
THE UNIVERSITY of LIVERPOOL

DEVELOPMENTS OF ANIMAL BEHAVIOUR

INSPIRED OPTIMISATION ALGORITHMS AND

THEIR APPLICATIONS

Thesis submitted in accordance with the

requirements of the University of Liverpool

for the degree of Doctor of Philosophy

in

Electrical Engineering and Electronics

by

Shan HE, B.Sc.(Eng.), M.Sc.(Eng.)

November 2006

DEVELOPMENTS OF ANIMAL BEHAVIOUR INSPIRED

OPTIMISATION ALGORITHMS AND THEIR APPLICATIONS

by

Shan HE

Copyright 2006

il

To my parents and family to whom | owe everything.

iil

Acknowledgements

First of all, I would like to thank my supervisor, Professor Q.H. Wu, not only

for his dedicated and thorough supervision, financial support and stimulating

discussions, but also for his patient guidance both in an academic and personal

level.

I would also like to thank Dr. Emmanuel Prempain, who severed as my

second supervisor during my first 3 years PhD study before moving to the

University of Leister. I shall always cherish his invaluable discussions and

suggestions. My heartfelt thanks also goes out to Professor Kai-Sheng Huang,

my undergraduate project supervisor, who always supports me with his kind

assistance.

My gratitude goes to all of my colleagues, especially Dr. Wenhu Tang, Dr.

JunQiu Feng, Mr. Zhen Lv and Dr. Sun Pu for their kind help throughout my

studies.

Finally, I am greatly indebted to my dear parents, for their encouragement,

patience, understanding and love. I dedicate this thesis to my parents for their

unwavering love and trust.

iv

Abstract

The thesis begins with a brief introduction to the study of animal behaviour,

which served as the inspiration for this study. Then a general introduction is

given to Natural Computation and Swarm Intelligence (SI), a natural compu-

tational paradigm inspired by animal behaviour. A question then is asked: is

Particle Swarm Optimiser (PSO), an optimisation algorithm which has been

well accepted as a SI algorithm, really a SI algorithm? In order to answer this

question, the relationship between SI, self-organisation and animal behaviour

is discussed. Then a new definition of SI is given; and a new concept, Animal

Behaviour inspired Optimisation (ABO), is proposed. An existing ABO algo-

rithms, PSO is described in detail and its relationship with animal behaviour

is revealed. Subsequently, the background and motivations of this research are

described.

A novel ABO algorithm, Group Search Optimiser (GSO), is proposed in this

thesis. Optimisation is analogous to the resource searching process of animals

in nature. The GSO algorithm employs the Producer-Scrounger (PS) model,

which is a generic animal social foraging model, as a framework. In order

to design optimum searching strategies under this framework, concepts and

strategies of resource searching from animal searching behaviour are adopted.

A large set of benchmark functions, including six 300-dimensional functions,

are used to assess the performance of the GSO algorithm. The differences

between the GSO and evolutionary algorithms and PSO are also discussed.

The study also covers the development of PSO based on the knowledge

gained from observing animal aggregation. The PSO algorithm is inspired by

the aggregation behaviour of animals such as the schooling of fish and the

flocking of birds. In this thesis, passive congregation, which is a type of biolog-

ical mechanism that allows animals to aggregate into groups, is introduced to

the standard PSO algorithm to improve its performance. Experimental results

from ten 30-dimensional benchmark functions are also presented in comparison

to three standard PSO variants.

The second part of the thesis is devoted to the applications of the ABO

algorithms to real-world problems. The first application is a novel artificial

neural network (ANN) training algorithm based on the GSO algorithm. In

this thesis, a GSO-based ANN (GSOANN) training algorithm is proposed to

overcome the difficulties faced by the traditional gradient-based ANN train-

ing algorithms. The performance of the GSOANN then is assessed using four

real-world classification problems and one forecasting problem. The second ap-

plication is mechanical design optimisation problems. Five problems including

one nonlinear programming benchmark function and four mechanical design

optimisation problems are successfully solved by the proposed algorithm. The

third engineering application of ABO algorithms is to Optimal Power Flow

(OPF) problems. The OPF problems are mixed-variable constrained optimi-

sation problem. In order to solve the OPF problems, the PSOPC and GSO

algorithms have been applied.

Finally, a systematic summary is presented, and future research work is

suggested.

vi

Contents

List of Figures
x

List of Tables
xiii

1 Introduction
1

1.1 Introduction to Animal Behaviour. ..----e steer ttt 1

1.2 Animal Behaviour Inspired Optimisation Algorithms ...-.-- 5

1.2.1 Natural computation... --- sss
6

1.2.2 Swarm intelligence, self-organisation and animal behaviour 7

1.2.3 Animal behaviour inspired optimisation algorithms .. . 12

1.2.4 Introduction to particle swarm optimiser ...-----° 13

1.3 Motivations and Objectives ..--- +s eset 21

14 Thesis Overview. ..-- +s eer r rc ttt 22

1.5 Contributions of Desoarcienae e be gm 24

16. Auto-bibliograpby .. 0-5-2 6s tert ree 26

1 Developments of Animal Behaviour Inspired Opti-

misation Algorithms
29

2 From Animal Social Searching Behaviour to Group Search Op-

timiser
30

Ode clntroduction ©. «2 eer Bo tT
31

9.2 Animal Social Searching Theory. ses ett
32

9.3 Group Search Optimiser ..--- +--+ s crt 34

9.4 Experimental Studies... +--+ ssc
38

O41) Vest functionas a). 4) Re 38

9.4.2 Experimental setting... -- sss 42

943 Uni-modal functions ..---
-ss ct 46

9.4.4 Multi-modal functions .------
-ssrt 50

BIE) Discussions kee se ecn ye ee et 69

iG Conclusions st) ye ers en SO 70

vii

3 Improve PSO with Passive Congregation
72

Sa AabeduCtOne v-<., > ar eee eo 72

3.2 Biological Forces Behind Animal Aggregations .-- +--+ s+") 74

33 Particle Swarm Optimiser with Passive Congregation ...--- 77

3.4 Experimental Celis uw Penh ara seen ey ap er Le Sees a 81

34.1 Test functions.
.-----ss cst ili peace

3.4.2 Experimental setting ----- +s
82

3.4.3 Experimental results and comparison ..-- +--+ +0 ° 84

a’ iscussion 2 GughartA ees os MRR SO 88

3.6. (Cenelasions w-. -/slviac seeesiyy * * e 90

2 Applications of Animal Behaviour Inspired Opti-

misation Algorithms to Real-world Problems

4 Neural Networks Training using Group Search Optimiser 97

Ay clabrodichOt «Aye. eh Rs et pee ite Te 98

42 GSO Based Training Algorithm for Neural Networks-.- - 101

4.3 Experimental Saris, Memento ee 2 ane 103

4.3.1 Experimental setting .----
- st 104

4.3.2 The classification problems... <2 sees 020% 0? 105

43.3 The forecasting problems... - + -- ss TO 122

Aeeneicisnee. «sis keDy merge eS EE Pune a 125

5 Application of PSO to Mechanical Design Optimisation Prob-

lems
126

mie Tntroduction 2... 05 2 es pr Seti 126

5.2 Formulation of Mechanical Design Optimisation Problems .. - 128

5.3. Improved Particle Swarm Optimiser cos.
 oe eer 130

5.3.1 Mixed-variable handling methods... +--+ s+ ' 130

5.3.2 Constraint handling methods «0...
 “8 26+ te ye 131

5.3.3 Improved particle swarm optimiser algorithm ..-.---: 133

5.4 Numerical Examples ..----- st
133

5.4.1 Example 1: Himmelblau’s function ..- +--+ sce ' 135

5.4.2 Example 2: spring dengue ste foe ee i 137

5.4.3 Example 3: pressure vessel design .--- +s - tt? 140

5.4.4 Example 4: welded beam design. .---- ssc ccc’ 142

5.4.5 Example 5: hydrostatic thrust bearing design .-----> 144

ER MECCRANIGIONA 5 + <) tges see #7 ce ie A eS 148

6 Solving Optimal Power Flow Problems with PSOPC and GSO 156

Rem Nomenclaturs io). Se NS Ue Spe ie sees 2 i 157

Bio Pntraddehion ek fen ee chase 9 gee Sa 158

vill

6.3 Optimal Power Flow Problem Formulation ..--
 +--+ +770

6.4 Numerical Results... .- 22sec rcs

6.4.1 IEEE 30-Bussystem ..--- ++ sett

6.4.2 IEEE 118-Bussystem...- +--+ esc

SiperConcsiond: + lees Sine ot ep Es

7 Conclusions

71 Introduction. «60 be ee ee ee To

v9 Suminary of Restlts,). i Peay Pat Se

7.3 Suggestions for Future Worle. absce
ss Se cue ae

A Global Optimisation Benchmark Functions

References

ix

List of Figures

1.1

1.2

1.3

1.4

2.4

2.2

2.3

2.4

2.9

2.6

2.7

2.8

24

2.10

2.11

Relationship between SI, SOO and ABO algorithms. .-----

SepHEAtIOHG ©. 4 - ues or tp eater ee

Scanning field in 3D space ig, osha 9 oe ee

The paths of five scroungers moving towards the producer (in

the center) in 5 iterations. ©...

Flowchart of the GSO algorithm. ..---
-- sect ttt

Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a) and (b) correspond to functions fi

and fo, respectively... - +--+ ert

Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a) and (b) correspond to functions fs

Bndafarrecboctively. 3 bon se rie at Meera OO ee

Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a) and (b) correspond to functions fs

and fe, respectively... + 2-2 secret

Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a) correspond to function fp fe 6 See:

Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a) and (b) correspond to functions fs

and fo, respectively... - +s - +s este

Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a) and (b) correspond to functions fio

prideya, respectively. -hy.te ves tet er se

Convergence results of GSso, GA and PSO. The results were

averaged over 50 runs. (a) and (b) correspond to functions fiz

and fas, respectively, - + - seer tee

Convergence results of Gso, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions fia-fis;

2.12 Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions fie-fiz;

respectively. 2... eee ee ett

2.13 Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions fis-fis,

pespectivelyic: ©. 6. on eo seein ee tee

2.14 Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions f20-f21,

respectively, . 2 56 6 be es oe ee

9.15 Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions f22-f23,

respectively... - eee ects

3.1 Interaction between particles and the best particle gbest.

3.2 Interactions of particles with passive congregation-.--

3.3 Search direction of the ith particle in EG cs, Net hase

3.4 Search direction of the ith particle in PSOPGi sal. ue ee ws

3.5 f, (Sphere function) ...--- +++ esse rrr tt

3.6 fz (Schwefel’s Problem Lirik. os Peg ee ee

3.7 fz (Schwefel’s Problem 2.21) .---- +--+ errr

3.8 f4 (Generalized Rosenbrock function)-.- +e ree

3.9 fs (Generalized Schwefel’s Problem 2.26) ...--- +++ 200

3.10 fg (Generalized Rastrigin’s function): .< . m+ + + 2am eh =

3.11 fy (Ackley’s function)... .-- +--+ seer errr

3.12 fs (Generalized Griewank function)--- +s sete es

3.13 fo (Penalized function P8) ..-- +--+ srr

3.14 fio (Penalized function BiG eek. ii oot ee Be es

4.1 A three-layer feed-forward ANN... -- ++ sss

42 Schematic diagram of GSO based ANN. ..-- +--+ ss:

43 Evolution of ANNs’ accuracy for the Wisconsin breast cancer

APR ete ie 3 he 2 a ee tt eye ee

4.4 Evolution of ANNs’ accuracy for the Pima Indian diabetes data

ETE Pe pee gird Pera awh es i me ent

45 Evolution of ANNs’ accuracy for the Cleveland heart disease

PARSE Ere fen SLE ence iar aie Ny aren ene Bate bn be woe

46 Evolution of ANNs’ accuracy for the Australian credit card as-

Becomment data. St... <9 supllaeelo sds Gmlzet = + ee et Be

4.7 Sunspot cycles from 1700 to 1987... --- +++

48 Evolution of ANNs’ accuracy for the forecasting of the sunspot

PAPUA EET a ein ee 5 es ees ams foe owes at Ed

4.9 Simulation results of a 96-year prediction using GSOANN (dashed

line) and the actual numbers (sold line). ...--. e+e ree

xl

65

68

114

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

Global minimum in the feasible space. --- +--+ 133

X; at iteration k would fly outside the feasible search space. . - 134

X; flies back to its previous position and starts a new search. . . 134

Spring Ges. cle wh als Ru ay eS 140

Pressure vessel design. .---- ssc
 141

Welded beam design. .----- sect t rc 142

hist bearing desigis . = as 2 2 ee te te et ta 145

Search processes of three algorithms for thrust bearing design

Gone cial A ret: va aeelacre Lome: cieF pines es 8 149

IEEE 30-bus System ..--- + ester
164

Search process of GSOOPF fot Gase lo ne ee et et 167

System voltage profile ..-- +--+ 168

Search process of GSOOPF for Case 2... - se ee tt et 168

Search process of GSOOPF for Case3 ..-- +e eet tte 170

List of Tables

9.1 Pseudo code for the GSO algorithm. .--- +--+ e ttt 40

22 The 23 benchmark functions, where n is the dimension of the

function, fmin is the global minimum value of the function. .- . Al

2.3 The6 300-dimensional multi-modal benchmark functions, where

n is the dimension of the function, 3 is the feasible search space,

and fmin is the global minimum value of the function. .--.--: 42

2.4 Number of function evaluations for function fi ~ fos ----- 45

2.5 Comparison among GSO with GA and PSO on benchmark func-

tions f; ~ fz. All results have been averaged over 50 runs. . - - 48

2.6 Comparison among GSO with CEP, FEP, CES and FES on

benchmark functions fi ~ fz. © +t tcc 49

2.7 Comparison among GSO with GA and PSO on benchmark func-

tions fg ~ fis- All results have been averaged over 50 rums.. - - 58

2.8 Comparison among GSO with CEP, FEP, CES and FES on

benchmark functions fe ~ fis. --- sec
59

9.9 Average fitness values of benchmark functions fis ~ fo3. All

results have been averaged over BO runs. .-- +8 2*++ eens 61

2.10 Comparison among GSO with CEP, FEP, CES and FES on

Henehmark functions fia © faa <r
62

2.11 Comparison among GSO with GA, PSO, EP and ES on bench-

marie functions fe(t) fae) ee
 69

3.1 Pseudocode for the PSOPC algorithm. ..-- +s sec 80

3.2 Basic characters of the test functions... 0+ 6 ee ee 83

3.3 Average fitness values of functions fi, fa, fe and fs with different

Pe ai Mees ag Sure ae
85

3.4 Average fitness value of Rastrigin (f9) function with different

linearly increasing ¢3..--- +--+ ssc ttt 85

3.5 Parameter Setting ..-- +--+ ett
86

3.6 Comparison between PSOPC, GSPSO, LSPSO, and CPSO. .. 93

xill

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

6.1

6.2

6.3

6.4

6.5

Two-tailed test on PSOPC, GSPSO, LSPSO, and CPSO. The

value of t with 49 degree of freedom is significant at a = 0.05

by a two-tailed test and to.025 = Oe ede Phos ee oes re ge tle

Error rate of GSOANN of the Wisconsin breast cancer data set.

Comparison between CGSOANN and other approaches in terms

of average testing error rate (%) on the Wisconsin breast cancer

RNa eee ltt hyy soa: Ree caer Saree eg

Error rate of GSOANN of the Pima diabetes disease data set.

Comparison between GSOANN and other approaches in terms

of average testing error rate (%) on the Pima diabetes disease

Werieecinr. 6 scot. yee ake kes Be

Error rate of GSOANN of the Cleveland heart disease data set.

Comparison between GSOANN and other approaches in terms

of average testing error rate (%) on the Cleveland heart disease

Fetes ae ded “x Rell dans eae Tar ee

Error rate of GSOANN of the Australian credit card assessment

eer ei ls. voy ene tue TAME ey ee Pe

Comparison between GSOANN and other approaches in terms

of average testing error rate (%) on the Australian credit card

nanesarment date seb. . vues er po RR et Ft ee

Accuracies of GSOANN of the sunspot forecasting problem.

Pseudo code for the improved PSO algorithm. ..------->

Optimal solution of Himmelblau’s function..-.----:-*-0°

Possible spring steel wire diameters... +--+ ss

Optimal solution of spring design for Case We. fs Ser Th ore

Optimal solution of spring design for Case Me Saas” ses

Optimal solution of pressure vessel design. --- +--+"

Optimal solution of welded beam design. .-----+ +s"

Values of n and C for various grades of oil. ..-- +--+ +0:

Optimal solution of thrust bearing design for Case 1, Coello and

Debis papers. 6s ee ee ett ce ee

Optimal solution of thrust bearing design for Case 2 and Sid-

Anis BOOK. 1 ls bl int ieee AE AES Sa

The best values of GSOOPF, PSOPCOPF, GAOPF, PSOOPF,

IFA 2], and EGA [3] for Case ee ce le ee eg

Optimal control yatiatlesoewises «a's <a ge 6 gor wget hs

The best values of GSOOPF for Case2.---
 +--+ ssc!

The best values of GSOOPF for Case3..---
 +++ sc

Best values of GSOOPF GAOPF and PSOOPF for the IEEE

(etue qysiemy.. «+. sare tm ee

xiv

107

108

mTlt

112

115

116

119

121

. 123

150

154

155

A.l

A.2
A.3

A.4

A.5

The 23 benchmark functions, where n is the dimension of the

function, S is the feasible search space, and fmin 1s the global

minimum value of the function. ©. +--+ ss 177

Kowalik’s Function fis ---- sec ct
181

Hartnar’e Function fig’ ¢- tle: Ae es Pt ee 182

Hartman’s Function foo... +s -scc
183

Shekel’s Family for, f22,f23 iene eae eee ss se sar ES’ 184

XV

Chapter 1

Introduction

This thesis is concerned with the development of animal behaviour in-

spired optimisation algorithms and their applications to engineering optimisa-

tion problems. This chapter explains the historical background and concepts of

animal behaviour; clarifies the relationship between animal behaviour, swarm

intelligence, and self-organisation; gives a new concept of animal behaviour

inspired optimisation; introduces the motivations behind this study; and sum-

marises of the contributions from this research. The layout of the thesis and

auto-bibliography are also given at the end of the chapter.

1.1. Introduction to Animal Behaviour

The scientific study of animal behaviour includes everything we can observe

the animals doing, from all the static postures and active movements to all the

noises and smells and the changes of colour and the shapes that characterise

animal life. The animals studied include single-celled organisms, invertebrates,

fish, amphibians, reptiles, birds, and mammals. The study of animal behaviour

involves a variety of approaches. In [4], Niko T inbergen, a pioneer ethologist,

asked four main questions about animal behaviour.

1. Why do animals respond to environment stimuli in a particular way?

2. Why do animals respond to internal stimuli in a particular way?

3. Why do some animals respond in one way and others in another way to

1.1 Introduction to Animal Behaviour
2

the same situation?

4. Why do animals of a particular species, or group, characteristically

behave in particular ways in particular situations?

These four questions actually reflect different facets of the research in ani-

mal behaviour. The first and the second questions are concerned with how do

psychological and physiological mechanisms control behaviour. In other words,

what are the psychological and physiological causes of behaviour? Researchers

interested in this question are mainly concerned with both the external stim-

uli that affect behaviour, and the internal hormonal and neural mechanisms

that control behaviour. The third question focuses on how these mechanisms

develop within individuals and the adaptive value of a behavioural trait. Re-

searchers try to answer the third question by investigating the functions of be-

haviour which include its immediate effects on animals and its adaptive value

in helping animals survive or reproduce successfully in a particular environ-

ment. They are also interested in how the development of behaviour pertains

to the ways in which behaviour changes over the lifetime of an animal, and how

these changes are affected by both genes and experience. The fourth question

can be paraphrased to ask, “How did behavioural traits originate and evolve in

animals?” To answer this question, researchers investigate the evolution of be-

haviour as it relates to the origins of behaviour patterns and how these change

over generations.

According to the Animal Behaviour Society, the research in animal be-

haviour can be roughly divided into four broad fields: ethology, comparative

psychology, behavioural ecology, and anthropology, although these disciplines

overlap greatly in their goals, interests, and methods. We will give a brief

introduction to these fields and discuss the similarity and differences between

them.

Ethology, according to the Merriam-Webster dictionary, is the scientific

and objective study of animal behaviour especially under natural conditions.

The research in ethology is concerned primarily with an animal’s genetically-

programmed behaviours often referred to as instincts. Actually, animal be-

pe le eee 2
Shan He

1.1 Introduction to Animal Behaviour
3

haviour, at its earlier stage, was usually limited to ethology. The origins of an-

imal behaviour can be traced back in the work of eighteenth century naturalists

such as Gilbert White (1720-1793) and Charles Leroy (1723-1789). However, it

was Charles Darwin (1809-1882) who laid the foundation of ethology. Because

of Darwin’s theory of natural selection, ethologists have been particularly con-

cerned with the evolution of behaviour and the understanding of behaviour

in terms of the theory of natural selection. The research of modern ethology

revolves around two important discoveries made by Nobel prize winner Kon-

rad Lornz (1903-1989). The first discovery was fixed action patterns (FAPs)

which are instinctive responses that would occur reliably in the presence of

identifiable stimuli. Much of the research focuses on problems in animal com-

munication which can be mediated by a few simple FAPs. Another important

discovery is imprinting, a specialized type of ” programmed learning” observed

in many higher animals such as young nidifugous birds and mammals. A cen-

tral concept complementary to imprinting is the innate release mechanism,

whereby organisms are genetically predisposed to be especially responsive to

certain stimuli such that imprinting will become fixed on the parents.

Comparative psychology refers to the study of the behaviour and mental

life of animals other than human beings. Comparative psychology is sometimes

referred to by the less often used but more accurate name of “animal psychol-

ogy”. Comparative psychology was founded in the late nineteenth century by

George Romanes (1849-1894), inspired by Charles Darwin, and was further

developed as an important discipline within academic psychology by the ex-

periments on instrumental learning of Edward L. Thorndike (1874-1949) and

on classical conditioning by Ivan Pavlov (1849-1936). Unlike ethology, compar-

ative psychology, which is also concerned with the regulation and functions of

behaviour, can be seen as a branch of psychology. Moreover, early comparative

psychologists concentrated on the study of learning and thus tended to look at

behaviour in artificial situations. Comparative psychology usually involves the

use of a comparative method in which similar studies are carried out on ani-

mals of different species, and the results interpreted in terms of their different

Shan He

1.1 Introduction to Animal Behaviour
4

11 introduction to An

phylogenetic or ecological backgrounds [5]. The research in comparative psy-

chology focuses on behaviour, cognition, perception, and social relationships of

diverse species from a comparative perspective.

Compared to ethology and comparative psychology, behavioural ecology is

a fairly new research area that evolved from ethology in the 1960s and early

1970s. Behavioural ecology is so named because “the way in which behaviour

contributes to survival and reproduction depends on ecology” [6]. As a branch of

evolutionary biology, behavioural ecology share the same interest in explaining

how a behavioural characteristic observed today is likely to have been shaped

by natural selection [7]. The evolutionary persistence of a trait depends upon

its contribution to the survival and reproduction of the individual carrying the

trait [7]. Therefore, the research in behavioural ecology focuses not only on

animals’ behaviours to survive by exploiting resource and avoiding predators,

but also on how the roles of behaviour contribute to reproductive success from

ecological and evolutionary perspectives. From this aspect, behavioural ecol-

ogy is dealing with Tinbergen’s fourth question as discussed above. Since an

sndividual animal’s behaviour is critically important to its ability to survive

and reproduce, natural selection will tend to result in animals that are, for

example, efficient foragers, efficient avoiders of predators, efficient copulators,

and efficient parents [8]. The behavioural strategies of all living animals should

be regarded as optimal to some degree [9].

To analyze behavioural strategies, behavioural ecology, as have other areas

of evolutionary biology, has employed a number of techniques that are used in

optimisation theory. The research focal points of behavioural ecology include:

(1) foraging behaviour; (2) territoriality, that is, behaviour to defend a given

territory against other animals, usually of the same species; and (3) group

living [7].

Anthropology is the scientific study of the origin, the behaviours, and the

physical, social, and cultural development of human beings. Anthropology

traditionally can be divided into four research fields:

1). physical anthropology, sometimes called biological anthropology, which

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 5

12 Anime peavie, 2

studies primate behaviour, human evolution, and population genetics;

2). cultural anthropology, usually called social anthropology in the United

Kingdom and now often known as socio-cultural anthropology. Cultural an-

thropologists study areas such as social networks, diffusion, social behaviour

and kinship patterns;

3). linguistic anthropology study areas include variations in language across

time and space, the social uses of language, and the relationship between lan-

guage and culture; and

4). archaeology, which studies the material remains of human societies.

In the past few decades, studies in animal behaviour have provided re-

searchers in artificial intelligence with fertile inspirations. For example, the

study of ethology, especially the discovery of fixed action patterns, inspired

behaviour-based robotics [10] [11] which uses relatively internal variable states

to model the environment. Recently, researchers have gleaned ideas from be-

havioural ecology to design optimisation algorithms. Ant foraging behaviour

has served as an inspiration of Ant Colony Optimiser (ACO) algorithm. Group

living behaviour, especially animal aggregation behaviour, inspired Particle

Swarm Optimiser. In the next section, we will give a comprehensive introduc-

tion to the animal behaviour inspired optimisation algorithms.

1.2 Animal Behaviour Inspired Optimisation

Algorithms

In this section, Natural Computation, which is an umbrella theme for many

artificial intelligence techniques including Swarm Intelligence (SI), is intro-

duced. Then a brief introduction to SI is given and its relationship to animal

behaviour and self-organisation is discussed. A new definition of SI is given and

a new concept, Animal Behaviour inspired Optimisation (ABO) Algorithms,

is proposed. Finally, particle swarm optimiser, an ABO algorithm studied in

this thesis, is described in detail.

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 6

1.2.1 Natural computation

Human beings have always drawn information and inspiration from nature

to guide their assessments of how things work in their world. One notable

example is the now ubiquitous Velcro, which was inspired by burrs. Swiss

amateur inventor, Georges de Mestral, while pondering how to rid his dog’s

hair of the clinging burrs, concluded that the burrs might be a good model for

fastening fabrics together. The result was that, in 1948, Velcro was invented.

For millions of years, nature has been doing a great job of solving complex

problems. Due to evolutionary pressure, natural systems were forced to come

up with highly optimised and efficient solutions to sustain life. Therefore, the

transfer of problem-solving approaches from lifeforms in nature to synthetic

constructs is helpful. There is a research field called biomimetics which aims

at applying methods and systems found in nature to the study and design of

engineering systems and modern technology. With the advance of computer

science, researchers have taken the idea further by simulating natural process

to solve computational problems in silico. This emerging field is called Natural

Computation.

According to 12], Natural Computation can be divided into three main

branches: 1) Computing inspired by nature, also known as natural computa-

tion which draws inspiration from nature to develop problem solving techniques

for complex problems; 2) The simulation and emulation of nature by means of

computing which aims at creating patterns, forms behaviours and organisms to

mimic various natural phenomena by synthetic processes, thus increasing our

understanding of nature and insights about computer models; and 3) Com-

puting with natural materials which uses natural materials to perform com-

putation for the purpose to substitute or supplement the current silicon-based

computers.

This study falls into the first branch, i.e., computing inspired by nature.

There are several paradigms in this branch:

e Evolutionary computation (EC)

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 7

e Artificial neural networks (ANNs)

e Artificial immune systems (AISs)

e Swarm intelligence (SI)

EC generally involves techniques that are used to implement mechanisms

inspired by evolution such as reproduction, mutation, recombination, natu-

ral selection and survival of the fittest. EC comprises Genetic Algorithms

(GAs), evolutionary programming, evolution strategy, genetic programming,

and learning classifier systems. In the past few decades, EC has been widely

used to solve various scientific and engineering problems [13], due to their sim-

plicity and flexibility [14]. ANNs were designed to simulate biological neural

networks. They have been used to model complex relationships between inputs

and outputs or to find patterns in data. AISs can be regarded as a type of

optimisation algorithm inspired by immune systems, especially vertebrate im-

mune systems. AISs are very similar to GAs but exploit the acquired immune

system’s characteristics of learning and memory to solve a problem. A detailed

introduction of SI are given in the following section.

1.2.2 Swarm intelligence, self-organisation and animal

behaviour

Current definitions of swarm intelligence

The expression “swarm intelligence” was coined by Beni and Wang in 1989

[15]. There is no commonly accepted definition of Swarm Intelligence (SI). As

defined in (16):

ST is “an artificial intelligence technique based around the study of collective

behavior in decentralized, self-organized systems.

From the book Swarm Intelligence: From Natural to Artificial Systems (17):

SI is “the property of a system whereby the collective behaviors of (unso-

phisticated) agents interacting locally with their environment cause coherent

functional global patterns to emerge.

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 8

Later, one of the authors E. Bonabeau proposed a new definition [18]:

SI is the collective behaviour that emerges from a group social insects of

which the team work is largely self-organised, and coordination arises from the

different usually primitive interactions among individuals.

As summarised in [16], SI systems typically consist of a population of agents

interacting with each other and with their environment using simple local rules.

Normally there is no centralized control to dictate how individual agents should

behave, rather, simple local interactions between such agents often lead to the

emergence of complex global behavior. Examples of SI systems can be found in

nature which include ant colonies, bird flocking, fish schooling, animal herding,

and bacteria molding.

According to [16] and also generally accepted by most of the researchers in

SI, the most prominent components of SI are Ant Colony Optimiser (ACO)

and Particle Swarm Optimiser (PSO), both of which are based on observa-

tions of collective animal behaviour. ACO is inspired by real ants’ foraging

behaviour. In the ACO algorithm, artificial ants build solutions by moving on

the problem graph and depositing artificial pheromone on the graph so that

future artificial ants can build better solutions [16]. ACO has been successfully

applied to a number of difficult optimisation problems, e.g., traveling salesman

problems. PSO is another well-known SI algorithm which glean ideas from

animal aggregation behaviour. Artificial life models, such as BOID, which can

mimic animal aggregation vividly, serve as the direct inspiration of PSO. In

the PSO algorithm, a set of individuals called particles fly in the N dimen-

sional space in order to find the global minimum. Each particle has its own

velocity determined by two factors, the best position it previously visited so

far and the best position found by its neightbours (the local version of PSO)

or the whole swarm (the global version of PSO). Then the individual updates

its position according to the velocity. The PSO algorithm is particularly at-

tractive to practitioners because it has only a few parameters to adjust. In

the past few years, the PSO algorithm has been successfully applied in many

areas. Although widely accepted as a SI algorithm by most of the researchers,

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 9

in this thesis, we ask:

Is a Particle Swarm Optimiser a real Swarm Intelligence algorithm?

Answer: the global version of PSO is not a SI algorithm.

Although there are different definitions of SI, there is one thing in common:

the characteristic of SI which distinguishes it from other natural computa-

tional techniques is self-organisation. There are many different definitions of

self-organisation across different disciplines from biology, cybernetics, thermo-

dynamics and mathematics. The traditional definition from cybernetics is that

the self-organising systems consist of four basic ingredients [19]:

1. Positive feedback

2. Negative feedback

3. Balance of exploitation and exploration

4. Multiple interactions

Since SI has its origin in biology, we are more interested in the definition

from a biological point of view. In [20], self-organisation is defined as:

“a, process in which a pattern at the global level of a system emerges solely

from numerous interactions among the lower-level components of the system.

Moreover, the rules specifying interactions among the system’s components are

executed using only local information, without reference to the global pattern. i

In self-organising biological systems, there is no guidance from well-informed

leaders, and no set of predetermined blueprints, recipes or templates to explic-

itly specify the pattern [20]. Instead, structure is as an emergent property of

the dynamic, local interactions among components in the system. ! The way in

which the individuals interact in SI and self-organising systems provides them

the advantages of robustness, flexibility and capability of scaling to enormous

sizes.
0 Ee

1'The environment is also a lower-level component in the systems as defined in [20].

ie | ee ee ne

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 10

From the description above, we can see the ACO algorithm satisfies the

criterion of self-organising systems. Each ant interacts locally with environment

by depositing artificial pheromone on the problem graph. Each ant chooses

routes determined by the pheromone laid by other ants. There is no central

control and external management of how an ant should move. The global

complex behaviour of finding optimal solutions emerges from ants’ simple local

interaction with environment.

The PSO algorithm is inspired by animal swarm behaviour, e.g., bird flock-

ing and fish schooling. The swarm behaviour is self-organising and emerges

from a few local interaction rules. However, for optimisation purpose, in the

PSO algorithm, informed members who possess the best position are used to

guide the whole swarm to the global minimum. It is unlikely for an individual

to recognise the best particle at the swarm level only based on local informa-

tion. Therefore, the best particle, especially in the global version, is “selected”

from the swarm [21], not emerged from local interactions between individuals

or between individuals and their environment. This “selection” is essentially

an external source to guide the whole swarm. Therefore, we argue that the

global version of PSO does not have the self-organising feature, and is not a

SI algorithm. For the local version of PSO, the best particle is taken from

some smaller number of adjacent particles of the population which is local and

can be regarded as local interactions, ¢.9., competitions, between individuals.

Therefore the local version of PSO is essentially a SI algorithm.

Swarm Intelligence = Self-organisation + Inspiration from animal

behaviour

Here we argue that the current definition of SI on Wikipedia is redun-

dant and inaccurate. As defined on Wikipedia, SI is “an artificial intelligence

technique based around the study of collective behavior in decentralised, self-

organised systems.” This definition has several problems. First of all, the

term “decentralized” actually is an important property of self-organised sys-

tems. Therefore, “decentralised” is redundant when accompanied with “self-

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 11

organised”. Secondly, the phrase “based around” only describes the SI’s theo-

retical foundation which is self-organised systems, but does not depict explicitly

the characteristic of SI. Moreover, besides the self-organising biological systems

such as swarm of social insects or flock of birds, examples of self-organised sys-

tems also include magnetism, crystallization, lasers, cellular autocatalysis in

chemical and physical systems [22]. However, from the American Heritage

Dictionary, the word “swarm” often referred to an aggregation of animals, e.9.,

ants and birds. Therefore, using only “self-organising” to define SI is too broad

and may cause confusion. One example is Cellular Evolutionary Algorithms

(CEAs) [23] which are also called diffusion or fine-grained models. CEAs are

based on a spatially distributed population in which genetic interactions may

only take place in a small neighborhood of each individual. The selection pro-

cess also takes place in a small set of adjacent individuals which is similar

to the local version of PSO. Therefore, CEAs are a self-organised system and

also strictly fit the current definition of SI. There are some other optimsation

algorithms that also possesses the self-organising feature, e.g., Stochastic dif-

fusion search (SDS) [24], Evolutionary Diffusion Optimisation (EDO) [25], etc.

However, to simply catergorise these algorithms as SI deviate the meaning of

swarm and may cause confusion.

So is the definition of SI in [17] better? If we compare this definition

to the definition of self-organisation above [20], it is not difficult to notice

that this definition of SI is indeed a simplified version of the definition of

self-organisation. E. Bonabeau’s new definition restricts the self-organisation

to social insects. However, with the invention of local version of PSO, this

definition is too narrow and cannot reflect current research in SI. Therefore,

we here propose a new definition of SI:

Swarm Intelligence is a self-organising artificial intelligence technique in-

spired by animal behaviour.

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 12

1.2.3 Animal behaviour inspired optimisation algorithms

In this thesis, we also coin a new term: Animal Behaviour inspired Optimi-

sation (ABO) which refers to a broad range of optimisation algorithms inspired

by animal behaviour. ABO not only includes SI algorithms but also includes

those algorithms who are inspired by animal behaviour but do not belong to SI

because of lack of self-organising characteristic. From this point of view, we can

add more algorithms recently developed to the category of ABO algorithms.

The first one is synthetic predator search (SPS) algorithm [26] which is

inspired by area-restricted searching behavior. It is not a population-based

algorithm like PSO. On the contrary, it is similar to simulated annealing which

is suitable for solving combinatorial optimisation problems.

Intra and intersociety interactions of animal societies, e.g., human and so-

cial insect societies, have been used to design a stochastic optimisation al-

gorithm, society and civilization algorithm (SCA) [27]. This algorithm was

proposed to solve single objective constrained optimisation problems based on

a formal society and the civilization model.

Bacteria, which are simple single-celled organisms, have been studied for

decades. Recently, bacterial foraging behavior, bacterial chemotaxis, has served

as the inspiration of two different stochastic optimisation algorithms. The first

one is bacterial chemotaxis (BC) algorithm, which was based on a bacterial

chemotaxis model [28]. The way of bacterial react chemoattractants in con-

centration gradients are employed to tackle continuous optimisation problems.

Ideals from animal behavior have also been incorporated to multi-objective

evolutionary algorithms. In [29], predator-prey model from animal behavior

has been used to approximate the shape of the Pareto-optimal set of multi-

objective optimisation problems.

In Chapter 2, we also proposed a new ABO algorithm, Group Search Op-

timiser (GSO), which is inspired by animal social foraging behaviour.

For those optimisation algorithms who are self-organising but are not in-

spired by animal behaviour, ¢.g., CEAs, SDS and EDO, we coined a new

term, Self-Organising Optimisation (SOO) algorithms. The relationship be-

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 13

tween ABO, SI and SOO is illustrated in Fig. 1.1.

Animal behavioural
ere

Self-organising

optimisation algorithms
Swarm Intelligence
ACO, Local PSO optimisation algorithms

(GSO, Global PSO, SPS |))“(CEAs, SDS, EDO)
SCA, BC)

Figure 1.1: Relationship between SI, SOO and ABO algorithms.

1.2.4 Introduction to particle swarm optimiser

Before introducing Particle Swarm Optimiser (PSO), we first give a brief

introduction to animal congregation behaviour and an Artificial Life (ALife)

model BOID which served as a direct inspiration of the PSO algorithm.

The study of animal aggregation and BIOD

An aggregation of animals, e.g., a Swarm of bees, a flock of birds, or a

school of fish always captures our attention. These congregations of animals

are coordinated behaviourally in space and time. They move synchronously

and wheel and twist in three-dimensional space, which inhibits our ability to

visually focus on an individual animal and causes us instead to focus on the

sum of the parts which comprises a cohesive whole [30].

In the research in animal aggregation, Parrish et. al. [30] proposed a set

of questions which can be roughly divided into three themes. The first one

deals with the basic conundrum of how a set of selfish individuals can act as a

cohesive, coherent whole. The questions included in this theme are:

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 14
14 Ane ees

e What are the costs and benefits of group membership?

e What information can, and do, individuals use?

e Do individuals have a sense of the whole?

e Is there an optimal group size?

The second theme addresses the group as whole. The questions include:

e Why are there discrete boundaries?

e What is the appropriate scale for assessing pattern?

e Why should pattern exist in three-dimensional aggregations?

The third theme integrates elements of the individual with those of the

group. The research attempts to define the whole as some function of the

parts. The theme includes the following questions:

e What are the assembly rules?

e Which properties of the group are epiphenomena and which are functional

properties that have selected for?

e Can models which predict epiphenomena be used to make predictions

about individual behaviour?

These questions are depicted as “big picture” questions in [30] which define

the research field of animal aggregation. These questions not only interest biol-

ogists but also computer scientists. For example, the first question in the third

theme, “What are the assembly rules?” also interests researchers in artificial

life. Here we will also present a brief introduction to an artificial life model

which employs several simple rules to generate complex, coordinated animal

motion such as bird flocks and fish schools. Actually, The Particle Swarm Op-

timiser algorithm was not directly inspired by animal aggregation; instead, it

also originated from an artificial life model: BIOD. Therefore, we will introduce

BIOD here in order to give background knowledge.

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 15

Artificial life, also known as alife or a-life, is the study of life through the

use of human-made analogs of living systems. Computer scientist Christopher

Langton coined the term when he held the first ”International Conference on

the Synthesis and Simulation of Living Systems” (otherwise known as Artifi-

cial Life I) at the Los Alamos National Laboratory in 1987. In 1986, Craig

Reynolds developed a computer model of coordinated animal motion such as

bird flocks and fish schools. Each individual of the model is called “boid” which

is maneuvered by three simple predefined behaviours:

Figure 1.2: Separation.

1. Separation: steer to avoid crowding local flockmates

2. Alignment: steer towards the average heading of local flockmates

3. Cohesion: steer to move toward the average position of local flockmates

Each boid reacts only to flockmates within a small space around itself. The

space is characterized by a distance, which is measured from the center of the

boid, and an angle, which is measured from the boid’s direction of flight. The

boid will ignore flockmates outside this local neighborhood.

With these simple behaviours and control mechanisms mentioned above,

complex yet organized group behaviour emerges. The group behaviour has a

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 16

Figure 1.3: Alignment.

Figure 1.4: Cohesion.

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 17

chaotic aspect since each individual’s simple behaviour is inherently nonlinear.

However, with the negative feedback provided by the behavioral controllers,

the group dynamics tend to be ordered. As a result, the group displays life-

like behaviours which are characterised by unpredictability over moderate time

scales.

The first and natural application of BOID is computer animation. In 1987,

Craig Reynolds with his coworkers at the Symbolics Graphics Division and

Whitney Demos Productions made the first computer animation film based on

BIOD: Stanley and Stella in: Breaking the Ice. This film was first shown at the

Electronic Theater at SIGGRAPH ’87. Since then, mainstream film makers

have adopted BOID to create computer animation. The first Hollywood film

that employed BIOD was Batman Returns directed by Tim Burton. Other

famous films that used BIOD include Disney’s “The Lion King” and “The

Hunchback of Notre Dame”.

Apart from computer animation, BIOD has many other applications and

also has spawned some novel research fields. One example is robotics. Directly

or indirectly inspired by BIOD, researchers in robotics adopted the concept of

group behaviour to control a group of robots. Other examples include the de-

sign of coordinated groups of aircraft or spacecraft and data visualization [31].

The most distinguished example is Particle Swarm Optimiser (PSO) which is

a continuous optimisation algorithm inspired by BOID. We will describe PSO

in detail in the following section.

Particle Swarm Optimiser (PSO)

PSO is a nonlinear stochastic optimisation technique developed by Dr.

Eberhart and Dr. Kennedy. As they mentioned in their seminal paper pub-

lished in 1995, “the method was discovered through simulation of a simplified

social model.” It was inspired by “computer simulations of various interpreta-

tions of the movement of organisms in a bird flock or fish school”, especially

BIOD. The population of PSO is called a swarm and each individual in the

population of PSO is called a particle. The i, particle at iteration k has the

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 18

following two attributes:

1) Acurrent position in an N-dimensional search space X* = (ak,...,0%,...,

ak), where r* € [ln, Un], 1 <7 < Ny ln and Un are lower and upper bounds for

the n, dimension, respectively.

2) A current velocity Vj*, VF = (vf,.--,Un->- ,vk,), which is bounded by

a maximum velocity Vé,, = (USax1s+:+>Uhexn:++)Umax,v) and a minimum

ek (yk k k
velocity V,5.. = (Uminr+ +> Uminyny«*- ,Unin,N):

In each iteration of PSO, the swarm is updated by the following equations

[32]:

VE = wVF + cyri(PE — X*) + cor(PE — x) (1.2.1)

Xe XP yee (1.2.2)

where P,; is the best previous position of the tin particle (also known as pbest).

According to the different definitions of Ps, there are two different versions

of PSO. If P, is the best position among all the particles in the swarm (also

known as gbest) such a version is called the global version. If P, is taken from

some smaller number of adjacent particles of the population (also known as

lbest) such a version is called the local version. P; and P, are given by the

following equations respectively:

oe PB; ‘fiX) zh, =

X,.? f(x) <F

P, € {Po, Phy ++»; Pm} f(Po) = min(f (Po): f(P1)s+ +++ f(Pm)) (1.2.4)

where f is the objective function, m < M and M is the total number of

particles, r; and r2 are elements from two uniform random sequences in the

range (0,1): r1 ~ U(0,1) ; r2 ~ U(0,1), and w is an inertia weight [33],

which is initialized typically in the range of [0,1]. A larger inertia weight

facilitates global exploration and a smaller inertia weight tends to facilitate

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 19

local exploration to fine-tune the current search area [34]. The variables c; and

cy are acceleration constants [35], which control how far a particle will move in

a single iteration.

Recent Advances in PSO

Since its introduction in 1995, PSO has been intensively studied by re-

searchers around the world. The current research trends can be categorized

into five parts: algorithms, topology, parameters, merging/combination with

other algorithms, and applications.

One of the important developments of the standard PSO algorithm is the

constriction factor approach PSO (CPSO), which was proposed by [36]. The

velocity of CPSO is updated by the following equation:

VE = y(VF + cyr1(PE — X*) + core(PF — X*)) (1.2.5)

where y is called a constriction factor, given by:

x= piet JF wherey =C; +2, p> 4 (1.2.6)

The CPSO ensures the convergence of the search procedures and can gener-

ate higher-quality solutions than the standard PSO with inertia weight on some

studied problems [37]. However, mathematically speaking, CPSO is equivalent

to standard PSO with an inertia weight.

In [38], van den Bergh and Engelbrecht proposed a cooperative PSO (COPSO).

There are two cooperative models in their paper. The first one is called CPSO-

S; which is a direct extension of Potter’s cooperative coevolutionary genetic

algorithm (CCGA). The n-dimensional search space is partitioned into n one-

dimensional search space. There are n swarms to optimise each partitioned

one-dimensional search space. The main difference between the COPSO and

the CCGA, as claimed by the authors, is that the optimisation process of a

PSO is driven by the social interaction of the individuals within that swarm

instead of exchange of genetic information. In contrast, “the CCGA is driven

Shan He

1.2 Animal Behaviour Inspired Optimisation Algorithms 20

by changes in genetic or behavioral traits within individuals of the popula-

tions”. The second model is CPSO-H,, which is a hybrid algorithm combines

the CPSO-S; and standard PSO. The results on five benchmark functions ob-

tained by these two COPSOs are excellent.

Ratnaweera et al. introduced a Self-Organizing hierarchical PSO with time-

varying acceleration coefficients (HPSO-TVAC) [39]. In addition to the time-

varying inertia, the authors also introduced time-varying acceleration coeffi-

cients. In order to preserve the diversity of the swarm, a mutation operator

was incorporated into PSO. Furthermore, in order to escape being trapped by

local minima, a mechanism called “self-organising hierarchy” was proposed.

Under this method, only the “social” part (P,) and the “cognitive” part (Pi)

of the particle swarm strategy are considered to estimate the new velocity of

each particle and particles are reinitialized whenever they are stagnated in the

search space.

Researchers also investigated the topology of PSO in order to improve its

performance. In [40], Mendes et al. propose a fully informed PSO algorithm

based on coefficient analysis. The authors argue that there is no assumption

that the best neighbor actually found a better region than the second-best

or third-best neighbors. They use the following topologies in their paper: All,

where all vertexes are connected to every other; Ring, where every vertex is con-

nected to two others; Four clusters, with four cliques connected among them-

selves by gateways; Pyramid, a triangular wire-frame pyramid, and Square,

which is a mesh where every vertex has four neighbors that wrap around on

the edges as a torus. They found that the algorithm with all the neighbors ofa

particle are involved in calculating the next movement has better performance

than original PSO using the previous best positions.

PSO has also been extended to handle multi-objective optimisation [41].

By incorporating Pareto dominance into PSO, the algorithm stores the non-

dominated vectors found so far in a second population of particles. Then these

vectors will be used by the primary population of particles to update their

velocities. In order to generate well-distributed Pareto fronts, an adaptive grid

Shan He

1.3 Motivations and Objectives 21

is also introduced. In order to enhance the exploratory capabilities, mutation

operators are employed to mutate both the particles and their dynamic ranges.

In recent years, there are more and more applications of PSO to engineering

and scientific optimisation problems. For example, PSO has been employed to

tackle optimisation problems in power systems, €.9., reactive power and voltage

control [42], optimal power flow [43] [44], economic dispatch [45], dynamic

security border identification [46] and distribution state estimation [47].

1.3 Motivations and Objectives

This study primarily focuses on the ABO algorithms. In the past few years,

PSO has attracted more and more attention because of its fast convergence rate

and simplicity. However it also suffers some disadvantages, e.g., poor global

search performance. Researchers have proposed several approaches for im-

proving the global PSO algorithms. For example, mutation operation has been

introduced to PSO to help the swarm escape from local minima when search

process stagnates [48] [49] [39]. Other attempts to improve the PSO algo-

rithms include the combination of other evolutionary operators, e.g, selection

and crossover [50].

All the research mentioned above focused only on the algorithmic side of

PSO and ignored the the important biological background of PSO. Although

the algorithmic improvement of standard PSO worked efficiently for solving

some problems, these improved PSO algorithms cannot be seen as a natural

extension of the original PSO. On the other hand, after studying animal be-

haviour, the inspiration source of ABO, we found that current research in ABO

only employs a small portion of research in animal behaviour, e.g., social in-

sects’ swarm behaviour and ants’ foraging behaviour. The research of animal

behaviour remains largely unexplored by the researchers in computational in-

telligence. Therefore, we want to take a different approach from that of other

researchers who only see the ABO algorithms, e.9., PSO, from an algorith-

mic perspective. Firstly, we aim at extending the existing ABO algorithms,

Shan He

1.4 Thesis Overview 22,

especially PSO, by drawing inspiration from animal aggregation which is the

biological root of PSO. On the other hand, optimisation, which is a process

of seeking optima in a search space, can be analogous to the resource search-

ing process of animals in nature. Shaped by natural selection, the searching

strategies of all living animals are sufficient enough to survive in nature [51].

Therefore, it is natural to turn to animal behaviour, especially animal social

searching behaviour to seek information for developing novel optimisation al-

gorithms. Since the development of such algorithms would be useless unless

there are reasonable applications for the algorithms, this thesis also focuses

on the applications of the ABO algorithms, e.g., PSO and GSO to real-world

problems.

The objectives of this study therefore become twofold: 1) to develop novel

ABO algorithms based on animal behaviour and 2) to apply the ABO algo-

rithms developed in this research to the solution of real-world problems. The

first objective can be divided into two stages, 2.e., 1) the further improvement of

the existing ABO algorithms, particularly the global PSO algorithm, by trans-

ferring knowledge from animal behaviour and 2) the development of novel SI

algorithms directly inspired by the research in animal behaviour untouched by

other researchers.

1.4 Thesis Overview

This thesis is structured as follows:

Chapter 2 introduces a novel ABO algorithm, Group Search Optimiser (GSO),

which is inspired animal group searching behavior. Based on a generic

social foraging model, Producer-Scrounger model, it provides an open

framework to utilize research in animal behavioral ecology to solve dif-

ficult optimisation problems. A large set of 29 benchmark functions,

including six 300-dimensional large-scale benchmark functions are em-

ployed to evaluate the GSO algorithm. In this chapter, results on the 29

benchmark functions from Genetic Algorithm, Evolutionary Program-

Shan He

1.4 Thesis Overview
23

Ee eee ene ee

ming, Evolution Strategies and Particle Swarm Optimiser are also given

for comparison. From the comparison, it can be concluded that the GSO

algorithm has competitive performance to other EAs in terms of accu-

racy and convergence speed, especially on high-dimensional multi-modal

problems. The differences between GSO, EAs and PSO are also discussed

in this chapter.

Chapter 3 describes an improved PSO algorithm with with passive congre-

gation. In nature, passive congregation is an important biological force

preserving swarm integrity. It is an attraction of an individual to other

group members in which there is no display of social behavior. In this

study, passive congregation is introduced to transfer information among

individuals that will help individuals to avoid misjudging information and

becoming trapped by poor local minima. Following the introduction and

details of this algorithm, the PSO with passive congregation (PSOPC)

is tested with a set of 10 benchmark functions with 30 dimensions and

compared to their standard PSO variants respectively. The experimental

results show that the PSO with passive congregation improves the search

performance on the benchmark functions significantly.

Chapter 4 presents the application of the GSO algorithm to Artificial Neural

Networks (ANNs) training. The ANN training process can be regarded

as a difficult optimisation problem. In this chapter, parameters of a

3-layer feed-forward ANN, including connection weights and bias term

are tuned by the GSO algorithm. Following the introduction of ANN

and the GSO based ANN (GSOANN) training algorithm, four real-world

classification problems and one forecasting problem are used to access the

GSOANN algorithm. Four EAs-based and one gradient-based training

algorithms are also implemented to solve these problems. Results from

the literature on these benchmark problems are also presented in this

chapter for comparison. From the comparison, GSOANN achieved better

generalization performance than those of sophisticated machine learning

Shan He

1.5 Contributions of Research 24

techniques proposed in recent year on several benchmark problems.

Chapter 5 extends standard PSO to handle problem-specific constraints and

mixed variables such as integer, discrete and continuous variables. A con-

straint handling method called the “fly-back-mechanism” is introduced

to maintain a feasible population. In order to handle mixed variables, a

simple but effective scheme is employed. Then the improved PSO algo-

rithm is applied to solve five benchmark problems commonly used in the

literature of engineering optimisation and nonlinear programming. The

experimental results on these five benchmark functions indicate that the

proposed algorithm is better than or equal to other existing methods

while requiring less computational time.

Chapter 6 begins by giving a brief literature review of Optimal Power Flow

(OPF) problems in power systems. Then PSOPC and GSO are intro-

duced to solve OPF problems. The proposed two algorithms are evalu-

ated using an IEEE 30-bus test system. Three different OPF problems

are solved by the two algorithms which include minimizing the fuel cost,

improving the voltage profile and enhancing the voltage stability. Due to

its superior searching performance in high-dimensional benchmark prob-

lems, the GSO algorithm then is applied to solve an OPF problem on a

large-scale, practical IEEE 118-bus system.

Chapter 6 concludes the thesis based on the results obtained in this study.

Ideas for future work are also listed in this chapter.

1.5 Contributions of Research

There are several major contributions arising from this research:

e The successful development of a novel ABO optimisation algorithm, Group

Search Optimiser (GSO), inspired by animal social searching (foraging)

behaviour;

Shan He

1.5 Contributions of Research 25

e An improved Particle Swarm Optimiser with Passive Congregation (PSOPC).

This study is inspired by animal social aggregation models;

e An extended Particle Swarm Optimiser (PSO) which is capable of han-

dling mixed variables and constrains;

Applications of GSO to neural networks training for data mining prob-

lems;

Applications of extended PSO to mechanical optimal design problems,

Applications of PSOPC and GSO to Optimal Power Flow problems.

The contributions listed above can be grouped as two categories: 1). al-

gorithm developments of ABO algorithms and 2). real-world applications of

ABO algorithms.

For the algorithm developments, this thesis describes, for the first time, a

novel ABO algorithm, GSO. The algorithm is based on a generic social foraging

model, Producer-Scrounger (PS) model, which is different from the metaphors

used by the ACO and PSO. In order to evaluate its performance, extensive

experimental study has been carried out. From the experimental results, it

was found that the GSO algorithm has better search performance on large-

scale multi-modal benchmark functions. Probably the most significant merits

of GSO is that it provides an open framework to utilize research in animal

behavioral ecology to tackle hard optimisation problems. This framework is

more flexible than PSO and other Evolutionary Algorithms (EAs). For ex-

ample, different local search techniques can be naturally incorporated into the

framework of GSO as the searching strategies of producers. In the past, the

combination of local search techniques and EAs was called “memetic” algo-

rithms [52] or also known as Lamarckian Genetic Algorithms [53]. However,

after the publication of Charles Darwin’s theory of natural selection and the

development of Mendelian genetics, the modern biologists have abandoned the

Lamarckian theory of evolution [54]. Therefore, although the performance of

memetic algorithms on many problem domains is superior to the traditional

Shan He

1.6 Auto-bibliography
26

GAs, their biological background is questionable. By employing local search

techniques as producing strategies, GSO provides a more biologically sound

framework than the memetic algorithms.

In addition to the development of GSO, this research has also contributed

to the development of PSO. In order to improve the search performance of the

standard PSO algorithm, passive congregation, which is a biological mechanism

that allows animals to aggregate into groups, has been incorporated into PSO.

The test results on 10 benchmark functions show that the proposed PSO al-

gorithm has better performance than standard PSO in terms of accuracy and

convergence speed. This algorithm has been employed by other researchers

to tackle optimisation problems in power systems [55]. This study has also

extended standard PSO which can only handle continuous unconstrained op-

timisation problems. The extension provided by this research effort allows the

handling of mixed-variable constrained optimisation problems. The techniques

used to handle mixed variable and constraints are comparatively simple but

generate better results than many sophisticated methods.

The SI techniques developed in this study, e.g., GSO and PSOPC, have

been applied to solve real-world problems. The first application of GSO is

training Artificial Neural Networks (ANNs). Several real-world classification

and forecasting problems have been solved by the GSO trained ANN. For some

problems, the results we obtained in this research are the best in the literature.

The GSO and PSOPC algorithms have also been used to solve optimal power

flow problems. Results from IEEE 30-bus and IEEE 118-bus systems confirm

that the two algorithms have better performance than other EAs and standard

PSO.

1.6 Auto-bibliography

List of the publications produced from this work:

1. S. He, E. Prempain, and Q. H. Wu. An improved particle swarm opti-

miser for mechanical design optimisation problems, Engineering Optimi-

Shan He

1.6 Auto-bibliography
27

Te ee eS

sation, 36 (5): 585-605, Oct. 2004.

2. S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders and R. C. Paton, A particle

swarm optimiser with passive congregation, BioSystems, 78 (1-3): 135-

147, Dec. 2004.

3. S. He, E. Prempain, Q. H. Wu, J. Fitch, S. Mann. An improved particle

swarm optimisation for optimal power flow, 2004 International Confer-

ence on Power Systems Technology. Singapore. Nov. 2004.

4. W. H. Tang, S. He, E. Prempain, Q. H. Wu and J. Fitch. A particle

swarm optimiser with passive congregation approach to thermal modeling

for power transformers, 2005 IEEE Congress on Evolutionary Computa-

tion (CEC 2005). Edinburgh. Sep. 2005.

5. S. He, Q. H. Wu, and J. R. Saunders. A group search optimiser for neu-

ral network training, 2006 International Conference on Computational

Science and its Applications (ICCSA 2006), Glasgow. May 2006. Lec-

ture Notes in Computer Science, 3982: 934-943, Springer.

6. S. He, Q. H. Wu and J. R. Saunders. A Novel Group Search Opti-

miser Inspired by Animal Behavioural Ecology, in Proceeding of 2006

IEEE Congress on Evolutionary Computation (CEC 2006). Sheraton

Vancouver Wall Centre, Vancouver, BC, Canada. July 16-21, 2006. Tue

PM-10-6

7. S. He, Q. H. Wu, and J. R. Saunders. Group search optimiser - an

optimisation algorithm inspired by animal searching behaviour, 16 pages.

Submitted to IEEE Transaction on Evolutionary Computation.

8. Q. H. Wu, S. He, and J. R. Saunders. Group Search Optimiser For

Optimal Power Flow. 8 pages. Submitted to JEEE Transactions on

Power Systems.

9. S. He, Q. H. Wu, and J. R. Saunders. Breast cancer diagnosis using

a artificial neural network trained by group search optimiser, Submitted

Shan He

1.6 Auto-bibliography 28

to Transactions of the Institute of Measurement and Control. (Invited

paper)

Shan He

Part 1

Developments of Animal

Behaviour Inspired

Optimisation Algorithms

Chapter 2

From Animal Social Searching

Behaviour to Group Search

Optimiser

Nature-inspired optimisation algorithms [?] [56], notably Evolutionary Al-

gorithms (EAs), have been widely used to solve various scientific and engineer-

ing problems [13], due to their simplicity and flexibility [14]. In this chapter

we report a novel optimisation algorithm, Group Search Optimiser (GSO), in-

spired by animal behavior, especially animal social searching behavior. This

algorithm belongs to the so-called Animal Behaviour inspired Optimisation al-

gorithm. The framework is mainly based on the Producer-Scrounger model

[57], which assumes group members search either for ‘finding’ (producer) or for

‘joining’ (scrounger) opportunities. Based on this framework, concepts from

animal searching behavior, e.g., animal scanning mechanisms, are employed

metaphorically to design optimum searching strategies for solving continuous

optimisation problems. We also disperse some group members from their cur-

rent positions to perform random walks to avoid entrapment in local minima.

When tested against benchmark functions, in low and high dimensions respec-

tively, the GSO algorithm has competitive performance to other EAs in terms

of accuracy and convergence speed, especially on high-dimensional multi-modal

30

2.1 Introduction 31

problems.

2.1 Introduction

In the past few decades, natural computation has attracted more and more

attentions. Nature serves as a fertile source of concepts, principles and mech-

anisms for designing artificial computation systems to tackle complex compu-

tational problems. In recent years, a new kind of computational intelligence:

Swarm Intelligence (SI), which was inspired by animal collective behavior, has

been developed. In Chapter 1, we have revealed the relationship between SI,

animal behaviour and self-organisation. A new concept, Animal Behavioiur

inspired Optimisation (ABO) has been proposed.

In this chapter, inspired by animal searching (foraging) behavior, we pro-

pose an novel ABO algorithm, Group Search Optimiser (GSO), primarily for

continuous optimisation problems. GSO is mainly based on a social foraging

model, Producer-Scrounger (PS) model proposed by C.J. Barnard and R.M.

Sibly [57]. Under this framework, concepts and strategies of resource search-

ing from animal searching behavior are adopted metaphorically for designing

optimum searching strategies. General animal scanning mechanisms (e.g., vi-

sion) are employed for producers. Scrounging strategies [57] of house sparrows

(Passer domesticus) are used in the GSO algorithm. Besides the producer

and scroungers, some group members are dispersed from a group to perform

random walks to avoid entrapments in local minima.

In order to evaluate the performance of the implemented GSO algorithm,

extensive studies based on a set of 23 benchmark functions have been carried

out. For comparison purposes, we also implemented one evolutionary algo-

rithms, GA, and one Swarm Intelligence algorithm, PSO, on these functions

respectively. We also adopted published results of EP, ES and their improved

variants, namely, Fast EP (FEP) [58], Fast ES (FES) [59], for comparison.

Experimental results show that, compared to the other algorithms, GSO has

markedly superior search performance for multi-modal functions, whilst main-

Shan He

2.2 Animal Social Searching Theory 32

taining modest performance for high-dimensional uni-modal functions. The 23

benchmark functions used in our experiments have been widely employed by

other researchers to evaluate evolutionary algorithms. However their dimen-

sions are relatively small (up to 30) compared with real-world optimisation

problems which usually involve hundreds even thousands of variables. In or-

der to further investigate whether GSO can be scaled up to handle large-scale

optimisation problems, we tested our GSO algorithm on 6 multi-modal bench-

mark functions (e.g., fg to fi3 studied in this chapter) in 300 dimensions in

comparison to GA and PSO. The results are encouraging, the GSO algorithm

generated results as good as those in 30-dimensional cases while GA and PSO

yielded poor results or even failed to converge.

The rest of the chapter is organized as follows. In Section 2.3, GSO will be

introduced and the details of implementation will be given. In Section 4.3, the

experiment studies of the proposed GSO are presented with descriptions of the

benchmark functions, experimental settings including the parameter setting

of the GSO algorithm and the experimental results. The differences between

GSO and other SI algorithms and EAs will be discussed in Section 3.5. The

chapter is concluded in Section 4.4.

2.2 Animal Social Searching Theory

Searching (Foraging) behavior may be described as an active movement by

which an animal finds or attempts to find resources such as food, mates, ovipo-

sition or nesting sites, and it is perhaps the most important kind of behavior

in which an animal engages [1]. Searching behavior represents the confluence

of three aspects of an animal: (1) the characteristics and abilities of an animal,

including its perceptual and locomotory skills; (2) external environment factors

determining what resources are available and the risks generated in obtaining

them; and (3) internal factors, such as the level of physiological need relative

to a certain kind of resource. The ultimate success of an animal’s searching

depends on [1]: (1) the strategies it uses in relationship to the availability of

Shan He

2.2 Animal Social Searching Theory 33

resources and their spatial and temporal distributions in the environment; (2)

its efficiency in locating resources; and (3) the ability of a species to adapt

to long-term or even short-term environmental changes and the ability of an

individual to respond. Shaped by natural selection, the searching strategies

of all living animals are sufficient enough to survive in nature. For example,

an animal can move in a way that optimises its chances of locating sparse,

randomly located resources [60].

In animal behavioral ecology, group-living, which is a widespread phe-

nomenon in the animal kingdom, has been studied intensively. One conse-

quence of living together is that group searching allows group members to

increase patch finding rates as well as to reduce the variance of search success

[61]. This has usually led to the adoption of two foraging strategies within

groups: (1) producing, e.g., searching for food; and (2) joining (scrounging),

e.g., joining resources uncovered by others. The latter has also been referred to

as conspecific attraction, kleptoparasitism, etc. [62]. Joining is an ubiquitous

trait found in most social animals such as birds, fish, spiders and lions. Indi-

viduals in a group that are successful at searching resource provide resources

at their expense to less successful individuals [63}.

In order to analyze the optimal policy for joining, two models have been

proposed: Information-Sharing (IS) [64] and Producer-Scrounger (PS) [57].

The IS model assumes foragers search concurrently for their own resource,

whilst searching for opportunities to join. On the other hand, foragers in

the PS model are assumed to use producing or joining strategies exclusively.

Recent studies suggest that, at least for the joining policy of ground-feeding

birds, the PS model is more plausible than IS mode [63].

Recently, Couzin et. al. [65] suggested that the larger the group, the

smaller the proportion of informed individuals need to guide the group with

better accuracy. Therefore, for accuracy and convenience of computation, we

simplify the PS model by assuming that there is only one producer at each

searching bout. The simplest joining policy, which assumes all scroungers will

join the resource found by the producer, is used. In optimisation problems,

Shan He

2.3 Group Search Optimiser
34

weet GEOUD SEO ee

unknown optima can be regarded as open patches randomly distributed in a

search space. Group members therefore search for the patches by moving over

the search space [66]. It is also assumed that the producer and the scroungers

do not differ in their relevant phenotypic characteristics. Therefore, they can

switch between the two roles [57] [66].

Producer strategy consists of searching for one’s food. An important com-

ponent of search orientation is scanning; it is a set of mechanisms by which

animals move sensory receptors and some times their bodies or appendages so

as to capture information from the environment [1]. Scanning can be accom-

plished through physical contact or by visual, chemical, or auditory mecha-

nisms. In nature, vision is the main scanning mechanism used by most of the

animal species. To perform visual searches, many animals encode a large field

of view with retinas having variable spatial resolution, and then use high-speed

eye movements to direct the highest resolution region towards potential target

locations [67] [68]. Good scanning performance is essential for survival. Na-

jemnik and Geisler [69] showed humans use almost optimal scanning strategies

for selecting fixation locations in visual search.

In nature, group members often have different searching and competitive

abilities; subordinates, who are less efficient foragers than the dominant will be

dispersed from the group [70] [71]. Various forms of dispersions are observed

in range from simple insects to human being [72]. Dispersed animal may adopt

ranging behavior to explore and colonize new habitats. Ranging is an initial

phase of a search that starts without cues leading to a specific resource (73].

2.3 Group Search Optimiser

In this chapter, optimisation, which is a process of seeking optima in a

search space, is analogous to the resource searching process of animals in na-

ture. Based on the theoretical frame work presented in the previous section,

we develop a GSO algorithm for continuous optimisation problems by incorpo-

rating concepts and strategies of animal searching behavior. The population of

Shan He

2.3 Group Search Optimiser 35

GSO is called a group and each individual in the population is called a member.

In an n-dimensional search space, the i,, member at the ky, searching bout

(iteration), has a current position Xf € R”, a head angle gk = (ph, ---, Pint) €

R"-! and a head direction D¥(y*) = (di,,...,d%,) € R” which can be calcu-

lated from y* via a Polar to Cartesian coordinates transformation:

n-1

dk, = | cos(yi)
p=1

n—-1

di Fj sin(pi-1)) , II cos(yi,)
p=i

dk, = sin(Yin—1) (2.3.1)

At each iteration, a group member, located in the most promising area,

conferring the best fitness value, is chosen as the producer. It then stops

and performs visual scanning of the environment to seek resources (optima).

In our GSO algorithm, basic scanning strategies introduced by white crappie

(Pomozis annularis) [74] is employed. The scanning field of vision is gener-

alized to a n-dimensional space, which is characterized by maximum pursuit

angle @max € R"-* and maximum pursuit distance lmax € R? as illustrated in a

3D space in Fig. 2.1. In the GSO algorithm, at the k,, iteration the producer

X, behaves as follows:

>”
(Forw ard directed)

Maximum pursuit angle 8 x

Maxi mum Pursuit dj
uit dista nce links

Figure 2.1: Scanning field in 3D space [1]

1) The producer will scan at zero degree and then scan laterally [74]. This

is simulated by randomly sampling three points in the scanning field: one point

Shan He

2.3 Group Search Optimiser 36

at zero degree:

X, = X* + rylmaxDk(p*) (2.3.2)

one point in the right hand side hypercube:

X, = X¥ 4 rilmacDE(o" + 120 max/2) (2.3.3)

and one point in the left hand side hypercube:

X, = X* + rylmaxD§(p* — r26max/2) (2.3.4)

where r; € R! is a normally distributed random number with mean 0 and

standard deviation 1 and r2 € R"~! is a uniformly distributed random sequence

in the range (0, 1).

2) The producer will then find the best point with the best resource (fitness

value) among the three points it scanned. If the best point has a better resource

than its current position, then it will fly to this point. Or it will stay in its

current position and turn its head to a new angle:

ght) — oF + redmax (2.3.5)

where Qmax is the maximum turning angle.

3) If the producer cannot find a better area after a iterations, it will turn

its head back to zero degree:

pits = oF (2.3.6)

where a is a constant.

During each searching bout, a number of group members are selected as

scroungers. The scroungers will keep searching for opportunities to join the

resources found by the producer. The basic scrounging strategies [57] in house

sparrows (Passer domesticus) include: (a) Area copying: moving across to

search in the immediate area around the producer; (b) Following: following

another animal around without exhibiting any searching behavior; and (c)

Snatching: taking a resource directly from the producer. In the GSO algorithm,

only area copying, which is the commonest scrounging behavior in sparrows,

Shan He

2.3 Group Search Optimiser 37

is adopted. At the ky, iteration, the area copying behavior of the i, scrounger

can be modeled as a random walk towards the producer:

XF+) = XF 4. 73(X* — Xf) (2.3.7)

where r3 € R” is a uniform random sequence in the range (0,1). The typical

paths of scroungers in 5 iterations are illustrated in Fig. 2.2.

Figure 2.2: The paths of five scroungers moving towards the producer (in the

center) in 5 iterations.

The rest of the group members will be dispersed. If the i, group member is

dispersed, it will perform ranging. In nature, ranging animals perform search-

ing strategies, which include random walks and systematic search strategies to

locate resources efficiently [75]. Random walks, which are thought to be the

most efficient searching method for randomly distributed resources [60], are

employed by the dispersed members. At the hyp, iteration, (1) it generates a

random head angle ¥;:

gh? = oF + r20max (2.3.8)

where Qmax is the maximum turning angle; and (2) it chooses a random dis-

tance:

l, =a‘ rilmax (2.3.9)

and move to the new point:

XP XE 1,D* (pet?) (2.3.10)

Shan He

2.4 Experimental Studies 38

SE

To maximize their chances of finding resources, animals use several strate-

gies to restrict their search to a profitable patch. One important strategy is

turning back into a patch when its edge is detected [76]. This strategy is em-

ployed by the GSO algorithm to handle the bounded search space: when a

member is outside the search space, it will turn back to its previous position

inside the search space. The flowchart of the GSO algorithm is presented in

Fig. 2.3. The pseudocode for the GSO algorithm is listed in Table 2.1.

2.4 Experimental Studies

2.4.1 Test functions

According to the No Free Lunch theorem, “for any algorithm, any elevated

performance over one class of problems is exactly paid for in performance over

another class” [77]. To fully evaluate the performance of the GSO algorithm

without a biased conclusion towards some chosen problems, we employed a

large set of standard benchmark functions which are given in Table 2.2. The

set of 23 benchmark functions can be grouped into uni-modal functions (fi

to f7), multi-modal functions (fs to fiz), and low-dimensional multi-modal

functions (fia to fo3). Although this set of benchmark functions have been

widely adopted by other researchers [58], their dimensions are chosen relatively

small (up to 30) compared to that of real-world optimisation problems. It is

our interest to investigate whether our GSO algorithm can be scaled up to

handle large-scale optimisation problems. Therefore, multi-modal functions

fg to fi3, for which the number of their local minima increases exponentially

with respect to the increase of dimension, are selected and extended to 300

dimensions as listed in Table 2.3.

Shan He

2.4 Experimental Studies
39

a ED ee

Termination Criterion

Satisfied?

Figure 2.3: Flowchart of the GSO algorithm.

Shan He

2.4 Experimental Studies 40

Table 2.1: Pseudo code for the GSO algorithm.

te ee ee

Set k := 0;

Randomly initialize positions X; and head angles y; of all members;

Calculate the fitness values of initial members: f(X;)

WHILE (the termination conditions are not met)

FOR (each members i in the group)

Choose producer: Find the producer X, of the group;

Perform producing: 1) The producer will scan at zero degree and then

scan laterally by randomly sampling three points

in the scanning field using equations (2.3.2) to

(2.3.4).

2) Find the best point with the best resource (fit-

ness value). If the best point has a better resource

than its current position, then it will fly to this

point. Otherwise it will stay in its current posi-

tion and turn its head to a new angle using equa-

tion (2.3.5).

3) If the producer can not find a better area after a

iterations, it will turn its head back to zero degree

using equation (2.3.6);

Perform scrounging: Randomly select 80% from the rest members to

perform scrounging;

Perform dispersion: For the rest members, they will be dispersed from

their current positions to perform ranging: 1).

Generate a random head angle using equation

(2.3.8); and 2). Choose a random distance |; from

the Gauss distribution using equation (2.3.9) and

move to the new point using equation (2.3.10);

Shan He

2.4 Experimental Studies 41

Calculate fitness: Calculate the fitness value of current member:

(Xi)
END FOR

Set k:=k+1;

END WHILE

Table 2.2: The 23 benchmark functions, where n is the dimension of the func-

tion, fmin is the global minimum value of the function.
Test function n s fmin

fi) = me 2 30 [=100, 100]* 0

f(x) aria + [Ti Jel 30 [-10, 10]” 0

f3(z) £1 (dj. =1 3). 30 [—100, 100] 0

fa(z) = = a(t A << a 30 [—100, 100]” 0

fs(w) = 072] (100(ai41 — 27)? + (wi - 1))? 30 [—30, 30]” 0

felt) = Sef (Ls +0.5|)? 30 [—100, 100)" 0
f(a) = 0, iv} + random(0, 1) 30 ([—1.28, 1.28]” 0

falc) ee (= sin ([zi] 30 [—500, 500)” -12569.5

fo(x) = 0%, (ae? — 10cos(2rai) + 10)? 30 [—5.12, 5.12)” 0

fro(x) = ~ 20 exp (-0.2,/2 Ohi 2?) —exp(2 S71 cos2nai) 30 [-32, 32]” 0
saa a

file) = aig W321 (w - 100)? - Ty Pex cos(#700) +1 30 [-—600, 600)”)

fix(z) == f {20sin2 (ro) one 2 yi — 1)?[1 + 10 sin? (ryi+1)] 30 [—50, 50)” 0

tin - 1)? } + 522, u(ai, 10, 100, 4)

ywi=l+g 5 (ai ct 1)

k(x; —a)™, u>a

u(ai,a,k,m) = 0, -a<aj<a

aa —a)™, ri<—a

fis(x) = 0.1 {sin?(m3a1) + 072, (wi — 1)?[1 + sin? (372541) 30 [—50, 50)” 0

+(an —1)?[1+ sin?(2na90)]} + been u(x, 5, 100, 4)

eee = A
fis(z) = Boo + oe 1 FEeea 2 [65.536, 65.536)” 1

02-40;
fis(e) =Si lea- ws 4 [-5, 5)” 0.0003075

fie(z) = 4a? — 23 let +2 ant +2122 — 4a2 ao 40 2 [—5, 5)” -1.0316285

fir(z) = (x2 — 54224 82) - 6) +10(1- 2) cose: +10 2 [5,10] x [0, 15] 0.398

fis(z) =([1+(@1+22+ 1)2(19 — 14a, + 32? — Ac0 2 [—2, 2]” 3

+60122 + 303)) x [30 + (2a + 1 — 3@2)?(18 — 3221
+120? + 48x — 362102 + 2725))

fis(z) =- Diet G Exp |— Dj=1 aig (25 — — Piz)? 3 (0, 1)” -3.86

foo(z) =— Shy ciexp |— Djs aig (#5 — vis)? 6 [0, 1]" -3.32

fa(z) =-Dd3 > _s{@ —a;)(x— ai)? +ci]7} 4 {0, 10)” -10

foox(z) == Li gill x —aj;)(x— ai)” +c;]—} 4 {0, 10] -10

foa(z) == x10 =l(% = ai)(2 — aj) +c;]—} 4 (0, 10)” -10

Shan He

2.4 Experimental Studies 42

Table 2.3: The 6 300-dimensional multi-modal benchmark functions, where n

is the dimension of the function, S' is the feasible search space, and fmin is the

global minimum value of the function.

Test function n S drain

fa(ay™ 300 [—500, 500)" -125694.7
fo(a)3 300 [—5.12, 5.12)” 0
fon 300 [—32, 32]” 0

fir (x)? 300 [—600, 600]” 0

fio(x)? 300 [—50, 50)” 0

fis(a)* 300 = [—50, 50)” 0

2.4.2 Experimental setting

The parameter setting of the GSO algorithm is summarized as follows. The

initial population of GSO is generated uniformly at random in the search space.

The initial head angle y® of each individual is set to be 7. The constant a is

given by round(./n +1) where n is the dimension of the search space. The

maximum pursuit angle Omax is &. The maximum turning angle a is set to

be #2. The maximum pursuit distance Imax is calculated from the following

equation:

lnax = || Ui -— Li || =

where L; and U; are the lower and upper bounds for the i, dimension. The

parameter need to be tuned is the percentage of dispersed members; our rec-

ommended percentage is 20%, which was used throughout all our experiments.

The population size of the GSO algorithm was set to at A8 in order to keep the

number of function evaluations as same as other algorithms in a generation.

We compared the performance of GSO with that of 4 different EAs:

1) Genetic Algorithm (GA) [78]

2) Evolutionary Programming (EP) [79] [80]

3) Evolution Strategies (ES) [81]

4) Particle Swarm Optimisation (PSO) [32]

Since there are no ES and EP toolboxes available, we adopted the test re-

Shan He

2.4 Experimental Studies 43

sults of f; - f23 from [58] and [59] directly for comparison. In their studies, Yao

and Liu proposed Fast EP (FEP) and Fast ES (FES) which replace Guassian

mutations of conventional EP (CEP) and conventional ES (CES) with Cauchy

mutations. We also employed the publicly available GA and PSO toolboxes

in order to compare their accuracy and convergence rate with the GSO algo-

rithm. The GA toolbox we used in our experiments is the Genetic Algorithm

and Direct Search Toolbox (GADST) provided by Matlab 7.0. The GA al-

gorithm we executed is real-coded with intermediate crossover and Guaussian

mutation. The population of the GA was 50. The reproduction function was

conducted using uniform stochastic selection. No subpopulation was used in

the GA, therefore the migration rate was set to be 0. All the control parame-

ters, e.g. mutation rate and crossover rate, etc., were set to be default. We also

employed PSOt - a particle swarm optimisation toolbox for Matlab [82], which

includes a standard PSO algorithm and several variants. The PSO algorithm

we executed is the standard one. The parameters were given by default setting

of the toolbox: the acceleration factors c; and cz were both 2.0; and a decaying

inertia weight w starting at 0.9 and ending at 0.4 was used. The population of

50 was used in the PSO algorithm.

For the 300 dimensional cases, since there are very few results published

at present, besides GADST and PSOt, we also implemented EP and ES for

comparison. The implementation of EP was based on the algorithm described

in [80] and [83]. The population size and the tournament size for selection were

100 and 10, respectively. The initial standard deviation of the EP algorithm

was 3.0. The ES algorithm used in our experiments is a state-of-the-art (1, A)-

ES algorithm which was implemented according to [81]. The population y was

set to at 30 and the offspring number \ was 200. A standard deviation of 3.0

was adopted. Global intermediate recombination [?] was also employed in the

ES algorithm.

Fifty independent runs of the GSO algorithm, GA and PSO were executed

on benchmark functions f; ~ f23. We tabulated the numbers of function eval-

uations for the 23 benchmark functions in Table 2.4. For 300-dimensional

Shan He

2.4 Experimental Studies 44

benchmark functions, 5 independent runs of the GSO algorithm and the other

four algorithms were executed to obtain average results. The number of gener-

ations for the six 300-dimensional benchmark functions were set to be 75000 for

GSO and the other four algorithms. Therefore, 3750000 function evaluations

were executed for each algorithm on each function.

Shan He

45

000‘0T

000°OT

000°0T

000'02%

000‘0T

000'0T

000‘0T

000‘0T

000‘007

000‘0T

000‘0ST

000°0T

000°0T

000‘0T

00°

000'F

000°0T

000°¢

OSZ'T

000‘0&Z

00S'2

000‘0ST

000‘0ST

000‘00z

000‘0ST

000‘00¢

000‘006

000°00

000‘0ST

000‘000‘%

000‘008

000‘00¢

000°00z

000‘0ST

000‘0ST

000‘0ST

000°0ST

000'0ST

000‘0ST

000‘0ST

000‘0ST

000‘0ST

000‘0ST

000‘0ST

000‘0ST

000‘0ST

Shan He

2.4 Experimental Studies

Sad/SaO
pue daa/dao | OSd/vO/Oso

c
a
l

saa/SaO
pue daa/dao | OSd/VO/OS9

rae
ef

~
Lf

UOTOUNy
IOF

SUOTYENTeAS
WOTouTy

Jo
JoquNNy

:p'%
eIqeL

2.4 Experimental Studies 46

The experiment included an average test on all the algorithms which run 50

times respectively to get an average result of each algorithm for each benchmark

function. In order to further assess the performance of the GSO algorithm

in a stochastic search process with a consideration of randomly distributed

initial populations, a set of two-tailed t-tests were adopted [58] [84]. The t-test

assesses whether the means of two groups of results are statistically different

from each other, for which the statistical significance of our experimental results

between the GSO and the other four algorithms were measured. In this case,

a critical value, teit, was set up to be +2.0 and the level of significance was

placed as a = 0.05 for a benchmark function, with 49 degrees of freedom at

this level. This means if |t| > 2.0 the difference between the two means of the

two tests is statistically significant.

2.4.3 Uni-modal functions

It is worth mentioning that uni-modal problems can be solved efficiently

by many deterministic optimisation algorithms that use gradient information.

However, uni-modal functions have been adopted to assess the convergence

rates of EAs [59]. We tested the GSO on a set of uni-modal functions in

comparison with the other two algorithms. Table 2.5 lists the experimental

results (i.e., the mean and standard deviations of the function values found in

50 runs) for each algorithm on uni-modal functions fi ~ fr. Figs. 2.4, 2.5,

2.6 and 2.7 show the search progress of the average values found by the three

algorithms over 50 runs for functions f, ~ fr. The results generated from CEP,

FEP, CES and FES are tabulated in Table 2.6 in comparison with the results

generated by our GSO algorithm.

From Table 2.5, the GSO generated significantly better results than GA

on functions f; ~ fs and yielded a similar result to GA on function f7. From

the comparisons between GSO and the PSO, we can see that, statistically,

GSO has similar or significantly better performance on f4 ~ fs. The GSO

algorithm only yielded statistically worst results on f; ~ fs compared to PSO.

In summary, the search performance of the three algorithms tested here can

Shan He

2.4 Experimental Studies AT

be ordered as PSO > GSO > GA.

It can be found from Table 2.6 that GSO was ranked the third which was

outperformed by FEP and FES. However, according to Table 2.4, GSO required

much less number of function evaluation than the other 4 algorithms.

Shan He

48 2.4 Experimental Studies

(,-OT
X

22128)
(,-O1

x
€100°2)

(,-OT
x

Serre)

2-01
X

6SLT'L
2-01

X PI90E
2-01

X
Z0EL'9

P
i
e

(L18S'0)
(6619'T)

(PIPT‘0)

00Zz'0
0022 T

2-01
x

0000°Z
of

(9819°€¢)
(6Z€9°92T)

(Zesh6z)

IZEP'6E
8109°ETT

CEILS
SP

ap

(96120)
(66110)

(2-0
X

9S9°€)

(1602 'T)
(1060'8T)

(PSP LT)

(c¢-OT
X L€60°8)

(,-OT
X 662€°T)

(.OT
x

08S2'2)

ze-Ol
X

GLSTT
7-01

X
1992'S

¢-OL
X

1809°%
e
a
e

(gp-O1
X

$Z02'2)
(¢-OL

X PPTL)
(,-0T

X 61€9'8)

1p-OL
X

Z9PS'9
2-01

X PS82'T
5-0

X
OPEP'S

e
e
e

(uotyetsop
prepueys)

u
o
r
j
o
u
n
y

u
e
o
y
|

‘
S
U
N
I

(JG
I
d
A
O

paSezroae
ueoq

oxey
synsor

Ty
“4f

~
Lf

suonoung
yreuryoueq

wo
OSd

Pue
VO

W
M

OSD
Suoure

uostredui0y
:¢°%

eqeL

Shan He

49 2.4 Experimental Studies

(,-O1
X

#9)

2-01
x

0'€ |
(Z)

z-OT
x

ZT |
(€)

z-OT
X

ST |
(LT)

e-OT
x

92

(¢¢"G69)
(92°SZ1T)

(F)
9T IIb

(g)
92°25

(eter)

(%)
8cee

(o-O1
x

G8)
|

(,-O1
x

€°S)

(I)
p-OL

X
€T |

(Z)
--O1

XPT

(¢-OL
X

7%)

(v)
--OL

X
1%

(9-

(Z)
¢

(uoryetaep
prepueys)

onyea
worjouny

wesy

yuey
j
e
u

(,-OL
X

S€br'e)

(g)
z-O1

x
Z0EL'9

(PIPT‘0)

(¢)
--0T

x
0000°2

(Zesh'6z)

()
ZZ1@'8P

e
h
 a

seal a8
—

(,-0T
x

9S99')

(Z)
SIIT0

Vy

e
e

e
e

eee

(PSP LT)

(g)
E9L8°EE

(,-01
x

61€9°8)

Lf
~

If
suorouny

yreuryoueq
Uo

SAY
Pure

SHO
‘
q
a

‘
d
O

Y
I
M

O
S
H

Suoure
uostredutop

:9°%
IBqeL

Shan He

2.4 Experimental Studies 50

2.4.4 Multi-modal functions

Multi-modal functions with many local minima

This set of benchmark functions (fg ~ f13) are regarded as the most difficult

functions to optimise since the number of local minima increases exponentially

as the function dimension increases [?]. The mean and standard deviations of

the function values found in 50 runs for each algorithm on each test function

are listed in Table 2.7. Figs. 2.8, 2.9, and 2.10 show the search progress of

the average values found by the three algorithms over 50 runs for functions

fs ~ fiz. Results adopted from [58] and [59] are tabulated in Table 2.8 in

comparison with the results produced by GSO.

From Table 2.7, it is clear to see that for most of the tested benchmark

functions, GSO markedly outperformed GA and PSO. For example, on func-

tion fg, GSO found the global minimum almost every time of run while the

other four algorithms generated poorer results in this case. GSO generated

significant better results than those of PSO on most functions. The only ex-

ception is Ackley’s function (fo) and Griewank (11). PSO outperformed GSO

statistically. However, according to [85], the regions of the Griewank func-

tion’s local minima become narrower and narrower as the dimension increases.

Consequently, it is much easier for optimisation algorithms to find the global

minimum since the local minima are more and more likely to be neglected as

the dimension increases. It has been found that local optimisation algorithms,

for example the limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno)

algorithm [86], yielded better results than global optimisation algorithms, e.g.

EAs for the Griewank function in the cases of high dimensions. Therefore, the

Griewank function is not a challenging multi-modal benchmark problem for

evaluation of global optimisation algorithms. No substantial conclusion can be

drawn from the comparisons between GSO and PSO on the Griewank function.

It can be seen from Figs. 2.8 2.9, and 2.10 that on average the GSO

algorithm consistently outperformed the other two algorithms for 4 benchmark

functions: fg, fo, fiz and 13, respectively. From our experiments, we also found

Shan He

2.4 Experimental Studies 51

 Tt a i a T ———

—— Average of GSO

~ ~ ~ Average of GA
Average of PSO |

f(
x)

t S

-100 (eS ee 1 1

0 500 1000 1500 2000 2500 3000
Generation

(a)
40 i. —T T — nny, Th

—— Average of GSO

30 ~ - ~ Average of GA
Average of PSO

 -60 1 LE Lt

0 500 1000 1500 2000 2500 3000
Generation

(b)

Figure 2.4: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) and (b) correspond to functions fi and fo, respectively.

Shan He

2.4 Experimental Studies 52

 ————————— = ——
—— Average of GSO

Ca Average of GA

Average of PSO

0 500 1000 1500 2000 2500 3000
Generation

(a)
5 a ie, See T — |

Average of GSO
Average of GA

=2

-3 4 hee nsf 1 he

0 500 4000 1500 2000 2500 3000
Generation

(b)

Figure 2.5: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) and (b) correspond to functions f; and fa, respectively.

Shan He

2.4 Experimental Studies 53

8 — ———7 as T T

Average of GSO
~ Average of GA

Average of PSO

 -4 ———e nl LL dhe

0 500 1000 1500 2000 2500 3000
Generation

(a)

—— Average of GSO
~ Average of GA

Average of PSO

 0 1 ———EEE, —— —_—__

0 500 1000 1500 2000 2500 3000
Generation

(b)

Figure 2.6: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) and (b) correspond to functions fs and fs, respectively.

Shan He

2.4 Experimental Studies 54

Average of GSO

~- ~ = Average of GA
Average of PSO

f(
x)

 -4 — al nl he 4

0 500 1000 1500 2000 2500 3000
Generation

(a)

Figure 2.7: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) correspond to function f7

that, for functions f12 and fi3, the best results found by the PSO are better

than those found by the GSO in terms of accuracy and convergence speed.

However, the average results and the standard deviations generated by PSO

indicate that PSO is more likely to be trapped by poor local minima, therefore

it leads to inconsistent search performance on these two functions. It can be

concluded from Table 2.7 that the order of the search performance of these

three algorithms is GSO > PSO > GA.

It can be found from Table 2.8 that, in comparison with CEP, FEP, CES and

FES, GSO has the best performance (Rank 1) with less function evaluations. It

can also be found from Table 2.8 that, for 4 out of 6 functions, GSO generated

better results than the other four algorithms. The two exceptions are Rastrigin

(fo) and Griewank (f11) functions. GSO was outperformed by FEP and FES

on Rastrigin function and by FEP on Griewank function, respectively.

Shan He

2.4 Experimental Studies 55

 T = Se aa

=

Average of GSO
Average of GA
Average of PSO

bell

-14000 1 We ———— —— ————

0 500 1000 1500 2000 2500 3000
Generation

(a)
7 T ee — —T— een

Average of GSO

- Average of GA

6 Average of PSO

 ee

0 500 1000 1500 2000 2500 3000
Generation

(b)

Figure 2.8: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) and (b) correspond to functions fg and fo, respectively.

Shan He

2.4 Experimental Studies 56

 5 T
verage of GSO

ee ons ee mesa acl ee oes verage of GA

0 Average of PSO |
-10

f(
x)

-15

-20

-35 —i— 4 —— —_1___ Sem

0 500 1000 1500 2000 2500 3000
Generation

(a)
8 -_—t ——T _——_ —— oe

Average of GSO

=~ ~ ~ Average of GA
Average of PSO |

f(
x)

6 500 1000 1500 2000 2500 3000
Generation

(b)

Figure 2.9: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) and (b) correspond to functions fio and f11, respectively.

Shan He

2.4 Experimental Studies 57

r r y T ——F

Average of GSO
verage of GA

Average of PSO |

— me —— a
Pe tiem ged gue. Gins

—25 — — —_1— ——— —

0 500 1000 1500 2000 2500 3000
Generation

(a)
15 ‘ = a ery

—— Average of GSO

. ~~ - Average of GA

10 Average of PSO | +

f(
x)

 -25 4 di ——h —E—

0 500 1000 1500 2000 2500 3000
Generation

(b)

Figure 2.10: Convergence results of GSO, GA and PSO. The results were aver-

aged over 50 runs. (a) and (b) correspond to functions fi2 and fis, respectively.

Shan He

58 2.4 Experimental Studies

(or-OT
X

S8P6'8)

or-Ol
X
PITS

(1-01
X

6682'€)

11-01
X
261%

z-O1
X

L9918°2)

z-O1
X

96€8'%

¢-OL
X

2820'P)

¢-OT
X

TILG'S

(P9TS'T)
(6Z0F'T)

(908°21)
(--O1

X
0Z9°Z)

0082
EESZI-

608P 69SZI-

(.O1
<

€9F9'S)

O
T

X
LOTL'S

I
X

gere’s)
(

¢L60°T

(--OT
x

P9ST'T)

2-01
X
FOOT

gt-OL
X

2029'8

y1-Ol
X

LGIT'€

(zors'r)

89LE'0Z

(
e
0
0
8
)

VOLT STLE-

2-0

60°7
Te89—

108
6G

9E-

(

 cs
ie
ee
as
re
a

(uoryetaep
prepurys)

o
n
y
e
a

u
o
r
y
o
u
n
y

u
v
o
f
|

 “
s
u
n
 I

QG
TeAO0

paseraae
ueoq

aavy
synser

Ty
“§Yf

~
8f

suorouns
yreurypueq

uo
OSd

pue
WO

WHA
O
S
D

Suoure
uostreduroy

:)°%
eqeL

Shan He

59 2.4 Experimental Studies

V
e
d

Teak

yuey
osvioaAy

 a
a
y

c
e
e

(ot-OT
X

ZET0'S)

T)
ot-O1

X
Lh20'%

(;7-O1
X

LTS6'T)

T)
71-0T

X
S68€'T

(,-OT
X

19928°2)

(Z)
z-O

X
96€8°2

(,_OL
X

Z8Z0'F)

(L)
¢-OT

X
TILG°€

(6Z0F'T)

(€)
SISEe'z

(Z)
c-OL

X17

(11-01
X

T’8)

(g)
z-OT

x
8%

(2-0T
x

0°S)

(¢)
2-01

X Le

(e-OT
X

8°T)

(Z)
z-OI

X
@T

(€¢°0)
(1'€2)

(Z)
910

(g)
068

a
e

a
e

j
a
e

o
n
e

(--OT
X

$0Z9°2)

) 6 6PSL-
) P9SSZI-

) VL16L-
G'PSSZI-

(I)
608

69SZI-

(uoryetaep
prepur}s)

(yueyy)
anyea

uorouny
u
e
d

“eLf
~

8f
suorjoUny

y
r
e
U
y
o
U
u
e

UO
Sq

pue
SAO

‘dad
‘
d
O

W
W
M

O
S
H

suoure
u
o
s
i
e
d
u
0
g

:8°Z
aqeL

(

(210)

-01
X

98

T)
z-Ol

X
9'T

(2-01
X

TZ)

€)
--O1

X
ST

(2-01
*

ZT)

T)
z-Ol

X
9V

(F)
z

(

Shan He

2.4 Experimental Studies 60

Multi-modal functions with a few local minima

This set of benchmark functions fj4 ~ fo3 are multi-modal but in low

dimensions (n < 6) and they have only a few local minima. Compared to the

multi-modal functions with many local minima (fg ~ f13), this set of functions

are not challenging: some of them can even be solved efficiently by deterministic

algorithms [87] [88].

From Table 2.9, we can see in comparison to GA, GSO achieved better

results on all benchmark functions. Two-tailed t-test also indicated that for 7

out of 10 benchmark functions, GSO statistically outperformed GA. For the

rest 3 benchmark functions, no statistically significant difference can be found

between GSO and GA. In comparison with PSO, it can be seen that GSO has

a better performance on most of the functions except the Kowalik’s function

(fis) and Shekel’s family functions (f21, fo2 and fo3) where PSO generated

better average results than those of GSO. From the Two-tailed t-test, it can

be found that, statistically, GSO outperformed PSO on functions fi4 ~ fis

and achieved similar results on functions fj4, fis and f2:. The search progress

of the average values and the best solutions found by the three algorithms on

functions fi4 ~ fog are shown in Figs. 2.11, 2.12, 2.13, 2.14 and 2.15. From

Table 2.9 we can see that the order of the search performance of these three

algorithms is GSO > PSO > GA.

Table 2.10 reveals that GSO ranked the first in comparison with CEP, FEP,

CES and FES. For function f4 to f19, GSO has the best performance. However,

it was outperformed by the other four algorithms on Hartman’s Function f29

and Shekel’s family functions (fo1, fo2 and fos).

Shan He

61 2.4 Experimental Studies

(F089°T)

6
6
'
S

(F810°2)

egce's-

(g0g0'e)

68hS'L-

‘SUNLI
QG

IOAO
poSeIOAR

Udo
DAY

S}[NSOI
[TV

(--OT
x

€S0T'9)
(z-OT

X LF61'S)
(--OT

1696'S)

e
r
a
s

9V8T'E-
PEST

e-
169% '€-

Oey

(g-OT
X

LZTZ'€)
(

90°0T-
e
a
e

Z8Gg"e-

(¢-OT
X

LITZ'T)

(,-0T
x

G088°9)
(z-OT

X
PE8T's)

(0)

(,-OT
X

9822'T)
(E2210)

(0)

09T0'T-
6£16'0-

e
e
e

(,-OT
x

#609°2)
(,-

0

F
e

o
e
r

p-OL
X

FL08°E
¢-OT

X
SZS0'T

p-OL
X
STLLE

stf

(

(182°)
(1g12'g)

1889°9-
Z0P'L-

(S120°€)
(erpz'e)

LIPI'S-
9FSS°9-

(1669°Z)
(g9cP'¢)

60°9-
tes

LESO'S-

O
T

X
PSZ0'T)

(g_OT
X

O&P8')

Gre’ s-
8Z98'¢-

Sty

(F8PT'0)
(0)

Z00'¢
og

ste

otf

OL
X

TIZ0'€)
(,-OT

X
€169°2)

96920)
(0)

(uolyetAep
prepue4s)

anes
uorjouny

wedyl
a

"kf
~

If
suoljouNy

yreUTyoUEd
Jo

sanyeA
Ssouyy

oseIOAYV
:6'Z

AGRI,

Shan He

62 tal Studies erimen 2.4 Exp

yuey
[eat

y
u
e
y

oseioay

eos

(eg19'8)

(%)
1Z0€"L-

(epbz'e)

(%)
998¢°9-

(8r6z"e)

(g)
1166'S

(--O1
x
F96'S)

(g)
1692°¢-

(c_OI
X

OSTS'T)

(1)
gz98"¢-

cos

(g-OT
x

0°9)

(z)
86¢°0

(,-0T
x

09)

(%)
9Tg0'I-

(g-0

(z)
8680

(,-OT
x

27)

(v)
,-O1

x
16 sty

v
f

(uoryetAop
prepurys)

(yuey)
anyea

worjouny
uedJl

"ef
~

PIf
suorjouny

yreurgousg
uo

S
A

pue
S
H
O

‘dad
‘GAO

W
W
M

O
S
H

Suoure
uostreduioy

:O1'%
IIeL

Shan He

2.4 Experimental Studies 63

300-dimensional multi-modal functions

Many real-world optimisation problems usually involve hundreds or even

thousands variables. However, previous studies showed that although some al-

gorithms generated good results on relatively low-dimensional (n < 30) bench-

mark problems, they do not perform satisfactorily for some large-scale problems

[89]. Therefore, in order to assess the scalability of our GSO algorithm, which is

crucial for its applicability to real-world problems, a set of multi-modal bench-

mark functions (fg to fi3) were extended to 300-dimensions and used in our

experimental studies as high-dimensional benchmark functions. The results

are presented in Table 2.11.

From Table 2.11, it can be seen that in terms of final average results, GSO

markedly outperformed the other algorithms. For the six problems we tested,

the GSO algorithm converged to good near optimal solutions. It can also been

seen that although PSO achieved satisfactory results in 30-dimensional multi-

modal benchmark problems (see Table 2.7), it cannot be scaled up to handle

most of the 300-dimensional cases except f1o(x)*°°.

A limited scale of research scalability of EAs has been found [89] [90]. In

[89], four EP algorithms, namely CEP, FEP, Improved FEP (IFEP) [58] and

a Mixed EP (MEP) [89] were studied. The benchmark functions used in their

studies were a uni-modal function f; (Sphere function) and a multi-modal

function fio (Ackley’s function) with dimensions ranged from 100 to 300. It

was found that CEP and FEP failed to converge on function fip. The average

results generated by IFEP and MEP on function fj in 300 dimensions were

7.6x 10-2 and 5.5x 107? respectively, which are both worse than that generated

by our GSO algorithm. Liu and Yao also improved FEP with cooperative

coevolution [90] by decoupling the whole optimisation function to a set of

coordinates of populations. Eight functions, including four uni-modal and

four multi-modal functions were used as benchmark functions in their studies.

The results presented in their paper were excellent, e.g., the result on 300-

dimensional fi was 3.6 x 10~*. In this case, it is unfair to compare our current

GSO algorithm with their algorithm without population decoupling.

Shan He

2.4 Experimental Studies 64

 100 a 7
 Average of GSO

= Average of GA

Average of PSO

f(
x)

0 50 100 150
Generation

(a)

— Average of GSO

~ ~ = Average of GA

Average of PSO

-4

f(x
) ch

See meee ne ee ee ea eo ee

“85 1000 2000 3000 4000 5000
Generation

(b)

Figure 2.11: Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions fi4-fis, respectively.

Shan He

2.4 Experimental Studies 65

verage of GSO
verage of GA

Average of PSO

Generation

(a)
1 6 [aa ——<— — ee

Average of GSO
- Average of GA

1.4 Average of PSO

“0 20 40 60 80 100
Generation

(b)

Figure 2.12: Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions fi¢-fi7, respectively.

Shan He

2.4 Experimental Studies 66

Average of GSO
verage of GA

verage of PSO

0 50 100 150 200
Generation

(a)

Average of GSO
Average of GA | |
Average of PSO

f(x
)

-3.9 n ls oe lense De omeenemt

“0 10 20 30 40 50 60 70 80
Generation

(b)

Figure 2.13: Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions fis-fi9, respectively.

Shan He

2.4 Experimental Studies 67

- ~ ~ Average of GA
—— Average of GSO |

Average of PSO

f(
x)

“0 50 100 150

Generation

(a)
=——— —T— ep

—— Average of G59)
Average of GA
Average of PSO | |

|

f(x
)

eae

% 50 100 150 200
Generation

(b)

Figure 2.14: Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions f20- fai, respectively.

Shan He

2.4 Experimental Studies 68

Average of GSO

~ Average of GA

Average of PSO

f(x
)

- 0 1 enn ene

\ 0 50 100 150 200
Generation

(a)
0 oo ———— =——.

Average of GSO

~1h ~~ ~=Average of GA | J
Average of PSO

f(
x)

 Bs as tn. Sia
0 50 100 150 200

Generation

(b)

Figure 2.15: Convergence results of GSO, GA and PSO. The results were

averaged over 50 runs. (a)-(b) correspond to functions f22-f23, respectively.

Shan He

2.5 Discussion 69

Table 2.11: Comparison among GSO with GA, PSO, EP and ES on benchmark

functions f(x)? fi3(x)?.
we ON

Mean func-

tion value

Function GSO GA PSO EP ES

f(w)9 -125351.2 = -78088.1 — -87449.2 -78311.9 -66531.3

fo(x)>™ 98.9 260.8 427.1 383.3 583.2

fro(x)8° «1.8527 x 10-8 =—-11.37 3.9540 x 10° 0.2946 9.6243

fir(w)8° 1.8289 x 10-7 ~—-2.234 1.81 2.8244 x 107? 0.1583

fio(a)? 8.2582 x 10-8 ~— 49.06 14.56 39.3 3093.2

fig(a)2 ~=—-2.0175 x 10-7 ~—578.5 549.2 738.2 2123.2

2.5 Discussion

Currently, there are only a few optimisation algorithms inspired by animal

behavior. The most notable and successful one is ACO. Although both GSO

and ACO drew inspiration from animal social animal foraging behavior, there

are many obvious differences. The most distinct one is that ACO was inspired

specifically by behavior of ant colonies: by laying pheromone trails, ants col-

lectively establish the shortest path between their colony to feeding sources.

The GSO algorithm was inspired by general animal searching behavior and a

generic social foraging model, e.g. Producer-Scrounger model. Another dif-

ference is that ACO was proposed primarily for combinatorial optimisation

problems while at present GSO is more applicable to continuous function op-

timisation problems.

PSO is another newly emerged optimisation algorithm inspired by animal

behavior. Like GSO, it was also proposed for continuous function optimisation

problems. However, it is not difficult to note that there are some major dif-

ferences between GSO and PSO. First and the most fundamental one is that

PSO was originally developed from the models of coordinated animal motion

such as Reynolds’s Boids [91] and Heppner and Grenander’s model [92]. An-

imal swarm behavior, mainly bird flocking and fish schooling, serves as the

Shan He

2.6 Conclusions 70

metaphor for the design of PSO. The GSO algorithm was inspired by general

animal searching behavior. A generic social foraging model, e.g., Producer-

Scrounger model, was employed as the framework to derive GSO. Secondly,

although the producer of GSO is quite similar to the global best particle of

PSO, the major difference is that the producer performs producing, which is

a searching strategy differs from the strategies performed by the scroungers

and the dispersed members. While in PSO, each individual performs the same

searching strategy. Thirdly, in GSO, individuals do not posses memory. How-

ever, in PSO each individual maintains memory to remember the best place

it visited. Finally, unlike GSO, there is no dispersed group members which

perform ranging strategy in PSO.

Although the EAs and GSO were inspired by completely different disci-

plines, as a population-based algorithm, GSO shares some similarities with

other EAs. For example, they both use the concept of fitness to guide search

towards better solutions; the scrounging behavior of scroungers is similar to

the crossover operator, e.g., extended intermediate crossover [93] of real-coded

GA; and the ranging behavior of dispersed members can be regarded as EAs’

mutation operator which both produce new solutions by perturbation. How-

ever, under millions even billions of years of natural selection, animal behavior,

especially searching behavior, has been honed and sharpened by evolution. Re-

search in animal behavior provides many off-the-shelf searching strategies to

be incorporated into GSO to solve different hard optimisation problems. For

example, animal’s strategies to deal with resources changing over time (e.9.,

leaving patch when profitability declines) could be employed by GSO to solve

optimisation problems in dynamic environments. This is our work in the fu-

ture.

2.6 Conclusions

We have proposed a novel optimisation algorithm — GSO, which is based on

animal searching behavior and group living theory. This algorithm is concep-

Shan He

2.6 Conclusions 71

tually simple and easy to implement. It has only one parameter (percentage of

dispersed members) to tune and can handle a variety of optimisation problems

(including large-scale), which makes it particularly attractive for real-world

applications.

A set of 23 benchmark functions have been used to test GSO in comparison

with GA, PSO, CEP, FEP, CES and FES, respectively. For the uni-modal

functions, the results show that the GSO does not possess an obvious advan-

tage to PSO but has a better performance to that of GA in terms of accuracy

and convergence rate. Compared to CEP, FEP, CES and FES, GSO was out-

performed by FEP an FES. For most of the multi-modal benchmark functions

with many local minima, GSO is able to statistically find better average re-

sults than those generated by the GA and PSO and find better average results

than the other four algorithms. The test results obtained from the multi-modal

benchmark functions, which have a few local minima, GSO also outperformed

the other six algorithms. We have also evaluated the GSO on a set of multi-

modal functions in 300 dimensions. In these cases, the GSO appeared to be

an overpowering winner compared with the GA, PSO, EP and ES.

A new paradigm of swarm intelligence, GSO, has been presented in this

chapter. One of the most significant merits of GSO is that provides an open

framework to utilize research in animal behavioral ecology to tackle hard opti-

misation problems.

Shan He

Chapter 3

Improve PSO with Passive

Congregation

This chapter presents a particle swarm optimiser (PSO) with passive con-

gregation to improve the performance of standard PSO (SPSO). Passive con-

gregation is an important biological force preserving swarm integrity. By in-

troducing passive congregation to PSO, information can be transferred among

individuals of the swarm. A particle swarm optimiser (PSO) with passive

congregation (PSOPC) is tested with a set of 10 benchmark functions with

30 dimensions and compared to a global version of SPSO (GSPSO), a local

version of SPSO (LSPSO), and PSO with a constriction factor (CPSO) respec-

tively. Experimental results indicate that the PSO with passive congregation

improves the search performance on the benchmark functions significantly.

3.1 Introduction

The particle swarm optimiser (PSO) is a population-based algorithm that

was invented by [32], which was inspired by the social behavior of animals

such as fish schooling and bird flocking. Similar to other population-based

algorithms such as evolutionary algorithms, PSO can solve a variety of difficult

optimisation problems but has shown a faster convergence rate than other

72

3.1 Introduction 73

evolutionary algorithms on some problems ([21]). Another advantage of PSO

is that it has very few parameters to adjust which makes it particularly easy

to implement.

[94] pointed out that although PSO may outperform other evolutionary

algorithms in the early iterations, its performance may not be competitive

as the number of generations is increased. Recently, several investigations

have been undertaken to improve the performance of standard PSO (SPSO).

[95] presented a hybrid PSO model with breeding and subpopulations. [96]

investigated the impacts of population structures to the search performance of

SPSO. Other investigations on improving PSO’s performance were undertaken

using cluster analysis [97] and fuzzy adaptive inertia weight [98].

The foundation of PSO is based on the hypothesis that social sharing of

information among conspecifics offers an evolutionary advantage [32]. The

SPSO model is based on the following two factors [32]:

1) The autobiographical memory, which remembers the best previous posi-

tion of each individual (P;) in the swarm;

2) The publicized knowledge, which is the best solution (P,) found currently

by the population.

Therefore the sharing of information among conspecifics is achieved by em-

ploying the publicly available information P,, shown in Fig. 3.1. There is no

information sharing among individuals except that P, broadcasts the informa-

tion to the other individuals. Therefore, the population may lose diversity and

is more likely to confine the search around local minima if committed too early

in the search to the global best found so far.

Biologists have proposed four types of biological mechanisms that allow

animals to aggregate into groups: passive aggregation, active aggregation, pas-

sive congregation, and social congregation [30]. There are different information

sharing mechanisms inside these forces. We found that the passive congrega-

tion model is suitable to be incorporated in the SPSO model. Inspired by this

research, we propose a hybrid model of PSO with passive congregation.

Section 3.2 introduces several animal aggregation models. A PSO algorithm

Shan He

3.2 Biological Forces Behind Animal Aggregations 74

 the it particle

Figure 3.1: Interaction between particles and the best particle gbest.

with passive congregation is presented in section 3.3. In section 4,3, we describe

the test functions, experimental settings, and the experimental results. The

discussions are given in section 3.5. This chapter is concluded in section 6.9.

3.2 Biological Forces Behind Animal Aggrega-

tions

The PSO algorithm is inspired by social behaviors such as spatial order,

more specially, aggregation such as bird flocking, fish schooling, or swarming of

insects. Each of these cases has stable spatio-temporal integrities of the group

of organisms: the group moves persistently as a whole without losing the shape

and density. For example, the individual fish in the school do not appear to

act selfishly but rather they seem to behave and interact for the benefit of the

school as a whole. If the individuals within a school did not look and behave

similarly, then the primary anti-predatory advantage associated with schooling

could not exist. Indeed, cohesion and coherence are hallmarks of many types of

animal aggregation [30]. By natural selection, behavioural patterns emphasize

similarity and uniformity within a group [30]. In order to study these patterns

behind animal aggregations, in this section we will presents some background

concepts about animal aggregations.

Shan He

3.2 Biological Forces Behind Animal Aggregations 75

For animal groups, different biological forces are essential for preserving the

group’s integrity. [30] proposed mathematical models of the spatial structure

of animal groups to show how animals organize themselves. In these models,

aggregation sometimes refers to a grouping of the organisms by non-social, ex-

ternal, physical forces. There are two types of aggregation: passive aggregation

and active aggregation. Passive aggregation is a passive grouping by physical

processes. One example of passive aggregation is the dense aggregation of

plankton in open water, in which the plankton are not attracted actively to

the aggregation but are transported passively there via physical forces such as

water currents. Active aggregation is a grouping by attractive resource, such

as food or space, with each member of the group recruited to a specific loca-

tion actively. In these situations the aggregation will disperse if the attractive

source wanes. Individuals in the aggregation also may continuously join and

leave as discussed in Chapter 2, rather than remain continuous members. As

results, turn over in the aggregation may be high even the size, density or shape

of the aggregation remain fairly constant. Repulsion also plays a crucial role

in determining group structure [99]. Repulsion helps an aggregation to avoid

unmitigated attraction which may result in the costs of individual members

outweighing the benefits. The combination of attractive and repulsive forces

defines the physical attributes of the group.

Congregation, which is different from aggregation, is a grouping by social

forces, that is the source of attraction is the group itself. Examples of ani-

mal congregations include flocks of birds, schools of fish, swarms of insects.

The forces shape congregations include internal, 2.e., member-derived, forces,

external forces, and frictional forces.

Congregation can be classified into passive congregation and social congre-

gation. Passive congregation is an attraction of an individual to other group

members but where there is no display of social behavior. There are very

little genetic relation to each other in a passive congregation, and thus they

display low fidelity to the group and no reciprocal altruism. The flocks of

birds, schools of fish, swarms of insects should be classified as passive congre-

Shan He

3.2 Biological Forces Behind Animal Aggregations 76

gation. Social congregations usually happen in a group where the members

are related (sometimes highly related). A variety of inter-individual behaviors

are displayed in social congregations, necessitating active information transfer

[30]. For example, ants use antennal contacts to transfer information about

individual identity or location of resources [100].

Many animal congregations share one or more of the following properties

[30]:

1. Edges. Many types of animal congregations have very distinct edges.

The change in density from inside to outside is abrupt. When an animal

congregation moves or changes shape, the edges remain intact.

2. Uniform densities. This property can be found in many types of animal

congregations, particularly when on the move, e.g.. herds, flocks, schools.

Some types of animal congregations, e.g. midge swarms, may have a

broader distribution of densities most of the time but retain the ability

to assemble into a more uniform mass.

3. Polarized. Animal congregations with uniform density are often also

polarized. In such a polarized congregation, all members face in the

same direction.

4. Freedom to move. Whether in a polarized group on not, individuals

within the group have the freedom to move with respect to their neigh-

bours. In a resting group individuals can shift positions constantly, even

if the position or shape of the congregation remains static. In moving

groups individuals can re-sort without disturbing the integrity of the

group.

5. Coordinated movement patterns. These almost ballet-like movement pat-

terns can be found in many animal congregations. For example, flocks of

birds appear to turn simultaneously. Fish in schools display a fountain-

like pattern in response to an attack by a predator, completing the move

by re-aggregating behind the predator.

Shan He

3.3 Particle Swarm Optimiser with Passive Congregation 77

3.3. Particle Swarm Optimiser with Passive Con-

gregation

From the definitions in 3.2, the third part of equation (1): cyr2(P* — Xi*)

can be classified as either active aggregation or passive congregation. But since

P, is the best solution the swarm has found so far, which can be regarded as

the place with most food, we argue that it is better to classify cyr2(P¥ — X i*)

as active aggregation.

It has been discovered that in spatially well-defined congregations, such as

fish schools, individuals may have low fidelity to the group because the con-

gregations may be composed of individuals with little to no genetic relation to

each other [101]. Schooling fish are generally considered a “selfish herd” [102],

in that each individual attempts to take the sweeping generalization advan-

tage from group living, independent of the fates of neighbors [103]. In these

congregations, information may be transferred passively rather than actively

[104]. Such asocial types of congregations can be referred to as passive congre-

gation. Because PSO is inspired by fish schooling, it is therefore natural to ask

if a passive congregation model can be employed to increase the performance

of SPSO. Here we do not consider other models such as passive aggregation,

because PSO is not aggregated passively via physical processes. And social

congregation usually happens when group fidelity is high, such that the chance

of each individual meeting any of the others is high [105]. Social congrega-

tions frequently display a division of labor. In a social insect colony such as an

ant colony, large tasks are accomplished collectively by groups of specialized

individuals, which is more efficient than performing sequentially by unspecial-

ized individuals [17]. The concept of labor division can be employed by data

clustering, sorting [106] and data analysis [107].

Group members in an aggregation can react without direct detection of an

incoming signal from the environment, because they can get necessary infor-

mation from their neighbors [30]. Individuals need to monitor both environ-

ment and their immediate surroundings, such as the bearing and speed of their

Shan He

3.3 Particle Swarm Optimiser with Passive Congregation 78

 the in particle

Figure 3.2: Interactions of particles with passive congregation

neighbors [30]). Therefore each individual in an aggregation has a multitude of

potential information from other group members that may minimize the chance

of missed detection and incorrect interpretations [30]. Such information trans-

fer can be employed in the model of passive congregation. Inspired by this

result, and to keep the model simple and uniform with SPSO, we propose a

hybrid PSO with passive congregation:

Vis = wV* + eyr1(PF — x) a cor2(Ps = Xf) + cara(Ri = x?) (3.3.1)

Xela x eye (3.3.2)

where R; is a particle selected randomly from the swarm, c3 is the passive

congregation coefficient, and r3 is a uniform random sequence in the range

(0,1): r3 ~ U(0,1). The interactions between individuals of PSOPC are shown

in Fig. 3.2. The search directions of standard PSO and PSOPC are shown

in Fig. 3.4 and Fig. 3.3, respectively. The pseudocode for PSOPC is listed

in Table 3.1. We implemented the PSOPC algorithm in MATLAB 6.5 and

executed it on a Pentium 4, 2 GHz machine.

Shan He

3.3 Particle Swarm Optimiser with Passive Congregation 79

The best particle Pg

Previous Best Position Pj

Figure 3.3: Search direction of the ith particle in PSO

The best particle Pg

Randomly Selected particle Rj

Previous Best Position Pi

Figure 3.4: Search direction of the ith particle in PSOPC

Shan He

3.3 Particle Swarm Optimiser with Passive Congregation 80

Table 3.1: Pseudocode for the PSOPC algorithm.

$e

Set k := 0;

Randomly initialize positions and velocities of all particles;

WHILE (the termination conditions are not met)

FOR (each particle i in the swarm)

Calculate fitness: Calculate the fitness value of current particle:

f (Xi);

Update pbest: Compare the fitness value of pbest with f(X;). If

f (X;) is better than the fitness value of pbest, then

set pbest to the current position X;;

Update gbest: Find the global best position of the swarm. If

f(X;) is better than the fitness value of gbest, then

gbest is set to the position of the current particle

AG

Update R;: Randomly select a particle from the swarm as R;;

Update velocities: Calculate velocities V; using equation (3.3.1). If

V; > Vax then Vi; = Vinax- If Vi < Vin then

Vi = Vinin}

Update positions: Calculate positions X; using equation (3.3.2);

END FOR

Set k:=k+1;

END WHILE
ee

Shan He

3.4 Experimental Studies 81

3.4 Experimental Studies

3.4.1 Test functions

In our experimental studies a set of 10 benchmark functions were employed

to evaluate the PSOPC algorithm in comparison with others.

Sphere Model:
30

fiz) =o at
i=1

Schwefel’s Problem 1.2:

30 i 2

f(x) =) (>: «)
ga NGS

Schwefel’s Problem 2.21:

f(x) = max{|z;|,1 <7 < 30}

Generalized Rosenbrock’s Function:

29

fa(x) = S 5 (100(2i41 — 2x7)? + (a; —1))?
i=1

Generalized Schwefel’s Problem 2.26:

30

fs(z) = -S- @ sin (Viel))
i=1

Generalized Rastrigin’s Function:

30

fo(x) = (2? — 10cos(2ma;) + 10)?
t=1

Ackley’s Function:

30 30
1

fr(x) = —20 exp (-22 i s “| — exp (3 2 cos an) +20+e

Generalized Griewank Function:

Shan He

3.4 Experimental Studies 82

 =H aC — 100)? — [ont 00) +1

Generalized Penalized —

i=1

29

fo = 30 549 sin?(7y1) + KC —1)?[1 + 10sin?(ay41)] + (Yn — "|

30

+ S-u(ai, 10, 100, 4)(3.4.1)
i=1

and

i=1

fio = 0.1 {sou + Si — 1)?[1 + 10sin?(ayi41)] + (Yn — v*|

30

+ 5-u(x;, 10, 100, 4) (3.4.2)
i=1

where

k(a; —a)™, Li>a

U(x;,a,k,m) =< 0, —a<a2j<a

k(—a; —a)™, ri < —a

1
yi =l+ f(t 1)

The above benchmark functions were tested widely by [58], [108], and [109].

They can be grouped as unimodal (function f; to f,) and multimodal functions

(function fs to f19) where the number of local minima increases exponentially

with the problem dimension. The dimension of each function n, feasible solu-

tion space, and fmin are listed in Table 3.2.

3.4.2 Experimental setting

To evaluate the performance of the proposed PSOPC, three variants of

standard PSO were used for comparisons: global version of standard PSO

Shan He

3.4 Experimental Studies 83

Table 3.2: Basic characters of the test functions.

cin fo [Resin | an
[—100, 100)”

[—100, 100]

[—100, 100]”

{—30, 30]”

{—500, 500)”

[—5.12, 5.12)”

[—32, 32]”

[—600, 600]”

[—50, 50]”

[—50, 50]”

 -12569.5

(GSPSO), local version of standard PSO (LSPSO), and constriction factor

version of PSO (CPSO). The parameters used for these three standard PSO

were recommended from [21], [36], [35], [34], and [96], or hand selected.

The population size of all algorithms used in our experiments was set at 100.

The maximum velocity Vmax and minimum velocity Vinin for GSPSO, LSPSO

and CPSO were set at half value of the upper bound and lower bound respec-

tively. Vinax and Vin for PSOPC was set to the upper bound and lower bound

respectively. The acceleration constants c; and c2 for GSPSO and LSPSO were

both 2.0 [21]. For CPSO, a setting of c, = cp = 2.05 was adopted [36]. The

acceleration constants c; = co = 0.5 were used in PSOPC.

The inertia weight w is critical for the convergence behavior of GSPSO and

LSPSO. A suitable value for the inertia weight w usually provides a balance

between global and local exploration abilities and consequently results in a

better optimum solution. Initially, the inertia weight was constant. However,

experimental results indicated that it is better to initially set the inertia to

a large value in order to promote global exploration of the search space and

decrease it to get more refined solutions [35]. Therefore, a decaying inertia

weight starting at 0.9 and ending at 0.4 following [34], was used for GSPSO

Shan He

3.4 Experimental Studies 84

and LSPSO. The inertia weight for PSOPC started at 0.9 and ended at 0.7.

For CPSO, the constriction factor was calculated with equation (1.2.6), that is

x = 0.73. The neighborhood size of LSPSO was set to be 2 [96].

The newly introduced passive congregation coefficient c3 is important for

the search performance of PSOPC. Experiments were executed to select a

proper value of cz. Four benchmark functions: f; (Sphere function), f; (Rosen-

brock function), fo (Rastrigin function), and fj; (Griewank function) were

tested with different values of c3. The average test results obtained from 25

runs are listed in Table 3.3. When cz = 0.6, PSOPC generated good results on

functions f; and fs. For functions f, and fg, the best results were generated

at the point cz = 0.8. With cz; > 0.9 the search performance of PSOPC on

function fi, fs, and fg is deteriorated. For functions fs, cz should be equal

or smaller than 0.6 otherwise PSOPC will not converge in 2000 generations.

Therefore, a generic c3 for all functions should be equal or smaller than 0.6.

It is our interest to investigate whether PSOPC with a linear increasing

c3 generates better results on the benchmark functions than PSOPC with a

fixed value of cz. Therefore, fg (Rastrigin function) was selected and tested

with different ranges of linearly increasing c3. The results are tabulated in

Table 3.4. The best result was generated by PSOPC with a linearly increasing

passive congregation coefficient c3, which started at 0.4 and ended at 0.6.

The parameters setting for all algorithms are summarized in Table 3.5.

All experiments were repeated for 50 runs. A fixed number of maximum

generations 2000 was applied to all algorithms.

3.4.3 Experimental results and comparison

The experimental results (7.e., the mean and the standard deviations of the

function values found in 50 runs) for each algorithm on each test function are

listed in Table 3.6. To measure the statistical significance of our experimental

results between PSOPC and other three standard PSO variants, a set of two-

tailed tests were adopted. The results are listed in Table 3.7. The critical value

with 49 degrees of freedom at a = 0.05 is 2.0, which means if |t| > 2.0 the

Shan He

3.4 Experimental Studies 85

Table 3.3: Average fitness values of functions fi, f4, fe and fg with different

C3.

| | Function

5.6 x 107!

1.4 x 1078

9.6 x 107-2

6.5 x 10-14

42x 107-8

1.1 x 107°

5.8 x 107%

9.7% 10-7

4.6 x 107°

4510.26

20336.59

oe
0.1

219.24 | 230.91

264.46 | 267.02

295.15 | 301.24

Shan He

3.4 Experimental Studies 86

Table 3.5: Parameter Setting.

[Tso Fesr50 [1580 [080,
Population Size

Neighborhood Size

w

xX

Cy

C2

C3

difference between two means is statistically significant.

From Table 3.6, PSOPC outperformed the other three standard PSO algo-

rithms significantly for most of the benchmark functions. The two exceptions

are fo and fio. For function fo, the result generated by PSOPC is better than

those generated by GSPSO and LSPSO but slightly worse than the result of

CPSO. For function fi9, GSPSO slightly outperformed PSOPC while the result

of PSOPC is far better than LSPSO and CPSO. However from Table 3.7, for

functions fz and fio, the results generated respectively by CPSO and GSPSO

are not significantly better than PSOPC. For function fo, the results obtained

from PSOPC do not differ significantly from those generated by GSPSO. For

functions fs and fo, the differences between the results generated by PSOPC

and CPSO are not statistically significant. It can be concluded that PSOPC

significantly outperforms LSPSO on all the tested benchmark functions.

The performance of CPSO is better than GSPSO on all the unimodel bench-

mark functions (functions f; to f,). But GSPSO results in good performance

on the multimodel benchmark functions (functions fs to fio). Although it is

believed that LSPSO is able to “flow around” local optima [96], our exper-

imental results have indicated that GSPSO and CPSO exhibit better global

convergence performance. The search performance of 4 algorithms tested here

can be ordered as PSOPC > GSPSO ~ CPSO > LSPSO.

Figures 3.5 to 3.14 show the search progress of the average values and the

Shan He

3.4 Experimental Studies 87

best solutions found by the 4 algorithms over 50 runs for functions f; to fio.

From these figures, for most of the benchmark functions, PSOPC quickly found

the near optima in the early search process.

For unimodel functions (function f; to fs), the convergence rates are more

important than the final results of optimisation as there are other methods

such as gradient-based search methods that are designed specially to optimise

unimodal functions [58]. From Figs. 3.5 to 3.8, it can be seen that PSOPC

has a faster convergence rate than other three algorithms.

Functions fs to fio are multimodal functions that are very difficult to opti-

mise since the number of local minima increases exponentially as the function

dimension increases ((?] and [?]). The search process of four algorithms for fs

to fio are shown by Figs. 3.9 to 3.14. According to these figures, for most

of the functions (fs, fe, fs, fo and fio), PSOPC converges near global minima

while the other three algorithms were trapped by poor local minima and then

stagnated. The only exception is about function f7, for which GSPSO and

CPSO did not fully converge when the maximum generations was reached.

Figure 3.5: f; (Sphere function)

— Best of PSOPC
= + Bestof GSPSO

vo» Bestof LSPSO
-— Bestof CPSO

— Average of PSOPC
‘»] = Average of GSPSO

Average of LSPSO

 10 1 oe + 10° —__—_+—— a

0 500 1000 1500 2000 0 500 1000 1500 2000

Generation Generation

Shan He

3.5 Discussion 88

Figure 3.6: f2 (Schwefel’s Problem 1.2)

— Average of PSOPC — Best of PSOPC
»=-+ Average of GSPSO -=++ Best of GSPSO

so Average of LSPSO «> Best of LSPSO.
SO ~~ Best of CPSO rage of CP:

-2'

0 500 1000 1500 2000 0 500 1000 1500 2000
Generation Generation

3.5 Discussion

Arithmetically, this passive congregation operator can be regarded as a

stochastic variable that introduces perturbations to the search process. [110]

also introduced a stochastic variable into the standard PSO, which is referred

to turbulence in their paper. The velocity-updating equation is given by

V+! = wViF + eyri(P* — XF) + core(P? — XP) +13 (3.5.1)

where r3 is a random variable rz; ~ U(0,0.1R), and R is the absolute range of

the model parameter.

From our experience, a large R will help the swarm escape local minima

but may also cause the search process to diverge. A too small R may have

no impact on search performance. The value of R is also problem-specific,

e.g., a suitable R for some benchmark functions will deteriorate the search

performance on other functions. Therefore, finding a proper value of Ff is

necessary for the best solution of an optimisation problem.

Compared with the turbulence factor r3, the passive congregation opera-

tor c3r3(R* — X*) is more adaptive to different optimisation problems. For

each individual, the turbulence (perturbation) is proportional to the distance

Shan He

3.5 Discussion 89

Figure 3.7: f3 (Schwefel’s Problem 2.21)

 — Average of PSOPC
«=> Average of GSPSO.

na Average of LSPSO

== Average of CPSO

— Best of PSOPC
~++ Best of GSPSO

‘es] oss Bestof LSPSO

=~ Best of CPSO

 + — i —__i— —+—_ ——

0 500 1000 1500 2000 0 500 1000 1500 2000

Generation Generation

between itself and a randomly selected neighborhood rather than an external

random number. In the early search process, the distances between individuals

are large, therefore the turbulence is large, which may allow the swarm to avoid

converging to a poor local minimum. As the generations increase, the distances

between individuals become smaller, therefore the turbulence becomes smaller,

which enables the swarm to refine solutions.

[96] investigated population topologies of PSO systematically. In their

study, two sociometric variables, the number of neighbors for each node in

the population k and the number of neighbors in common C, were varied to

generated different topologies. One experiment, called random graphs, is im-

plemented to generate different topologies by randomly initialized different k,

C, standard deviation of k(stdk), and standard deviation of C(stdC), and then

optimised by a method with a cooling mechanism that was inspired by sim-

ulated annealing. Since the PSO algorithm used in their work is the CPSO

as defined in equation (1.2.5), the only factor affected by k, C, stdk, and stdC

is P,. Therefore the essential result of their experiment is most likely finding

a proper selection scheme for P, rather than introducing a new information

sharing mechanism into swarms as PSOPC does.

Shan He

hk
et

Ex
”

3.6 Conclusions 90

Figure 3.8: f4 (Generalized Rosenbrock function)

— Best of PSOPC

1 ————— ——— — 0

0 500 1000 1500 2000 0 500 1000
Generation Generation

3.6 Conclusions

In this chapter a new PSO with passive congregation (PSOPC) has been

presented based on the standard PSO. By introducing passive congregation,

information can be transferred among individuals that will help individuals

avoid misjudging information and becoming trapped by poor local minima.

The only coefficient introduced into the standard PSO is the passive congre-

gation coefficient cz. A generic value of cz was selected by experiments.

A set of 10 benchmark functions have been used to test PSOPC in com-

parison with GSPSO, LSPSO, and CPSO. Among them, four functions were

unimodal and six were multimodal. For the multimodal benchmark functions,

PSOPC found better results on functions f; to fy than those generated by the

other three standard PSO variants. For the unimodal functions, of which the

convergence rate is more important than the final results, our PSOPC outper-

formed the other three algorithms in terms of accuracy and convergence rate on

3 out of 4 benchmark functions: fi, fs and fy. We also applied two-tailed tests

to evaluate the statistical significance of differences between PSOPC and the

other three algorithms. The results indicated that for 6 out of 10 benchmark

functions, PSOPC performed significantly better than all other three standard

Shan He

3.6 Conclusions 91

Figure 3.9: fs; (Generalized Schwefel’s Problem 2.26)

— Average of PSOPC
+=-+ Average of GSPSO

Average of LSPSO
~~ Average of CPSO

Ses eae swee a a a ee eS ae eT EE

0 500 1000 1500 2000
Generation

PSO variants.

— Best of PSOPC
+=*+ Best of GSPSO
«+ Best of LSPSO
~~ Bestof CPSO

0 500 1000 1500 2000

Generation

Shan He

3.6 Conclusions 92

Figure 3.10: fg (Generalized Rastrigin’s function)

Averags of PSOPC
Average of GSPSO
Average of LSPSO.

= = Average of CPSO

Best of PSOPC

Best of LSPSO
Best of CPSO

f(x
)

f(x
)

0 500 1000 1500 2000 0 500 1000 1500 2000
Generation Generation

Figure 3.11: f7 (Ackley’s function)

— Best of PSOPC
jest of GSPSO

Best of LSPSO
- — Bestof CPSO

Average of PSOPC
Average of GSPSO
Average of LSPSO

= Average of CPSO

=

0 500 1000 1500 2000 0 500 1000 1500 2000

Generation Generation

 10"

Shan He

3.6 Conclusions 93

Table 3.6: Comparison between PSOPC, GSPSO, LSPSO, and CPSO.

Mean function value

fi 9.5 x 10-79 | 1.9x 10-4 | 30x 10-3 | 2.3x10-%

Pe (5.9 91077) | (3.7%. 100**) (4.9 x 10735)

2.71 62.33 1805.03 2.29

7.5 x 1073 AIF. 11.37 6.1 x 107?

)

) -20)

f

f

iE 32.44 52.83 347.92 39.70

f —12267.77 | -—10768.82 | —10928.65 | -—10443.47

2.91 21.56 59.07 43.76

7 2.3x 10-4 | 9.0 x 10-8 1.41 1.6 x 10-8

(9.3 x 10-8) | (8.6 x 10-1) | (1.8 x 10-8)

8 3.2 x 1073 1.4x10-? | 96x10-? | 19x10

(1.6 x 10-7) | (1.0 x 10-*) | (2.0 x 10-?)

fo 4.5x 10-7 | 20x 10-3 1.06 3.9 x 107?

(3.2 x 10775) | (1.5 x 107?)

fio 1.1x 10-3 | 8.84 x 1074 13.35 3.8 x 107

2

3

4

5

te

f

Ji

Shan He

Table 3.7: Two-tailed test on PSOPC, GSPSO, LSPSO, and CPSO. The value

of t with 49 degree of freedom is significant at a = 0.05 by a two-tailed test

and to.025 aU

ees |e DN ee Rt eee tia Yl
Function PSOPC-LSPSO

—12.46 S2L77
~16.50 41.71

Figure 3.12: fg (Generalized Griewank function)

— Average of PSOPC
+=» Average of GSPSO

» Average of LSPSO
~~ Average of CPSO

 = —— = — 1 rn

0 500 1000 1500 2000 0 500 1000 1500

Generation
Generation

Shan He

3.6 Conclusions 95

Figure 3.13: fg (Penalized function P8)

40°

t of PSOPC.

10

40°

= =

10"

10°

10°° 4. —— —_—_i—__—_

0 500 1000 1500 2000
Generation

Figure 3.14: fio (Penalized function P16)

10
‘Average of PSOPC
erage of GSPSO

Average of LSPSO
Average of CPSO

10°

ZS an 9 E10

107°

40°" —E

0 500 1000 1500 2000
Generation

8 10
— Average of PSOPC
»=-+ Average of GSPSO
voy Average of LSPSO

40° = = Average of CPSO

10° §

EZ 10°

TOUNEC LMR \GHLEN: ocho Feet

107

10" A :
1000 1500 2000

Generation
0 500

10
 10 — Best of PSOPC

Best of GSPSO
Best of LSPSO

° Best of CPSO

10

40°"

=

10°

40°

10°
0 600 1000 1500 2000

Generation

Shan He

Part 2

Applications of Animal

Behaviour Inspired

Optimisation Algorithms to

Real-world Problems

Chapter 4

Neural Networks Training using

Group Search Optimiser

In Chapter 1, a novel optimisation algorithm: GSO has been proposed.

The superiority of GSO has been demonstrated by solving a large set of bench-

mark functions including a set of large-scale multi-modal functions. In this

chapter, we apply GSO to Artificial Neural Network (ANN) training to further

investigate its applicability to real-world problems. The ANN training process

can be regarded as a hard optimisation problem because the search space is

high-dimensional multi-modal and is usually polluted by noises and missing

data. The most popular training algorithm is back-propagation (BP) algo-

rithm. However, this gradient-based algorithm usually gets stuck in local min-

ima and therefore the trained ANNs yield poor results. Here we proposed an

ANN training algorithm based on the GSO algorithm. Parameters of a 3-layer

feed-forward ANN, including connection weights and biases are tuned by our

GSO algorithm. 4 real-world classification problems and 1 forecasting problem

have been used as benchmarks to assess the performance of our GSO-based

trained ANN (GSOANN). We also implemented other 5 training algorithms

for comparison. GSOANN achieved better results than those generated by the

other 5 training algorithms. Due to GSO’s superior global search performance,

GSOANN even has a better generalization performance than those of other

oT

4.1 Introduction 98

sophisticated ANNs, including some ANN ensembles on several benchmark

problems.

4.1 Introduction

Artificial Neural Networks (ANNs) as a kind of computational intelligence

technique have been widely applied to many problem domains such as pattern

recognition [111] and control [112] since their renaissance in the mid-80’s. Var-

ious ANN architectures and training algorithms have been proposed. Among

them, the most popular ANN architecture and training algorithm are feed-

forward ANNs and the BP training algorithm, respectively. However, the gra-

dient based BP training algorithm is easy to be trapped by local minima and

therefore deteriorates the performance of ANNs. Moreover, designing a near

optimal ANN architecture to achieve good generalization performance is a hard

optimisation problem.

In the past two decades, Evolutionary Algorithms (EAs) have been intro-

duced to ANNs to perform various tasks, such as connection weight training,

architecture design, learning rule adaption, input feature selection, connection

weight initialization, rule extraction from ANN, etc.[113]. The combinations of

ANNs and EAs are usually referred to as Evolutionary ANNs (EANNs). The

earliest attempt to combine EAs and ANNs can be traced back to late 80s [114]

[115]. Since then, the successful marriage of ANNs and EAs has attracted more

and more attentions [116] [117]. We direct interested readers to an excellent

review [113] of research on EANNs before 1999. In this section, we will briefly

introduce some related works on EANNSs in the last 5 years.

In [118], an improved genetic algorithm was used to tune the structure

and parameters of a neural network. In order to tuning the structure of ANN

in a simple way, link switches were incorporated into a three layer neural net-

work. By introducing link switches, a given fully connected feed-forward neural

network may become a partially connected network after leaning [118]. An im-

proved Genetic Algorithm (GA) with new genetic operators was introduced to

Shan He

4.1 Introduction 99

train the proposed ANN. Two application examples, sunspots forecasting and

associative memory tuning, were solved in their study.

Palmes et al. proposed a mutation-based genetic neural network (MGNN)

[119]. A simple matrix encoding scheme was used to represent an ANN’s

architecture and weights. The neural network utilized the mutation strategy

of local adaption of evolutionary programming to evolve network structure and

connection weights dynamically. As classified in their paper, the MGNN falls

into the category of “invasive” EANNs, where the ANN system uses EA for

ANN’s weights and structure evolution without the employment of BP or other

gradient training [119]. Three classification problems, namely iris classification,

wine recognition problem, and Wisconsin breast cancer diagnosis problem were

used in their paper as benchmark functions.

In [120], an EAs, differential evolution (DE), was applied to train feed-

forward ANNs’ weights. A curve fitting problem and three classification prob-

lems (no details about these problems were given) were studied. However, the

DE seems not to provide any distinct advantage in terms of learning rate or

solution quality. For three out of the four problems tested in [120], the DE

based ANN even yielded poorer results than those of ANN trained by a BP

training algorithm.

Cantt-Paz and Kamath presented an empirical evaluation of eight com-

binations of EAs and ANNs on 11 well studied real-world benchmaks and 4

synthetic problems [121]. The algorithms they used included binary-encoded,

real-encoded GAs, and the BP algorithm. The tasks performed by these al-

gorithms and their combinations included searching for weights, designing ar-

chitecture of ANNs, and selecting feature subsets for ANN training. Although

the authors successfully applied EANNs to identify bent-double galaxies from

FIRST (Faint Images of the Radio Sky at Twenty-cm) survey [122], the con-

clusion in [121] is somewhat surprising: in most cases, the combinations of

EAs perform equally well on the problems and were not more accurate than

hand-designed ANNs trained with the simple BP algorithm.

Combining ANN ensembles and EAs is becoming increasingly popular in

Shan He

4.1 Introduction 100

the past five years. There are lots of real-world problems that are too large

and too complex for a single ANN, even a single EANN, to solve alone. ANN

ensembles, which consists of several individual ANNs, were proposed to tackle

these large-scale and complex real-world problems. Under the umbrella of

the divide-and-conquer strategy, ANN ensembles subdivide a task and thereby

solve it more efficiently and elegantly. Due to their superior generalization

performance, ANN ensembles are enjoying and will continue to enjoy their

successes. However, designing ANN ensemble is a tough task which heavily

relies on human experts and prior knowledge about the problem [113]. In case

of lacking human experts and prior knowledge, tedious trial-and-error processes

are often required to design ANN ensembles in practice. Recently, EAs have

been applied to address the issues of automatic designing of ANN ensembles

[123] [124] [125] [126]. By employing population information, EAs trained ANN

ensembles provide even better generalization performance on many problems

[127].

Since we proposed GSO for continuous function optimisation problems, it

is quite natural to apply the GSO algorithm to ANN weight training. The

ANN weight training process can be regarded as a hard continuous optimi-

sation problem because the search space is high-dimensional multi-modal and

is usually polluted by noises and missing data. The objective of ANN weight

training process is to minimize the error function. However, it has been pointed

out that minimizing the error function is different from maximizing general-

ization [128]. The error on training set may be driven to a very small value

by minimizing the error function, however, as a side effect, sometimes the

overfitting problems will occur, that is, when test data are presented to the

trained ANN, the error is still large. Therefore, to improve ANN’s general-

ization performance, in this study, early stopping is introduced. The error

rates of validation sets were monitored during the training processes. When

the validation error increases for a specified number of iterations, the training

will stop. Our experimental results on the five benchmark functions show that

the GSO-based ANN (GSOANN) has a superior generalization performance to

Shan He

4.2 GSO Based Training Algorithm for Neural Networks 101

SANG pe
7 REN

Y/

Figure 4.1: A three-layer feed-forward ANN.

those of many sophisticated ANNs and even some ANN ensembles.

The rest of the chapter is organized as follows. In Section 4.2, GSOANN

will be introduced and the details of implementation will be given. In Sec-

tion 4.3, we describe the benchmark functions, experimental settings and the

experimental results. The chapter is concluded in Section 4.4.

4.2 GSO Based Training Algorithm for Neural

Networks

Figure 4.1 presents the three-layer feed-forward ANN tuned by our GSO

algorithm. The ANN consists three layers, namely, input, hidden, and output

layers. The nodes in each layer receive input signals from the previous layer and

pass the output to the subsequent layer. The nodes of the input layer supply

respective elements of the activation pattern (input vector), which constitute

the input signals from outside system applied to the nodes in the hidden layer

by the weighted links. The output signals of the nodes in the output layer of

Shan He

4.2 GSO Based Training Algorithm for Neural Networks 102

the network constitute the overall response of the network to the activation

pattern supplied by the source nodes in the input layer. The subscripts n, h,

and k denote any node in the input, hidden, and output layers, respectively.

The net input wu is defined as the weighted sum of the incoming signal minus

a bias term. The net input of node h , uy, , in the hidden layer is expressed as

follows:

Un = S > whndn _ On,

where y, is the output of node n in the input layer, wnn represents the con-

nection weight from node n in the input layer to node h in the hidden layer,

and 6), is the bias of node h in the hidden layer. The activation function used

in the proposed ANN is the sigmoid function. Therefore, in the hidden layer,

the output y, of node h, can be expressed as

Yn = fr(un) = +e

The output of node k in the output layer can be also described as

 Ye = fe(ur) = (4.2.1)
1 eter

where

Uk = yy Wenyh — Fx
h

where 6; is the bias of node k in the output layer.

The parameters (connection weights and bias terms) are tuned by the our

GSO algorithm as shown in Figure 4.2. In the GSO-based training algorithm,

each member of the population is a vector comprises connection weights and

bias terms. Without loss of generality, we denote W, as the connection weight

matrix between the input layer and the hidden layer, ©; as the bias terms

to the hidden layer, W2 as the one between the hidden layer and the output

layer, and @2 as the bias terms to the output layer for the ANN structures

established in the study. The é,, member in the population can be represented

as: X; = [W, 01 W2 92]. The fitness function assigned to the ir, individual is

the least-squared error function defined as follows:

Shan He

4.3 Experimental Studies 103

Desired Output

Input ANN Output

Error

Ajust Parameters

Figure 4.2: Schematic diagram of GSO based ANN.

Py UK

F, = ay S\ (dep a Yep)” (4.2.2)

p= k=]

where Yyxp indicates the k;, computed output in equation (4.2.1) of the ANN

for the pi, sample vector; P denotes the total number of sample vectors; and

dy,» is the desired output in the ky, output node.

4.3 Experimental Studies

In order to evaluate GSOANN’s performance, several well-studied bench-

mark functions, including 4 classification problems, and one time series predic-

tion problem were tested. The classification problems tested here are from the

UCI machine learning repository: Wisconsin breast classification data; Pima

Indian diabetes data; Cleveland heart disease data; and Australian credit card

assessment data. They are all real-world problems which are investigated by

human experts in practice. The data sets of these problems are usually contain

missing attribute values and are usually polluted by noise. Therefore, they rep-

resent some of the most challenging problems in machine learning field [117].

The time series prediction problem studied here is sunspot number forecasting

problem.

For comparison reason, we also implemented a modified back-propagation

training algorithm: gradient descent with momentum and adaptive learning

Shan He

4.3 Experimental Studies 104

rate; and four EAs based training algorithms, namely, Simple Genetic Algo-

rithm (SGA) [78] based algorithm; Evolutionary Programming (EP) [79] [80]

based algorithm; Evolution Strategies (ES) [81] based algorithm; Constric-

tion Particle Swarm Optimiser (CPSO) [32] based algorithm. Although the

GSOANN proposed here is relatively simple so it is not fair to compare the

results of GSOANN to those of other sophisticated ANNs, it is our interest to

compared the results we have obtained with the latest paper published in the

literature.

4.3.1 Experimental setting

The parameter setting of the GSO algorithm is as same as the setting used

in [129]. The initial population of GSO is generated uniformly at random in

the search space. The initial head angle y® of each individual is set to be 7.

The constants a is given by round(/n + 1). The maximum pursuit angle Omax

is 3. The maximum turning angle a is set to be 347. The maximum pursuit

distance Imax is calculated from:

Imax = || Us = Lill =

where L; and U; are the lower and upper bounds for the i, dimension. The

parameter need to be tuned is the percentage of rangers; our recommended

percentage of rangers is 20%, which was used throughout all our experiments.

The population size of the GSO algorithm was set to at 50.

The SGA algorithm we executed in our experiments is a real-coded simple

genetic algorithm. The population of SGA was 50. The crossover and muta-

tion rate was set to be 0.9 and 0.1, respectively. Stochastic universal sampling

selection was used. The implementation of EP was based on the algorithm

described in [80]. The population size and the tournament size for selection

were 100 and 10, respectively. The initial standard deviation of the EP algo-

rithm was 3.0. The ES algorithm used in our experiments is a state-of-the-art

(1, A)-ES algorithm which was implemented according to [81]. The population

Shan He

4.3 Experimental Studies 105

py was set to at 200 and the offspring number A was 30. A standard deviation

of 3.0 was adopted. Global intermediate recombination was also employed in

the ES algorithm. We also implemented a constriction factor approach PSO

(CPSO), which is an improved PSO algorithm. The population of 50 was used

in the CPSO algorithm. The constriction factor y was 0.73 and the accelera-

tion factors c, and c2 were both 2.05 which followed the recommendations from

[36].

For GSOANN and the other four EAs trained ANNs, the maximum epoch

was set to be 300.

4.3.2 The classification problems

The Wisconsin Breast Cancer Data Set

The breast cancer data set was obtained by W. H. Wolberg et al. at the

University of Wisconsin Hospitals, Madison, based on cell descriptions gathered

by microscopic examination. The data set currently contains 9 integer-valued

attributes and 699 instances of which 458 are benign and 241 are malignant

examples. In order to train ANNs to classify a tumor as either benign or

malignant, we partitioned this data set into three sets: a training set which

contains the first 349 examples, a validation set which contains the following

175 examples, and a test set which contains the final 175 examples.

Results from GSO and the other 5 ANNs trained by EAs and BP algorithms

are listed in Table 4.1. It can be seen that GSOANN produced the best average

testing result. Although the other ANNs yielded reasonable best results, €.g.,

4 ANNs generated a testing error rate of 0%, the worst results found by these

ANNs greatly deteriorated their overall performance, e.g., the worst results

found by PSOANN and BPANN are 11.43% and 28.57%, respectively. Figure

4.3 shows the evolution of the mean training error of the five ANNs over 30

runs.

The comparison between results produced by GSOANN and those of 10

other algorithms was tabulated in Table 4.2. Among these algorithms, MGNN

Shan He

4.3 Experimental Studies 106

 Me
an

of
 A

ve
ra
ge

Er
ro
rs

© a

0 50 100 150 200
Generation

Figure 4.3: Evolution of ANNs’ accuracy for the Wisconsin breast cancer data

set.

[119] and EPNet [117] evolve ANN structure as well as connection weights;

COOP [126] is an evolutionary ANN ensemble evolved by cooperative coevo-

lution; CNNE [130] is a constructive algorithm for training cooperative ANN

ensembles. CCSS [131], OC1-best [132] and EDTs [133] are state-of-the-art

decision tress classifiers, including decision tree ensembles [131] [133] and hy-

brid evolutionary decision tree [132]; GANet-best is the best result from [121],

which was generated by an EANN based on a real-encoded EA [134] to evolve

connection weights; SVM-best is the best result of 8 least squares SVM clas-

sifiers [135]. It is worth to mention that the decision trees [131] [133] [121]

and SVM [135] techniques used k-fold cross-validation which generated more

optimistic results.

Compared with the sophisticated classifiers mentioned above, we can find

that this simple GSOANN produced the best average result from Table 4.2.

Shan He

107 4.3 Experimental Studies 69°S7
POE

OSE
c6Z%

OTE
ELE

st9
0

€9¢
VvOE

N
N
V
V
O
S

9GE
IEE

N
N
V
O
S
O

xe
UN

«Ss
w
e

|
xe

UY
GS

Ueo
|]
xe

UN
«dS

Bee |
P
O
U

‘jos
BYep

IooUVd
YSeoIq

UISUODST
OY}

JO
N
N
V
O
S
®
D

Jo
oyel

I
O
I

:T'p
OqeL

N
N
V
d
d

N
N
V
O
S
d

N
N
V
S
d

N
N
V
d
d

Shan He

108 4.3 Experimental Studies

69'S

[set]
sLaa |

[zet]
3899-100

SET

[tet]
ssoo |

[set]
yseq-WAS |

[6TT]
NNDIN

w
y

WOSTy

(2tt]
Nada}

[oetl
ANNO

|
[9zt]

dood |
[tzthseq3aeNVD |

NNVOSD |

u
m
o
S
t
y

|

UISUODSI\\
9T{}

UO
(%)

‘yas
BYep

Ia.Ued
4YSeoIq

ayeI
1OII9

SUI}SO}
ASVIOAV

JO
SUIIA4

UI
SoyoeoIdde

Jay}0
puke

N
N
V
O
S
*

Useemyoq
uostieduloy

:Z' Pf
a[qeI,

Shan He

4.3 Experimental Studies 109

0.5,

OF

t

:

a= 05hs
D t ea 3
o R$

hah
° “1h ey
c ans:

3 La.
= Ne Teen eee Se ol Pe

=1.5 2, a ne
ese nary Sette cet Pee : Erne A oa a

-2
ae = ' 50 100 150 200 oe
Generation

Figure 4.4: Evolution of ANNs’ accuracy for the Pima Indian diabetes data

set.

The Pima Indian Diabetes Data Set

The Pima Indian diabetes data were originally donated by Vincent Sigillito

at the Johns Hopkins University. The data was gathered from a group of female

patients of over 21 years old and of Pima Indian heritage living near Phoenix,

Arizona, USA. The diagnostic, binary-valued variable investigated is whether

the patient shows signs of diabetes according to World Health Organization

criteria. There are eight numeric-valued attributes and 768 instances. The data

set contains 500 instances of patients with signs of diabetes and 268 instances

of patients without. The data set was partitioned: the first 384 instances were

used as the training set, the following 192 instances as the validation set, and

the final 192 instances as the test set.

We tabulated the results generated by GSOANN and the other five ANNs

in Table 4.3. Again, GSOANN yielded the best average result over 50 runs.

The evolution of the mean training error of the five ANNs over 30 runs is

presented in Figure 4.4.

This problem is one of the most difficult problems since the data set is

relatively small and was heavily polluted by noise. Results from other state-of-

Shan He

4.3 Experimental Studies 110

the-art classifiers are tabulated in Table 4.4. COVNET [125] is a cooperative

coevolutionary model for evolving artificial neural networks. EENCL is evolu-

tionary ensembles with negative correlation learning presented in [123]. 12-fold

cross-validation was used by EENCL. GANet-best is the best result produced

an ANN trained by a subset of features selected by binary-encoded GA [121].

Referring to Table 4.4, it can be seen that GSOANN is outperformed by

COOP [126] and CNNE [130] which are both ANN ensembles. However,

GSOANN produced better results than the rest classifiers including evolution-

ary ANN ensembles COVNET [125] and EENCL [123].

Shan He

111 4.3 Experimental Studies 00°G% |
C0GP

VLYVT |

LL 91

92 VT
|

LE OT

SULT
|
P
E
s

N
N
V
d
d

SV'9T |

19°02

N
N
V
V
O
S

881%
6TLL

960
6
L
°
6
L
|
I
Z
S
l

LEFT
170

Z
8
P
L
|
O
8
9
T

26ST
120

ev 9T
|
 N
N
V
O
S
D

xe
UN

«6S
(UeO

|
xe

U
C
S
C
]

XP
UN

S
H
A

|
POUTRPTN

‘jas
eyep

oseasIp
soyoqerp

euMtg
94}

JO
N
N
V
O
S
D

Jo
oFe1

IOLIG
*E°p

OGeL

N
N
V
d
d

Gc 9T
|

N
N
V
O
S
d

NNVSda

Shan He

112 4.3 Experimental Studies

eulg
oy}

uo
(%

0°92
[et]

994-190 | [tet] ssoo |

[szt] EINAOO | loet] ANNO |
[921]
a
d
o
0
0
_
|

)

[IZ

a
E

IOIIO
Sutyso}

osvIOAV
JO

SULIO}
UT

soyoR

[set] soq-was |
[zttl3°Naq

|
[ect] TONaa | e

H
O
R
T
Y

OL Vz
61°61

(%)
oyeI

IOII9
4ST,

T]
98°9-39NVD

‘yas
BYep

OSeasIp
SojoqeIp

oidde
19430

pue
N
N
V
O
S

Ueemyoq
uostieduion

P
P

IIqeL,

Shan He

4,3 Experimental Studies 113

The Cleveland Heart Disease Data Set

This data set comes from the Cleveland Clinic Foundation and was supplied

by Robert Detrano of the V.A. Medical Center, Long Beach, CA. The goal of

this data set is to predict the presence of absence of heart disease based on

the data collected from various medical tests carried out on a patient. The

database contains 13 attributes, which have been extracted from a larger set

of 75. The original data set had five classes, considering four degrees of heart

disease. The database originally contained 303 instances but six of them had

missing values and 27 of the remaining were retained in case of dispute, leaving

a final total of 270. The total 270 instances were partitioned into the training

set of 134 instances, the validation set of 68 instances, and the testing set of

the final 68 instances.

Table 4.5 compares GSOANN’s result against those of other ANNs trained

by EAs and BP algorithms. In terms of testing error rate, GSOANN generated

the best average result. The best error rate was produced by ESANN which

also had the best average training and validation error rates. However, ESANN

yielded far worst testing result than that generated by GSOANN. The evolution

of the mean training error of the five ANNs over 30 runs is presented in Figure

4.5.

In the machine learning literature, the Cleveland heart disease problem has

been studied by researchers on data sets of either 303 or 270 instances. The

outcomes from different data sets are quite different. Therefore, to compare

fairly with other methods, we only listed studies which carried on the data set

of 270 instances in Table 4.6 in comparison to our GSOANN. From this table,

we can see that GSOANN generated worse result than those of COOP, CNNE

and COVNET which are all ANN ensembles. However, the result is better than

those of the rest 6 classifiers including EPNetEn which evolves ANN ensembles

of EPNets[117].

Shan He

4.3 Experimental Studies 114

~~ = ~ BPANN

Me
an

of
 A

ve
ra
ge

Er
ro
rs

“Oo 50 100 150 200 250
Generation

Figure 4.5: Evolution of ANNs’ accuracy for the Cleveland heart disease data

set.

Shan He

115 4.3 Experimental Studies N
N
V
d
d

N
N
V
O
S
d

N
N
V
S
@

N
N
V
d
d

€G@r
|
 N
N
V
V
O
S

LOIL
926

V
O

§€00L
|

N
N
V
O
S
O

xe
Uy

«Gs
(Ue

|
xe

OU
S
e
o

|
XP

IN
S
U
R
O

|
POUR

‘Jos
YEP

oSeasIP
JreoY

PULTOAITD
943

JO
N
N
V
O
S
D

Jo
oyes

JOIIY
:G'y

aqeL

Shan He

116 4.3 Experimental Studies

puryaas[D
ayy

uo (%

(zz1]
UaONda

| [st]
LANAOO | [oet] ANNO |

)

voor

[get]
LGINOO

(%)
oye

I
O
I

4sa],

(%)
aye

IOIIO
4SoJ,

‘qos
BYep

aSeasIp
JOY]

ayel
IOL1a

Suryso}
aSesOAe

Jo
sur19}

ul
soyoeoidde

Joyjo
puke

N
N
V
O
S
D

Worjod

uostredw0y
:9'P

e[qe@L,

Shan He

4.3 Experimental Studies 117

The Australian Credit Card Assessment Data Set

The purpose of this data set is to assess applications to an Australian

bank for a credit card based on a number of attributes. It is also from the

UCI Machine Learning Repository. There are two classes, meaning whether

the application was granted (44.5% of the instances) or denied (55.5% of the

instances). Each record has 14 attributes of which the names and values have

been changed to meaningless symbols to protect confidentiality of the data.

This data set is very difficult to classify because it contains many missing

values (there are of missing values in 37 cases of the records). Moreover, the

attributes are mixed: there are 5 continuous, 4 binary and 5 nominal. The

whole data was partitioned randomly into a training data set which contains

346 instances, a validation set which contains 172 instances and a testing data

of 172 instances.

We list the training accuracy, validation accuracy and test accuracy of

GSOANN along with other five algorithms in Table 4.7. It can be seen from

the table that GSOANN achieved the best average training error rate, 9.48%.

Not surprisingly, GSOANN produced a far better test error rate than those

from the other five ANNs. To illustrate the training process of ANNs, we

present the evolution of the mean training error of the six ANNs over 30 runs

in Figure 4.6.

Shan He

4.3 Experimental Studies 118

0.5

 —— GSOANN
~ - - EPANN

‘= +=» PSOANN
momen SGAANN
~~ =BPANN

Me
an

of

 A
ve
ra
ge

Er
ro

rs

1

mH) 50 100 150 200 250 300
Generation

Figure 4.6: Evolution of ANNs’ accuracy for the Australian credit card assess-

ment data set.

Shan He

119 4.3 Experimental Studies

N
N
V
O
$
S
d

N
N
V
V
O
S

N
N
V
O
S
9
D

 u
y

=
=6ds

jog
Suturery,

xe
UI

«
S
e
o

|
XE

U
N
S

U
e

yag
wOLyepTeA,

‘Jas
BYep

JUOUISSoSse
PIVd

Jpaso
ueITeIysNYy

oy}
Jo

N
N
V
O
S
D

Jo
09e1

tomy
-1'y

ATeL

Shan He

4.3 Experimental Studies 120

As listed in Table 4.8, we also compare the result from GSOANN to those

adopted from several papers which include 2 studies on evolutionary ANNs

(GANet-best [121] and EPNet [117]), 5 papers of ANN ensembles (COOP [126],

CNNE [130], COVNET [125], EENCL [123], EPNetEn [127]) and the studies

on SVMs (SVM-best [135]) and decision trees ensembles (CCSS [131]). The

best result adopted from [121] was generated from an ANN whose architecture

was designed by GAs. Although our GSOANN has been proved to be an

overpowering winner when compared to the other five ANNs we implemented,

the average testing error rate generated by GSOANN is not as good as those

of other sophisticated approaches. GSOANN generated a better result than

those of GANet-best and CCSS but is outperformed by EPNet, SVMs and all

the ANN ensembles.

Shan He

121 4.3 Experimental Studies

LOTT

uelTeIysny
oy}

Uo
(%

[tet]
SsSoO

[szI]
L
A
N
A
O
O
)

[set]
aseq-was |

[zt1]
N
a
a

|
[zzt]

uaeNaa
|

[ezt]
TONAT
|

umposty

foet]
A
N
N
O

|
[921]

dOO| |
[TzT]

38°q-39eNVD |
N
N
V
O
S
D

WY
IOSTYV

‘yas
Vyep

JUOUISsesse
pied

y
p
e

d}EI
1OIIO

SUIISOY
OSVIOAR

JO
SULIO}

UT
SoyoeoIdde

J9Y}0
puke

N
N
V
O
S
D

woomyoq
uostredui0y

:g°p
e[qeL

Shan He

4.3 Experimental Studies 122

4.3.3. The forecasting problems

Forecasting of the Sunspot Number

Sunspot series is a record of the activity of the surface of the sun. It is

known that sunspot activity is a precursor to periods of active solar flares. A

sufficiently large solar flare ejects coronal material from the core of the sun,

and this material disrupts the operation of satellites. Therefore, predicting

the sunspot is becoming more and more important especially in our modern

world where people heavily rely on satellite communication. However, the

sunspot series is nonlinear, non-stationary and non-Gaussian and is a well-

known challenging task for time series analysis.

The data set used in our experiment was included in MATLAB environment

which recorded the sunspot activity over the last 300 years. The sunspot cycles

from 1700 to 1987 are shown in Fig. 4.7. It can be seen from this figure that

the sunspot activity is cyclical, reaching a maximum about every 11 years.

The first 180 year (1700 — 1987) were used as the training set to train the

proposed GSOANN. Following [118], the inputs x; of the GSOANN consists

of three past data points: 2, = yf(t — 1), z2 = y#(t — 2), and x3 = y$(t — 3),

where t denotes the year and y%(t) denotes the sunspot number at the year

t. The output is the prediction of the sunspot number at year t: 9, (t). The

performance (forecasting error rate) of the trained GSOANN can be calculated

from:
1980

ert = 2 4=1885 ()

We tabulated the results of training errors and forecasting errors in Table

4.9. From the table, it can be seen that although GSOANN yielded slightly

worse mean training error than that of PSOANN, it generated the best mean

lyf ()—ti (t)
96

forecasting error. We can also find that the best (minimum) forecasting result

found in the 30 runs by GSOANN is similar to or slightly worse than those of the

other five ANNs. However, the worst (maximum) forecasting error generated

by GSOANN is the smallest among the worst forecasting errors. It can be

concluded that although GSOANN could not find the best forecasting error,

Shan He

4,3 Experimental Studies 123

0
1700 1750 1800 1850 1900 1950

Figure 4.7: Sunspot cycles from 1700 to 1987.

the superior global search performance of GSO guaranteed the search was not

trapped by poor local minima as other algorithms did, therefore yield more

robust forecasting results.

This problem has been used as a benchmark by Leung et al. [118] to

evaluate the performance of their ANN based on an improved GA. The best

result obtained in their study is an ANN with six hidden nodes. The training

error and the forecasting error are 11.5730 and 14.0933, respectively. It can

be seen that although the training error obtained by their ANN is better than

Table 4.9: Accuracies of GSOANN of the sunspot forecasting problem.

Method | Mean SD Min Max |Mean SD Min Max

GSOANN

SGAANN

EPANN

ESANN

PSOANN

BPANN

Shan He

4.3 Experimental Studies 124

~~ ~BPANN

Me
an

of

Av

er
ag

e
Er
ro
rs

°
So

S
wo

>

a

S iy

——E 1__ el

0 100 200 300 400 500
Generation

Figure 4.8: Evolution of ANNs’ accuracy for the forecasting of the sunspot

number.

Su
ns
po
t

nu
mb
er
s

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980

Year

Figure 4.9: Simulation results of a 96-year prediction using GSOANN (dashed

line) and the actual numbers (sold line).

Shan He

4.4 Conclusions 125

those of all ANNs tested here, including GSOANN, the forecasting error is

worse than GSOANN and PSOANN.

4.4 Conclusions

In this chapter, the GSO algorithm has been applied to train ANN’s con-

nection weights. Our initial goal was not to propose a sophisticated ANNs

which can achieve the best generalization performance. Instead, we aimed to

access the global search performance of GSO by applying it to train ANN’s

weights since the training process can be regarded as a hard continuous opti-

misation problem. It has been pointed out that minimizing the error function

is different from maximizing generalization performance [128]. However, opti-

misation algorithms with better global search performance are more capable of

steering away from poor local minima of the error function therefore improving

generalization performance.

In order to further investigate the generalization property of GSOANN, we

also implemented five other EA-based and gradient-based training algorithms.

Compared to the other implemented ANNs, GSOANN yields the best average

test and forecasting error rates on all five benchmark problems. It can also be

seen that although the average training error rates generated by GSOANN are

outperformed by those of ESANN and PSOANN, the validation error rates on 3

out of 4 classification problems are better than those produced by all the other

ANNs. We also noticed that the GSOANN yields smaller standard deviations

than those of other ANNs which means GSOANN is more robust than the

other ANN. Although the GSOANN proposed here is relatively simple so it

is not fair to compare the results of GSOANN to those of other sophisticated

ANNs, surprisingly, compared to those generated by some sophisticated ANN

ensembles, this simple GSO based ANN training algorithm provides relatively

good results on the five benchmark problems.

Shan He

Chapter 5

Application of PSO to

Mechanical Design Optimisation

Problems

This chapter presents an improved particle swarm optimiser (PSO) for solv-

ing mechanical design optimisation problems involving problem-specific con-

straints and mixed variables such as integer, discrete and continuous variables.

A constraint handling method called the “fly-back-mechanism” is introduced to

maintain a feasible population. The standard PSO algorithm is also extended

to handle mixed variables using a simple scheme. Five benchmark problems

commonly used in the literature of engineering optimisation and nonlinear pro-

gramming are successfully solved by the proposed algorithm. The proposed al-

gorithm is easy to implement, and the results and the convergence performance

of the proposed algorithm are better than other techniques such as GAs.

5.1 Introduction

In the past few decades, many optimisation algorithms have been applied

to solve mechanical design optimisation problems. Among them, evolutionary

algorithms (EAs) such as Genetic Algorithms (GAs), Evolutionary Program-

126

5.1 Introduction 127

ming (EP) and Evolution Strategies (ES) become attractive because they do

not apply mathematical assumptions to the optimisation problems and have

better global search abilities over conventional optimisation algorithms[137].

Many successful applications of evolutionary algorithms have been reported

to solve engineering problems such as power system dispatch [138] [139] and

mechanical optimal design problems[140] [141]. Recently a new evolutionary

algorithm called Particle Swarm Optimiser (PSO) has been proposed [32]. PSO

is a population based optimisation algorithm which was inspired by the social

behaviour of animals such as fish schooling and bird flocking. Similar to other

evolutionary algorithms, it can solve a variety of hard optimisation problems

but with a faster convergence rate [21]. Another advantage is that it requires

only few parameters to be tuned making it attractive from an implementation

view point.

Most mechanical optimal design problems are hard to solve for both conven-

tional optimisation algorithms and EAs, because they involve problem-specific

constraints. To handle these constraints, many different approaches have been

proposed. The most common approach in the EAs community is to make use

of penalty functions. However, the major drawback of using penalty functions

is that they require additional tuning parameters. In particular the penalty

coefficients have to be fine tuned in order to balance the objective and penalty

functions. Inappropriate penalty coefficients will make the optimisation prob-

lem intractable [142] [143]. Other approaches to handle constraints, according

to [144], include rejection of infeasible individuals, maintaining feasible popula-

tion, repair of infeasible individuals, separation of individuals and constraints,

replacement of individuals by their repaired versions and use of decoders. The

standard PSO is usually applied to solve unconstrained optimisation problems.

In this chapter, the standard PSO algorithm is extended to solve constrained

mechanical design optimisation problems using preserving feasible population

methods.

Mechanical optimal design problems may contain integer, discrete and con-

tinuous variables, which are referred to as mixed-variable nonlinear optimisa-

Shan He

5.2 Formulation of Mechanical Design Optimisation Problems 128

tion problems. To solve them, Sandgren [145] and Hajela [146] have proposed

nonlinear branch and bound algorithms based on integer programming. Cao

and Wu developed mixed variable evolutionary programming (MVEP) [140]

with different mutation operators associated with different types of variables.

Deb and Goyal [141] presented a combined genetic search technique (GeneAS)

which combined binary and real-coded GAs to handle mixed variables. Origi-

nally PSO was proposed to handle continuous optimisation problems. Recently,

PSO has been applied to Integer Programming by Parsopoulos [147] by simply

truncating the real values to integers which does not effect significantly the

search performance. In this chapter, the standard PSO is extended to handle

mixed-variable nonlinear optimisation problems more effectively.

This chapter is organized as follows: Section 5.2 introduces the formulation

of mechanical design optimisation problems. A modified version of the PSO

algorithm to handle constraints with mixed variables is proposed in Section

5.3. The proposed PSO has been tested on five examples which are commonly

used in the mechanical design optimisation literature. Experimental results

and discussions are given in Section 5.4. The chapter is concluded in Section

6.5.

5.2 Formulation of Mechanical Design Optimi-

sation Problems

Mechanical design optimisation problems can be formulated as a nonlinear

programming (NLP) problem. Unlike generic NLP problems which only con-

tain continuous or integer variables, mechanical design optimisations usually

involve continuous, binary, discrete and integer variables. The binary variables

are usually involved in the formulation of the design problem to select alter-

native options. The discrete variables are used to represent standardization

constraints such as the diameters of standard sized bolts. Integer variables

usually occur when the numbers of objects are design variables, such as the

number of gear teeth. Considering the mixed variables, the formulation can be

Shan He

5.2 Formulation of Mechanical Design Optimisation Problems 129

expressed as follows:

min f(X) (5.2.1)

subject to:

hy(X) =0 12-2 Sm

g(X)>0 i=m+1,:--,p

where f(X) is the scalar objective function, and h;(X) and g;(X) are the

equality and inequality constraints, respectively.

The variables vector X € R™ represents a set of design variables which can

be written as:

Xe

x8

a Sac C ,B Boat Teed Dae
X= xt = [25 .°°* Page Tt i Png Par Pa 21 1s a Pap

xP

where

Cl Cc G . ge ey Sap ye = 1 2 ie (5.2.2)

B Bl _,Bu, ofp,
a? € {r;",2;"}, 1=1,2,---,np

Il I kes
z; <2; 27; , t= 1e2)--*, RT

Di D Du . le
v; <2; <7; , 6 — ld. Peep

where XC € Rv, X8 € R™, X! € R™ and X? € R” denote feasible subsets

of comprising continuous, binary, integer and discrete variables, respectively.

a¢!, eB! ol! and xP! are the lower bounds of the i,, variables of X°,X”,X i

and X?, respectively. «©, 22",2/" and xP“ are the upper bounds of the

itn Variables of X°, X3, xX! and X”, respectively. nc,ng,nz and np are the

numbers of continuous, binary, integer and discrete variables, respectively. The

total number of variables is N=no+ng+nyz+ Np.

Shan He

5.3 Improved Particle Swarm Optimiser 130

5.3 Improved Particle Swarm Optimiser

As mentioned in the introduction, the difficulties in using EAs to solve

mechanical optimisation problems come from problem-specific constraints and

mixed variables. Little work has been done for solving constrained mixed-

variable optimisation problems with PSO. In this section, the use of the PSO

techniques to handle mixed variables and constraints are proposed.

5.3.1 Mixed-variable handling methods

Originally, most of the EAs were proposed to handle continuous variables.

In the last decade, GAs [148], ESs [149], EPs [140] have been extended to

handle mixed variables.

In its basic form, PSO can only handle continuous variables. To handle

integer variables, simply truncating the real values to integers to calculate

fitness value will not affect the search performance significantly [147]. The

truncation is only performed in evaluating the fitness function. That is, the

swarm will “fly” in a continuous search space regardless of the variable type.

For binary variables, since they can be regarded as integer variables within the

range of (0, 1], we do not consider them separately.

For the ith particle X; contains n¢ continues variables and np discrete

variables, and the j;, discrete variable which consists of m; discrete values is

expressed as:

Xi; = en wee Fey see 1 8 5 my] (5.3.1)

For the j:, discrete variable, a fictitious real variable x is used instead of the

discrete variable xP. where x € [1,m, +1] and it is updated directly in the

same way as does it for continues variables in the GSO algorithm. Then,

the index | is determined by setting 1 = INT(z), where INT(x) denotes the

greatest integer less than the real value z, to select a discrete value ae of the

jen discrete variable XP, before involving it in the function evaluation.

Hence, the fitness function of the ith member X; can be expressed as follows:

f(X;) t=1,--,M (5.3.2)

Shan He

5.3 Improved Particle Swarm Optimiser 131

where

Xi 7 {ao ,,0%,,INT(2i5)| 25; € Med = oe, i

d y

Ui 5,1 € Dan! € [1,24], J. Ly *+,MD,

where XP eR", XP e REI=1" and X/ € R™ and Xf, XP and X/ denote

the feasible subsets of comprising continuous, discrete and integer variables of

member X;, respectively.

5.3.2 Constraint handling methods

Evolutionary Algorithms (EAs) are heuristic optimisation techniques which

have been successfully applied to various optimisation problems. However they

are not able to handle constrained optimisation problems directly [150]. In the

past few years, much work has been done to improve EAs performance to

deal with constrained optimisation problems. Penalty functions are commonly

used to incorporate constraints into the fitness function. Other techniques de-

veloped to handle the constraints, reported in [137] and [144], include rejection

of infeasible individuals, maintaining feasible population, repair of infeasible

individuals, and multi-objective optimisation techniques.

The PSO algorithms have been applied to constrained optimisation prob-

lems. El-Gallad et al. [151] proposed a constraint handling technique based on

maintaining a feasible population. However our experimental results indicate

that such a technique will lower the efficiency of the standard PSO. Their tech-

nique resets the infeasible particles to their previous best positions pbest which

will sometimes prevent the search reaching a global minimum. Hu [152] also

proposed a constraint handling technique based on preserving feasible popula-

tion. The algorithm starts from a feasible initial population. During the search

process, only feasible particles are counted when calculating the value of the

previous best position pbest and global best position gbest. Parsopoulos et al.

[153] incorporated a non-stationary multi-stage assignment penalty function

into PSO. In their paper, a set of 6 benchmark functions were tested. However

Shan He

5.3 Improved Particle Swarm Optimiser 132

some of their solutions are not feasible. Other attempts include applying a

multi-objective optimisation technique to handle constraints [154].

In this study, the technique of maintaining a feasible population is inves-

tigated. The technique starts from a feasible initial population. A closed set

of operators is used to maintain the feasibility of the solutions. Therefore, the

subsequent solutions generated at each iteration are also feasible. Algorithms

based on this technique are much more reliable than those based on a penalty

approach [144]. For mechanical design problems, reliability is crucial since most

of the constraints need to be satisfied. The concept of maintaining a feasible

population is suitable for incorporation into the standard PSO algorithm for

solving mechanical design problems.

For the PSO algorithm, the intuitive idea to maintain a feasible population

is for a particle to fly back to its previous position when it is outside the feasi-

ble region. This is the so called “fly back mechanism”. Since the population is

initialized in the feasible region, flying back to previous position will guarantee

the solution to be feasible. From our experience, the global minima of mechan-

ical optimal design problems are usually close to the boundaries of the feasible

space, as shown in Fig. 5.1. Flying back to its previous position when a par-

ticle violates the constraints will allow a new search closer to the boundaries.

Fig. 5.2 and Fig. 5.3 illustrate the search process of the “fly back mechanism”.

In Fig. 5.2, the i** particle would fly into the infeasible search space at the k™

iteration. At the next iteration as shown in Fig. 5.3, this particle is set back to

its previous position x and starts a new search. Assuming that the global

best particle P, stays in the same position, the direction of the new velocity

V;*+1 will still point to the boundary but closer to P,. Since P, is inside the

feasible space and wV;* is smaller than V;,*, the chance of particle X; flying

outside the boundaries at the next iteration will be decreased. This property

makes the particles more likely to explore the feasible search space near the

boundaries. Therefore, such a “fly back mechanism” is suitable for mechanical

design problems. Moreover our experimental results show that this technique

can find better minima with less iterations compared with other techniques.

Shan He

5.4 Numerical Examples 133

asible Space

Figure 5.1: Global minimum in the feasible space.

5.3.3 Improved particle swarm optimiser algorithm

Regarding the proposed constraint handling technique described in section

5.3.2, the improved PSO requires a feasible initial population to guarantee that

the solutions of successive generations are feasible. To do so, an extra loop

at the beginning of the algorithm is required to keep randomly re-initializing

infeasible particles to ensure that they stay inside the feasible search space.

Our experience indicates that this simple method is sufficiently good enough for

most mechanical design problems since their feasible search spaces are usually

large and feasible particles can be easily generated. Small size populations are

preferred to minimize the time to find a feasible initial population.

The improved PSO algorithm is given in Table 5.1.

5.4 Numerical Examples

In this section, five numerical examples have been used to test our new

PSO algorithm. The first example is a classical benchmark problem in non-

linear constrained optimisation. Four other examples are taken from the me-

chanical design optimisation literature. All these problems have linear and

nonlinear constraints and have been investigated by various EAs or traditional

Shan He

5.4 Numerical Examples 134

Previous Best Position Pi

Figure 5.2: X; at iteration k would fly outside the feasible search space.

 The best particle Pg

Previous Best Position Pj

Figure 5.3: X; flies back to its previous position and starts a new search.

Shan He

5.4 Numerical Examples 135

techniques.

For all problems a population of 30 individuals is used. Although a time

decreasing inertia weight was suggested to be better than a fixed one (35),

the experimental results suggested that for these five examples, a fixed inertia

weight w = 0.8 can produce better results. The default values of acceleration

constants C), Cp typically are set to 2.0. However with a setting of c, = cp = 0.5

better results were obtained. For each problem, 100 independent runs were

carried out. The proposed algorithm was implemented in MATLAB 6.5 and

executed on a Pentium 4, 2 GHz machine.

5.4.1 Example 1: Himmelblau’s function

This problem, proposed by Himmelblau [155], is a common benchmark

function for nonlinear constrained optimisation problems. We adopted this

problem to test our PSO algorithm which has an improved constraint han-

dling capability. The problem including 5 design variables and 6 nonlinear

constraints is as follows:

Minimize

f(X) = 5.357854722 + 0.83568912125 + 37.2932392, — 40792.141 (5.4.1)

subject to:

0 <gm(X) < 92 (5.4.2)

90 <g(X) <110 (5.4.3)

20 <93(X) < 25 (5.4.4)

where

m(X) 85.334407 + 0.0056858a25 + 0.000626221 24 —

0.00220532325 (5.4.5)

g2(X) 80.51249 + 0.00713172225 + 0.002995521 22 +

0.002181323 (5.4.6)

Shan He

5.4 Numerical Examples 136

g3(X) = 9.300961 + 0.00470262r325 + 0.0012547223 +

0.0019085232°4 (5.4.7)

and

78 < 2, < 102, 33 < ro < 45, 27 < a3 < 45, 27 < a4 < 45, and 27 < x5 < 45

Himmelblau [155] used the Generalized Reduced Gradient method (GRG)

to solve this problem. This problem was also tackled by Gen and Cheng [156]

using a GA based on both local and global references. Philip and Yao [157]

proposed an ES with stochastic ranking to solve this problem.

For Himmelblau’s function, all the results obtained from the methods men-

tioned above are listed in Table 5.2 and are compared against those obtained

with the proposed PSO. Other researchers have also proposed different ap-

proaches to solve this problem and produced good results. For example, Koziel

and Michalewicz [158] proposed a new approach to solve this problems based

on incorporating a homomorphous mapping between n-dimensional cube and

a feasible search space. The best result they obtained was -30664.5. Parsopou-

los [153] reported a best result of -31528.289, which is not feasible. The best

solution reported by Hu [152] was -30665.5. Since the design variables were

not included in their papers, we could not list their solutions in Table 5.2.

The maximum number of generations, used in the proposed PSO, was 3000

with 90000 function evaluations. The average execution time required for find-

ing a feasible initial population and 90000 function evaluations was 36.5 s of

CPU time. From Table 5.2 it can be seen that the proposed PSO has found

the same optimum. The mean value for 100 independent runs is -30643.989

with a standard deviation of 70.043, which is worse than the mean value of

-30665.539 reported by Philip and Yao [157]. However, it is worth mentioning

that the number of function evaluations of their stochastic ranking technique

was 350000. The proposed PSO has a much faster performance.

Shan He

5.4 Numerical Examples 137

5.4.2 Example 2: spring design

In this section we will investigate two cases of a compression spring de-

sign problem. They both have 3 design variables: the wire diameter d = 2,

the mean coil diameter D = x2 and the number of active coils N = 23 as

shown in Figure 5.4. The data type of design variables, objective function and

constraints of these two cases are different.

Case 1

Case 1 is a real-world optimisation problem which involves discrete, integer

and continuous design variables. It is aimed to minimize the volume of a

compression spring under static loading. The 3 design variables are mixed: D

is continuous, N is an integer, and d is a discrete variable having 42 possible

value as shown in Table 5.3. The problem is formulated as follows:

Minimize

f= aa (5.4.8)

subject to:

m(X) = Sp Paes esp (5.4.9)

g(X) = Ip - ia <0 (5.4.10)

g3(X) = dmin -— 21 <0 (5.4.11)

ga(X) = 22 — Drax <0 (5.4.12)

gs(X) = 3.0- a <0 (5.4.13)

96(X) = %- Om <0 (5.4.14)

g7(X) = Opt See 41.05(z3+2)a,-ly<0 (5.4.15)

9s(X) = ow Fins: = <p) Py) <9 (5.4.16)

where

Cy = selena iy DES (5.4.17)
A(x2/x1) —4 v2

Shan He

5.4 Numerical Examples 138

Gat
i = A, Baaae (5 4 18)

F

Frnax

ly = K + 1.05(x3 + 2)21 (5.4.20)

Other specifications are: the maximum work load Finax = 1000.0 lb; the

maximum free length Imax = 14.0 inch; the minimum wire diameter dmin = 0.2

inch; the allowable maximum shear stress S = 189000.0 psi; the maximum

outside diameter of the spring Dmax = 3.0 inch; the preload compression force

F, = 300.0 lp; the allowable maximum deflection under preload opm = 6.0

inch; the deflection from preload position to maximum load position 0, = 1.25

inch; the shear modulus of the material G = 11.5 x 10° psi;

The design variables are limited as follows:

0.2<2, <1, 06<2.<3,1<23 < 70

This problem was investigated by Sandgren [145]. Deb [141] applied Genetic

Adaptive Search (GeneAS) to solve this problem. Other attempts included a

mixed-variable Differential Evolution (DE) algorithm [159].

The maximum number of generations, used in the proposed PSO, was fixed

to 500 with 15000 function evaluations. The best solution for 100 runs is listed

and it is compared to the results obtained by the other techniques mentioned

above, which are listed in Table 5.4. It can be seen that PSO found the same

global optimum as DE. It is worth mentioning that the maximum number

of generations of DE was 650 generations corresponding to 26000 function

evaluations[159].

The mean value for the 100 runs performed was 2.738024 with a standard

deviation of 0.107061. The average time required for a single run was 5.8 s of

CPU time.

Case 2

This problem was first investigated by Belegundu [160] and Arora [161], it

aims to minimize the weight of a tension/compression spring. All three design

Shan He

5.4 Numerical Examples 139

variables are continuous. There are four constraints which relate to minimum

deflection, shear stress, surge frequency, and limits on outside diameter and de-

sign variables [161]. The mathematical model of the problem can be expressed

as follows:

Minimize

f(X) = (as + 2) xox} (5.4.21)

subject to:

(Xj) = 1- wae (5.4.22)
M4) ~*~ T785a8 = a

Ag? — 2129 1
X) = — YH TS ISK A.

g(X) = i5566Gqa3 25 * 51087 ~" ise)
140.45

gx(X) = 1-—7—" <0 (5.4.24)

g(X) = an —1<0 (5.4.25)

And the boundaries of design variables are given as follows:

0.05:< 2; < 2, 0.25 < 22 < 1.8, 2< 273 5 15

Arora [161] proposed an optimisation technique called Constraint Correc-

tion at constant Cost (CCC) to deal with this problem. Coello [162] investi-

gated this problem with a GA with a self-adaptive penalty approach to handle

constraints. This problem was also tackled by Ray and Liew using an EA

inspired by a formal society and the civilization model [163].

The maximum number of generation was 500 corresponding to 15000 fitness

function evaluations. The average execution time required for a single run was

5.2 s of CPU time. Table 5.5 lists the best solutions for 100 runs of our PSO

and the techniques mentioned above. From Table 5.5, it can be noticed that

Arora’s technique is not applicable because the first constraint is violated. It

can also be seen that our proposed approach was able to find the best solution.

The mean value for the 100 runs performed was 0.01270233 with a standard

deviation of 4.124390 x 10-®. Ray [163] reported a mean from 50 runs of

Shan He

5.4 Numerical Examples 140

di
sp
la
ce
me
nt

fr
ee

le
ng
th

Figure 5.4: Spring design.

0.012922669 which is worse than that obtained by our proposed technique.

The number of fitness function evaluations of Ray’s algorithm was 25167.

5.4.3 Example 3: pressure vessel design

The pressure vessel design problem, shown in Figure 5.5, was introduced

by Sandgren [145]. The objective of this problem is to minimize the total cost

of materials, forming and welding of the pressure vessel. There are four design

variables: the shell thickness T, = 21, the thickness of the head 7), = 22, the

inner radius R = x3 and the length of the cylindrical section of the vessel

L = 2x4. T, and T), are discrete values which are integer multiples 0.0625 inch,

in accordance with the availabe thickness of rolled steel plates, R and L are

continuous. The optimisation problem can be expressed as follows:

Shan He

5.4 Numerical Examples 141

Figure 5.5: Pressure vessel design.

Minimize

f(X) = 0.62242, 2324 + 1.7781 a9x3 + 3.1661 xjr4+ 19842323; (5.4.26)

subject to:

g(X) = 0.0193x3 — 2, <0 (5.4.27)

go(X) = 0.0095423 — x2 <0 (5.4.28)
4

g3(X) = 1,296,000 — razx4 — gms <0 (5.4.29)

ga(X) = 24-240 <0 (5.4.30)

where the design variables have to be in the following ranges:

0.0625 < 2, < 6.1875, 0.0625 < rq < 6.1875, 10 < x3 < 200, 10 < x4 < 200.

This problem was dealt with by Coello [164] using GA with a dominance-

based tournament selection scheme (GADTS) to handle constraints. This prob-

lem was also investigated previously by Deb using Genetic Adaptive Search

(GeneAS) [165]. It has also been tackled by Cao and Wu [140] using mixed-

variables evolutionary programming (MVEP).

The maximum number of generations of the proposed PSO was set to 1000,

corresponding to 30000 fitness function evaluations. The algorithm undertook

Shan He

5.4 Numerical Examples 142

Figure 5.6: Welded beam design.

100 runs and the best result is listed in Table 5.6. The average CPU time

required was 8.2 s for a single run. Table 5.6 also lists the best results produced

by the other methods. Clearly, the new PSO gives better results than the other

techniques.

The mean fitness value was f(r) = 6289.92881 with a standard deviation

of 305.78, which is worse than the mean value of 6177.253268 produced by

GADTS [164]. However, it is worth to mention that the number of fitness

function evaluations of GADTS was 80000.

5.4.4 Example 4: welded beam design

As shown in Figure 5.6, a rectangular beam is designed as a cantilever beam

to carry a certain load with minimum overall cost of fabrication. The problem

involves four design variables: the thickness of the weld h = 2, the length of

the welded joint 1 = x2, the width of the beam t = z3 and the thickness of

the beam b = 24. The values of x; and x2 are coded with integer multiples

of 0.0065. There are seven constraints, which involve shear stress (7), bending

stress in the beam (c), buckling load on the bar (P.), deflection of the beam

Shan He

5.4 Numerical Examples 143

(5) and side constraints [166]. The welded beam problem is stated as follows:

(5.4.31)

(5.4.32)

(5.4.33)

(5.4.34)

(5.4.35)

(5.4.36)

(5.4.37)

(5.4.38)

(5.4.39)

(5.4.40)

(5.4.41)

(5.4.42)

(5.4.43)

(5.4.44)

(5.4.45)

Minimize

f(X) = 1.10471 27272 + 0.0481123274(14.0 + 2)

subject to:

n(X) = T(X) — Tmax < 0

92(X) a a(X) — Omax < 0

g3(X) = 41-4 < 0

Gay = 0.104712? + 0.048112324(14.0 + 22) -5 < 0

g(X) = 6(X) — bmax <0

g(X) = P-—P(X)<0

where

T(X) — tr)? ne Ogi 22 a (ri)?

2

7 z
V221%9

MR Tr 1 ipl! — we mt = —,M=P (4+ ;)
2 2

Er 2 %+2%3 PER)
2

7 EyX2 | LQ 1+ 23

ef ae i ()}}
4PL? 6PL

sek) = Buin,’ ” tans

4.0134) 2ze4
Pais -— estas a) | Fe

L? 2L V 4G

P = 6000lb, L = 14in, E = 30 x 10®psi, G=12x* 10°psi (5.4.46)

Tmax = 13,600 psi, Omax = 30,000 psi, dmax = 0.25 in (5.4.47)

Shan He

5.4 Numerical Examples 144

The ranges for the design variables are given as follows:

0.1 <2, < 2.0, 0.1 <2 < 10, 01 < 23 < 10, 01 < 24 < 2.0.

This problem was investigated by Ragsdell [167] using a geometric pro-

gramming. Deb [168] proposed a simple genetic algorithm (SGA) with binary

representation and a traditional penalty function to solve this problem. The

best-known result was also obtained by Deb using an real parameter GA [169].

Ray et al. tackled this problem using a society and civilization algorithm [163].

The best solution for 100 runs of the proposed PSO and those produced by

the methods mentioned above are listed in Table 5.7. However, we could not list

the best-known result of 2.38119 in this table, because the design variables were

not presented in [169]. We can see that the new PSO algorithm provides even

better results, which were obtained with the maximum number of generations

set to 1000 and the total number of fitness function evaluations performed set

to 30000. The average CPU time required for one execution of the proposed

algorithm was 10.2 s.

The mean value of the objective function obtained from 100 runs was

2.381932, with a standard deviation 5.239371 x 10-°. The number of fitness

function evaluations of Deb’s technique was 40080.

5.4.5 Example 5: hydrostatic thrust bearing design

The thrust bearing design problem was also proposed by Siddall [170]. This

problem aims to minimize power loss associated with the bearing while satisfy-

ing several constraints. Four design variables are used: the bearing step radius

R, recess radius Ro, oil viscosity js and flow rate Q. There are seven constraints

which limit load-carrying capacity, inlet oil pressure, oil temperature rise, oil

film thickness and some physical requirements. The optimisation problem can

be formulated as follows:

Minimize:
QPo

BN Co + Ey (5.4.48)

subject to:

Shan He

5.4 Numerical Examples 145

Figure 5.7: Thrust bearing design.

Shan He

5.4 Numerical Examples 146

n(X) = W-W, <0 (5.4.49)

g2(X) = Prax — Po <0 (5.4.50)

g3(X) = ATmax — Po < 0 (5.4.51)

ga(X) = h—Pmin <0 (5.4.52)

9(X) = R-Ro <0 (5.4.53)
Y Q

X) = 0.001 —- — < A, a0(X) (s3x) 0 (5.4.54)
WwW

X) = 5000 -———_,- < 4. 97(X) "eR <° (5.4.55)

where W is the load carrying capacity which is given by:

1TPo R? ce He
We A, 2 in(R/Ry) (5.4.56)

and Pp is the inlet pressure which can be defined as:

6uQ, R
Py = —~ In — A. 0= —F3 ae (5.4.57)

and E; is the friction loss:

E; = 9336QyCAT (5.4.58)

where 7 = 0.0307 lb/ is the weight density of oil and specific heat of oil C = 0.5

Btu/lb °F. And AT is the temperature which can be estimated by

AT = 2(10" — 559.7) (5.4.59)

where

n
P (5.4.60)

and n and C; are constants for a given oil. Table 5.8 gives n and C; for various

grades of oil. In this example, SAE 20 grade oil is chosen. Therefore, n = 10.04

and C, = —3.55. The film thickness can be calculated from the friction loss

E; from following equation:

Shan He

5.4 Numerical Examples 147

QnN* 2ru (Rt RA

Other specifications of design are: weight of generator: W, = 101000 lb

(45804.99 Kg), maximum pressure available: Pnax = 1000 psi (6.89655 x 10°

Pa), maximum temperature rise ATinax = 50°F (10 °C), minimum oil thickness

Amin = 0.001 in (0.00254 cm), g = 32.3 x 12 = 386.4 in/seg? (981.465cm/seg”)

and angular speed of shaft N = 750 RPM.

The following ranges were used for the design variables:

1.000 < R < 16.000, 1.000 < Ro < 16.000,

1.0 x 10°° < p< 16 x 10°°, 1.000 < Q < 16.000.

This problem was tackled by Siddall [170] using ADRANS (Gall’s adaptive

random search with a penalty function). Deb and Goyal [141] used GeneAS

(Genetic Adaptive Search) to deal with this problem. Coello [171] proposed

a novel constraint handling technique to solve this problem; GASO, which

treats constraints as objective functions and solves them with a multiobjective

technique.

It is worth noting that there are several discrepancies of unit and design

specifications between Deb and Coello’s papers [141] [171] and Siddall’s book

[170]. The first one is the absolute temperature (°F degrees Rankine) of ambi-

ent. Deb and Coello used 560.0 while Siddall used 559.7 in equation (5.4.59).

In Siddall’s book, the fourth constraint (g4) and the sixth one (gg) are multi-

plied by 108, and the fifth constraint and the third one are multiplied by 10°

and 2000, respectively. The unit of fitness value from Deb and Coello’s papers

is foot-pounds per second while Siddall used inches-pounds per second. Due to

these differences, we adopted two experiments: Case 1 and Case 2, with differ-

ent unit and design specifications. The results are compared against those of

Deb and Coello’s, and Siddall’s, respectively. Each experiment was performed

100 runs. The best solutions for Case 1 and for Deb and Coello’s papers are

listed in Table 5.9. The best solutions for Case 2 and Siddall’s book are listed

in Table 5.10.

Shan He

5.5 Conclusions 148

The maximum numbers of generations for both cases were set to 3000 with

90000 evaluations of the fitness function. The average execution time required

for both cases were 52.7 s and 48.8 s of CPU time, respectively. The average

fitness value from the proposed PSO for Case 1 is 1757.376840 with a standard

deviation of 316.851024 which is better than most of the best results reported

by other techniques depicted in Table 5.9. The average fitness value for Case

2 is 22874.674800 with a standard deviation of 3140.292915, which is better

than the best result reported by Siddall [170].

In order to further illustrate the superiority of our algorithm, both in terms

of accuracy and convergent rate, Case 1 of Example 5 is used to compare the

proposed algorithm with the modified PSO algorithm of El-Gallad [151] and

a standard PSO with a static penalty given in [172]. The average solutions of

the three algorithms were obtained after 100 runs where the maximum gener-

ation was set to 3000. The major drawback of [172] is that the static penalty

coefficient r, requires to be fine tuned in order to generate an acceptable re-

sult. For EL-Gallad’s PSO and the standard PSO, the average solutions were

1877.195620 and 2939.070620, respectively, which are worse than the average

result of 1757.37684 found by the proposed algorithm. The search processes of

these three algorithms are shown in Figure 5.8. Clearly, from this figure one

can see that our algorithm converges more quickly than the algorithms given

in [151] and [172].

5.5 Conclusions

In this chapter, the standard PSO algorithm has been extended to handle

mixed variables and constraints. The proposed method is relatively simple and

easy to implement. A “fly back mechanism” is proposed to preserve feasible in-

dividuals. Compared to other constraint handling techniques based on penalty

functions, this method is simpler, faster and provides more reliable solutions

without any violation of the constraints.

The proposed PSO algorithm has been applied to solve a mathematical

Shan He

5.5 Conclusions 149

 10 T ———
— Average of proposed PSO
«=» Average of PSO with penalty
- — Average of El-Gallad’ PSO

arnt EAI Om 6 ie em Mo tem ae me ae He Sw ee Saenenenwsenee BteRewesew manwes! — owe -

 qe Ihrer 1 eae al.

0 500 1000 1500 2000 2500 3000
Generation

Figure 5.8: Search processes of three algorithms for thrust bearing design Case

1.

benchmark function and four mechanical design optimisation problems. The

numerical results obtained by the proposed algorithm are better than or equal

to other existing methods. Moreover, for most of our numerical examples, the

PSO algorithm with “fly back mechanism” converges to the global minima

within a few hundred iterations and its computational time is far less than the

other PSO algorithms.

A drawback of the proposed PSO is that the constraint handling method

requires a feasible initial population. For some problems, finding a feasible

solution is NP-hard [173], and even impossible for the problems with conflicting

constraints. Future work should extend the proposed PSO to tackle the initial

population problem.

Shan He

5.5 Conclusions 150

Table 5.1: Pseudo code for the improved PSO algorithm.

Set k = 1;

Randomly initialize positions and velocities of all particles;

FOR (each particle 7 in the initial population)

WHILE (the constraints are violated)

Randomly re-initialize current particle X;

END WHILE

END FOR

WHILE (the termination conditions are not met)

FOR (each particle i in the swarm)

Check feasibility: | Check the feasibility of the current particle. If x

is outside the feasible region, then reset X} to the

previous position X/7?;

Calculate fitness: Calculate the fitness value f(X*) of current parti-

cle using equation (5.3.3);

Update pbest: Compare the fitness value of pbest with f(Xf). If

f(X*) is better than the fitness value of pbest, then

set pbest to the current position X?;

Update gbest: Find the global best position of the swarm. If the

f(X*) is better than the fitness value of gbest, then

gbest is set to the position of the current particle

Xi;
Update velocities: Calculate velocities V,* using equation (1.2.1);

Update positions: Calculate positions XF using equation (1.2.2);

END FOR

Set k=k+1;

END WHILE

Shan He

5.5 Conclusions 151

Table 5.2: Optimal solution of Himmelblau’s function.

Design Best solution found

Table 5.3: Possible spring steel wire diameters.

0.0095 0.0104 0.0118 0.0128 0.0132 0.014

0.0162 0.0173

0.032 0.035

0.080 0.092

0.177 0.192

0.307 0.331

Shan He

5.5 Conclusions 152

Table 5.4: Optimal solution of spring design for Case 1.

GeneAS [141] | _ DE [159

1.226 1.223041010
Ta | 9 [0

-1008.8114

-8.9456

-0.083

-1.777

-1.3217

-5.4643

0.0000

0.0000

2.65856

Table 5.5: Optimal solution of spring design for Case 2.

Arora

J2 .

93(X)

Shan He

5.5 Conclusions 153

Table 5.6: Optimal solution of pressure vessel design.

Design Best solution found

Variables GADTS [164] | GeneAS [165] | MVEP [140]

Table 5.7: Optimal solution of welded beam design.

ects Feo — as eat a

7)

Shan He

5.5 Conclusions 154

Table 5.8: Values of n and C; for various grades of oil.

Table 5.9: Optimal solution of thrust bearing design for Case 1, Coello and

Deb’s papers.

5.389175395 6.549

0.58406092 17.353800

S

ga(X) 0.00033480 0.000559 0.000652 0.000891

g5(X) 0.56769329 0.666000 0.544000 0.528000

96(X) 0.00083138 0.000805 0.000717 0.000624

Shan He

5.5 Conclusions 155

Table 5.10: Optimal solution of thrust bearing design for Case 2 and Siddall’s

book.
Design Best solution found

Shan He

Chapter 6

Solving Optimal Power Flow

Problems with PSOPC and

GSO

In this chapter, Optimal Power Flow (OPF) problems will be investigated.

Essentially, OPF problems are a kind of mixed-variable constrained optimi-

sation problem. Traditionally, OPF problems have been tackled by gradient-

based optimisation methods. Here we applied two novel ABO algorithms we

developed, namely, PSOPC in Chapter 3 and GSO in Chapter 2, to OPF prob-

lems. Numerical experiments were carried out on an IEEE 30-bus for three

different fuel cost minimization problems. In order to evaluate its performance

on real-world power systems, a practical IEEE 118-bus system is also employed

for the GSO algorithm. So far, both algorithms provides better results than

those obtained from the other optimisation techniques in terms of accuracy

and convergence speed.

156

6.1 Nomenclature 157

6.1 Nomenclature

9k

No

Np

Ne

Np

Ne

Ne

Ni

Nra

Npy

No"

Nr

Nim

Pp

Pe

Qe;

Qp,

voltage angle difference between buses

i and j (rad)

transfer susceptance between bus 7 and

j (p.u.)
transfer conductance between bus 7 and

j (p.u.)
conductance of branch k (p.u.)

set of numbers of total buses excluding

slack bus

set of numbers of total buses

set of numbers of shunt compensators

set of numbers of power demand buses

set of numbers of network branches

set of numbers of generator buses

set of numbers of buses adjacent to bus

i, including bus 7

set of numbers of PQ buses

set of numbers of PV buses

set of numbers on buses on which in-

jected reactive power outside limits

set of numbers of transformer branches

set of numbers on buses on which volt-

ages outside limits

demanded active power at bus i (p.u.)

injected active power at bus i (p.u.)

reactive power source installation at

bus i (p.u.)

demanded reactive power at bus i (p.u.)

Shan He

6.2 Introduction 158

Qa, injected reactive power at bus 7 (p.u.)

voltage vectors of PQ buses (p.u.)

T; tap position at transformer 7

V; voltage magnitude at bus i (p.u.)

S; apparent power flow in branch k (p.u.)

6.2 Introduction

The optimal power flow (OPF) problem [174] aims to achieve an optimal

solution of a specific power system objective function, such as fuel cost, by ad-

justing the power system control variables, while satisfying a set of operational

and physical constraints. The OPF problem has been intensively studied and

widely used in power system operation and planning [175]. It can be formu-

lated as a nonlinear constrained optimisation problem. The control variables

include the generator active power, the generator bus voltages, the tap ratios

of transformer and the reactive power generations of VAR sources. State vari-

ables are slack bus power, load bus voltages, generator reactive power outputs,

and network power flows. The constrains include inequality ones which are the

limits of control variables and state variables; and equality ones which are the

power flow equations.

In order to solve the OPF problem, a number of conventional optimisation

techniques have been applied. They include nonlinear programming (NLP)

[176], quadratic programming (QP) [177], linear programming (LP) [178], and

interior point methods [179]. All these techniques are gradient-based deter-

ministic optimisation algorithms and usually rely on the existence of the gra-

dients of variables, to find the global minimum. However, the OPF problem

is very complex, considering the various constraints, mixed-variables and high-

dimensionality. These constraints lead to the non-differentiable, nonlinear and

non-convex nature of the OPF problem. Therefore the methods rely on the gra-

dient information and the convexity property of the objective function, which

do not guarantee to find the global optimum for the OPF problem. These

conventional techniques also suffer from bad starting points and frequently

Shan He

6.2 Introduction 159

converge to local minima or even diverge.

On the other hand, evolutionary algorithms (EAs), such as Genetic Algo-

rithms (GA), Evolutionary Programming (EP), and Evolution Strategies (ES),

have been developed in the past a few decades. Their applications to global op-

timisation problems become attractive because they have better global search

abilities over conventional optimisation algorithms. The OPF problem has

been solved with Evolutionary Programming (EP) [139]. The EP based OPF

was evaluated on an IEEE 30-bus system and the results were compared with

those obtained using a conventional gradient-based method. In [180] an en-

hanced EP with the use of gradient information was applied to the IEEE 30-bus

system under different generator input-output conditions. A GA with adaptive

crossover and mutation, based on the fitness statistics of population, was ap-

plied to minimize the active power loss in transmission networks [138]. Another

enhanced GA was also applied to solve OPF problem [3] in which advanced

genetic operators such as fitness scaling, elitism and hill climbing and other

problem-specific operators were employed to improve the efficiency of the sim-

ple GA. Recently, a novel Particle Swarm Optimiser with Passive Congregation

(PSOPC) [181] was applied to solve the OPF problem [44]. Numerical exper-

iments were also carried out on an IEEE 30-bus for three different fuel cost

minimization problems. However, these evolutionary algorithms were originally

evaluated within a 30-dimensional space, and assumed it would be appropri-

ate to be used for very high-dimensional optimisation problems. Therefore,

the scalability of these algorithms to practical power systems, which usually

consist hundreds control variables, is questionable.

We first apply the GSO algorithm as introduced in Chapter 2 for the solu-

tion of the OPF problem. We test the GSO algorithms on the standard IEEE

30-bus power system in three cases: (1) minimization of fuel cost, (2) voltage

profile improvement and (3) voltage stability enhancement, and also in com-

parison with GA and PSO respectively. The simulation study is also carried

out based on a practical 118-bus system for the GSO algorithm. In Chapter 3,

passive congregation, a concept from biology, was introduced to the standard

Shan He

6.3 Optimal Power Flow Problem Formulation 160

PSO to improve its search performance. In this chapter, we also present the

PSO with passive congregation (PSOPC) algorithm for the solution of OPF.

6.3. Optimal Power Flow Problem Formulation

The OPF problem can be formulated as a constrained optimisation problem

as follows:

min /f(x,u) (6.3.1)

s.t. g(x,u) =0 (6.3.2)

h(x,u) <0 (6.3.3)

where x is the vector of dependent variables such as slack bus power Pe,, load

bus voltage V,, generator reactive power outputs Qc¢ and apparent power flow

S;. X can be expressed as

x? = [Po,, Vin +++ Vin, Qar ++ * Qengs S1°** Snes (6.3.4)

u is a set of the control variables such as generator active power outputs Pe

except the slack bus Pg,, generator voltages Vg, transformer tap setting T,

number of load buses Nz; and reactive power generations of VAR sources @,.

Therefore, u can be expressed as

u’ = [Po,- ++ Pong: Ver +++ Vengo Ti+ Tips Qe“ Qe (6.3.5)

The equality constraints g(x,u) are the nonlinear power flow equations

which are formulated as follows:

= Pe, — Pp, = V; Be V;(Gz cos 6; = ge sin 6;;)

JENi

iE No (6.3.6)

Shan He

6.3 Optimal Power Flow Problem Formulation 161

0= Qe; — Qp; = V; ab V; (Gi; sin 6; + By cos 6:5)

JEN:

Le Npa (6.3.7)

And the inequality constraints h(x, u) are the limits of control variables and

state variables which can be formulated as:

PE! 2Pa,= Pa Fe Ng

QE" < Qe, < QE" i€ Ne

QE" < Qc, < OG" i€ Ne

Toe <p e ae Ny

vem <VisVP™ ie Np

[Sel < Se* te Ne (6.3.8)

To solve a nonlinear constrained optimisation problem, the most common

method uses penalty functions to transfer a constrained optimisation problem

into an unconstrained one. The objective function equation (6.3.1), is general-

ized as follows:

F=f+ ow -VYiey+

ieNiim

S> Ae (Qa, — Oi)? + SY As,((Si| — SP™)? (6.3.9)
ieNG™ ieN}im

where Ay,, Ag, and As, are the penalty factors. V,'™, Q@” are defined as

: nae if V; > yne

ve =| a ‘ iy (6.3.10)
i 1 i i

gim = eee ee (6.3.11)
Y Qzm if Qe, <Qg"

where max and min denote the maximum and minimum values of the variables,

respectively.

Shan He

6.4 Numerical Results 162

6.4 Numerical Results

For all problems a population of 50 individuals is used. A time decreasing

inertia weight w which starts from 0.9 and ends at 0.4 was used for the PSOPC

algorithm. The default value of acceleration constants c;, co typically are set

to 2.0. However with a setting of c; = cp = 0.5 better results were obtained.

For the GSOOPF algorithm, the initial head angle y° of each individual is

set to be $. The constant a is given by round(./n + 1). The maximum pursuit

angle @max is 4. The maximum turning angle a is set to be 5%. The maximum

pursuit distance Imax is calculated from:

Imax = || Ui — Li || =

where L; and U; are the lower and upper bounds for the i;, dimension, re-

spectively. The parameter need to tune is the percentage of rangers; our rec-

ommended percentage of rangers is 20%, which was used throughout all our

experiments. For each experiment, 100 independent runs were carried out. The

maximum generation was set to 500.

Shan He

163 6.4 Numerical Results

‘T
ase

Joj
[g]

V
o
u

pue
‘[z]

VAI
‘
I
d
O
O
S
d

‘
A
d
O
V
D

‘
A
d
O
O
d
O
S
d

‘
A
d
O
O
S
D

JO
sonyea

ysoq
ey,

‘T°9
IqVeL

Shan He

6.4 Numerical Results 164

6.4.1 ITEEE 30-Bus system

The standard IEEE 30-bus test system as shown in Fig. 6.1 was employed

to evaluate our PSOPCOPF and GSOOPF algorithms. The system line and

bus data for 30-bus system were adopted from [176]. The system consists of 48

branches, 6 generator-buses, and 22 load-buses. The generators are at bus 1, 2,

5, 8, 11 and 13. Branches (6,9), (6,10), (4,12) and (27,28), contain transformers

with off-nominal tap ratios. The transformer tap setting can take 17 discrete

values in the range of [0.9 1.1] with the step size of 0.0125. The bus shunt

admittances are also discrete variables in the interval of [0.0 0.05] p.u. and the

step size is 0.01 p.u. In total, there are 24 control variables.

Figure 6.1: IEEE 30-bus System

Shan He

6.4 Numerical Results 165

Table 6.2: Optimal control variables.

[es Toone | cons
176.0951 | 176.1143 | 176.1971

48.8271 | 49.0286 | 48.8318

21.5123 | 21.7131 | 21.5216

22.1133 | 21.5152 | 22.0664

12.2255. | 12.5905 | 12.2704

12.0012 | 12.6071 | 12.0129

1.0500 1.0272 1.0499

1.0377 1.0180 1.0359

1.0105 1.0195 1.0071

1.0182 1.0016 1.0138

1.0847 1.0560 1.0842

1.0703 1.0093 1.0852

1.0250 1.0750 0.9750

0.9250 0.9000 0.9500

1.0000 0.9750 1.0000

0.9500 0.9500 0.9250

0.05 0.05 0.01

0.04 0.00 0.01

0.04 0.00 0.04

0.05 0.00 0.02

0.04 0.05 0.03

0.05 0.05 0.04

0.03 0.05 0.01

0.05 0.04 0.00

0.02 0.01 0.00

Shan He

6.4 Numerical Results 166

Case 1: Minimization of fuel cost

The objective of this case is to minimize the total fuel cost:

Ne

t= Se (6.4.1)
i=1

where f; is the fuel cost ($ /h) of the 7, generator:

fi = +0:Po, + oPS,

a;,b; and c; are fuel cost coefficients, Pg, is the real power output generated by

the i, generator.

The optimal control variables obtained by the GSOOPF from 100 runs for

this case are tabulated in Table 6.2. This problem was also tackled using a

gradient based optimisation method [176]. An improved Evolutionary Pro-

gramming (IEA) was applied to solve this problem [2]. The best-known result

was obtained by Bakirtzis et al. [3] using an enhanced GA (EGA). They de-

signed a set of advanced and problem-specific genetic operators, for example,

Gene Swap Operator, Gene Inverse Operator, etc., to solve OPF problems.

In Table 6.1, we tabulate the results obtained from the techniques men-

tioned above in comparison with the result generated by PSOPCOPF and

GSOOPF. We also implemented a GA based OPF (GAOPF) algorithm us-

ing GADST toolbox and a PSO based OPF (PSOOPF) algorithm using PSOt

toolbox. The search process of our GSOOPF algorithm is shown in Fig. 6.2.

It is worth mentioning that, as different programming environments and power

flow calculation methods were used in [176], [2], [3] and this research, it is not

easy to compare the computation time required by each algorithm. However,

by comparing the computation time used by the implemented algorithms, e.g.,

PSOOPF and GAOPF, we found that our GSOOPF obtained the best results

in the shortest time.

Case 2: Voltage profile improvement

This example aims at minimizing fuel cost together with a flatter voltage

profile. The objective function is modified to minimize the fuel cost while at

Shan He

6.4 Numerical Results 167

~~ ~ GAOPF
— GSooPF
‘==: PSOOPF

Figure 6.2: Search process of GSOOPF for Case 1

the same time to improve voltage profile by minimizing the load bus voltage

deviations from 1.0 per unit. The objective function can be express as:

N,

Fae S> |v; - 1.0] (6.4.2)
s—1 ieNL

where w is the weighting factor.

Table 6.2 tabulates the optimal control variables of the GSOOPF obtained

from 100 runs. The best result of the GSOOPF and PSOPCOPF from 100

runs is also tabulated in comparison to PSOOPF and GAOPF in Table 6.3.

It can be seen from the table that, for GSOOPF, the voltage variation has

been reduced from 0.8259 in Case 1 to 0.0926 in Case 2. The reduction ratio is

88.79%. For PSOPCOPF, the voltage variation has been reduced from 0.8089

in Case 1 to 0.0954 in Case 2. The reduction ratio is 88.20%. The system

voltage profile obtained by GSOOPF of this case is compared to that of Case

1 in Fig. 6.3. The search process of our GSOOPF algorithm is shown in Fig.

6.4 in comparison to the search processes of the other two algorithms.

Shan He

6.4 Numerical Results 168

(Case 1
(24 Case 2

0.9 ELLE / i ae

0 5 10 15 20 25 30

Bus Number

Figure 6.3: System voltage profile

—Gso

~~ -GAOPF

Figure 6.4: Search process of GSOOPF for Case 2

Shan He

6.4 Numerical Results 169

Table 6.3: The best values of GSOOPF for Case 2

Fuel ost (7A)

Case 3: Voltage stability enhancement

In this example, we aim to minimize fuel cost and enhances voltage stability

profile through out the whole network. L is the stability indicators at every

bus of the system and Lmax is the maximum value of L-index defined as [182]:

Lmax = max{L,, K =1,---, NL} (6.4.3)

And L can be calculated from the following equation:

St
J

+t 172

Yin V3

Vi
Teg Viet

i h+¥
(6.4.4)

where Y;; is the transformed admittance, Y;; = 1/Z;;; V; is the consumer node

voltage; S* is the transformed power S7 = S; + S$"; and S¥™ is given by:

--[E@)-@) 1€a

 V; (6.4.5)

and Z;; and Z;; are the off-diagonal and diagonal elements of the impedance

matrices, and ay is the set of consumer nodes.

One way of determining L is:

I = max|1—
JEaL

cna Fi 7 Vi 7 (6.4.6)

where ay is the set of load buses; ag is the set of generator buses. V; is the

voltage at load bus j; V; is the complex voltage at generator bus 7; Fj; is the

element of matrix [F'] determined by

[F] =- A (6.4.7)

Shan He

6.4 Numerical Results 170

— GsoopF
~~ ~ GAOPF
‘+=: PSOOPF

Figure 6.5: Search process of GSOOPF for Case 3

where [Y;,] and [Yzc] are sub-matrices of the Y-bus matrix.

The objective function can be expressed as:

Ne

J= Sofi + wlmax

i=1

The optimal control variables of the GSOOPF for this case from 100 runs is

tabulated in Table 6.2. The best results of the GSOOPF and PSOPCOPF

obtained from 100 runs are tabulated in Table 6.4. The search processes of

our GSOOPF algorithm and other 2 algorithms are shown in Fig. 6.5. In this

case, the three indices, fuel case, voltage profile and voltage stability have been

minimized by GSOOPF and PSOPCOPF and they are much smaller than that

obtained by GAOPF and PSOOPF.

Table 6.4: The best values of GSOOPF for Case 3

Shan He

6.5 Conclusions 171

Table 6.5: Best values of GSOOPF GAOPF and PSOOPF for the IEEE 118-

bus system

| sss GsoopF | GAOPF __| PSOOPF
Fuel cost ($/h) | 15863.3475| 18981.6442 | 16012.3433

6.4.2 TEEE 118-Bus system

From Chapter 2, we can see the GSO algorithm is capable of handling high-

dimensional optimisation problems. This feature makes it possible to solve

practical optimal flow problems. We employ the IEEE 118-bus systems [183]

to evaluate the performance of GSOOPF. The IEEE 118-bus system consists

of 181 transmission elements, 17 generators for AVR control, 9 transformers

with off-nominal tap ratio, and 14 shunt admittances. The number of total

control variables is 130. We tabulated the results from GSOOPF, GAOPF and

PSOOPF algorithms in Table 6.5, which shows that GSOOPF is able to obtain

a better optimisation result in comparison with the others.

6.5 Conclusions

In this chapter, we have applied GSO and PSOPC to tackle OPF prob-

lems. These two new approaches utilizes the superior global searching ability

of GSO and PSOPC. Numerical experiments were carried out on an IEEE 30-

bus for three different OPF problems which include minimizing the fuel cost,

improving the voltage profile and enhancing the voltage stability. We have

also employed a practical IEEE 118-bus system to evaluate the GSOOPF al-

gorithm. Our algorithm provides better results than those obtained from the

other optimisation techniques in terms of accuracy and convergence speed.

Shan He

Chapter 7

Conclusions

7.1 Introduction

This chapter concludes the thesis and summarises the major achievements

of the work in the multi-disciplinary research between swarm intelligence and

animal behaviour. Suggestions for future research are listed at the end.

7.2 Summary of Results

This study primarily aims at developing Animal Behaviour inspiration Op-

timisation (ABO) algorithms by transferring knowledge from the research of

animal behaviour. As results, a novel ABO algorithm, GSO, has been devel-

oped. The study has also improved standard PSO with an animal congregation

model: passive congregation. The standard PSO has also been extended to

handle mix-variable constrained optimisation problems. Besides of the devel-

opment of ABO algorithms, the ABO algorithms developed in this study has

also been successfully applied to real-world problems.

In the preceding chapters, the following work and results were presented.

The background of animal behaviour was given in Chapter 1. Then Natural

Computation and Swarm Intelligence (SI) were introduced, followed by a dis-

cussion on the relationship between SI, self-organisation and animal behaviour.

1/2

7.2 Summary of Results 173

The chapter went on to proposed a new definition of SI and the definition of

ABO. Details of Particle Swarm Opitimiser was given. The motivation behind

this study was discussed in this chapter. The outline and major contributions

of this thesis were also presented.

The first part of this thesis, e.g., Chapters 2 and 3, devotes to the algorithm

developments of ABO. In Chapter 2, a novel ABO algorithm, Group Search

Optimiser (GSO), developed in this study was introduced. The inspiration

behind this algorithm, animal group searching behaviour, was explained in

details. Then the Producer-Scrounger model, which is a generic animal social

foraging model, was presented. Once the theoretical foundation has been laid,

the details of the GSO algorithm were given. A large set of benchmark functions

were employed to evaluate the performance of the GSO algorithm. From the

obtained results, the performance of the GSO algorithm is seen to greatly

outperform other EAs and PSO on multi-modal functions while remaining

similar performance on uni-modal functions. Finally in this chapter, discussion

of the differences between GSO and other EAs and SI algorithms was also

presented.

Chapter 3 described an improved PSO algorithm with passive congregation

(PSOPC). An animal congregation model, passive congregation, which is an

important biological force preserving swarm integrity, was introduced to the

standard PSO algorithm. A set of 10 benchmark functions were used to eval-

uate the performance of the PSOPC algorithm. In comparison to the other

standard PSO variants, the search performance of the PSOPC algorithms is

better in terms of accuracy and convergence speed.

In order to evaluate the performance of GSO, in Chapter 4, the GSO al-

gorithm has been applied to train ANNs. This chapter begins with a brief

introduction to ANNs, especially evolutionary ANNs, followed by the details

of the 3-layer feed-forward ANN used in the study. The training algorithm,

GSOANN, then was presented. A set of machine learning benchmark problems,

including 4 classification problems and 1 forecasting problem, were employed

to access the performance of the proposed training algorithm. Among these

Shan He

7.2 Summary of Results 174

problems, the proposed GSOANN achieved the best results on the Wisconsin

breast cancer diagnosis problem and the sun spot forecasting problem in the

literature. For the rest problems, the GSOANN algorithm also achieved satis-

factory results compared with other sophisticated ANN training algorithm.

The PSO algorithm has also been extended to handle mixed-variables and

constrains in order to solve real-world engineering optimisation problems. In

Chapter 5, a simple truncation scheme was introduced to the standard PSO

algorithm to handle mixed variables. In order to deal with problem specific

constrains, a simple so called “fly-back mechanism” was employed. Then the

extended PSO algorithms was applied to solve mechanical design optimisation

problems. Four mechanical design problems, typically employed by the liter-

ature as benchmark functions were solved successfully by the extended PSO

algorithm. The results obtained are better than many other algorithms and

many results are the best in the literature.

Chapter 6 begins with a brief introduction to Optimal Power Flow (OPF)

problems followed by the formulation of OPF problems. Then the PSOPC

and GSO algorithms were employed to solved the OPF problems on an IEEE

30-bus test system with 3 different cases which minimize fuel cost, improve

voltage profile and enhance voltage stability, respectively. An practical IEEE

118-bus system was also employed to evaluate the performance of the GSO

algorithm. The results obtained by the two algorithms were compared to the

standard PSO, GA and the results obtained from the current literature. The

comparison verifies the superior search performance of the two algorithms on

real-world optimisation problems.

Conclusively, from the successful developments of the two novel ABO algo-

rithms, this thesis demonstrates the power of multi-disciplinary study in opti-

misation and animal behaviour: knowledge from animal behaviour can provide

new thinking to to solve optimisation problems. The thesis also demonstrates

the outstanding performance of ABO algorithms by solving real-world prob-

lems.

Shan He

7.3 Suggestions for Future Work 175

7.3 Suggestions for Future Work

In this section, we list several points that deserve further investigations to

develop and improve the algorithms and applications described in this thesis.

1. From the discussion in Chapter 1, the most important feature which dis-

tinguishes SI from other novel computing paradigms is self-organisation.

The GSO algorithm also displays some self-organising features, for ex-

ample, the complex searching process of a global optimum is achieved

by a population of simple agents interact using three simple searching

strategies: producing, scrounging and ranging. However, these features

are not sufficient enough to characterise GSO as a self-organising (swarm)

optimisation algorithm, e.g., similar to the global PSO algorithm, the se-

lection of the producer does not emerge from local interactions between

members. Further work need to be done to develop GSO as a SI algo-

rithm.

2. From the experiments, we found that although the computational time

required by the ABO algorithms, e.g., PSOPC and GSO, is less or similar

to other Natural computational algorithms, e.g., EAs, compared with tra-

ditional gradient-based optimisation algorithms, they are still too slow,

which might hamper their applications to some large-scale real-world

problems. Parallelisation of these algorithms is worthy to be investigated

to overcome this drawback.

3. Coevolution, especially cooperative coevolution has been incorporated

into EAs to improved their performance. It is also interesting to in-

vestigate multi-group GSO with cooperative strategies. The research in

animal cooperation can be incorporated into the GSO framework natu-

rally. Combine with parallelisation, it is expected that this future work

can not only improve the speed but also the search performance.

4. As discussed in the previous chapters, the GSO algorithm is similar to

the memetic algorithms. It will be interesting to incorporate other local

Shan He

7.3 Suggestions for Future Work 176

search strategies for the producer to improve the performance of GSO on

a certain set of problems.

Shan He

Appendix A

Global Optimisation Benchmark

Functions

Table A.1: The 23 benchmark functions, where n is the dimension of the

function, S is the feasible search space, and fmin is the global minimum value

of the function.
Test function n S Fenn

fi(z) Sphere Model 30 [—100, 100” 0

fo(x) Schwefel’s Problem 2.22 30 [—10, 10]” 0

f3(x) Schwefel’s Problem 1.2 30 {—100, 100)” 0

fa(z) | Schwefel’s Problem 2.21 30 {—100, 100]” 0
fs(x) | Generalized Rosenbrock’s Function 30 [—30, 30]” 0

fe(z) Step Function 30 [—100, 100)” 0

fz(z) Quartic Function with Noise 30 [—1.28, 1.28]” 0

fs(x) Generalized Schwefel’s Problem 2.26 30 [—500, 500)” -12569.5

fo(x) Generalized Rastrigin’s Function 30 [—5.12, 5.12)” 0

fio(z) Ackley’s Function 30 [—32, 32]” 0

fii(z) Generalized Griewank Function 30 [—600, 600)” 0

fi2(x) Generalized Penalized Function 1 30 [—50, 50)” 0

fiz(z) Generalized Penalized Function 2 30 [—50, 50)” 0

fia(z) Shekel’s Foxholes Function 2 [-65.536, 65.536)” 1

fis(z) Kowalik’s Function

fie(z) Six-hump Camel-Back Function ,

fiz(z) Branin Function [—5, 10] x (0, 15] 0.398

fis(z) Goldstein-Price Function [—2, 2]” a

4 [—5, 5)” 0.0003075

2
2

2

fig(z) Hartman’s Function 1 3 [0, 1]” -3.86
6
4

4
4

(—5, 5)” -1.0316285

foo(x) Hartman’s Function 2 (0, 1]” -3.32
foi(x) Shekel’s Family 1 [0, 10]” -10

fo2(x) Shekel’s Family 2 [0, 10]” -10

fo3(z) Shekel’s Family 3 [0, 10]” -10

LT?

Global Optimisation Benchmark Functions 178

Sphere Model:

file) = S027
i=1

Schwefel’s Problem 2.22:

30 30

fol) = D> |ail + [] [zl
t=1 w=1

Schwefel’s Problem 1.2:

fs(z) = >> (>: :)
0

i=1

Schwefel’s Problem 2.21:

fale) = max{|ni|,1 <i < 30}

Generalized Rosenbrock’s Function:

fs(x) = > (100(ai+1 — x?) + (2; -1))
i=1

Step Function:

30

fo(c) = ([2i + 0.5])?
w=1

Quartic Function with Noise:

30

fr(z) = Se, + random(0, 1)
i=1

Shan He

Global Optimisation Benchmark Functions 179

Generalized Schwefel’s Problem 2.26:

30

fslay= -\> (2: sin (Vieil))

i=1

Generalized Rastrigin’s Function:

30
fo(x) = So(2? — 10cos(272,;) + 10)?

w=1

Ackley’s Function:

fio(z) = —20 exp | —0.2

30
1

— exp (% So cos ora) + 20+e

i=—F

Generalized Griewank Function:

degen 100
1 2 30

firl2) = F599 Da = 100)’ — Tees Vi y+1

Generalized Penalized Functions:

Tv fn = = c sin? (yi) + De — 1)7[1 + 10sin?(ryi+1)] + (Yn — "|

30

+ S$ © u(zi, 10,100, 4)
i=1

and

29

pene ep {sae + $0 (a; — 1)?[1 + sin’ (372;41))
s=1

30

+ (aq — 1)?[1 + sin?(2r239)]} 5 > u(2i, 5, 100, 4)
i=1

Shan He

Global Optimisation Benchmark Functions 180

where

k(x; —a)™, t >a

u(aj,a,k,m) = 0, —a<aj<a

k(—a; —a)™, t;<—a

1
Y= 1+ F(z +)

Shekel’s Foxholes Function:

25 1 v q fia(z) = cE c 2X aSstecal j=1

—32 -16 0 16 32 -—32 --- 0 16 32
where (ai;) =

—32 -—32 -—32 -32 -32 -16 -:- 32 32 32

Kowalik’s Function:

vt 2
£1 (b? + b;x2)

fis(z) = Po a ~ B+ batg + 24 =r i a
=

Six-hump Camel-Back Function:

1
fig(a) = 407 — 2.103 + 371 + 2122 — 4x2 + 4x5

Branin Function:

Glen , 1
fir(2) = ta — ati t 7a — 6 +10 be cos x; + 10

min = (—3.142, 12.275), (3.142, 2.275), (9.425, 2.425)

0.398 min(f17)

Shan He

Global Optimisation Benchmark Functions 181

Table A.2: Kowalik’s Function fi»

1

2

3

4

5

6

7

8

9

fa
 Oo

e

e
t

Goldstein-Price Function:

fig = (1+ (a1 + 22 + 1)?(19 — 14a + 3a} — 1422 + 62122 + 323)|

x [30 + (2a, — 3ar)?(18 — 32x, + 1227 + 4822 — 36x22 + 2723)]

—2<a,;<2 min(fis) = fis(0,—1) = 3

Hartman’s Function:

f(z) =- » C; EXP |- os Aj (Lj — na

with n=3,6 for fi9(a) and f29(zx), respectively. The coefficients are defined by

Tables and , respectively.

0 << x5 <=

min(f19) = f19(0.114, 0.556, 0.852) = —3.86

min(foo) = f20(0.201, 0.150, 0.477, 0.275, 0.311, 0.657) = —3.32

Shan He

Global Optimisation Benchmark Functions 182

Table A.3: Hartman’s Function fi9

Diz, J =1,2,3

0.3689 0.1170 0.2673

0.4387

0.8732

0.5743

 3.2 | 0.038150

Shan He

183 Global Optimisation Benchmark Functions

€VlG'0
ZELZ80

82880
LP0r0

Oo.
goo

8
ATI

€8820
<cese0

SIVIO
8réz70

Ol
ZL

Ge
&

96260
LOE8'O

GETVO
62E2'0 |

o
TO

L1
OF

S00

vcl0'0
69990

96910
cIET0

ce
Zr

€
OL

g‘o‘p‘e'z‘T
=o

‘ad

ozf
UOTjoUNY

S,UeUTyIeY
-PV

aqeL,

Shan He

Global Optimisation Benchmark Functions 184

Shekel’s Family:

f(z) = = ole a)(e— a)? +a)

with m = 5,7 and 10 for foi(z), foo(x) and f23(x), respectively. 0 < x; < 10.

Dlocal—-opt & Ai and min(fz,.a-ope) & 1/c: for 1 <a <m.

Table A.5: Shekel’s Family fo1,fo2,fo3

flee Sie eee leo) (2

Shan He

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. W. Bell. Searching Behaviour - The Behavioural Ecology of Finding

Resources. Chapman and Hall Animal Behaviour Series. Chapman and

Hall, 1990.

W. Ongsakul and T. Tantimaporn. Optimal power flow by improved

evolutionary programming. Electric Power Components and Systems,

34(1):79-95, Jan. 2006.

A.G. Bakirtzis, P.N. Biskas, C.E. Zoumas, and V. Petridis. Optimal

power flow by enhanced genetic algorithm. JEEE Transactions on Power

Systems, 17(2):229-236, MAY 2002.

N. Tinbergen. On aims and methods of ethology. 7 Tierpsychol, 20:410—

433, 1963.

Wikipedia. Comparative psychology — wikipedia, the free encyclopedia,

2005. [Online; accessed 21-JULY-2006].

J. R. Krebs and N. Davies. An Introduction to Behavioural Ecology.

Blackwell publishing, third edition edition, 2004.

D. McFarland. Animal Behaviour. Longman, third edition edition, 1999.

J. R. Krebs and N. Davies. Behavioural Ecology: an evolutionary ap-

proach. Blackwell publishing, fourth edition edition, 1997.

G. A. Parker and J. Maynard Smith. Optimality theory in evolutionary

biology. Nature, 348(1):27-33, Nov. 1990.

185

REFERENCES 186

[10] R. A. Brooks. A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automation, 2:14-23, 1985.

[11] R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

[12] Wikipedia. Natural computation — wikipedia, the free encyclopedia,

2006. [Online; accessed 23-JULY-2006].

[13] H. Lipson and J. B. Pollack. Automatic design and manufacture of

robotic lifeforms. Nature, 406:974-978, August 2000.

[14] D. B. Fogel. The advantages of evolutionary computation. In D. Lundh,

B. Olsson, and A. Narayanan, editors, Bio-Computing and Emergent

Computation 1997, pages 1-11. World Scientific Press, 1997.

[15] G. Beni and J. Wang. Swarm intelligence. In Seventh Annual Meeting of

the Robotics Society of Japan, pages 425-428, Tokio, Japan, 1989. RSJ

press.

[16] Wikipedia. Swarm intelligence — wikipedia, the free encyclopedia, 2005.

[Online; accessed 21-JULY-2006].

[17] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From

Natural to Artificial Systems. Oxford University Press, 1999.

[18] E. Bonabeau and C. Meyer. Swarm intelligence: A whole new way to

think about business. Harvard Business Review, 79:106—114, 2001.

[19] Wikipedia. Self-organization — wikipedia, the free encyclopedia, 2006.

[Online; accessed 21-Sep-2006].

[20] Nigel R. Franks James Sneyd Guy Theraulaz Scott Camazine, Jean-

Louis Deneubourg and Eric Bonabeau. Self-Organization in Biological

Systems. Princeton University Press, 2003.

[21] J. Kennedy, R. C. Eberhart, and Y. H. Shi. Swarm Intelligence. Morgan

Kaufmann Publishers, 2001.

Shan He

REFERENCES 187

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Self-organizing systems (sos) faq.

D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proceedings

of the 5th ICGA, volume 658. Morgan-Kaufmann, CA, 1993.

J.M. Bishop. Stochastic searching networks. In Proc. 1st IEE Conf. on

Artificial Neural Networks, pages 329-331, London, 1989.

K. C. Tsui and J. Liu. Evolutionary diffusion optimization, part 1: De-

scription of the algorithm (cec2002). In X. Yao, editor, Proc. Congr.

Evolutionary Computation, pages 169-174, 2002.

A. Linhares. Synthesizing a predatory search strategy for vlsi layouts.

IEEE Trans. on Evolutionary Computation, 3(2):147-152, 1999.

T. Ray and K. M. Liew. Society and civilization: An optimization al-

gorithm based on the simulation of social behavior. JEEE Trans. on

Evolutionary Computation, 7(4):386-396, Aug. 2003.

S. D. Muller, J. Marchetto, S. Airaghi, and P. Koumoutsakos. Opti-

mization based on bacterial chemotaxis. JEEE Trans. on Evolutionary

Computation, 6(1):16-29, Feb. 2002.

M. Laumanns, G. Rudolph, and H. P. Schwefel. A spatial predator-

prey approach to multi-objective optimization: A preliminary study. In

LECTURE NOTES IN COMPUTER SCIENCE, volume 1498 of PAR-

ALLEL PROBLEM SOLVING FROM NATURE - PPSN V, pages 241-

249, 1998.

J. K Parrish and W. M. Hamner. Animal Groups in Three Dimensions.

Cambridge University Press, Cambridge, UK, 1997.

D.G. Kerlick. Moving iconic objects in scientific visualization. In Proc

First 90 IEEE Conf Visualization Visualization 90, pages 124-130, Oct.

1990.

Shan He

REFERENCES 188

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Kennedy and R.C. Eberhart. Particle swarm optimization. In [EEE

international Conference on Neural Networks, volume 4, pages 1942-

1948. IEEE Press, 1995.

Y. Shi and R. C. Eberhart. A modified particle swarm optimiser. In Proc.

IEEE Inc. Conf. on Evolutionary Computation, pages 303-308, 1997.

Y. Shi and R. C. Eberhart. Parameter selection in particle swarm op-

timization. In Evolutionary Programming VII (1998), Lecture Notes in

Computer Scdience 1447, pages 591-600. Springer, 1998.

R. C. Eberhart and Y. Shi. Particle swarm optimization: developments,

applications and resources. In Proc. IEEE Int. Conf. on Evolutionary

Computation, pages 81-86, 2001.

M. Clere and J. Kennedy. The particle swarm: Explosion, stability,

and convergence in a multi-dimensional complex space. IEEE Trans. on

Evolutionary Computation, 6(1):58-73, 2002.

R. Eberhart and Y. Shi. Comparing inertia weights and constriction

factors in particle swarm optimization. In Proc. of the Congress on Evo-

lutionary Computation (CEC2000), pages 84-88, 2000.

F. van den Bergh and A.P. Engelbrecht. A cooperative approach to

particle swarm optimization. JEEE Transactions on Evolutionary Com-

putation, 8(3):225— 239, 2004.

A. Ratnaweera, S.K. Halgamuge, and H.C. Watson. Self-organizing hier-

archical particle swarm optimizer with time-varying acceleration coeffi-

cients. IEEE Transactions on Evolutionary Computation, 8(3):240 — 255,

2004.

R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm:

simpler, maybe better. JEEE Transactions on Evolutionary Computa-

tion, 8(3):204-210, 2004.

Shan He

REFERENCES 189

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

C. A. C. Coello, G. T. Pulido, and M. S. Lechuga. Handling multi-

ple objectives with particle swarm optimization. [EEE Transactions on

Evolutionary Computation, 8(3):256-279, 2004.

H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi.

A particle swarm optimization for reactive power and voltage control

considering voltage security assessment. [EEE Transactions on Power

Systems, 15(4):1232-1239, 2000.

M. A. Abido. Optimal power flow using particle swarm optimization. In-

ternational Journal of Electrical Power and Energy, 24(7):563-571, Oc-

tober 2002.

S. He, J. Y. Wen, E. Prempain, Q. H. Wu, J. Fitch, and S. Mann. An

improved particle swarm optimization for optimal power flow. In 2004

International Conference on Power System Technology, Nov. 2004.

Z. L. Gaing. Particle swarm optimization to solving the economic dis-

patch considering the generator constraints. JEEE Transactions on

Power Systems, 18(3):1187-1195, 2003.

I. N. Kassabalidis, M. A. El-Sharkawi, R. J. I. Marks, L. S$. Moulin,

and A. P. Alves da Silva. Dynamic security border identification using

enhanced particle swarm optimization. JEEE Transactions on Power

Systems, 17(3):723-729, 2002.

S. Naka, T. Genji, T. Yura, and Y. Fukuyama. A hybrid particle swarm

optimization for distribution state estimation. [EEE Transactions on

Power Systems, 18(1):60-68, 2003.

N. Higashi and H. Iba. Particle swarm optimization with gaussian mu-

tation. In Swarm Intelligence Symposium, 2008. SIS ’03. Proceedings of

the 2003 IEEE, pages 72-79, April 2003.

Shan He

REFERENCES 190

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Stacey, M. Jancic, and I. Grundy. Particle swarm optimization with

mutation. In Evolutionary Computation, 2003. CEC ’03. The 2003

Congress on, volume 2, pages 1425-1430, Dec. 2003.

T. Krink and M. L@vbjerg. The lifecycle model: Combining particle

swarm optimisation, genetic algorithms and hillclimbers. In Proceedings

of Parallel Problem Solving from Nature VII (PPSN-2002), pages 621-

630, April 2002.

J. M. McNamara, A. I. Houston, and E. J. Collins. Optimality models

in behavioral biology. SIAM Review, 43(3):413-466, 2001.

P. Moscato. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Technical Report 826, Cali-

fornia Institute of Technology, Pasadena, California, USA, 1989.

G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K.

Belew, and A. J. Olson. Automated docking using a lamarkian genetic

algorithm and an empirical binding free energy function. J Comp Chem,

14:1639-1662, 1998.

Wikipedia. Lamarckism — wikipedia, the free encyclopedia, 2006. [On-

line; accessed 21-JULY-2006].

J. G. Vlachogiannis. Constricted local-neighborhood particle swarm op-

timization with passive congregation applied in reactive power and volt-

age control. ELECTRIC POWER COMPONENTS AND SYSTEMS,

34(5):509-520, May 2006.

E. Bonabeau, M. Dorigo, and G. Theraulza. Inspiration for optimization

from social insect behaviour. Nature, 406:39-42, July 2000.

C. J. Barnard and R. M. Sibly. Producers and scroungers: a general

model and its application to captive flocks of house sparrows. Animal

Behaviour, 29:543-550, 1981.

Shan He

REFERENCES 191

[58] X. Yao, Y. Liu, and G. Liu. Evolutionary programming made faster.

IEEE Trans. on Evolutionary Computation, 3(2):82-102, 1999.

[59] X. Yao and Y. Liu. Fast evolution strategies. In P. J. Angeline, R. G.

Reynolds, J. R. McDonnell, and R. Eberhart, editors, Evolutionary Pro-

gramming VI, pages 151-161, Berlin, 1997. Springer.

[60] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. da Luz, E. Raposo,

and H. E. Stanley. Optimizing the success of random searches. Nature,

401(911-914), 1999.

[61] H. R. Pulliam and G. E. Millikan. Social organization in the non-

reproductive season. Animal Behaviour, 6(169-197), 1983.

(62] J. Brockmann and C. J. Barnard. Kleptoparasitism in birds. Animal

Behaviour, 27(546-555), 1979.

[63] L-A. Giraldeau and G. Beauchamp. Food exploitation: searching for the

optimal joining policy. Trends in Ecology & Evolution, 14(3):102-106,

March 1999.

[64] C. W. Clark and M. Mangel. Foraging and flocking strategies: informa-

tion in an uncertain environment. Am. Nat., 123:626-641, 1984.

[65] I.D. Couzin, J. Krause, N.R. Franks, and S.A. Levin. Effective leadership

and decision-making in animal groups on the move. Nature, 434:513-516,

Feb. 2005.

[66] L-A. Giraldeau and L. Lefebvre. Exchangeable producer and scrounger

roles in a captive flock of feral pigeons - a case for the skill pool effect.

Animal Behaviour, 34(3):797-803, Jun 1986.

[67] R. H. S. Carpenter. Eye Movements. Macmilan, London, 1991.

[68] S. P. Liversedge and J. M. Findley. Saccadic eye movements and cogni-

tion. Trends in Cognitive Sciences, 4:6-14, 2000.

Shan He

REFERENCES 192

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

J. Najemnik and W. S. Geisler. Optimal eye movement strategies in

visual search. Nature, 434:387-391, March 2005.

T. Caraco. Time budgeting and group size: a test of theory. Ecology,

60:618-627, 1979.

D. G. C. Harper. Competitive foraging in mallards: ’ideal free’ ducks.

Animal Behaviour, 30:575-584, 1988.

T. H. Waterman. Animal Navigation. Scientific American Library, NY.,

1989.

D. B. Dusenbery. Ranging strategies. Journal of Theoretical Biology,

136:309-316, 1989.

W. J. O’Brien, B. I. Evans, and G. L. Howick. A new view of the pre-

dation cycle of a planktivorous fish, white crappie (pomoxis annularis).

Can. J. Fish. Aquat. Sci., 43:1894-1899, 1986.

C. L. Higgins and R. E. Strauss. Discrimination and classification of

foraging paths produced by search-tactic models. Behavioral Ecology,

15(2):248-254, 2003.

A. F. G. Dixon. An experimental study of the searching behaviour of

the predatory coccinellid beetle adalia decempunctata. J. Anim. Ecol.,

28:259-281, 1959.

D. H. Wolpert and W. G. Macready. No free lunch theorems for search.

IEEE Trans. on Evolutionary Computation, 1(1):67-82, 1997.

J. H. Holland. Adaption in Natural and Artificial Systems. Ann Arbor,

1975.

Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial intel-

ligence through a simulation of evolution. In M. Maxfield, A. Callahan,

and L. J. Fogel, editors, Biophysics and Cybernetic Systems: Proc. of the

Shan He

REFERENCES 193

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

2nd Cybernetic Sciences Symposium, pages 131-155, Washington, D.C.,

1965. Spartan Books.

D. B. Fogel. Evolutionary computation: toward a new philosophy of

machine intelligence. IEEE Press, New York, 1995.

H-P Schwefel. Evolution and optimum seeking. Wiley, New York, 1995.

B. Birge. Psot - a particle swarm optimization for use with matlab. In

SIS ’03. Proceedings of the 2003 IEEE, Swarm Intelligence Symposium,

pages 182-186, April 2003.

J. Biethahn and V. Nissen. Evolutionary Algorithms in Management

Applications. Springer-Verlag, Berlin, 1995.

D. C. Montgomery. Statistical Quality Control. Wiley, New York, 1996.

M. Locatelli. A note on the Griewank test function. Journal of Global

Optimization, 25(2):169-174, 2003.

J. Nocedal. Updating quasi-newton matrices with limited storage.

Math. Comput., 35:773-782, 1980.

J. B. Lasserre. Global optimization with polynomials and the problem

of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.

J. Barhen, V. Protopopescu, and D. Reister. Trust: A deterministic

algorithm for global optimization. Science, 276:1094-1097, May 1997.

X. Yao and Y. Liu. Scaling up evolutionary programming algorithms.

In Evolutionary Programming VII: Proc. of the Seventh Annual Confer-

ence on Evolutionary Programming (EP98), Lecture Notes in Computer

Science, pages 103-112, Berlin, 1998. Springer-Verlag.

Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. Scaling up fast evolutionary

programming with cooperative coevolution. In Proceedings of the 2001

Congress on Evolutionary Computation, pages 1101-1108, Piscataway,

NJ, USA, 2001. IEEE Press.

Shan He

REFERENCES 194

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

C. W. Reynolds. Flocks, herds and schools: a distributed behavioral

model. Computer Graphics, 21(4):25-34, 1987.

F. Heppner and U. Grenander. A stochastic nonlinear model for coordi-

nated bird flocks. In S. Krasner, editor, The Ubiquity of Chaos. AAAS

Publications, Washington, DC., 1990.

H. Miihlenbein and D. Schlierkamp-Voosen. Predictive models for the

breeder genetic algorithm, I.: continuous parameter optimization. Evo-

lutionary Computation, 1(1):25-49, 1993.

P. Angeline. Evolutionary optimization versus particle swarm optimiza-

tion: Philosophy and performance difference. In Proc. Of Evolutionary

Programming conference, San Diago, USA, 1998.

M. Lobjerg, T. K. Rasmussen, and K. Krink. Hybrid particle swarm op-

timiser with breeding and subpopulations. In In: Proceedings of the third

Genetic and Evolutionary Computation Conference (GECCO-2001), vol-

ume 1, pages 469-476, 2001.

J. Kennedy and R. Mendes. Population structure and particle swarm

performance. In Proceedings of the 2002 Congress on Evolutionary Com-

putation CEC2002, pages 1671-1676. IKEE Press, 2002.

J. Kennedy. Stereotyping: improving particle swarm performance with

cluster analysis. In Pro. IEEE int. Conf. On Evolutionary Computation,

pages 1507-1512, 2000.

Y. Shi and R. C. Eberhart. Fuzzy adaptive particle swarm optimization.

In Proc. IEEE Int. Conf. on Evolutionary Computation, pages 101-106,

2001.

A. Okubo. Diffusion and ecological problems: Methematical models.

Lecture Notes in Biomathematics, 54:456—477, 1980.

Shan He

REFERENCES 195

[100]

[101]

[102]

[103]

[104]

(105)

(106]

[107]

[108]

[109]

D. M. Gordon, R. E. Paul, and K. Thorpe. What is the function of

encounter pattern in ant colonies? Animal Behaviour, (45):1083-1100,

1993.

R. Hilborn. Modelling the stability of fish schools: exchange of individual

fish between schools of skipjack tuna (katsuwonus pelamis). Canadian

Journal of Fisheries and Aquatic Sciences, (48):1080-1091, 1991.

W. D. Hamilton. Geometry for the selfish herd. Journal of Theoretical

Biology, (31):295-311, 1971.

T. J. Pitcher and J. K. Parrish. Functions of shoaling behaviour in

teleosts. In T. J. Pitcher, editor, Behaviour of Teleost Fishes, pages

363-439. London: Chapman and Hall, 1993.

A. E. Magurran and A. Higham. Information transfer across fish shoals

under predator threat. Ethology, (78):153-158, 1988.

R. D. Alexander. The evolution of social behaviour. Annual Review of

Ecology and Systematics, (5):325-383, 1974.

J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain,

and L. Chretien. The dynamics of collective sorting: robot like ant and

ant-like robot. In Proc. First Conference on Simulation of Adaptive Be-

havior: From Animals to Animals, pages 356-365, 1991.

E. Lumer and B. Faieta. Diversity and adaptation in population of clus-

tering ants. In Proceedings Third International Conference on Simulation

of Adaptive Behavior: From Animals to Animals, pages 499-508, 1994.

K. Chellapilla. Combining mutation operators in evolutionary program-

ming. JEEE Trans. on Evolutionary Computation, 2(3):91-96, Sept.

1998.

D. B. Fogel. System Identification Through Simulated Evolution: A ma-

chine Learning Approach to modeling. Ginn Press, 160 Gould Street,

Needham Heights, MA 01294, 1991.

Shan He

REFERENCES 196

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

J. E. Fieldsend and S. Singh. A multi-objective algorithm based upon

particle swarm optimisation, an efficient data structure and turbu-

lence. In Proceedings of UK Workshop on Computational Intelligence

(UKCT’02), pages 37-44, 2002.

S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De

Jong, S. Dzeroski, S. E. Fahlman, D. Fisher, R. Hamann, kK. Kaufman,

S. Keller, I. Kononenko, J. Kreuziger, R. S. Michalski, T. Mitchell, P. Pa-

chowicz, Y. Reich, H. Vafaie, W. Van de Welde, W. Wenzel, J. Wnek,

and J. Zhang. The MONK’s problems: A performance comparison of

different learning algorithms. Technical Report CS-91-197, Pittsburgh,

PA, 1991.

Q. H. Wu, B. W. Hogg, and G. W. Irwin. A neural network regulator for

turbogenerators. IEEE Trans. on Neural Networks, 3(1):95-100, 1992.

X. Yao. Evolving artificial neural networks. Proceeding of the IEEE,

87(9):1423-1447, Sep. 1999.

D. J. Montana and L. Davis. Training feedforward neural networks using

genetic algorithms. In Proc. Eveventh Int. Joint Conf. Artificial Intelli-

gence, pages 762-767, San Mateo, CA, 1989.

T. P. Caudell and C. P. Dolan. Parametric connectivity: Training of

constrained networks using genetic genetic algorithms. In J. D. Schaffer,

editor, Pro. Third Int. Conf. Genetic Algorithms, pages 370-374, San

Mateo, CA, 1989.

D. B. Fogel, L. J. Fogel, and V. W. Porto. Evolving neural networks.

Biol. Cybern., 63:487—493, 1990.

X. Yao and Y. Liu. A new evolutionary system for evolving artificial

neural networks. [EEE Trans. on Neural Networks, 8(3):694-713, May

1997.

Shan He

REFERENCES 197

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

(126]

F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam. Tuning of

the structure and parameters of a neural network using an improved ge-

netic algorithm. JEEE TRANSACTIONS ON NEURAL NETWORKS,

14(1):79-88, Jan. 2003.

P. P. Palmes, T. Hayasaka, and S. Usui. Mutation-based genetic neural

network. [EEE Trans. on Neural Networks, 16(3):587-600, MAY 2005.

J. Ilonen, J. K. Kamarainen, and J. Lampinen. Differential evolution

training algorithm for feed-forward neural networks. Neural Processing

Letters, 17(1):93-105, 2003.

E. Cantu-Paz and C. Kamath. An empirical comparison of combinations

of evolutionary algorithms and neural networks for classification prob-

lems. [EEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, 35(5):915—-927, 2005.

E. Cantu-Paz and C. Kamath. Evolving neural networks to identify bent-

double galaxies in the first survey. Neural Networks, 16(3-4):507-517,

2003.

Y. Liu and X. Yao. Evolutionary ensembles with negative correlation

learning. IEEE Trans. on Evolutionary Computation, 4(4):380—387, 2000.

Z.H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many

could be better than all. Artificial Intelligence, 137(1-2):239-263, 2002.

N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez. Covnet: a

cooperative coevolutionary model for evolving artificial neural networks.

IEEE Trans. on Neural Networks, 14(3):575-596, May 2003.

N. Garcia-Pedrajas, C. Hervas-Martinez, and D. Ortiz-Boyer. Coopera-

tive coevolution of artificial neural network ensembles for pattern classi-

fication. IEEE Trans. on Evolutionary Computation, 9(3):271-302, 2005.

Shan He

REFERENCES 198

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

X. Yao and Y. Liu. Making use of population information in evolutionary

artificial neural networks. IEEE Trans. on Systems, Man and Cybernet-

ics, Part B: Cybernetics, 28(3):417-425, 1998.

D. H. Wolpert. A mathematical theory of generalization. Complex Sys-

tems, 4(2):151-249, 1990.

S. He, Q. H. Wu, and J. R. Saunders. Group search optimizer - an

optimization algorithm inspired by animal searching behavior. Submitted

to IEEE Trans. on Evolutionary Computation.

M. Islam, X. Yao, and K. Murase. A constructive algorithm for training

cooperative neural network ensembles. JEEE Trans. on Neural Networks,

14(4):820-834, 2003.

S. Dzeroski and B. Zenko. Is combining classifiers with stacking better

than selecting the best one? Machine Learning, 54(3):255-273, 2004.

E. Cantu-Paz and C. Kamath. Inducing oblique decision trees with evolu-

tionary algorithms. JEEE Trans. on Evolutionary Computation, 7(1):54—

68, 2003.

T. G. Dirtterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and random-

ization. Machine Learning, 40(12):139-157, 2000.

K. Deb, A. Anand, and D. Joshi. A computationally efficient evolutionary

algorithm for real-parameter optimization. Evolutionary Computation,

10(4):371-395, 2002.

T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. De-

dene, B. De Moor, and J. Vandewalle. Benchmarking least squares sup-

port vector machine classifiers. Machine Learning, 54(1):5-32, 2004.

L. Todorovski and S. Dzeroski. Combining classifiers with meta decision

trees. Machine Learning, 50(3):223-249, 2003.

Shan He

REFERENCES 199

[137]

[138]

[139]

[1.40]

[141]

[149]

[143]

[144]

[1.45]

C. A. Coello Coello. Theoretical and numerical constraint-handling tech-

niques used with evolutionary algorithms: A survey of the state of the

art. Computer Methods in Applied Mechanics and Engineering, 191(11-

12):1245-1287, January 2002.

Q. H. Wu, Y. J. Cao, and J. Y. Wen. Optimal reactive power dispatch us-

ing an adaptive genetic algorithm. Electrical Power and Energy Systems,

20(8):563-569, 1998.

Q. H. Wu and J. T. Ma. Power system optimal reactive power dis-

patch using evolutionary programming. JEEE Trans on Power Syst.,

10(3):1243-1249, 1995.

Y. J. Cao and Q. H. Wu. A mixed variable evolutionary programming

for optimisation of mechanical design. International Journal of Engineer-

ing Intelligent Systems for Electrical Engineering and Communications,

7(2):77-82, 1999.

K. Deb and M. Goyal. Optimizing engineering designs using a combined

genetic search. In In Thomas Back, editor, the Seventh International

Conference on Genetic Algorithms, pages 512-528, 1997.

L. Davis. Genetic Algorithms and Simulated Annealing. Pitman, London,

1987.

R. G. Le Riche, C. Knopf-Lenoir, and R. T. Haftka. A segregated genetic

algorithm for constrained structural optimization. In Sirth International

Conference on Genetic Algorithms, pages 558-565, University of Pitts-

burgh, 1995. Morgan Kaufmann.

Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for con-

strained parameter optimization problems. Evolutionary Computation,

4(1):1-32, 1996.

E. Sandgren. Nonlinear integer and discrete programming in mechanical

design optimization. Journal of Mechanical Design, (112):223-229, 1990.

Shan He

REFERENCES 200

[1.46]

[147]

[148]

[149]

[150]

[151]

(152]

[153]

P. Hajela and C. Shih. Multiobjective optimum design in mixed-integer

and discrete design variable problems. AJAA Journal, 28(4):670-675,

1989.

K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global op-

timization problems through particle swarm optimization. Natural Com-

puting, (1):235-306, 2002.

J. L. Chen and Y. C. Tsao. Optimal design of machine elements us-

ing genetic algorithms. Journal of the Chinese Society of Mechanical

Engineering, 12(2):193-199, 1993.

G. Thierauf and J. Cai. Evolution strategies - parallelisation and appli-

cation in engineering optimization. In B. H. V. Topping, editor, Parallel

and Distributed Processing for Computational Mechanics. Saxe-Coburg

Publications, 1997.

M. Tahk and B. C. Sun. Co-evolutionary augmented lagrangian meth-

ods for constrained optimization. JEEE Transactions on Evolutionary

Computation, 4(2):114-124, July 2000.

A. I. El-Gallad, M. E. El-Hawary, and A. A. Sallam. Swarming of intelli-

gent particle for solving the nonlinear constrainted optimization problem.

International Journal of Engineering Intelligent Systems for Electrical

Engineering and Communications, 9(3):155-163, 2001.

X. Hu and R. C. Eberhart. Solving constrained nonlinear optimization

problems with particle swarm optimization. In the Sizth World Multi-

conference on Systemics, Cybernetics and Informatics 2002 (SCI 2002),

Orlando, USA, 2002.

K.E. Parsopoulos and M. N. Vrahatis. Particle swarm optimiza-

tion method for constrained optimization problems. In V. Kvasnicka

J. Pospichal P. Sincak, J. Vascak, editor, Intelligent Technologies - The-

ory and Applications: New Trends in Intelligent Technologies, volume 76

Shan He

REFERENCES 201

of Frontiers in Artificial Intelligence and Applications, pages 214-220.

IOS Press, 2002.

[154] T. Ray and K. M. Liew. A swarm metaphor for multiobjective design

optimization. Engineering Optimization, 32(2):141-153, 2002.

[155] D. M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill New

York, 1972.

[156] M. Gen and R. Cheng. Genetic Algorithms and Engineering Design. John

Wiley and Sons, 1997.

[157] T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolu-

tionary optimization. IEEE Transactions on Evolutionary Computation,

A(3):284-294, 2000.

[158] S Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous

mappings, and constrained parameter optimization. Evolutionary Com-

putation, 7(1):19-44, 1999.

[159] J. Lampinen and I Zelinka. Mixed integer-discrete-continuous optimiza-

tion by differential evolution. In Proceedings of the 5th International

Conference on Soft Computing, pages 71-76, 1999.

[160] A. D. Belegundu. A study of mathematical programming methods for

structural optimization. Technical report, University of Iowa, 1982.

[161] J. S. Arora. Introduction to Optimun Design. McGraw-Hill New York,

1989.

[162] C. A. Coello Coello. Use of a self-adaptive penalty approach for engi-

neering optimization problems. Computers in Industry, 41(2):113-127,

January 2000.

[163] T. Ray and K. M. Liew. Society and civilization: An optimization algo-

rithm based on the simulation of social behavior. JEEE Transactions on

Evolutionary Computation, 7(4):386-396, 2003.

Shan He

REFERENCES 202

[164] C. A. Coello Coello and E. Mezura Montes. Use of dominance-based

tournament selection to handle constraints in genetic algorithms. In

Joydeep Ghosh Mark J. Embrechts Okan Erson Cihan H. Dagli, Anna

L. Buczak and Stephen Kercel, editors, Intelligent Engineering Systems

through Artificial Neural Networks (ANNIE’2001), volume 11, pages 177—

182, St. Louis Missouri, July 2001. ASME Press.

[165] K. Deb. Geneas: A robust optimal design technique for mechanical com-

ponent design. In Dipankar Dasgupta and Zbiginew Michalewicz, edi-

tors, Evolutionary Algorithms in Engineering Applications, pages 497-—

514. Springer-Verlag, 1997.

[166] S. S. Rao. Engineering Optimization. John Wiley and Sons, 1996.

[167] K. M. Ragsdell and D. T. Phillips. Optimal design of a class of welded

structure using geometric programming. ASME Journal of Engineering

for Industries, 98(3):1021-1025, 1976.

[168] K. Deb. Optimal design of a welded beam via genetic algorithms. AIAA

journal, 29(11):2013-2015, November 1991.

[169] K. Deb. An efficient constraint handling method for genetic algorithms.

Comput. Methods Appl. Mech. Eng., 186(2-4):311-338, 2000.

[170] J. N. Siddall. Optimal Engineering Design. Marcel Dekker, 1982.

[171] C. A. Coello Coello. Treating constraints as objectives for single-objective

evolutionary optimization. Engineering Optimization, 32(3):275-308,

February 2000.

[172] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential

Unconstrained Minimization Techniques. Wiley, New-York, 1968.

[173] A. E. Smith and D. W. Coit. Constraint handling techniques - penalty

functions. In T. Back, D. B. Fogel, and Z. Michalewicz, editors, Handbook

Shan He

REFERENCES 203

of Evolutionary Computation. Oxford University Press and Institute of

Physics Publishing, 1997.

[174] J. Carpentier. Contribution to the economic dispatch problem. Bull.

Soc. Franc. Elect., 8(3):431-447, 1962.

[175] J. A. Momoh, R. J. Koessler, M. S. Bond, B. Scott, D. Sun, A. Papalex-

opoulos, and P. Ristanovic. Challenges to optimal power flow. IEEE

Trans. Power Syst., 12:444-455, Feb. 1997.

[176] O. Alsac and B. Scott. Optimal load flow with steady state security.

IEEE Trans. on Power Appara. Syst., PAS-93:745-751, May-June 1974.

[177] G. F. Reid and L. Hasdorf. Economic dispatch using quadratic program-

ming. IEEE Trans. on Power Appara. Syst., PAS-92:2015-2023, 1973.

[178] B. Stott and E. Hobson. Power system security control calculation using

linear programming. IEEE Trans. on Power Appara. Syst., PAS-97:1713-

1731, 1978.

[179] J. A. Momoh and J. Z. Zhu. Improved interior point method for opf

problems. JEEE Transactions on Power Systems, 14:1114—1120, 1999.

[180] J. Yuryevich and K.P. Wong. Evolutionary programming based optimal

power flow algorithm. IEEE Transactions on Power Systems, 14(4):1245-

1250, 1999.

[181] S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders, and R. C. Paton. A particle

swarm optimizer with passive congregation. BioSystems, 78(1-3):135-

147, Dec. 2004.

[182] P Kessel and H. Glavitch. Estimating the voltage stability ofa power

system. IEEE Transaction on Power Delivery, 3(1):346-354, 1986.

[183] University of Washington. Power systems test case archive, 2006.

http: //www.ee.washington.edu/research/pstca/.

Shan He

