no known quantifiable ratio 

of genes of given types. 

t®, t”, r®, a®, ar®, s° and s™ are not currently used, ideally they should be 

but it remains to be seen how they can be used while maintaining a link with 
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Table 4.1: Table of COSMIC parameters 
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reality. Following talks with Kreft these parameters are important but in the 

context of COSMIC are far too complex (being chemical in nature) to combine 

with the existing simulation, they would add an additional level of complexity 

that is considered simply unnecessary. 

4.6 Genome Mechanics - Background 

To explain the basic interaction mechanics that take place around the 

genome, the RNA polymerase, repressor and the DNA strings need to be 

explained in the context of the the more formal framework of the previous 

section. 

The process needs an initiator that allows it to start running, one of the 

most important of these is the sigma factor, such as SF, from genome G; 

transcribed from gene [,. In a real biological system the transcription complex 

that decodes the DNA is composed of two logical units, the sigma factor and 

the RNA polymerase (core enzyme). It is the sigma factor that makes the 

RNA polymerase specific to a kind of promoter, without the sigma factor the 

RNA polymerase would bind with low probability to any part of the genome. 

In a real cell, once transcription has started the sigma factor leaves the core 

enzyme and is free to move to another waiting core enzyme. Given that the 

RNA polymerase is the machinery and the sigma factor is the enabling element, 

the simulation does not have an RNA polymerase as an object, it is assumed to 

exist. As the RNA polymerase outnumbers the sigma factor by 3:1 [TMBW97] 

and as the sigma factor is free to continue once it has started transcription, it 

is reasonable to make this simplification. 

So then, given a molecule called a sigma factor SF, that is a model of Su 

and was originally transcribed from a gene by a RNA polymerase. The sigma 

factor molecule will probabilistically match and stick to a promoter sequence 

P,;,. In COSMIC this matching is based on anti-string sequence matching and 

the spatial distance between the loose sigma factor molecule and the static DNA 

string where the promoter site is found; matching functions and all possible 
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combinations of gene type matching are given later. 

As the existence of the RNA polymerase is assumed, when the sigma factor 

has completed its role of transcription initiation it is released back into the 

cytoplasm. Starting at sequence P,, the virtual RNA polymerase machinery 

will slowly move along the genome. As it moves it can come across five types of 

DNA sequence, they are: another promoter, an operator, an attenuator, a gene 

(or sequence of genes) and a terminator. Genomes are either random (when 

there is no parent, see 4.13) or based on the parent, in either case the ordering 

is not known. 

If this promoter represented the start of a lac operon then it would be 

followed by a operator sequence O,+1, and genes I',40, [443 and [y44. If the 

operator wasn’t blocked by an attached repressor (which had been transcribed 

from a gene sequence elsewhere on the genome) then the RNA polymerase 

would continue along the genome and transcribe the three genes that follow 

the operator, these three genes would instantly be placed into the cytoplasm 

and be allowed to interact with any other enzymes that match in their reaction 

relations Gi;, Gi, Gio, Gip, etc., any of these genes could be sigma factors for 

this promoter, for another promoter or for no promoter in the cells genome. 

If the operator had an attached repressor then the RNA polymerase would 

cease in its transcription effort and unbind from the genome. Note that the 

lac operon has no immediate terminator. Also note that biological evidence 

suggests that polymerase moves along the genome rather than ‘swimming’ 

around it, transcription is too fast for it to be done any other way; references 

to blocking and removing are more metaphorical than actual but the simulation 

takes them literally as the true mechanism can only be guessed at. 

If the promoter represented the start of a trp operon then it would be 

followed by a operator sequence O,41, an attenuator sequence A; and five 

genes [',13,..., 447, all of which go together to encode for tryptophan at the 

RNA stage. As this model doesn’t attempt to take account of the subtleties 

of the RNA stage it would be more accurate to use a single gene sequence 

I',43. This operon is quite different to the Jac operon, not only does it have an 
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attenuator sequence but the operator is a co-repressor and the sole transcription 

product has a negative feedback effect on transcription of this operon. The 

attenuator sequence works like an operator except that it is more probabilistic 

in its action. A repressor bound to an attenuator has the effect of creating 

a 10:1 chance that the RNA polymerase will cease transcription, in the case 

of the trp operon the gene product is itself the repressor. COSMIC follows 

the 10:1 attenuator probability but obviously the negative self feedback is not 

specified and is left to evolution. 

The operator in the real trp operon is a co-repressor that includes negative 

self feedback. The repressor comes from elsewhere on the genome, the co- 

repressor is tryptophan, the gene product of the trp operon. Without both 

binding together they cannot individually bind to the operator. COSMIC has 

no co-repressor type and its effect cannot be brought about directly. This 

alternative was chosen so as to reduce implementation complexity without 

penalising expressiveness. 

Also included in the model is a repressor and anti-repressor interaction, 

neither example operon includes this latter type but it is known to exist and 

so can only enhance the expressiveness of the genome; one of the goals when 

identifying the interaction paths in the genome was to include a variety of in- 

verting effects and allow evolution to select the interactions. The anti-repressor 

Ang, is the sole means for removing a bound repressor Reg from an operator 

Ox+:, obviously an important role for what should be bistable transcription. 

Disregarding the lac and trp operons, in the real cell the transcribed gene 

sequences will (after conversion via RNA) become the RNA polymerases, sigma 

factors, repressors and anti-repressors necessary for continuous optional tran- 

scription, as well as creating the other necessary enzymes (complex proteins) 

to metabolise nutrients and so allow the survival of the genome contained in 

an individual bacterial cell. In COSMIC the same is true, the cell goes part of 

the way to surviving when transcription of the sigma factors, repressors and 

anti-repressors regenerates those lost to decay. 

The other key to cell survival is a sustained correct response to environmen- 
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tal stimuli. In COSMIC this is achieved through a very much simplified model 

of receptors, cell mass and flagella culminating in a set of inputs ®,, ®p, ... 

and outputs Q), Qe, .... Each input receptor ®; has a position on the cell wall 

which, to make the simulation fair and genomes transferable, are in identical 

positions on all cells. Based on the cell position and the receptor position the 

value of a for each ®; can be calculated. a is then used as a probability of 

matching input ®; to a receptive gene product [;. Probability rather than the 

real case of existence or non-existence is a necessary simplification as many in- 

puts would otherwise be needed. In the real biological case the receptors would 

be the start of a conversion process that makes energy and matter, the basic 

building blocks underlying transcription. The simulation cannot hope to take 

into account the chemical process and instead a bound transcription product 

I; cannot be bound with anything else. 

Outputs Q;, have a position on the cell and are linked directly to flagella 

in the environment. If a flagella activation protein (FAP) I’; was to bind an 

output 2; then the environment simulates motion. At the moment motion is 

calculated by summing a vector of all flagella positions, ideally this should be 

perpendicular to the cell to simulate a tumble rather than a push. 

The combination of input reward based on cell position and cell position 

based on flagellum output produces an indirect reward based system that is 

the basis on which the simulated E.coli evolve. 

A summary of possible interactions, sources of transcription products and a 

map of indirect or direct attenuation is shown in figure 4.4. Each type is created 

from the same genes above and as mentioned before, the assignment of type 

of based on the anti-matching of genes to operators, promoters, attenuators, 

inputs or outputs rather than being specified at (for instance) initialisation. 

This chart is discussed more fully in section 4.8 where the edges are tabu- 

lated with weights and depend on both molecule age, degree of anti-matching 

and distance in space between molecules. 
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Figure 4.4: Possible “enzyme type” interactions 
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4.7 Network Creation - Assigning type 

The relationships introduced above in figure 4.4 link transcription products, 

areas of genome and system input/output into a list of possible reactions, that 

list being occasionally referred to as a network; or more specifically a template 

for network creation. This is done on the type 7, associated with gene sequence 

T,, be it a real gene sequence in the case of the genome (P, O, A, T, I) or 

imitation gene sequence in the case of the input and outputs (®, Q), all these 

relations define the contents of the set C72 in C. 

As has already been mentioned, type assignment is dynamic and defined 

in terms of what each gene sequence can bind with. This does not however 

make the assignment arbitrary as some gene sequences already have type as- 

signments; input and output gene sequences are marked as such during ini- 

tialisation. Promoter, operator, attenuator and terminator sequences are all 

of a fixed type. All that remains is the assignment of type to the gene prod- 

ucts themselves; possible types being sigma factors, repressors, anti-repressors, 

flagella activation proteins (FAPs), receptors and ‘genes’. This latter type is 

a default for gene products that do not fit any other types. Note that some 

static type assignment is necessary, without it only a matching between [; and 

[, could be found, whether this represented an input/receptor, output/FAP, 

sigma factor/promoter etc. cannot be known, one side of the interactive pair 

must be given to resolve this ambiguity. 

As promoters are known, their sigma factor counterparts are identified by 

being valid anti-matches to the promoters. This amounts to identifying the 

subset of gene sequences from the set of all sequences [; in G, testing each 

possible pairing of promoter to gene sequence. This gives: 

PSF ={< Py,Tg >,...} where VP, € G,W[g € G, match(P,,T'g) < 

match() being the anti-base matching function defined below and «€ being the 

match tolerance, 85 for test purposes (giving a high interaction level) and 

around 15 for use during the simulation - an ideal value of 1 is far too low for 

computable evolution. 
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Repressors can also be easily identified by being a valid anti-match to oper- 

ator sequences. Again this amounts to identifying the subset of gene sequences 

from all possible sequences, including those gene sequences that were found to 

be sigma factors. Testing each pair of gene sequence to operator sequence gives 

the set: 

ORe = {< Og, Tg >,...} where VOg € G,WPg € G, match(O,,T'g) < € 

match() and € being the same as above. 

Repressors that bind to attenuators can also easily be identified by being 

valid anti-matches to attenuator sequences. Again this amounts to identifying 

the subset of gene sequences from all possible sequences, including those gene 

sequences that were found to be sigma factors, repressors, etc. Testing each 

pair of gene sequence to attenuator sequence gives the set: 

ARe = {< Ag, Tg >,...} where VA, € G,VEg € G, match(Ag,Tg) <€ 

match() and ¢€ being the same as above. 

System inputs bind to any gene that can become a transcription product 

(i.e. VE € G) regardless of any type already assigned, so identifying gene 

sequences affected by input sequences involves using the anti-base matching 

function on the set of all possible sequences ®xI € G. This results in the set: 

Ol = {< ®,,Ig >,...} where V6,, V's € G, match(®.,T's) < € 

match() and € being the same as above. Note that this relationship has been 

given the name input-gene, despite gene itself being a generic term. 

System outputs also bind to any gene sequence that can become a transcrip- 

tion product regardless of any already assigned type, so again identifying gene 

sequences (FAPs) affected by output sequences uses the anti-base matching 

function on the set of all possible gene sequences. This gives the set 

QF =< Q,0g > where VO., VP's € G, match(Q.,T's) < € 

match() and € being the same as before. 
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Anti-repressors might cause a problem, they represent the only interaction 

that has no fixed type on either side. One approach to this is to wait until all 

repressors have been identified using the above and then use the now familiar 

method of creating a working set - this remains the current method. This gives 

the interaction set: 

AnR = {<Tq,Ig >,...} where WPo,0g € G, match(I,, Pg) < € and tp, = Repressor 

match() and € being the same as before. 

For the future there is the possibility that anti-repressors are identified by 

the sole condition of being an anti-base match to a gene sequence. That is, 

gene sequences are matched to gene sequences and if the anti-base matching is 

within tolerance then that is considered a valid relationship regardless of the 

possibility of there being no operator affected by the repressor. Of course, there 

is then the question of which is the repressor and which is the anti-repressor. 

If the repressor is not involved with an operator then it is of no concern and so 

this form of identification remains a practical possibility. It is plausible to use 

this mechanism to penalise genomes whose loose matching creates islands of 

activity; this activity can be set-up to use cell energy and so reduce the cell’s 

fitness. This approach remains a possibility. 

Terminators are not involved in any direct interactions, there was the pos- 

sibility of having the the virtual RNA polymerase test sequences with the 

terminator but this is not biologically accurate; in reality the RNA polymerase 

machinery is stopped by the terminator by virtue of the terminators coding 

sequence snagging the machine, so the gene sequence reads as stop no matter 

how it compares to the polymerase. 

4.8 Reaction Rates and Probabilities 

This section discusses the construction of tables that specify the probabili- 

ties of transfer from an unreactive molecule state to a mutually reactive state, 

these functions simulate a half life as well as taking into account some other 
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details such as molecule position. In effect these probabilities reflect the use of 

edges from figure 4.4 at the level of the individual. Also included are functions 

for deciding molecule removal based on probability and degree of matching (or 

rather the degree of anti-matching). In the future it would seem more accurate 

to place less emphasis on a probability density function (p.d.f.) based on type 

and instead use a mapping function from gene encoding to p.d.f. that is also 

(to a lesser degree) based on type - otherwise identical enzymes will have vastly 

different life times, as is the case at the moment. 

4.8.1 Potency matrix 

This matrix is read as “y directly affects potency of x” with non-interaction 

shown as —. This is a time dependent molecule degeneration as a function of: 

p(t) = e-** Where ¢ is the age of that molecule. A value of 0 indicates there 

is a relationship but has no effect in that direction. Some points to note 

are that the inputs, outputs and the gene based imitation enzymes (operator, 

promoter, attenuator and terminator) are timeless. The input and output 

enzymes represent the interface to the environment and so there is nothing to 

be gained from ageing and then replacing them - which would also have to be 

done using a mechanisms outside the transcriptional mechanism. The latter 

are part of the gene, which ages along with the cell’s genome. In this model 

the genome is considered to be static in most time frames so the elements of 

the genome are static and therefore timeless. Evolution is implemented as an 

entirely independent stage and should not be considered here. 

In Table 4.2 the first column shows degeneration of an idle molecule, other 

columns show the degeneration rate under that given relationship, with ¢t being 

the ages of both individual enzymes. Here the gene I is used as a central point 

of interaction between the other string types, it could be said they are the 

centre of the system. 

The individual potency coefficients in the Self field are used for ageing of 

individual enzymes, all other uses of potency are for the binding or unbinding 

between pairs and so uses the relevant pair to obtain the coefficient. The choice 
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Table 4.2: Potency matrix, providing a coefficient of reaction rates 

of row/column or column/row generally follows the same pattern; the row is 

the enzyme that ages, the column is the imitation enzyme that does not age. 

The only exception is the anti-repressor/repressor reaction, as both age the 

ordering is more arbitrary but is ultimately fixed - the repressor is the row. 

4.8.2 Enzyme matching matrix - from non-reacting state 

A probability (or rate) of matching another enzyme is given by: 

b(d) =e #4 

taken as a function of 8 and depending on d - the distance between the proteins 

in space (|Pa — py|). — shows there is no chance of interaction. As gene types 

(i.e. what an enzyme can react with) are determined solely by their encoding, a 

single gene can be (for instance) both a FAP and a repressor. In this situation 

s(d) is calculated for each case. 

4.8.3. Enzyme matching matrix - from reacting state 

When in an interacting(reactive) state the probability is given by: 

b(t) =e"% 

and provides one coefficient of remaining in that state. ¢ represents the age 

of the reaction. This is the same as the above matrix, though a brief mention 
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Table 4.4: Enzyme coefficients from a non-reacting state 

by Kauffman [Kau93] suggests that repressors remain attached to the genome 

until actively removed. This has been implemented but is beyond the scope of 

this matrix. 

4.8.4 Protein matching matrix - direct compatibility 

As well as the time and space dependent probability functions for state 

change, there is also a probability state change based on direct protein match- 

ing - that is direct anti-matching of gene sequences. As each gene [ is poten- 

tially a different length, this must be taken into account as the expectation of 

the difference in length. A close match is the basic requirement for the above 
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interaction probabilities to take place. This matching defines the interaction 

paths (Gz) between potential individual enzymes in the system. Once calcu- 

lated, the other interaction probabilities above can play their part until such 

a time as the network (Gi) becomes out of date. This is a necessary step as 

calculating the anti-matching degree for all possible genes is computationally 

expensive. As a result, this step is carried out when the genome is first created 

and then as any new additions are added to the genome, such as sequence 

insertion, or from future extensions to COSMIC such as plasmid mechanisms. 

The anti-matching function is defined on the set of all gene pairs ['y,I'g 

with the function: 

T.—l rE 

(2)?((Pal — [Pal)? + mings?!" [D4 be(a44x)XOR. Bj, b)?| 
match(T,,0s) = Tal 

a 

Where |[,| > |I'g|, 6 is the number of alleles per locus and bc(z, b) returns 

the normalised number of mismatched alleles (bits) per loci, i.e. normalised by 

b = 4 or b = 20, depending on chosen DNA sequence model. (2)?(|L'a| — |I's|)? 

is included to remove the bias for genes of different lengths. This gives the 

expected random error that is equivalent to extending the shorter gene to be 

as long as the longer gene. Without this the shorter sequences would obviously 

dominate by matching more easily. 

Figure 4.5 shows an unnormalised cumulative distribution of 32 random 

genomes with an average of 1000 genes each. Frequency is on the vertical 

axis and distance on the horizontal axis, exact units are not meaningful. It is 

expected that this sort of graph will give an indication of convergence, as the 

average distance between genes will increase taking the mode to higher values. 

As can be seen, even increasing the genome sizes to 1000 still produces a large 

amount of sampling error, which is removed by the curve showing the overall 

trend. 

Building on the text of section 4.8.4, the connections of the network are 

defined using the condition d = match(T,,Tg) < ¢. € being the cut-off point 

deciding if there is an edge between gene sequence I’, and gene sequence Ig. 

It is hoped that € can be small and results suggest that 0.15 is appropriate to 
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Figure 4.5: Cumulative distribution of all random genes, from a sample of 32 

individual genomes. 
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Input Output 
‘Genes’ ‘Genes’ Genome 
—A A— 

  

       

  

Input ‘Genes’ 

Output “Genes’ 

Promoter 
Operator 
Gene | 
Gene 2 
Gene 3 

Genome 

Figure 4.6: Gene interaction within a randomly initialised genome. Both ver- 

tical and horizontal axes represent the same input receptors, output receptors 

and the genome. Squares show there is a link (a relation) between the pairing 

of genes or receptors. Input and outputs do not interact direcly so the top left 

shows no interactions occuring. 

ensure the network is loosely connected enough to be computable. Obviously, 

the network will be updated whenever some new sequence is added to the 

genome but this only requires n* steps per genome per iteration and n* during 

genome initialisation rather than a quick initialisation and n* steps per genome 

per iteration. A quantitative figure on the connectivity of the E.coli genome 

is not available, but it is considered to be low. 

To enable visual inspection of running simulations, the simulation soft- 

ware can display the gene connection network. An example using random (i.e. 

non-converged) genes is given in figure 4.6. This shows 10 inputs © (first 10 
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columns), 5 outputs 2 and a genome of 90 genes [. The term gene refers to 

a sequence rather than a gene that leads to a transcription product. As all 

interactions are reciprocal, this adjacency matrix is symmetric - it is shown in 

it’s full form to allow for debugging of what would otherwise be a large amount 

of data. 

The colours are solely to help readability on what would otherwise be a 

mass of black squares. Each adjacent square is a different shade ensuring that 

no two adjacent genes are the same shade, again to be readable. In cases 

where there is much more gene interaction, and so more filled in squares, the 

difference would be stark. 

A small operon is annotated, possible interaction paths are shown between 

the operon towards the end and an operon around a third from the start of 

the genome. Without obtaining more detail, this example shows the operons 

promotor interacts in some way with a gene at the end of the genome, so we 

can assume that gene at the end of the genome as a sigma factor. As is the 

gene toward the start of the genome, on the same horizontal position as the 

promoter. 

4.8.5 Combining reactivity functions 

During the simulation run, the above functions (p(t), b(d) (bind enzymes), 

b(t) (release enzymes) and match([,,Ig)) need to be combined to give an 

overall probability of state change. The probabilistic steps are there to add the 

stochastic effects of existence inside the cytoplasm. 

The probabilities potency(t), bind(d) and release(t) are then used through- 

out the lifetime of the network C7 as the weights in the probabilistic reaction, 

or more specifically as probabilities for enzyme state changes. Each enzyme 

instance has two basic states, it is either reacting with some other enzyme 

(including being attached to the genome) or it is idle. In the latter case, the 

probability of it reacting is: 

p" (Ta, T's) = f"(potency(t,), bind(d), potency(tg), bind(d)) 
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and the probability of it ceasing to react is: 

p’ (Ta, 0g) = f’ (potency(t,), release(ta), potency(tg), release(t,)) 

The simplest function for both f"() and f*() is the product of pairs, and 

this has been used. Other options are min(a, b), max(a,b) and a+b—ab - each 

calculated for each pair of the gene and then for the combination of the genes. 

4.9 Reaction P.D.F.s 

The implementation uses the following formulas to calculate both probabil- 

ities used for stochastic decision making and in stochastic forcasting of future 

events, this being an effort to remove the overhead that comes with continu- 

ously generating random numbers and testing against a probability function. 

The simulation supports a variable sized time iteration, this detail is not shown 

in the functions that follow but is taken into account so that probabilities re- 

main effectively constant. These following sections build on the previous sec- 

tions in that they state the formula used in each reaction type, whereas the 

above sections have defined the same formula in terms of other formula. 

It should be noted that the choice of the exponential function as used 

throughout is based on ease of computation rather than any biological reality. 

This function was chosen because its inverse can easily be found and computed 

in either direction. The exact function for simulating these reactions in this 

scenario is unknown, reassuringly what can be seen from biology is that any 

and all functions are used at some point. As a result, some function had to be 

used and linear seems inappropriate, exponential was the only choice. 

The same should be noted of the reaction parameters. There is no absolute 

correct parameter set for these reactions, the can never be one in such an 

abstract scenario. The best solution was to combine the known quantities 

in a way that was fair and so give all the enzymes the same chance. As all 

enzymes and cells operate by the same rules there is no strong bias, all reaction 

parameters are combined without any one dominating. 
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4.9.1 Input regions, receptors and enzymes 

The stochastic unbinding of input region-receptive gene products is calcu- 

lated using the formula: 

Pree? 
Op + Yr 

Receptive gene products being repressors, anti-repressors, FAPs and/or sigma 

factors. p is a random variable in the range (0, 1] and a,, 7, are rate coefficients 

from the potency matrix of table 4.2 and y, from the unbinding matrix of table 

4.8.3. The result ¢, is then the time to unbind relative to the gene’s time of 

creation; not the current simulation time. This is to avoid digitising effects. If 

t, < current_time then the enzyme will never be bound in the first place. The 

above equation comes from the integral of the unbinding probability: 

p — ewer Ir eta Or 

The stochastic binding of input region-receptive gene products can be cal- 

culated using the formula: 

_ log(p) + d6, 
—Oy 

t, 

Where p is a random variable in the range (0,1] and a, is from the potency 

table 4.2 and , is from the binding table 4.8.2. This formula isn’t currently 

used, instead the following formula is used to make a probabilistic decision at 

any given instant. 

— p—aBr —trar p=e “re 

The problem with this approach is the continuous stochastic checks of all pos- 

sible pairs of enzymes. It would be much better to calculate t, but that then 

creates a conflict for when ¢, expires it could be the case that it has already 

expired with another input enzyme. In the implementation there are more 

options to avoid the continuous testing of probabilities, however it would be 

difficult to show that randomising artefacts did not perturb the model. 
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4.9.2 Repressor proteins and operator regions 

The stochastic binding of operator region with repressor gene product is 

decided on the following probability: 

Pp = e Br eo er or 

Where d is the physical distance between operator and gene product, t, is the 

age of the repressor in question (operators have no age), a, is the operator- 

repressor coefficient in the potency matrix and 6, is the operator-repressor 

coefficient in the binding matrix. 

The stochastic unbinding of operator with repressor is calculated with the 

following formula: 

_ —log(p) 
- Vr + Oy 

Where t, is the time the binding will end, relative to the repressor’s time of 

Tr 

creation. p is a random variable in the range (0, 1], 7; is the operator-repressor 

coefficient taken from the unbinding matrix and a, is the operator-repressor 

coefficient taken from the potency matrix. This formula is based on the integral 

of the following: 

p= eT tr e—trar 

Where t, is the current age of the repressor. 

Note that natural repressors do not willingly break their hold on the DNA, 

repressor binding is stable. The repressor must be actively removed by an anti- 

repressor; as a result 7, is very small to ensure t, is very long, longer than the 

cell is reasonably expected to live. 

4.9.3 Promoter regions and sigma factors 

The stochastic binding of promoter and sigma factors is essentially the same 

as the previous interaction, note that the presence of RNA polymerase can be 

reasonably assumed. Only the sigma factor ages, the promoter is timeless. 

Binding and hence transcription initiation is based on the following probabilis- 

tic decision: 

p= e tBsf e—tsf Osh 
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Where d is the physical distance between gene and sigma factor inside the 

cytoplasm, t,, is the age of the sigma factor instance, as; is the promoter/sigma 

factor coefficient in the potency matrix and §,, is the promoter/sigma factor 

coefficient in the binding matrix. 

Stochastic unbinding is generally not used, a transcription rate defines the 

number of bases per unit time that can be transcribed. i.e. |[|-tr . Except for 

the operator and attenuator effects it is guaranteed that the RNA polymerase 

will reach the end of the operon and so transcribe all genes. Once the sigma 

factor has bound, the initiation stage has been reached and the sigma factor is 

almost instantly ready to be reused, taking |P|-tr simulation seconds to return 

to the unbound set. 

The case where the operator has an active repressor serves as the exception. 

An initiated polymerase will wait for the repressor to be removed but it waits 

a finite time, this p.d.f. provides that finite time and takes on a similar form 

to that of the operator/repressor using the formula: 

cele) 
Ysf + Osf 

Where t,r is the time the binding will end, relative to the time of transcrip- 

tion initiation. p is a random variable in the range (0,1], ys5 is the pro- 

moter/sigma factor coefficient taken from the unbinding matrix and a, is the 

promoter/sigma factor coefficient taken from the potency matrix. This formula 

is based on the integral of: 

p= e 'sfIsf e—tsf%sf 

Where t;r is the current age of the sigma factor. Note that ts, > |P|- tr will 

be taken as t,f = |P|-tr and so early termination before initiation will not 

occur. Failure during transcription of a single gene is likely to create more 

problems than diversity. In effect it could be argued that this possibility of 

failure is similar to the use of attenuation sequences, but this implementation 

route would be so restrictive as to obscure the case without it and not be 

strong enough to support the case for it; there does not seem to be any value 
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in entirely probabilistic termination. There is also the problem of supporting 

partial strings which are assumed to be exactly based on the given instance 

gene type, in this model any form of termination occurs on the gene boundaries 

so partial gene products are never produced. 

4.9.4 Output regions and flagella activation proteins 

Binding of the output region and flagella activation gene product is a prob- 

abilistic decision based on: 

— p—dBm ,—tmam p=e e€ 

Where d is the physical distance between protein inside the cytoplasm, t,, is 

the age of the protein instance, a,, is the output region-FAP coefficient in the 

potency matrix and £,, is the output region-FAP coefficient in the binding 

matrix. 

Stochastic unbinding takes the same form as the operator/repressor inter- 

action probabilities. The formula is: 

_ —log(p) 
Ym + Am 

m 

Where t,,, is the time the binding will end, relative to the FAP’s time of creation. 

pis arandom variable in the range (0, 1], ym is the output/FAP coefficient taken 

from the unbinding matrix and a, is the output/FAP coefficient taken from 

the potency matrix. This formula is based on the integral of: 

p= e im Im elm am 

Where ¢,, is the current age of the FAP instance. 

4.9.5 Anti-repressor/repressor interaction 

Binding of the anti-repressor with repressors is a probabilistic decision based 

on: 

D = e tbr e tae e tr ar 

  

COSMIC R. Gregory



4.9 Reaction P.D.F.s 97 

Where d is the physical distance between enzymes inside the cytoplasm, t, is 

the age of the anti-repressor instance, t, is the age of the repressor instance, 

Q, is the anti-repressor/repressor coefficient in the potency matrix and £, is 

the anti-repressor/repressor coefficient in the binding matrix. a, is the same 

as the a, coefficient but from the point of view of the repressor. 

Stochastic unbinding uses the formula: 

f, =. in) eee) 
—(Ya + Oa + Yr +r) 

Where ¢, is the time the binding will end, relative to the anti-repressors’ 

time of creation. p is a random variable in the range (0,1]. 4, is the re- 

pressor/ anti-repressor coefficient taken from the unbinding matrix, a, is the 

anti-repressor/ repressor coefficient taken from the potency matrix. a, and 7, 

are the same coefficients but taken from repressor’s point of view. k is the age 

difference between the anti-repressor and the repressor. Should t, indicate a 

bind time less than the current time, the binding never occurs. This formula 

is based on the integral of: 

Dp — ea Ya er or e faa 

Where ¢, is the current age of the repressor and t, is the current age of the 

anti-repressor. 

4.9.6 Attenuator regions and repressor interactions 

Binding of the attenuator region and repressor gene product is a probabilis- 

tic decision based on: 

D — e tr err 

Where d is the physical distance between enzyme inside the cytoplasm, t, is the 

age of the repressor instance, a, is the attenuator region/repressor gene product 

coefficient in the potency matrix and £, is the attenuator region/repressor gene 

product coefficient in the binding matrix. 

Note that an attenuator repressor is known as a enzyme, this makes it 

unambiguous in the table but confusing if used anywhere else. 
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Stochastic unbinding takes the same form as the output/FAP interaction 

probabilities. The formula is: 

— log(p) 
tp = ———_ 

Ye + Op 

Where t, is the time the binding will end, relative to the repressor’s time of cre- 

ation. p is a random variable in the range (0, 1], 7, is the attenuator/repressor 

coefficient taken from the unbinding matrix and a, is the attenuator/repressor 

coefficient taken from the potency matrix. This formula is based on the integral 

of: 

p= er Ir er Or 

Where ¢, is the current age of the repressor. 

4.9.7 ‘Terminator regions and RNA polymerase 

Transcription terminators have no other effect than stopping the RNA poly- 

merase from continuing with transcription. There are no probabilities with this 

as the natural terminator mechanism is taken to be reliable. Natural termi- 

nation is either rho dependent or rho independent, termination in the model 

is always rho independent. Rho dependence could be simulated using another 

gene product type or by some external level parameter. Both of these option 

were discounted, the later because it is far too artificial and the former because 

terminators would then be another form of attenuator and the distinction be- 

tween the two would be too small for terminators to be worth considering as 

a separate type. Therefore, attenuators can be considered as essentially rho 

dependent terminators but with biased termination probability. 

4.9.8 Individual enzyme ageing 

When all enzymes are created each enzyme is assigned a time to live based 

on the p.d.f.: 

p=e 
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Where 4 is the coefficient taken from the potency table 4.2 and t is the time 

to live relative to the current time. Since an enzyme has multiple types A is 

calculated as the mean of the type coefficients. As with the others, this is 

integrated to form: 

t = —log(p)/A 

giving the correct relative value for a random variable p in the range (0, 1]. As 

with the above integrated forms, this avoids the need for stochastic checking 

of enzyme removal events. 

The figures in the potency matrix give an average half life of 99 seconds, 

this is slightly shorter than can be found in E.coli but not much shorter. As 

mentioned in [TMBW97], half lives vary considerably and regulatory enzymes 

have the shortest half lives of 2-30 minutes. For COSMIC a short half life 

is necessary simply to speed up the response of input to output and reduce 

unnecessary computation. 

4.10 Genome Mechanics - Run time interac- 

tions 

This section brings together ideas from the last few sections to create the 

main simulation algorithm. As has been noted before, there are many scales 

to this simulation, this scale is that of the genome to the transcription engine. 

Later we will move onto the interface to the cell wall that represents another 

scale. 

During a typical simulation step, the algorithm goes through the phases of 

enzyme binding, timed event handling and removal of defunct enzymes. En- 

zyme binding being initiation of any of the enzyme interactions mentioned at 

length previously. Nothing happens during binding so the only states COS- 

MIC considers are binding and unbinding, unbinding being implemented as 

a timed event that has a known time to activate, thus allowing unbinding to 

be implemented without polling a set of all bound enzyme pairs. A Nassi- 

Schneiderman based diagram of this is shown in figure 4.7, the fine level detail 
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Figure 4.7: Nassi-Schneiderman based diagrams depicting the overall structure 

handling each of the gene and enzyme process, namely binding and unbinding 

enzymes and genes, with high level sychronisation between cells. 

is then discussed in the following sections. The main point to note here is that 

all relations dealing with interaction between enzymes and genes are sorted on 

a random number to remove biases introduced by the order of execution. 

4.10.1 Enzyme binding 

The first phase is binding, this is carried out on a per type basis for each of 

the possible interaction paths (as defined by the interaction network set C2). 

All Gn lists have a random ordering so as not to bias the interaction, this is 

fixed for the life time of the cell. 

Given a promoter P and sigma factor SF pair, the number of available 

enzymes are tested as zero sigma factors makes the reaction impossible. For 

each pair of unbound (available) enzymes, the combined binding probability is 
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calculated using the above reaction matrices and then tested against a random 

variable. Should a binding occur then that pair of enzymes are moved from the 

two Sus (both of which are in 2 in S) to SFP (also in S). Apart from SFP 

recording a bound pair I’, and Ig, the Su and Sr types are distinct because 

most interaction paths deal with unbound enzymes, so the wasted effort of 

searching through lists of bound enzymes is avoided. At the point of binding 

the time at which the sigma factor and promoter site will part is calculated as 

|P|-tr simulation seconds, where tr is the transcription rate in bases per second 

- suitably adjusted to take account of the COSMICs shorter than natural gene 

length. Once this time has passed the sigma factor will unbind from the genome 

and return to Su and the sigma factor entry ['g in Sr is set to @. The position 

of the sigma factor instance psp is set to the promoter position pp. RNA 

polymerase doesn’t explicitly exist in the model but it is assumed to exist, 

this will start transcribing genes; the timing generally determined by the gene 

length and in this case is based on calculating with |P|-tr and later |['|-tr where 

I is an operator, attenuator, terminator, a simple gene or another promoter. 

In order to put a cost on every interaction, |I| - te is subtracted from the cell’s 

energy € in C; during binding. This being an attempt to put a price on every 

interaction. 

Following P on the genome G; of C;, there could be an operator site O. 

If the operator O exists and if it can be found in ORe then the operator has 

an attached repressor and so pauses transcription - assuming there is an RNA 

polymerase on the adjacent promoter to pause. When paused by a repressor the 

RNA polymerase stays on the promoter site and either unbinds through timing 

out via stochastic unbinding or continues transcription after the repressor has 

been removed by an anti-repressor. When the RNA polymerase has moved 

from the promoter site, the promoter is moved from Sr in S and placed back 

into ['° to await another transcription initiation, I, in Sr is set to @ to indicate 

that the promoter instance has moved back into I'S. This results in Sr having 

no references to enzyme instances, it remains as a state variable showing the 

position p on the genome and so therefore the current position of the RNA 
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polymerase during transcription. 

The case of the operator and repressor is less involved as there is no 

movement of the mobile RNA polymerase, once the repressor has finished it 

simply detaches, Sr is removed. The overall approach is the same as the 

promoter/sigma factor interaction, the possible interaction network ORe is 

scanned and for each pair of enzymes O and Re, the combined probability 

is calculated and then compared to a random variable. If this pair is chosen 

then the operator O and the repressor Re enzymes are moved from Su to 

Sr. These two enzymes are represented by two IS entries of type Su, binding 

brings them together in a single Sr. The interaction time is calculated using 

the reverse probability function given in 4.9 and this event then waits for that 

time to occur - a time that is quite long to account for the correct behaviour of 

anti-repressors (inducers). In the meantime the given operator site is blocked 

from other repressors and the adjacent promoter site is forced to pause any 

polymerase trying to transcribe genes. In the same way as for promoters, an 

operator which is already in use stops another repressor from binding until 

the current repressor is removed when its probabilistically determined time is 

reached. One effect of the binding is to reduce the cell’s energy according to 

the function tr - |O|, this being an attempt to put cost on all interactions. 

The repressor unbinding time is long because the biological case shows that 

repressor attachment to the genome is stable and so only an anti-repressor 

enzyme can remove the repressor. This is therefore another interaction path 

and unlike the other paths, both the list of bound and unbound repressors 

is read through to enable binding events with repressors that are currently 

repressing. Compatible reaction paths are read from the interaction network 

ARe in Ci, individual enzymes in the cytoplasm are read from both I’? (the 

unbound list) and ReO (the bound repressors list). Successful comparison of 

the binding function given in 4.9 with a random variable leads to the enzymes 

being moved from which ever state they were in and bound together in an 

Sr, which is then placed in ReA in S. Unbinding time is calculated using the 

unbinding p.d.f. function given in 4.9 together with a random variable. When 
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unbinding occurs, the two enzyme instances are moved from Sr to individual 

Su entries in I’, to allow rebinding and the repressor position pre is set equal 

to the operator position po. 

The attenuator interaction path is unusual in that it is potentially destruc- 

tive. When binding unbound attenuators, the list of potential interactions is 

read from ARe in Ci as usual and enzyme instances of these types are located 

in T'S in S. Each possible pair from I'% (Su) is given the chance for binding 

using the p.d.f. function in section 4.9. A bound pair is then moved from the 

T° unbound list into Sr and the unbinding time calculated from a random vari- 

able based on the inverse p.d.f. unbinding function. This is the same process 

as for the operator/repressor interaction. The destructive aspect comes from 

the RNA polymerase that will come across the attenuator site. When a RNA 

polymerase reaches the attenuator site it is stochastically stopped or continues 

transcription after the attenuator, in either case the repressor bound to the 

attenuator is removed and destroyed. The attenuator in Sr is put back in I’? 

and the repressor instance in Sr is removed altogether. In the case of normal 

timed unbinding, both instances are moved from Sr and placed in I’, ready 

for another chance to rebind. The attenuator reaction does not affect the cell 

energy level, but should the repressor survive, the repressor location pre is set 

to the attenuator location p,. 

Interactions involving the input receptors (modelled as static genes [) in- 

volve the same steps as those for the operator. The interaction network ®I is 

stepped through in a random but fixed order for each iteration of the simula- 

tion, each possible enzyme pair that fits the type specification in ° and ®° 

has their mutual probability determined and is then tested against a random 

variable. If the pair is chosen then the input instance Su from ®° in S and 

gene instance Su from I’ is moved to acommon Sr inI'®. The reaction time 

for this pair is calculated using an inverse p.d.f. and random variable. When 

unbinding occurs, the enzymes in Sr are put into their respective unbound lists 

and the position of the enzyme pr which bound to the receptor is set equal to 

receptor p®. The inputs represent the environments input to the system and 
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so need to reflect this input. This is achieved by combining the normal bind- 

ing probability with a probability value that represents environmental input. 

Details and justification are in the environment section 4.11. 

The output is the only interaction that leads to movement of the cell and 

so positive matter level increase for the cell as a whole. As with the others, 

the interaction network QF is cycled through in a random but fixed order. A 

compatible pair of idle enzymes in the form of the output receptor 2 and the 

FAP F are found using the combined probability of their characteristics, this 

probability being tested against a random variable. A positive outcome moves 

the two enzymes from their respective lists Q € S and F' € S into the mutual 

list FQ. When unbinding occurs, the enzyme in Sr are put into their respective 

unbound lists and the position of the receptive enzyme pr is set equal to po. 

The reaction time is also calculated so that the binding can be stopped, as 

with the others this time is stochastic, based on the inverse of the combined 

probability functions. 

The sixth interaction path is that of the repressors and anti-repressors. 

Again the interaction network RAn is cycled through in a random but fixed 

order and enzyme pairs repressors Re and anti-repressors An are tested using a 

combined probability function against a random variable. Should the compar- 

ison succeed, both enzymes are moved from their sets and placed together in 

AnR which is a record of when the reaction will end and the two enzymes will 

no longer be bound. As both enzymes involved in this reaction poses a time 

and therefore decay, the end time of the reaction is based on min(t4n, tre). In 

other words, it is possible for a selected pair to not actually interact at all, the 

moment they are identified they can be dropped because one of the pair is too 

old. When unbinding does occur, both enzymes are positioned at a point half 

way between both of them, that is repressor enzyme p,4, and anti-repressor Pre 

is set equal to $( Pan + Pre ): 
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4.10.2 Timed events - interaction state changes 

The above section lists all the possible interaction paths that are initiated 

by the simulation, assuming an initial state of no interacting enzymes. This 

section reiterates what was lead onto in the binding section by covering all 

instances when an interaction ends or changes state into another interacting 

pair of enzymes. All timed events are sorted in earliest first order, allowing 

them to be checked with the smallest amount of effort; each event set from 

S (that is T®, FQ, AnR, SFP, ReO, ReA ) is checked in a round robin order 

until no events remain to be processed (ie. Their unbinding action is carried 

out), for this current time frame. This is a fairer scheme to that used above, 

the round robin approach assures that no one interaction type (such as the 

promoter-ribosome interaction) dominates by having the first chance to try all 

of its possibilities. It is assumed that the low probability of binding ensures 

no binding artefacts are present, so despite not being strictly fair this scheme 

does not show in the results. 

The sole multi-state event is the sigma factor-promoter state, the sigma 

factor is placed back into the cytoplasm soon after transcription initiation and 

is replaced by an RNA polymerase. As the RNA polymerase can move, its 

state is defined by the gene type it is currently over. Each timed event signals 

the move from one gene to the next. This new event is placed in the time 

sorted event queue SF'P € S; this event is made up of the null sigma factor 

) and the gene IT’, that followed the promoter P; the promoter P and sigma 

factor SF is placed back into  € S for the next usage. The new time of this 

event is taken from the first gene [ and is simply tr - |[',| - for efficiency the 

operator state is assumed to have occurred, it is essentially taken to be part of 

the promoter’s state. 

When a post promoter event in SFP times out, the gene [; is transcribed 

and a new enzyme based on the template [; is created and placed in the 

unbound queue of [ € S. The next event time is calculated as ¢r - |[';4;|, and 

T;41 is placed in SFP instead of [;. If [; is a terminator then the Sr entry is 

removed from SFP € S. If T; is an attenuator and that attenuator is in ReA 
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then transcription is stochastically terminated in the ratio 1:10 (as per the trp 

operon example). 

When an event in ReO times out, the repression operation has done its job 

of blocking a promoter and so has no further work to do. The repressor Re 

and operator O are placed back in T € S and the ReO entry removed. This 

contradicts the biological case and so the bound time is very long. 

When an event in AnR times out, the interaction has completed its task of 

blocking a repressor from binding to an operator. The repressor Re and the 

anti-repressor An are placed back in I, and the event in AnR is removed. 

When an event in ['® times out, the interaction has completed its task 

of both blocking enzyme [ - by using it elsewhere. Regardless, as with the 

other simple interaction types the input ® is placed back into ® € S, the gene 

T is placed back into [ € S and the event in ['® is removed. In the future 

the number of inputs is expected to be used as a source of inputting external 

information into the transcription simulation, the number having a negative 

effect on the enzymes available for other uses - such as transcription, but also 

for repression, anti-repression and acting as a FAP. When an event in FQ) times 

out, the effect in terms of set movement is identical to that of the input. 

4.10.3 Iteration final steps 

The above two sections cover most of the time spent by the algorithm, 

binding enzymes and unbinding enzymes with occasional enzyme creation. All 

enzymes have a time to live that starts when each is first created, when an 

enzyme reaches the end of its life it is removed from the cytoplasm represented 

by ['° € S. The time of death is determined stochastically at the time of birth 

and though the exact time can occur while an enzyme is bound to another, the 

enzyme is only removed when it is not bound. The exact time is determined 

by the enzyme type, which is an average of the applicable types in the potency 

matrix 4.2. As inputs and outputs do not age and only unbound enzymes are 

moved, only the set [°inS can contain enzymes to be removed. 

Once a single iteration is complete, the cardinality of each set in S is 
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recorded. Also recorded is the combined (bound and unbound) cardinality 

of each transcription product from G that are found across all of S and the 

bound inputs/outputs from ® and Q found in the sets [® and MQ. 

The final step is to increment the simulation time internal to the next value. 

Tests have revealed that a value of At = 0.02 is a small enough for all the above 

events to be discrete. Depending on the probability coefficients in the reaction 

tables, this figure could well be larger without granularity artefacts. 

4.11 Environment 

4.11.1 Introduction 

The simulation as defined so far consists of a collection of cells, each cell 

C having an individual state and dynamically defined state changes. In order 

to evolve the cells towards some goal, an environment is necessary to provide 

open ended evolution. The environment can never be completely open ended 

(Kreft, personal comm.); evolution towards something must surely mean there 

is some global optimum being sought, even though that optimum is implicit and 

defined by the interaction between the environment and the cells themselves. 

The work of Kreft et al. represents a good basis for both open ended evolution 

and further extension to the simulation framework. Kreft et al. [KBW98] 

describe an environment in which E.coli grow on a glucose enriched medium; 

the main purpose of the work is to demonstrate cell growth patterns formed 

by the growing population. The growth patterns largely depend on accurately 

modelling the growth rate of individual cells as they deplete their localised 

glucose source. For use in our simulation, the important points are i) this is an 

environment in which to build on (as already stated) and ii) the modelling is 

quantitative and based on a small set of differential equations and parameters, 

making them sufficiently accurate but also highly computable. 

The environment as modelled by Kreft et al. [KBW98] is used as an arena in 

which COSMIC simulated E.coli cells must evolve to co-ordinate their flagella 

in response to the local environment under each cell. The implicit fitness 
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function is therefore to seek out glucose rich areas either by path following or 

through risk taking. 

The environment therefore creates a longer time scale in which multiple cells 

exist in a shared space. Cells are created and die, in between they interact and 

try to live as best as their genomes allow. Each genome is computationally 

intensive but relatively isolated over the short term and so genome simulation 

is implemented as a distributed system. The cells are periodically considered 

as a real population in order to pass on combined environmental effects. This 

synchronisation time is t” in E, comparing this to the per cell fine grained 

time of At shows synchronisation time to be around two orders of magnitude 

greater, hence synchronisation with the environment and peers is a long term 

effect that allows for the genome to respond to its environment. 

4.11.2 Cell input 

The cell interaction comes about through the depletion of environmental 

energy E in E during the environmental synchronisation phase. All cells are 

rewarded by growth proportional to glucose level under each cell. This depends 

on the condition of the environment immediately under the cell and the current 

mass of the cell, mass leading to diameter by the formula: 

Q11(/. * 0.75/II )? 

The diameter can then be shown in the visualisations and be used as a size 

attribute with which to decrease the substrate concentration in the environ- 

ment. When the cell is given a reward, the reward comes from the cells current 

position in the environment and so the same location will give less reward in 

the next cell synchronisation phase, obviously all parameters are automatically 

adjusted to take account of changes in the synchronisation window size and the 

resolution of the glucose matrix FE. Over the long term the environment re- 

covers at a rate set by global parameter me” in P. A static cell will soon 

deplete all the locally available resources; thus static cells are selected against 

in favour of moving cells, and randomly moving or fixed trajectory cells are 
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selected against in favour of intelligently moving cells. 

Qualitative information and accurate parameters for glucose were taken 

from accurate biology literature as cited by Kreft et al. [KBW98], these be- 

ing [BD96, TN84, KW82, NTT96]. The main effect to be modelled is the link 

between cell growth and glucose concentration, this can be approximated with 

the following relationship: 
_ £+ Vax? S 

Kn+8 

This is a Monad [KW82] based equation and takes the values [KW82] Vinax = 

0.342ms~—+ (maximum growth velocity) and K,, = 2.3mg glucose (half-saturating 

constant). S is the glucose concentration relative to the individual and starts 

at 4.5 mg glucose. «x is the current cell volume in grams, converted ( [SLD79]) 

from cell mass in litres. v is the volume increase in g s7!. Glucose use is 

then found from the average efficiency ( [NTT96]) of 0.245 g cell volume per 

g glucose. In the future this may instead use an equation based on [KBW98] 

which accounts for the non-linearity of glucose take-up efficiency, this effect is 

currently considered too small to have any impact on COSMIC. 

v and v/0.245 can then be scaled according to t” and the environment 

updated along with the cell, the cell also uses energy for non-growth which is 

lumped into the maintenance term qn. 

4.11.3 Cell output 

Cell growth comes from the environment and can be considered an input 

to the cell; cell output makes use the each cells set of flagella. The activation 

probability for each input receptor in @ € [@+ * is set according to the 

glucose level under each receptor, this is a more direct form of input to the cell 

but has no effect on the well being of the cell. The position and orientation of 

each cell combined with the position of each receptor on the cell wall gives a 

position in the glucose matrix FE, the level at that position is then directly used 

as the value for a in each ©. Note that in order to enforce some phenotype 

regularity, positions of each receptor ® and of each flagella Q are identical on 

all cells. 
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During the normal simulation of the cell, receptive proteins will bind with 

the inputs ®, the actual number bound is not important as COSMIC makes a 

departure from reality and instead makes use of those proteins which haven’t 

bound. In effect, the inputs form a sink and those proteins that remain free 

are available to continue as before; to put it another way, the input is inverted. 

However the genome responds, the output will be in the form of bound flag- 

ella activation proteins. The average number of binds to (2, over the time t” 

indicates the activation level of the each flagella. The cell position is changed 

by using the activation level of each flagella, cell movement is the vector sum 

of each of the activation levels multiplied by that flagella’s position vector. 

This total movement vector is then reoriented according to the cell’s orienta- 

tion and then added to the cell’s current position. Orientation of the cell is 

not changed, the movement vector is sufficient. The movement this achieves 

is not biologically realistic, the reality of bacterial chemotaxis is mechanically 

stochastic reorientation and swarming of flagella into one identically rotating 

tail. An accurate model of this is outside the scope of the simulation, environ- 

mental feedback is essential to include a form of fitness measure but considered 

a secondary part of the model. 

The maximum speed of travel in a liquid solution ( [Mac96]) is around 

25ums~!, this amounts to around 10 body length per second. COSMIC con- 

siders the environment to be an agar plate to allow for 2D resources in the 

implementation and visualisation, as a result the maximum speed is somewhat 

lower and is set by parameter c”. Note that energy for chemotaxis is assumed 

to exist, simulating the exact biochemistry is beyond the scope of COSMIC. 

4.11.4 Cell death 

Once the environment has updated its substrate map, all cells are informed 

of their new cell mass and position and are then free to continue with the next 

t’ /At iterations. The algorithm cycles around again; looping until 0 = |['5| € 

S, uw <0 or e€ < 0, at this point it is known for certain that the feedback 

mechanism has failed at the scale of the genome (0 = |I°|) or the genomes 
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interaction with the environment (j and €) has failed. As a result the entire 

cell is removed from the simulation, whatever nutrients it contained is not 

released into the environment. 

4.11.5 An example environment 

COSMIC provides a view of the population as in Figure 4.8, this shows 

the presences of cells through their effect on the environment. This is a typical 

early example with 20 initial random genomes, the darker the area the lower the 

glucose level. A time series of pictures like this show the cells moving. Here the 

different sizes show relate to the differences in cell mass, it must be noted that 

this figure is artificial and the difference has been exagerated. In most cases the 

non-converged genomes all have the same effect on the environment, the cell is 

motionless and eventually runs out enzymes or mass falls below a critical level. 

In either case, the simulation removes the cell from the environment leaving 

the black circle of substrate use. Chapter 7 gives a series of pictures taken 

directly from COSMIC, unlike Figure 4.8 these show the cells with realistic 

dimentions and the state of the environment. 

4.12 Cell Division 

In comparison to the cell itself, the simulation of cell division is a simple 

process that aims to fairly distribute the contents of the parent cell between 

the two daughter cells. The most technically challenging aspect is the division 

of the gene products. Gene products exist as many instances of each gene and 

at division each daughter cell should have a fair share of the same types of 

gene products. For COSMIC, this is achieved by considering each individual 

gene product in turn and metaphorically flipping a coin to decide which parent 

that gene product will transfer to. Given many trials of cell division, the result 

follows the Normal distribution with a mean of half the gene products. Thus 

the process is generally fair, and rarely harsh enough to kill the most brittle 

cell. 
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Figure 4.8: Example of population distribution with underlay of 
nutrient availability. Differing sizes relate directly to cell volume and so relative 
success, as the bigger the cell, the closer to the onset of division and the creation 
of a genetically identical cell. 
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For example, given a single gene type with 10 gene products of the same 

type, each of those products has a 50:50 chance of being with one or the other 

daughter. The probability of all 10 gene products going to the same cell is then 

very low at 0.2%, which then means cell death through division should be a 

rare event. Most gene types have many more gene products and so we would 

expect only the most brittle cells to suffer death from division. This is not a 

bad result in itself as we are seeking robust transcription networks. 

The final change to the daughter cells is a halving of mass. This is deter- 

ministic and set to exactly half that of the parent cell. Nothing could be gained 

from making this step noisy. 

In every other respect, the two daughter cells are identical in content. Both 

have the same genome and both have the same input receptors and output 

responses. In the environment the daughter cells are moved a small distance 

away from the parent, so that they do not compete for resources and to be 

visible in the environment snapshots. 

4.13 Individual Initialisation 

Each individual cell in the population contains a genome and derived gene 

products, COSMIC initialises each genome uniquely and so the population 

is effectively multiple species but sharing the same physiology. If a cell is 

successful then its genome will be passed on to more offspring and so create 

populations of a single closely related species. The first stage is important, as 

artificially populating the simulation with related cells first means identifying 

good genomes. As has been said before, the definition of good genome has 

never been clear and so it was always better to have the simulation decide. The 

results later show that a good-enough solution will take over the population, 

and so choosing the good genome is effectively a race to be the first good 

enough genome. 

The input and the output set of proteins are shared by all cells and so are 

created first. All enzyme templates share the same gene length distribution, 
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it is a uniform distribution over the range 10-15 that gives each gene’s 4, 

this figure is loosely proportional to the expected size of the network, though 

changing the binding tolerance € would also account for small changes. The 

strings that make up ® and 2 are mutually exclusive (®NQ = @) but are 

otherwise random. 

|®| is set so as to give a reasonable number of receptors given the genome 

size and enzyme population size. As the number of simulation enzymes is 

much smaller than the real number, so is the number of receptors. A figure 

of 50 is currently used, this is quite arbitrary but is obviously many orders of 

magnitude away from the real figure. 

|Q| follows the average number of flagella. In E.coli this figure is in the 

range 0-15, the simulation uses the average of 8 that was found on wild strain 

normals [Mac96]. 

The lengths of the genes (I) are set using the same uniform distribution 

as the length of the input/output sets. Any difference is obviously penalised 

by the matching function and so a difference in lengths of input/output sets 

requires that the gene lengths be distributed inside that length range. The 

initial content of the genes is again randomly distributed over the set L. 

The size of the genome (in units of genes) is a complicated issue with no 

clear answer. Genome size is intended to be flexible enough to allow COSMIC 

to converge on a reasonable number, factors that come into play are the genome 

duplication time, and energy usage for duplication and transcription. As the 

enzyme interactions work by detaining metabolites, the genome size must also 

take into account input and output size, as these are necessarily fixed. A rea- 

sonably starting point would seem to be the square of the minimum cardinality 

of the sets ® and 2. The main point here is to identify the relationship between 

the figures so they don’t become yet more tuning parameters, this point could 

be said for all the ill defined parameters. Regardless, a uniform distribution 

of 70 — 120 seems a reasonable starting point and was not changed for all the 

simulation runs. 
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4.14 Genome Mutation 

None of the text so far has described genome length change or any other 

form of mutation. COSMIC implements one form of mutation, sequence dele- 

tion and insertion. Both sequence insertion and deletion modify the length 

of the genome G, and update any reactions that may have been involved on 

the chosen strand of genome. Insertion is based on a uniform distribution of 

genome length marking the start point, the same distribution marking the end 

point, and the same distribution marking the insertion point. Deletions use 

the same distribution to find start and end points on the genome G. That sec- 

tion is then immediately removed and complications resolved based on what 

was bound with that segment of genome. The solution to this is type spe- 

cific but ultimately means preserving the enzymes involved with the genome. 

These large mutations could well be deleterious but considering how reason- 

able solutions dominate the population (as shown in later chapters) the loss of 

cells to these large charges seems balanced when compared to the possibility 

of increasing the population fitness at a faster rate. Note the original goal of 

COSMIC was the simulation of evolution with all the varied forms of evolution, 

yet this version of COSMIC includes this single operator. This was due to time 

constraints, the above framework took so long to implement that a broad set 

of mutation operators had to be left for future work. With that in mind, the 

above model has scope for these operators. 

4.15 Summary 

This chapter has described a formal mathematical model E.coli that in- 

cludes the scales of genetics and a multicellular population of individual cells. 

The model is described using a combination of set theory, relations and prob- 

ability density functions, realising an entirely individual-based model. This 

model then forms an open-ended framework onto which mutation operators 

can be applied. 

Using supporting evidence from chapter 2 we state that optional transcrip- 
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tion is the most important aspect of E.coli when considering the modelling of 

evolution and so COSMIC should be based on this mechanism, with supporting 

mechanisms where necessary. 

The model is described using a representation based on a hierarchy of sets, 

at the highest level there is the environment set containing the cells, the en- 

vironment and high level parameters. The cell is then an ordered set, each 

containing a genome set, a gene product set and a multiple sets storing inter- 

action relationships between elements of the gene product set and the genome 

set. Relations between elements of sets is then determined by functions whose 

inputs are parameters of the individual elements. An optional transcription 

mechanism for producing gene products (considered by COSMIC to immedi- 

ately become enzymes) from genes then completes the self supporting cycle of 

enzyme creation, allowing the cell to be considered alive if the cycle continues. 

The cells are placed in an environment in which they compete with each 

other on a continuous basis for available substrate - used directly by cells for 

growth, but importantly the substrate is reduced by a cells presence. Cells 

divide when they reach a critical size, in doing so pass on their individual 

genome and half their gene products. This in total provides an implicit fitness 

function by which cells compete against each other, a cell must be motile to 

remain in high substrate areas and this motility depends on the genome. The 

more controlled the motility the higher average substrate and so the quicker 

the growth, leading to the quicker reproduction of the genome that brought 

about quicker cell division in the first place. Note the term quicker, as cell 

division speed is relative. 

The genome of each cell is subject to mutation on a continuous basis, se- 

quence insertion and deletion over the whole genome is possible with a small 

probability. This is the source of evolution by which cells are to evolve better 

motility. 

Finally we note that the COSMIC model presented in this form is compu- 

tationally feasible despite the large number of component parts. This is largely 

the result of careful consideration during the implementation of the set struc- 
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tures and the model being executed in parallel due to the vast differences in 

time scales being modelled. 
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Chapter 5 

Parallelisation 

5.1 Introduction 

Large simulations of bacterial colonies require vast amounts of computa- 

tional time. The only way to achieve the necessary level of performance is 

with parallel computers and a suitably designed implementation that maps 

the problem onto the hardware. For real problems this mapping can be non- 

trivial requiring careful consideration of the constraints in both the system 

being modelled and the hardware that executes the model. 

This chapter describes the parallel implementation of COSMIC and shows 

that it is possible to map a dynamic problem such as this onto fixed resources, 

for the most part by making use of implicit multiplexing of resources and 

showing the importance of knowing where to partition the problem between 

server and clients. Through this an efficient simulation has been created, mak- 

ing maximal use of the available hardware without constraining the model to 

require excessively specific resources. 

An individual based modelling approach has large populations of enzymes 

multiplied by the large populations of cells that combine to give a system of 

some 9 million individual entities!. This simulation needs to run on a possi- 

bly hetrogeneous system, involving machines of different speeds and varying 

1Summed over approximately 280 cells as found in a recent simulation. 
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communication latencies. 

To make the system more extensible and realistic the genome and the pro- 

teins exists inside a cell wall, demarcating what belongs to that cell and so 

making a clear cell boundary. This has further advantages in terms of exten- 

sibility, following the same concepts of increasing scale allows the inclusion of 

other concepts later on, the cell becoming a container for all things related 

to the cell. This helped enforce an ideal boundary of cells and environment, 

making the division at a clearly defined boundary in the model improves the 

structure of the overall implementation. 

The computational architecture takes these factors into account by follow- 

ing the client server model combined with coarse grained synchronisation of 

processes. Each process varies in execution time but there are vastly more pro- 

cesses than processors. The environment containing the cells is considered the 

server and cells inside the environment are the clients, or individual processes. 

This ensures efficient parallelisation as cell intercommunication is rare in the 

current COSMIC revision and the environment has minimal processing needs, 

the overall result being a linear growth in computational nodes allowing a lin- 

ear growth in the product of simulation speed and total simultaneous number 

of cells. 

5.2 Simulation System 

The simulation was first compiled using Gnu GCC 3.0.4, compiled for Linux 

2.2.21 running on a 640 megabyte Pentium3 666 Mhz. No Linux specific in- 

structions were used and so the simulation will run on any GCC platform 

(i.e. almost any architecture in existence) or any C++ compiler once compiler 

idiosyncrasies have been dealt with. 

Memory requirements vary dramatically. As the simulation is essentially a 

particle simulation, each particle being an enzyme, the connectivity of the net- 

work defines the memory usage and simulation speed. A massively connected 

network will use around 320K bytes per bacterial cell, and so in a population 
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of many this amounts to a lot of memory and time. Fortunately the networks 

convergence will bring with it an exponential speed increase and exponential 

decrease in memory usage. 

The entire COSMIC system has been implemented using the Parallel Vir- 

tual Machine system [GBDJMS94], allowing the distribution of computation to 

other machines. In theory this allows COSMIC to can scale up to run hundreds 

or thousands of cells, this being a more realistic figure for dependable results. 

The practice of this remains to be seen, PVM has interface limitations which 

constrain performance and C++ can make inter-process control and commu- 

nication very verbose. The alternative parallelising system, MPI has problems 

of its own and was rejected early in development. 

Execution currently consists of merely running the application which rep- 

resents the environment, this application then creates cells as separate UNIX 

processes via the PVM system. Execution continues up to a (currently) fixed 

global time though the possibility of restarting a stopped simulation has been 

implemented. Saving object state is an excellent idea but C++ does not do 

this automatically. 

5.3. The Process Tree 

The division between server and client is obvious as cells don’t directly 

interfere with each other, the cells can then be clients and have relative au- 

tonomy for the fine grained process of computing the contents of the cell and 

its response to the environment. With the current COSMIC implementation 

intercell communication only occurs when cells divide, this is a rare event com- 

pared to the fine grained computation of enzymes. This strategy also limits 

data duplication by clearly separating which object has access to data and 

which object needs only an average, time scale difference being the important 

metric. Message passing is also kept to a minimum because synchronisation 

across all cells is coarse grained, the client-server synchronisation time scale is 

much longer than the internal cell time scale used for enzyme interactions. 
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Figure 5.1: Process synchronisation 

Figure 5.1 shows the logical structure and the physical mapping onto ma- 

chines. The environment and all the cells are individual UNIX processes, the 

environment process is started and then this (via PVM’) starts the client cells. 

It is a limitation of PVM (i.e. hidden load balancing) that each cell is a pro- 

cess even if residing on the same physical machine. Considering the time scales, 

the environment and cells can share the same machine as the environment’s 

processor usage is always low when compared to the sum of cell processes. 

As occasional statistics and values are passed between server and clients, 

the main processes all have lightweight objects (Figure 5.1 marked with a *) to 

store these miscellaneous values without resorting to duplicate but cut down 

objects. 

'Parallel Virtual Machine is a message passing library for parallelising applications, sup- 

porting data sharing and remote execution primitives. 
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COSMIC requires strict synchronisation to ensure no cell runs through 

more iterations than any other cell. As a result there is a potential for wasted 

computation time as all cells must pause at some point and come to a common 

mark point while slower cells complete that same time frame. 

The following steps help avoid this by keeping the synchronisation time to 

an absolute minimum. 

1. The environment process waits for each cell in the population to return 

a result, the environment process iterates steps 2-3 until all cells have 

reported in their results. 

2. The environment process receives data values indicating what the cell 

did in the environment during the fine grained execution of the enzyme 

processing. Also passed are more general statistics about internal cell 

activity. 

3. Values indicating how far the cell has moved and new glucose concen- 

trations from around the cell are then passed to the cell so that it can 

respond to the new environmental conditions. 

4. With all cells waiting on the environment process, the environment pro- 

cess then makes a life or death decision based on the received per cell 

statistics. Each cell can either carry on living or be told to die (i.e. re- 

move itself from the system) or divide into two cells. A message is sent 

to each cell individually, if the message allows the cell to continue living 

then that cell continues executing by running another set of fine grained 

enzymatic iterations. 

5. COSMIC has provision to periodically save the entire state of the simu- 

lation, as the environment decides when this is to happen each cell has 

to be informed. As saving of state is predictable, this message can be 

pre-empted to shorten the idle time of cell processes that would otherwise 

still be waiting on the environment process. 
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6. Using per cell statistics and cell chemotaxis rate obtained from the cell 

process, a specific location in the environment is distorted to show the 

glucose use and general presence of the cell. Figure 5.2 is an example of 

this. 

7. The environment then properly modifies it’s glucose map, as the cells are 

now already running autonomously this comparatively lengthy operation 

has time to complete before the cycle starts again with cells returning 

their next round of results. 

This execution strategy allows for a hetrogeneous execution environment, 

automatic load balancing tending to place more cells on comparatively faster 

machines. The ideal load balancing does however have an unknown component, 

the execution time of a cell varies over time and so ideally process migration 

is also required for 100% efficiency. 

This tight synchronisation comes at a cost, all cells will at some point in 

time come to a halt and wait for a very short duration for the environment 

process to respond. Considering network latencies this is actually very low 

because a 100 Mbit network can send a 10 byte message to 500 cells in around 

77 msec. Although this a long time in computational terms there is little waste 

when 500 cells are spread across much fewer machines, the message to continue 

executing will be heard by some cells well ahead of the majority. These cells 

then have a few milliseconds to run before having to share the processor with 

the many more cells that will start running again in this 77 msec period. This 

combined with the long resynchronisation window of several seconds makes the 

actual overhead very small. 

The main problem lies in general reliability. Each cell is required to return 

its result data before the environment can proceed, so cells on slow machines or 

slow networks will slow down the whole simulation. In the average case, where 

all machines are used equally, this is not an issue, but experience has shown 

that processor or network load caused by other jobs varies across machine and 

also varies with time over many days. Even worse, the loss of a machine will 
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Figure 5.2: Environmental change after 212 minutes. 
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kill all the cells that occupied that machine and force COSMIC to hang forever 

waiting for the results that will never arrive. It is for this reason that COSMIC 

supports state saving, if a problem terminates the simulation it can simply be 

restarted from a point in the near past with no loss of information. This 

avoids total simulation failure but the dynamics of the network are a much 

more pervasive problem. 

Ideally this is solved with more dynamic load balancing. The role of load 

balancing in the present implementation is limited to making a best guess 

to which machine a new cell should be created and spend its lifetime. As a 

result, external changes in machine or network load cannot be accounted for 

and the simulation is then held back. Parallelism is implemented using PVM, 

which is a message passing interface with an at-execution load balancer. This 

provides a good basic framework but is limited when executing in a real world 

dynamic environment, leading to the non-optimal distribution of computation. 

For clusters of PCs the solution to this is process migration based on automatic 

dynamic load balancing algorithms such as provided by the MOSIX patches 

available for Linux or dynamic load balancing provided with some commercial 

UNIX machines. Migration of processes between processors should improve 

load balancing to a near optimal point because processes are no longer fixed 

to where they started but can instead be exported to another co-operating 

processor. The only limitation is the time and resources required to stop, 

move and restart a process. 

Process migration is expected to work for uneven processor load, network 

load balancing is however a much more difficult problem. The transient nature 

of network traffic and the effort in identifying bottlenecks make this an opti- 

misation problem in itself. Fortunately the course grained synchronisation in 

COSMIC avoids the worst effects. 
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5.4 Cell Division 

The most involved process of a running COSMIC system is the division 

of a cell once it has matched the division criteria. Typical communication 

patterns involve only the environment and the cells, all of which are contacted 

individually, cell division is different in that three parties are involved and cells 

must synchronise with each other. 

Typically a running cell will receive a continue message from the envi- 

ronment after sending its updated attributes. These attributes include the 

cell mass, based on this mass the environment decides (solely on a threshold 

level of 0.4fl) that the cell is large enough to divide, it instead sends a divide 

message, this is figure 5.3, edge 1. This signal will eventually lead to the cell 

running through another iteration, first it will go through the necessary steps 

to entirely divide itself in half: 

1. The cell contents are marked by a 50:50 probability. These contents 

include all the currently transcribed gene products, all active reactions 

and any interactions between the genome and the gene products - such 

as sigma factors. The genome is not halved but identically duplicated. 

2. Using the marking, outbound gene products and all their interactions are 

then saved to file store, figure 5.3, edge 2. This small group of around 15 

files completely describe the properties of the new cell. Aside from the 

individual molecules, cell mass is halved and an adjacent environmental 

position is computed. In the parent (donor?) cell the same marked 

components are removed and the cell mass is halved. 

3. The environment (always acting as overseer) initiates a new cell process 

via PVM (figure 5.3, edge 5) and instructs the daughter cell to await a 

signal from the parent (figure 5.3, edge 3), this signal ensures that the 

file data is complete before full cell initialisation. 

4. Once informed by the parent, the daughter then reads the file store (fig- 

ure 5.3, edge 4), initialises its data structures and runs as part of the 
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Figure 5.3: Process synchronisation at cell division 

whole population. The halved parent completes an iteration as usual 

and the daughter is left to complete its first iteration. 

This whole process is much more involved in terms of recording cell state rather 

than inter-cell communication per se. Communication is limited to processes 

synchronisation required through the use of file store. It is a limitation of 

C++ that code reuse is limited when saving objects, the lack of serialisation 

capabilities forces custom procedures for each object and each form of output 

stream. 

The biggest challenge here was to ensure the division scheme fitted effi- 

ciently with the normal synchronisation of all cells with the environment. To 

this end cell division causes little bottleneck when used with a high popula- 

tion, running the cell process and reading the files takes much less time than 

an iteration of the fine grained internal cellular simulation. 

  

COSMIC R. Gregory



5.5 Dynamic Effects 128 

5.5 Dynamic Effects 

The previous sections gave the parallel algorithms as currently used by 

COSMIC. These algorithms seemed reasonable in terms of efficiency of execu- 

tion and robustness to adverse conditions. In running the simulation it became 

clear there were three stages of development in the execution patterns. This 

cast a new light on what appeared to be good solutions, the practice of inves- 

tigating how load could better be balanced and then implementing a solution 

all took time to be developed as the significance of dynamic effects became 

apparent. 

The execution of the simulation can then be regarded as three phases. The 

first is a search phase where the simulation maintains a minimum of 20 cells 

and regularly needs to add new cells as the current population fails to achieve 

the basic evolutionary aims. At this point the computational system is very 

lightly loaded with at most one cell per processor. The simulation then runs 

at many iterations per second and finds at least one valid cell by around 200 

simulation minutes, 2 hours and 8 minutes minutes of wall clock time. This 

marks the beginning of the next phase, that of growth. 

During the growth stage the cell population rapidly expands at a rate of 

3 cells every 5 simulated minutes. There are quickly many more cells than 

processors and so the load balancer becomes very important in maintaining 

cluster efficiency. 

The final stage is then saturation, there are so many cells that random 

placement of cells during load balancing would have no effect. The system 

moves extremely slowly, using all computational resources regardless of nice? 

setting and taking 30+ seconds per iteration. At this time any load balancing 

with other processes is useless, when running other processes are starved, when 

not running there is the realisation that the pausing for 50% of the time run 

twice as slowly, and unimpeded is already too slow. This stage develops rather 

“UNIX prioritises running processes according to their level of niceness. A value of 0 is 

the default and requests that as much CPU time as possible be given to this process. A 

value of 19 requests that only spare CPU time is used by that process. 
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than being arrived at, but once present the cluster can then be regarded as over 

loaded and that number of cells is too many. Fortunately this only occurred 

on the student access cluster, and shortly afterwards a private cluster of much 

higher specification was obtained. Although the problem must surely still be 

present, when using this new cluster it has not been witnessed. 

5.6 Non-private Access Clusters 

Despite the benefits of near optimal load balancing, practical situations 

can also bring a requirement for load limiting. When used on a cluster not 

dedicated for use by COSMIC but in fact used by users for real-time day to day 

tasks, COSMIC must then take second place. Initial attempts obviously made 

use of system priorities to put COSMIC processes at the end of the process 

schedulers queue. Surprisingly this doesn’t actually work, if the number of 

low priority processes outnumber the normal priority processes the user will 

still feel the difference, giving each low priority process 0.1% of system time 

has significant impact when there are 1000 low priority processes on the same 

processor. The end result was insufficient load control, the real time uses were 

still slowed down by a large margin whenever the simulation grew beyond the 

initial search phase. 

To address these problems a second solution attempted to implement a 

course grained load balancer where by all processes were paused for x minutes 

and then left to run for y minutes. This was implemented by using the UNIX 

signals SIGSTOP(pause) and SIGCONT(continue). However, it was consid- 

ered too intensive an operation to signal all processes (including gzip and ssh), 

or even the environment and the cells. Exploiting the requirement of strict 

synchronisation only the environment process need be paused, all other pro- 

cesses will then pause when they return their results. This minimised overhead 

and ensured that the minority of cells which take up most of the time could 

have chance to finish their iteration without being unduly paused. 

In effect then, this gave more time to the longer running cells while stop- 
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ping the mass of quickly executing cells that defeated the nice flag given to 

the scheduler and seemed to be an ideal solution; except that COSMIC is mod- 

elling evolution and so the scenario changed. The cells which take a long time 

to execute tend to be the most successful, and so over the course of days their 

number grows to the point where this scheme becomes ineffective 3. Ideally 

this scheme could have been more fine grained and signalled the cells directly, 

the added network overhead is small compared to the need for greater control. 

It would have required a daemon process to send the signals, as the cells them- 

selves only respond to PVM messages between iterations but this could well 

have been worth the end result. 

The previous method focused on time slices based on the current time of 

day, it could be said this only worked for the middle phase of execution where 

something could be gained by other users. The static table that converted 

time of day to execution/pause ratios was held back when in the first phase 

of simulation and irrelevant to the latter stage. A more dynamic control was 

needed and for this it seemed appropriate to compute total computation time 

across all cells and then use this figure to ensure less than 100 

Except that it in practice it did not work. The jiffies computation is always 

distorted by the strong synchronisation requirement and by other user pro- 

cesses delaying a niced cell. Total jiffies was always much lower in an active 

simulation than expected, worse still the figure bore little resemblance to clus- 

ter wide system load. During the early phase jiffie total was 50% of maximum, 

during the second stage it was also 50% of maximum. 

Ultimately all these schemes failed to work through either lack of suitable 

control mechanisms, or at least control mechanisms that scale up, or by an 

interplay of strong interprocess synchronisation and the random demands of 

other system users. The arrival of an effectively dedicated cluster made all this 

a moot point. The take home message is that load balancing is much harder 

than it seems, the information to make decisions on is always out of date, the 

3With hindsight, this technique was only ineffective because the demand for computa- 

tional power greatly exceeded supply. It would take many minutes for a cell to complete its 

iteration and so pausing the environment process had no effect. 
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course of action based on the information takes time to take effect, and in 

many scenarios of high load the mechanisms offered by the OS have no effect 

anyway. 

5.7 Supporting Scale 

In using a cluster the restrictions and shear awkwardness come to bare, 

single machines have a large set of tools supporting process monitoring and 

control, with a few clicks or key presses a process can be killed or stopped, 

associated open files located or just determine memory usage. The introduc- 

tion of a cluster then suddenly makes these tasks much more difficult, although 

available for each machine the lack of unification adds another level of com- 

plexity. 

In attempting to deal with this problem, a set of scripts were created that 

ran common tools on all nodes of the cluster and then collated the results. 

At this time the primary cluster was the Computer Science Linux farm that 

served students and staff, computational capabilities varied between machines 

and over the day and over the year. To make matters worse, some machines 

are taken out of service without notice. 

The most general tool that developed over time was tstcluster.sh, this 

script passes a given set of bash commands onto all machines in turn, first 

checking if that machine was up and accepting connections in a reasonable 

time. For the check the script opened a timed ssh connection to a machine, 

if the connection succeeded within 10 seconds the machine was considered 

up and unloaded, if not then the machine is considered down or otherwise 

uncommunicative regardless of what ping would indicate. 

Using this script some useful functions can be implemented: 

./tstcluster.sh ps -A -o pcpu "|" sort -gr "|" head -n 1 

will find the most active process on each machine, indicating if a machine 

is available but not used by COSMIC. Requesting just the load average is 
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misleading as it does not take page swapping into account. A machine low on 

memory should be avoided just as much as a machine with many users. 

The line: 

./tstcluster.sh "find /proc/ -maxdepth 1 -user greg \ 

-printf \"find %p/fd/ -not -type d\n\" | sh 2>/dev/null | we" 

counts the open file descriptors for each machine in the cluster. Compiled 

into Linux is a limit of 1024, above this value files cannot be opened and 

processes cannot be started. 

Another useful tool is pymtouch.sh which updates on all machines the 

time stamp for all PVM files owned by greg (this author), thereby avoiding 

tmpwatch* deleting temporary files that are still in use by long running simula- 

tions. The temporary file in question is a regular file containing the process ID 

of the PVM daemon and the path to a UNIX socket by which the PVM con- 

sole based client communicates with the daemon. Without the file the client 

assumes there is no daemon and so starts another daemon, effectively loosing 

contact with the COSMIC simulation that continues to execute. 

Other useful commands developed out of necessity are pvmadd.sh which 

adds a working set of machines to the PVM machine list. More machines can 

be added over time, but not deleted. Unfortunately PVM has no mechanism 

that allows a machine to be removed from the available list but not delete any 

running PVM processes on that machine. pvmadd.sh is edited by hand using 

the results of the above availability check. 

netlog.sh logs network load between the server machine (which also acts 

as a client) and the majority of clients. It was expected this would show mo- 

ments of network saturation or some pattern of usage. In practice neither 

occurred, the processes exchange little data and what data there is is surpris- 

ingly stochastic, removing any pattern. 

mkdirs.sh makes a new set of result directories, based on a given initial 

path. Normally current/ and then post simulation is renamed to the format: 

4tmpwatch is a system utility that is run periodically to remove temporary files that 

appear unused. 
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run[Year] [Month] [Day]/ Which is used for indexing and archiving past sim- 

ulations. The results are partitioned into type to reduce the number of files 

per directory, although generally unlimited ext2(the standard Linux filesys- 

tem) incurs a performance penalty for every file in a directory, on the order of 

O(n?). This imposes a practical limit of 10,000 files, fewer if read performance 

is paramount. Partitioning into directories avoids this limit for all simulations 

so far executed. Further partitioning is done on the environmental state pic- 

tures as 10,000 pictures amounts to 100,000 iterations, or over 27 hours of 

simulated time. In this case case the data is partitioned into sets of 1000 files 

- the last four digits of time, recording every tenth. 

During development some cell processes crashed and although all forms of 

process IO were recorded on an individual cell basis, finding that cell amongst 

the hundreds or thousands of other cells was a tedious task. scanssytems.sh 

solved this problem by first asking PVM for a list of running cells and then 

using that list to confirm the process actually existed on the given machine. 

The lack of confirmation pointed out the failed process and so the failed cell 

number, the number then leading a logged stderr of the cell and to clues of 

failure. 

All of these small utilities help to greatly reduce the development time, 

by removing errors from otherwise tedious tasks or by finding what would 

otherwise be a needle in a haystack of machines. It is only when one works 

on a cluster that the problems of organisation and communication become 

apparent. Nothing is in the one place, that requires a mental paradigm shift 

and the above selection of programs to make the transition easier. 

5.8 Other Limitations 

Linux uses the concept of UNIX file descriptors to refer to files and link 

processes via pipes. There is a limit of 1024 file descriptors compiled into the 

Computer Science Linux farm and although this might seem enough when for 

example 400 cells runs across 20 machines, there are more factors to take into 
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account. Firstly, cell population per machine can vary anywhere from 0 to 

the some future maximum population size and although these extremes are 

obviously unlikely it does increase the chances of reaching the file descriptor 

limit if an extreme is approached. Secondly, each cell process starts 10 other 

processes (gzip and ssh) to compress and return results. Each of these processes 

uses at least 3 file descriptors. The numbers then speak for themselves, 400 cells 

across 20 machines implies around 20 cells per machine, each machine needing 

660 file descriptors. This assumes even distribution, which won’t occur and 

so the limit become probabilistic at around 27 cells per machine, assuming 

negligible use by other users. To find if this limit is being approached: 

./tstcluster.sh "find /proc/ -maxdepth 1 -user greg -printf \ 

\"find Z%p/fd/ -not -type d\\\n\" | sh 2>/dev/null | we -1" 

Asks each machine how many greg owned file descriptors are used, and so 

how close to the limit the simulation is. It would have been quicker to check 

/proc/sys/fs/file-nr but the correlation between these figures and the man- 

ually obtained figure was not clear. 

5.9 Saving State 

With the recognition that COSMIC requires considerable amounts of com- 

putational time and the unreliable state of resources available at the time, 

check-pointing was deemed vital. This is the saving of the entire simulation 

state to file store in such a way that the entire simulation can be restarted 

from this state image. Strong parallels exist with the cell division process, as 

a newly created simulation is no different from a daughter cell from a parent, 

but for the 50:50 enzyme division. The saving itself was then all but the same, 

the real challenge came from synchronising all the processes to save at the 

same time while not troubling the client processes with unnecessary synchro- 

nisation messages between iterations, namely to not save state. Client cells 

do not know when this is as only the environment decides if state should be 
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saved. The solution was pre-emptive messages that took into account the over- 

all client-server synchronisation and never forced client cells to synchronise a 

second time for each iteration, the message was passed immediately after the 

main synchronisation message. When state was to be saved, the message was 

delayed to better fit with division logic but as state saving is a time consuming 

process this extra small delay is immaterial. 

5.10 Storing Data 

The shear amount of data generated by COSMIC is enough to fill available 

storage within very little time. Of the data sets generated some have high 

information content when measured per kilobyte whereas others have very 

little information content. All the information could be useful and knowing 

what is important should always be something for later examination. Clearly 

too much resolution is possible, but what resolution is required can only be 

guessed at. There are several problems here, getting the data from the client 

cell to the possible remote disk, issues of compression capability and choice of 

date format. 

Since resolution is not known, some output streams use the maximum res- 

olution of one sample per fine grained iteration. This then records all informa- 

tion possible but is largely redundant. The solution to this was multiple stages 

of compression that reduced the output to 1.6% of its original size. This is 

partly attributed to the use of ASCII text string and mainly attributed to the 

high redundancy of the data. 

Later the COSMIC system also started to use a more ideal format in which 

tags representing events and parameters concerned were recorded in temporal 

order. This retained the resolution but was more compact as only changes are 

recorded and not system wide state®. Tags and associated data are all output 

as ASCII text strings and so are compressible to a ratio of 10 

Using either format, once compressed the data stream must be moved to 

5This is in the sense of a set of all possible measures in a given domain, typically the 

individual enzyme totals for each expressible gene. 
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main host system for information extraction. In the ideal case where all ma- 

chines in a cluster share the same file store via some networked file system, this 

simple involves witting out the stream to a file name. Setting this up requires 

system privileges that were not available when using the shared access cluster®. 

For this ssh was used to open a connection back the main file store host (which 

wasn’t under the same administrative control as the shared access cluster) and 

write the data stream. 

All this compression and transport was achieved through running external 

processes in a pipe line, with lines such as: 

gzip | gzip | ssh babbage cat ’’>’’ datafile 

where babbage is the file store machine and the file name datafile was based 

on the type of data stream and the cell number. Starting external processes and 

attaching to printf () style formated output functions is very simple in a UNIX 

environment, the popen() system call runs the given string as a command to be 

executed and associates a standard buffered file descriptor with this executed 

command, attaching say fprintf() to the stdin of (for example) gzip. 

5.11 Modifying Parameters 

Simulation control is done via parameter files which record all the global 

variables and p.d.f.s. During simulation execution they are read periodically, 

the exact period coming from each file’s place in the program hierarchy. Mon- 

itoring is done by log files and log pictures. Viewing the output is a batch 

process, a suite of conversion programs read the event logs and convert them 

to pictures and graphs as found in Section 5.12 and much more fully in Chap- 

ters 7 and 6. 

SA loosely coupled set of machine made available for students to use as X servers and 

generally access their UNIX accounts via remote access. 
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5.12 Parallel Efficiency 

The execution environment of COSMIC has changed over the years of its 

development, in the beginning COSMIC ran on a single machine with a view 

to running of the farm of loosely coupled machines. The experiences in the last 

few sections have been largely came from using the farm. COSMIC currently 

runs on a Grid-enabled cluster of 12 node dual processor Athlon XP 2000+ 

machines. This leads to a rapid simulation but is still slower than real time, 

on the order of 7:1. In the space of 9 days COSMIC had evaluated 2132 

bacterial cells (this is the sum of cells created with random genomes and cells 

resulting from the cell division process), with 298 cells still living at the point 

the simulation ended. The final environment had turned into a bacterially 

challenging patchwork of nutrients, average final genomes were in the range 

42 to 1023 genes long (185 mean), with 10 to 107542 enzymes per cell (13473 

mean). CPU utilisation varied in the range 1-100% creating around 3 gigabytes 

of data per day. 

The output from the simulation clearly has two distant scales, the envi- 

ronment state and the state of each cell. The architecture ultimately allows 

a never-ending simulation in which state can be recorded and reloaded while 

changing the global and local parameters. From the recorded data a variety of 

visualisations can be constructed, the common feature is the abstract nature 

of the labels in that real proteins are not simulated and so data can be isomor- 

phic but not easily comprehensible. These being per cell gene expression charts 

and network graphs representing interacting genes. Also generated are per cell 

graphed averages of major parameters and snapshots of the environment at 

the population level as well as charts showing the lineage of all cells. All these 

chart types will be described in Chapter 6 and again in Chapter 7. 

The labelling system of cells is based on an ever increasing unique identifier 

that a cell obtains upon creation as either a daughter or a newly initialised cell. 

When a cell divides the parent retains the original identifier and the daughter 

receives the next unused identifier. At that instant both cells are the same 

in terms of genetics but differ in the share of enzymes as each enzyme has a 
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Figure 5.4: Population growth during a typical simulation. 

50:50 chance of staying with the parent. It is an implementation decision that 

parents retain their identifier rather than obtain another identifier. 

Simulation load is not constant, the ever changing number of processes per 

machine is constantly changing. Figure 5.4 shows the rise of the cell population 

and hence the rise in process numbers. Each cell equating to around 9 pro- 

cesses, the main cell and output data compression processes. There needs to 

be many more cells than processors before efficiency can be attempted. Notice 

also the stable number of births, the system is forced to synchronise to these 

new cells and we would expect to have an impact on efficiency, but as shown 

later efficiency is too variable for this to be a cause. 

Figure 5.5 shows the efficiency of the whole simulation system over the 

course of a long run lasting around 2 weeks of wall clock time. This graph 

shows several measures, the upper line is the maximum available computation 

time. Computed from the maximum processor usage across all processes at 

that instant. The noisy nature of this plot implies more could be executing 
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Figure 5.5: Overall efficiency of a long simulation run, the upper line being the 

maximum available computation time. The lower line being the actual usage 

at that time. The difference between 100% and the upper line comes from 

other processes started by COSMIC but outside the auditing process, most 

likely during cell division. The difference between the two lines comes from 

process balancing errors inherit in PVM and its blind allocation of processes. 

than is accounted for, each machine in the cluster (except for the main node) 

is dedicated to COSMIC and so should never themselves hold back the sim- 

ulation. However, the main node is shared with other people and processes, 

this could easily account for some of the drops in available resources. The 

other possibility is simply unaccounted processes during cell division, the syn- 

chronisation bottleneck of cell division and starting another process forces the 

simulation to momentarily pause. This pause was deemed insignificant during 

design but here it seems this and the presence of other users can have a big 

impact, much bigger than it was thought. 

The lower line of the same figure depicts the actual processor usage of 

COSMIC, as can be seen this closely follows the available level. The difference 

between both lines comes from process balancing errors inherit in PVM and its 

blind allocation of processes combined with the dynamic needs of the processes 

and lack of process migration. Shown as small dots amongst figure 5.5 are 

the data sets that make up the maximum and actual efficiency values. Each 

represents the processor usage at that instant, and so if processor usage was 

the bottleneck we would expect at least one of these to be 100%, with the 
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Figure 5.6: Efficiency of a single randomly chosen machine. 

lowest being the most idle processor. Idleness is caused by cells on a machine 

being quick to execute in comparison to other cells, quick execution followed 

by the environment-cell synchronisation requirement requires that a cell waits. 

Picking out a machine at random from the 10 available, figure 5.6 shows 

how variable utilisation is, varying from nearly 0% to nearly 100%. Comparing 

against figure 5.5 we can see load balancing had a large part to play. While this 

machine was idle there was still a significant level of load, often around the 50% 

boundary. At the early stage this is telling, comparing to the cell population 

of figure 5.4 the population was rather small and each processor could have 

approximately been used by only one cell. The increase in peak efficiency 

then comes with the increase in the number of cells, allowing a better global 

balancing of load though still far from optimal. 

5.13 Summary 

The COSMIC model is a vast tool for modelling evolution at the genetic 

scale, the parallelisation of this model has been completed and been shown here 

to perform adequately on a small cluster. Output data suggests several causes 

and solutions for the lower than expected efficiency. The most compelling is the 

load balancing of cells with a dynamic execution time, this has several broad 
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solutions. Firstly, the load balancing of PVM could be improved to better take 

account of the expected load brought about by each cell, this requires writing 

a load balancing function for PVM and finding a reasonable measure of cell 

complexity. Another option is to use MOSIX or another Single System Image 

software solution’. Other options lie in either better parallel API implementa- 

tions or perhaps a more standardised MOSIX like system. This latter option 

would be an ideal feature of future GRID middleware that has yet to arrive 

in GRID. Regardless of the efficiency issues, the parallelisation of COSMIC 

has made the individual based modelling approach feasible and practical while 

still covering several scales. This is no panacea, in a few years time what is 

practical only on a cluster will be practical on a desktop machine, the cluster 

only raises the bar by around 20 times, a bad algorithm will always be slow 

regardless of the machines used. 

7Generally a Linux kernel patch which supports the migration of running processes be- 

tween machines. This completely solves the load balancing problem but creates another 

problem through being highly OS dependent 
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Chapter 6 

Visualisation 

6.1 Introduction 

This chapter introduces the most common visualisations used to represent 

the raw data generated by COSMIC. It would be expected that many of these 

ideas come directly from their biological counterpart, but as was hinted dur- 

ing the chapter on biological background, biology can be severely limited by 

what can be measured. Available data dictates what visualisations can be con- 

structed with any degree of usefulness and so the legacy of practical biology 

leaves COSMIC waiting for a distant future of biology; there is so much more 

detail available from COSMIC at every level of measurement than there could 

be from years of wet lab research. This then makes full validation near im- 

possible but for this chapter it also means there is the opportunity to create 

something new that allows access to manageable data sets at a time when the 

real world is some way behind. 

The two scales of COSMIC give the initial division of the visualisations, 

the top level environment where the cells play out their struggle for survival 

and ultimately demonstrate their evolution. These are covered in sections 6.2 

and 6.3. At the other scale there is the internals of each cell, which contains 

the richest data but also the hardest to view in any one way that captures all 

the changes. This is covered in sections 6.4 to 6.6. 
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6.2 Environment - Glucose concentration 

As the environment is what cells should be differentially responding to 

(i.e. the selector), it is important to ensure there is sufficient information 

in the environment to make evolution possible. The COSMIC system saves 

snapshots of the environment in terms of glucose concentration every 10 seconds 

of simulated time. From this we can identify cells, trends in motility and trends 

in substrate use/replenishment. For each of these snapshots, white equates to 

a glucose level of 4.5 mg, black equates to absence of glucose. The dimensions 

of the square are 0.2 mm. Filled black circles represent bacteria that have not 

moved through lack of connection with their flagella, grey streaks show moving 

bacteria. (Note: Bacteria in this system cannot move without leaving some 

visible trail because they always consume a visible level of substrate). Per cell 

glucose use has been exaggerated to better motivate evolutionary change, real 

E.coli use such a small proportion of substrate per cell that one hundred times 

more cells would be needed to sufficiently modify the environment. Clearly 

there are insufficient resources for that number of cells and so substrate usage 

was increased one hundred times. The environment is made up of a 500x500 

array of floats, giving cells enough resolution to have a reasonable chance of 

sensing gradients while also not consuming vast amounts of space when saving 

snapshots. 

Using these snapshots it is also possible to generate an overview of the rise 

in population and the fall in substrate, as shown in Figure 6.1. This shows 

quite clearly the different phases of COSMIC simulation; the search phase that 

looks for a solution genome which can at the very least move its host cell, even 

if there is no control; once that cell is found it then exponentially takes over the 

population; finally that cell linage has consumed most of the substrate in the 

environment and the population is restrained to slow growth. Each of these 

phases are discussed below, with an example of the environment at the time. 

The environmental views can be shown as a time series by stepping through 

in either direction as a movie showing the deforming environment, or looked at 

more closely by annotating the image with legible cell numbers. Both types are 
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Figure 6.1: Population size and substrate concentration, 4.5mg glucose is here 
shown normalised to 100. 

presented here. Figures 6.2, 6.3, 6.4, 6.5 show four views of the environment 

over a widely spaced period of time. These show the searching phase, the knee 

of the exponential growth, during exponential growth and some time afterwards 

when the environment has become nutrient restricted in most areas. 

Figure 6.2 show a typical view of the environment during the initial search- 

ing phase. Cells sense substrate level on a linear scale but the view presented 

here has been adjusted to emphasise the grey'. COSMIC maintains a cell pop- 

ulation of at least 20 cells, this is important during the search phase because 

the random genomes lead to frequent cell deaths. Without this maintenance 

the cell population would normally reach 0 in a matter of minutes. There are 

around 20 cells shown here, living cells can be seen circled and uniquely num- 

bered(Section 5.12), allowing a cross reference to the other data sets. Filled 

black circles are dead cells, only their previous effect on the environment re- 

mains. In time the black diminishes as the environment is replenished. Moving 

cells leave fading trails for the same reason. Overall then we see cells that are 

1Through experience it was found that light grey very easily looks pure white when there 

is no known pure white with which to compare. 
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Figure 6.2: Environment at t+4000 (t+66.6 minutes), covering 0.2 mm square. 

Living cells can be seen circled and uniquely numbered (Section 5.12), allowing 
a cross reference to the other data sets. Filled black circles are dead cells, only 

their previous effect on the environment remains. In time the black diminishes 

as the environment is replenished. Moving cells leave fading trails for the same 

as their effect on the environment is slowly reduced. Arrows indicate cells 

mentioned in the main text. 
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either alive or the effects of cells that were recently alive - without this re- 

plenishment the environment would quickly become useless as a scenario for 

evolving chemotaxis. 

Some cells in Figure 6.2 are apparently doing well, they are moving unlike 

the majority that don’t move at all. Cell 0115 (note all these cells have been 

clearly marked on the figure) near the middle moving generally up and right 

would seem to be a good candidate, as would cell 0122 on the bottom right 

and cell 0124. Looking at the mass of black from where 0124 came, it seems 

reasonable that this cell was the result of a recent division and the parent died 

in the process. Unfortunately the data confirming this has been lost, this is 

however a common effect. 

Figure 6.3 then shows the environment at around the start of the exponen- 

tial growth with the finding of one cell which has the ability to move, regardless 

of any control. This shows several dark stripes left by cells resulting from a 

divided pair moving in the same direction but at different speeds, cells 0225, 

0265 on the top middle and cells 0266, 0249 (bottom middle) and possibly 0273 

and 0257 are related, though the latter two move in different directions. An- 

other related pair can be seen on the bottom left of middle, moving down; 0255 

and 0271 (all 8 are marked with a plain arrow). At this point the daughters 

of cell 0143 (marked with a starred arrow) are already starting to take over 

the population, 10 of the cells here belong to that lineage, they are cells 0193, 

0225, 0248, 0249, 0253, 0263, 0265, 0266, 0268 and 0269. 

Figure 6.4 shows the environment 66 minutes later, with the daughters of 

cell 0143 taking over the total population. There are now dark streaks created 

by groups of cells moving in the same direction, in this case the darkest streak 

is caused by the same group of cells wrapping around the environment. Later 

on this effect will dominate as more cells have motility. There are now 40 cells 

belonging to the 0143 linage, to many to list. There are, however, some other 

lineages here amongst the growing number of 0143 related cells, these are left 

over from when the cell population was around 20 and continually seeded with 

new Cells. In this struggle, the growth rate of the 0143 related population must 
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Figure 6.3: Environment at t-+12000 (t+200 minutes), showing the prolifera- 

tion of cells. 
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Figure 6.4: Environment at t+16000 (t+266.6 minutes), showing the continued 
proliferation of cells. 
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eventually wipe them out short of a major change in the genetics of those other 

lineages. 

The final detailed view of the environment is shown in figure 6.5, here we 

can see immediately the environment has become depleted to the point of all 

cell indicators showing as white, meaning the average concentration in those 

locations has fallen to less than 50% of the start condition. Unlike the other im- 

ages, this image is presented without brightness distortion(linear brightness). 

This point marks the end of the exponential rise and large drop in average 

environmental nutrients, together with the first drop in population. The pop- 

ulation has dropped to 126 cells at time 28000s, from 137 at 23500s, actually 

dropping to 117 cells at 26800s. Of the 137 cells, 116 belong to the 0143 lin- 

eage. So, even at this point the smaller lineages still manage to linger. 

Multiple views of the environment are shown in figure 6.6 and continuing 

in figure 6.7. These images show the environment over successive time steps. 

Time steps of 10, 200, 2000 and 4000 seconds are shown, from then on time 

steps are in 4000 seconds. Time 12000 marks the start of the population 

explosion, we would then expect to see some signs of more intelligent behaviour. 

Intelligent behaviour is too difficult to see when there are many cells, instead 

cells need to be considered on an individual basis. 
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Figure 6.5: Environment at t+28000 (t+466.6 minutes). Shown with linear 

brightness as black is now the dominant brightness. 
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Figure 6.6: Environmental time slices, part 1. 
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Figure 6.7: Environmental time slices, part 2. 
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6.3. Population lineage 

Cell division brings about the possibility of recording relatedness between 

cells, this can then be shown as a digraph of parenthood, with the parent at the 

top and daughters below. On top of this other data can be incorporated, such 

as the times the division events occurred. Shown in figure 6.8 is an example 

of this drawing, showing the top section cell lineage 0143. As there were 2000 

cell divisions and nearly 2000 cell deaths attributed to this one lineage, the 

full diagram is huge and unwieldy and would use around 4000 lines to display, 

so only the first few tens of lines are given. The generation of these diagrams 

makes some attempt to make them of usable size by ensuring the graphs have 

less then a given area of nodes, making the diagrams shorter as they get wider. 

In this example, the lineage is headed with some general information on the 

tree size, followed by the cell number leading that lineage - cell 0143. On the 

left there are then time stamps for when the event on the line occurred and 

the time difference between this event and the last event. On the right there 

are numbers representing cells that lead to other cells, i.e. the divisions. In 

the diagram itself the numbers represent deaths of that given cell. Bold lines 

mark every tenth line to try to ensure some readability. 

As the number of related cells grows the lineage becomes increasingly con- 

gested, as figure 6.9 shows. Here the time ranges from 1601 to 1607 minutes, 

just 6 minutes and yet there the large number of events per cell with no syn- 

chronisation means that each event will have its own line, greatly increasing 

the required space. The result in this case is barely readable and is here only 

as an illustration of the problem. It could well be that a less structured dia- 

gram with only local labelling and no synchronisation between unrelated but 

identical events will compress this to something more manageable. 

This can be made even more congested by showing all the cells that existed 

at the same time rather than from a lineage, as shown in figure 6.10. Here the 

structure between cells is necessary, at least in the beginning of each new cells 

life, and so the diagram is bound to be large. The obvious addition here are 

new cells being introduced on the right to maintain the minimum population, 
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as cells die those cells then tend to move to the left. It was considered if the 

graph would be better shown as a time line in which height was time (generally 

as is the case now) but that cells never moved left and the related lineage hung 

under the original ancestor. This would have been easier to interpret but used 

vastly more space, on average occupying a diagonal. The per lineage diagrams 

carry most of the meaning but save space by keeping the lineages separate. 

Even in its basic form, this is a novel structure that has yet to be introduced 

into mainstream biology, presumably because the figures on which it is based 

are impossible to obtain. Figures could be obtained using genome sequence 

analysis, which would give a general lineage, never as specific as found in 

COSMIC but even this is too time consuming to yet be realistic. As shown by 

COSMIC, this method is not without its problems, approaches to scaling up 

this visualisation represent future work. 

6.4 Cell statistics 

The previous sections were concerned with the environmental scale and so 

the population of cells as a whole. This section and those that follow change the 

scale of view to that of the cells internals, where we find most of the challenges 

to visualisation. 

This section shows some of the general dynamic parameters associated with 

each cell. Each graph normally covers the time of the cells life, unless the cell 

went onto live a long time, in which case the graph is a maximum of 7.5 hours. 

These graphs can be useful in finding the high level reason for a cells death or 

its popularity as they show key indicators of the state of transcription. 

All graphs show cell mass to start at some value determined by the random 

uniform initialisation. The mass then increases according to Section 4.11 to 

the maximum of around 0.4 femtolitres, which then triggers cell division and 

the volume of this cell is halved as well as halving the enzyme concentration. 

The z and y position graphs correspond to the position in the environment 

as shown later. (0,0) is top left and (200,200) covers the 2mm x 2mm area. 
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Figure 6.8: First 5 hour lineage of cell 0143. 
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Figure 6.9: Last 6 minutes lineage of cell 0143. Shown cut in half in improve 

its reproduction. 

a 

The enzyme population graph plots both the minimum and maximum num- 

ber of enzymes in each time frame, the line thickness is the same for all graphs 

and yet all enzyme populations shows that a small difference persists 

The input figures come from an average of all activated receptors, hence a 

typical figure of 0.02 = x = || (i.e. the input receptors) shows one receptor to 

be used in a given time interval - x is the maximum of all time instants in that 

interval. Clearly this value must be expected to increase during convergence. 

The output figure is based on |Q| (i.e. the flagella activation receptors) but 

is otherwise the same as the input. There is always a strong link between this 

value and changes in the (x,y) values. Ideally there should be a strong link 

between the output and glucose concentration in the environment. 

6.4.1 Cell 143 

As the original ancestor of the lineage that will take over the whole sim- 

ulation, cell 0143 in figure 6.11 would be expected to have all the qualities 

that enable it to survive the environment and avoid the early termination al- 

gorithm. The survivability of this cell comes across from all these graphs, the 

cell volume is growing at near maximal rate and so dividing at near maximal 

rate of 22 minutes. The «/y positions in the environment show the cell to be 

moving at speed and so always being positioned over fresh environment - at 

least while the environment is sparsely populated. The enzyme level is high, 

seemingly high enough to survive cell division 3 times, it was the 4th division 
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Figure 6.10: First 83 minute lineage of whole simulation. 
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that caused a failure of the cell, the enzyme graph shows the steady decline in 

enzymes shortly after the 4th division. As this is plotted on a log scale, this 

steady decline represents the natural decay of enzyme half-lives. The Output 

graph shows why the cell was moving so quickly, on average one of the flagella 

was activated most of the time, this pattern only stops shortly after the 4th 

cell division. This cell also looks promising because of its connection to the 

receptors, suggesting that a link between input and output is at least possible 

even if it doesn’t exist at this moment. 

6.4.2 Cell 101 

The cell in figure 6.12 typifies a cell containing futile cycles, this cell makes 

no connection to the environment (as shown in the input/output graphs) de- 

spite having a steady enzyme population (as shown in the enzyme population 

graph) after initialisation. The cell grows using only the nutrients in its im- 

mediate environment, but as there is no movement the environment becomes 

depleted and so the growth rate slows (volume graph). The lack of movement 

fits the criteria of a failed cell and so is killed off early by COSMIC heuristics 

that attempt to remove useless cells. 

6.5 Gene Expression 

The expression level of individual genes can be useful information when 

accessing the genetic quality of a cell. This section demonstrates such a vi- 

sualisation. The figures show the gene expression level over a period of time. 

Looking closely, each picture is made up of several rows, each row representing 

15 minutes of the gene transcription, with each line (or lack of a line) in that 

row representing a given gene. Rows are read from left to right, top to bottom. 

As shown on the left of each row is time frame relative to the cell whose number 
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Figure 6.11: General variables of cell 0143 

  
  

COSMIC R. Gregory



6.5 Gene Expression 160 

Experiment run030205-00000101 

  

0.345 0.345 
— 0.3 0.34 
= 0.335 0.335 
2 03 0.33 
— 0.325 0.325 
5 0.32 0.32 
> 0.315 0.315 
= 0.31 0:31 
S 0.305 0.305 

0.3 0.3 
0.295 0.295 

51 52 53 54 55 56 57 58 59 
Cell Simulation Time (minutes) 

110 

‘e 100 
& = 90 
So 

= 80 

a 70 
3 60 

50 
51 52 53 54 55 56 57 58 59 

S Cell Simulation Time (minutes) 

5 900 900 
2 800 800 
2 700 700 
= 600 600 
3 500 500 

S 400 400 
8. 300 300 
& 200 200 
3g 100 100 
> 0 0 
& 51 52 53 54 55 56 57 58 59 

Cell Simulation Time (minutes) 

1 1 

BZ 05 0.5 

5 2 0 0 
Bg 

a. 
& -0.5 -0.5 

-1 -1 
51 52 53 54 55 56 57 58 59 

Cell Simulation Time (minutes) 

1 i 

g 05 0.5 
& 
2 0 0 
2 

& 
5 -0.5 -0.5 
° 

BI -1 
51 52 53 54 55 56 57 58 59 

Cell Simulation Time (minutes) 

Figure 6.12: General variables of cell 0101 
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Figure 6.13: Gene expression of cell 0238, showing very little expression. 

is between the time frame. On the right hand side are the gene numbers, the 

first gene being at the bottom of the row. When shown in colour, colour and 

shade denotes number of gene products present in the cytoplasm at that time, 

white denotes no expression, blue denotes 1-3 gene products, red denotes 4-20 

gene products and green denotes 21-1029 gene products. Notice they are on 

the logarithmic scale to take account of the vast difference in volume of gene 

products. 

In all cases cells are initialised as described in Section 4.13, there are 5 gene 

products for each identified gene. 

Note that in cases where the cell was terminated and transcriptional data 

stopped, the unused area is removed. Also note that as sequence insertion and 

deletion change the size of the genome, so to does the height of each row. As 

the genome is inserted from the bottom, the top end point of the genome can 

vary. In this case the individual genes are painted from the bottom of their 

respective rows, and any space remaining at the top is padded with vertical 

alternately coloured bars. 

6.5.1 Cell 0238 

Figure 6.13 shows a typical example of a failed cell, after initialisation there 

is little activity. Looking closely the expression level can be seen on the first 

few genes and around gene 85. Enough remain for the simulation to consider 

the cell alive, simply because COSMIC is lenient in the heuristic decision to 

kill a cell that does not seem to be motile. 
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Figure 6.14: Gene expression of cell 0232, showing some strong gene expression 

but still suffering a fatal loss of expression latter on. 

6.5.2 Cell 0232 

Cell 0232 in figure 6.14 is similar to cell 238, the main difference is the 

more sustained transcription level involving more genes. This cell also shows 

fluctuations in the expression of these genes, for example at time 38 minutes. 

What seemed a stable network of transcription then somehow fails, ending at 

time 62 minutes when the cytoplasm is effectively empty. 

6.5.3 Cell 0219 

Figure 6.15 shows a cell with even more activity than the previous cell. 

Looking more closely we see multiple fluctuations at many points in time. 

This cell is also notably for having no visible initialisation at time 0 minutes, 

so this cell must be the result of a cell division. 

6.5.4 Cell 0204 

Cell 0204 in figure 6.16 clearly demonstrates an inactive cell. Initialisation 

occurs like other cells but no transcription occurs leaving the cell to a fate 

of death. The rapid death was dictated by enzyme life times, here chance 

dictated there would be no long lasting enzymes when initialised and so the 

cell is terminated when there are no enzymes remaining, at around the shortest 
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Figure 6.15: Gene expression of cell 0219, showing very some strong gene 

expression and a lack of initialisation that could only mean this cell is the 

result of a cell division. 

  

Figure 6.16: Gene expression of cell 0204, demonstrating the quickest cell death 

possible. 

time possible. 

6.5.5 Cell 0193 

Figures 6.17 and 6.18 show an early success, the cell is clearly well con- 

nected and is also showing patterns of transcription across many genes. The 

number of some genes goes up by many times over a short time frame, this is 

caused by many of the right sigma factors being by the same gene at the same 

time. Notice the large changes in genome size caused by sequence insertion 

and deletion. Also note this cell is the result of a cell division, as there is no 

visible initialisation phase. 
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Figure 6.17: Gene expression of cell 0193, an early success compared to the 

others presented here. 

  

  

  

  

            

  

  

  
  

    

  
Figure 6.18: Continuing gene expression of cell 0193, an early success compared 

to the others presented here. 
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6.6 Gene Expression Pathways 

It is possible to create digraphs of gene expression pathways using the 

linkage diagram shown in figure 4.6 and the gene expression data as shown 

above. The linkage create the graph structure, after folding common genes, 

removing dead ends and so on; and the expression data then quantifies the use 

of each pathway. This can then be divided into slices of time, or as shown in 

figure 6.19. This example shows cell 0143 in run030205 over the course of its 

life, this being the cell that parented the lineage which went onto take over the 

population in run030205. 

Nodes represent genes and gene products. Ovals are specifically for genes 

and gene products from the genome, boxes represent FAP receptors and ovals 

represent input receptors. In each node are two lines of text, the top line is 

the gene sequence used in the anti-match function, which is useful for cross 

referencing. The bottom line is an abbreviated gene type that corresponds to 

the types in figure 4.4. Edges are numbered with a use count, binding events 

followed by unbinding events. 

The kind of diagram is the starting point for examining the cell at the 

highest resolution possible. The problem comes from dealing with its size, 

making reading the graph a time consuming process. It should also be possible 

to highlight edges or groups of edges and graph time series of changes, as cross 

referencing to other datasets remains cumbersome. It is also be possible to 

combine two graphs from different time frames, and generate from these two 

a difference graph of what has changed. This is ultimately a data mining 

problem, in that there is no generic method that will take apart this large 

structure without at the same time destroying its value. As a result this is a 

research topic in itself, the most obvious starting point being a graphical user 

interface. 
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6.7 Summary 

Here we introduce the most common visualisations used to represent the 

raw data generated by COSMIC. It would be expected that many of these ideas 

come directly from their biological counterpart, but as was hinted during the 

biology background, biology can be severely limited by what can be measured. 

Available data dictates what visualisations can be constructed with any degree 

of usefulness and so the legacy of practical biology leaves COSMIC in the 

position of having to find visualisations for data sets that do not exist in biology. 

There is also the issue of data set size, which is largely avoided above by giving 

a few examples of the thousands of possible images. 

To give some idea of scale, the visualisations are presented in the order 

of largest to smallest scale. Starting with environmental view, which consists 

of pictures of the substrate condition. Onto this image is placed each cell 

represented by a circle proportional in diameter to the mass of the cell. This 

image, or rather a series of images then shows which cells are moving and the 

change of substrate distribution. 

As COSMIC records all relationships between the object sets, so to are 

the cell relationships. This means it is possible to draw a lineage chart in 

either direction of time rooted at any cell. From this it can be seen what 

cells are related and by how many generations. Useful where comparing the 

performance of cells that are genetically related. 

There are however situations that require more tradition approaches, this is 

the case when considering the parameters related to the cell at the highest level. 

Shown are the important parameters of volume, total enzyme count, position 

in the environment and the activity of the input and output receptors. When 

searching for cells of interest, this can be a quick method of accessing the 

quality of a cell. 

At much lower level, COSMIC can plot the expression levels of each gene on 

the genome over any period of time while taking account of sequence insertion 

and deletion events. Thess diagrams clearly show which areas of the genome 

are responsible for the success of a cell. Importantly they also give clues as to 
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the failure of cells, as cells fail for many reasons. 

Changing dimensionality, this data can also be shown as a digraph. This 

then indicates which genes interacted with which other genes and how many 

times, over any given time frame. This gives the most detailed view but also the 

biggest challenges in terms of visualisation, as one static graph only represents 

the surface detail of the actual interactions. 
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Chapter 7 

Results 

7.1 Introduction 

The previous chapter introduced some of the visualisation techniques used 

in this chapter. Some of those visualisations are research topics in themselves 

as the data generated by COSMIC is so rich that a single image only scratches 

the surface of what interactions actually occurred. They were separate from 

this chapter as a result of this. This chapter instead gives an account of some 

of the simulations, not just the data obtained but also the evolution of the 

simulation and its testing. 

The key difference between COSMIC and all other simulators available is 

the implementation of detailed genetic interactions combined with evolutionary 

concepts, and with this the use of multiple scales in the same simulation. The 

behaviours of the system as a whole and the individuals are then very spread 

out, the size of the system makes it very much akin to examining a real world 

system, except that this system is different in nature and so needs different 

approaches from those learned over the years. This system gives the detailed 

genetic data that real world processes must approximate, but on the other hand 

offers no clue as to how real world methods can be used to read this data. 

The results from COSMIC are difficult to classify, the whole simulation 

tries to be integrative with no clear boundaries between interactions that occur 
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inside the cell, obviously the implementation is still modular but the parts are 

so interconnected it can be difficult to see effects of the parts. That said, the 

approach here is give an overview of some of the simulations. The open ended 

nature of COSMIC ultimately meant there was no single result that showed 

evolution taking place. The single result was a simulation system that should 

have the ability to show evolution taking place. There has been data suggesting 

there is a slight overall improvement in fitness, but it is unknown whether this 

is a reliable indicator given that this data possibly a biased average. 

Before experiments are described, the overall parameters will be explained 

in section 7.2. These provide overall control of the system by specifying limits to 

the environment, cell growth, cell division, cell genome size, genome mutation 

rates, enzyme half lives and genome-proteome interaction rates. Some of these 

are changed to vary the experiment and will be listed separately. 

Section 7.3 introduces the data sets that make up the archived COSMIC 

output. The testing phase of the simulation is then described in sections 7.4 to 

7.14. When simulation runs where made, problems were found and corrected 

and the bulk of the chapter is made up of those experiences. This provides 

some idea of the subtle effects of programming errors and more often, sim- 

ple unforeseen consequences of some implementation decision. This chapter 

finishes with a summary of the main outcomes in section 7.15. 

7.2 Parameters 

Note. Each parameter is preceded by the C++ source file that it came from 

and the line number. 

cell.C:266://options .OperatorGene=options.OperatorLink = 0; 

Controls the inclusion/exclusion of operators when a genome is randomly ini- 

tialised. Here for testing the implementation and showing operators do have 

an effect. Operators were tested long before simulations were recorded (there 

would never have been enough room) and so those returns are not shown, I’d 

like to do some more tests to show this. There are two controls, *Gene (i.e. any 
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control ending in Gene) enables the creation of genes of this type, and *Link 

enables the operators in the genetic network (Repressor-Operator interaction), 

without which operator genes would just be extremely short introns. 

cell.C:267:options.PromoterGene = options.PromoterLink = 1; 

Controls the inclusion/exclusion of promoters when a genome is randomly ini- 

tialised, same as for operators. 

cell.C:268:options.InducerGene = options.InducerLink = 1; 

Controls the inclusion/exclusion of inducers (anti-repressors) when a genome 

is randomly initialised, same as for operators. 

cell.C:269:options.AttenuatorLink i 

1; options .AttenuatorGene 

Controls the inclusion/exclusion of attenuators when a genome is randomly 

initialised, same as for operators. 

cell.C:270:options.InputGene = options.InputLink = 0; 

cell.C:270:options.OutputGene = options.OutputLink = 0; 

Controls the inclusion/exclusion of input receptors and output receptors when 

a genome is randomly initialised, same as for operators. 

Cell1.C:271: options .CreateCytoEnzymes=1 ; 

Turns on the creation of the proteins based on the genome of the newly ini- 

tialised cell, these being necessary to bootstrap the cell which would otherwise 

have no active proteins acting on the gene network with which to create new 

proteins. The number of proteins created per type is set elsewhere, normally 

5 proteins for all expressible genes and 1 receptor per input and output. 

cell.C:271:options.EnzymeDeath = 1; 

Turns off the half-lives of all enzymes, ensuring that all enzymes live forever. 
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This is largely a debugging switch as the system soon becomes clogged with 

enzymes. 

cell.C:272:options .EnzymeBinding = 1; 

Turns on all gene-protein and protein-protein binding, leaving only initiali- 

sation of the cells. This is largely a debugging switch that allows testing of 

initialisation knowing that the systems dynamics will not be activated. 

cell.c:272:options.IterateCytoplasm = 0; 

Disables entirely effects of dynamics by not checking for possible protein bind- 

ing and not taken action on protein unbinding. This is even more far reaching 

than the above. 

cell.C:273:options.ConsumeSubstrate = 0; 

Stops the cells from consuming substrate, the environment is not altered and 

the cells gain no glucose. Defaults to True. Note this is on a per cell basis, a 

similar flag for the environment sets the entire simulation. 

cell.C:273:options.KillUnviable = 0; 

True enables heuristics intended to speed up evolution by killing cells con- 

sidered unviable. That is cells with less than options.viable_generat... 

enzyme population to transcribable genes, negative cell mass or has made no 

recent response to or sensing of the environment. 

cell.C:278:options.insertion_rate = 0.0025; 

cell.C:279:options.insertion_shape = -0.01; 

cell.C:280:options.insertion_max = 0.1; 

cell.C:283:options.deletion_rate = 0.0025; 

cell.C:284:options.deletion_shape = -0.01; 

cell.C:285:options.deletion_max = 0.1; 

Gene sequence insertion/deletion parameters controlling the frequency and size 
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of these events. Normally set to a relatively high rate but can also be turned 

off using these same controls. 

cell.C:929:pd_geneinsertion=new ProbDist(0.0,1.0); 

cell.C:939:pd_genedeletion=new ProbDist(0.0, 1.0); 

Both these functions generate uniform distributions which are then used to 

test if insertion/deletion should occur and if so what position and size. p here 

is then tested or multiplied by the relevant scalars, this is an implementation 

issue that removes the need for many distribution generators. 

cell.C:289:options.longterm_in[Cell0pt: : Inflate]=0.002; 

cell.C:290:options.longterm_in[Cell0pt: :Minimum]=-1.0; 

cell.C:291:options.longterm_in[Cell0pt: :Maximum]=1.0; 

cell.C:292:options.longterm_out [Cell0pt: :Inflate]=0.001; 

cell.C:293:options.longterm_out [Cell0pt: :Minimum]=-1.0; 

cell.C:294:options.longterm_out [Cell0pt: :Maximum]=1.0; 

Parameters defining the above cell viability check heuristic for connectivity 

with environment. Allows for a peried of no activity at all, by setting a counter 

to Minimun if there is activity and always incrementing the counter by Inflate. 

If the counter reaches Maximum then the heuristic considers the cell not viable. 

cell.C:297:options.viable_generatio = 0.05; 

This figure multiplied by the genome size gives the minimum number of gene 

products, if the cell should have fewer then it is considered not viable. 

cell.C:970:pd_genematch=new ProbDist(0.015,0.015) ; 

When finding gene-gene interaction paths the hamming distance was originally 

taken as potentially probabilistic, or more precisely, fuzzy. Hamming distances 

in this region (here 0 as this feature is unused) would be compared against 

values from this distribution. Thereby making some pathways probabilistic 

when initialised. This was felt to be create an implementation bias and so was 
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not used. 

cell.C:980:pd_potbindunbind=new ProbDist(0.0, 1.0); 

Distribution generated for the potency coefficient and binding and unbinding 

times. For all instances of e* in molecular interactions. Uniform as e* returns 

the required function. 

cell.C:990:pd_randomqueuing=new ProbDist(0.0, 1.0); 

The implementation services events in a well defined way that is static over the 

course of a single cells execution and passed onto daughter cells. This ordering 

is initially defined by this random distribution. All possible pairs of pathway 

interactions are sorted on this random number to ensure no biases from the 

creation of the interaction pathway set. 

cell.C:999:pd_genomelength=new ProbDist(70.0,130.0); 

Newly created cells with no parent have a genome size (including control se- 

quences) defined by this uniform distribution. 

cell.C:1009:pd_genetype=new ProbDist(0, 4); 

cell.cC: 1012:float arr_pd_genetype[]={0.33, 1.0, 1.0, 0.5, 8.0}; 

cell .¢: 1019:pd_genelength=new ProbDist (10,15) ; 

celdl.¢: 1029:pd_locusvalues=new ProbDist(0,env->numloci-1) ; 

Genome generation pdfs, the first selects one of the 5 gene types (4 control, 1 

gene product) and the associated array then gives a distribution of the rela- 

tive frequencies. That is, promoter, operator, attenuator, terminator and gene 

product. Once type is known, pd_genelength determines the length of that 

individual gene and then pd_locus_value generates the letters within the al- 

phabet. These are then used in the hamming distance function to compute 

interaction paths. 

cell.C:1965:int nomi_geneprod=5; 
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Cell bootstrapping requires gene products be created somewhere. Under steady 

state conditions gene products create a newer generation of gene products, the 

initial state is to generate nomi_geneprod gene products with the creation of 

a new random cell to start the transcription process. 

cell.C:1966:int nomi_glucose=1; 

cell.C:1967:int nomi_flagel=1; 

Input receptors and flagella receptors are internally modelled as timeless gene 

products of static genomes. There is the option for multiple substrate receptors 

and multiple flagella receptors in the same physical space. This was never 

used in practice though could be useful to simulate larger enzyme populations 

without increasing search space, as each resultant gene product has the same 

encoding. 

cellstate.C:858:int partialdivide=TRUE; 

Boolean indicating the realism of the cell division process. Normally the en- 

zyme population of the parent cell is divided equally among the daughters, 

False indicates that both daughters should receive all the enzymes the parent 

had. This is a physical impossibility but useful for debugging, given the same 

enzyme population both cells should perform similarly well and so is useful for 

testing. 

enviro.C:98:options.RefreshSubstrate = 1; 

Boolean indicating the environment glucose level should be increased every 

iteration to ensure the environment contains some new glucose source. Without 

this the environment is emptied of glucose, making growth of cells impossible. 

enviro.C:99:options.KillUnviable = 1; 

Simulation wide flag enabling the use of the cell viability heuristic. For viability 

to be checked, both this and the cell option must be True. The two options 

give the possibility to give some cells move chance at survival, by making it 
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easier to to implement exceptions to the rule. 

enviro.C:100:options.RecordSubstrate = 1; 

Boolean controlling the saving to hard disk of environmental pictures. True 

generates a jpeg of the current environment every 10 course grained iterations 

(10 seconds), saved with a filename based on the simulation time. 

enviro.C:110:pd_cellposition=new ProbDist(0.0,0.0002) ; 

When creating a new cell the initial cell position is obtained from this pdf. It 

can then be placed anywhere inside the 200jm square that is the environment. 

This can then also be used to place cells in a corner of the environment and so 

easily see which cells have been motile from a single view of the environment. 

enviro.C:127:pd_volumelvl=new ProbDist (0.2*F_FEMTO,0.4*F_FEMTD) ; 

When creating a new cell the cell volume is obtained from this pdf, placing 

the cell inside the bounds of normal steady growth between 0.2 and 0.4 fem- 

tolitres in volume. This potentially places cells within easy reach of division 

immediately after creation but does not give any real advantage to the cell. 

enviro.C:160:pd_ioposition=new ProbDist(-0.000002,0.000002) ; 

Receptors on the cell wall must be given a position, this pdf determines receptor 

positions relative to the cell for all cells - this same physical distribution is given 

to all cells to reduce search space and increase the chance of viability across 

generations. 

enviro.C:344:sim_time_delta=0.02; 

enviro.C:346:secondsperround=1.0; 

Fined grained and course grained iteration times, sim_time_delta increments 

simulation time for each fine grained intra cell iteration. On reaching seconds- 

perround the process synchronises with the environment. As a result, these 

parameters are simulation wide and set the possible resolution on the one hand 
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and sensitivity to cluster network congestion and load balancing on the other 

hand. 

enviro.C:356:transcription_rate=0.025; 

The RNA polymerase doing the transcribing moves at a specific speed, here 

it is specific in genes per second, adjusted to account for the size difference 

between COSMIC genes and real genes. The end result is transcription at 

approximately the correct speed. 

enviro.C:362:transcription_matter=0; 

A potential cost in terms of matter was placed on transcription to provide 

selection pressure against futile cycles. Calibration was a problem and so this 

constraint was never used. 

enviro.C:367:chemotaxis_rate=0 .000025/8*secondsperround; 

Chemotaxis is computed as a vector, combining all the forces of each flagella. 

The maximum swimming speed is known to be 25 uM per second and this 

maximum is taken as the maximum the vector can total to, hence the division 

by 8 flagella. The real mechanism of chemotaxis [CP97] is chemical and so 

beyond the scope of COSMIC. 

enviro.C:371:f_maxgrowth_rate=0.0205/0.4444; 

enviro.C:372:f_maxyield_ratio=0. 4444; 

enviro.C:373:f_saturation_const=0.00234; 

enviro.C:376:f_maintainance_rate=5.791e-15; 

enviro.C:379:f£_volume2drymass=290; 

Cell growth parameters based on [KBW98, NTT96, KW82]. These reduce cell 

growth over time to a function based on available glucose substrate. As a result 

they fit exactly with the requirement of COSMIC. 

enviro.C:382:chemotaxis_rate*=1; 
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Reducing this value gives the opportunity to increase the effective surface area 

of the environment without also having to increase the resolution. Increas- 

ing the resolution is best avoided as modifying the environment involves sub- 

tracting a floating point number from a 2 dimensional array of floating point 

numbers, this will take a long time with a high resolution. 

enviro.C:393: matrixenergy_rate=1e-6*secondsperround ; 

This parameter sets the glucose replenishment rate to ensure the environment 

contains some glucose. This ultimately sets the size of exponential population 

growth, higher values ensuring the population can grow further before lack 

of nutrients limits growth. The exponential growth is mostly created by the 

initial environment, as this value would need to increase exponentially as the 

population explodes. 

enviro.C:400:map_glucose.init_uniform( 0.0002, 0.0002, 2500000, 

0.0, 0.0045, 0.0045 ) ) 

These group of parameters define the dimensions in meters, resolution in pixels 

per meter and glucose level in terms of minimum possible, maximum possible 

and initial value, all in nanograms/litre. This amount to initialising the envi- 

ronment to 500x500 pixels with absolute limits of 0.0 to 200 uM with bounded 

values of 0.0 to 0.0045 and a value of 0.0045 nanagrames/litre all over. 

enzymerates.C:25:#define HALF 0.0058 

Gene product half life is defined by this value and by the follow tables. This 

sets the half life to around 2 minutes. It is known that gene product half life 

varies across gene product species, some lasting hours, some lasting minutes. 

For simulation purposes a brief half-life was chosen to reduce delays in the 

pathway cascade, making reaction to the environment potentially faster and 

so consuming less computing power. The more long lived gene products are of 

no interest to this simulation, for the most part they are not involved in rapid 

response cascades. 
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Three tables describe the reaction rates for the set of interactions, the above 

HALF is used by most of them, some have been reduced. Rather than reproduce 

them here, these are the same matrices as found in figures 4.2, 4.8.2 and 4.8.3. 

world.C:170:createinitialcells(environ, 20 ) ) 

This parameter sets the initial population size. This is largely the result of 

the implementation generating one line of output per iteration per cell, so was 

large enough for testing but small enough to easily fit all the cell output in one 

small terminal window. There has never been any reason to change this figure 

as it also fitted well with the number of CPUs in the cluster. 

world.C:216:while( environ->ms_cells.size()<20 ) 

This parameter sets the minimum population size, which is essential for the 

initial searching phase that looks for a viable cell. For the same reasons as the 

parameter above, this figure was chosen for ease of use and never changed. 

world.C:415:if(((long long)rint(environ->sim_time) % 2000) !=0) 

This parameter sets the state saving interval of the entire simulation. Should 

COSMIC fail due to a failed node in the cluster, the simulation can be restarted 

from any one of these save points. 

world.C:555:} while( environ->sim_time<500000.0 

Finally, this parameter sets the total maximum run time in simulated seconds. 

Though it is not required that this time actually be reached. 

7.3 The Data Sets 

There have been at least 10 experiments testing the environment, popula- 

tion growth, survival times and parallelisation. These simulations were orig- 

inally based solely on the one machine. Later the simulation was run on the 

Computer Science farm, and starting with runs021102 the simulation used a 
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Figure 7.1: Simulation runs archived for later analysis. 

dedicated cluster. These simulation runs are tabulated in figure 7.3. There 

was also a large number of experiments before there was any useful recording, 

these were to test the interaction paths and made use of what are now the 

control variables above. 

As each run was made, errors were found and the simulation evolved, re- 

moving artefacts of the simulation process and some more standard errors. As 

can be seen from the table above, all runs took a significant amount of time to 

compute, usually to the point that the sought after answer was known. Before 

hand there were many many more runs but constraints on storage space mean 

that only the more recent and therefore the most error free remain. 

Simulated time is a function of cell complexity, number of cells and obvi- 

ously total simulation time. Short simulations seem more effective than long 

simulations, this is simply a result of longer running simulations containing 

more cells, all simulation runs go through a phase of rapid simulation, but 

once viable cells are found the pace slows rapidly. It should be noted that a 

change in the cluster hardware significantly changed the ratio of real and simu- 

lated time, on the order of 1.8 per machine and with more machines. The real 

simulation time for runs before the large cluster have been reduced to better 

reflect the time it would have taken on the large cluster. 

Simulated time was overall a little disappointing, in a completely realis- 

tic environment there is little opportunity for cells to evolve in such a short 

time frame. Fortunately this was expected and provision to better guide the 
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evolution process was made early on. Parallelisation in chapter 5 is part of 

the answer, using viability heuristics, limiting cell numbers and putting costs 

on cell interactions and activities are other avenues. The latter two were not 

used, all references described the cost of interactions as negligible. Limiting cell 

numbers seems too artificial, with or without some kind of elitist strategy. The 

two most important qualities were parallelisation, and the viability heuristic. 

Limiting cell numbers would have a confounding effect on interpreting results 

and so it was felt better to allow the simulation to slow and wait longer for 

reliable results. 

The first two data sets show rapid simulated time for short simulation 

duration, this is a direct result of the cells never reaching an exponential state, 

for the most part there were 20 cells at any one time over the course of these 

two simulation. With the problem isolated and corrected all other data sets 

went exponential at some stage and so have much lower total simulated times. 

Totalling the cells produced by each simulation gives some idea of simula- 

tion size and cell lineage success against whatever restrictions imposed by the 

environment. Each division process creates two daughters, and initialisation of 

a new cell to maintain a population of 20 creates one cell; this value is the total 

of both. For all available figures new cells account for around 150 of that total, 

cell division was the main mechanism for growth and so there were major cell 

lineages all containing similar genetic codes. 

Initial simulation success can be seen from peak cell populations, before suc- 

cess can be measured in terms of finding glucose gradients it must be measured 

in terms of growth. These figures and more convincingly the charts demon- 

strate this success in a limiting environment. The high peak of run020820 

came about with an unlimited environment to test for exponential growth. 

Dataset size is given here as a guide to the shear size of the simulation, the 

individual approach creates this potential problem. Fortunately this raw data 

can be mined using a set a scripts to produce more focused data. It might be 

expected that size correlates with total cell numbers, as the data is compressed 

there will be variation in size actually used simply through some data sets being 
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Figure 7.2: First archived simulation result. The vertical axis represents the 
total number of cells in the simulation, the horizontal axis represents time in 

simulation seconds. 

more compressible, maybe the most popular cell line was also quite active in 

some simulations. For instance, run020205 compressed 546Gbyte to 93Gbyte, 

whereas run021102 compressed 65Gbyte to 10Gbyte. Even with these large 

averages there was still a significant variance in compression ratios. 

7.4 Simulation run020501 

This section covers the finding of the first simulation that was recorded 

and archived. It was run over the period 01/05/02 -16/05/02 and is shown in 

figure 7.2. It was planned to run for a few days but was left running longer 

after some cells looked promising. Note the naming scheme of this section 

(and those that follow) is based on the date the simulation was executed, as 

described in section 5.7. 
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The main focus of this simulation was to increase the environment replen- 

ishment rate from 0 to fast, as previously all cells died off. The result of 

this was that the environment is replenished fast enough to keep up, but not 

so fast that a cell can stay in the same place. However, the cells still don’t 

proliferate, they divide for a short while but even better genomes always die 

out. The parameters used for this simulation were the same as above, but for 

the addition of energy parameters that were later removed. The next step was 

then to try splitting enzyme numbers 100/100 rather than 50/50 when a cell 

divides. 

Looking over the resultant data, such as some successful cells (0357, 0415), 

it seems they fail because the cytoplasm division takes away important proteins 

that don’t exist in the new cell in enough numbers to sustain it. 

Cell 0357 leads to 7 cells, but at its height (time window 19420-13815) with 

6 cells existing over 1815 iterations, they then all die out with 29 iterations. 

Cell 0357 had regular connections with the environment until some time after 

the last division, when it lost connection with both inputs and outputs and the 

enzyme population went into rapid decline only limited by enzyme half life, the 

cell was killed through lack of enzyme population. 0386 is 357’s first daughter 

that lasts 1820 iterations before dying, the status shows the enzyme population 

recovered slightly but then faded away in two falls, at the end of the first fall 

the connection to the environment was lost, by the end of the second fall there 

were no enzymes remaining. 

0411 is the daughter after 0386 and was among the last of this line to die off 

as well as having two daughter of its own. The general status graph shows the 

cause of death identical to 0357, at a point some 1000 iterations after division 

an enzyme population of 5000 enzymes declines at the maximum rate to 0, at 

the start of the decline the connection to the environment is lost. Cell 0411 

confirms division timing, the cell is clearly moving at high speed and so is 

growing at approximately maximum rate. Division occurs at 1500 iterations, 

or 25 minutes. 

In the 0415 case, the cell population is sustained but the connection to the 
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input and later the output is lost, forcing COSMIC to kill it. 0464 (descendant 

of 0415) died for the same reason, though the protein population was diving 

regardless. The cell halved and shortly after it lost its connection to input 

receptors, then shortly after to lost any connection to the output receptors. 

Cell 0481 (descendant of 0464) was identical to 0464. 

Cell 0143 was very successful, though had for some reason gone unnoticed 

until much later. This one cell lead to 12 offspring over a maximum generation 

depth of 6. This result pointed out the need for more checking, to find out why 

it proved so successful but then died. In light of p.d.f. problem and the divide 

direction problem, it is presumed that this one cell was very inactive both in 

motility and transcription, making it divide quickly enough to survive the cell 

division process. 

7.5 Simulation run020516 

This section covers the finding of the partially recorded simulation, made 

over the period 16/05/02 -22/05/02. The main focus of this simulation was 

to increase the cell divergence angle of divided cells as a test if it improves 

life time. The divergence angle comes from a cell division, cells are initialised 

with a random orientation but at cell division the new cell must be given a 

new direction. This is based on the parent orientation, the parent orientation 

is incremented by this value and the new cell is set to the parent orientation 

minus this angle. Also, both cells offspring receive 100% of the parent cells 

contents. The parameters used for this simulation were the same as above, but 

partialdivide flag being set to false. 

As shown in figure 7.3 this had no effect, suggesting the problem is else- 

where. Without further analysis of the resultant data set, it was noticed that 

all daughter receive the same PDF set and initial seed as their parents. Given 

the same initial conditions and the same random events the daughter cell is 

destined to follow the exact same execution path as the parent. This does not 

entirely explain the failure as good parents should lead to good daughter and 
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Figure 7.3: Early failed simulation, parental PDFs were passed in error to 

the daughter and so made the daughter cell effectively the same. The vertical 

axis represents the total number of cells in the simulation, the horizontal axis 

represents time in simulation seconds. 

so an overall growth, albeit at a reduced growth rate. 

7.6 Simulation run020602 

The need for further testing lead to run020602, which is the first simulation 

in which all the data is available even if some of that data used an output 

format no longer supported by the COSMIC data mining utilities, which gener- 

ate the various graphs and pictures. It took 3 attempts to run this simulation, 

finally covering the dates 06/06/02-10/06/02. The main focus here was to give 

each cell its own seed value and random number generator, the seed is based 

on the 8 digit cell id (which is here shown as 4 digits for brevity) and so is both 

random for each cell but deterministic should the simulation be run again with 
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Figure 7.4: Total number of cells per machine when simulation stopped. 

the same start conditions. 

The initial problem was one of file descriptors as discussed in chapter 5, 

brought about by running the simulation on a parallel machine for the first 

time. As the parallel machine was in fact a loosely coupled cluster of student 

access machines, the file descriptor problem was much worse than it would 

otherwise as been. Of course, the alternative viewpoint was it being a good 

test of the COSMIC implementation. 

No parameters were changed as this was essentially a bug fix. Both parent 

and daughter cell still receive a full set of enzymes as in the previous run, i.e. 

Gene products are not shared between them but copied to the new daughter 

cell. 

While running the simulation for the third time, the host machine ran out 

of hard drive space. Storage space was then recovered but the result was taken 

as it stood. This run stopped on iteration 42150 with 154 cells, cell density per 

machine is given in figure 7.6. Notice cell load is relatively evenly distributed 

among the machines. 

The overall result then is a successful simulation, having found a cell that 
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Figure 7.5: First successful simulation showing cell growth and division. This 

simulation was also the first multi-machine parallel simulation. 

fits the initial viability criteria and reproduced that cell to produce a large 

lineage that takes over the environment and creates a self induced limit on 

growth rate. As shown in figure 7.5 and unlike figure 7.3 we can see a char- 

acteristic exponential growth curve followed by a slowing down as the glucose 

was consumed. 

This was also a success for the parallel implementation, which showed that 

it worked well enough to support a simulation of this size at a reasonable 

efficiency - although quantitative efficiency data was not yet recorded it could 

be sampled, this and the numbers of cells per machine suggested efficiency can 

be high at least some of the time. 

7.7 Simulation run020610 

Following the success of the previous simulation, that is success in terms of 

the population increasing, the obvious next step was to run the simulation again 

but with the sharing of enzymes at cell division enabled (partialdivide=True). 
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This was a return to the normal mode of operation and will provide evidence 

that the PDF initialisation bug was the root cause of cell failure. 

The simulation was then allowed to run for 2 hours short of 8 days. Unlike 

when using the same PDFs, these cells proliferate once a good cell is found. 

Only around two successful lineages where created and then these took over. It 

would seem exponential growth does not show as expected, the large effect of 

each cell on the environment («10° increase in glucose usage) has a self limiting 

effect on the overall growth rate - the net effect looks effectively linear, from 

a flat search phase, to a linear increase, to a slight boom-bust cycle once the 

environment reaches saturation. 

The difference between this and the previous run can easily be considered a 

result of the partialdivide flag. This run, shown in figure 7.6, has the same 

linear curve over a longer time frame, 460 minutes to create 115 new cells, 

previously 145 minutes to create 100 cells. The slower growth rate is the result 

of a higher failure rate in cell division, caused by a brittle genetic pathway. 

This can also be seen in earlier runs as brief spikes, these lineages achieve a 

rapid growth and then an instantaneous death. The effect of division can also 

be seen in the shape of the population increase, run020602 is continuously 

increasing during the linear increase phase yet run020610 increases overall but 

sometimes declines. 

7.8 Simulation run020623 

As the growth rate of the previous simulation was more linear than it should 

have been, it then seemed prudent to test if and how how quickly exponential 

growth could be found. In an unconstrained environment we would expect to 

see perfect exponential growth, even with the effects of brittle genetic pathways. 

The consume substrate control parameter (options. ConsumeSubstrate) was set 

to false and the simulation was run for three days. 

The result was clear exponential growth after the usual searching phase 

delay. The growth peaked at around 330 cells before the simulation had to be 
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Figure 7.6: Enabling 50:50 cytoplasm sharing at cell division. 

stopped - the server machine had run out of process space with there being so 

many incoming ssh connections from the Linux cluster. 

Since then some of this process overhead was removed to support around 

500 cells with ssh and 680 cells with NFS. Regardless of this limitation, 330 

cells was enough to see another artefact of the simulation, there were large 

fluctuations in the population size during the exponential growth as shown in 

figure 7.7. This can be explained by the synchrony of all cells, since a homoge- 

neous environment makes all cells grow at exactly the same rate. However it 

can be more thoroughly explained when considering the cell division process. 

At the end of the simulation there were 3 large lineages, the original cell of 

each would have its own size, but all cells coming from each parent would from 

then on be created at the same time, grow at the same rate and so divide at 

the same time. The end result being three sets of cells, the contents of each 

set being closely synchronised. What this does not explain is why so many 

cells die in the first place, it could simply be enzyme splitting bringing out the 

brittleness of the transcription network. 

Looking at the lineages generated, most consisted of only three cells, the 
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Figure 7.7: Unrestrained exponential growth, highlighting some kind of syn- 
chronisation artefact. 

original and two daughters that are either siblings or daughters and grand- 

daugthers. The five exceptions that accounted for the vast majority are cell 

0211 with 5 daughters, 0160 with 43, 0198 with 117, 0042 with 119 and 0143 

with 300. 

Looking at the lineage of cell 0143 in figure 7.9, the timing between boom 

and bust hardly changes as the general size of that lineage increases. Starting 

at time 9460, with 22 cells and then measuring the time between cycles we see 

the clear patten of table 7.8. 

The lineage of cell 0042 shows a near identical pattern in table 7.8. It starts 

at time 9068 with 2 cells and so less well established as lineage 0143 but this 

does not appear to matter. The lineage of cell 0198 in table 7.8 again shows 

the same pattern. This does however contain more noise as the decline time 

in the third row is clearly very different to the norm. This lineage started at 

time 11621 with 14 cells. 

But for the initial increase and one case of noise, the period of decline is the 

same for the whole of the three lineages. As this environment is unconstrained, 
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Figure 7.8: Timing differences between multiple peaks and troughs of 

run020623, cell lineage 0143 during unrestricted exponential growth. 
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Figure 7.9: Whole lineage of cell 0143 in run020623, with unexpected synchro- 

nised deaths. 
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Figure 7.10: Timing differences between multiple peaks and troughs of 

run020623, cell lineage 0042 during unrestricted exponential growth. 

    
    

    

    

      
    
      

Figure 7.11: Timing differences between multiple peaks and troughs of 

run020623, cell lineage 0198 during unrestricted exponential growth. 
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doubling will occur every 22 minutes or 1320 seconds. The dynamics of these 

growth cycles are then related to the doubling time. Looking more closely at 

the timing of deaths and division there is another pattern, cell division occurs 

at around the same time (+1 second) and then while all cells are growing at 

maximum speed some are killed because they are regardless considered non- 

viable. As a result, the population increase timespan is quite arbitrary as it 

only records the last cell death before the next growth cycle. Also, cell death 

can be from a previous growth cycle, so although it can be said that death 

occurred in that cycle, the cycle is an interpretation placed on the data to 

explain the pattern. Deaths happen all the time, but are more likely before 

the next cycle. 

This data does then allow us to calculate the best case growth rate in the 

presence of brittle genomes, what proportion of new cells will fail to themselves 

divide and hopefully some hint that evolution is increasing the survival rate 

and so working to avoid brittleness of genome. 

Figure 7.7 shows the same exponential growth but with a uniform time step. 

Figure 7.12 shows the same graph but with the vertical axes focused on the cell 

birth and death rates. As can be seen, the population increase is proportional 

to the total population size. This is expected since all cells live in a maximum 

growth environment. The death rate however appears linear, at the final time 

step there were 280 cells, and 80 deaths; at 275 minutes there were half as 

many deaths but 120 cells. If the cells are not dying at an increasing rate then 

genome evolution must be making the genomes less brittle. This is surprising 

considering the selective pressure is minimal. 

Non-viable cells are terminated after 8.33 minutes of continuous inactivity, 

inactivity occurring either immediately after division or some time after, fol- 

lowing the ‘death’ of an unmaintained enzyme. Cell termination must occur 

before cell division or the inactivity counter is reset and the cell gets another 

chance. Enzyme half-life is the only mechanism that can delay cell death. As 

this is around 2 minutes and the minimum doubling time is 22 minutes, there 

is a high probability that inactive cells are killed. We fail to see an exponential 
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Figure 7.12: Birth and death rates of run020623. 

increase in death rates and yet this mechanism must surely scale up, the only 

conclusion is then improved pathways, by this mechanism killing cells that are 

more brittle than others. 

At this point the host system had effectively run out of hard disk space, 

short of deleting results a new hard drive needed. This took some time, and in 

the mean time the results of first two simulation runs were lost to a mistake. 

While in temporary storage space they were deleted by the system, configured 

to delete temporary files over a week old. Unbeknown to this author, the 

data sets were considered old the moment they were moved, the move did not 

reset the access date and so in the early hours of the next morning the first 

two datasets (run020501 and run020516) were lost. It is at least fortunate that 

these where the earliest part of the testing phase and considering the significant 

bugs had the least value. 

With the arrival more hard dish space, the results of the previous run 

could then be considered. There was the option to either test the above with 

100/100 enzyme sharing and so compare the death rate, or modify the cell 

division criteria so that division varies around 0.4 fg, rather than exactly 0.4 
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fg in all cases. This would then test the probable cause of division synchrony. 

The latter option was chosen as the next experiment, this was considered much 

more of a bug than the expected loss of cells through brittleness. 

7.9 Simulation run020813 

Before this simulation a change to COSMIC was then needed, the thresh- 

old of cell division based on cell mass was changed so that each cell had an 

individual threshold of 0.4fg + 10%. This simulation was also looking at the 

“jiffies” computation algorithm (chapter 5) for better CPU time throttling to 

help COSMIC coexist with other users. 

This simulation ran for 6 days but revealed an over sight with substrate 

consumption, it was enabled and so there was no chance of exponential growth. 

It is quite likely this was deliberate; following complaints from the Linux farm 

administrator that these simulation were having a big impact on the users 

of those machines. This complicated the simulation, not only did it need to 

simulate but it must also be considerate of other users. This aspect was taken 

further in chapter 5. 

As this was then effectively a bug fixed COSMIC with a constrained en- 

vironment it gave a result in itself. As expected there was smoother growth 

and decline of the population, especially in line with environment nutrients. 

The result looks nothing like the previous run, the regular cycle in population 

size has gone. As this was a nutrient limited environment we can expect large 

differences in population size but would still expect the cycle to be present had 

the cause not been found and corrected. The only oddity comes from the popu- 

lation drop at time 500 minutes as shown in figure 7.13, this hardly shows when 

looking at the lineage, either at the whole population or at cell 0143. This cell 

accounted for 629 cells of the 915 cells tested. It is suspected that some genetic 

event had started to take effect at around time 440 minutes. Identifying all 

the deaths at this time and checking for a ancestor in which the death rates on 

both sides of the cell division are difficult. Would require writing a program 
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to count lineage depths, heights, deaths per lineage and then computing death 

ratios, and another to extract all the death events that occurred in that time 

frame, and another to combine the result and so pick out all cell death ratios at 

that time. There did not appear to be any way of doing this. What is known 

is that there were 81 deaths over this time span, 37 had a balanced tree, 7 were 

within 50% (looking at the relative balance of each lineage tree), 24 had an 

100% imbalance, 5 had an 200% imbalance, 7 had an 300% imbalance and only 

one had an 400% imbalance. 29 were right leaning, 15 were left leaning and 

37 were balanced. This one cell would suggest an insertion or deletion event 

caused a deleterious cell line that survived along side other cells for some time 

but eventually its brittleness came to show. This was cell 0225, the tenth in 

the lineage. Cell 0255 is the eleventh and had 5 offspring, cell 0536 had one 

offspring, so clearly the ratio by itself is misleading as the death of 6 cells is 

insignificant compared to the 81 deaths. There needs to be an algorithm that 

can trace back to a ancestor or the most common ancestor, that would seem 

to be the most reliable. Alas it is also not clear how this could be done, as it 

cannot be done by hand it certainly cannot be done by machine. 

This could potentially mean looking for nodes that lead to a lot more deaths 

than typical, yet only counting nodes from this window of time. The cleanest 

approach is then to plot the entire lineage for cell 0143 and rank each daughter 

cell based on the number of deaths that occurred in the time window. The 

effect is then a cumulative rise in the number of deaths going back to the 

original founding cell. It was hoped this would then show a knee point where 

a cell increased the death rate. As seen in figure 7.14 there is a knee when 

plotted on a logarithmic axis. The first cell after the knee is cell 0193 in the 

third generation with 94 deaths, before the knee is cell 0193 in the second 

generation with 140 deaths. How real this knee actually is is unclear, cell 

0193 in the second generation also lead to cell 0253 with 46 cumulative deaths. 

It could be that these three cells represent some random event and then the 

death rates amount to some meaningless summation of death rates, nearer the 

founding cell there are fewer summations summing larger figures and so the 
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Figure 7.13: Population of run020813. 

result is bound to be more noisy. 

The only solid conclusion then is the difficulty in finding a suitable metric 

regardless of having access to the complete data set. The compounding feature 

is the lack of any steady states with which to compare, this data set starts 

and represents an exponential rise in cell numbers so is as far from stable as is 

possible. 

7.10 Simulation run020820 

As the previous simulation was run with a constrained environment by 

mistake, this simulation corrects that mistake by giving the environment un- 

restricted substrate. A hardcoded limit of 200 cells was placed in the code to 

stop the simulation running away with itself as the last exponential run showed 

it was important to limit the impact on the machines it executes on. 

This simulation ran for 3 days, the limit of 200 cells was never acted on, the 

wrong variable was being compared and so the simulation went exponential. 

In the end around 490 cells were active, though very slowly as the server had 
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Figure 7.14: Ranked cell death counts for each cell of run020813. Counting 
only deaths between times 440 - 500 minutes, to coincide with the population 

drop at that time. 
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reached its maximum process limit and used around 1Gbyte of memory, ie. well 

into swap space and having to access the HD on every server(i.e. environment) 

iteration. PVM reset on the server took an hour to flush all the local processes 

and recover from this drain on resources. Nobody else was affected by this as 

the simulation was based on a single machine, had the 200 limit been acted on 

even this machine would have been able to cope. 

Looking at the growth in general in figure 7.15, it is clear there is still a 

synchronous event tying together the cells. The lineage charts show one cell line 

(cell 0143) dominated and the population chart shows a repetitive shape to the 

large rise, small wobble and fall. The small size of the fall is very different to 

past simulations, suggesting the pattern isn’t growth synchrony but something 

else, possibly related to the division of enzymes. Division of enzymes has been 

tested before, but at that time the growth synchrony problem existed in its 

main force - division at exactly >0.399 fg). To further ensure synchrony is not 

caused by division, the implementation was tested. The overall finding was 

that although the client cells never have their own cell division level, the server 

based minimal copies do and it is this copy that the division decision is based 

on. This proves that synchrony is caused by some other mechanism, there are 

no clues as to what that mechanism is. 

It was also considered that the cause could be too little variation of the di- 

vision level, resulting in the maximal cell growth rate always triggering division 

in the same round. But cell division is tested every second, which is a maxi- 

mum growth rate of 0.15 attol and that is much smaller than the individual 

variation of +20 al. 

7.11 Simulation run020905 

The lack of explanation then forced a search for a more serious problem. 

The simulation was run again with consumption of substrate (options. ConsumeSubstrate) 

enabled, to compare with run020813. This is because past runs have taken on 

a different shape of growth (run020813 seemed much smoother than past runs) 
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Figure 7.15: population of run020820 

despite the changes should have made no difference. 

Running COSMIC then turned out to be difficult, the PVM logs reported 

what it called bogus packets followed by messages saying that the server ma- 

chine was unreachable. These messages were recorded on the server machine so 

something was clearly wrong. Client machines seemed to lock up, normal pings 

of 0.6-9 msecs were replaced by pings of 5.0-6.0 msecs, with no possibility of 

logging on to further identify the problem. All things pointed to a kernel prob- 

lem and so before triggering the flaw a check was made on the kernel version 

and it showed it had been recently updated. Further emails confirmed it was 

an NFS kernel bug in the kernel running on the Linux farm and so COSMIC 

had to wait while the technical support staff found the solution. 

After the problem was resolved COSMIC ran without any of these messages 

in the logs and so ran reliably. This run was meant to compare run run020813 

(the first variable division run, in a dynamic environment), whose main feature 

was a period of mass death. 

As shown in figure 7.16 the overall growth rate was similar, as would be 

expected. However there was no large population drop, so in that sense this 
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run was very different in terms of outcome. As the cause of the drop was never 

found, the reason for the lack of a drop in what should be an identical run is 

also beyond the analysis here, only a detailed examination of the genetics can 

hope to give any reasons. 

There were also initial similarities, again there was only one dominate lin- 

eage and again cell 0143 was the founding cell. This seems to be a common 

event, given the same set of random numbers the simulation is determinis- 

tic enough to lead to the same cell number gaining the advantage, the non- 

deterministic effects come later and hence the overall divergence. 

In the mean time, the possibility of heterogeneous environments was added 

to the simulation. Rather than resupply all areas of the environment with the 

same glucose level, this allows a picture to make that specification. The lighter 

the area of picture the more that area of environment is replenished. All based 

on a linear pixel value to femtolitre mapping. 

Also added was the ability to scroll this replenishment map over time and 

so force cells to follow its movement, the scroll rate is specified at a sub map 

resolution giving cells time to evolve this skill. To this date this feature goes 

unused, a more complex environment was the not required when the data is so 

difficult to analysis at the moment. 

7.12 Simulation run021102 

Although run020905 did not match run020813 as it should have, this did 

not seem too much of a problem. Between simulations there are often minor 

changes that could change the output. It would never have been expected that 

such a big change could occur, but COSMIC is a complex system and it quickly 

becomes hard to say either way without running the same simulation again. 

Events outside of COSMIC meant there were other areas to test, a new cluster 

arrived that was initially dedicated to running COSMIC. 

On 02/11/02 COSMIC was tested on the cluster for the first time, it ran 

from around 4 days. In that time the simulation went through 48500 iterations 
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Figure 7.16: Population of run020905. 

(13 hours, 28 minutes) of simulation, much faster than the general purpose 

Linux farm ever managed. When taking into consideration only the speed 

increase the new cluster it is still far faster than the public Linux farm. The 

reasons for this are not clear, the cluster is faster per CPU on the order of 

25%, has slightly faster networking and is not held back by other users. NFS 

replaces ssh as the file transport but the trickle of data should never have 

made that a factor. In 4 days and with 26 CPUs the cluster simulated 13.5 

hours, on the general purpose farm this would have taken 11+ days, normally 

never actually getting there because some problem on the Linux farm forced a 

halt to the simulation. 

Ideally the simulations would need to use total cell complexity integrated 

with cell population for true accuracy, but that figure can itself only be es- 

timated. Instead we use days simulated as the main measure of work done. 

From run020905 we see took 21 days to simulate .42 days on the farm, and 

run021102 took 4 days to simulate 0.55 days on the cluster, this amounts to a 

per system speed increase of 6.88 and so nearly transforms a week of simula- 

tion into a day. This is despite simulation run020905 on the farm spending less 
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time with a large population, simulating fewer cells in total and ending with a 

smaller population. 

Looking at the systems themselves, the 26 dedicated CPUs need to be com- 

pared to the variable but always increasing number of CPUs used in the farm 

1 Counting the total number of machines used in the farm run reveals there 

were 10, one acting as host for both clients and server. Taking into account 

the number of machines reduces this to 2.6 and then taking into account the 

relative speed of the CPUs gives an overall increase of 2.1. 

The reason for the large speed increase would then seem to be mainly 

the larger number of nodes by a factor of 2.6 and the lack of other users 

slowing down the whole simulation by a factor of 2.1. Though this latter 

point also includes ssh overhead (especially when starting a new cell). The 

effect of starting a new cell is usually to pause for a second or more while that 

new cell starts and creates result files on the server by using ssh, NFS shows 

comparatively no pause. Considering the situation where there are many cell 

processes per node and so nodes are heavily loaded, even a pause of several 

seconds is insignificant as many cells will still be completing their iteration. So 

the effects of ssh seem minimal, only really showing in the initial stages of the 

simulation. 

Also notice how little difference the speed of the processor actually makes. 

Comparing the prices of complete systems and the speeds of CPUs shows that 

although speed might be doubling at a pace, the cost of a faster CPU does not 

justify the speed increase when compared to many slightly slower machines. 

The downside is of course that multiple machines requires parallel algorithms, 

more space and more infrastructure. 

Coming back to the simulation itself we see again in figure 7.17 the same 

characteristic shape of population growth and again the equally characteris- 

tic differences when given the same conditions. This time the growth rate is 

1 Always increasing since PVM ensures CPUs can’t be removed from a running simulation, 

only added. Machines were added when the load generated by other users had dropped to 

minimal. They could then be added under the assumption users would not choose to log 

into a heavily loaded machine. 
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Figure 7.17: Population of run021102 

arguably more aggressive. 

7.13 Simulation run030116 

As the parallel efficiency was deemed important enough to measure, this 

simulation was set up solely measure efficiency. An accurate measure meant 

simulating for a long time and so the simulation ran for 21 days in a restricted 

substrate environment. To calculate efficiency, a measure of jiffy usage per 

round for each client was converted to per second and passed back to the server. 

Under Linux there are 100 jiffies per second per CPU that the scheduler then 

distributes among processes wanting to run. COSMIC totals the jiffies used 

by each CPU, leading to an overall efficiency per CPU and then a total for the 

system as a whole can be calculated. This required some small additions to the 

existing code as system resource were previously unmonitored, largely because 

nothing can be done with the knowledge to aid the current simulation and so 

was not initially planned for. Not only is there no mechanism to pass more 

accurate load balancing hints to the PVM client spawning function, there is 
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no also way to change what turns out to be a bad load balance. 

Unfortunately, after the 21 days were up the data was examined to find 

there was a bug in the jiffies calculator that made the result useless, it was 

fixed and quickly restarted to obtain the real data. The bug was simply %d 

instead of %f in the final printf() call. Regardless of this error the results had 

to be kept in some form as they also represented the latest output and so were 

used in a publication. 

7.14 Simulation run030205 

This run represents the last recorded simulation of COSMIC. More have 

been made since then but there was never the storage space to really check the 

results. In hindsight it was a mistake to run this simulation for so long and 

so use so much storage space. The main focus was the same as the previous 

simulation, to calculate efficiency, but keeping it running also allowed a chance 

to see how far the system runs, long term evolution having always been cut 

short in the past by some constraint of the underlying hardware. 

COSMIC ran for just over a month, evaluated 3131 cells with around 410 

coexisting when the simulation was stopped. It generated 100 gig of compressed 

raw data. Enzyme numbers were in the ranges 25-260000 enzymes per cell with 

a mean of 10000 (figure 7.19). Genome sizes were in the ranges 70-20000 genes 

(figure 7.18), with a slow tendency to grow in size over the population ending 

with a mean of 800. This growth approximately follows the function: 

g= 1.9(t-400)/1700 +og 80 

A constant exponential growth despite gene insertion and deletion being unbi- 

ased. Even if there were a bias it should still be manifested as a linear increase. 

The length of this simulation should have allowed evolution the chance 

to show itself more strongly, the signs of this should then have shown in the 

external sensing and reactionary controls regardless of finding direct evidence of 

change amongst a cells regulation network. Looking at the total IO levels over 
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Figure 7.19: Enzyme distribution of run030205   
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Figure 7.20: IO event activity of run030205 
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Figure 7.21: Event activity of run030205 

time (figure 7.20) and the internal gene interactions over time (figure 7.21), the 

large number of failed offspring show cells can easily become damaged at cell 

division or possibly because of some mutation event. A successful cell needs to 

be motile, yet even when offspring of cell 0143 are dominating the population 

there are still many cells that suddenly don’t move or suddenly stop sensing 

their environment. 

These figures show overall IO activity diverged with cells increasingly mov- 

ing more but sensing their environment less. The reduction in receptor ac- 

tivity is to be expected as this also relates directly to the substrate in the 

environment, dividing the receptor(input) average by the substrate concentra- 
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tion should then remove this bias and so show any real effect. The rise in the 

output events is presumably a result of the artificial selection for more motile 

cells, the increase is slow, noisy and linear during the stable population growth 

phase. In an ideal simulation the increase in motility would be caused by an 

increase in receptor activity over and above the rate in which the environment 

depleted (the receptor/environment ratio), then showing evolution is heading 

toward the full goal. If that ratio is constant then the only cause remaining 

is simply the artificial selection pressure for motility. If it should be negative 

then that would surely indicate the evolutionary pressure is failing to act and 

evolution to the full goal is impossible. 

Note. The probability of receptor activity is based directly on the substrate 

concentration, with all other variables constant this relationship is linear. 

The ratio of receptor activity to environment substrate over time was then 

obtained and is presented in figure 7.22. The obvious pattern comes from 

there being so few events that each band is an integer number of events and 

as substrate decreases, receptor activity ratio is pushed higher. The bands 

make it clear that this increase is not an actual increase in receptor activity 

as a constant substrate would render each rise as an unchanging integer. The 

overall result then leads to the belief that the ratio is falling and the drop in 

receptor activity is real and so evolutionary pressure is not working to force 

input receptor use. 

However, what cannot be seen is the concentration of each band, there are 

too many data points to discern the concentration of each band. To give some 

idea, figure 7.23 shows figure 7.22 but only shows every 7th data point, here the 

band of ratio 0.2 comes out move clearly as a probable most popular average. 

There are few receptor events per cell in many cases and too many data points 

at the same time, so to be sure figure 7.24 shows the same information but sums 

together data points that occur at the same time. This should then average out 

the noisy receptor activity before the ratio is taken, making an average total 

of events per time frame that is lower than the maximum seen in figure 7.22 

and leave the substrate unchanged (as the average of identical numbers is the 
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Figure 7.22: Ratio of receptor events to substrate concentration over time 

only result). This avoids there being many cells having no receptor events and 

so showing as a ratio of 0 in a very crowded row, also reducing the average. 

Strangely this shows the opposite scenario where the effective receptor ac- 

tivity increase more than the environment substrate decreases and so leads 

to the opposite conclusion. There is always the chance that the data mining 

script written to extract this information may be in error, as might any of the 

many scripts, but in this case the effect would seem to be real. Showing the 

scattering of receptor activity was misleading because it was too crowded to 

highlight the most popular trend. From this then I would conclude there is 

reason to believe that both the receptor activity and motility is increasing over 

and above modulating factors and so the COSMIC system is evolving toward 

the intended goal. 

The original purpose of COSMIC was to test for evolution. What the 

previous sections have shown is that in a large computational system this 

can be hard to show. There are many reasons for this, the holistic approach 

to modelling, the size of the data sets, the possibility of modelling errors, 

both intended simplifications necessary for the model and unintended errors 

normally called bugs. There are also problems related to the hardware and 

software layers around the simulation, especially when using a parallel system. 
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These problems have demonstrated that this kind of model is both hard to write 

and takes a long time to implement, even when the simulation is seemingly well 

defined. These problems and the new questions brought about through running 

COSMIC have meant the original goal of finding evolution was in fact only one 

of many possible avenues to explore. 

7.15 Summary 

This chapter has brought together a large collection of output data from 

the COSMIC simulation, and demonstrated a thread of development that ulti- 

mately highlighted how ambitious the goals of COSMIC are. The single result 

was a simulation system that should have the ability to show evolution taking 

place, if only the data sets could be mined for that information. Considering 

the bigger picture, COSMIC has gone beyond most simulations in that it is 

also a generic framework of bacterial growth and development, taking it closer 

to wide range of applications and other scenarios. 

The problem of analysis was originally intended to be a central part of COS- 

MIC. As time progressed it became increasingly clear that COSMIC is not the 

whole solution to simulating evolution and maybe no single system can. The 

complex holistic interactions between genes, gene products and the changing 

genome they come from make this a topic of research in itself, as are efficient 

parallelisation, effective visualisation, implementation quality and modelling it- 

self. In the beginning it was thought partial solutions to the analysis problem 

already existed, of the solutions seen they are certainly not applicable inside a 

time frame of a few years work. 
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Chapter 8 

Conclusion 

8.1 History 

Many months were spent searching the literature looking for some optimi- 

sation approach that is novel, technically possible and would lead to something 

bigger rather than be a conclusion in itself. The idea of COSMIC had yet to be 

formed but it was clear that the fields of Genetic Algorithms, Evolutionary Al- 

gorithms, Evolutionary Strategies were already crowded and all had something 

in common, a simple abstract structure that used very few ideas to implement. 

At the same time, experiences with the biological field showed that you could 

never truly distil a real world system down to an abstraction and still have it 

perform in the same way, biological systems were always complex and never 

existed inside a black box with clear boundaries between model, input and 

output. 

During this same period the field of genetics seemed to be gaining public 

popularity, with the human genome nearing completion and the sequencing 

techniques that project had developed being more accessible. It appeared we 

were on the verge of a new age of genetics spurred on by the possibility of being 

able to read genetic information in enough detail to make some understanding 

possible. On reading the genetics literature, genetics seemed to be made of 

up of apparently simple structures and yet at the same time was so hard to 
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decipher and measure. There were also frank talks by biologists who said they 

cannot use a computer, that programming was a personal nightmare’. Seeing 

their computer based work that was no exaggeration, there is a clear difficulty 

in being expert in multiple areas. As genetics was obviously a transformed 

field, there was a gap in which a Computer Scientist could fit. 

There was however a choice of directions, optimisation or simulation. Hav- 

ing initially come from optimisation there was a clear application of using 

biological information to add something to the current evolutionary optimisa- 

tion algorithms. This seemed plausible, there were many possible evolutionary 

mechanisms available beyond mutation and crossover (which boldly takes no 

account of the difference of scale in crossing over chromosomes and crossing 

over parameters). - 

However, on reading of the No Free Lunch theorem [WM97] the future 

direction became much more biased. For me this amounted to saying there was 

no better global optimiser as each method is extremely application specific. As 

a result, there was no point in applying novel biological evolutionary operators 

when they can all be as good or bad as each other, each depending on the exact 

scenario. 

There was also the stark difference between evolution in biology and evo- 

lution for optimisation, and that is biological evolution never tries to optimise 

to an global optimum. Normally optimisation (or specialisation as it could be 

termed) is bad for the organism concerned, a change in environment leads to 

its death. Nature is instead a trier with infinite patience. 

These two points reinforced the need to move in the genetics direction. 

Especially the problem of dealing with measurement. Being based in Electrical 

Engineering some of their approaches seemed applicable, if reality cannot be 

measured directly then build a model and measure the model. Originally the 

thinking was of simulating genetic networks with neural networks, but rather 

than there being a clear input and output, the network would be a network 

of networks which ultimately fed back into itself. Again this came from an 

1Often publicly stated by biologists at multidisciplinary conferences such as IPCAT and 

MIPNETS. 
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engineering viewpoint. As neural networks take a long time to train, it was 

also thought that the sub-networks should be predefined units having some 

known function. This approach had its advantages of being clear and abstract, 

but at the same time had the disadvantage that the representation did not 

really fit with known genetics. There seems to be a better analogy to brain 

function, with higher and lower levels. 

The deep-seated belief that to be a reasonable model it also had to be 

simple meant the simplest organism possible had to be used, this was not the 

time for considering brain function, or even familiar animals. 

The ideas of neural networks remained while it became clear that bacte- 

rial genetics and optional transcription could be considered in the same way. 

The best choice for a model organism was clearly E.coli, being comparatively 

simple but also one of the most widely researched organisms. In the context 

of the above neural networks approach, here the higher level functions define 

themselves through evolution rather than being defined before hand. It was 

at this point that the outline of an internal COSMIC cell was created, with a 

view to evolving optional transcription pathways on the genome. 

8.2 The COSMIC Model 

COSMIC needed to be designed in such a way that would be an open-ended 

genetic simulation. Firstly it needed a representation that was extremely open 

ended to support evolution, but at the same time was machine readable. From 

this came the idea of genes having an encoding like real genes but also a high 

level meaning that essentially told the reader that it was a gene of some kind. 

Secondly it needed some form of gene product that avoids the protein folding 

problem but still makes gene products specific to some genes, and those rela- 

tionships had to be stable over time and across generations if evolution was 

to be possible. This came back to the low level encoding placed on each gene, 

matching genes to gene products based on a deterministic matching rule gives 

a stable relationship that can be inherited across generations. Thirdly, this 
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same representation could also support transcription by having a transcription 

mechanism which was sensitive to gene and gene product type, effectively im- 

plementing promoter sites, RNA polymerase and sigma factors. Yet another 

relationship could then easily represent the action of repressors and operator 

control genes. Lastly, the actions of these could also be modelled on this rep- 

resentation using stochastic functions that take parameters directly from the 

gene and gene products. 

This early COSMIC model appeared to have the potential for exploring 

many genetic issues of real bacteria, largely evolution of the genome and adap- 

tation to adverse conditions. Simulating evolution is such detail is an extremely 

novel approach, nobody has tried to couple evolution to the fine grained sim- 

ulator of genetics. As a result, COSMIC then focused on this area by also 

including all the other aspects that were required. 

In simulating evolution it is clear that evolution takes place in the cell 

but needs something to push it there, this is true for all of us and is the 

space where we live. A bacterial environment is not so complex. As BacSim 

[KBW98] showed, bacteria might only require one source of food, and if they 

share that environment then they are also effectively in competition with each 

other for that food. Looking at BacSim also showed that bacterial growth with 

competition could also be considered a kind of roulette wheel selection as found 

in genetic algorithms. BacSim had no concept of genetics, but in the context 

of COSMIC, the cells that grow faster will divide sooner and so pass on their 

genetic information more often. 

The required step was to link the transcriptional network to the environ- 

ment, and this was done using receptors on the cell wall that sensed substrate 

(food) concentration, and other receptors that activate a swimming action. 

This stage then forms a feedback loop in which the cells use their genetic net- 

work to sense the environment and initiate an action. This is something of 

a departure from how real E.coli achieve motility, the process is chemically 

driven and random. These facts make realistic motility out of the scope of 

COSMIC and would massively increase computation time, when COSMIC is 
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already a highly computationally demanding application. This was a very nec- 

essary simplification. The incorporation of the environment and so linking it 

with genetics made COSMIC novel in another way, the interaction of multiple 

scales in the same model. This is new for genetics and the environment. 

With the addition of an environment was the chance to simulate evolution 

in a much more realistic way. Although still abstract there is much more detail 

in COSMIC than normally found. It was expected that powerful mutation 

operators could be applied to the genomes of each cell - transposons, sequence 

insertion, plasmids, bacteriophages, the latter making COSMIC a multi species 

simulation. Unfortunately the complexity and time involved in actually imple- 

menting the few paragraphs above meant most could not be implemented. 

Sequence insertion and deletion was implemented as a proof of concept, the 

others represent future work. Regardless of the type of evolutionary opera- 

tor, the current state of COSMIC still puts it well ahead of any other genetic 

simulation simply by combining some evolvability with genetics. 

In the beginning COSMIC was envisaged as a simulator of evolution, but it 

has become a framework for simulating bacteria-like genetics, one application 

of which is evolution. It was expected that sequence insertion and deletion 

should provide the cells and their genomes with enough adaptive ability to 

evolve the task of following substrate gradients. The evidence supporting this 

remains inconclusive and highlights how ambitious the COSMIC project is, 

and so how much of an achievement it was to take COSMIC this far. 

8.3 Outcomes 

Rather than finding an instance of evolution, the outcomes of COSMIC 

have become much more interesting, even though not always expected. This 

project has created the COSMIC framework, which is modular and would 

allow another similar model to be built, or the current COSMIC improved on. 

COSMIC was always considered a system that required additions, looking at 

biology there were always new processes to add, so COSMIC was written with 
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modularity and extendibility it mind. 

There is currently support from the DTI to port the COSMIC system to a 

Grid enabled cluster”, with option of free time on one of the countries largest 

clusters as well as time on a research companies cluster. The process of porting 

is expected to give the opportunity to further expand the scope of COSMIC, 

both by increasing cell numbers and making it more applicable to known bac- 

terial problems. 

There have been three publications [@PSW03a, GPSW03b, VGPSW04] de- 

rived from the output of COSMIC, the topics have been both in terms of 

simulating evolution and reducing simulation time to a practical level. Many 

more publications could come from COSMIC, the visualisation aspect has yet 

to be published as has the detailed cell model. Aspects of the transcription 

network representation are also worthy publication topics. 

8.4 Challenges 

In conceiving the COSMIC model there have been a significant number 

of challenging problems which have been overcome. Like so many aspects of 

carrying out a design, there were some problems that seemed to be solved 

only to find later that reality has more limitations than can accounted for by 

reasoning and design alone. 

The modelling of genetics is itself a major piece of work. COSMIC brings 

together the genes, optional transcription mechanism and the possibility of 

many kinds of mutation mechanism; all in a form that is computable, while 

also being a very good analogy to real bacterial mechanisms. Solving this 

challenge has meant COSMIC can then be applied to any similar problem. 

Combining the genetics with an environment was also a challenge that had 

to be solved in order to complete the feedback loop for evolution. Apart from 

cell population density averaging and substrate diffusion, the COSMIC model 

of the environment is just as complete as BacSim and yet effectively couples 

2DTI (e-Science support), reference THBB/008/00134C. 
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these two scales. 

Making COSMIC computable was another major challenge. Unlike any 

other known genetic level simulator, COSMIC was designed and implemented 

for a parallel machine, as it was clear computers are pitifully slow when com- 

pared to real world processes, even after simplification. This in fact created 

three challenges, actually implementing the system to some degree, making it 

efficient enough to be worth the added effort of using a parallel system and 

making COSMIC more robust in the light of reliability problems inherent in 

using clusters. 

With the detailed interactions occurring inside the cell, one of the unfore- 

seen problems was recording the data in a form that could later be retrieved. 

Not knowing the required resolution of output meant recording all data, and 

arranging the data so that it can be cross referenced to other data. The visu- 

alisations that appear throughout this work are all based on that data. The 

main problem is not knowing what was important, in an open-ended simulation 

such as COSMIC it cannot be seen before hand. As a result, the visualisations 

were created after some experience had been gained, but this cannot be taken 

to an extreme as past examples can be bad examples. The main experience 

gained from this is in designing simple textual file formats that are readable 

by common utilities, with a file format for each possible kind of output. Using 

bit stream compression then avoids the problem of recording unnecessary res- 

olution as it automatically removes redundancy. Recording the data was only 

one side of the storage task. Data also had to partitioned in a form that was 

accessible for years to come despite many other simulations. Recording also 

had to avoid underlying limitations of the file system. Experience showed the 

best indexing scheme, based on date, cell number and type of data. 

The final major challenge was obviously visualisation and analysis. This 

has been the biggest challenge of all, and in many respects will always be 

incomplete. This comes from COSMIC capturing much more than wet lab 

experiments can hope to capture. The various visualisations provide views of 

the simulation during its execution, with different visualisations for each scale. 
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In the context of real biology the data is not available to draw these diagrams, 

and so they do not exist. The COSMIC project had to find ways of extracting 

indicators from the many data files and translate them into something under- 

standable. This has been done but we then find that being understandable is 

not enough, and the data must be manually mined using yet more visualisa- 

tions that are highly specific to the question being asked. So, following this 

challenge we realise that the real challenge then is not to create visualisations 

but to create something that will easily create user specified visualisations. 

It was also soon realised that analysis was beyond the scope of the COS- 

MIC project even though it would have been a huge help in finding evidence 

of evolution. Of the mathematical methods researched they all made funda- 

mental assumptions that were not true of COSMIC. It could be that those 

methods were more generic than they appeared, if that is the case then they 

are themselves research topics. 

8.5 Complexity 

The Individual based modelling paradigm is used throughout the COSMIC 

simulation. This approach considers all elements of the system to be indi- 

viduals, with their own state. For COSMIC this means that the genes were 

individuals linked together with their own set of events at a given time. The 

gene products are also individuals that exist inside the cytoplasm of the cell, 

and interact with each other and with the genome on an individual by indi- 

vidual basis. At the level of the environment, all the cells are individuals with 

their own genomes and their own set of gene products, in their own position 

in the environment. 

It is a consequence of this that the COSMIC model had to use a parallel 

implementation, as even with careful design this requires a significant increase 

in computing resources. The advantage of this approach is that the simu- 

lation and the data sets are much richer in information than they would be 

if differential equations were used. Differential equations only give averages, 
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but we consider the individual variations to be very important. Using this 

approach means we could potentially track every interaction that ever occurs 

and consider if it represents a source of evolution. 

Another consequence has been the difficulty in understanding the inter- 

actions involved. We can watch a population of thousands, we can watch an 

individual, but it can easily be some other individual (be it cell or gene product) 

that is responsible for change. 

8.6 Future Work 

There are now many avenues which COSMIC can travel. As part of a 

separate project, COSMIC is currently being ported to Grid enabled cluster. 

Standards are converging on Grid so this would seem to be prudent. During 

that time it is also expected that the full COSMIC model will be published. 

Inclusion of the originally planned plasmids, phages and simple mutation 

are also welcome additions, as it is hoped these additional mechanisms will 

improve the chances of seeing evolution. 

There has always been an interest in taking COSMIC toward a more specific 

application, such as the modelling of biofilms at the genetic level or bacterial 

drug resistance. Each would required extensions to COSMIC but are quite 

possible. 

Finally, and has been said many times, visualisation and analysis present 

the next major hurdles to understanding what is happening in a COSMIC 

simulation. This is in both areas of visualisation based analysis methods and 

mathematical analysis methods. It is hard to see which would be the more 

fruitful. 

8.7 Final Word 

This material might seem far removed from typical engineering but in the 

long term it is impossible to say. In around 1936, Otto M. Schmitt completed 
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his doctoral thesis on Electronic Computer Simulation of the Nerve Action 

Impulse. Many years later he found those ideas have been incorporated into 

common place devices such as the Schmitt trigger, emitter-follower, the differ- 

ential amplifier and the heat pipe [Sch93]. This shows how simple ideas from a 

biological source can have huge applications in engineering, and any other field 

too. I do not claim that COSMIC will be seen in the same light, but do I do 

claim that many aspects of the COSMIC approach are useful for truly complex 

real world problems. 
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