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Abstract 

The thesis begins with a brief introduction to the study of animal behaviour, 

which served as the inspiration for this study. Then a general introduction is 

given to Natural Computation and Swarm Intelligence (SI), a natural compu- 

tational paradigm inspired by animal behaviour. A question then is asked: is 

Particle Swarm Optimiser (PSO), an optimisation algorithm which has been 

well accepted as a SI algorithm, really a SI algorithm? In order to answer this 

question, the relationship between SI, self-organisation and animal behaviour 

is discussed. Then a new definition of SI is given; and a new concept, Animal 

Behaviour inspired Optimisation (ABO), is proposed. An existing ABO algo- 

rithms, PSO is described in detail and its relationship with animal behaviour 

is revealed. Subsequently, the background and motivations of this research are 

described. 

A novel ABO algorithm, Group Search Optimiser (GSO), is proposed in this 

thesis. Optimisation is analogous to the resource searching process of animals 

in nature. The GSO algorithm employs the Producer-Scrounger (PS) model, 

which is a generic animal social foraging model, as a framework. In order 

to design optimum searching strategies under this framework, concepts and 

strategies of resource searching from animal searching behaviour are adopted. 

A large set of benchmark functions, including six 300-dimensional functions, 

are used to assess the performance of the GSO algorithm. The differences 

between the GSO and evolutionary algorithms and PSO are also discussed. 

The study also covers the development of PSO based on the knowledge 

gained from observing animal aggregation. The PSO algorithm is inspired by 

the aggregation behaviour of animals such as the schooling of fish and the



flocking of birds. In this thesis, passive congregation, which is a type of biolog- 

ical mechanism that allows animals to aggregate into groups, is introduced to 

the standard PSO algorithm to improve its performance. Experimental results 

from ten 30-dimensional benchmark functions are also presented in comparison 

to three standard PSO variants. 

The second part of the thesis is devoted to the applications of the ABO 

algorithms to real-world problems. The first application is a novel artificial 

neural network (ANN) training algorithm based on the GSO algorithm. In 

this thesis, a GSO-based ANN (GSOANN) training algorithm is proposed to 

overcome the difficulties faced by the traditional gradient-based ANN train- 

ing algorithms. The performance of the GSOANN then is assessed using four 

real-world classification problems and one forecasting problem. The second ap- 

plication is mechanical design optimisation problems. Five problems including 

one nonlinear programming benchmark function and four mechanical design 

optimisation problems are successfully solved by the proposed algorithm. The 

third engineering application of ABO algorithms is to Optimal Power Flow 

(OPF) problems. The OPF problems are mixed-variable constrained optimi- 

sation problem. In order to solve the OPF problems, the PSOPC and GSO 

algorithms have been applied. 

Finally, a systematic summary is presented, and future research work is 

suggested. 
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Chapter 1 

Introduction 

This thesis is concerned with the development of animal behaviour in- 

spired optimisation algorithms and their applications to engineering optimisa- 

tion problems. This chapter explains the historical background and concepts of 

animal behaviour; clarifies the relationship between animal behaviour, swarm 

intelligence, and self-organisation; gives a new concept of animal behaviour 

inspired optimisation; introduces the motivations behind this study; and sum- 

marises of the contributions from this research. The layout of the thesis and 

auto-bibliography are also given at the end of the chapter. 

1.1. Introduction to Animal Behaviour 

The scientific study of animal behaviour includes everything we can observe 

the animals doing, from all the static postures and active movements to all the 

noises and smells and the changes of colour and the shapes that characterise 

animal life. The animals studied include single-celled organisms, invertebrates, 

fish, amphibians, reptiles, birds, and mammals. The study of animal behaviour 

involves a variety of approaches. In [4], Niko T inbergen, a pioneer ethologist, 

asked four main questions about animal behaviour. 

1. Why do animals respond to environment stimuli in a particular way? 

2. Why do animals respond to internal stimuli in a particular way? 

3. Why do some animals respond in one way and others in another way to
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the same situation? 

4. Why do animals of a particular species, or group, characteristically 

behave in particular ways in particular situations? 

These four questions actually reflect different facets of the research in ani- 

mal behaviour. The first and the second questions are concerned with how do 

psychological and physiological mechanisms control behaviour. In other words, 

what are the psychological and physiological causes of behaviour? Researchers 

interested in this question are mainly concerned with both the external stim- 

uli that affect behaviour, and the internal hormonal and neural mechanisms 

that control behaviour. The third question focuses on how these mechanisms 

develop within individuals and the adaptive value of a behavioural trait. Re- 

searchers try to answer the third question by investigating the functions of be- 

haviour which include its immediate effects on animals and its adaptive value 

in helping animals survive or reproduce successfully in a particular environ- 

ment. They are also interested in how the development of behaviour pertains 

to the ways in which behaviour changes over the lifetime of an animal, and how 

these changes are affected by both genes and experience. The fourth question 

can be paraphrased to ask, “How did behavioural traits originate and evolve in 

animals?” To answer this question, researchers investigate the evolution of be- 

haviour as it relates to the origins of behaviour patterns and how these change 

over generations. 

According to the Animal Behaviour Society, the research in animal be- 

haviour can be roughly divided into four broad fields: ethology, comparative 

psychology, behavioural ecology, and anthropology, although these disciplines 

overlap greatly in their goals, interests, and methods. We will give a brief 

introduction to these fields and discuss the similarity and differences between 

them. 

Ethology, according to the Merriam-Webster dictionary, is the scientific 

and objective study of animal behaviour especially under natural conditions. 

The research in ethology is concerned primarily with an animal’s genetically- 

programmed behaviours often referred to as instincts. Actually, animal be- 

pe le eee 2 
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haviour, at its earlier stage, was usually limited to ethology. The origins of an- 

imal behaviour can be traced back in the work of eighteenth century naturalists 

such as Gilbert White (1720-1793) and Charles Leroy (1723-1789). However, it 

was Charles Darwin (1809-1882) who laid the foundation of ethology. Because 

of Darwin’s theory of natural selection, ethologists have been particularly con- 

cerned with the evolution of behaviour and the understanding of behaviour 

in terms of the theory of natural selection. The research of modern ethology 

revolves around two important discoveries made by Nobel prize winner Kon- 

rad Lornz (1903-1989). The first discovery was fixed action patterns (FAPs) 

which are instinctive responses that would occur reliably in the presence of 

identifiable stimuli. Much of the research focuses on problems in animal com- 

munication which can be mediated by a few simple FAPs. Another important 

discovery is imprinting, a specialized type of ” programmed learning” observed 

in many higher animals such as young nidifugous birds and mammals. A cen- 

tral concept complementary to imprinting is the innate release mechanism, 

whereby organisms are genetically predisposed to be especially responsive to 

certain stimuli such that imprinting will become fixed on the parents. 

Comparative psychology refers to the study of the behaviour and mental 

life of animals other than human beings. Comparative psychology is sometimes 

referred to by the less often used but more accurate name of “animal psychol- 

ogy”. Comparative psychology was founded in the late nineteenth century by 

George Romanes (1849-1894), inspired by Charles Darwin, and was further 

developed as an important discipline within academic psychology by the ex- 

periments on instrumental learning of Edward L. Thorndike (1874-1949) and 

on classical conditioning by Ivan Pavlov (1849-1936). Unlike ethology, compar- 

ative psychology, which is also concerned with the regulation and functions of 

behaviour, can be seen as a branch of psychology. Moreover, early comparative 

psychologists concentrated on the study of learning and thus tended to look at 

behaviour in artificial situations. Comparative psychology usually involves the 

use of a comparative method in which similar studies are carried out on ani- 

mals of different species, and the results interpreted in terms of their different 
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phylogenetic or ecological backgrounds [5]. The research in comparative psy- 

chology focuses on behaviour, cognition, perception, and social relationships of 

diverse species from a comparative perspective. 

Compared to ethology and comparative psychology, behavioural ecology is 

a fairly new research area that evolved from ethology in the 1960s and early 

1970s. Behavioural ecology is so named because “the way in which behaviour 

contributes to survival and reproduction depends on ecology” [6]. As a branch of 

evolutionary biology, behavioural ecology share the same interest in explaining 

how a behavioural characteristic observed today is likely to have been shaped 

by natural selection [7]. The evolutionary persistence of a trait depends upon 

its contribution to the survival and reproduction of the individual carrying the 

trait [7]. Therefore, the research in behavioural ecology focuses not only on 

animals’ behaviours to survive by exploiting resource and avoiding predators, 

but also on how the roles of behaviour contribute to reproductive success from 

ecological and evolutionary perspectives. From this aspect, behavioural ecol- 

ogy is dealing with Tinbergen’s fourth question as discussed above. Since an 

sndividual animal’s behaviour is critically important to its ability to survive 

and reproduce, natural selection will tend to result in animals that are, for 

example, efficient foragers, efficient avoiders of predators, efficient copulators, 

and efficient parents [8]. The behavioural strategies of all living animals should 

be regarded as optimal to some degree [9]. 

To analyze behavioural strategies, behavioural ecology, as have other areas 

of evolutionary biology, has employed a number of techniques that are used in 

optimisation theory. The research focal points of behavioural ecology include: 

(1) foraging behaviour; (2) territoriality, that is, behaviour to defend a given 

territory against other animals, usually of the same species; and (3) group 

living [7]. 

Anthropology is the scientific study of the origin, the behaviours, and the 

physical, social, and cultural development of human beings. Anthropology 

traditionally can be divided into four research fields: 

1). physical anthropology, sometimes called biological anthropology, which 
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studies primate behaviour, human evolution, and population genetics; 

2). cultural anthropology, usually called social anthropology in the United 

Kingdom and now often known as socio-cultural anthropology. Cultural an- 

thropologists study areas such as social networks, diffusion, social behaviour 

and kinship patterns; 

3). linguistic anthropology study areas include variations in language across 

time and space, the social uses of language, and the relationship between lan- 

guage and culture; and 

4). archaeology, which studies the material remains of human societies. 

In the past few decades, studies in animal behaviour have provided re- 

searchers in artificial intelligence with fertile inspirations. For example, the 

study of ethology, especially the discovery of fixed action patterns, inspired 

behaviour-based robotics [10] [11] which uses relatively internal variable states 

to model the environment. Recently, researchers have gleaned ideas from be- 

havioural ecology to design optimisation algorithms. Ant foraging behaviour 

has served as an inspiration of Ant Colony Optimiser (ACO) algorithm. Group 

living behaviour, especially animal aggregation behaviour, inspired Particle 

Swarm Optimiser. In the next section, we will give a comprehensive introduc- 

tion to the animal behaviour inspired optimisation algorithms. 

1.2 Animal Behaviour Inspired Optimisation 

Algorithms 

In this section, Natural Computation, which is an umbrella theme for many 

artificial intelligence techniques including Swarm Intelligence (SI), is intro- 

duced. Then a brief introduction to SI is given and its relationship to animal 

behaviour and self-organisation is discussed. A new definition of SI is given and 

a new concept, Animal Behaviour inspired Optimisation (ABO) Algorithms, 

is proposed. Finally, particle swarm optimiser, an ABO algorithm studied in 

this thesis, is described in detail. 
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1.2.1 Natural computation 

Human beings have always drawn information and inspiration from nature 

to guide their assessments of how things work in their world. One notable 

example is the now ubiquitous Velcro, which was inspired by burrs. Swiss 

amateur inventor, Georges de Mestral, while pondering how to rid his dog’s 

hair of the clinging burrs, concluded that the burrs might be a good model for 

fastening fabrics together. The result was that, in 1948, Velcro was invented. 

For millions of years, nature has been doing a great job of solving complex 

problems. Due to evolutionary pressure, natural systems were forced to come 

up with highly optimised and efficient solutions to sustain life. Therefore, the 

transfer of problem-solving approaches from lifeforms in nature to synthetic 

constructs is helpful. There is a research field called biomimetics which aims 

at applying methods and systems found in nature to the study and design of 

engineering systems and modern technology. With the advance of computer 

science, researchers have taken the idea further by simulating natural process 

to solve computational problems in silico. This emerging field is called Natural 

Computation. 

According to 12], Natural Computation can be divided into three main 

branches: 1) Computing inspired by nature, also known as natural computa- 

tion which draws inspiration from nature to develop problem solving techniques 

for complex problems; 2) The simulation and emulation of nature by means of 

computing which aims at creating patterns, forms behaviours and organisms to 

mimic various natural phenomena by synthetic processes, thus increasing our 

understanding of nature and insights about computer models; and 3) Com- 

puting with natural materials which uses natural materials to perform com- 

putation for the purpose to substitute or supplement the current silicon-based 

computers. 

This study falls into the first branch, i.e., computing inspired by nature. 

There are several paradigms in this branch: 

e Evolutionary computation (EC) 
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e Artificial neural networks (ANNs) 

e Artificial immune systems (AISs) 

e Swarm intelligence (SI) 

EC generally involves techniques that are used to implement mechanisms 

inspired by evolution such as reproduction, mutation, recombination, natu- 

ral selection and survival of the fittest. EC comprises Genetic Algorithms 

(GAs), evolutionary programming, evolution strategy, genetic programming, 

and learning classifier systems. In the past few decades, EC has been widely 

used to solve various scientific and engineering problems [13], due to their sim- 

plicity and flexibility [14]. ANNs were designed to simulate biological neural 

networks. They have been used to model complex relationships between inputs 

and outputs or to find patterns in data. AISs can be regarded as a type of 

optimisation algorithm inspired by immune systems, especially vertebrate im- 

mune systems. AISs are very similar to GAs but exploit the acquired immune 

system’s characteristics of learning and memory to solve a problem. A detailed 

introduction of SI are given in the following section. 

1.2.2 Swarm intelligence, self-organisation and animal 

behaviour 

Current definitions of swarm intelligence 

The expression “swarm intelligence” was coined by Beni and Wang in 1989 

[15]. There is no commonly accepted definition of Swarm Intelligence (SI). As 

defined in (16): 

ST is “an artificial intelligence technique based around the study of collective 

behavior in decentralized, self-organized systems. 

From the book Swarm Intelligence: From Natural to Artificial Systems (17): 

SI is “the property of a system whereby the collective behaviors of (unso- 

phisticated) agents interacting locally with their environment cause coherent 

functional global patterns to emerge. 
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Later, one of the authors E. Bonabeau proposed a new definition [18]: 

SI is the collective behaviour that emerges from a group social insects of 

which the team work is largely self-organised, and coordination arises from the 

different usually primitive interactions among individuals. 

As summarised in [16], SI systems typically consist of a population of agents 

interacting with each other and with their environment using simple local rules. 

Normally there is no centralized control to dictate how individual agents should 

behave, rather, simple local interactions between such agents often lead to the 

emergence of complex global behavior. Examples of SI systems can be found in 

nature which include ant colonies, bird flocking, fish schooling, animal herding, 

and bacteria molding. 

According to [16] and also generally accepted by most of the researchers in 

SI, the most prominent components of SI are Ant Colony Optimiser (ACO) 

and Particle Swarm Optimiser (PSO), both of which are based on observa- 

tions of collective animal behaviour. ACO is inspired by real ants’ foraging 

behaviour. In the ACO algorithm, artificial ants build solutions by moving on 

the problem graph and depositing artificial pheromone on the graph so that 

future artificial ants can build better solutions [16]. ACO has been successfully 

applied to a number of difficult optimisation problems, e.g., traveling salesman 

problems. PSO is another well-known SI algorithm which glean ideas from 

animal aggregation behaviour. Artificial life models, such as BOID, which can 

mimic animal aggregation vividly, serve as the direct inspiration of PSO. In 

the PSO algorithm, a set of individuals called particles fly in the N dimen- 

sional space in order to find the global minimum. Each particle has its own 

velocity determined by two factors, the best position it previously visited so 

far and the best position found by its neightbours (the local version of PSO) 

or the whole swarm (the global version of PSO). Then the individual updates 

its position according to the velocity. The PSO algorithm is particularly at- 

tractive to practitioners because it has only a few parameters to adjust. In 

the past few years, the PSO algorithm has been successfully applied in many 

areas. Although widely accepted as a SI algorithm by most of the researchers, 
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in this thesis, we ask: 

Is a Particle Swarm Optimiser a real Swarm Intelligence algorithm? 

Answer: the global version of PSO is not a SI algorithm. 

Although there are different definitions of SI, there is one thing in common: 

the characteristic of SI which distinguishes it from other natural computa- 

tional techniques is self-organisation. There are many different definitions of 

self-organisation across different disciplines from biology, cybernetics, thermo- 

dynamics and mathematics. The traditional definition from cybernetics is that 

the self-organising systems consist of four basic ingredients [19]: 

1. Positive feedback 

2. Negative feedback 

3. Balance of exploitation and exploration 

4. Multiple interactions 

Since SI has its origin in biology, we are more interested in the definition 

from a biological point of view. In [20], self-organisation is defined as: 

“a, process in which a pattern at the global level of a system emerges solely 

from numerous interactions among the lower-level components of the system. 

Moreover, the rules specifying interactions among the system’s components are 

executed using only local information, without reference to the global pattern. i 

In self-organising biological systems, there is no guidance from well-informed 

leaders, and no set of predetermined blueprints, recipes or templates to explic- 

itly specify the pattern [20]. Instead, structure is as an emergent property of 

the dynamic, local interactions among components in the system. ! The way in 

which the individuals interact in SI and self-organising systems provides them 

the advantages of robustness, flexibility and capability of scaling to enormous 

sizes. 
0 Ee 

1'The environment is also a lower-level component in the systems as defined in [20]. 

ie | ee ee ne 
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From the description above, we can see the ACO algorithm satisfies the 

criterion of self-organising systems. Each ant interacts locally with environment 

by depositing artificial pheromone on the problem graph. Each ant chooses 

routes determined by the pheromone laid by other ants. There is no central 

control and external management of how an ant should move. The global 

complex behaviour of finding optimal solutions emerges from ants’ simple local 

interaction with environment. 

The PSO algorithm is inspired by animal swarm behaviour, e.g., bird flock- 

ing and fish schooling. The swarm behaviour is self-organising and emerges 

from a few local interaction rules. However, for optimisation purpose, in the 

PSO algorithm, informed members who possess the best position are used to 

guide the whole swarm to the global minimum. It is unlikely for an individual 

to recognise the best particle at the swarm level only based on local informa- 

tion. Therefore, the best particle, especially in the global version, is “selected” 

from the swarm [21], not emerged from local interactions between individuals 

or between individuals and their environment. This “selection” is essentially 

an external source to guide the whole swarm. Therefore, we argue that the 

global version of PSO does not have the self-organising feature, and is not a 

SI algorithm. For the local version of PSO, the best particle is taken from 

some smaller number of adjacent particles of the population which is local and 

can be regarded as local interactions, ¢.9., competitions, between individuals. 

Therefore the local version of PSO is essentially a SI algorithm. 

Swarm Intelligence = Self-organisation + Inspiration from animal 

behaviour 

Here we argue that the current definition of SI on Wikipedia is redun- 

dant and inaccurate. As defined on Wikipedia, SI is “an artificial intelligence 

technique based around the study of collective behavior in decentralised, self- 

organised systems.” This definition has several problems. First of all, the 

term “decentralized” actually is an important property of self-organised sys- 

tems. Therefore, “decentralised” is redundant when accompanied with “self- 
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organised”. Secondly, the phrase “based around” only describes the SI’s theo- 

retical foundation which is self-organised systems, but does not depict explicitly 

the characteristic of SI. Moreover, besides the self-organising biological systems 

such as swarm of social insects or flock of birds, examples of self-organised sys- 

tems also include magnetism, crystallization, lasers, cellular autocatalysis in 

chemical and physical systems [22]. However, from the American Heritage 

Dictionary, the word “swarm” often referred to an aggregation of animals, e.9., 

ants and birds. Therefore, using only “self-organising” to define SI is too broad 

and may cause confusion. One example is Cellular Evolutionary Algorithms 

(CEAs) [23] which are also called diffusion or fine-grained models. CEAs are 

based on a spatially distributed population in which genetic interactions may 

only take place in a small neighborhood of each individual. The selection pro- 

cess also takes place in a small set of adjacent individuals which is similar 

to the local version of PSO. Therefore, CEAs are a self-organised system and 

also strictly fit the current definition of SI. There are some other optimsation 

algorithms that also possesses the self-organising feature, e.g., Stochastic dif- 

fusion search (SDS) [24], Evolutionary Diffusion Optimisation (EDO) [25], etc. 

However, to simply catergorise these algorithms as SI deviate the meaning of 

swarm and may cause confusion. 

So is the definition of SI in [17] better? If we compare this definition 

to the definition of self-organisation above [20], it is not difficult to notice 

that this definition of SI is indeed a simplified version of the definition of 

self-organisation. E. Bonabeau’s new definition restricts the self-organisation 

to social insects. However, with the invention of local version of PSO, this 

definition is too narrow and cannot reflect current research in SI. Therefore, 

we here propose a new definition of SI: 

Swarm Intelligence is a self-organising artificial intelligence technique in- 

spired by animal behaviour. 
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1.2.3 Animal behaviour inspired optimisation algorithms 

In this thesis, we also coin a new term: Animal Behaviour inspired Optimi- 

sation (ABO) which refers to a broad range of optimisation algorithms inspired 

by animal behaviour. ABO not only includes SI algorithms but also includes 

those algorithms who are inspired by animal behaviour but do not belong to SI 

because of lack of self-organising characteristic. From this point of view, we can 

add more algorithms recently developed to the category of ABO algorithms. 

The first one is synthetic predator search (SPS) algorithm [26] which is 

inspired by area-restricted searching behavior. It is not a population-based 

algorithm like PSO. On the contrary, it is similar to simulated annealing which 

is suitable for solving combinatorial optimisation problems. 

Intra and intersociety interactions of animal societies, e.g., human and so- 

cial insect societies, have been used to design a stochastic optimisation al- 

gorithm, society and civilization algorithm (SCA) [27]. This algorithm was 

proposed to solve single objective constrained optimisation problems based on 

a formal society and the civilization model. 

Bacteria, which are simple single-celled organisms, have been studied for 

decades. Recently, bacterial foraging behavior, bacterial chemotaxis, has served 

as the inspiration of two different stochastic optimisation algorithms. The first 

one is bacterial chemotaxis (BC) algorithm, which was based on a bacterial 

chemotaxis model [28]. The way of bacterial react chemoattractants in con- 

centration gradients are employed to tackle continuous optimisation problems. 

Ideals from animal behavior have also been incorporated to multi-objective 

evolutionary algorithms. In [29], predator-prey model from animal behavior 

has been used to approximate the shape of the Pareto-optimal set of multi- 

objective optimisation problems. 

In Chapter 2, we also proposed a new ABO algorithm, Group Search Op- 

timiser (GSO), which is inspired by animal social foraging behaviour. 

For those optimisation algorithms who are self-organising but are not in- 

spired by animal behaviour, ¢.g., CEAs, SDS and EDO, we coined a new 

term, Self-Organising Optimisation (SOO) algorithms. The relationship be- 
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tween ABO, SI and SOO is illustrated in Fig. 1.1. 

Animal behavioural 
ere 

Self-organising 

optimisation algorithms 
Swarm Intelligence 
ACO, Local PSO optimisation algorithms 

(GSO, Global PSO, SPS | ))“(CEAs, SDS, EDO) 
SCA, BC) 

  

Figure 1.1: Relationship between SI, SOO and ABO algorithms. 

1.2.4 Introduction to particle swarm optimiser 

Before introducing Particle Swarm Optimiser (PSO), we first give a brief 

introduction to animal congregation behaviour and an Artificial Life (ALife) 

model BOID which served as a direct inspiration of the PSO algorithm. 

The study of animal aggregation and BIOD 

An aggregation of animals, e.g., a Swarm of bees, a flock of birds, or a 

school of fish always captures our attention. These congregations of animals 

are coordinated behaviourally in space and time. They move synchronously 

and wheel and twist in three-dimensional space, which inhibits our ability to 

visually focus on an individual animal and causes us instead to focus on the 

sum of the parts which comprises a cohesive whole [30]. 

In the research in animal aggregation, Parrish et. al. [30] proposed a set 

of questions which can be roughly divided into three themes. The first one 

deals with the basic conundrum of how a set of selfish individuals can act as a 

cohesive, coherent whole. The questions included in this theme are: 
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e What are the costs and benefits of group membership? 

e What information can, and do, individuals use? 

e Do individuals have a sense of the whole? 

e Is there an optimal group size? 

The second theme addresses the group as whole. The questions include: 

e Why are there discrete boundaries? 

e What is the appropriate scale for assessing pattern? 

e Why should pattern exist in three-dimensional aggregations? 

The third theme integrates elements of the individual with those of the 

group. The research attempts to define the whole as some function of the 

parts. The theme includes the following questions: 

e What are the assembly rules? 

e Which properties of the group are epiphenomena and which are functional 

properties that have selected for? 

e Can models which predict epiphenomena be used to make predictions 

about individual behaviour? 

These questions are depicted as “big picture” questions in [30] which define 

the research field of animal aggregation. These questions not only interest biol- 

ogists but also computer scientists. For example, the first question in the third 

theme, “What are the assembly rules?” also interests researchers in artificial 

life. Here we will also present a brief introduction to an artificial life model 

which employs several simple rules to generate complex, coordinated animal 

motion such as bird flocks and fish schools. Actually, The Particle Swarm Op- 

timiser algorithm was not directly inspired by animal aggregation; instead, it 

also originated from an artificial life model: BIOD. Therefore, we will introduce 

BIOD here in order to give background knowledge. 
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Artificial life, also known as alife or a-life, is the study of life through the 

use of human-made analogs of living systems. Computer scientist Christopher 

Langton coined the term when he held the first ”International Conference on 

the Synthesis and Simulation of Living Systems” (otherwise known as Artifi- 

cial Life I) at the Los Alamos National Laboratory in 1987. In 1986, Craig 

Reynolds developed a computer model of coordinated animal motion such as 

bird flocks and fish schools. Each individual of the model is called “boid” which 

is maneuvered by three simple predefined behaviours: 

  

Figure 1.2: Separation. 

1. Separation: steer to avoid crowding local flockmates 

2. Alignment: steer towards the average heading of local flockmates 

3. Cohesion: steer to move toward the average position of local flockmates 

Each boid reacts only to flockmates within a small space around itself. The 

space is characterized by a distance, which is measured from the center of the 

boid, and an angle, which is measured from the boid’s direction of flight. The 

boid will ignore flockmates outside this local neighborhood. 

With these simple behaviours and control mechanisms mentioned above, 

complex yet organized group behaviour emerges. The group behaviour has a 
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Figure 1.3: Alignment. 

  

Figure 1.4: Cohesion. 
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chaotic aspect since each individual’s simple behaviour is inherently nonlinear. 

However, with the negative feedback provided by the behavioral controllers, 

the group dynamics tend to be ordered. As a result, the group displays life- 

like behaviours which are characterised by unpredictability over moderate time 

scales. 

The first and natural application of BOID is computer animation. In 1987, 

Craig Reynolds with his coworkers at the Symbolics Graphics Division and 

Whitney Demos Productions made the first computer animation film based on 

BIOD: Stanley and Stella in: Breaking the Ice. This film was first shown at the 

Electronic Theater at SIGGRAPH ’87. Since then, mainstream film makers 

have adopted BOID to create computer animation. The first Hollywood film 

that employed BIOD was Batman Returns directed by Tim Burton. Other 

famous films that used BIOD include Disney’s “The Lion King” and “The 

Hunchback of Notre Dame”. 

Apart from computer animation, BIOD has many other applications and 

also has spawned some novel research fields. One example is robotics. Directly 

or indirectly inspired by BIOD, researchers in robotics adopted the concept of 

group behaviour to control a group of robots. Other examples include the de- 

sign of coordinated groups of aircraft or spacecraft and data visualization [31]. 

The most distinguished example is Particle Swarm Optimiser (PSO) which is 

a continuous optimisation algorithm inspired by BOID. We will describe PSO 

in detail in the following section. 

Particle Swarm Optimiser (PSO) 

PSO is a nonlinear stochastic optimisation technique developed by Dr. 

Eberhart and Dr. Kennedy. As they mentioned in their seminal paper pub- 

lished in 1995, “the method was discovered through simulation of a simplified 

social model.” It was inspired by “computer simulations of various interpreta- 

tions of the movement of organisms in a bird flock or fish school”, especially 

BIOD. The population of PSO is called a swarm and each individual in the 

population of PSO is called a particle. The i, particle at iteration k has the 
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following two attributes: 

1) Acurrent position in an N-dimensional search space X* = (ak,...,0%,..., 

ak), where r* € [ln, Un], 1 <7 < Ny ln and Un are lower and upper bounds for 

the n, dimension, respectively. 

2) A current velocity Vj*, VF = (vf,.--,Un->- ,vk,), which is bounded by 

a maximum velocity Vé,, = (USax1s+:+>Uhexn:++)Umax,v) and a minimum 

ek (yk k k 
velocity V,5.. = (Uminr+ +> Uminyny«*- ,Unin,N): 

In each iteration of PSO, the swarm is updated by the following equations 

[32]: 

VE = wVF + cyri(PE — X*) + cor(PE — x) (1.2.1) 

Xe XP yee (1.2.2) 

where P,; is the best previous position of the tin particle (also known as pbest). 

According to the different definitions of Ps, there are two different versions 

of PSO. If P, is the best position among all the particles in the swarm (also 

known as gbest) such a version is called the global version. If P, is taken from 

some smaller number of adjacent particles of the population (also known as 

lbest) such a version is called the local version. P; and P, are given by the 

following equations respectively: 

oe PB; ‘fiX) zh, = 

X,.? f(x) <F 

P, € {Po, Phy ++»; Pm} f(Po) = min(f (Po): f(P1)s+ +++ f(Pm)) (1.2.4) 

where f is the objective function, m < M and M is the total number of 

particles, r; and r2 are elements from two uniform random sequences in the 

range (0,1): r1 ~ U(0,1) ; r2 ~ U(0,1), and w is an inertia weight [33], 

which is initialized typically in the range of [0,1]. A larger inertia weight 

facilitates global exploration and a smaller inertia weight tends to facilitate 
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local exploration to fine-tune the current search area [34]. The variables c; and 

cy are acceleration constants [35], which control how far a particle will move in 

a single iteration. 

Recent Advances in PSO 

Since its introduction in 1995, PSO has been intensively studied by re- 

searchers around the world. The current research trends can be categorized 

into five parts: algorithms, topology, parameters, merging/combination with 

other algorithms, and applications. 

One of the important developments of the standard PSO algorithm is the 

constriction factor approach PSO (CPSO), which was proposed by [36]. The 

velocity of CPSO is updated by the following equation: 

VE = y(VF + cyr1(PE — X*) + core(PF — X*)) (1.2.5) 

where y is called a constriction factor, given by: 

x= piet JF wherey =C; +2, p> 4 (1.2.6) 

The CPSO ensures the convergence of the search procedures and can gener- 

ate higher-quality solutions than the standard PSO with inertia weight on some 

studied problems [37]. However, mathematically speaking, CPSO is equivalent 

to standard PSO with an inertia weight. 

In [38], van den Bergh and Engelbrecht proposed a cooperative PSO (COPSO). 

There are two cooperative models in their paper. The first one is called CPSO- 

S; which is a direct extension of Potter’s cooperative coevolutionary genetic 

algorithm (CCGA). The n-dimensional search space is partitioned into n one- 

dimensional search space. There are n swarms to optimise each partitioned 

one-dimensional search space. The main difference between the COPSO and 

the CCGA, as claimed by the authors, is that the optimisation process of a 

PSO is driven by the social interaction of the individuals within that swarm 

instead of exchange of genetic information. In contrast, “the CCGA is driven 
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by changes in genetic or behavioral traits within individuals of the popula- 

tions”. The second model is CPSO-H,, which is a hybrid algorithm combines 

the CPSO-S; and standard PSO. The results on five benchmark functions ob- 

tained by these two COPSOs are excellent. 

Ratnaweera et al. introduced a Self-Organizing hierarchical PSO with time- 

varying acceleration coefficients (HPSO-TVAC) [39]. In addition to the time- 

varying inertia, the authors also introduced time-varying acceleration coeffi- 

cients. In order to preserve the diversity of the swarm, a mutation operator 

was incorporated into PSO. Furthermore, in order to escape being trapped by 

local minima, a mechanism called “self-organising hierarchy” was proposed. 

Under this method, only the “social” part (P,) and the “cognitive” part (Pi) 

of the particle swarm strategy are considered to estimate the new velocity of 

each particle and particles are reinitialized whenever they are stagnated in the 

search space. 

Researchers also investigated the topology of PSO in order to improve its 

performance. In [40], Mendes et al. propose a fully informed PSO algorithm 

based on coefficient analysis. The authors argue that there is no assumption 

that the best neighbor actually found a better region than the second-best 

or third-best neighbors. They use the following topologies in their paper: All, 

where all vertexes are connected to every other; Ring, where every vertex is con- 

nected to two others; Four clusters, with four cliques connected among them- 

selves by gateways; Pyramid, a triangular wire-frame pyramid, and Square, 

which is a mesh where every vertex has four neighbors that wrap around on 

the edges as a torus. They found that the algorithm with all the neighbors ofa 

particle are involved in calculating the next movement has better performance 

than original PSO using the previous best positions. 

PSO has also been extended to handle multi-objective optimisation [41]. 

By incorporating Pareto dominance into PSO, the algorithm stores the non- 

dominated vectors found so far in a second population of particles. Then these 

vectors will be used by the primary population of particles to update their 

velocities. In order to generate well-distributed Pareto fronts, an adaptive grid 
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is also introduced. In order to enhance the exploratory capabilities, mutation 

operators are employed to mutate both the particles and their dynamic ranges. 

In recent years, there are more and more applications of PSO to engineering 

and scientific optimisation problems. For example, PSO has been employed to 

tackle optimisation problems in power systems, €.9., reactive power and voltage 

control [42], optimal power flow [43] [44], economic dispatch [45], dynamic 

security border identification [46] and distribution state estimation [47]. 

1.3 Motivations and Objectives 

This study primarily focuses on the ABO algorithms. In the past few years, 

PSO has attracted more and more attention because of its fast convergence rate 

and simplicity. However it also suffers some disadvantages, e.g., poor global 

search performance. Researchers have proposed several approaches for im- 

proving the global PSO algorithms. For example, mutation operation has been 

introduced to PSO to help the swarm escape from local minima when search 

process stagnates [48] [49] [39]. Other attempts to improve the PSO algo- 

rithms include the combination of other evolutionary operators, e.g, selection 

and crossover [50]. 

All the research mentioned above focused only on the algorithmic side of 

PSO and ignored the the important biological background of PSO. Although 

the algorithmic improvement of standard PSO worked efficiently for solving 

some problems, these improved PSO algorithms cannot be seen as a natural 

extension of the original PSO. On the other hand, after studying animal be- 

haviour, the inspiration source of ABO, we found that current research in ABO 

only employs a small portion of research in animal behaviour, e.g., social in- 

sects’ swarm behaviour and ants’ foraging behaviour. The research of animal 

behaviour remains largely unexplored by the researchers in computational in- 

telligence. Therefore, we want to take a different approach from that of other 

researchers who only see the ABO algorithms, e.9., PSO, from an algorith- 

mic perspective. Firstly, we aim at extending the existing ABO algorithms, 
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especially PSO, by drawing inspiration from animal aggregation which is the 

biological root of PSO. On the other hand, optimisation, which is a process 

of seeking optima in a search space, can be analogous to the resource search- 

ing process of animals in nature. Shaped by natural selection, the searching 

strategies of all living animals are sufficient enough to survive in nature [51]. 

Therefore, it is natural to turn to animal behaviour, especially animal social 

searching behaviour to seek information for developing novel optimisation al- 

gorithms. Since the development of such algorithms would be useless unless 

there are reasonable applications for the algorithms, this thesis also focuses 

on the applications of the ABO algorithms, e.g., PSO and GSO to real-world 

problems. 

The objectives of this study therefore become twofold: 1) to develop novel 

ABO algorithms based on animal behaviour and 2) to apply the ABO algo- 

rithms developed in this research to the solution of real-world problems. The 

first objective can be divided into two stages, 2.e., 1) the further improvement of 

the existing ABO algorithms, particularly the global PSO algorithm, by trans- 

ferring knowledge from animal behaviour and 2) the development of novel SI 

algorithms directly inspired by the research in animal behaviour untouched by 

other researchers. 

1.4 Thesis Overview 

This thesis is structured as follows: 

Chapter 2 introduces a novel ABO algorithm, Group Search Optimiser (GSO), 

which is inspired animal group searching behavior. Based on a generic 

social foraging model, Producer-Scrounger model, it provides an open 

framework to utilize research in animal behavioral ecology to solve dif- 

ficult optimisation problems. A large set of 29 benchmark functions, 

including six 300-dimensional large-scale benchmark functions are em- 

ployed to evaluate the GSO algorithm. In this chapter, results on the 29 

benchmark functions from Genetic Algorithm, Evolutionary Program- 

  

Shan He



1.4 Thesis Overview 
23 

Ee eee ene ee 

ming, Evolution Strategies and Particle Swarm Optimiser are also given 

for comparison. From the comparison, it can be concluded that the GSO 

algorithm has competitive performance to other EAs in terms of accu- 

racy and convergence speed, especially on high-dimensional multi-modal 

problems. The differences between GSO, EAs and PSO are also discussed 

in this chapter. 

Chapter 3 describes an improved PSO algorithm with with passive congre- 

gation. In nature, passive congregation is an important biological force 

preserving swarm integrity. It is an attraction of an individual to other 

group members in which there is no display of social behavior. In this 

study, passive congregation is introduced to transfer information among 

individuals that will help individuals to avoid misjudging information and 

becoming trapped by poor local minima. Following the introduction and 

details of this algorithm, the PSO with passive congregation (PSOPC) 

is tested with a set of 10 benchmark functions with 30 dimensions and 

compared to their standard PSO variants respectively. The experimental 

results show that the PSO with passive congregation improves the search 

performance on the benchmark functions significantly. 

Chapter 4 presents the application of the GSO algorithm to Artificial Neural 

Networks (ANNs) training. The ANN training process can be regarded 

as a difficult optimisation problem. In this chapter, parameters of a 

3-layer feed-forward ANN, including connection weights and bias term 

are tuned by the GSO algorithm. Following the introduction of ANN 

and the GSO based ANN (GSOANN) training algorithm, four real-world 

classification problems and one forecasting problem are used to access the 

GSOANN algorithm. Four EAs-based and one gradient-based training 

algorithms are also implemented to solve these problems. Results from 

the literature on these benchmark problems are also presented in this 

chapter for comparison. From the comparison, GSOANN achieved better 

generalization performance than those of sophisticated machine learning 

  

Shan He



1.5 Contributions of Research 24 

techniques proposed in recent year on several benchmark problems. 

Chapter 5 extends standard PSO to handle problem-specific constraints and 

mixed variables such as integer, discrete and continuous variables. A con- 

straint handling method called the “fly-back-mechanism” is introduced 

to maintain a feasible population. In order to handle mixed variables, a 

simple but effective scheme is employed. Then the improved PSO algo- 

rithm is applied to solve five benchmark problems commonly used in the 

literature of engineering optimisation and nonlinear programming. The 

experimental results on these five benchmark functions indicate that the 

proposed algorithm is better than or equal to other existing methods 

while requiring less computational time. 

Chapter 6 begins by giving a brief literature review of Optimal Power Flow 

(OPF) problems in power systems. Then PSOPC and GSO are intro- 

duced to solve OPF problems. The proposed two algorithms are evalu- 

ated using an IEEE 30-bus test system. Three different OPF problems 

are solved by the two algorithms which include minimizing the fuel cost, 

improving the voltage profile and enhancing the voltage stability. Due to 

its superior searching performance in high-dimensional benchmark prob- 

lems, the GSO algorithm then is applied to solve an OPF problem on a 

large-scale, practical IEEE 118-bus system. 

Chapter 6 concludes the thesis based on the results obtained in this study. 

Ideas for future work are also listed in this chapter. 

1.5 Contributions of Research 

There are several major contributions arising from this research: 

e The successful development of a novel ABO optimisation algorithm, Group 

Search Optimiser (GSO), inspired by animal social searching (foraging) 

behaviour; 
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e An improved Particle Swarm Optimiser with Passive Congregation (PSOPC). 

This study is inspired by animal social aggregation models; 

e An extended Particle Swarm Optimiser (PSO) which is capable of han- 

dling mixed variables and constrains; 

Applications of GSO to neural networks training for data mining prob- 

lems; 

Applications of extended PSO to mechanical optimal design problems, 

Applications of PSOPC and GSO to Optimal Power Flow problems. 

The contributions listed above can be grouped as two categories: 1). al- 

gorithm developments of ABO algorithms and 2). real-world applications of 

ABO algorithms. 

For the algorithm developments, this thesis describes, for the first time, a 

novel ABO algorithm, GSO. The algorithm is based on a generic social foraging 

model, Producer-Scrounger (PS) model, which is different from the metaphors 

used by the ACO and PSO. In order to evaluate its performance, extensive 

experimental study has been carried out. From the experimental results, it 

was found that the GSO algorithm has better search performance on large- 

scale multi-modal benchmark functions. Probably the most significant merits 

of GSO is that it provides an open framework to utilize research in animal 

behavioral ecology to tackle hard optimisation problems. This framework is 

more flexible than PSO and other Evolutionary Algorithms (EAs). For ex- 

ample, different local search techniques can be naturally incorporated into the 

framework of GSO as the searching strategies of producers. In the past, the 

combination of local search techniques and EAs was called “memetic” algo- 

rithms [52] or also known as Lamarckian Genetic Algorithms [53]. However, 

after the publication of Charles Darwin’s theory of natural selection and the 

development of Mendelian genetics, the modern biologists have abandoned the 

Lamarckian theory of evolution [54]. Therefore, although the performance of 

memetic algorithms on many problem domains is superior to the traditional 
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GAs, their biological background is questionable. By employing local search 

techniques as producing strategies, GSO provides a more biologically sound 

framework than the memetic algorithms. 

In addition to the development of GSO, this research has also contributed 

to the development of PSO. In order to improve the search performance of the 

standard PSO algorithm, passive congregation, which is a biological mechanism 

that allows animals to aggregate into groups, has been incorporated into PSO. 

The test results on 10 benchmark functions show that the proposed PSO al- 

gorithm has better performance than standard PSO in terms of accuracy and 

convergence speed. This algorithm has been employed by other researchers 

to tackle optimisation problems in power systems [55]. This study has also 

extended standard PSO which can only handle continuous unconstrained op- 

timisation problems. The extension provided by this research effort allows the 

handling of mixed-variable constrained optimisation problems. The techniques 

used to handle mixed variable and constraints are comparatively simple but 

generate better results than many sophisticated methods. 

The SI techniques developed in this study, e.g., GSO and PSOPC, have 

been applied to solve real-world problems. The first application of GSO is 

training Artificial Neural Networks (ANNs). Several real-world classification 

and forecasting problems have been solved by the GSO trained ANN. For some 

problems, the results we obtained in this research are the best in the literature. 

The GSO and PSOPC algorithms have also been used to solve optimal power 

flow problems. Results from IEEE 30-bus and IEEE 118-bus systems confirm 

that the two algorithms have better performance than other EAs and standard 

PSO. 
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Developments of Animal 

Behaviour Inspired 

Optimisation Algorithms



Chapter 2 

From Animal Social Searching 

Behaviour to Group Search 

Optimiser 

Nature-inspired optimisation algorithms [?] [56], notably Evolutionary Al- 

gorithms (EAs), have been widely used to solve various scientific and engineer- 

ing problems [13], due to their simplicity and flexibility [14]. In this chapter 

we report a novel optimisation algorithm, Group Search Optimiser (GSO), in- 

spired by animal behavior, especially animal social searching behavior. This 

algorithm belongs to the so-called Animal Behaviour inspired Optimisation al- 

gorithm. The framework is mainly based on the Producer-Scrounger model 

[57], which assumes group members search either for ‘finding’ (producer) or for 

‘joining’ (scrounger) opportunities. Based on this framework, concepts from 

animal searching behavior, e.g., animal scanning mechanisms, are employed 

metaphorically to design optimum searching strategies for solving continuous 

optimisation problems. We also disperse some group members from their cur- 

rent positions to perform random walks to avoid entrapment in local minima. 

When tested against benchmark functions, in low and high dimensions respec- 

tively, the GSO algorithm has competitive performance to other EAs in terms 

of accuracy and convergence speed, especially on high-dimensional multi-modal 

30
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problems. 

2.1 Introduction 

In the past few decades, natural computation has attracted more and more 

attentions. Nature serves as a fertile source of concepts, principles and mech- 

anisms for designing artificial computation systems to tackle complex compu- 

tational problems. In recent years, a new kind of computational intelligence: 

Swarm Intelligence (SI), which was inspired by animal collective behavior, has 

been developed. In Chapter 1, we have revealed the relationship between SI, 

animal behaviour and self-organisation. A new concept, Animal Behavioiur 

inspired Optimisation (ABO) has been proposed. 

In this chapter, inspired by animal searching (foraging) behavior, we pro- 

pose an novel ABO algorithm, Group Search Optimiser (GSO), primarily for 

continuous optimisation problems. GSO is mainly based on a social foraging 

model, Producer-Scrounger (PS) model proposed by C.J. Barnard and R.M. 

Sibly [57]. Under this framework, concepts and strategies of resource search- 

ing from animal searching behavior are adopted metaphorically for designing 

optimum searching strategies. General animal scanning mechanisms (e.g., vi- 

sion) are employed for producers. Scrounging strategies [57] of house sparrows 

(Passer domesticus) are used in the GSO algorithm. Besides the producer 

and scroungers, some group members are dispersed from a group to perform 

random walks to avoid entrapments in local minima. 

In order to evaluate the performance of the implemented GSO algorithm, 

extensive studies based on a set of 23 benchmark functions have been carried 

out. For comparison purposes, we also implemented one evolutionary algo- 

rithms, GA, and one Swarm Intelligence algorithm, PSO, on these functions 

respectively. We also adopted published results of EP, ES and their improved 

variants, namely, Fast EP (FEP) [58], Fast ES (FES) [59], for comparison. 

Experimental results show that, compared to the other algorithms, GSO has 

markedly superior search performance for multi-modal functions, whilst main- 
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taining modest performance for high-dimensional uni-modal functions. The 23 

benchmark functions used in our experiments have been widely employed by 

other researchers to evaluate evolutionary algorithms. However their dimen- 

sions are relatively small (up to 30) compared with real-world optimisation 

problems which usually involve hundreds even thousands of variables. In or- 

der to further investigate whether GSO can be scaled up to handle large-scale 

optimisation problems, we tested our GSO algorithm on 6 multi-modal bench- 

mark functions (e.g., fg to fi3 studied in this chapter) in 300 dimensions in 

comparison to GA and PSO. The results are encouraging, the GSO algorithm 

generated results as good as those in 30-dimensional cases while GA and PSO 

yielded poor results or even failed to converge. 

The rest of the chapter is organized as follows. In Section 2.3, GSO will be 

introduced and the details of implementation will be given. In Section 4.3, the 

experiment studies of the proposed GSO are presented with descriptions of the 

benchmark functions, experimental settings including the parameter setting 

of the GSO algorithm and the experimental results. The differences between 

GSO and other SI algorithms and EAs will be discussed in Section 3.5. The 

chapter is concluded in Section 4.4. 

2.2 Animal Social Searching Theory 

Searching (Foraging) behavior may be described as an active movement by 

which an animal finds or attempts to find resources such as food, mates, ovipo- 

sition or nesting sites, and it is perhaps the most important kind of behavior 

in which an animal engages [1]. Searching behavior represents the confluence 

of three aspects of an animal: (1) the characteristics and abilities of an animal, 

including its perceptual and locomotory skills; (2) external environment factors 

determining what resources are available and the risks generated in obtaining 

them; and (3) internal factors, such as the level of physiological need relative 

to a certain kind of resource. The ultimate success of an animal’s searching 

depends on [1]: (1) the strategies it uses in relationship to the availability of 
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resources and their spatial and temporal distributions in the environment; (2) 

its efficiency in locating resources; and (3) the ability of a species to adapt 

to long-term or even short-term environmental changes and the ability of an 

individual to respond. Shaped by natural selection, the searching strategies 

of all living animals are sufficient enough to survive in nature. For example, 

an animal can move in a way that optimises its chances of locating sparse, 

randomly located resources [60]. 

In animal behavioral ecology, group-living, which is a widespread phe- 

nomenon in the animal kingdom, has been studied intensively. One conse- 

quence of living together is that group searching allows group members to 

increase patch finding rates as well as to reduce the variance of search success 

[61]. This has usually led to the adoption of two foraging strategies within 

groups: (1) producing, e.g., searching for food; and (2) joining (scrounging), 

e.g., joining resources uncovered by others. The latter has also been referred to 

as conspecific attraction, kleptoparasitism, etc. [62]. Joining is an ubiquitous 

trait found in most social animals such as birds, fish, spiders and lions. Indi- 

viduals in a group that are successful at searching resource provide resources 

at their expense to less successful individuals [63}. 

In order to analyze the optimal policy for joining, two models have been 

proposed: Information-Sharing (IS) [64] and Producer-Scrounger (PS) [57]. 

The IS model assumes foragers search concurrently for their own resource, 

whilst searching for opportunities to join. On the other hand, foragers in 

the PS model are assumed to use producing or joining strategies exclusively. 

Recent studies suggest that, at least for the joining policy of ground-feeding 

birds, the PS model is more plausible than IS mode [63]. 

Recently, Couzin et. al. [65] suggested that the larger the group, the 

smaller the proportion of informed individuals need to guide the group with 

better accuracy. Therefore, for accuracy and convenience of computation, we 

simplify the PS model by assuming that there is only one producer at each 

searching bout. The simplest joining policy, which assumes all scroungers will 

join the resource found by the producer, is used. In optimisation problems, 
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unknown optima can be regarded as open patches randomly distributed in a 

search space. Group members therefore search for the patches by moving over 

the search space [66]. It is also assumed that the producer and the scroungers 

do not differ in their relevant phenotypic characteristics. Therefore, they can 

switch between the two roles [57] [66]. 

Producer strategy consists of searching for one’s food. An important com- 

ponent of search orientation is scanning; it is a set of mechanisms by which 

animals move sensory receptors and some times their bodies or appendages so 

as to capture information from the environment [1]. Scanning can be accom- 

plished through physical contact or by visual, chemical, or auditory mecha- 

nisms. In nature, vision is the main scanning mechanism used by most of the 

animal species. To perform visual searches, many animals encode a large field 

of view with retinas having variable spatial resolution, and then use high-speed 

eye movements to direct the highest resolution region towards potential target 

locations [67] [68]. Good scanning performance is essential for survival. Na- 

jemnik and Geisler [69] showed humans use almost optimal scanning strategies 

for selecting fixation locations in visual search. 

In nature, group members often have different searching and competitive 

abilities; subordinates, who are less efficient foragers than the dominant will be 

dispersed from the group [70] [71]. Various forms of dispersions are observed 

in range from simple insects to human being [72]. Dispersed animal may adopt 

ranging behavior to explore and colonize new habitats. Ranging is an initial 

phase of a search that starts without cues leading to a specific resource (73]. 

2.3 Group Search Optimiser 

In this chapter, optimisation, which is a process of seeking optima in a 

search space, is analogous to the resource searching process of animals in na- 

ture. Based on the theoretical frame work presented in the previous section, 

we develop a GSO algorithm for continuous optimisation problems by incorpo- 

rating concepts and strategies of animal searching behavior. The population of 
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GSO is called a group and each individual in the population is called a member. 

In an n-dimensional search space, the i,, member at the ky, searching bout 

(iteration), has a current position Xf € R”, a head angle gk = (ph, ---, Pint) € 

R"-! and a head direction D¥(y*) = (di,,...,d%,) € R” which can be calcu- 

lated from y* via a Polar to Cartesian coordinates transformation: 

n-1 

dk, = | cos(yi) 
p=1 

n—-1 

di Fj sin(pi-1)) , II cos(yi,) 
p=i 

dk, = sin(Yin—1) (2.3.1) 

At each iteration, a group member, located in the most promising area, 

conferring the best fitness value, is chosen as the producer. It then stops 

and performs visual scanning of the environment to seek resources (optima). 

In our GSO algorithm, basic scanning strategies introduced by white crappie 

(Pomozis annularis) [74] is employed. The scanning field of vision is gener- 

alized to a n-dimensional space, which is characterized by maximum pursuit 

angle @max € R"-* and maximum pursuit distance lmax € R? as illustrated in a 

3D space in Fig. 2.1. In the GSO algorithm, at the k,, iteration the producer 

X, behaves as follows: 

   

  

>” 
(Forw ard directed) 

    

      

Maximum pursuit angle 8 x 

Maxi mum Pursuit dj 
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Figure 2.1: Scanning field in 3D space [1] 

1) The producer will scan at zero degree and then scan laterally [74]. This 

is simulated by randomly sampling three points in the scanning field: one point 
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at zero degree: 

X, = X* + rylmaxDk(p*) (2.3.2) 

one point in the right hand side hypercube: 

X, = X¥ 4 rilmacDE(o" + 120 max/2) (2.3.3) 

and one point in the left hand side hypercube: 

X, = X* + rylmaxD§(p* — r26max/2) (2.3.4) 

where r; € R! is a normally distributed random number with mean 0 and 

standard deviation 1 and r2 € R"~! is a uniformly distributed random sequence 

in the range (0, 1). 

2) The producer will then find the best point with the best resource (fitness 

value) among the three points it scanned. If the best point has a better resource 

than its current position, then it will fly to this point. Or it will stay in its 

current position and turn its head to a new angle: 

ght) — oF + redmax (2.3.5) 

where Qmax is the maximum turning angle. 

3) If the producer cannot find a better area after a iterations, it will turn 

its head back to zero degree: 

pits = oF (2.3.6) 

where a is a constant. 

During each searching bout, a number of group members are selected as 

scroungers. The scroungers will keep searching for opportunities to join the 

resources found by the producer. The basic scrounging strategies [57] in house 

sparrows (Passer domesticus) include: (a) Area copying: moving across to 

search in the immediate area around the producer; (b) Following: following 

another animal around without exhibiting any searching behavior; and (c) 

Snatching: taking a resource directly from the producer. In the GSO algorithm, 

only area copying, which is the commonest scrounging behavior in sparrows, 
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is adopted. At the ky, iteration, the area copying behavior of the i, scrounger 

can be modeled as a random walk towards the producer: 

XF+) = XF 4. 73(X* — Xf) (2.3.7) 

where r3 € R” is a uniform random sequence in the range (0,1). The typical 

paths of scroungers in 5 iterations are illustrated in Fig. 2.2. 

  

  

  

Figure 2.2: The paths of five scroungers moving towards the producer (in the 

center) in 5 iterations. 

The rest of the group members will be dispersed. If the i, group member is 

dispersed, it will perform ranging. In nature, ranging animals perform search- 

ing strategies, which include random walks and systematic search strategies to 

locate resources efficiently [75]. Random walks, which are thought to be the 

most efficient searching method for randomly distributed resources [60], are 

employed by the dispersed members. At the hyp, iteration, (1) it generates a 

random head angle ¥;: 

gh? = oF + r20max (2.3.8) 

where Qmax is the maximum turning angle; and (2) it chooses a random dis- 

tance: 

l, =a‘ rilmax (2.3.9) 

and move to the new point: 

XP XE 1,D* (pet?) (2.3.10) 
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To maximize their chances of finding resources, animals use several strate- 

gies to restrict their search to a profitable patch. One important strategy is 

turning back into a patch when its edge is detected [76]. This strategy is em- 

ployed by the GSO algorithm to handle the bounded search space: when a 

member is outside the search space, it will turn back to its previous position 

inside the search space. The flowchart of the GSO algorithm is presented in 

Fig. 2.3. The pseudocode for the GSO algorithm is listed in Table 2.1. 

2.4 Experimental Studies 

2.4.1 Test functions 

According to the No Free Lunch theorem, “for any algorithm, any elevated 

performance over one class of problems is exactly paid for in performance over 

another class” [77]. To fully evaluate the performance of the GSO algorithm 

without a biased conclusion towards some chosen problems, we employed a 

large set of standard benchmark functions which are given in Table 2.2. The 

set of 23 benchmark functions can be grouped into uni-modal functions (fi 

to f7), multi-modal functions (fs to fiz), and low-dimensional multi-modal 

functions (fia to fo3). Although this set of benchmark functions have been 

widely adopted by other researchers [58], their dimensions are chosen relatively 

small (up to 30) compared to that of real-world optimisation problems. It is 

our interest to investigate whether our GSO algorithm can be scaled up to 

handle large-scale optimisation problems. Therefore, multi-modal functions 

fg to fi3, for which the number of their local minima increases exponentially 

with respect to the increase of dimension, are selected and extended to 300 

dimensions as listed in Table 2.3. 
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Figure 2.3: Flowchart of the GSO algorithm. 
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Table 2.1: Pseudo code for the GSO algorithm. 

te ee ee 

Set k := 0; 

Randomly initialize positions X; and head angles y; of all members; 

Calculate the fitness values of initial members: f(X;) 

WHILE (the termination conditions are not met) 

FOR (each members i in the group) 

Choose producer: Find the producer X, of the group; 

Perform producing: 1) The producer will scan at zero degree and then 

scan laterally by randomly sampling three points 

in the scanning field using equations (2.3.2) to 

(2.3.4). 

2) Find the best point with the best resource (fit- 

ness value). If the best point has a better resource 

than its current position, then it will fly to this 

point. Otherwise it will stay in its current posi- 

tion and turn its head to a new angle using equa- 

tion (2.3.5). 

3) If the producer can not find a better area after a 

iterations, it will turn its head back to zero degree 

using equation (2.3.6); 

Perform scrounging: Randomly select 80% from the rest members to 

perform scrounging; 

Perform dispersion: For the rest members, they will be dispersed from 

their current positions to perform ranging: 1). 

Generate a random head angle using equation 

(2.3.8); and 2). Choose a random distance |; from 

the Gauss distribution using equation (2.3.9) and 

move to the new point using equation (2.3.10); 
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Calculate fitness: Calculate the fitness value of current member: 

(Xi) 
END FOR 

Set k:=k+1; 

END WHILE 

Table 2.2: The 23 benchmark functions, where n is the dimension of the func- 

tion, fmin is the global minimum value of the function. 
Test function n s fmin 

fi) = me 2 30 [=100, 100]* 0 

f(x) aria + [Ti Jel 30 [-10, 10]” 0 

f3(z) £1 (dj. =1 3). 30 [—100, 100] 0 

fa(z) = = a(t A << a 30 [—100, 100]” 0 

fs(w) = 072] (100(ai41 — 27)? + (wi - 1))? 30 [—30, 30]” 0 

felt) = Sef (Ls +0.5|)? 30 [—100, 100)" 0 
f(a) = 0, iv} + random(0, 1) 30 ([—1.28, 1.28]” 0 

falc) ee (= sin ( [zi] 30 [—500, 500)” -12569.5 

fo(x) = 0%, (ae? — 10cos(2rai) + 10)? 30 [—5.12, 5.12)” 0 

fro(x) = ~ 20 exp (-0.2,/2 Ohi 2?) —exp(2 S71 cos2nai) 30 [-32, 32]” 0 
saa a 

file) = aig W321 (w - 100)? - Ty Pex cos( #700) +1 30 [-—600, 600)” ) 

fix(z) == f {20sin2 (ro) one 2 yi — 1)?[1 + 10 sin? (ryi+1)] 30 [—50, 50)” 0 

tin - 1)? } + 522, u(ai, 10, 100, 4) 

ywi=l+g 5 (ai ct 1) 

k(x; —a)™, u>a 

u(ai,a,k,m) = 0, -a<aj<a 

aa —a)™, ri<—a 

fis(x) = 0.1 {sin?(m3a1) + 072, (wi — 1)?[1 + sin? (372541) 30 [—50, 50)” 0 

+(an —1)?[1+ sin?(2na90)]} + been u(x, 5, 100, 4) 

eee = A 
fis(z) = Boo + oe 1 FEeea 2 [ 65.536, 65.536)” 1 

02-40; 
fis(e) =Si lea- ws 4 [-5, 5)” 0.0003075 

fie(z) = 4a? — 23 let +2 ant +2122 — 4a2 ao 40 2 [—5, 5)” -1.0316285 

fir(z) = (x2 — 54224 82) - 6) +10(1- 2) cose: +10 2 [5,10] x [0, 15] 0.398 

fis(z) =([1+(@1+22+ 1)2(19 — 14a, + 32? — Ac0 2 [—2, 2]” 3 

+60122 + 303)) x [30 + (2a + 1 — 3@2)?(18 — 3221 
+120? + 48x — 362102 + 2725)) 

fis(z) =- Diet G Exp |— Dj=1 aig (25 — — Piz)? 3 (0, 1)” -3.86 

foo(z) =— Shy ciexp |— Djs aig (#5 — vis)? 6 [0, 1]" -3.32 

fa(z) =-Dd3 > _s{@ —a;)(x— ai)? +ci]7} 4 {0, 10)” -10 

foox(z) == Li gill x —aj;)(x— ai)” +c;]—} 4 {0, 10] -10 

foa(z) == x10 =l(% = ai)(2 — aj) +c;]—} 4 (0, 10)” -10 
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Table 2.3: The 6 300-dimensional multi-modal benchmark functions, where n 

is the dimension of the function, S' is the feasible search space, and fmin is the 

global minimum value of the function. 

Test function n S drain 

fa(ay™ 300 [—500, 500)" -125694.7 
fo(a)3 300 [—5.12, 5.12)” 0 
fon 300  [—32, 32]” 0 

fir (x)? 300 [—600, 600]” 0 

fio(x)? 300  [—50, 50)” 0 

fis(a)* 300 = [—50, 50)” 0 

2.4.2 Experimental setting 

The parameter setting of the GSO algorithm is summarized as follows. The 

initial population of GSO is generated uniformly at random in the search space. 

The initial head angle y® of each individual is set to be 7. The constant a is 

given by round(./n +1) where n is the dimension of the search space. The 

maximum pursuit angle Omax is &. The maximum turning angle a is set to 

be #2. The maximum pursuit distance Imax is calculated from the following 

equation: 

lnax = || Ui -— Li || = 

  

where L; and U; are the lower and upper bounds for the i, dimension. The 

parameter need to be tuned is the percentage of dispersed members; our rec- 

ommended percentage is 20%, which was used throughout all our experiments. 

The population size of the GSO algorithm was set to at A8 in order to keep the 

number of function evaluations as same as other algorithms in a generation. 

We compared the performance of GSO with that of 4 different EAs: 

1) Genetic Algorithm (GA) [78] 

2) Evolutionary Programming (EP) [79] [80] 

3) Evolution Strategies (ES) [81] 

4) Particle Swarm Optimisation (PSO) [32] 

Since there are no ES and EP toolboxes available, we adopted the test re- 
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sults of f; - f23 from [58] and [59] directly for comparison. In their studies, Yao 

and Liu proposed Fast EP (FEP) and Fast ES (FES) which replace Guassian 

mutations of conventional EP (CEP) and conventional ES (CES) with Cauchy 

mutations. We also employed the publicly available GA and PSO toolboxes 

in order to compare their accuracy and convergence rate with the GSO algo- 

rithm. The GA toolbox we used in our experiments is the Genetic Algorithm 

and Direct Search Toolbox (GADST) provided by Matlab 7.0. The GA al- 

gorithm we executed is real-coded with intermediate crossover and Guaussian 

mutation. The population of the GA was 50. The reproduction function was 

conducted using uniform stochastic selection. No subpopulation was used in 

the GA, therefore the migration rate was set to be 0. All the control parame- 

ters, e.g. mutation rate and crossover rate, etc., were set to be default. We also 

employed PSOt - a particle swarm optimisation toolbox for Matlab [82], which 

includes a standard PSO algorithm and several variants. The PSO algorithm 

we executed is the standard one. The parameters were given by default setting 

of the toolbox: the acceleration factors c; and cz were both 2.0; and a decaying 

inertia weight w starting at 0.9 and ending at 0.4 was used. The population of 

50 was used in the PSO algorithm. 

For the 300 dimensional cases, since there are very few results published 

at present, besides GADST and PSOt, we also implemented EP and ES for 

comparison. The implementation of EP was based on the algorithm described 

in [80] and [83]. The population size and the tournament size for selection were 

100 and 10, respectively. The initial standard deviation of the EP algorithm 

was 3.0. The ES algorithm used in our experiments is a state-of-the-art (1, A)- 

ES algorithm which was implemented according to [81]. The population y was 

set to at 30 and the offspring number \ was 200. A standard deviation of 3.0 

was adopted. Global intermediate recombination [?] was also employed in the 

ES algorithm. 

Fifty independent runs of the GSO algorithm, GA and PSO were executed 

on benchmark functions f; ~ f23. We tabulated the numbers of function eval- 

uations for the 23 benchmark functions in Table 2.4. For 300-dimensional 
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benchmark functions, 5 independent runs of the GSO algorithm and the other 

four algorithms were executed to obtain average results. The number of gener- 

ations for the six 300-dimensional benchmark functions were set to be 75000 for 

GSO and the other four algorithms. Therefore, 3750000 function evaluations 

were executed for each algorithm on each function. 
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The experiment included an average test on all the algorithms which run 50 

times respectively to get an average result of each algorithm for each benchmark 

function. In order to further assess the performance of the GSO algorithm 

in a stochastic search process with a consideration of randomly distributed 

initial populations, a set of two-tailed t-tests were adopted [58] [84]. The t-test 

assesses whether the means of two groups of results are statistically different 

from each other, for which the statistical significance of our experimental results 

between the GSO and the other four algorithms were measured. In this case, 

a critical value, teit, was set up to be +2.0 and the level of significance was 

placed as a = 0.05 for a benchmark function, with 49 degrees of freedom at 

this level. This means if |t| > 2.0 the difference between the two means of the 

two tests is statistically significant. 

2.4.3 Uni-modal functions 

It is worth mentioning that uni-modal problems can be solved efficiently 

by many deterministic optimisation algorithms that use gradient information. 

However, uni-modal functions have been adopted to assess the convergence 

rates of EAs [59]. We tested the GSO on a set of uni-modal functions in 

comparison with the other two algorithms. Table 2.5 lists the experimental 

results (i.e., the mean and standard deviations of the function values found in 

50 runs) for each algorithm on uni-modal functions fi ~ fr. Figs. 2.4, 2.5, 

2.6 and 2.7 show the search progress of the average values found by the three 

algorithms over 50 runs for functions f, ~ fr. The results generated from CEP, 

FEP, CES and FES are tabulated in Table 2.6 in comparison with the results 

generated by our GSO algorithm. 

From Table 2.5, the GSO generated significantly better results than GA 

on functions f; ~ fs and yielded a similar result to GA on function f7. From 

the comparisons between GSO and the PSO, we can see that, statistically, 

GSO has similar or significantly better performance on f4 ~ fs. The GSO 

algorithm only yielded statistically worst results on f; ~ fs compared to PSO. 

In summary, the search performance of the three algorithms tested here can 
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be ordered as PSO > GSO > GA. 

It can be found from Table 2.6 that GSO was ranked the third which was 

outperformed by FEP and FES. However, according to Table 2.4, GSO required 

much less number of function evaluation than the other 4 algorithms. 
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2.4.4 Multi-modal functions 

Multi-modal functions with many local minima 

This set of benchmark functions (fg ~ f13) are regarded as the most difficult 

functions to optimise since the number of local minima increases exponentially 

as the function dimension increases [?]. The mean and standard deviations of 

the function values found in 50 runs for each algorithm on each test function 

are listed in Table 2.7. Figs. 2.8, 2.9, and 2.10 show the search progress of 

the average values found by the three algorithms over 50 runs for functions 

fs ~ fiz. Results adopted from [58] and [59] are tabulated in Table 2.8 in 

comparison with the results produced by GSO. 

From Table 2.7, it is clear to see that for most of the tested benchmark 

functions, GSO markedly outperformed GA and PSO. For example, on func- 

tion fg, GSO found the global minimum almost every time of run while the 

other four algorithms generated poorer results in this case. GSO generated 

significant better results than those of PSO on most functions. The only ex- 

ception is Ackley’s function (fo) and Griewank (11). PSO outperformed GSO 

statistically. However, according to [85], the regions of the Griewank func- 

tion’s local minima become narrower and narrower as the dimension increases. 

Consequently, it is much easier for optimisation algorithms to find the global 

minimum since the local minima are more and more likely to be neglected as 

the dimension increases. It has been found that local optimisation algorithms, 

for example the limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) 

algorithm [86], yielded better results than global optimisation algorithms, e.g. 

EAs for the Griewank function in the cases of high dimensions. Therefore, the 

Griewank function is not a challenging multi-modal benchmark problem for 

evaluation of global optimisation algorithms. No substantial conclusion can be 

drawn from the comparisons between GSO and PSO on the Griewank function. 

It can be seen from Figs. 2.8 2.9, and 2.10 that on average the GSO 

algorithm consistently outperformed the other two algorithms for 4 benchmark 

functions: fg, fo, fiz and 13, respectively. From our experiments, we also found 
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Figure 2.4: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) and (b) correspond to functions fi and fo, respectively. 
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Figure 2.5: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) and (b) correspond to functions f; and fa, respectively. 
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Figure 2.6: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) and (b) correspond to functions fs and fs, respectively. 
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Figure 2.7: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) correspond to function f7 

that, for functions f12 and fi3, the best results found by the PSO are better 

than those found by the GSO in terms of accuracy and convergence speed. 

However, the average results and the standard deviations generated by PSO 

indicate that PSO is more likely to be trapped by poor local minima, therefore 

it leads to inconsistent search performance on these two functions. It can be 

concluded from Table 2.7 that the order of the search performance of these 

three algorithms is GSO > PSO > GA. 

It can be found from Table 2.8 that, in comparison with CEP, FEP, CES and 

FES, GSO has the best performance (Rank 1) with less function evaluations. It 

can also be found from Table 2.8 that, for 4 out of 6 functions, GSO generated 

better results than the other four algorithms. The two exceptions are Rastrigin 

(fo) and Griewank (f11) functions. GSO was outperformed by FEP and FES 

on Rastrigin function and by FEP on Griewank function, respectively. 
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Figure 2.8: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) and (b) correspond to functions fg and fo, respectively. 
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Figure 2.9: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) and (b) correspond to functions fio and f11, respectively. 
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Figure 2.10: Convergence results of GSO, GA and PSO. The results were aver- 

aged over 50 runs. (a) and (b) correspond to functions fi2 and fis, respectively. 
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Multi-modal functions with a few local minima 

This set of benchmark functions fj4 ~ fo3 are multi-modal but in low 

dimensions (n < 6) and they have only a few local minima. Compared to the 

multi-modal functions with many local minima (fg ~ f13), this set of functions 

are not challenging: some of them can even be solved efficiently by deterministic 

algorithms [87] [88]. 

From Table 2.9, we can see in comparison to GA, GSO achieved better 

results on all benchmark functions. Two-tailed t-test also indicated that for 7 

out of 10 benchmark functions, GSO statistically outperformed GA. For the 

rest 3 benchmark functions, no statistically significant difference can be found 

between GSO and GA. In comparison with PSO, it can be seen that GSO has 

a better performance on most of the functions except the Kowalik’s function 

(fis) and Shekel’s family functions (f21, fo2 and fo3) where PSO generated 

better average results than those of GSO. From the Two-tailed t-test, it can 

be found that, statistically, GSO outperformed PSO on functions fi4 ~ fis 

and achieved similar results on functions fj4, fis and f2:. The search progress 

of the average values and the best solutions found by the three algorithms on 

functions fi4 ~ fog are shown in Figs. 2.11, 2.12, 2.13, 2.14 and 2.15. From 

Table 2.9 we can see that the order of the search performance of these three 

algorithms is GSO > PSO > GA. 

Table 2.10 reveals that GSO ranked the first in comparison with CEP, FEP, 

CES and FES. For function f4 to f19, GSO has the best performance. However, 

it was outperformed by the other four algorithms on Hartman’s Function f29 

and Shekel’s family functions (fo1, fo2 and fos). 
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300-dimensional multi-modal functions 

Many real-world optimisation problems usually involve hundreds or even 

thousands variables. However, previous studies showed that although some al- 

gorithms generated good results on relatively low-dimensional (n < 30) bench- 

mark problems, they do not perform satisfactorily for some large-scale problems 

[89]. Therefore, in order to assess the scalability of our GSO algorithm, which is 

crucial for its applicability to real-world problems, a set of multi-modal bench- 

mark functions (fg to fi3) were extended to 300-dimensions and used in our 

experimental studies as high-dimensional benchmark functions. The results 

are presented in Table 2.11. 

From Table 2.11, it can be seen that in terms of final average results, GSO 

markedly outperformed the other algorithms. For the six problems we tested, 

the GSO algorithm converged to good near optimal solutions. It can also been 

seen that although PSO achieved satisfactory results in 30-dimensional multi- 

modal benchmark problems (see Table 2.7), it cannot be scaled up to handle 

most of the 300-dimensional cases except f1o(x)*°°. 

A limited scale of research scalability of EAs has been found [89] [90]. In 

[89], four EP algorithms, namely CEP, FEP, Improved FEP (IFEP) [58] and 

a Mixed EP (MEP) [89] were studied. The benchmark functions used in their 

studies were a uni-modal function f; (Sphere function) and a multi-modal 

function fio (Ackley’s function) with dimensions ranged from 100 to 300. It 

was found that CEP and FEP failed to converge on function fip. The average 

results generated by IFEP and MEP on function fj in 300 dimensions were 

7.6x 10-2 and 5.5x 107? respectively, which are both worse than that generated 

by our GSO algorithm. Liu and Yao also improved FEP with cooperative 

coevolution [90] by decoupling the whole optimisation function to a set of 

coordinates of populations. Eight functions, including four uni-modal and 

four multi-modal functions were used as benchmark functions in their studies. 

The results presented in their paper were excellent, e.g., the result on 300- 

dimensional fi was 3.6 x 10~*. In this case, it is unfair to compare our current 

GSO algorithm with their algorithm without population decoupling. 
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Figure 2.11: Convergence results of GSO, GA and PSO. The results were 

averaged over 50 runs. (a)-(b) correspond to functions fi4-fis, respectively. 
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Figure 2.12: Convergence results of GSO, GA and PSO. The results were 

averaged over 50 runs. (a)-(b) correspond to functions fi¢-fi7, respectively. 
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Figure 2.13: Convergence results of GSO, GA and PSO. The results were 

averaged over 50 runs. (a)-(b) correspond to functions fis-fi9, respectively. 
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Figure 2.14: Convergence results of GSO, GA and PSO. The results were 

averaged over 50 runs. (a)-(b) correspond to functions f20- fai, respectively. 
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Figure 2.15: Convergence results of GSO, GA and PSO. The results were 

averaged over 50 runs. (a)-(b) correspond to functions f22-f23, respectively. 
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Table 2.11: Comparison among GSO with GA, PSO, EP and ES on benchmark 

functions f(x)? fi3(x)?. 
we ON 

Mean  func- 

tion value 

Function GSO GA PSO EP ES 

f(w)9  -125351.2 = -78088.1 — -87449.2 -78311.9 -66531.3 

fo(x)>™ 98.9 260.8 427.1 383.3 583.2 

fro(x)8° «1.8527 x 10-8 =—-11.37 3.9540 x 10° 0.2946 9.6243 

fir(w)8° 1.8289 x 10-7 ~—-2.234 1.81 2.8244 x 107? 0.1583 

fio(a)? 8.2582 x 10-8 ~— 49.06 14.56 39.3 3093.2 

fig(a)2 ~=—-2.0175 x 10-7 ~—578.5 549.2 738.2 2123.2 

2.5 Discussion 

Currently, there are only a few optimisation algorithms inspired by animal 

behavior. The most notable and successful one is ACO. Although both GSO 

and ACO drew inspiration from animal social animal foraging behavior, there 

are many obvious differences. The most distinct one is that ACO was inspired 

specifically by behavior of ant colonies: by laying pheromone trails, ants col- 

lectively establish the shortest path between their colony to feeding sources. 

The GSO algorithm was inspired by general animal searching behavior and a 

generic social foraging model, e.g. Producer-Scrounger model. Another dif- 

ference is that ACO was proposed primarily for combinatorial optimisation 

problems while at present GSO is more applicable to continuous function op- 

timisation problems. 

PSO is another newly emerged optimisation algorithm inspired by animal 

behavior. Like GSO, it was also proposed for continuous function optimisation 

problems. However, it is not difficult to note that there are some major dif- 

ferences between GSO and PSO. First and the most fundamental one is that 

PSO was originally developed from the models of coordinated animal motion 

such as Reynolds’s Boids [91] and Heppner and Grenander’s model [92]. An- 

imal swarm behavior, mainly bird flocking and fish schooling, serves as the 
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metaphor for the design of PSO. The GSO algorithm was inspired by general 

animal searching behavior. A generic social foraging model, e.g., Producer- 

Scrounger model, was employed as the framework to derive GSO. Secondly, 

although the producer of GSO is quite similar to the global best particle of 

PSO, the major difference is that the producer performs producing, which is 

a searching strategy differs from the strategies performed by the scroungers 

and the dispersed members. While in PSO, each individual performs the same 

searching strategy. Thirdly, in GSO, individuals do not posses memory. How- 

ever, in PSO each individual maintains memory to remember the best place 

it visited. Finally, unlike GSO, there is no dispersed group members which 

perform ranging strategy in PSO. 

Although the EAs and GSO were inspired by completely different disci- 

plines, as a population-based algorithm, GSO shares some similarities with 

other EAs. For example, they both use the concept of fitness to guide search 

towards better solutions; the scrounging behavior of scroungers is similar to 

the crossover operator, e.g., extended intermediate crossover [93] of real-coded 

GA; and the ranging behavior of dispersed members can be regarded as EAs’ 

mutation operator which both produce new solutions by perturbation. How- 

ever, under millions even billions of years of natural selection, animal behavior, 

especially searching behavior, has been honed and sharpened by evolution. Re- 

search in animal behavior provides many off-the-shelf searching strategies to 

be incorporated into GSO to solve different hard optimisation problems. For 

example, animal’s strategies to deal with resources changing over time (e.9., 

leaving patch when profitability declines) could be employed by GSO to solve 

optimisation problems in dynamic environments. This is our work in the fu- 

ture. 

2.6 Conclusions 

We have proposed a novel optimisation algorithm — GSO, which is based on 

animal searching behavior and group living theory. This algorithm is concep- 
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tually simple and easy to implement. It has only one parameter (percentage of 

dispersed members) to tune and can handle a variety of optimisation problems 

(including large-scale), which makes it particularly attractive for real-world 

applications. 

A set of 23 benchmark functions have been used to test GSO in comparison 

with GA, PSO, CEP, FEP, CES and FES, respectively. For the uni-modal 

functions, the results show that the GSO does not possess an obvious advan- 

tage to PSO but has a better performance to that of GA in terms of accuracy 

and convergence rate. Compared to CEP, FEP, CES and FES, GSO was out- 

performed by FEP an FES. For most of the multi-modal benchmark functions 

with many local minima, GSO is able to statistically find better average re- 

sults than those generated by the GA and PSO and find better average results 

than the other four algorithms. The test results obtained from the multi-modal 

benchmark functions, which have a few local minima, GSO also outperformed 

the other six algorithms. We have also evaluated the GSO on a set of multi- 

modal functions in 300 dimensions. In these cases, the GSO appeared to be 

an overpowering winner compared with the GA, PSO, EP and ES. 

A new paradigm of swarm intelligence, GSO, has been presented in this 

chapter. One of the most significant merits of GSO is that provides an open 

framework to utilize research in animal behavioral ecology to tackle hard opti- 

misation problems. 
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Chapter 3 

Improve PSO with Passive 

Congregation 

This chapter presents a particle swarm optimiser (PSO) with passive con- 

gregation to improve the performance of standard PSO (SPSO). Passive con- 

gregation is an important biological force preserving swarm integrity. By in- 

troducing passive congregation to PSO, information can be transferred among 

individuals of the swarm. A particle swarm optimiser (PSO) with passive 

congregation (PSOPC) is tested with a set of 10 benchmark functions with 

30 dimensions and compared to a global version of SPSO (GSPSO), a local 

version of SPSO (LSPSO), and PSO with a constriction factor (CPSO) respec- 

tively. Experimental results indicate that the PSO with passive congregation 

improves the search performance on the benchmark functions significantly. 

3.1 Introduction 

The particle swarm optimiser (PSO) is a population-based algorithm that 

was invented by [32], which was inspired by the social behavior of animals 

such as fish schooling and bird flocking. Similar to other population-based 

algorithms such as evolutionary algorithms, PSO can solve a variety of difficult 

optimisation problems but has shown a faster convergence rate than other 
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evolutionary algorithms on some problems ([21]). Another advantage of PSO 

is that it has very few parameters to adjust which makes it particularly easy 

to implement. 

[94] pointed out that although PSO may outperform other evolutionary 

algorithms in the early iterations, its performance may not be competitive 

as the number of generations is increased. Recently, several investigations 

have been undertaken to improve the performance of standard PSO (SPSO). 

[95] presented a hybrid PSO model with breeding and subpopulations. [96] 

investigated the impacts of population structures to the search performance of 

SPSO. Other investigations on improving PSO’s performance were undertaken 

using cluster analysis [97] and fuzzy adaptive inertia weight [98]. 

The foundation of PSO is based on the hypothesis that social sharing of 

information among conspecifics offers an evolutionary advantage [32]. The 

SPSO model is based on the following two factors [32]: 

1) The autobiographical memory, which remembers the best previous posi- 

tion of each individual (P;) in the swarm; 

2) The publicized knowledge, which is the best solution (P,) found currently 

by the population. 

Therefore the sharing of information among conspecifics is achieved by em- 

ploying the publicly available information P,, shown in Fig. 3.1. There is no 

information sharing among individuals except that P, broadcasts the informa- 

tion to the other individuals. Therefore, the population may lose diversity and 

is more likely to confine the search around local minima if committed too early 

in the search to the global best found so far. 

Biologists have proposed four types of biological mechanisms that allow 

animals to aggregate into groups: passive aggregation, active aggregation, pas- 

sive congregation, and social congregation [30]. There are different information 

sharing mechanisms inside these forces. We found that the passive congrega- 

tion model is suitable to be incorporated in the SPSO model. Inspired by this 

research, we propose a hybrid model of PSO with passive congregation. 

Section 3.2 introduces several animal aggregation models. A PSO algorithm 
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    the it particle 

Figure 3.1: Interaction between particles and the best particle gbest. 

with passive congregation is presented in section 3.3. In section 4,3, we describe 

the test functions, experimental settings, and the experimental results. The 

discussions are given in section 3.5. This chapter is concluded in section 6.9. 

3.2 Biological Forces Behind Animal Aggrega- 

tions 

The PSO algorithm is inspired by social behaviors such as spatial order, 

more specially, aggregation such as bird flocking, fish schooling, or swarming of 

insects. Each of these cases has stable spatio-temporal integrities of the group 

of organisms: the group moves persistently as a whole without losing the shape 

and density. For example, the individual fish in the school do not appear to 

act selfishly but rather they seem to behave and interact for the benefit of the 

school as a whole. If the individuals within a school did not look and behave 

similarly, then the primary anti-predatory advantage associated with schooling 

could not exist. Indeed, cohesion and coherence are hallmarks of many types of 

animal aggregation [30]. By natural selection, behavioural patterns emphasize 

similarity and uniformity within a group [30]. In order to study these patterns 

behind animal aggregations, in this section we will presents some background 

concepts about animal aggregations. 
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For animal groups, different biological forces are essential for preserving the 

group’s integrity. [30] proposed mathematical models of the spatial structure 

of animal groups to show how animals organize themselves. In these models, 

aggregation sometimes refers to a grouping of the organisms by non-social, ex- 

ternal, physical forces. There are two types of aggregation: passive aggregation 

and active aggregation. Passive aggregation is a passive grouping by physical 

processes. One example of passive aggregation is the dense aggregation of 

plankton in open water, in which the plankton are not attracted actively to 

the aggregation but are transported passively there via physical forces such as 

water currents. Active aggregation is a grouping by attractive resource, such 

as food or space, with each member of the group recruited to a specific loca- 

tion actively. In these situations the aggregation will disperse if the attractive 

source wanes. Individuals in the aggregation also may continuously join and 

leave as discussed in Chapter 2, rather than remain continuous members. As 

results, turn over in the aggregation may be high even the size, density or shape 

of the aggregation remain fairly constant. Repulsion also plays a crucial role 

in determining group structure [99]. Repulsion helps an aggregation to avoid 

unmitigated attraction which may result in the costs of individual members 

outweighing the benefits. The combination of attractive and repulsive forces 

defines the physical attributes of the group. 

Congregation, which is different from aggregation, is a grouping by social 

forces, that is the source of attraction is the group itself. Examples of ani- 

mal congregations include flocks of birds, schools of fish, swarms of insects. 

The forces shape congregations include internal, 2.e., member-derived, forces, 

external forces, and frictional forces. 

Congregation can be classified into passive congregation and social congre- 

gation. Passive congregation is an attraction of an individual to other group 

members but where there is no display of social behavior. There are very 

little genetic relation to each other in a passive congregation, and thus they 

display low fidelity to the group and no reciprocal altruism. The flocks of 

birds, schools of fish, swarms of insects should be classified as passive congre- 
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gation. Social congregations usually happen in a group where the members 

are related (sometimes highly related). A variety of inter-individual behaviors 

are displayed in social congregations, necessitating active information transfer 

[30]. For example, ants use antennal contacts to transfer information about 

individual identity or location of resources [100]. 

Many animal congregations share one or more of the following properties 

[30]: 

1. Edges. Many types of animal congregations have very distinct edges. 

The change in density from inside to outside is abrupt. When an animal 

congregation moves or changes shape, the edges remain intact. 

2. Uniform densities. This property can be found in many types of animal 

congregations, particularly when on the move, e.g.. herds, flocks, schools. 

Some types of animal congregations, e.g. midge swarms, may have a 

broader distribution of densities most of the time but retain the ability 

to assemble into a more uniform mass. 

3. Polarized. Animal congregations with uniform density are often also 

polarized. In such a polarized congregation, all members face in the 

same direction. 

4. Freedom to move. Whether in a polarized group on not, individuals 

within the group have the freedom to move with respect to their neigh- 

bours. In a resting group individuals can shift positions constantly, even 

if the position or shape of the congregation remains static. In moving 

groups individuals can re-sort without disturbing the integrity of the 

group. 

5. Coordinated movement patterns. These almost ballet-like movement pat- 

terns can be found in many animal congregations. For example, flocks of 

birds appear to turn simultaneously. Fish in schools display a fountain- 

like pattern in response to an attack by a predator, completing the move 

by re-aggregating behind the predator. 
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3.3. Particle Swarm Optimiser with Passive Con- 

gregation 

From the definitions in 3.2, the third part of equation (1): cyr2(P* — Xi*) 

can be classified as either active aggregation or passive congregation. But since 

P, is the best solution the swarm has found so far, which can be regarded as 

the place with most food, we argue that it is better to classify cyr2(P¥ — X i*) 

as active aggregation. 

It has been discovered that in spatially well-defined congregations, such as 

fish schools, individuals may have low fidelity to the group because the con- 

gregations may be composed of individuals with little to no genetic relation to 

each other [101]. Schooling fish are generally considered a “selfish herd” [102], 

in that each individual attempts to take the sweeping generalization advan- 

tage from group living, independent of the fates of neighbors [103]. In these 

congregations, information may be transferred passively rather than actively 

[104]. Such asocial types of congregations can be referred to as passive congre- 

gation. Because PSO is inspired by fish schooling, it is therefore natural to ask 

if a passive congregation model can be employed to increase the performance 

of SPSO. Here we do not consider other models such as passive aggregation, 

because PSO is not aggregated passively via physical processes. And social 

congregation usually happens when group fidelity is high, such that the chance 

of each individual meeting any of the others is high [105]. Social congrega- 

tions frequently display a division of labor. In a social insect colony such as an 

ant colony, large tasks are accomplished collectively by groups of specialized 

individuals, which is more efficient than performing sequentially by unspecial- 

ized individuals [17]. The concept of labor division can be employed by data 

clustering, sorting [106] and data analysis [107]. 

Group members in an aggregation can react without direct detection of an 

incoming signal from the environment, because they can get necessary infor- 

mation from their neighbors [30]. Individuals need to monitor both environ- 

ment and their immediate surroundings, such as the bearing and speed of their 
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    the in particle 

Figure 3.2: Interactions of particles with passive congregation 

neighbors [30]). Therefore each individual in an aggregation has a multitude of 

potential information from other group members that may minimize the chance 

of missed detection and incorrect interpretations [30]. Such information trans- 

fer can be employed in the model of passive congregation. Inspired by this 

result, and to keep the model simple and uniform with SPSO, we propose a 

hybrid PSO with passive congregation: 

Vis = wV* + eyr1(PF — x) a cor2(Ps = Xf) + cara(Ri = x?) (3.3.1) 

Xela x eye (3.3.2) 

where R; is a particle selected randomly from the swarm, c3 is the passive 

congregation coefficient, and r3 is a uniform random sequence in the range 

(0,1): r3 ~ U(0,1). The interactions between individuals of PSOPC are shown 

in Fig. 3.2. The search directions of standard PSO and PSOPC are shown 

in Fig. 3.4 and Fig. 3.3, respectively. The pseudocode for PSOPC is listed 

in Table 3.1. We implemented the PSOPC algorithm in MATLAB 6.5 and 

executed it on a Pentium 4, 2 GHz machine. 
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The best particle Pg 

  

Previous Best Position Pj 

Figure 3.3: Search direction of the ith particle in PSO 

The best particle Pg 

  

Randomly Selected particle Rj 

Previous Best Position Pi 

Figure 3.4: Search direction of the ith particle in PSOPC 
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Table 3.1: Pseudocode for the PSOPC algorithm. 

$e 

Set k := 0; 

Randomly initialize positions and velocities of all particles; 

WHILE (the termination conditions are not met) 

FOR (each particle i in the swarm) 

Calculate fitness: Calculate the fitness value of current particle: 

f (Xi); 

Update pbest: Compare the fitness value of pbest with f(X;). If 

f (X;) is better than the fitness value of pbest, then 

set pbest to the current position X;; 

Update gbest: Find the global best position of the swarm. If 

f(X;) is better than the fitness value of gbest, then 

gbest is set to the position of the current particle 

AG 

Update R;: Randomly select a particle from the swarm as R;; 

Update velocities: Calculate velocities V; using equation (3.3.1). If 

V; > Vax then Vi; = Vinax- If Vi < Vin then 

Vi = Vinin} 

Update positions: Calculate positions X; using equation (3.3.2); 

END FOR 

Set k:=k+1; 

END WHILE 
ee 
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3.4 Experimental Studies 

3.4.1 Test functions 

In our experimental studies a set of 10 benchmark functions were employed 

to evaluate the PSOPC algorithm in comparison with others. 

Sphere Model: 
30 

fiz) =o at 
i=1 

Schwefel’s Problem 1.2: 

30 i 2 

f(x) =) (>: «) 
ga NGS 

Schwefel’s Problem 2.21: 

f(x) = max{|z;|,1 <7 < 30} 

Generalized Rosenbrock’s Function: 

29 

fa(x) = S 5 (100(2i41 — 2x7)? + (a; —1))? 
i=1 

Generalized Schwefel’s Problem 2.26: 

30 

fs(z) = -S- @ sin (Viel) ) 
i=1 

Generalized Rastrigin’s Function: 

30 

fo(x) = (2? — 10cos(2ma;) + 10)? 
t=1 

Ackley’s Function: 

30 30 
1 

fr(x) = —20 exp (-22 i s “| — exp (3 2 cos an) +20+e 

Generalized Griewank Function: 
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  =H aC — 100)? — [ont 00) +1 

Generalized Penalized — 

i=1 

29 

fo = 30 549 sin?(7y1) + KC —1)?[1 + 10sin?(ay41)] + (Yn — "| 

30 

+ S-u(ai, 10, 100, 4)(3.4.1) 
i=1 

and 

i=1 

fio = 0.1 {sou + Si — 1)?[1 + 10sin?(ayi41)] + (Yn — v*| 

30 

+ 5-u(x;, 10, 100, 4) (3.4.2) 
i=1 

where 

k(a; —a)™, Li>a 

U(x;,a,k,m) =< 0, —a<a2j<a 

k(—a; —a)™, ri < —a 

1 
yi =l+ f(t 1) 

The above benchmark functions were tested widely by [58], [108], and [109]. 

They can be grouped as unimodal (function f; to f,) and multimodal functions 

(function fs to f19) where the number of local minima increases exponentially 

with the problem dimension. The dimension of each function n, feasible solu- 

tion space, and fmin are listed in Table 3.2. 

3.4.2 Experimental setting 

To evaluate the performance of the proposed PSOPC, three variants of 

standard PSO were used for comparisons: global version of standard PSO 
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Table 3.2: Basic characters of the test functions. 

cin fo [Resin | an 
[—100, 100)” 

[—100, 100] 

[—100, 100]” 

{—30, 30]” 

{—500, 500)” 

[—5.12, 5.12)” 

[—32, 32]” 

[—600, 600]” 

[—50, 50]” 

[—50, 50]” 

      
    
    

  

     
    
    
    
   

    
    -12569.5 

(GSPSO), local version of standard PSO (LSPSO), and constriction factor 

version of PSO (CPSO). The parameters used for these three standard PSO 

were recommended from [21], [36], [35], [34], and [96], or hand selected. 

The population size of all algorithms used in our experiments was set at 100. 

The maximum velocity Vmax and minimum velocity Vinin for GSPSO, LSPSO 

and CPSO were set at half value of the upper bound and lower bound respec- 

tively. Vinax and Vin for PSOPC was set to the upper bound and lower bound 

respectively. The acceleration constants c; and c2 for GSPSO and LSPSO were 

both 2.0 [21]. For CPSO, a setting of c, = cp = 2.05 was adopted [36]. The 

acceleration constants c; = co = 0.5 were used in PSOPC. 

The inertia weight w is critical for the convergence behavior of GSPSO and 

LSPSO. A suitable value for the inertia weight w usually provides a balance 

between global and local exploration abilities and consequently results in a 

better optimum solution. Initially, the inertia weight was constant. However, 

experimental results indicated that it is better to initially set the inertia to 

a large value in order to promote global exploration of the search space and 

decrease it to get more refined solutions [35]. Therefore, a decaying inertia 

weight starting at 0.9 and ending at 0.4 following [34], was used for GSPSO 
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and LSPSO. The inertia weight for PSOPC started at 0.9 and ended at 0.7. 

For CPSO, the constriction factor was calculated with equation (1.2.6), that is 

x = 0.73. The neighborhood size of LSPSO was set to be 2 [96]. 

The newly introduced passive congregation coefficient c3 is important for 

the search performance of PSOPC. Experiments were executed to select a 

proper value of cz. Four benchmark functions: f; (Sphere function), f; (Rosen- 

brock function), fo (Rastrigin function), and fj; (Griewank function) were 

tested with different values of c3. The average test results obtained from 25 

runs are listed in Table 3.3. When cz = 0.6, PSOPC generated good results on 

functions f; and fs. For functions f, and fg, the best results were generated 

at the point cz = 0.8. With cz; > 0.9 the search performance of PSOPC on 

function fi, fs, and fg is deteriorated. For functions fs, cz should be equal 

or smaller than 0.6 otherwise PSOPC will not converge in 2000 generations. 

Therefore, a generic c3 for all functions should be equal or smaller than 0.6. 

It is our interest to investigate whether PSOPC with a linear increasing 

c3 generates better results on the benchmark functions than PSOPC with a 

fixed value of cz. Therefore, fg (Rastrigin function) was selected and tested 

with different ranges of linearly increasing c3. The results are tabulated in 

Table 3.4. The best result was generated by PSOPC with a linearly increasing 

passive congregation coefficient c3, which started at 0.4 and ended at 0.6. 

The parameters setting for all algorithms are summarized in Table 3.5. 

All experiments were repeated for 50 runs. A fixed number of maximum 

generations 2000 was applied to all algorithms. 

3.4.3 Experimental results and comparison 

The experimental results (7.e., the mean and the standard deviations of the 

function values found in 50 runs) for each algorithm on each test function are 

listed in Table 3.6. To measure the statistical significance of our experimental 

results between PSOPC and other three standard PSO variants, a set of two- 

tailed tests were adopted. The results are listed in Table 3.7. The critical value 

with 49 degrees of freedom at a = 0.05 is 2.0, which means if |t| > 2.0 the 
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Table 3.3: Average fitness values of functions fi, f4, fe and fg with different 

C3. 

| | Function 

5.6 x 107! 

1.4 x 1078 

9.6 x 107-2 

6.5 x 10-14 

42x 107-8 

1.1 x 107° 

5.8 x 107% 

9.7% 10-7 

4.6 x 107° 

4510.26 

20336.59 

oe 
0.1 

219.24 | 230.91 

264.46 | 267.02 

295.15 | 301.24   
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Table 3.5: Parameter Setting. 

[Tso Fesr50 [1580 [ 080, 
Population Size 

Neighborhood Size 

w 

xX 

Cy 

C2 

  

C3 

difference between two means is statistically significant. 

From Table 3.6, PSOPC outperformed the other three standard PSO algo- 

rithms significantly for most of the benchmark functions. The two exceptions 

are fo and fio. For function fo, the result generated by PSOPC is better than 

those generated by GSPSO and LSPSO but slightly worse than the result of 

CPSO. For function fi9, GSPSO slightly outperformed PSOPC while the result 

of PSOPC is far better than LSPSO and CPSO. However from Table 3.7, for 

functions fz and fio, the results generated respectively by CPSO and GSPSO 

are not significantly better than PSOPC. For function fo, the results obtained 

from PSOPC do not differ significantly from those generated by GSPSO. For 

functions fs and fo, the differences between the results generated by PSOPC 

and CPSO are not statistically significant. It can be concluded that PSOPC 

significantly outperforms LSPSO on all the tested benchmark functions. 

The performance of CPSO is better than GSPSO on all the unimodel bench- 

mark functions (functions f; to f,). But GSPSO results in good performance 

on the multimodel benchmark functions (functions fs to fio). Although it is 

believed that LSPSO is able to “flow around” local optima [96], our exper- 

imental results have indicated that GSPSO and CPSO exhibit better global 

convergence performance. The search performance of 4 algorithms tested here 

can be ordered as PSOPC > GSPSO ~ CPSO > LSPSO. 

Figures 3.5 to 3.14 show the search progress of the average values and the 
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best solutions found by the 4 algorithms over 50 runs for functions f; to fio. 

From these figures, for most of the benchmark functions, PSOPC quickly found 

the near optima in the early search process. 

For unimodel functions (function f; to fs), the convergence rates are more 

important than the final results of optimisation as there are other methods 

such as gradient-based search methods that are designed specially to optimise 

unimodal functions [58]. From Figs. 3.5 to 3.8, it can be seen that PSOPC 

has a faster convergence rate than other three algorithms. 

Functions fs to fio are multimodal functions that are very difficult to opti- 

mise since the number of local minima increases exponentially as the function 

dimension increases ((?] and [?]). The search process of four algorithms for fs 

to fio are shown by Figs. 3.9 to 3.14. According to these figures, for most 

of the functions (fs, fe, fs, fo and fio), PSOPC converges near global minima 

while the other three algorithms were trapped by poor local minima and then 

stagnated. The only exception is about function f7, for which GSPSO and 

CPSO did not fully converge when the maximum generations was reached. 

Figure 3.5: f; (Sphere function) 
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Figure 3.6: f2 (Schwefel’s Problem 1.2) 
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3.5 Discussion 

Arithmetically, this passive congregation operator can be regarded as a 

stochastic variable that introduces perturbations to the search process. [110] 

also introduced a stochastic variable into the standard PSO, which is referred 

to turbulence in their paper. The velocity-updating equation is given by 

V+! = wViF + eyri(P* — XF) + core(P? — XP) +13 (3.5.1) 

where r3 is a random variable rz; ~ U(0,0.1R), and R is the absolute range of 

the model parameter. 

From our experience, a large R will help the swarm escape local minima 

but may also cause the search process to diverge. A too small R may have 

no impact on search performance. The value of R is also problem-specific, 

e.g., a suitable R for some benchmark functions will deteriorate the search 

performance on other functions. Therefore, finding a proper value of Ff is 

necessary for the best solution of an optimisation problem. 

Compared with the turbulence factor r3, the passive congregation opera- 

tor c3r3(R* — X*) is more adaptive to different optimisation problems. For 

each individual, the turbulence (perturbation) is proportional to the distance 
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Figure 3.7: f3 (Schwefel’s Problem 2.21) 
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between itself and a randomly selected neighborhood rather than an external 

random number. In the early search process, the distances between individuals 

are large, therefore the turbulence is large, which may allow the swarm to avoid 

converging to a poor local minimum. As the generations increase, the distances 

between individuals become smaller, therefore the turbulence becomes smaller, 

which enables the swarm to refine solutions. 

[96] investigated population topologies of PSO systematically. In their 

study, two sociometric variables, the number of neighbors for each node in 

the population k and the number of neighbors in common C, were varied to 

generated different topologies. One experiment, called random graphs, is im- 

plemented to generate different topologies by randomly initialized different k, 

C, standard deviation of k(stdk), and standard deviation of C(stdC), and then 

optimised by a method with a cooling mechanism that was inspired by sim- 

ulated annealing. Since the PSO algorithm used in their work is the CPSO 

as defined in equation (1.2.5), the only factor affected by k, C, stdk, and stdC 

is P,. Therefore the essential result of their experiment is most likely finding 

a proper selection scheme for P, rather than introducing a new information 

sharing mechanism into swarms as PSOPC does. 
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Figure 3.8: f4 (Generalized Rosenbrock function) 
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3.6 Conclusions 

In this chapter a new PSO with passive congregation (PSOPC) has been 

presented based on the standard PSO. By introducing passive congregation, 

information can be transferred among individuals that will help individuals 

avoid misjudging information and becoming trapped by poor local minima. 

The only coefficient introduced into the standard PSO is the passive congre- 

gation coefficient cz. A generic value of cz was selected by experiments. 

A set of 10 benchmark functions have been used to test PSOPC in com- 

parison with GSPSO, LSPSO, and CPSO. Among them, four functions were 

unimodal and six were multimodal. For the multimodal benchmark functions, 

PSOPC found better results on functions f; to fy than those generated by the 

other three standard PSO variants. For the unimodal functions, of which the 

convergence rate is more important than the final results, our PSOPC outper- 

formed the other three algorithms in terms of accuracy and convergence rate on 

3 out of 4 benchmark functions: fi, fs and fy. We also applied two-tailed tests 

to evaluate the statistical significance of differences between PSOPC and the 

other three algorithms. The results indicated that for 6 out of 10 benchmark 

functions, PSOPC performed significantly better than all other three standard 
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Figure 3.9: fs; (Generalized Schwefel’s Problem 2.26) 
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Figure 3.10: fg (Generalized Rastrigin’s function) 
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Figure 3.11: f7 (Ackley’s function) 
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Table 3.6: Comparison between PSOPC, GSPSO, LSPSO, and CPSO. 

Mean function value 

fi 9.5 x 10-79 | 1.9x 10-4 | 30x 10-3 | 2.3x10-% 

Pe (5.9 91077) | (3.7%. 100**) (4.9 x 10735) 
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) 

) -20) 

       

     

  

           

        

f 

f 

iE 32.44 52.83 347.92 39.70 

f —12267.77 | -—10768.82 | —10928.65 | -—10443.47 

2.91 21.56 59.07 43.76 

7 2.3x 10-4 | 9.0 x 10-8 1.41 1.6 x 10-8 

(9.3 x 10-8) | (8.6 x 10-1) | (1.8 x 10-8) 

8 3.2 x 1073 1.4x10-? | 96x10-? | 19x10 

(1.6 x 10-7) | (1.0 x 10-*) | (2.0 x 10-?) 

fo 4.5x 10-7 | 20x 10-3 1.06 3.9 x 107? 

(3.2 x 10775) | (1.5 x 107?) 

fio 1.1x 10-3 | 8.84 x 1074 13.35 3.8 x 107 

2 

3 

4 

5 

te 

    
f 

Ji 

   
         

  

  

Shan He



Table 3.7: Two-tailed test on PSOPC, GSPSO, LSPSO, and CPSO. The value 

of t with 49 degree of freedom is significant at a = 0.05 by a two-tailed test 

and to.025 aU 
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Figure 3.12: fg (Generalized Griewank function) 
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Figure 3.13: fg (Penalized function P8) 

   

    
     
   

  

  

    

  

40° 
  

t of PSOPC. 

  

  

10 

40° 

= = 

10" 

10° 

10°° 4. —— —_—_i—__—_ 

0 500 1000 1500 2000 
Generation 

Figure 3.14: fio (Penalized function P16) 
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Applications of Animal 
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Chapter 4 

Neural Networks Training using 

Group Search Optimiser 

In Chapter 1, a novel optimisation algorithm: GSO has been proposed. 

The superiority of GSO has been demonstrated by solving a large set of bench- 

mark functions including a set of large-scale multi-modal functions. In this 

chapter, we apply GSO to Artificial Neural Network (ANN) training to further 

investigate its applicability to real-world problems. The ANN training process 

can be regarded as a hard optimisation problem because the search space is 

high-dimensional multi-modal and is usually polluted by noises and missing 

data. The most popular training algorithm is back-propagation (BP) algo- 

rithm. However, this gradient-based algorithm usually gets stuck in local min- 

ima and therefore the trained ANNs yield poor results. Here we proposed an 

ANN training algorithm based on the GSO algorithm. Parameters of a 3-layer 

feed-forward ANN, including connection weights and biases are tuned by our 

GSO algorithm. 4 real-world classification problems and 1 forecasting problem 

have been used as benchmarks to assess the performance of our GSO-based 

trained ANN (GSOANN). We also implemented other 5 training algorithms 

for comparison. GSOANN achieved better results than those generated by the 

other 5 training algorithms. Due to GSO’s superior global search performance, 

GSOANN even has a better generalization performance than those of other 

oT
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sophisticated ANNs, including some ANN ensembles on several benchmark 

problems. 

4.1 Introduction 

Artificial Neural Networks (ANNs) as a kind of computational intelligence 

technique have been widely applied to many problem domains such as pattern 

recognition [111] and control [112] since their renaissance in the mid-80’s. Var- 

ious ANN architectures and training algorithms have been proposed. Among 

them, the most popular ANN architecture and training algorithm are feed- 

forward ANNs and the BP training algorithm, respectively. However, the gra- 

dient based BP training algorithm is easy to be trapped by local minima and 

therefore deteriorates the performance of ANNs. Moreover, designing a near 

optimal ANN architecture to achieve good generalization performance is a hard 

optimisation problem. 

In the past two decades, Evolutionary Algorithms (EAs) have been intro- 

duced to ANNs to perform various tasks, such as connection weight training, 

architecture design, learning rule adaption, input feature selection, connection 

weight initialization, rule extraction from ANN, etc.[113]. The combinations of 

ANNs and EAs are usually referred to as Evolutionary ANNs (EANNs). The 

earliest attempt to combine EAs and ANNs can be traced back to late 80s [114] 

[115]. Since then, the successful marriage of ANNs and EAs has attracted more 

and more attentions [116] [117]. We direct interested readers to an excellent 

review [113] of research on EANNs before 1999. In this section, we will briefly 

introduce some related works on EANNSs in the last 5 years. 

In [118], an improved genetic algorithm was used to tune the structure 

and parameters of a neural network. In order to tuning the structure of ANN 

in a simple way, link switches were incorporated into a three layer neural net- 

work. By introducing link switches, a given fully connected feed-forward neural 

network may become a partially connected network after leaning [118]. An im- 

proved Genetic Algorithm (GA) with new genetic operators was introduced to 
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train the proposed ANN. Two application examples, sunspots forecasting and 

associative memory tuning, were solved in their study. 

Palmes et al. proposed a mutation-based genetic neural network (MGNN) 

[119]. A simple matrix encoding scheme was used to represent an ANN’s 

architecture and weights. The neural network utilized the mutation strategy 

of local adaption of evolutionary programming to evolve network structure and 

connection weights dynamically. As classified in their paper, the MGNN falls 

into the category of “invasive” EANNs, where the ANN system uses EA for 

ANN’s weights and structure evolution without the employment of BP or other 

gradient training [119]. Three classification problems, namely iris classification, 

wine recognition problem, and Wisconsin breast cancer diagnosis problem were 

used in their paper as benchmark functions. 

In [120], an EAs, differential evolution (DE), was applied to train feed- 

forward ANNs’ weights. A curve fitting problem and three classification prob- 

lems (no details about these problems were given) were studied. However, the 

DE seems not to provide any distinct advantage in terms of learning rate or 

solution quality. For three out of the four problems tested in [120], the DE 

based ANN even yielded poorer results than those of ANN trained by a BP 

training algorithm. 

Cantt-Paz and Kamath presented an empirical evaluation of eight com- 

binations of EAs and ANNs on 11 well studied real-world benchmaks and 4 

synthetic problems [121]. The algorithms they used included binary-encoded, 

real-encoded GAs, and the BP algorithm. The tasks performed by these al- 

gorithms and their combinations included searching for weights, designing ar- 

chitecture of ANNs, and selecting feature subsets for ANN training. Although 

the authors successfully applied EANNs to identify bent-double galaxies from 

FIRST (Faint Images of the Radio Sky at Twenty-cm) survey [122], the con- 

clusion in [121] is somewhat surprising: in most cases, the combinations of 

EAs perform equally well on the problems and were not more accurate than 

hand-designed ANNs trained with the simple BP algorithm. 

Combining ANN ensembles and EAs is becoming increasingly popular in 
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the past five years. There are lots of real-world problems that are too large 

and too complex for a single ANN, even a single EANN, to solve alone. ANN 

ensembles, which consists of several individual ANNs, were proposed to tackle 

these large-scale and complex real-world problems. Under the umbrella of 

the divide-and-conquer strategy, ANN ensembles subdivide a task and thereby 

solve it more efficiently and elegantly. Due to their superior generalization 

performance, ANN ensembles are enjoying and will continue to enjoy their 

successes. However, designing ANN ensemble is a tough task which heavily 

relies on human experts and prior knowledge about the problem [113]. In case 

of lacking human experts and prior knowledge, tedious trial-and-error processes 

are often required to design ANN ensembles in practice. Recently, EAs have 

been applied to address the issues of automatic designing of ANN ensembles 

[123] [124] [125] [126]. By employing population information, EAs trained ANN 

ensembles provide even better generalization performance on many problems 

[127]. 

Since we proposed GSO for continuous function optimisation problems, it 

is quite natural to apply the GSO algorithm to ANN weight training. The 

ANN weight training process can be regarded as a hard continuous optimi- 

sation problem because the search space is high-dimensional multi-modal and 

is usually polluted by noises and missing data. The objective of ANN weight 

training process is to minimize the error function. However, it has been pointed 

out that minimizing the error function is different from maximizing general- 

ization [128]. The error on training set may be driven to a very small value 

by minimizing the error function, however, as a side effect, sometimes the 

overfitting problems will occur, that is, when test data are presented to the 

trained ANN, the error is still large. Therefore, to improve ANN’s general- 

ization performance, in this study, early stopping is introduced. The error 

rates of validation sets were monitored during the training processes. When 

the validation error increases for a specified number of iterations, the training 

will stop. Our experimental results on the five benchmark functions show that 

the GSO-based ANN (GSOANN) has a superior generalization performance to 
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Figure 4.1: A three-layer feed-forward ANN. 

those of many sophisticated ANNs and even some ANN ensembles. 

The rest of the chapter is organized as follows. In Section 4.2, GSOANN 

will be introduced and the details of implementation will be given. In Sec- 

tion 4.3, we describe the benchmark functions, experimental settings and the 

experimental results. The chapter is concluded in Section 4.4. 

4.2 GSO Based Training Algorithm for Neural 

Networks 

Figure 4.1 presents the three-layer feed-forward ANN tuned by our GSO 

algorithm. The ANN consists three layers, namely, input, hidden, and output 

layers. The nodes in each layer receive input signals from the previous layer and 

pass the output to the subsequent layer. The nodes of the input layer supply 

respective elements of the activation pattern (input vector), which constitute 

the input signals from outside system applied to the nodes in the hidden layer 

by the weighted links. The output signals of the nodes in the output layer of 
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the network constitute the overall response of the network to the activation 

pattern supplied by the source nodes in the input layer. The subscripts n, h, 

and k denote any node in the input, hidden, and output layers, respectively. 

The net input wu is defined as the weighted sum of the incoming signal minus 

a bias term. The net input of node h , uy, , in the hidden layer is expressed as 

follows: 

Un = S > whndn _ On, 

where y, is the output of node n in the input layer, wnn represents the con- 

nection weight from node n in the input layer to node h in the hidden layer, 

and 6), is the bias of node h in the hidden layer. The activation function used 

in the proposed ANN is the sigmoid function. Therefore, in the hidden layer, 

the output y, of node h, can be expressed as 

Yn = fr(un) = +e 

The output of node k in the output layer can be also described as 

  Ye = fe(ur) = (4.2.1) 
1 eter 

where 

Uk = yy Wenyh — Fx 
h 

where 6; is the bias of node k in the output layer. 

The parameters (connection weights and bias terms) are tuned by the our 

GSO algorithm as shown in Figure 4.2. In the GSO-based training algorithm, 

each member of the population is a vector comprises connection weights and 

bias terms. Without loss of generality, we denote W, as the connection weight 

matrix between the input layer and the hidden layer, ©; as the bias terms 

to the hidden layer, W2 as the one between the hidden layer and the output 

layer, and @2 as the bias terms to the output layer for the ANN structures 

established in the study. The é,, member in the population can be represented 

as: X; = [W, 01 W2 92]. The fitness function assigned to the ir, individual is 

the least-squared error function defined as follows: 
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Figure 4.2: Schematic diagram of GSO based ANN. 
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F, = ay S\ (dep a Yep)” (4.2.2) 

p= k=] 

where Yyxp indicates the k;, computed output in equation (4.2.1) of the ANN 

for the pi, sample vector; P denotes the total number of sample vectors; and 

dy,» is the desired output in the ky, output node. 

4.3 Experimental Studies 

In order to evaluate GSOANN’s performance, several well-studied bench- 

mark functions, including 4 classification problems, and one time series predic- 

tion problem were tested. The classification problems tested here are from the 

UCI machine learning repository: Wisconsin breast classification data; Pima 

Indian diabetes data; Cleveland heart disease data; and Australian credit card 

assessment data. They are all real-world problems which are investigated by 

human experts in practice. The data sets of these problems are usually contain 

missing attribute values and are usually polluted by noise. Therefore, they rep- 

resent some of the most challenging problems in machine learning field [117]. 

The time series prediction problem studied here is sunspot number forecasting 

problem. 

For comparison reason, we also implemented a modified back-propagation 

training algorithm: gradient descent with momentum and adaptive learning 
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rate; and four EAs based training algorithms, namely, Simple Genetic Algo- 

rithm (SGA) [78] based algorithm; Evolutionary Programming (EP) [79] [80] 

based algorithm; Evolution Strategies (ES) [81] based algorithm; Constric- 

tion Particle Swarm Optimiser (CPSO) [32] based algorithm. Although the 

GSOANN proposed here is relatively simple so it is not fair to compare the 

results of GSOANN to those of other sophisticated ANNs, it is our interest to 

compared the results we have obtained with the latest paper published in the 

literature. 

4.3.1 Experimental setting 

The parameter setting of the GSO algorithm is as same as the setting used 

in [129]. The initial population of GSO is generated uniformly at random in 

the search space. The initial head angle y® of each individual is set to be 7. 

The constants a is given by round(/n + 1). The maximum pursuit angle Omax 

is 3. The maximum turning angle a is set to be 347. The maximum pursuit 

distance Imax is calculated from: 

Imax = || Us = Lill = 

  

where L; and U; are the lower and upper bounds for the i, dimension. The 

parameter need to be tuned is the percentage of rangers; our recommended 

percentage of rangers is 20%, which was used throughout all our experiments. 

The population size of the GSO algorithm was set to at 50. 

The SGA algorithm we executed in our experiments is a real-coded simple 

genetic algorithm. The population of SGA was 50. The crossover and muta- 

tion rate was set to be 0.9 and 0.1, respectively. Stochastic universal sampling 

selection was used. The implementation of EP was based on the algorithm 

described in [80]. The population size and the tournament size for selection 

were 100 and 10, respectively. The initial standard deviation of the EP algo- 

rithm was 3.0. The ES algorithm used in our experiments is a state-of-the-art 

(1, A)-ES algorithm which was implemented according to [81]. The population 
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py was set to at 200 and the offspring number A was 30. A standard deviation 

of 3.0 was adopted. Global intermediate recombination was also employed in 

the ES algorithm. We also implemented a constriction factor approach PSO 

(CPSO), which is an improved PSO algorithm. The population of 50 was used 

in the CPSO algorithm. The constriction factor y was 0.73 and the accelera- 

tion factors c, and c2 were both 2.05 which followed the recommendations from 

[36]. 

For GSOANN and the other four EAs trained ANNs, the maximum epoch 

was set to be 300. 

4.3.2 The classification problems 

The Wisconsin Breast Cancer Data Set 

The breast cancer data set was obtained by W. H. Wolberg et al. at the 

University of Wisconsin Hospitals, Madison, based on cell descriptions gathered 

by microscopic examination. The data set currently contains 9 integer-valued 

attributes and 699 instances of which 458 are benign and 241 are malignant 

examples. In order to train ANNs to classify a tumor as either benign or 

malignant, we partitioned this data set into three sets: a training set which 

contains the first 349 examples, a validation set which contains the following 

175 examples, and a test set which contains the final 175 examples. 

Results from GSO and the other 5 ANNs trained by EAs and BP algorithms 

are listed in Table 4.1. It can be seen that GSOANN produced the best average 

testing result. Although the other ANNs yielded reasonable best results, €.g., 

4 ANNs generated a testing error rate of 0%, the worst results found by these 

ANNs greatly deteriorated their overall performance, e.g., the worst results 

found by PSOANN and BPANN are 11.43% and 28.57%, respectively. Figure 

4.3 shows the evolution of the mean training error of the five ANNs over 30 

runs. 

The comparison between results produced by GSOANN and those of 10 

other algorithms was tabulated in Table 4.2. Among these algorithms, MGNN 
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Figure 4.3: Evolution of ANNs’ accuracy for the Wisconsin breast cancer data 

set. 

[119] and EPNet [117] evolve ANN structure as well as connection weights; 

COOP [126] is an evolutionary ANN ensemble evolved by cooperative coevo- 

lution; CNNE [130] is a constructive algorithm for training cooperative ANN 

ensembles. CCSS [131], OC1-best [132] and EDTs [133] are state-of-the-art 

decision tress classifiers, including decision tree ensembles [131] [133] and hy- 

brid evolutionary decision tree [132]; GANet-best is the best result from [121], 

which was generated by an EANN based on a real-encoded EA [134] to evolve 

connection weights; SVM-best is the best result of 8 least squares SVM clas- 

sifiers [135]. It is worth to mention that the decision trees [131] [133] [121] 

and SVM [135] techniques used k-fold cross-validation which generated more 

optimistic results. 

Compared with the sophisticated classifiers mentioned above, we can find 

that this simple GSOANN produced the best average result from Table 4.2. 
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Figure 4.4: Evolution of ANNs’ accuracy for the Pima Indian diabetes data 

set. 

The Pima Indian Diabetes Data Set 

The Pima Indian diabetes data were originally donated by Vincent Sigillito 

at the Johns Hopkins University. The data was gathered from a group of female 

patients of over 21 years old and of Pima Indian heritage living near Phoenix, 

Arizona, USA. The diagnostic, binary-valued variable investigated is whether 

the patient shows signs of diabetes according to World Health Organization 

criteria. There are eight numeric-valued attributes and 768 instances. The data 

set contains 500 instances of patients with signs of diabetes and 268 instances 

of patients without. The data set was partitioned: the first 384 instances were 

used as the training set, the following 192 instances as the validation set, and 

the final 192 instances as the test set. 

We tabulated the results generated by GSOANN and the other five ANNs 

in Table 4.3. Again, GSOANN yielded the best average result over 50 runs. 

The evolution of the mean training error of the five ANNs over 30 runs is 

presented in Figure 4.4. 

This problem is one of the most difficult problems since the data set is 

relatively small and was heavily polluted by noise. Results from other state-of- 
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the-art classifiers are tabulated in Table 4.4. COVNET [125] is a cooperative 

coevolutionary model for evolving artificial neural networks. EENCL is evolu- 

tionary ensembles with negative correlation learning presented in [123]. 12-fold 

cross-validation was used by EENCL. GANet-best is the best result produced 

an ANN trained by a subset of features selected by binary-encoded GA [121]. 

Referring to Table 4.4, it can be seen that GSOANN is outperformed by 

COOP [126] and CNNE [130] which are both ANN ensembles. However, 

GSOANN produced better results than the rest classifiers including evolution- 

ary ANN ensembles COVNET [125] and EENCL [123]. 
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The Cleveland Heart Disease Data Set 

This data set comes from the Cleveland Clinic Foundation and was supplied 

by Robert Detrano of the V.A. Medical Center, Long Beach, CA. The goal of 

this data set is to predict the presence of absence of heart disease based on 

the data collected from various medical tests carried out on a patient. The 

database contains 13 attributes, which have been extracted from a larger set 

of 75. The original data set had five classes, considering four degrees of heart 

disease. The database originally contained 303 instances but six of them had 

missing values and 27 of the remaining were retained in case of dispute, leaving 

a final total of 270. The total 270 instances were partitioned into the training 

set of 134 instances, the validation set of 68 instances, and the testing set of 

the final 68 instances. 

Table 4.5 compares GSOANN’s result against those of other ANNs trained 

by EAs and BP algorithms. In terms of testing error rate, GSOANN generated 

the best average result. The best error rate was produced by ESANN which 

also had the best average training and validation error rates. However, ESANN 

yielded far worst testing result than that generated by GSOANN. The evolution 

of the mean training error of the five ANNs over 30 runs is presented in Figure 

4.5. 

In the machine learning literature, the Cleveland heart disease problem has 

been studied by researchers on data sets of either 303 or 270 instances. The 

outcomes from different data sets are quite different. Therefore, to compare 

fairly with other methods, we only listed studies which carried on the data set 

of 270 instances in Table 4.6 in comparison to our GSOANN. From this table, 

we can see that GSOANN generated worse result than those of COOP, CNNE 

and COVNET which are all ANN ensembles. However, the result is better than 

those of the rest 6 classifiers including EPNetEn which evolves ANN ensembles 

of EPNets[117]. 
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Figure 4.5: Evolution of ANNs’ accuracy for the Cleveland heart disease data 

set. 
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The Australian Credit Card Assessment Data Set 

The purpose of this data set is to assess applications to an Australian 

bank for a credit card based on a number of attributes. It is also from the 

UCI Machine Learning Repository. There are two classes, meaning whether 

the application was granted (44.5% of the instances) or denied (55.5% of the 

instances). Each record has 14 attributes of which the names and values have 

been changed to meaningless symbols to protect confidentiality of the data. 

This data set is very difficult to classify because it contains many missing 

values (there are of missing values in 37 cases of the records). Moreover, the 

attributes are mixed: there are 5 continuous, 4 binary and 5 nominal. The 

whole data was partitioned randomly into a training data set which contains 

346 instances, a validation set which contains 172 instances and a testing data 

of 172 instances. 

We list the training accuracy, validation accuracy and test accuracy of 

GSOANN along with other five algorithms in Table 4.7. It can be seen from 

the table that GSOANN achieved the best average training error rate, 9.48%. 

Not surprisingly, GSOANN produced a far better test error rate than those 

from the other five ANNs. To illustrate the training process of ANNs, we 

present the evolution of the mean training error of the six ANNs over 30 runs 

in Figure 4.6. 
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Figure 4.6: Evolution of ANNs’ accuracy for the Australian credit card assess- 

ment data set. 
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As listed in Table 4.8, we also compare the result from GSOANN to those 

adopted from several papers which include 2 studies on evolutionary ANNs 

(GANet-best [121] and EPNet [117]), 5 papers of ANN ensembles (COOP [126], 

CNNE [130], COVNET [125], EENCL [123], EPNetEn [127]) and the studies 

on SVMs (SVM-best [135]) and decision trees ensembles (CCSS [131]). The 

best result adopted from [121] was generated from an ANN whose architecture 

was designed by GAs. Although our GSOANN has been proved to be an 

overpowering winner when compared to the other five ANNs we implemented, 

the average testing error rate generated by GSOANN is not as good as those 

of other sophisticated approaches. GSOANN generated a better result than 

those of GANet-best and CCSS but is outperformed by EPNet, SVMs and all 

the ANN ensembles. 
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4.3.3. The forecasting problems 

Forecasting of the Sunspot Number 

Sunspot series is a record of the activity of the surface of the sun. It is 

known that sunspot activity is a precursor to periods of active solar flares. A 

sufficiently large solar flare ejects coronal material from the core of the sun, 

and this material disrupts the operation of satellites. Therefore, predicting 

the sunspot is becoming more and more important especially in our modern 

world where people heavily rely on satellite communication. However, the 

sunspot series is nonlinear, non-stationary and non-Gaussian and is a well- 

known challenging task for time series analysis. 

The data set used in our experiment was included in MATLAB environment 

which recorded the sunspot activity over the last 300 years. The sunspot cycles 

from 1700 to 1987 are shown in Fig. 4.7. It can be seen from this figure that 

the sunspot activity is cyclical, reaching a maximum about every 11 years. 

The first 180 year (1700 — 1987) were used as the training set to train the 

proposed GSOANN. Following [118], the inputs x; of the GSOANN consists 

of three past data points: 2, = yf(t — 1), z2 = y#(t — 2), and x3 = y$(t — 3), 

where t denotes the year and y%(t) denotes the sunspot number at the year 

t. The output is the prediction of the sunspot number at year t: 9, (t). The 

performance (forecasting error rate) of the trained GSOANN can be calculated 

from: 
1980 

ert = 2 4=1885 ( ) 

We tabulated the results of training errors and forecasting errors in Table 

4.9. From the table, it can be seen that although GSOANN yielded slightly 

worse mean training error than that of PSOANN, it generated the best mean 

lyf ()—ti (t) 
96     

forecasting error. We can also find that the best (minimum) forecasting result 

found in the 30 runs by GSOANN is similar to or slightly worse than those of the 

other five ANNs. However, the worst (maximum) forecasting error generated 

by GSOANN is the smallest among the worst forecasting errors. It can be 

concluded that although GSOANN could not find the best forecasting error, 
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Figure 4.7: Sunspot cycles from 1700 to 1987. 

the superior global search performance of GSO guaranteed the search was not 

trapped by poor local minima as other algorithms did, therefore yield more 

robust forecasting results. 

This problem has been used as a benchmark by Leung et al. [118] to 

evaluate the performance of their ANN based on an improved GA. The best 

result obtained in their study is an ANN with six hidden nodes. The training 

error and the forecasting error are 11.5730 and 14.0933, respectively. It can 

be seen that although the training error obtained by their ANN is better than 

Table 4.9: Accuracies of GSOANN of the sunspot forecasting problem. 

Method | Mean SD Min Max |Mean SD Min Max 

GSOANN 

SGAANN 

EPANN 

ESANN 

    

  

PSOANN 

BPANN 
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Figure 4.8: Evolution of ANNs’ accuracy for the forecasting of the sunspot 

number. 
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Figure 4.9: Simulation results of a 96-year prediction using GSOANN (dashed 

line) and the actual numbers (sold line). 
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those of all ANNs tested here, including GSOANN, the forecasting error is 

worse than GSOANN and PSOANN. 

4.4 Conclusions 

In this chapter, the GSO algorithm has been applied to train ANN’s con- 

nection weights. Our initial goal was not to propose a sophisticated ANNs 

which can achieve the best generalization performance. Instead, we aimed to 

access the global search performance of GSO by applying it to train ANN’s 

weights since the training process can be regarded as a hard continuous opti- 

misation problem. It has been pointed out that minimizing the error function 

is different from maximizing generalization performance [128]. However, opti- 

misation algorithms with better global search performance are more capable of 

steering away from poor local minima of the error function therefore improving 

generalization performance. 

In order to further investigate the generalization property of GSOANN, we 

also implemented five other EA-based and gradient-based training algorithms. 

Compared to the other implemented ANNs, GSOANN yields the best average 

test and forecasting error rates on all five benchmark problems. It can also be 

seen that although the average training error rates generated by GSOANN are 

outperformed by those of ESANN and PSOANN, the validation error rates on 3 

out of 4 classification problems are better than those produced by all the other 

ANNs. We also noticed that the GSOANN yields smaller standard deviations 

than those of other ANNs which means GSOANN is more robust than the 

other ANN. Although the GSOANN proposed here is relatively simple so it 

is not fair to compare the results of GSOANN to those of other sophisticated 

ANNs, surprisingly, compared to those generated by some sophisticated ANN 

ensembles, this simple GSO based ANN training algorithm provides relatively 

good results on the five benchmark problems. 
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Chapter 5 

Application of PSO to 

Mechanical Design Optimisation 

Problems 

This chapter presents an improved particle swarm optimiser (PSO) for solv- 

ing mechanical design optimisation problems involving problem-specific con- 

straints and mixed variables such as integer, discrete and continuous variables. 

A constraint handling method called the “fly-back-mechanism” is introduced to 

maintain a feasible population. The standard PSO algorithm is also extended 

to handle mixed variables using a simple scheme. Five benchmark problems 

commonly used in the literature of engineering optimisation and nonlinear pro- 

gramming are successfully solved by the proposed algorithm. The proposed al- 

gorithm is easy to implement, and the results and the convergence performance 

of the proposed algorithm are better than other techniques such as GAs. 

5.1 Introduction 

In the past few decades, many optimisation algorithms have been applied 

to solve mechanical design optimisation problems. Among them, evolutionary 

algorithms (EAs) such as Genetic Algorithms (GAs), Evolutionary Program- 

126
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ming (EP) and Evolution Strategies (ES) become attractive because they do 

not apply mathematical assumptions to the optimisation problems and have 

better global search abilities over conventional optimisation algorithms[137]. 

Many successful applications of evolutionary algorithms have been reported 

to solve engineering problems such as power system dispatch [138] [139] and 

mechanical optimal design problems[140] [141]. Recently a new evolutionary 

algorithm called Particle Swarm Optimiser (PSO) has been proposed [32]. PSO 

is a population based optimisation algorithm which was inspired by the social 

behaviour of animals such as fish schooling and bird flocking. Similar to other 

evolutionary algorithms, it can solve a variety of hard optimisation problems 

but with a faster convergence rate [21]. Another advantage is that it requires 

only few parameters to be tuned making it attractive from an implementation 

view point. 

Most mechanical optimal design problems are hard to solve for both conven- 

tional optimisation algorithms and EAs, because they involve problem-specific 

constraints. To handle these constraints, many different approaches have been 

proposed. The most common approach in the EAs community is to make use 

of penalty functions. However, the major drawback of using penalty functions 

is that they require additional tuning parameters. In particular the penalty 

coefficients have to be fine tuned in order to balance the objective and penalty 

functions. Inappropriate penalty coefficients will make the optimisation prob- 

lem intractable [142] [143]. Other approaches to handle constraints, according 

to [144], include rejection of infeasible individuals, maintaining feasible popula- 

tion, repair of infeasible individuals, separation of individuals and constraints, 

replacement of individuals by their repaired versions and use of decoders. The 

standard PSO is usually applied to solve unconstrained optimisation problems. 

In this chapter, the standard PSO algorithm is extended to solve constrained 

mechanical design optimisation problems using preserving feasible population 

methods. 

Mechanical optimal design problems may contain integer, discrete and con- 

tinuous variables, which are referred to as mixed-variable nonlinear optimisa- 
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tion problems. To solve them, Sandgren [145] and Hajela [146] have proposed 

nonlinear branch and bound algorithms based on integer programming. Cao 

and Wu developed mixed variable evolutionary programming (MVEP) [140] 

with different mutation operators associated with different types of variables. 

Deb and Goyal [141] presented a combined genetic search technique (GeneAS) 

which combined binary and real-coded GAs to handle mixed variables. Origi- 

nally PSO was proposed to handle continuous optimisation problems. Recently, 

PSO has been applied to Integer Programming by Parsopoulos [147] by simply 

truncating the real values to integers which does not effect significantly the 

search performance. In this chapter, the standard PSO is extended to handle 

mixed-variable nonlinear optimisation problems more effectively. 

This chapter is organized as follows: Section 5.2 introduces the formulation 

of mechanical design optimisation problems. A modified version of the PSO 

algorithm to handle constraints with mixed variables is proposed in Section 

5.3. The proposed PSO has been tested on five examples which are commonly 

used in the mechanical design optimisation literature. Experimental results 

and discussions are given in Section 5.4. The chapter is concluded in Section 

6.5. 

5.2 Formulation of Mechanical Design Optimi- 

sation Problems 

Mechanical design optimisation problems can be formulated as a nonlinear 

programming (NLP) problem. Unlike generic NLP problems which only con- 

tain continuous or integer variables, mechanical design optimisations usually 

involve continuous, binary, discrete and integer variables. The binary variables 

are usually involved in the formulation of the design problem to select alter- 

native options. The discrete variables are used to represent standardization 

constraints such as the diameters of standard sized bolts. Integer variables 

usually occur when the numbers of objects are design variables, such as the 

number of gear teeth. Considering the mixed variables, the formulation can be 
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expressed as follows: 

min f(X) (5.2.1) 

subject to: 

hy(X) =0 12-2 Sm 

g(X)>0 i=m+1,:--,p 

where f(X) is the scalar objective function, and h;(X) and g;(X) are the 

equality and inequality constraints, respectively. 

The variables vector X € R™ represents a set of design variables which can 

be written as: 

Xe 

x8 

a Sac C ,B Boat Teed Dae 
X= xt = [25 .°°* Page Tt i Png Par Pa 21 1s a Pap 

xP 

where 

Cl Cc G . ge ey Sap ye = 1 2 ie (5.2.2) 

B Bl _,Bu, ofp, 
a? € {r;",2;"}, 1=1,2,---,np 

Il I kes 
z; <2; 27; , t= 1e2)--*, RT 

Di D Du . le 
v; <2; <7; , 6 — ld. Peep 

where XC € Rv, X8 € R™, X! € R™ and X? € R” denote feasible subsets 

of comprising continuous, binary, integer and discrete variables, respectively. 

a¢!, eB! ol! and xP! are the lower bounds of the i,, variables of X°,X”,X i 

and X?, respectively. «©, 22",2/" and xP“ are the upper bounds of the 

itn Variables of X°, X3, xX! and X”, respectively. nc,ng,nz and np are the 

numbers of continuous, binary, integer and discrete variables, respectively. The 

total number of variables is N=no+ng+nyz+ Np. 
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5.3 Improved Particle Swarm Optimiser 

As mentioned in the introduction, the difficulties in using EAs to solve 

mechanical optimisation problems come from problem-specific constraints and 

mixed variables. Little work has been done for solving constrained mixed- 

variable optimisation problems with PSO. In this section, the use of the PSO 

techniques to handle mixed variables and constraints are proposed. 

5.3.1 Mixed-variable handling methods 

Originally, most of the EAs were proposed to handle continuous variables. 

In the last decade, GAs [148], ESs [149], EPs [140] have been extended to 

handle mixed variables. 

In its basic form, PSO can only handle continuous variables. To handle 

integer variables, simply truncating the real values to integers to calculate 

fitness value will not affect the search performance significantly [147]. The 

truncation is only performed in evaluating the fitness function. That is, the 

swarm will “fly” in a continuous search space regardless of the variable type. 

For binary variables, since they can be regarded as integer variables within the 

range of (0, 1], we do not consider them separately. 

For the ith particle X; contains n¢ continues variables and np discrete 

variables, and the j;, discrete variable which consists of m; discrete values is 

expressed as: 

Xi; = en wee Fey see 1 8 5 my] (5.3.1) 

For the j:, discrete variable, a fictitious real variable x is used instead of the 

discrete variable xP. where x € [1,m, +1] and it is updated directly in the 

same way as does it for continues variables in the GSO algorithm. Then, 

the index | is determined by setting 1 = INT(z), where INT(x) denotes the 

greatest integer less than the real value z, to select a discrete value ae of the 

jen discrete variable XP, before involving it in the function evaluation. 

Hence, the fitness function of the ith member X; can be expressed as follows: 

f(X;)  t=1,--,M (5.3.2) 
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where 

Xi 7 {ao ,,0%,,INT(2i5)| 25; € Med = oe, i 

d y 

Ui 5,1 € Dan! € [1,24], J. Ly *+,MD, 

where XP eR", XP e REI=1" and X/ € R™ and Xf, XP and X/ denote 

the feasible subsets of comprising continuous, discrete and integer variables of 

member X;, respectively. 

5.3.2 Constraint handling methods 

Evolutionary Algorithms (EAs) are heuristic optimisation techniques which 

have been successfully applied to various optimisation problems. However they 

are not able to handle constrained optimisation problems directly [150]. In the 

past few years, much work has been done to improve EAs performance to 

deal with constrained optimisation problems. Penalty functions are commonly 

used to incorporate constraints into the fitness function. Other techniques de- 

veloped to handle the constraints, reported in [137] and [144], include rejection 

of infeasible individuals, maintaining feasible population, repair of infeasible 

individuals, and multi-objective optimisation techniques. 

The PSO algorithms have been applied to constrained optimisation prob- 

lems. El-Gallad et al. [151] proposed a constraint handling technique based on 

maintaining a feasible population. However our experimental results indicate 

that such a technique will lower the efficiency of the standard PSO. Their tech- 

nique resets the infeasible particles to their previous best positions pbest which 

will sometimes prevent the search reaching a global minimum. Hu [152] also 

proposed a constraint handling technique based on preserving feasible popula- 

tion. The algorithm starts from a feasible initial population. During the search 

process, only feasible particles are counted when calculating the value of the 

previous best position pbest and global best position gbest. Parsopoulos et al. 

[153] incorporated a non-stationary multi-stage assignment penalty function 

into PSO. In their paper, a set of 6 benchmark functions were tested. However 
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some of their solutions are not feasible. Other attempts include applying a 

multi-objective optimisation technique to handle constraints [154]. 

In this study, the technique of maintaining a feasible population is inves- 

tigated. The technique starts from a feasible initial population. A closed set 

of operators is used to maintain the feasibility of the solutions. Therefore, the 

subsequent solutions generated at each iteration are also feasible. Algorithms 

based on this technique are much more reliable than those based on a penalty 

approach [144]. For mechanical design problems, reliability is crucial since most 

of the constraints need to be satisfied. The concept of maintaining a feasible 

population is suitable for incorporation into the standard PSO algorithm for 

solving mechanical design problems. 

For the PSO algorithm, the intuitive idea to maintain a feasible population 

is for a particle to fly back to its previous position when it is outside the feasi- 

ble region. This is the so called “fly back mechanism”. Since the population is 

initialized in the feasible region, flying back to previous position will guarantee 

the solution to be feasible. From our experience, the global minima of mechan- 

ical optimal design problems are usually close to the boundaries of the feasible 

space, as shown in Fig. 5.1. Flying back to its previous position when a par- 

ticle violates the constraints will allow a new search closer to the boundaries. 

Fig. 5.2 and Fig. 5.3 illustrate the search process of the “fly back mechanism”. 

In Fig. 5.2, the i** particle would fly into the infeasible search space at the k™ 

iteration. At the next iteration as shown in Fig. 5.3, this particle is set back to 

its previous position x and starts a new search. Assuming that the global 

best particle P, stays in the same position, the direction of the new velocity 

V;*+1 will still point to the boundary but closer to P,. Since P, is inside the 

feasible space and wV;* is smaller than V;,*, the chance of particle X; flying 

outside the boundaries at the next iteration will be decreased. This property 

makes the particles more likely to explore the feasible search space near the 

boundaries. Therefore, such a “fly back mechanism” is suitable for mechanical 

design problems. Moreover our experimental results show that this technique 

can find better minima with less iterations compared with other techniques. 
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asible Space 

Figure 5.1: Global minimum in the feasible space. 

5.3.3 Improved particle swarm optimiser algorithm 

Regarding the proposed constraint handling technique described in section 

5.3.2, the improved PSO requires a feasible initial population to guarantee that 

the solutions of successive generations are feasible. To do so, an extra loop 

at the beginning of the algorithm is required to keep randomly re-initializing 

infeasible particles to ensure that they stay inside the feasible search space. 

Our experience indicates that this simple method is sufficiently good enough for 

most mechanical design problems since their feasible search spaces are usually 

large and feasible particles can be easily generated. Small size populations are 

preferred to minimize the time to find a feasible initial population. 

The improved PSO algorithm is given in Table 5.1. 

5.4 Numerical Examples 

In this section, five numerical examples have been used to test our new 

PSO algorithm. The first example is a classical benchmark problem in non- 

linear constrained optimisation. Four other examples are taken from the me- 

chanical design optimisation literature. All these problems have linear and 

nonlinear constraints and have been investigated by various EAs or traditional 
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Previous Best Position Pi 

Figure 5.2: X; at iteration k would fly outside the feasible search space. 

   
    The best particle Pg 

Previous Best Position Pj 

Figure 5.3: X; flies back to its previous position and starts a new search. 
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techniques. 

For all problems a population of 30 individuals is used. Although a time 

decreasing inertia weight was suggested to be better than a fixed one (35), 

the experimental results suggested that for these five examples, a fixed inertia 

weight w = 0.8 can produce better results. The default values of acceleration 

constants C), Cp typically are set to 2.0. However with a setting of c, = cp = 0.5 

better results were obtained. For each problem, 100 independent runs were 

carried out. The proposed algorithm was implemented in MATLAB 6.5 and 

executed on a Pentium 4, 2 GHz machine. 

5.4.1 Example 1: Himmelblau’s function 

This problem, proposed by Himmelblau [155], is a common benchmark 

function for nonlinear constrained optimisation problems. We adopted this 

problem to test our PSO algorithm which has an improved constraint han- 

dling capability. The problem including 5 design variables and 6 nonlinear 

constraints is as follows: 

Minimize 

f(X) = 5.357854722 + 0.83568912125 + 37.2932392, — 40792.141 (5.4.1) 

subject to: 

0 <gm(X) < 92 (5.4.2) 

90 <g(X) <110 (5.4.3) 

20 <93(X) < 25 (5.4.4) 

where 

m(X) 85.334407 + 0.0056858a25 + 0.000626221 24 — 

0.00220532325 (5.4.5) 

g2(X) 80.51249 + 0.00713172225 + 0.002995521 22 + 

0.002181323 (5.4.6) 
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g3(X) = 9.300961 + 0.00470262r325 + 0.0012547223 + 

0.0019085232°4 (5.4.7) 

and 

78 < 2, < 102, 33 < ro < 45, 27 < a3 < 45, 27 < a4 < 45, and 27 < x5 < 45 

Himmelblau [155] used the Generalized Reduced Gradient method (GRG) 

to solve this problem. This problem was also tackled by Gen and Cheng [156] 

using a GA based on both local and global references. Philip and Yao [157] 

proposed an ES with stochastic ranking to solve this problem. 

For Himmelblau’s function, all the results obtained from the methods men- 

tioned above are listed in Table 5.2 and are compared against those obtained 

with the proposed PSO. Other researchers have also proposed different ap- 

proaches to solve this problem and produced good results. For example, Koziel 

and Michalewicz [158] proposed a new approach to solve this problems based 

on incorporating a homomorphous mapping between n-dimensional cube and 

a feasible search space. The best result they obtained was -30664.5. Parsopou- 

los [153] reported a best result of -31528.289, which is not feasible. The best 

solution reported by Hu [152] was -30665.5. Since the design variables were 

not included in their papers, we could not list their solutions in Table 5.2. 

The maximum number of generations, used in the proposed PSO, was 3000 

with 90000 function evaluations. The average execution time required for find- 

ing a feasible initial population and 90000 function evaluations was 36.5 s of 

CPU time. From Table 5.2 it can be seen that the proposed PSO has found 

the same optimum. The mean value for 100 independent runs is -30643.989 

with a standard deviation of 70.043, which is worse than the mean value of 

-30665.539 reported by Philip and Yao [157]. However, it is worth mentioning 

that the number of function evaluations of their stochastic ranking technique 

was 350000. The proposed PSO has a much faster performance. 
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5.4.2 Example 2: spring design 

In this section we will investigate two cases of a compression spring de- 

sign problem. They both have 3 design variables: the wire diameter d = 2, 

the mean coil diameter D = x2 and the number of active coils N = 23 as 

shown in Figure 5.4. The data type of design variables, objective function and 

constraints of these two cases are different. 

Case 1 

Case 1 is a real-world optimisation problem which involves discrete, integer 

and continuous design variables. It is aimed to minimize the volume of a 

compression spring under static loading. The 3 design variables are mixed: D 

is continuous, N is an integer, and d is a discrete variable having 42 possible 

value as shown in Table 5.3. The problem is formulated as follows: 

Minimize 

f= aa (5.4.8) 

subject to: 

m(X) = Sp Paes esp (5.4.9) 

g(X) = Ip - ia <0 (5.4.10) 

g3(X) = dmin -— 21 <0 (5.4.11) 

ga(X) = 22 — Drax <0 (5.4.12) 

gs(X) = 3.0- a <0 (5.4.13) 

96(X) = %- Om <0 (5.4.14) 

g7(X) = Opt See 41.05(z3+2)a,-ly<0 (5.4.15) 

9s(X) = ow Fins: = <p) Py) <9 (5.4.16) 

where 

Cy = selena iy DES (5.4.17) 
A(x2/x1) —4 v2 
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Gat 
i = A, Baaae (5 4 18) 

F 

Frnax 

ly = K + 1.05(x3 + 2)21 (5.4.20) 

Other specifications are: the maximum work load Finax = 1000.0 lb; the 

maximum free length Imax = 14.0 inch; the minimum wire diameter dmin = 0.2 

inch; the allowable maximum shear stress S = 189000.0 psi; the maximum 

outside diameter of the spring Dmax = 3.0 inch; the preload compression force 

F, = 300.0 lp; the allowable maximum deflection under preload opm = 6.0 

inch; the deflection from preload position to maximum load position 0, = 1.25 

inch; the shear modulus of the material G = 11.5 x 10° psi; 

The design variables are limited as follows: 

0.2<2, <1, 06<2.<3,1<23 < 70 

This problem was investigated by Sandgren [145]. Deb [141] applied Genetic 

Adaptive Search (GeneAS) to solve this problem. Other attempts included a 

mixed-variable Differential Evolution (DE) algorithm [159]. 

The maximum number of generations, used in the proposed PSO, was fixed 

to 500 with 15000 function evaluations. The best solution for 100 runs is listed 

and it is compared to the results obtained by the other techniques mentioned 

above, which are listed in Table 5.4. It can be seen that PSO found the same 

global optimum as DE. It is worth mentioning that the maximum number 

of generations of DE was 650 generations corresponding to 26000 function 

evaluations[159]. 

The mean value for the 100 runs performed was 2.738024 with a standard 

deviation of 0.107061. The average time required for a single run was 5.8 s of 

CPU time. 

Case 2 

This problem was first investigated by Belegundu [160] and Arora [161], it 

aims to minimize the weight of a tension/compression spring. All three design 
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variables are continuous. There are four constraints which relate to minimum 

deflection, shear stress, surge frequency, and limits on outside diameter and de- 

sign variables [161]. The mathematical model of the problem can be expressed 

as follows: 

Minimize 

f(X) = (as + 2) xox} (5.4.21) 

subject to: 

(Xj) = 1- wae (5.4.22) 
M4) ~*~ T785a8 = a 

Ag? — 2129 1 
X) = — YH TS ISK A. 

g(X) = i5566Gqa3 25 * 51087 ~" ise) 
140.45 

gx(X) = 1-—7—" <0 (5.4.24) 

g(X) = an —1<0 (5.4.25) 

And the boundaries of design variables are given as follows: 

0.05:< 2; < 2, 0.25 < 22 < 1.8, 2< 273 5 15 

Arora [161] proposed an optimisation technique called Constraint Correc- 

tion at constant Cost (CCC) to deal with this problem. Coello [162] investi- 

gated this problem with a GA with a self-adaptive penalty approach to handle 

constraints. This problem was also tackled by Ray and Liew using an EA 

inspired by a formal society and the civilization model [163]. 

The maximum number of generation was 500 corresponding to 15000 fitness 

function evaluations. The average execution time required for a single run was 

5.2 s of CPU time. Table 5.5 lists the best solutions for 100 runs of our PSO 

and the techniques mentioned above. From Table 5.5, it can be noticed that 

Arora’s technique is not applicable because the first constraint is violated. It 

can also be seen that our proposed approach was able to find the best solution. 

The mean value for the 100 runs performed was 0.01270233 with a standard 

deviation of 4.124390 x 10-®. Ray [163] reported a mean from 50 runs of 

  

Shan He



5.4 Numerical Examples 140 

  

     
   

  

di
sp
la
ce
me
nt
 

fr
ee
 
le
ng
th
 

Figure 5.4: Spring design. 

0.012922669 which is worse than that obtained by our proposed technique. 

The number of fitness function evaluations of Ray’s algorithm was 25167. 

5.4.3 Example 3: pressure vessel design 

The pressure vessel design problem, shown in Figure 5.5, was introduced 

by Sandgren [145]. The objective of this problem is to minimize the total cost 

of materials, forming and welding of the pressure vessel. There are four design 

variables: the shell thickness T, = 21, the thickness of the head 7), = 22, the 

inner radius R = x3 and the length of the cylindrical section of the vessel 

L = 2x4. T, and T), are discrete values which are integer multiples 0.0625 inch, 

in accordance with the availabe thickness of rolled steel plates, R and L are 

continuous. The optimisation problem can be expressed as follows: 
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Figure 5.5: Pressure vessel design. 

Minimize 

f(X) = 0.62242, 2324 + 1.7781 a9x3 + 3.1661 xjr4+ 19842323; (5.4.26) 

subject to: 

g(X) = 0.0193x3 — 2, <0 (5.4.27) 

go(X) = 0.0095423 — x2 <0 (5.4.28) 
4 

g3(X) = 1,296,000 — razx4 — gms <0 (5.4.29) 

ga(X) = 24-240 <0 (5.4.30) 

where the design variables have to be in the following ranges: 

0.0625 < 2, < 6.1875, 0.0625 < rq < 6.1875, 10 < x3 < 200, 10 < x4 < 200. 

This problem was dealt with by Coello [164] using GA with a dominance- 

based tournament selection scheme (GADTS) to handle constraints. This prob- 

lem was also investigated previously by Deb using Genetic Adaptive Search 

(GeneAS) [165]. It has also been tackled by Cao and Wu [140] using mixed- 

variables evolutionary programming (MVEP). 

The maximum number of generations of the proposed PSO was set to 1000, 

corresponding to 30000 fitness function evaluations. The algorithm undertook 

  

Shan He



5.4 Numerical Examples 142 

  

Figure 5.6: Welded beam design. 

100 runs and the best result is listed in Table 5.6. The average CPU time 

required was 8.2 s for a single run. Table 5.6 also lists the best results produced 

by the other methods. Clearly, the new PSO gives better results than the other 

techniques. 

The mean fitness value was f(r) = 6289.92881 with a standard deviation 

of 305.78, which is worse than the mean value of 6177.253268 produced by 

GADTS [164]. However, it is worth to mention that the number of fitness 

function evaluations of GADTS was 80000. 

5.4.4 Example 4: welded beam design 

As shown in Figure 5.6, a rectangular beam is designed as a cantilever beam 

to carry a certain load with minimum overall cost of fabrication. The problem 

involves four design variables: the thickness of the weld h = 2, the length of 

the welded joint 1 = x2, the width of the beam t = z3 and the thickness of 

the beam b = 24. The values of x; and x2 are coded with integer multiples 

of 0.0065. There are seven constraints, which involve shear stress (7), bending 

stress in the beam (c), buckling load on the bar (P.), deflection of the beam 
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(5) and side constraints [166]. The welded beam problem is stated as follows: 

  

  

  

  
  

(5.4.31) 

(5.4.32) 

(5.4.33) 

(5.4.34) 

(5.4.35) 

(5.4.36) 

(5.4.37) 

(5.4.38) 

(5.4.39) 

(5.4.40) 

(5.4.41) 

(5.4.42) 

(5.4.43) 

(5.4.44) 

(5.4.45) 

Minimize 

f(X) = 1.10471 27272 + 0.0481123274(14.0 + 2) 

subject to: 

n(X) = T(X) — Tmax < 0 

92(X) a a(X) — Omax < 0 

g3(X) = 41-4 < 0 

Gay = 0.104712? + 0.048112324(14.0 + 22) -5 < 0 

g(X) = 6(X) — bmax <0 

g(X) = P-—P(X)<0 

where 

T(X) — tr)? ne Ogi 22 a (ri)? 

2 

7 z 
V221%9 

MR Tr 1 ipl! — we mt = —,M=P (4+ ; ) 
2 2 

Er 2 %+2%3 PER) 
2 

7 EyX2 | LQ 1+ 23 

ef ae i ( )}} 
4PL? 6PL 

sek) = Buin,’ ” tans 

4.0134) 2ze4 
Pais -— estas a) | Fe 

L? 2L V 4G 

P = 6000lb, L = 14in, E = 30 x 10®psi, G=12x* 10°psi (5.4.46) 

Tmax = 13,600 psi, Omax = 30,000 psi, dmax = 0.25 in (5.4.47) 
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The ranges for the design variables are given as follows: 

0.1 <2, < 2.0, 0.1 <2 < 10, 01 < 23 < 10, 01 < 24 < 2.0. 

This problem was investigated by Ragsdell [167] using a geometric pro- 

gramming. Deb [168] proposed a simple genetic algorithm (SGA) with binary 

representation and a traditional penalty function to solve this problem. The 

best-known result was also obtained by Deb using an real parameter GA [169]. 

Ray et al. tackled this problem using a society and civilization algorithm [163]. 

The best solution for 100 runs of the proposed PSO and those produced by 

the methods mentioned above are listed in Table 5.7. However, we could not list 

the best-known result of 2.38119 in this table, because the design variables were 

not presented in [169]. We can see that the new PSO algorithm provides even 

better results, which were obtained with the maximum number of generations 

set to 1000 and the total number of fitness function evaluations performed set 

to 30000. The average CPU time required for one execution of the proposed 

algorithm was 10.2 s. 

The mean value of the objective function obtained from 100 runs was 

2.381932, with a standard deviation 5.239371 x 10-°. The number of fitness 

function evaluations of Deb’s technique was 40080. 

5.4.5 Example 5: hydrostatic thrust bearing design 

The thrust bearing design problem was also proposed by Siddall [170]. This 

problem aims to minimize power loss associated with the bearing while satisfy- 

ing several constraints. Four design variables are used: the bearing step radius 

R, recess radius Ro, oil viscosity js and flow rate Q. There are seven constraints 

which limit load-carrying capacity, inlet oil pressure, oil temperature rise, oil 

film thickness and some physical requirements. The optimisation problem can 

be formulated as follows: 

Minimize: 
QPo 

BN Co + Ey (5.4.48) 

subject to: 
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Figure 5.7: Thrust bearing design. 
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n(X) = W-W, <0 (5.4.49) 

g2(X) = Prax — Po <0 (5.4.50) 

g3(X) = ATmax — Po < 0 (5.4.51) 

ga(X) = h—Pmin <0 (5.4.52) 

9(X) = R-Ro <0 (5.4.53) 
Y Q 

X) = 0.001 —- — < A, a0(X)  (s3x) 0 (5.4.54) 
WwW 

X) = 5000 -———_,- < 4. 97(X) "eR <° (5.4.55) 

where W is the load carrying capacity which is given by: 

1TPo R? ce He 
We A, 2 in(R/Ry) (5.4.56) 

and Pp is the inlet pressure which can be defined as: 

6uQ, R 
Py = —~ In — A. 0= —F3 ae (5.4.57) 

and E; is the friction loss: 

E; = 9336QyCAT (5.4.58) 

where 7 = 0.0307 lb/ is the weight density of oil and specific heat of oil C = 0.5 

Btu/lb °F. And AT is the temperature which can be estimated by 

AT = 2(10" — 559.7) (5.4.59) 

where 

n 
P (5.4.60) 

and n and C; are constants for a given oil. Table 5.8 gives n and C; for various 

grades of oil. In this example, SAE 20 grade oil is chosen. Therefore, n = 10.04 

and C, = —3.55. The film thickness can be calculated from the friction loss 

E; from following equation: 
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QnN\* 2ru (Rt RA 

Other specifications of design are: weight of generator: W, = 101000 lb 

(45804.99 Kg), maximum pressure available: Pnax = 1000 psi (6.89655 x 10° 

Pa), maximum temperature rise ATinax = 50°F (10 °C), minimum oil thickness 

Amin = 0.001 in (0.00254 cm), g = 32.3 x 12 = 386.4 in/seg? (981.465cm/seg”) 

and angular speed of shaft N = 750 RPM. 

The following ranges were used for the design variables: 

1.000 < R < 16.000, 1.000 < Ro < 16.000, 

1.0 x 10°° < p< 16 x 10°°, 1.000 < Q < 16.000. 

This problem was tackled by Siddall [170] using ADRANS (Gall’s adaptive 

random search with a penalty function). Deb and Goyal [141] used GeneAS 

(Genetic Adaptive Search) to deal with this problem. Coello [171] proposed 

a novel constraint handling technique to solve this problem; GASO, which 

treats constraints as objective functions and solves them with a multiobjective 

technique. 

It is worth noting that there are several discrepancies of unit and design 

specifications between Deb and Coello’s papers [141] [171] and Siddall’s book 

[170]. The first one is the absolute temperature (°F degrees Rankine) of ambi- 

ent. Deb and Coello used 560.0 while Siddall used 559.7 in equation (5.4.59). 

In Siddall’s book, the fourth constraint (g4) and the sixth one (gg) are multi- 

plied by 108, and the fifth constraint and the third one are multiplied by 10° 

and 2000, respectively. The unit of fitness value from Deb and Coello’s papers 

is foot-pounds per second while Siddall used inches-pounds per second. Due to 

these differences, we adopted two experiments: Case 1 and Case 2, with differ- 

ent unit and design specifications. The results are compared against those of 

Deb and Coello’s, and Siddall’s, respectively. Each experiment was performed 

100 runs. The best solutions for Case 1 and for Deb and Coello’s papers are 

listed in Table 5.9. The best solutions for Case 2 and Siddall’s book are listed 

in Table 5.10. 
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The maximum numbers of generations for both cases were set to 3000 with 

90000 evaluations of the fitness function. The average execution time required 

for both cases were 52.7 s and 48.8 s of CPU time, respectively. The average 

fitness value from the proposed PSO for Case 1 is 1757.376840 with a standard 

deviation of 316.851024 which is better than most of the best results reported 

by other techniques depicted in Table 5.9. The average fitness value for Case 

2 is 22874.674800 with a standard deviation of 3140.292915, which is better 

than the best result reported by Siddall [170]. 

In order to further illustrate the superiority of our algorithm, both in terms 

of accuracy and convergent rate, Case 1 of Example 5 is used to compare the 

proposed algorithm with the modified PSO algorithm of El-Gallad [151] and 

a standard PSO with a static penalty given in [172]. The average solutions of 

the three algorithms were obtained after 100 runs where the maximum gener- 

ation was set to 3000. The major drawback of [172] is that the static penalty 

coefficient r, requires to be fine tuned in order to generate an acceptable re- 

sult. For EL-Gallad’s PSO and the standard PSO, the average solutions were 

1877.195620 and 2939.070620, respectively, which are worse than the average 

result of 1757.37684 found by the proposed algorithm. The search processes of 

these three algorithms are shown in Figure 5.8. Clearly, from this figure one 

can see that our algorithm converges more quickly than the algorithms given 

in [151] and [172]. 

5.5 Conclusions 

In this chapter, the standard PSO algorithm has been extended to handle 

mixed variables and constraints. The proposed method is relatively simple and 

easy to implement. A “fly back mechanism” is proposed to preserve feasible in- 

dividuals. Compared to other constraint handling techniques based on penalty 

functions, this method is simpler, faster and provides more reliable solutions 

without any violation of the constraints. 

The proposed PSO algorithm has been applied to solve a mathematical 
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Figure 5.8: Search processes of three algorithms for thrust bearing design Case 

1. 

benchmark function and four mechanical design optimisation problems. The 

numerical results obtained by the proposed algorithm are better than or equal 

to other existing methods. Moreover, for most of our numerical examples, the 

PSO algorithm with “fly back mechanism” converges to the global minima 

within a few hundred iterations and its computational time is far less than the 

other PSO algorithms. 

A drawback of the proposed PSO is that the constraint handling method 

requires a feasible initial population. For some problems, finding a feasible 

solution is NP-hard [173], and even impossible for the problems with conflicting 

constraints. Future work should extend the proposed PSO to tackle the initial 

population problem. 
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Table 5.1: Pseudo code for the improved PSO algorithm. 

  

Set k = 1; 

Randomly initialize positions and velocities of all particles; 

FOR (each particle 7 in the initial population) 

WHILE (the constraints are violated) 

Randomly re-initialize current particle X; 

END WHILE 

END FOR 

WHILE (the termination conditions are not met) 

FOR (each particle i in the swarm) 

Check feasibility: | Check the feasibility of the current particle. If x 

is outside the feasible region, then reset X} to the 

previous position X/7?; 

Calculate fitness: Calculate the fitness value f(X*) of current parti- 

cle using equation (5.3.3); 

Update pbest: Compare the fitness value of pbest with f(Xf). If 

f(X*) is better than the fitness value of pbest, then 

set pbest to the current position X?; 

Update gbest: Find the global best position of the swarm. If the 

f(X*) is better than the fitness value of gbest, then 

gbest is set to the position of the current particle 

Xi; 
Update velocities: Calculate velocities V,* using equation (1.2.1); 

Update positions: Calculate positions XF using equation (1.2.2); 

END FOR 

Set k=k+1; 

END WHILE 
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Table 5.2: Optimal solution of Himmelblau’s function. 

        
    

    
   

   

    

  
Design Best solution found 

     
       

Table 5.3: Possible spring steel wire diameters. 

0.0095 0.0104 0.0118 0.0128 0.0132 0.014 

0.0162 0.0173 

0.032 0.035 

0.080 0.092 

0.177 0.192 

0.307 0.331 
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Table 5.4: Optimal solution of spring design for Case 1. 

GeneAS [141] | _ DE [159 

1.226 1.223041010 
Ta | 9 [0 

    

      

   

  

    

    

  

   
-1008.8114 

-8.9456 

-0.083 

-1.777 

-1.3217 

-5.4643 

0.0000 

0.0000 

2.65856 

     

    

  

     

      

  

     

  

Table 5.5: Optimal solution of spring design for Case 2. 

Arora 

J2 . 

93(X) 
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Table 5.6: Optimal solution of pressure vessel design. 

Design Best solution found 

Variables GADTS [164] | GeneAS [165] | MVEP [140] 

       

  

    

   

    

    

       

   

  

   

     

      

Table 5.7: Optimal solution of welded beam design. 

ects Feo — as eat a 

7) 
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Table 5.8: Values of n and C; for various grades of oil. 

  

Table 5.9: Optimal solution of thrust bearing design for Case 1, Coello and 

Deb’s papers. 

5.389175395 6.549 

0.58406092 17.353800 

  

      
      

   

          

    
        

  

   

  

S
 

    

   

  

ga(X) 0.00033480 0.000559 0.000652 0.000891 

g5(X) 0.56769329 0.666000 0.544000 0.528000 

96(X) 0.00083138 0.000805 0.000717 0.000624 
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Table 5.10: Optimal solution of thrust bearing design for Case 2 and Siddall’s 

book.     
Design Best solution found 
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Chapter 6 

Solving Optimal Power Flow 

Problems with PSOPC and 

GSO 

In this chapter, Optimal Power Flow (OPF) problems will be investigated. 

Essentially, OPF problems are a kind of mixed-variable constrained optimi- 

sation problem. Traditionally, OPF problems have been tackled by gradient- 

based optimisation methods. Here we applied two novel ABO algorithms we 

developed, namely, PSOPC in Chapter 3 and GSO in Chapter 2, to OPF prob- 

lems. Numerical experiments were carried out on an IEEE 30-bus for three 

different fuel cost minimization problems. In order to evaluate its performance 

on real-world power systems, a practical IEEE 118-bus system is also employed 

for the GSO algorithm. So far, both algorithms provides better results than 

those obtained from the other optimisation techniques in terms of accuracy 

and convergence speed. 

156
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6.1 Nomenclature 

9k 

No 

Np 

Ne 

Np 

Ne 

Ne 

Ni 

Nra 

Npy 

No" 

Nr 

Nim 

Pp 

Pe 

Qe; 

Qp, 

voltage angle difference between buses 

i and j (rad) 

transfer susceptance between bus 7 and 

j (p.u.) 
transfer conductance between bus 7 and 

j (p.u.) 
conductance of branch k (p.u.) 

set of numbers of total buses excluding 

slack bus 

set of numbers of total buses 

set of numbers of shunt compensators 

set of numbers of power demand buses 

set of numbers of network branches 

set of numbers of generator buses 

set of numbers of buses adjacent to bus 

i, including bus 7 

set of numbers of PQ buses 

set of numbers of PV buses 

set of numbers on buses on which in- 

jected reactive power outside limits 

set of numbers of transformer branches 

set of numbers on buses on which volt- 

ages outside limits 

demanded active power at bus i (p.u.) 

injected active power at bus i (p.u.) 

reactive power source installation at 

bus i (p.u.) 

demanded reactive power at bus i (p.u.) 
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Qa, injected reactive power at bus 7 (p.u.) 

voltage vectors of PQ buses (p.u.) 

T; tap position at transformer 7 

V; voltage magnitude at bus i (p.u.) 

S; apparent power flow in branch k (p.u.) 

6.2 Introduction 

The optimal power flow (OPF) problem [174] aims to achieve an optimal 

solution of a specific power system objective function, such as fuel cost, by ad- 

justing the power system control variables, while satisfying a set of operational 

and physical constraints. The OPF problem has been intensively studied and 

widely used in power system operation and planning [175]. It can be formu- 

lated as a nonlinear constrained optimisation problem. The control variables 

include the generator active power, the generator bus voltages, the tap ratios 

of transformer and the reactive power generations of VAR sources. State vari- 

ables are slack bus power, load bus voltages, generator reactive power outputs, 

and network power flows. The constrains include inequality ones which are the 

limits of control variables and state variables; and equality ones which are the 

power flow equations. 

In order to solve the OPF problem, a number of conventional optimisation 

techniques have been applied. They include nonlinear programming (NLP) 

[176], quadratic programming (QP) [177], linear programming (LP) [178], and 

interior point methods [179]. All these techniques are gradient-based deter- 

ministic optimisation algorithms and usually rely on the existence of the gra- 

dients of variables, to find the global minimum. However, the OPF problem 

is very complex, considering the various constraints, mixed-variables and high- 

dimensionality. These constraints lead to the non-differentiable, nonlinear and 

non-convex nature of the OPF problem. Therefore the methods rely on the gra- 

dient information and the convexity property of the objective function, which 

do not guarantee to find the global optimum for the OPF problem. These 

conventional techniques also suffer from bad starting points and frequently 
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converge to local minima or even diverge. 

On the other hand, evolutionary algorithms (EAs), such as Genetic Algo- 

rithms (GA), Evolutionary Programming (EP), and Evolution Strategies (ES), 

have been developed in the past a few decades. Their applications to global op- 

timisation problems become attractive because they have better global search 

abilities over conventional optimisation algorithms. The OPF problem has 

been solved with Evolutionary Programming (EP) [139]. The EP based OPF 

was evaluated on an IEEE 30-bus system and the results were compared with 

those obtained using a conventional gradient-based method. In [180] an en- 

hanced EP with the use of gradient information was applied to the IEEE 30-bus 

system under different generator input-output conditions. A GA with adaptive 

crossover and mutation, based on the fitness statistics of population, was ap- 

plied to minimize the active power loss in transmission networks [138]. Another 

enhanced GA was also applied to solve OPF problem [3] in which advanced 

genetic operators such as fitness scaling, elitism and hill climbing and other 

problem-specific operators were employed to improve the efficiency of the sim- 

ple GA. Recently, a novel Particle Swarm Optimiser with Passive Congregation 

(PSOPC) [181] was applied to solve the OPF problem [44]. Numerical exper- 

iments were also carried out on an IEEE 30-bus for three different fuel cost 

minimization problems. However, these evolutionary algorithms were originally 

evaluated within a 30-dimensional space, and assumed it would be appropri- 

ate to be used for very high-dimensional optimisation problems. Therefore, 

the scalability of these algorithms to practical power systems, which usually 

consist hundreds control variables, is questionable. 

We first apply the GSO algorithm as introduced in Chapter 2 for the solu- 

tion of the OPF problem. We test the GSO algorithms on the standard IEEE 

30-bus power system in three cases: (1) minimization of fuel cost, (2) voltage 

profile improvement and (3) voltage stability enhancement, and also in com- 

parison with GA and PSO respectively. The simulation study is also carried 

out based on a practical 118-bus system for the GSO algorithm. In Chapter 3, 

passive congregation, a concept from biology, was introduced to the standard 
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PSO to improve its search performance. In this chapter, we also present the 

PSO with passive congregation (PSOPC) algorithm for the solution of OPF. 

6.3. Optimal Power Flow Problem Formulation 

The OPF problem can be formulated as a constrained optimisation problem 

as follows: 

min /f(x,u) (6.3.1) 

s.t. g(x,u) =0 (6.3.2) 

h(x,u) <0 (6.3.3) 

where x is the vector of dependent variables such as slack bus power Pe,, load 

bus voltage V,, generator reactive power outputs Qc¢ and apparent power flow 

S;. X can be expressed as 

x? = [Po,, Vin +++ Vin, Qar ++ * Qengs S1°** Snes (6.3.4) 

u is a set of the control variables such as generator active power outputs Pe 

except the slack bus Pg,, generator voltages Vg, transformer tap setting T, 

number of load buses Nz; and reactive power generations of VAR sources @,. 

Therefore, u can be expressed as 

u’ = [Po,- ++ Pong: Ver +++ Vengo Ti+ Tips Qe“ Qe (6.3.5) 

The equality constraints g(x,u) are the nonlinear power flow equations 

which are formulated as follows: 

= Pe, — Pp, = V; Be V;(Gz cos 6; = ge sin 6;;) 

JENi 

iE No (6.3.6) 
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0= Qe; — Qp; = V; ab V; (Gi; sin 6; + By cos 6:5) 

JEN: 

Le Npa (6.3.7) 

And the inequality constraints h(x, u) are the limits of control variables and 

state variables which can be formulated as: 

PE! 2Pa,= Pa Fe Ng 

QE" < Qe, < QE" i€ Ne 

QE" < Qc, < OG" i€ Ne 

Toe <p e ae Ny 

vem <VisVP™ ie Np 

[Sel < Se* te Ne (6.3.8) 

To solve a nonlinear constrained optimisation problem, the most common 

method uses penalty functions to transfer a constrained optimisation problem 

into an unconstrained one. The objective function equation (6.3.1), is general- 

ized as follows: 

F=f+ ow -VYiey+ 

  

ieNiim 

S> Ae (Qa, — Oi)? + SY As,((Si| — SP™)? (6.3.9) 
ieNG™ ieN}im 

where Ay,, Ag, and As, are the penalty factors. V,'™, Q@” are defined as 

: nae if V; > yne 

ve =| a ‘ iy (6.3.10) 
i 1 i i 

gim = eee ee (6.3.11) 
Y Qzm if Qe, <Qg" 

where max and min denote the maximum and minimum values of the variables, 

respectively. 
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6.4 Numerical Results 

For all problems a population of 50 individuals is used. A time decreasing 

inertia weight w which starts from 0.9 and ends at 0.4 was used for the PSOPC 

algorithm. The default value of acceleration constants c;, co typically are set 

to 2.0. However with a setting of c; = cp = 0.5 better results were obtained. 

For the GSOOPF algorithm, the initial head angle y° of each individual is 

set to be $. The constant a is given by round(./n + 1). The maximum pursuit 

angle @max is 4. The maximum turning angle a is set to be 5%. The maximum 

pursuit distance Imax is calculated from: 

Imax = || Ui — Li || = 

  

where L; and U; are the lower and upper bounds for the i;, dimension, re- 

spectively. The parameter need to tune is the percentage of rangers; our rec- 

ommended percentage of rangers is 20%, which was used throughout all our 

experiments. For each experiment, 100 independent runs were carried out. The 

maximum generation was set to 500. 
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6.4.1 ITEEE 30-Bus system 

The standard IEEE 30-bus test system as shown in Fig. 6.1 was employed 

to evaluate our PSOPCOPF and GSOOPF algorithms. The system line and 

bus data for 30-bus system were adopted from [176]. The system consists of 48 

branches, 6 generator-buses, and 22 load-buses. The generators are at bus 1, 2, 

5, 8, 11 and 13. Branches (6,9), (6,10), (4,12) and (27,28), contain transformers 

with off-nominal tap ratios. The transformer tap setting can take 17 discrete 

values in the range of [0.9 1.1] with the step size of 0.0125. The bus shunt 

admittances are also discrete variables in the interval of [0.0 0.05] p.u. and the 

step size is 0.01 p.u. In total, there are 24 control variables. 

  
Figure 6.1: IEEE 30-bus System 
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Table 6.2: Optimal control variables. 

[es Toone | cons 
176.0951 | 176.1143 | 176.1971 

48.8271 | 49.0286 | 48.8318 

21.5123 | 21.7131 | 21.5216 

22.1133 | 21.5152 | 22.0664 

12.2255. | 12.5905 | 12.2704 

12.0012 | 12.6071 | 12.0129 

1.0500 1.0272 1.0499 

1.0377 1.0180 1.0359 

1.0105 1.0195 1.0071 

1.0182 1.0016 1.0138 

1.0847 1.0560 1.0842 

1.0703 1.0093 1.0852 

1.0250 1.0750 0.9750 

0.9250 0.9000 0.9500 

1.0000 0.9750 1.0000 

0.9500 0.9500 0.9250 

0.05 0.05 0.01 

0.04 0.00 0.01 

0.04 0.00 0.04 

0.05 0.00 0.02 

0.04 0.05 0.03 

0.05 0.05 0.04 

0.03 0.05 0.01 

0.05 0.04 0.00 

0.02 0.01 0.00 
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Case 1: Minimization of fuel cost 

The objective of this case is to minimize the total fuel cost: 

Ne 

t= Se (6.4.1) 
i=1 

where f; is the fuel cost ($ /h) of the 7, generator: 

fi = +0:Po, + oPS, 

a;,b; and c; are fuel cost coefficients, Pg, is the real power output generated by 

the i, generator. 

The optimal control variables obtained by the GSOOPF from 100 runs for 

this case are tabulated in Table 6.2. This problem was also tackled using a 

gradient based optimisation method [176]. An improved Evolutionary Pro- 

gramming (IEA) was applied to solve this problem [2]. The best-known result 

was obtained by Bakirtzis et al. [3] using an enhanced GA (EGA). They de- 

signed a set of advanced and problem-specific genetic operators, for example, 

Gene Swap Operator, Gene Inverse Operator, etc., to solve OPF problems. 

In Table 6.1, we tabulate the results obtained from the techniques men- 

tioned above in comparison with the result generated by PSOPCOPF and 

GSOOPF. We also implemented a GA based OPF (GAOPF) algorithm us- 

ing GADST toolbox and a PSO based OPF (PSOOPF) algorithm using PSOt 

toolbox. The search process of our GSOOPF algorithm is shown in Fig. 6.2. 

It is worth mentioning that, as different programming environments and power 

flow calculation methods were used in [176], [2], [3] and this research, it is not 

easy to compare the computation time required by each algorithm. However, 

by comparing the computation time used by the implemented algorithms, e.g., 

PSOOPF and GAOPF, we found that our GSOOPF obtained the best results 

in the shortest time. 

Case 2: Voltage profile improvement 

This example aims at minimizing fuel cost together with a flatter voltage 

profile. The objective function is modified to minimize the fuel cost while at 
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~~ ~ GAOPF 
— GSooPF 
‘==: PSOOPF 

  

Figure 6.2: Search process of GSOOPF for Case 1 

the same time to improve voltage profile by minimizing the load bus voltage 

deviations from 1.0 per unit. The objective function can be express as: 

N, 

Fae S> |v; - 1.0] (6.4.2) 
s—1 ieNL 

where w is the weighting factor. 

Table 6.2 tabulates the optimal control variables of the GSOOPF obtained 

from 100 runs. The best result of the GSOOPF and PSOPCOPF from 100 

runs is also tabulated in comparison to PSOOPF and GAOPF in Table 6.3. 

It can be seen from the table that, for GSOOPF, the voltage variation has 

been reduced from 0.8259 in Case 1 to 0.0926 in Case 2. The reduction ratio is 

88.79%. For PSOPCOPF, the voltage variation has been reduced from 0.8089 

in Case 1 to 0.0954 in Case 2. The reduction ratio is 88.20%. The system 

voltage profile obtained by GSOOPF of this case is compared to that of Case 

1 in Fig. 6.3. The search process of our GSOOPF algorithm is shown in Fig. 

6.4 in comparison to the search processes of the other two algorithms. 
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(Case 1 
(24 Case 2 

  

0.9 ELLE / i ae 

0 5 10 15 20 25 30 

Bus Number 

Figure 6.3: System voltage profile 

—Gso 

~~ -GAOPF 

  

Figure 6.4: Search process of GSOOPF for Case 2 
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Table 6.3: The best values of GSOOPF for Case 2 

Fuel ost (7A) 

Case 3: Voltage stability enhancement 

      

      

     

    

     

In this example, we aim to minimize fuel cost and enhances voltage stability 

profile through out the whole network. L is the stability indicators at every 

bus of the system and Lmax is the maximum value of L-index defined as [182]: 

Lmax = max{L,, K =1,---, NL} (6.4.3) 

And L can be calculated from the following equation: 

St 
J 

+t 172 

Yin V3 

Vi 
Teg Viet 

i h+¥ 
(6.4.4) 

    

  

where Y;; is the transformed admittance, Y;; = 1/Z;;; V; is the consumer node 

voltage; S* is the transformed power S7 = S; + S$"; and S¥™ is given by: 

--[E@)-@) 1€a 

  V; (6.4.5) 

  

and Z;; and Z;; are the off-diagonal and diagonal elements of the impedance 

matrices, and ay is the set of consumer nodes. 

One way of determining L is: 

I = max|1— 
JEaL 

cna Fi 7 Vi 7 (6.4.6) 
    

where ay is the set of load buses; ag is the set of generator buses. V; is the 

voltage at load bus j; V; is the complex voltage at generator bus 7; Fj; is the 

element of matrix [F'] determined by 

[F] =- A (6.4.7)   
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— GsoopF 
~~ ~ GAOPF 
‘+=: PSOOPF 

  

Figure 6.5: Search process of GSOOPF for Case 3 

where [Y;,] and [Yzc] are sub-matrices of the Y-bus matrix. 

The objective function can be expressed as: 

Ne 

J= Sofi + wlmax 

i=1 

The optimal control variables of the GSOOPF for this case from 100 runs is 

tabulated in Table 6.2. The best results of the GSOOPF and PSOPCOPF 

obtained from 100 runs are tabulated in Table 6.4. The search processes of 

our GSOOPF algorithm and other 2 algorithms are shown in Fig. 6.5. In this 

case, the three indices, fuel case, voltage profile and voltage stability have been 

minimized by GSOOPF and PSOPCOPF and they are much smaller than that 

obtained by GAOPF and PSOOPF. 

Table 6.4: The best values of GSOOPF for Case 3 
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Table 6.5: Best values of GSOOPF GAOPF and PSOOPF for the IEEE 118- 

bus system 

| sss GsoopF | GAOPF __| PSOOPF 
Fuel cost ($/h) | 15863.3475| 18981.6442 | 16012.3433 

6.4.2 TEEE 118-Bus system 

From Chapter 2, we can see the GSO algorithm is capable of handling high- 

dimensional optimisation problems. This feature makes it possible to solve 

practical optimal flow problems. We employ the IEEE 118-bus systems [183] 

to evaluate the performance of GSOOPF. The IEEE 118-bus system consists 

of 181 transmission elements, 17 generators for AVR control, 9 transformers 

with off-nominal tap ratio, and 14 shunt admittances. The number of total 

control variables is 130. We tabulated the results from GSOOPF, GAOPF and 

PSOOPF algorithms in Table 6.5, which shows that GSOOPF is able to obtain 

a better optimisation result in comparison with the others. 

6.5 Conclusions 

In this chapter, we have applied GSO and PSOPC to tackle OPF prob- 

lems. These two new approaches utilizes the superior global searching ability 

of GSO and PSOPC. Numerical experiments were carried out on an IEEE 30- 

bus for three different OPF problems which include minimizing the fuel cost, 

improving the voltage profile and enhancing the voltage stability. We have 

also employed a practical IEEE 118-bus system to evaluate the GSOOPF al- 

gorithm. Our algorithm provides better results than those obtained from the 

other optimisation techniques in terms of accuracy and convergence speed. 
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Chapter 7 

Conclusions 

7.1 Introduction 

This chapter concludes the thesis and summarises the major achievements 

of the work in the multi-disciplinary research between swarm intelligence and 

animal behaviour. Suggestions for future research are listed at the end. 

7.2 Summary of Results 

This study primarily aims at developing Animal Behaviour inspiration Op- 

timisation (ABO) algorithms by transferring knowledge from the research of 

animal behaviour. As results, a novel ABO algorithm, GSO, has been devel- 

oped. The study has also improved standard PSO with an animal congregation 

model: passive congregation. The standard PSO has also been extended to 

handle mix-variable constrained optimisation problems. Besides of the devel- 

opment of ABO algorithms, the ABO algorithms developed in this study has 

also been successfully applied to real-world problems. 

In the preceding chapters, the following work and results were presented. 

The background of animal behaviour was given in Chapter 1. Then Natural 

Computation and Swarm Intelligence (SI) were introduced, followed by a dis- 

cussion on the relationship between SI, self-organisation and animal behaviour. 

1/2
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The chapter went on to proposed a new definition of SI and the definition of 

ABO. Details of Particle Swarm Opitimiser was given. The motivation behind 

this study was discussed in this chapter. The outline and major contributions 

of this thesis were also presented. 

The first part of this thesis, e.g., Chapters 2 and 3, devotes to the algorithm 

developments of ABO. In Chapter 2, a novel ABO algorithm, Group Search 

Optimiser (GSO), developed in this study was introduced. The inspiration 

behind this algorithm, animal group searching behaviour, was explained in 

details. Then the Producer-Scrounger model, which is a generic animal social 

foraging model, was presented. Once the theoretical foundation has been laid, 

the details of the GSO algorithm were given. A large set of benchmark functions 

were employed to evaluate the performance of the GSO algorithm. From the 

obtained results, the performance of the GSO algorithm is seen to greatly 

outperform other EAs and PSO on multi-modal functions while remaining 

similar performance on uni-modal functions. Finally in this chapter, discussion 

of the differences between GSO and other EAs and SI algorithms was also 

presented. 

Chapter 3 described an improved PSO algorithm with passive congregation 

(PSOPC). An animal congregation model, passive congregation, which is an 

important biological force preserving swarm integrity, was introduced to the 

standard PSO algorithm. A set of 10 benchmark functions were used to eval- 

uate the performance of the PSOPC algorithm. In comparison to the other 

standard PSO variants, the search performance of the PSOPC algorithms is 

better in terms of accuracy and convergence speed. 

In order to evaluate the performance of GSO, in Chapter 4, the GSO al- 

gorithm has been applied to train ANNs. This chapter begins with a brief 

introduction to ANNs, especially evolutionary ANNs, followed by the details 

of the 3-layer feed-forward ANN used in the study. The training algorithm, 

GSOANN, then was presented. A set of machine learning benchmark problems, 

including 4 classification problems and 1 forecasting problem, were employed 

to access the performance of the proposed training algorithm. Among these 
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problems, the proposed GSOANN achieved the best results on the Wisconsin 

breast cancer diagnosis problem and the sun spot forecasting problem in the 

literature. For the rest problems, the GSOANN algorithm also achieved satis- 

factory results compared with other sophisticated ANN training algorithm. 

The PSO algorithm has also been extended to handle mixed-variables and 

constrains in order to solve real-world engineering optimisation problems. In 

Chapter 5, a simple truncation scheme was introduced to the standard PSO 

algorithm to handle mixed variables. In order to deal with problem specific 

constrains, a simple so called “fly-back mechanism” was employed. Then the 

extended PSO algorithms was applied to solve mechanical design optimisation 

problems. Four mechanical design problems, typically employed by the liter- 

ature as benchmark functions were solved successfully by the extended PSO 

algorithm. The results obtained are better than many other algorithms and 

many results are the best in the literature. 

Chapter 6 begins with a brief introduction to Optimal Power Flow (OPF) 

problems followed by the formulation of OPF problems. Then the PSOPC 

and GSO algorithms were employed to solved the OPF problems on an IEEE 

30-bus test system with 3 different cases which minimize fuel cost, improve 

voltage profile and enhance voltage stability, respectively. An practical IEEE 

118-bus system was also employed to evaluate the performance of the GSO 

algorithm. The results obtained by the two algorithms were compared to the 

standard PSO, GA and the results obtained from the current literature. The 

comparison verifies the superior search performance of the two algorithms on 

real-world optimisation problems. 

Conclusively, from the successful developments of the two novel ABO algo- 

rithms, this thesis demonstrates the power of multi-disciplinary study in opti- 

misation and animal behaviour: knowledge from animal behaviour can provide 

new thinking to to solve optimisation problems. The thesis also demonstrates 

the outstanding performance of ABO algorithms by solving real-world prob- 

lems. 
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7.3 Suggestions for Future Work 

In this section, we list several points that deserve further investigations to 

develop and improve the algorithms and applications described in this thesis. 

1. From the discussion in Chapter 1, the most important feature which dis- 

tinguishes SI from other novel computing paradigms is self-organisation. 

The GSO algorithm also displays some self-organising features, for ex- 

ample, the complex searching process of a global optimum is achieved 

by a population of simple agents interact using three simple searching 

strategies: producing, scrounging and ranging. However, these features 

are not sufficient enough to characterise GSO as a self-organising (swarm) 

optimisation algorithm, e.g., similar to the global PSO algorithm, the se- 

lection of the producer does not emerge from local interactions between 

members. Further work need to be done to develop GSO as a SI algo- 

rithm. 

2. From the experiments, we found that although the computational time 

required by the ABO algorithms, e.g., PSOPC and GSO, is less or similar 

to other Natural computational algorithms, e.g., EAs, compared with tra- 

ditional gradient-based optimisation algorithms, they are still too slow, 

which might hamper their applications to some large-scale real-world 

problems. Parallelisation of these algorithms is worthy to be investigated 

to overcome this drawback. 

3. Coevolution, especially cooperative coevolution has been incorporated 

into EAs to improved their performance. It is also interesting to in- 

vestigate multi-group GSO with cooperative strategies. The research in 

animal cooperation can be incorporated into the GSO framework natu- 

rally. Combine with parallelisation, it is expected that this future work 

can not only improve the speed but also the search performance. 

4. As discussed in the previous chapters, the GSO algorithm is similar to 

the memetic algorithms. It will be interesting to incorporate other local 
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search strategies for the producer to improve the performance of GSO on 

a certain set of problems. 
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Appendix A 

Global Optimisation Benchmark 

Functions 

Table A.1: The 23 benchmark functions, where n is the dimension of the 

function, S is the feasible search space, and fmin is the global minimum value 

of the function. 
Test function n S Fenn 

fi(z) Sphere Model 30 [—100, 100” 0 

fo(x) Schwefel’s Problem 2.22 30 [—10, 10]” 0 

f3(x)  Schwefel’s Problem 1.2 30 {—100, 100)” 0 

fa(z) | Schwefel’s Problem 2.21 30 {—100, 100]” 0 
fs(x) | Generalized Rosenbrock’s Function 30 [—30, 30]” 0 

fe(z) Step Function 30 [—100, 100)” 0 

fz(z) Quartic Function with Noise 30 [—1.28, 1.28]” 0 

fs(x) Generalized Schwefel’s Problem 2.26 30 [—500, 500)” -12569.5 

fo(x) Generalized Rastrigin’s Function 30 [—5.12, 5.12)” 0 

fio(z)  Ackley’s Function 30 [—32, 32]” 0 

fii(z) Generalized Griewank Function 30 [—600, 600)” 0 

fi2(x) Generalized Penalized Function 1 30 [—50, 50)” 0 

fiz(z) Generalized Penalized Function 2 30 [—50, 50)” 0 

fia(z) Shekel’s Foxholes Function 2 [-65.536, 65.536)” 1 

fis(z) Kowalik’s Function 

fie(z) Six-hump Camel-Back Function , 

fiz(z) Branin Function [—5, 10] x (0, 15] 0.398 

fis(z) Goldstein-Price Function [—2, 2]” a 

4 [—5, 5)” 0.0003075 

2 
2 

2 

fig(z) Hartman’s Function 1 3 [0, 1]” -3.86 
6 
4 

4 
4 

(—5, 5)” -1.0316285 

foo(x) Hartman’s Function 2 (0, 1]” -3.32 
foi(x) Shekel’s Family 1 [0, 10]” -10 

fo2(x) Shekel’s Family 2 [0, 10]” -10 

fo3(z) Shekel’s Family 3 [0, 10]” -10 

LT?
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Sphere Model: 

file) = S027 
i=1 

Schwefel’s Problem 2.22: 

30 30 

fol) = D> |ail + [] [zl 
t=1 w=1 

Schwefel’s Problem 1.2: 

fs(z) = >> (>: :) 
0 

i=1 

Schwefel’s Problem 2.21: 

fale) = max{|ni|,1 <i < 30} 

Generalized Rosenbrock’s Function: 

fs(x) = > (100(ai+1 — x?) + (2; -1)) 
i=1 

Step Function: 

30 

fo(c) = ([2i + 0.5])? 
w=1 

Quartic Function with Noise: 

30 

fr(z) = Se, + random(0, 1) 
i=1 
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Generalized Schwefel’s Problem 2.26: 

30 

fslay= -\> (2: sin (Vieil) ) 

i=1 

Generalized Rastrigin’s Function: 

30 
fo(x) = So(2? — 10cos(272,;) + 10)? 

w=1 

Ackley’s Function: 

fio(z) = —20 exp | —0.2 

30 
1 

— exp (% So cos ora) + 20+e 

i=—F 

  

Generalized Griewank Function: 

  

degen 100 
1 2 30 

firl2) = F599 Da = 100)’ — Tees Vi y+1 

Generalized Penalized Functions: 

Tv fn = = c sin? (yi) + De — 1)7[1 + 10sin?(ryi+1)] + (Yn — "| 

30 

+ S$ © u(zi, 10,100, 4) 
i=1 

and 

29 

pene ep {sae + $0 (a; — 1)?[1 + sin’ (372;41)) 
s=1 

30 

+ (aq — 1)?[1 + sin?(2r239)]} 5 > u(2i, 5, 100, 4) 
i=1 
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where 

k(x; —a)™, t >a 

u(aj,a,k,m) = 0, —a<aj<a 

k(—a; —a)™, t;<—a 

1 
Y= 1+ F(z +) 

Shekel’s Foxholes Function: 

25 1 v q fia(z) = cE c 2X aSstecal j=1 

—32 -16 0 16 32 -—32 --- 0 16 32 
where (ai;) = 

—32 -—32 -—32 -32 -32 -16 -:- 32 32 32 

Kowalik’s Function: 

vt 2 
£1 (b? + b;x2) 

fis(z) = Po a ~ B+ batg + 24 =r i a 
= 

Six-hump Camel-Back Function: 

1 
fig(a) = 407 — 2.103 + 371 + 2122 — 4x2 + 4x5 

Branin Function: 

Glen , 1 
fir(2) = ta — ati t 7a — 6 +10 be cos x; + 10 

min = (—3.142, 12.275), (3.142, 2.275), (9.425, 2.425) 

0.398 min(f17) 
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Table A.2: Kowalik’s Function fi» 

1 

2 

3 

4 

5 

6 

7 

8 

9 

fa
 Oo 

  

e
 

e
t
 

Goldstein-Price Function: 

fig = (1+ (a1 + 22 + 1)?(19 — 14a + 3a} — 1422 + 62122 + 323)| 

x [30 + (2a, — 3ar)?(18 — 32x, + 1227 + 4822 — 36x22 + 2723)] 

—2<a,;<2 min(fis) = fis(0,—1) = 3 

Hartman’s Function: 

f(z) =- » C; EXP |- os Aj (Lj — na 

with n=3,6 for fi9(a) and f29(zx), respectively. The coefficients are defined by 

Tables and , respectively. 

0 << x5 <= 

min(f19) = f19(0.114, 0.556, 0.852) = —3.86 

min( foo) = f20(0.201, 0.150, 0.477, 0.275, 0.311, 0.657) = —3.32 
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Table A.3: Hartman’s Function fi9 

       

Diz, J =1,2,3 

0.3689 0.1170 0.2673 

0.4387 

0.8732 

0.5743 

  

       
      

      3.2 | 0.038150 
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Shekel’s Family: 

f(z) = = ole a)(e— a)? +a) 

with m = 5,7 and 10 for foi(z), foo(x) and f23(x), respectively. 0 < x; < 10. 

Dlocal—-opt & Ai and min(fz,.a-ope) & 1/c: for 1 <a <m. 

Table A.5: Shekel’s Family fo1,fo2,fo3 

flee Sie eee leo) (2      
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