

THE UNIVERSITY
of LIVERPOOL

DEVELOPMENT OF CONIC SECTION FUNCTION NEURAL

NETWORKS IN SOFTWARE AND ANALOGUE HARDWARE

Thesis submitted in accordance with the requirements of the

University of Liverpool for the degree of Doctor in Philosophy

by

Tiilay Yildirim

May 1997

Abstract

The ability of the biological brain to perform very complex tasks has inspired

scientists to study the field of neural computation and to try to implement artificial

neural systems. In recent years, many neural algorithms and several neural hardware

systems have been proposed.

This thesis is concerned with the use of conic section functions which contains

RBF (Radial Basis Function) and MLP (Multilayer Perceptron) networks. The work

is concentrated in two areas: The implementation of learning algorithms for the Conic

Section Function Neural (CSFN) network and the implementation of the CSFN in

analogue hardware.

A new training algorithm composed of a propagation rule which contains

MLP and RBF parts to improve the performance of back propagation is proposed.

The network using this propagation rule is known as a Conic Section Function

Network. This network converts the open decision boundaries in an MLP to closed

ones in an RBF. A training algorithm has been implemented in MATLAB. The

performance of the proposed algorithm is compared with existing MLP and RBF

algorithms.

An analogue VLSI hardware design for a Conic Section Function Neural

network which allows the use of RBF and MLP propagation rules on a single chip,

depending on the data distribution of a given application, is proposed. CSFN contains

hyperplane and hypersphere decision regions for MLP and RBF, respectively.

A novel synapse and neuron circuit for a CSFN has been designed in analogue

hardware to compute both the dot product (weighted sum) for MLP and the

Euclidean distance between input vectors and centres for RBF. These two propagation

rules are then aggregated to form a conic section function network. The designed

circuits were simulated using cdsSpice simulator in Cadence design package for

different number of synapses and neurons.

Two chips, a synaptic circuit for a CSFN and a Conic Section Function

Neural network, have been designed using Cadence design package with Mietec

2.4m technology. These chips have been fabricated and tested.

Acknowledgements
i

I would like to thank my supervisor Dr. J. S. Marsland for his encouragement,

advice and support during this work. I would also thank to him for providing

constructive criticism and invaluable suggestions.

I am grateful for the financial support provided by Technical University of

Yildiz, istanbul, Turkey, without whose support this thesis would not have been

possible.

I would like to thank all colleagues in the Department of Electrical

Engineering and Electronics for their friendship during my time at Liverpool.

Special thanks to my parents, whom I owe everything, my sisters and friends

for their encouragement and moral support.

ili

Contents

AvStfatt: - tee sae ulna gee Ree. tating Gia Wx e+ x ym eo wee li

Abinauleciientae - scncues sty Sora cde eree ieee PML WPI ns pe ee ee» iil

Conese. 6 5 oe ee Ek ae Re one note Boe eae ans, «aes Sig hp es iv

Tesh ag BSUS 8S is Se ae ea ns ee PR EIS ond gs ee Vili

Or ia ed re ceed ges oa ns en, ya's 4, Le aha eos Xil

Tinting eae ai 5. Le Bey as atin ee ogre ed ot a ae 8 eens Xili

CHAPTER 1 Background theory of the neural models

Li esdtorward Networks. 63 335, a eg Pe eas es ae 1

1.1.1. Single-layer Feedforward Networks: 2 iy oo ee ee ke 2

1:42. Moalulayer Feedforward Networks <-.)650 5. ee es 3

1.1.3. Learning in Feedforward Networks045. 4

1-173, 1. SUSE MISed JCAINI SO eA es. ss Martens ne os RA dome 5

Paes. 2 LI Sperv inet CAPA INE © Gain Pees er a a8 sk sie es 6

DD Ai ier NANG ea Sate pay PCa aces oe eels tw ayia ZL

D2 aS ete ePCCON OR. x ae thine teviioe a Bila Fie cate Uae Ca ke tee os wk 8

2. Learning m Multilayer Perceptrons <0... 55. ee ee 10

1.2.2. The Back-propagation training algorithm 12

P25 The oherized etanOle ci tt, ec Se 13

1.2.4. Adaptive learning rate and momentum 15

bed: Radian Casis Muncie) 2 she ce ling TW arabe ee Mieke CG cake th a 16

1.3:le Phe: choice Ot Radial Basis Functions. 75 1:65 2. ek 20

1.3.2. Radial Basis Function network training2.5......... ZL

13725) Locations. .obine entices bates ee eae ees 22

1.3.2.1.1. Learning algorithms for RBF network 23

Contents

1.3.2.2. Determination of the scaling parameter........... 24

V4.2, See RA ete CIODS 85. 8 ho, aes. 2 ay amet gl ge ce 24

1.4. Comparison of Multilayer Perceptrons and RBF Networks 2

1,5.-Conie Section Fuaduon: Neural: Networkse:: 2305 t4.i.0.5.. 5.352. 26

1.5.1. Local or global representations and types of decision regions .. 27

F525 COM Cochise th. ea Sac cep ns oes ES a coes 29

1,5:3.Conte Section Function Network's. ia nk 6 wae eo ie 31

1.5.4. Conic Section Function Network training 33

CHAPTER 2. Conic Section Function Neural Network Training

2 Wie one section, Punction. NECWOLRKS? 5-25). 6. sorlg hain e win a Ge Ewes 36

2.2. Conic Section Function Neural Network Training 37

re DETR aliOmet: 1 HG, bar ALOUEES «22-05 Aspe eve a oR ctw or os Wee me voce eRe 37

2.3.1. Placement of the centres using Orthogonal Least Square

PTT Ut rite sien sine ce ete een te Be ates tole cee steht gaten 38

EAB Os WEISIES on) gg oars 6 aM de ee eh Ls kee ee ae 43

aM AUINOMCCTIEOS Scie So jiu cele ee Moe eo aoa phe nes ON as 46

2 Sate UI POAAE, OPENING ANOLE eerste vk. SSS ose! ptalgete aes PF ode is ? 46

2.4. Summary of The Basic Training Algorithm 47

Due Neer Bl BITS: Aa een Gg hs Sh TN Peake gO pthc se Gis Loe lw, “hee me 48

CHAPTER 3 Hardware Design for Conic Section Function Network

ace Avia Onucey ol NeuralINetworks fossa sls bee ees oe eed 52

3.2. Conic Section Function Network For VLSI Hardware 53

33 -4conic Section PunctiOms Meavork Design. 7) Si. Sag 2s Sag ss wis Bers 54

Sia Cifoiniy Building lock See ace ee). ener ed cate. a cdg ee Woe sos 55

FAP = NOAEADSISWOEMOGE 22a, si sihry seine) Whe gota Rotts eo he ene ioe 55

SO Caren Miletat ye Oe Coe ae AL eae eg 56

2a y- Pransconauetanee AMIDHTIEL 'pateeds sf oa se he Ale See oh 57

3.4.4. EEPROM - Analogue storage device 05.0000: 58

Bo CSE SYDADSC MESO oe tis emcee). wp Mi in ries | UR ef ed ws 60

Contents

B06. Pr esigi Ohare, 8), ay 2 Ge Se een wom eee es a os 61

925.7, CSO OF vei UNE D.C.) oo. or ee ico maatinans Maas qowllate'< ca ans 62

S54 able complete synapse Circuit cn er a ore ee <p Ban 63

96, COE IN INGUPORN LICSIONG 5 Luss do s,a da ge ete arm emien, y FF 6 ee pe 64

320, NEMWOrki OMIDINGHONS (2... Vics 2 Sn Seen kn oe ecto mtn 2 hy a ences 67

3.7.1. Network with two synapses and one neuron.............. 67

3.7.2. Network with 8 synapses and one neuron 67

BS Pas oe ee eOO OTK ice kup se ee eee Tae Mota oes a ee 69

BGS Dy Sie NORG cre io Gude ores eevee eats nt al tks alae oe 70

3.8. Alternative RBF Unit Design For CSFN Synapse 71

SR oe RChsive qn wate desler oon 5 it. hy Ren yeu sh ais ot ele at

iB. SA VELAPISCS MICUWOLKY AS. 2p ye ane ait Ruane eAb we nD ca Seah abe A

CHAPTER 4 _ Software Simulation Results

At Avian lassisiCallOHeETODIEN) <8 Ss 5 RAR dels ia Weal G ees fis)

4.1.1. Results for the first CSFN training method 76

4.1.2. Results for the second CSFN training method 80

4.1.3. Results for the back propagation and adaptive back propagation

SISOMUMIS. Loken og Skee es en | OR es Scant ast WN aed ee 85

BE Oa Tet st TOSMINS 59 os ns" Pets) Rage tas Opera yo ts ei ai ok Ja Py 87

4.1.5. Comparison of the algorithms Beh Bee ee nee 87

Be AONE TUES CE TO DIGG «Ps x cicero e tk pk GO ni ne ca So cae eas ca oc ae 88

a2; ee esults Torihe secondialgoritDiM es aaa dete a 88

Wits Ene Steer Of ANS WVIGUIe s cu, s ange nae IP V outa a Oli cetlee 90

4.2.3. Back propagation and fast back propagation algorithms

WSUS ie eo Fhe ck hh oka ee ae ee we Ba 3? Aeros a 92

eA Ae CSM an Uae a a a acca tras os ade, te eK 3 94

Pee TSC USSION sired igs Dhaba war hear SEL Ct ate SR i eee os iw. Hoag a Rg 95

CHAPTER 5_ Hardware Simulation Results

ee SS DIAUSE yt ieteit a hack « Uline ENE een Sy. se anaes 96

vi

Contents

SPU RCIISIVE MON COLGHESIIS (2. Gis vosiies | oP bode ayes ee 96

5.1.2. Results for the RBF unit with an Euclidean function 97

SA OP RESUS OR aise Unita). kl VA Sebo oy Piles ee 6 hes 98

5.1.4. Effect of the transistor parameters and bias voltages 99

Bye RG terete 5 Orn ree eA io gh ws Rs a oa Canes ae aol Ee Oey ® 105

Sa Wenterswanon PEGUICHT. wir eke, 5s cag eee. « tig Rk See ee ee 110

CHAPTER 6 Comparison of Hardware and Software Results

6.ralmplementiic The GSPN Fordrns Data. .30 8 a Pao 111

G2; scaling of [he Parameters For Hardware... . bese hee ea ee eee 112

G; SarlarO Wate ANG SOMWare ReSIlIS 02. soe wlers bee tg, we Da ete aS 116

Ose GSI, eae aah Patel 6 ds Moy s =: Foot Mar aig o 8 an TERE hal 119

CHAPTER 7 Chip Design

Se beptae eM ate ttre LPN ah Sat Mai 922 sab ae 3 fea cas eee ee ea acta ere 121

meres fe SU EC INPDICSION gs Sh ry sy Wee Io eye Mee 9! tig YW aah 124

EM DEROV TIAGO: vets Ary 5 5 5.5 oy oe pos py og hice EY ees 124

ee ere WalleltOn CHCHIC «0. 5a Sicicana «oo ae Ce Pe eae, ee 126

CHAPTER 8 Chip Results

8.1. Synaptic Circuit With Manhattan Distance Function 136

Selves shesting ‘Grune Tas CWID > 6. 24h CS ats ak gore eee eee S 137

8.2. Results On phe Omi ni oi oe oe oa he ee pie ae ke PN eka 138

Wee tee CUTOUT es a5 4k pasa» by We PTR, 9 Wy WPA le ese eee Maw ees 141

CHAPTER 9 Conclusions

SeO MECN CES tee Mee Pee, en ak SMS Ao a gh SMH nlie SA NSS. Ge Baa. wn 147

PASC OR or OR UICHEIOM Se arte es aye) aon alana fa ew! whe gitke eet muna 7

apenas te) Eis ent Lao ase 2.02 PTE ik ee is, § a ee ee ee On aa 158

Appendix 2 Database for fitting contact lenses-4- 164

Appendix 3 Conic Section Function Neural Network Training Program I .. 167

Appendix 4 Conic Section Function Neural Network Training Program II . 176

Appendix 5 The Interface Card Control Program-.. 183

vii

List of figures

Figure 1-4; "Miultilaveted deediorward network iin ysc6 Gas ee oe 3

Pigare V2 Siac mie ses cas ns) s pg Beane = le iN LEM 8 10

Figure 1.3. The stages of the forward and backward pass for the error back

Pree Ges creed Whe pny ake See Mp ale wae te Cie e 11

Figure 1.4; Single neuronioraor network 0 6 i ee 17

Figure 1.5; Radiat basis Function Network... ea ee. 18

Figure 1.6. (a) Hyperplanar and (b) hyperspherical decision regions 28

Figure ter stance sections OF A CONC 4 ise fe ars oho eee erg ms ed alte 29

Figure 1.8. Conic sections with variable eccentricity 30

Figure 1.9. A cone with vertex V and opening angle 2m intersecting by an

input plane forming variable decision boundaries - a circle, a parabola,

Be Bas ody Tc A SS lag RP Co Vo Wk A 32

Fisure1.10. Conic Séction Function Network .. 2.066. aes ek 34

Figure 2.1. Block diagram of CSFN for training 38

Figure 2.2. Flow diagram of the basic training algorithm 49

Figure 2.3. Flow diagram of back propagation phase for the first method.... 50

Figure 2.4. Flow diagram of back propagation phase for the second

ASCP Pee i Week pcs GN peels Ure ein Pe A ae Ng ee Mok 51

Piste 3 ce ey eee a his bg es Se wl ae ee ie ee ON 54

Figure 3.2 (a) current source (b) current mirror circuit 56

Ficure’5.3: Transconductanceiamipliner circuit...) 5... ee a EN af

RICO 8 4. EDP MOM Covice me oes) 42... eas cs. oS tendenwys Serer 59

Figure 3.5. Differential amplifier to provide voltage differences between input

and centre vectors for both RBF and MLP units 60

Figure 3.6. RBF unit which computes the Euclidean distance function 61

Figure 3.7. MLP unit with weight storage transistor.................. 62

Higute.3,8. Complete circuit Of Synapse Cesioic .. 6 ts a 63

Pigite sey." The summation Ob (Mien tg. eer es hae ohh Site, «Geta Ew ve 64

Figure 3.10. The combination of two sigmoid function to define a local

PSCEIONY a teehee eC ee ee ee RS et ete eet Pe aad ees 65

Pieare a.) L INCUTOMMCMCUILY 4 Rice stages 5 «crete heyd wre! Dio ee Adee Bee scmoey es 66

Vili

List of figures

Bieute 3.12: Amplification) Cucuit sins 32 so 5 5s Pattee MS. 8 Sean be 67

Figure 3.13. Network with two synapses and one neuron-- 68

Figure 3.14. Network with 8 synapses and one neuron+-- 68

Pisure 3.15, 2-4-2 MetWwork ns patie. see ee ees cles alniaae e ope he 69

PIOUS AO Nb cy OU WOR Ka et s~> 2 Cicseeen ss cay es a wee Re os 70

Figure 3.17. Waveforms of XOR circuit for Manhattan distance 4

Figure 3:8. Exclusives pate design: % 22055. 2 NS ae Sk ek ee ey 73

Pinte 2.19: Symapie Cie epg a Pa le acne ls Was Ole 8 ee 74

Figure 4.1. The results of the first algorithm for different number of centres

MATURE PAE UC UNG eee hh ac pele Toke aoa cekane eos oon ek anaes ar egw ¢ at

Figure 4.2. The results of first training algorithm for 4, 6 and 10 centres with

PPO TUNE ak 5 Pilar a GAN ess Re a, Wa et eee 2 Gale 2 eis 9% Ty

Figure 4.3. First algorithm results for 6, 8, and 10 centres when the centres

Gre Wor Modatert i Ha GUS og eae eg oh cue 8 eee Wee es hs 78

Figure 4.4. First algorithm results for 8 and 4 centres (no centre update) and

See eee eg late SO es vg ee ge ee bab ieee tree De Gay 78

Figure 4.5. First algorithm results for different learning rates (for 6 centres) . 79

Figure 4.6. Effect of the number of centres on the number of training

ORBAN SIN, Miho de poe os FA gio EN) ie RRO le A Oe aE 79

Figure 4.7. Different learning rates for updating opening angle (Ir= 0.05) .. 80

Figure 4.8. The second algorithm results for 6 centres (no centre update) ... 81

Figure 4.9. The second algorithm results for 7 centres (no centre update) ... 82

Figure 4.10. The second algorithm results for 8 centres (no centre update) .. 82

Figure 4.11. The effect of the learning rate for 8 centres4.. 83

Figure 4.12. The effect of the number of centres (Ir = 0.04) 84

Piguie ai oi hesults tor comes Wit IH O05 boy 6 i NE 8 ew oS a ole as 84

Figure’'4.14, Results forS centtes. with: Ir0:03) 3. 85

Pigite a1. WACK Diep aero PeSULES hase Ty el ete g ee vee Pew oe cy 85

Figates4.16.compalingnvon nic aigOrnthms sors a. ee a Fee 87

Pigetc 4.17, Resule (Ober COurCdey etnies oa. Wye ee Kea WAY Kee es 89

Pict Sc eciin AOP (eC COU CS. slates y Via ete pk a ee eg Re 89

Pieure- 4.19; The-ettect of the learning tate 35... 2 a, Ld se i 90

Fieure4.20:-Theveftect of-the muniber-of Centress: ay oe ee eS 90

Figure 4.21) Results for width = 1-with 5 centres 5.4... 6b i os gh we 91

Pictie ree. deere ects OL CVI! oie ie eae Sk Riss ene He Sweet oe 91

Figure 4.23. Back propagation results for 5 and 7 hidden nodes (Ir = 0.05) .. 92

Figure 4.24. Back propagation results with different learning rates for 7

WidGeH RGNGs etree re te ee ei tn eters Ria Hye + ees 92

Figure 4.25. Adaptive back propagation results for different number of hidden

RIDERS: Gladic reed ete nen meee terrence ah aL OPI UG a ie AOR WEG a ng ares 93

Figure 5.1, Exclusive OR gate waveforms. 0.0603 Sesh ee See se. 97

Piouie 2. REY OUMUt cr setii oy chee so eee Me hs ete a te ge wa es 98

ix

List of figures

Richie 5,5 P Outi s teat pases og. kein, 9 bs Oke a ee a eee > 8 98

Figure 5.4. Effect of nmos transistor (M8) in RBF unit 99

Figure 5.5. Effect of the pmos transistor (M9) in RBF unit............. 100

Figure 5.6. Effect of the transistor (M10) used for squared root function ... 100

Picts, 5.7. Etech Of Ane reststor Vy) ters tiara. Sea panes hegre Niektnd Says 101

PICO 8,8. LC CLICCL OL ay veer ex Tenis Pies tin lo errs Meany = ee Mae hp are 101

Frais Lhe elreChO bay pe mralaitn of, oc» Seiten n- ciie amare en a 42 ale Sh 102

Prenre;5, t0-The efiect of Vb onthe RBP outputs: es. 6 a ee 102

Pistro 5.1) The eitectof wb on the MLE Output 2). 4 auc ews acs leit ere 103

Figure 5.12. The effect of the device mismatches (when M12 changes) on

BE OMIDINE sek Aine th a soo gunn es ee a Lid ga ace Ul et ale ten 103

Figure 5.13. The effect of mismatches in first differential amplifier (when M2

Clarice OU NE VIE OUNDUE SSS 0c wid oes aha le eee ace gle ye Ra eat ei 104

Figure 5.14. The effect of the mismatches in the first differential amplifier

(when wie changes) On REF output ia!) ot Oo ce kG aie ee 104

Piepie aloe mectsion boundaries fOr KBP © i< ow Boe ae see ee 105

Figure). bow mecision boundaries for MLP = fy. iy on ade in es 106

Figute-on;ecision boundaries for'CSFN< 752.07 fe et ha each. 106

Figure 5.18. The transitions from MLP through CSFN to RBF 107

Figure 5.19. Local output obtained from sigmoids 108

Figure 5.20. The RBF response in higher dimensionality 109

Figure 5.21. RBF response with higher dimensionality 109

Picea, 2.o ine oemonstration Circuit Pesultss ., wee 5c ahs ce Sete SM 110

Figure 6.1. The network structure for Iris database application 12

Figure 6.2. Comparison of software (MATLAB) and hardware (CADENCE)

POS riOF aval ee Libs Mt ee a 0 o a, arp aed ocean ee ee ae Bw 118

Figure 6.3. Comparison of software (MATLAB) and hardware (CADENCE)

POUL Or WE agit ed ays we int ue ok ee tics, Os ey ai oa le 119

Pignre 721... ine schematic.oe We-synaptic Circuit \. . yh be. ee a 122

Figure: 7.2. Maskavout of the sypapuc circuit x... ewe 123

Peters 3 MD Mics lay Aut as Us nigel Orie Awe co ieee SOOw gh ecw tek es 123

Ribot oe tot Dede Ase RCM Son AP ares ee aie ee ee ake Mies RE 124

Rigdiecs a. s nes ynapse tia LAVOE i. 28 rss 6 awe weiss te biWg oa cute 125

Figure 7.6. EEPROM cell structure for weight and centre storage 125

PAGE a1 ew NEMGOE MIT OUI saith. ft outs gu) ok ns WE a «eT E RLS aLaON Wes 126

PIgnber tos we we NeUTON Minsk IAVOUL .. aguer tak alates. ce | ah Ry eee ee 127

Figure 7.9) EEPROM.cell. for opening ‘angles. iF erate Oe oe Biren fe aes 127

PACH TC] AA) HEVEDICE SU UCIAAHG ty 22 sg taf oa! atic ety St BEN SG a op pe Se caine we 128

Biguie (ae INveneer Inns 1aVOUL (Ss sig na’. eG emase a ne Ale ey eat wt ys 128

ELGAR Pe eee ALS Raia ee ay Fd ahs awe nce Mai ee) cae ee. Ghat 129

Hisuic sna gate mask avout. see oe PTE gain ace 4 GE . 129

Pipiite 7.14; 7b bemeONUINNSEIECIOL g5<. tori ew !cai at ccc ty eam ws Gas oS 130

List of figures

Pignie: 715. The towrsclectornry = ata, 5 <clvt.h, ciesite 1 Sin gees yea Pia hee, aoe coe 130

bieute.72)6. Row selector task layouts imei. , Vgegs oe be eee 131

Ppeuire 74-2 Le Shoapeptatiro te Capone co See sca as ans So 9a ny gg Os wp aoe 132

Figure 7720. Pie MasktayoulLWnCShIN 0. beatin ai ee cin egetene ie. os 133

Figure 7:19. Fie top evel schematic: of the. CSEN 3 lo die ak « ivi es 134

Figure 7.20,. The.mask layout of the final:chip.. +." c.5 ce. ee eS 135

Figure 8.1. Output current of the synaptic circuit for R=100kQ........... 137

Figure 8.2. Output current of the synaptic circuit for R=10kQ........... 138

Bipureee sR Ete type URDU) scissor ar ete vues ant nce eM meee once see 139

Figuic-6.4.- Variation Of the centre point, eho iy ain res Wet one) oaks 140

Poe 8.5. MEP typevoutput: Ste wieriecei. ort ates tee tas saa © al gs 140

Pivots 8.6 CULO OULPUL iid iS Wet tpi es ye vay he Ge Eras ten se Se 141

xi

List of tables

Table 4.1. Number of training epochs for different number of centres of

Kom CIC Arie PRE gnc eS eay 5 FST Oecd bl lee er as 76

Table 4.2. Training epochs with different learning rates for the second

Gigoriunt Withoul Contre MpCatIN eo 5 MI Rees oes 81

Table 4.3. Training epochs with different learning rates for the second

Hiemrnm wilh Cenbemmniating.. 0 john Ly PISS SS Pea ees 81

Table 4.4. Results for back propagation and fast back propagation

ee a ey ey se Seros-2 ROG ek SAD Eee oe 86

apie Gite meesuits toe (eee ee EG Ge ee ee I ELS. 117

DOIG Og MIG OOS TOK Tie) Sesh ANOF cy5. 3. ater sk wah a gs ee wee eae 7,

Dae ee eto S 108. IPS POOR ic, Se eee so a ens oe ew Ss pres 118

Introduction

The research on artificial neural networks has seen a spectacular growth in the

last few years. Artificial neural networks are systems based on special algorithms

derived from the field of neuroscience with the inspiration of the structure and

function of the biological systems.

Both Multilayer Perceptrons (MLP) and Radial Basis Function (RBF) are

feedforward mapping networks that have been successfully used in many areas such

as pattern recognition, classification problems, time series prediction, etc. Many

researchers have developed training algorithms for RBF and MLP. Open boundary

networks, such as MLP, minimize the output error through gradient descent. The

most popular training algorithm used for MLPs is error back propagation [Rum86],

but it needs long training times and a large number of hidden nodes for complicated

problems which have many concavities and convexities in the mapping function. It

can also get stuck at local error minima. In contrast, RBF networks are trained with

different methods such as in [Che91, Moo89] which provide fast training. The

prototypes are placed with closed decision boundaries around training data points.

The positions and/or sizes of the prototypes are adjusted.

There has been great debate over which algorithm is the most suitable for

training of both RBF and MLP networks and also how it is possible to combine these

two networks to get better results for practical applications, considering the

relationship between RBF and MLP. The main properties of these networks have to

be considered, such as the propagation rule, activation function, and learning

xill

Introduction

algorithm, to make a good connection between the networks. In general case, MLP

has a combination of dot product as propagation rule, sigmoid as an activation

function and the error back propagation as learning rule. Differing from this, the RBF

network has a propagation rule based on Euclidean distance, some basis functions

(mostly Gaussian) as the activation function, and a Delta learning rule. Furthermore,

output unit of RBF networks is linear while it is nonlinear for MLPs.

In the literature there are some alternative combinations of layers with

different units or combined units of different types in one layer. Maruyama, Girosi

and Poggio established a connection between generalized RBF and MLP observing

that the radial basis function associated with the sigmoid is an activation function that

is a good approximation to Gaussian Basis functions for a range of values of the bias

parameter [Mar92]. Tarassenko and Roberts trained an RBF classifier with error back

propagation and showed that it gives almost identical results to those obtained with

an MLP [Tar94]. Hirahara and Oka developed a hybrid model composed of an MLP

and an RBF. This used an MLP module and an RBF module separately, and

combined those modules using a linear combiner [Hir93]. Platt presented an RBF

network with a strategy for allocating new units and a learning rule by combining

memorization and gradient descent [Pla91]. In [Wil92], a projection neural network

is proposed. Both closed decision regions (hyperspheres and hyperellipses) and open

ones (hyperplanes) are accommodated in this network. Dorffner introduced Conic

Section Function neural networks (CSFN) to combine MLP and RBF [Dor94,

Dor94a]. Other authors [Gev92, Smy92, Tso89, Wey94] give important advances in

RBF/MLP hybrid networks and in different combinations of training algorithms for

either networks.

The various methods for mapping RBF [Sco91, And93, Chu93, Par93] and

MLP [Lon92, Tom93, Sig94, Joh95, Val96] into parallel VLSI hardware also have

been developed. The regularity of these structures makes them ideal for very large

scale integration (VLSI). Although some hybrid considerations on RBF and MLP

XiV

Introduction

networks have been done, there is little research reported on hardware

implementations of these hybrids.

This thesis is based on the design a Conic Section Function Neural network

which is a unified framework for the RBF and MLP networks. The work undertaken

considers improved training algorithms for CSFN in software and the implementation

of CSFN in analogue hardware.

The thesis is divided into nine chapters. In Chapter 1, overview of

feedforward neural networks with general architecture of MLP and RBF networks is

presented and Conic Section Function networks are introduced. The theoretical

equations and the learning strategies for those three networks are also described.

A new training algorithm improved during this work for Conic Section

Function neural network is introduced in Chapter 2. The parameters for the training

are derived and the equations are presented.

In Chapter 3, the necessary hardware to build a Conic Section Function neural

network is presented. The design of the various blocks required for the network is

discussed. All the designs used the Cadence design package with the Mietec 2.4um

process technology.

Chapter 4 presents and discusses the software simulation results of improved

training algorithm for CSFN. The results for two different problems, Iris plant

classification and lens fitting problem, are presented. The comparison of the CSFN

results with the back propagation, adaptive back propagation, and RBF networks

obtained using Matlab neural network toolbox are also discussed.

The hardware simulation results using Cadence package are presented in

Chapter 5. All the decision boundaries obtained by the circuits designed and the

effects of the device nonidealities and mismatches on the results are demonstrated.

The results of the various circuits designed during the work, including a

demonstration circuit, are discussed.

A comparison of hardware and software simulation results using Iris plant

database (well known pattern recognition database) are presented in Chapter 6. The

XV

Introduction

behaviour of the CSFN in hardware using the parameters obtained from software

simulation for Iris data is investigated.

Chapter 7 describes the two chips designed during this work. The design of

the various building blocks required to construct a complete CSFN chip is discussed.

Chapter 8 shows the actual results obtained from the chips fabricated.

Finally, Chapter 9 draws conclusions for both software and hardware design

and discusses the goals achieved within the presented work.

XVi

CHAPTER

1

Background Theory of The Neural

Models

In this chapter a brief introduction to feed forward neural networks is

given. The particular types of these networks - Multilayer Perceptron

(MLP) Network, Radial Basis Function Network (RBF), and Conic

Section Function Network (CSFN) - with the learning rules are also

described.

1.1. Feedforward Networks

A neural network is a massively parallel interconnected network of elementary

units called neurons. The inputs of each neuron are combined and the neuron

produces an output if the weighted sum of inputs exceeds a threshold value. In all

types of neural networks the problem is to map a set of input patterns to a set of

output patterns. To solve this problem at least a layer of input neurons and a layer

of output neurons are required. If the output patterns are very different from the input

patterns, as in a nonlinearly separable problem such as the parity problem, hidden

layer neurons are also needed [Her91, Rum86]. The term “hidden layer’ refers to a

layer of neurons which is not directly connected to the inputs or outputs. The neuron

interconnection pattern is perhaps the most distinguishing characteristics of a neural

Chapter 1 - Background Theory of The Neural Models

model. If the information flows through the network from input to output, without

feedback of outputs, then, the models of this class are called feedforward networks.

[Rut94, Tre89, War92]

Feedforward networks are characterized by their lack of oriented loops of

interconnections. When an input is presented to the first layer, each layer of neurons

can calculate its output based on the activations of the previous one until an output

is present at the output layer. This computation is called the propagation of the input.

Therefore, the feedforward network is a layered structure which provides a mapping

between input and output. The exact form of the function is determined by the

number of layers, the number of neurons in each layer, the activation function used

and the weights. Only the weights can be optimized to minimize the error on the

learning samples; the other settings have to be chosen before learning. The weights

are used to scale the contribution from the neuron in the previous layer. The input

to a neuron is a summation of all the weights connected to the neuron. The output

of a neuron is a threshold function of its input. The threshold (activation) function

can be chosen either as a sign function, a linear, or semilinear function, or a sigmoid

function. Since these networks have no memory, they are only capable of

implementing static mapping. Adding feedback allows the network to produce

dynamic mapping. [Bos96, Her91, Per92, Sig94, Was93]

1.1.1. Single-layer Feedforward Networks

The simplest form of a layered network has an input layer of source nodes

that projects onto an output layer of neurons, but not vice versa. Such a network

called a single-layer network, where single layer term refers to the output layer of

computation nodes (neurons). These are also known as simple perceptrons. The input

layer of source nodes is not counted because no computation is performed there. A

linear associative memory is an example of a single-layer neural network. [Hay94,

Her91]

Chapter 1 - Background Theory of The Neural Models

1.1.2. Multilayer Feedforward Networks

A multilayer feedforward network is a combination of L single-layer networks

with full connections between successive layers, as illustrated in Fig.1.1.

INPUT HIDDEN OUTPUT
LAYER LAYERS LAYER

inputs outputs

C) Processing element

Weighted connection

Figure 1.1. Multilayered feedforward network

The network shown in Fig.1.1 is fully connected in the sense that every node

in each layer of the network is connected to every other node in the adjacent forward

layer. The units of a feedforward network can be grouped into classes or layers /.

Each layer consists of units which receive their input from units in layers below its

Chapter 1 - Background Theory of The Neural Models

own and send their output to units in layers above its own. There are no connections

within the layers. [Car92, Kr693]

The x; inputs are fed into the first layer of x,, hidden units. The input units

are simply fan-out’ units: no processing takes place in these units. The activation of

a hidden unit (neuron /) is a function f, of the weighted inputs plus a bias, as given

in Eq.1.1.

Xo = SCD Wy Xp: + 8) =H Oy) (1.1)

where w;, is the weight of input i to neuron /, x,, is input i, that is, output 7 from the

previous layer, for input pattern p and 6, is the threshold value (bias). The output of

the hidden units is distributed over the next layer of x, hidden units until the last

layer of hidden units, of which the outputs are fed into a layer of x, output units (see

Fig.1.1). [K1r693, Rut94, Vys93]

By adding one or more hidden layers, the network is able to extract higher-

order statistics, for the network acquires a global perspective despite its local

connectivity by virtue of the extra set of synaptic connections and the extra

dimension of neural interactions [Chu92]. The ability of hidden neurons to extract

higher-order statistics is particularly valuable when the size of input layer is large

[Hay94].

1.1.3. Learning in Feedforward Networks

There are several different methods to set synaptic weights and threshold

values in feedforward networks. Learning methods may be grouped as supervised and

unsupervised, with a great many paradigms implementing each method. There are

also hybrid approaches including both algorithms.

Chapter 1 - Background Theory of The Neural Models

1.1.3.1. Supervised learning

The most common examples of this learning rule is the original Perceptron

and the backpropagation of error algorithm that will be explained in the following

sections. In supervised learning algorithm, the network is taught how to respond on

a particular training set of input-output patterns ((x,,y,) vector pairs). One vector is

applied to the input of the network; the other is used as a target representing the

desired output. The (x,,y,) pairs used during training are usually assumed to be

examples of a fixed function f, for instance, y, = {x,). Training is accomplished by

adjusting the network weights so as to minimize the difference between the desired

and actual network outputs. [Hec91, Rut94, Was93]

Another commonly encountered situation is where the supervised learning

process is an iterative procedure. In iterative training, application of an input vector

causes the network to produce an output vector. This is compared to the target vector,

thereby producing an error signal which is then used to modify the network weights.

This weight correction may be general, equally applied as a reinforcement to all parts

of the network, or it may be specific, with each weight receiving an appropriate

adjustment. In either case the weight adjustment is intended to be in a direction that

reduces the difference between the output and target vectors. Vectors from the

training set are applied to the network repeatedly until the error is at an acceptably

low value. If the training process is successful, the network is capable of performing

the desired mapping. The iterative case can be described for an L-layer perceptron

by the following equations (for 1 <i<N,,,0<1<L-1):

N;

u(1+1)=-% w,(Cl+1)a(l) +6, Cla 1)

oe (1.2)

=

= wel +) a, (1)

~
 i o

Chapter 1 - Background Theory of The Neural Models

a,(l+1)=f(u,(l+1) (1.3)

where a,(1)(u,(1)) denotes the activation function value (net input) of jth neuron at the

ith layer; 0,(1) (or wio(1)) is the bias of the jth neuron at the /th layer; w;(1) implies

the weight value linked between the ith neuron at the /th layer and the jth neuron at

the (/-1)th layer: and f is the nonlinear activation function. [Hwa91, Was93]

1.1.3.2. Unsupervised learning

Unsupervised or self-organized learning algorithms use patterns that are

typically redundant raw data having no labels regarding their class membership, or

associations. In this mode of learning, the desired response is not known and, there

is no external teacher or critic to oversee the learning process. Thus, explicit error

information cannot be used to improve network behaviour. Since no information is

available as to correctness or incorrectness of responses, the network must discover

itself any possibly existing patterns, regularities, separating properties, etc.

Unsupervised learning requires only input vectors to train the network. During the

training process the network weights are adjusted so that similar inputs produce

similar outputs.

The most common technique of unsupervised learning is to perform clustering

as the unsupervised classification of objects without providing information about the

actual classes. One possible network adaptation rule is that a pattern added to the

cluster has to be closer to the centre of the cluster than to the centre of any other

cluster.

The competitive learning rule also can be used to perform unsupervised

learning, using a neural network that consists of two layers, namely, an input layer

and a competitive layer. The input layer receives the available data. The competitive

Chapter 1 - Background Theory of The Neural Models

layer consists of neurons which compete with each other for the opportunity to

respond to features contained in the input data. In its simplest form, the network

operates in accordance with a "winner-take-all" strategy, that is, the neuron with the

greatest total input wins the competition and turns on; all the other neurons turn off.

[Hay94, Was93, Zur95]

1.1.4. The Delta Rule

This rule has been applied most often with purely linear output units. For such

a perceptron with a single output unit, the output is simply given by

Oo =D, w, x, + 8 (1.4)
J

The error function, which measures how far away the network is from the solution

set, as indicated by the name least mean square, is the summed square error. That is,

the total error, EZ, is defined to be

E- E°-1¥9 @? - 0% (1.5)
P 2 >

where the index p ranges over the set of input patterns and E” represents the error on

pattern p. The variable @’ is the desired (or target) output when pattern p is presented,

and o” is the actual output for this pattern. The LMS procedure finds the values of

all the weights that minimize the error function by a method called gradient descent.

The idea is to make a change in the weight proportional to the negative of the

derivative of the error as measured on the current pattern with respect to each weight:

OE?
AWW; = Lea (1.6)

J

where y is a constant of proportionality. The derivative is

Chapter 1 - Background Theory of The Neural Models

OE? _ OE? do? (1.7)

oo? |
Bw. = x; (1.8)

j

and

Pp GET 2 o(d bee aby (1.9)
do?

such that

= 1.10 AY; yx, (1.10)

where 6” = d@’ - o” is the difference between the target output and the actual output

for pattern p.

The delta rule modifies appropriately for target and actual outputs of either

polarity and for both continuous and binary input and output units.

1.2. Multilayer Perceptron

Multilayer Perceptrons (MLPs) are the most common neural network model,

consisting of successive linear transformations followed by processing with nonlinear

activation functions. They have been used successfully in a variety of information

processing problems including pattern recognition, image processing, nonlinear

control, and prediction of chaotic time series. MLPs represent a generalization of the

single layer perceptron which are only able to construct linear decision boundaries

and solve simple logic functions. However, by cascading perceptrons in layers

complex decision boundaries and arbitrary Boolean expressions can be implemented.

Chapter 1 - Background Theory of The Neural Models

They are also capable of implementing nonlinear transformations for function

approximation. Their major weakness lies in the extremely slow learning rates, that

is in the number of training epochs the network requires to perform the desired

mapping. [Hay94, Hus92, Hus93, Lip87]

The network consists of a set of sensory units (source nodes) that constitute

the input layer, one or more hidden layers of computation nodes, and an output layer

of computation nodes. Each layer computes the activation function of a weighted sum

of the layer’s inputs. The input signal propagates through the network in a forward

direction, on a layer-by-layer basis.

A multilayer perceptron has three distinctive characteristics:

1. The model of each neuron in the network includes a nonlinearity at the

output end. The important point to emphasize here is that the nonlinearity is smooth,

that is differentiable everywhere. The commonly used form of nonlinearity that

satisfies this requirement is a sigmoidal nonlinearity defined by the logistic function

given below.

1
= 1.11

0 1 + exp(-v,) oe)

where v, is the net internal activity level of neuron j, and y, is the output of the

neuron.

2. The network contains one or more layers of hidden units that are not part

of the input or output of the network and they enable the network to learn complex

tasks by extracting progressively more meaningful features from the input patterns.

3. The network exhibits a high degree of connectivity determined by the

synapses of the network. A change in the connectivity requires a change in the

weights of synaptic connections.

Chapter 1 - Background Theory of The Neural Models

1.2.1. Learning in Multilayer Perceptrons

The learning problem for MLPs can be viewed as a nonlinear optimization

problem in which the goal is to find the set of network weights that minimize the

error function on the available prototypes. The computational requirements of the

multilayer perceptrons can be divided into two categories [Car92, Hay94, Mye93]:

(1) evaluation of the output of the net (forward pass);

(2) evaluation of an updated set of weight values for the net, as defined by

the training algorithm (backward pass).

In the forward pass, for each input/output pair, the input pattern is applied by

setting the states of the input units. A forward route is taken through the network and

the total input to a unit is defined as usual to be the total of all the inputs from the

other units. For the forward pass, the computation required at each node is shown in

Pre fez:

Figure 1.2. Simple neuron model

For evaluation of the net output, referring to the Fig.1.2, the following

computations are required for neuron /:

- Summation of weighted inputs plus a threshold ¢, of neuron j to form 9;:

10

Chapter 1 - Background Theory of The Neural Models

=) wy yt t (1.12)

- To evaluate the activation function output, the sigmoidal function given by Eq.1.11

is used. During the forward pass the synaptic weights of the network are all fixed.

In the backward pass, the process is reversed, starting at the output layer and,

armed with the actual and required output patterns, an error value can be found for

each output unit. The procedure is worked backwards through the layers and the error

is used to apply the appropriate weight changes to each unit in the network. During

the backward pass, the synaptic weights are all readjusted in accordance with the

error correction rule which is known as error back-propagation algorithm. Fig.1.3

illustrates the stage of these two passes for the back-propagation method.

Forward Pass

Apply
input

pattern

Update states
of units
in network

Result at
output layer

Compare
results

Desired result

Backward Pass

Use error to apply
weight changes Difference is
 the error back through

the network
Figure 1.3. The stages of the forward and backward pass for the

error back propagation method

be

Chapter 1 - Background Theory of The Neural Models

1.2.2. The Back-propagation training algorithm

Back-propagation algorithm is perhaps the most widely used training

procedure for feedforward neural networks. It is an iterative optimization of the error

function representing a measure of the performance of the network. The algorithm

cycles through the training data as follows.

- Initialization. Start with a reasonable network configuration, and set all the

synaptic weights and threshold levels of the network to small random numbers that

are uniformly distributed.

- Presentation of training examples.

- Forward computation. Produce output pattern and compare this pattern with

the desired output pattern and generate an error signal if there is a difference.

- Backward computation. Feed the error signal to the output neurons, and

propagate it through the network by proceeding backwards, and change the weights

and thresholds on basis of the error signal to reduce the difference between the output

and the target.

- Iteration. Iterate the computation by presenting new epochs of training

examples to the network until the free parameters of the network stabilize their values

and the average squared error computed over the entire training set is at a minimum

or acceptably small value.

The learning algorithm for multilayer perceptrons can be expressed using

generalized Delta Rule, also known as LMS learning procedure, and gradient descent

since multilayer perceptrons have nonlinear activation functions. [Jon96, Rie97,

Rum87, Rut94, Zur95]

12

Chapter 1 - Background Theory of The Neural Models

1.2.3. The Generalized Delta Rule

The delta rule for linear functions, which is presented in Section 1.1.4, must

be generalized for nonlinear activation functions. The activation is a differentiable

function of the total input, given by

a? = Fi?) (1.13)

in which

iP = » wa? + 0, (1.14)
a

The error measure E is defined as the overall measure of the error at the

output units:

Bas ee oy ee
Hof P (1.15)

E? = » @ - ay

where d, are the desired values while EZ” is the error for pattern p. The derivative of

the error is

hn eae (1.16)
OW, Or OW,

From the Eq.1.14 the second factor is

ar = qP (1.17)

and the error signal term is defined by

13

Chapter 1 - Background Theory of The Neural Models

Ap vt OBE riage g ae (1.18)
ai? da? di?

Here, the second factor is simply the derivative of the activation function 7

for the ith unit, evaluated at the net input i? to that unit.

oa,
oe = Fi?) (1.19)

i.

From the definition of E”

Pp
= -(d? - a?) (1.20)

a;

which is the same result obtained with standard delta rule. Substituting this and Eq.

1.19 the error signal term is obtained as follows:

5? = d? - a?)F', (i?) (1.21)

for any output unit i. It gives an update rule which is equivalent to the delta rule,

resulting in a gradient descent on the error surface if the weight change is made

according to:

AWW = votat (1:22)

Here, the weight of a connection is adjusted by an amount proportional to the

product of an error signal 5, on the unit i receiving the input and the output of the

unit 7 sending this signal along the connection.

If the activation function .Y is the sigmoid function as defined in Eq.1.11:

14

Chapter 1 - Background Theory of The Neural Models

Gps FU) = a (1.23)

l+e"

In this case the derivative is equal to

Fi?) = aP(1 - a’) (1.24)

such that the error signal for an output unit can be written as:

5? = (d? - aP)aP(1 - a?) (1.25)

The error signal for a hidden unit is determined recursively in terms of error

signals of the units to which it directly connects and the weights of those connections.

Again for the sigmoid activation function:

bP = Fi?) 5,? wy = a1 - a?) yy? Wai (1.26)
h h

where the gradient descent rule gives the input to hidden connections.

1.2.4. Adaptive learning rate and momentum

The learning procedure requires that the change in weight is made by gradient

descent rule. This can be very slow if learning rate y is small. Practically, y is chosen

as large as possible without leading to oscillation. One way to avoid oscillation at

large y is to make the change in weight dependent of the past weight change by

adding a momentum term, a, as a constant which determines the effect of the

previous weight change:

Aw,(t + 1) = y6? a? + wdw,(t) (1.27)

where ¢ indexes the presentation number.

15

Chapter 1 - Background Theory of The Neural Models

When no momentum term is used, learning takes a long time before the

minimum has been reached with a low learning rate, whereas for high learning rates

the minimum is never reached because of oscillations. When adding the momentum

term, the minimum will be reached faster. [Kr693, Zur95]

1.3. Radial Basis Functions

The Radial Basis Functions (RBF) approach to approximating functions

consists of modelling an input-output mapping as a linear combination of radially

symmetric functions [Bot91, Bro88, Pog90]. Functional estimation is an important

problem in data analysis and pattern recognition problems. The properties of RBF’s

are attracting a great deal of interest due to their rapid training, generality, and

simplicity. Although closely related, these networks have been given such diverse

names as "localized receptive fields", "locally-tuned processing units" [Moo88,

Moo89], "Gaussian potential functions" [Lee91], and "regularization networks"

[Pog90]. RBF networks have been used successfully for learning difficult input-output

mapping such as phoneme recognition, digit classification, hand printed character

recognition, and time series prediction.

Like the standard multilayer perceptron (MLP), the architecture of RBF is also

motivated by biological neural networks since locally-tuned representations are

common in both biological and artificial neural networks. Neurons with response

characteristics which are "locally-tuned" or "selective" for some range of the input

variables are found in many parts of nervous systems. For example, the cochlear

stereocilia cells have locally-tuned response to frequency, while cells in the visual

cortex respond selectively to stimulation from localized regions of the body surface

[Moo88, Moo89]. It should be noted that the receptive field of a neuron in the visual

cortex (and other areas) of the human brain is determined by the connectivity of the

neuron, that is, the extent over which the dendrites of a neuron connect to adjacent

16

Chapter 1 - Background Theory of The Neural Modeis

neurons while the basis function network’s receptive field range is controlled by the

shape of the exponential weighting function.

In the context of a neural network, the hidden units provide a set of "kernel

functions" that constitute an arbitrary "basis" for the input patterns (vectors) when

they are expanded into the hidden-unit space; these kernel functions are called radial

basis functions. These are generally non-linear functions that are built up into one

function that can partition the pattern space successfully using hyperspheroids. Each

kernel is associated with an activation region from the input space with respect to the

data sample local densities and its output is fed to an output unit [Bor96, Hay94].

C 3)

x F(x)

Figure 1.4. Single neuron for RBF network

Fig.1.4 shows the simplified neuron case which is one-dimensional basis

function. Here, a hidden layer neuron has only a single input, x. When x=c, the

function is 1.0 if the exponential function below is applied for this neuron.

F = exp[- (x - oc)? / 207] 1.28

Thus c determines the value of x which produces the maximum output from the

neuron: the response at other values of x drops quickly as x deviates from c,

becoming negligible in value when x is far from c. From this it may be seen that the

output has a significant response to the input x only over a range of values of x called

the receptive field of the neuron, the size of which is determined by the value of o.

/By analogy to the normal distribution of statistics which has the same shape, c may

be called the mean and o the standard deviation of the response curve of the neuron.

17

Chapter 1 - Background Theory of The Neural Models

An RBF network which has a feedforward topology can be considered as a

two-layer fully interconnected network whose output nodes form a linear combination

of the basis functions computed by the hidden layer nodes. The network is designed

to perform a nonlinear mapping from the input space to hidden space, followed by

a linear mapping from the hidden space to the output space. The basic architecture

of the RBF network is shown in Fig.1.5. Here, inputs x,, X5,, X, Comprising an

input vector x, are applied to all neurons in the hidden layers.

INPUTS HIDDEN LAYER OUTPUT

out

Figure 1.5. Radial Basis Function Network

An RBF is a multidimensional function which depends on the distance

r= || x-c || (where || . || denotes a vector form) between the input vector x and

the centre c. The first layer of an RBF network computes this distance of the input

18

Chapter 1 - Background Theory of The Neural Models

to the network to a set of stored memories. Each basis function is a nonlinear

function of a corresponding distance. The basis functions in the hidden layer produce

a localised response to the input vector. (The basis functions encode the inputs by

computing how close the inputs are to the centres of the receptive field instead of just

evaluating the weighted sum of the inputs.)

The network contains, similar to ‘the basic perceptron network, only one

hidden layer, but in contrast to the perceptron the RBF network does not extend to

more hidden layers (Moreover, hidden layer connections are not weighted, i.e. each

hidden node (neuron) receives each input value unaltered.) The hidden nodes are

processing units which perform a radial basis function. Furthermore, the activation

functions (RBFs) are, in general, nonmonotonic, in contrast to the monotonic sigmoid

function of the perceptron. However, similar to the perceptron the output unit

performs simple weighted summation of RBFs hidden layer outputs. The RBF

network computes a linear combination of the radial basis functions to give the

estimate.)

The general form of an RBF is

N

Fe) = ¥ wo (Ix - el) ae)

where

w, are the coefficients or weights of c,

The known data points c; € R°, i = 1,2,...,N are taken to be the centres of the

radial basis functions. he

{(| X-C; |)|i = 1,2,....N} is a set of N arbitrary (generally nonlinear)

functions, known as radial-basis functions. This functional form is pre-selected with

the centres c; being some fixed points in N-dimensional space appropriately spanning

the input domain.

N is the number of centres.

19

Chapter 1 - Background Theory of The Neural Models

x is the input to the network. The radial basis function technique consists of

choosing a function Y that has the above form.

The advantage of using the radial basis approach is that once the radial basis

functions have been chosen, all that is left to determine are the coefficients w,, to

allow them to partition the space correctly. In a basic RBF network the centres c,

and distance scaling (width) parameters are usually fixed (i.e. they are not adjustable

during the learning process) and only the coefficients w, (synaptic weights) are

adjustable parameters.

1.3.1. The choice of Radial Basis Functions

The type of basis function that must be used depends on the function that is

approximated. For instance, a feedforward network with two radial basis type basis

functions may be advantageous when an XOR classification is made. However, it

may be better to use sigmoidal hidden units which are global in character when a

smooth function (e.g. inverse kinematics of a robot arm) must be approximated

[Sma95].

The choice of which radial basis functions to use is usually made in one of

two ways. In the absence of any knowledge about the data, the basis functions are

chosen so that they fit points evenly distributed through the set of possible inputs. If

there is some knowledge as to the overall structure of the inputs, then it is better to

try and mirror that structure in the choice of functions. This is most easily achieved

by choosing a subset of the input points, which should have a similar distribution to

the overall input, as the points to be fitted. The typical choices for radial basis

functions are

(i) (tr) =r _ piecewise linear approximations,

(ii) (r)=r° cubic approximation,

(iii) $(r) = exp(-r?/o?) Gaussian function,

20

Chapter 1 - Background Theory of The Neural Models

(iv) (r) =r’log(r) thin plate splines,

(v) (rt) = V(@?+0?) multiquadratic function,

(vi) (rt) = (r?+0?)'’ inverse multiquadratic function,

where o is a real coefficient called the width or scaling parameter [Cic93]. Of the

above described functions the most popular and widely used is the Gaussian function

which has a peak at the centre c and decreases monotonically as the distance measure

| : | is taken to be Euclidean:

lx-c] = @-e) (1.30)

where c represents the centre of hypersphere. The Euclidean distance function,

otherwise referred to as L” norm, is only one of a large number of functions that can

be used. The L! or city block norm can be used without significantly changing the

results, but with a large reduction in the required computations. In this case the

distance function is calculated as follows:

Dey, hee ee (1.31)
k

Theoretical investigations and practical results, however, seem to show that

the type of nonlinearity $(.) is not crucial to the performance of RBF networks

[Che91]. If a sufficient number of hidden layer neurons are provided then the

nonlinear function can be well approximated by varying the centres c,, the "width"

scaling parameter o and the output layer weights.

1.3.2. Radial Basis Function network training

The RBF representation can be implemented in the form of a two-layered

network: the hidden layer with nonlinear activation functions and the linear output

layer. Training an RBF network consists in determining appropriate values for the

21

Chapter 1 - Background Theory of The Neural Models

free parameters in both layers. In other words, only the hidden layer and output layer

need to be trained. This is because the input layer acts as a fan-out only for the input

vectors and therefore all the weights on the links between the input layer and the

hidden layer are fixed to 1.0.

In general, an RBF network is specified by three sets of parameters: the

centres c,, the width or distance scaling parameters o, and the synaptic weights w,

(i=1,2,..,h). During training these adjustable parameters of the network are set so as

to minimize the average error between the actual network output and the desired

output over the vectors in a training set.) The parameters for the radial basis function

can be determined in three steps.

1.3.2.1. Locations of the centres

The vectors c, are determined in the first step of the training. The performance

of an RBF network critically depends on the chosen centres. There are many

alternatives for the determination of the location of the centres of the receptive fields.

For example, a centre and corresponding hidden layer neuron could be located at

each input ‘vector in the training set. Because training vectors tend to occur in

clusters, this method will, in general, result in more hidden layer neurons than are

necessary. The result would be long training times and slow operation during

reference, due to the large amount of computation required. The simplest technique

is to choose centre vectors randomly from the subset of training data. However, in

such a case the number of hidden units must be relatively large in order to cover the

entire input domain.

A better approach, the K-means clustering algorithm, finds a set of cluster

centres and a partition of the training data into subsets. Each cluster centre is

associated with one of the / hidden units in the RBF network. The basic idea of this

algorithm is to distribute the centres c; according to the natural measure of the

22.

4

*.

Chapter 1 - Background Theory of The Neural Models

attractor, i.e. if the density of data points is high so is the density of centres [Cic93].

There are many clustering algorithms, some of which will be discussed in the next

section.

1.3.2.1.1. Learning algorithms for RBF network

An advantage of the RBF network is that linear learning laws can be derived.

Many such learning algorithms have been developed for RBF networks [Che89].

(i) Least Squares algorithm with fixed centres [Bro88] :

The location of the RBF centres are randomly selected from network input

data or from the region where input data exist. This is considered to be a sensible

approach, provided that the training data are distributed in a representative manner

for the problem at hand. Once the centres have been fixed, the least squares algorithm

is used to identify weights in supervised mode.

(ii) Orthogonal Least Squares algorithm [Che91] :

This is a powerful constructive algorithm based on a block of training data.

The algorithm identifies appropriate RBF centres from the training data and estimates

the corresponding weights simultaneously in an efficient manner. It will be explained

further in a separate section because it has been used in this work.

(iii) Recursive clustering and LS algorithm [Che91, Moo88] :

In this algorithm, the RBF centres are adjusted using a recursive clustering

algorithm and the weights are updated using the recursive least squares algorithm. In

this approach, the radial basis functions are permitted to move the locations of their

‘\. centres in a self organized way, whereas the linear weights of the output layer are

‘. s : .
computed using a supervised learning rule. In other words, the network undergoes a

‘

23

Chapter 1 - Background Theory of The Neural Models

hybrid learning process. The self organized component of the learning process serves

to allocate network resources in a meaningful way by placing the centres of the radial

basis functions in only those regions of the input space where significant data are

present.

(iv) Dynamic complexity learning algorithm [Kad92] :

In this recursive learning procedure, whether to add a new basis function to

the network is based on the angle formed between a new basis function and the

existing basis functions and the prediction error.

1.3.2.2. Determination of the scaling parameter

In this second step of the training, the scaling parameter o; is the determined

for every RBF unit by the P-Nearest Neighbour heuristic [Cic93]. For the

determination of this parameter the P-nearest cluster centres are located and the

distances between the current cluster centre and those P-nearest cluster centres are

then combined into the width parameter o. The diameter of the receptive region,

determined by the value of o, can have a profound effect upon the accuracy of the

system. The object is to cover the input space with receptive fields as uniformly as

possible. If the spacing between centres is not uniform, each centre may have its own

value of o. If the centres are widely separated from others, o must be large enough

to cover the gap, whereas, if the centres are close to others o must be small to

represent the cluster accurately. Once the clusters centres and widths are found, these

remain unchanged throughout the rest of training and testing of the network.

1.3.2.3. Training of the weights

The weight matrix also must be trained after the centres and widths of each

hidden layer neuron are assigned values. In this final stage, an appropriate set for the

24

Chapter 1 - Background Theory of The Neural Models

weighted connections of the hidden layer is determined by the Linear Least Squares

method using the matrix of hidden layer and the training output data, so that it

minimises or reduces the error to a desired value. The generalized Least Squares

method is implemented with the Singular Value Decomposition algorithm, which

guarantees the optimum solution. [Hol91]

1.4. Comparison of Multilayer Perceptrons and RBF Networks

Multilayer perceptrons and radial basis function networks are both examples

of nonlinear layered feedforward networks and they are both universal approximators.

The main difference between these two network is the characteristics of their hidden

units. The MLP is based on units with non-local activation functions such as

sigmoidal basis functions whereas the RBF is based on units with local activation

functions such as Gaussian. The former unit type leads to decision regions that cover

an infinite portion of the space, whereas the latter results in bounded hyperspherical

decision regions, in other words, RBF type of units only cover small localized

regions.)Which of the two types of decision regions is the most appropriate depends

on the data distribution of a given application. [Dor94a, Hir93]

An RBF network (in its most basic form) has a single hidden layer, whereas

an MLP may have one or more hidden layers. In RBF networks, the connections

between input layer and hidden layer are not weighted while those are weighted for

an MLP network.| [Hay4, Bea90]

The activation function of each hidden unit in an MLP computes the dot

product of the input vector and the synaptic weight vector of that unit. However, the

activation function of each unit in an RBF network computes the distance (usually

in Euclidean norm) between the input vector and the centre of that unit.

The hidden layer of an RBF network is mostly nonlinear, whereas the output

layer is linear. On the other hand, the hidden and output layers of an MLP used as

25

Chapter 1 - Background Theory of The Neural Models

a classifier are usually all nonlinear: however, when the MLP is used to solve

nonlinear regression problems, a linear layer for the output is usually the preferred

choice.

MLPs construct global approximations to nonlinear input-output mappings.

Consequently, they are capable of generalization in regions of the input space where

a little or no training data are available. On the other hand, RBF networks using

exponentially decaying localized nonlinearities (e.g. Gaussian functions) build local

approximations to nonlinear input-output mapping, with the result that these networks

are capable of fast learning and reduced sensitivity to the order of presentation of

training data. In many cases, however, in order to represent a mapping to some

desired degree of smoothness, the number of radial basis functions required to span

the input space adequately may have to be very large. [Hay94]

The important advantage of the RBF network is that it offers training times

one to three orders of magnitude faster than the standard back-propagation algorithm

used for the multilayer perceptron of similar power and generality. It also can

guarantee convergence. | MLP is preferred to RBF when the dimensionality of the

input space is high since the number of radial basis functions increase exponentially

with the dimension of the input space.) This implies that the location of the centres

of the basis function should be chosen with considerable care. However, to determine

precisely where to locate the centres of the RBF networks, prior information is

needed about the magnitudes of the input signals. The MLP does not require such

information. In this case, MLP provides a more efficient solution. (Whi92, War92,

Bea90]

1.5. Conic Section Function Neural Networks

The conic section function neural network (CSFN), first described by

Dorffner, is a novel neural network model based on the observation that both

26

Chapter 1 - Background Theory of The Neural Models

hyperplane (straight line) and hypersphere (circle) are special cases of the conic

section function. These are the decision boundaries of MLP and RBF, respectively.

There would be intermediate types of decision boundaries such as ellipses, hyperbolas

or parabolas in between those two cases which are also all valid for decision regions. |

The idea brought forward by Dorffner is to generalize the function of a unit

to include all these decision regions in only one network, providing a relationship

between an MLP unit and an RBF unit. The CSFN is capable of making automatic

decisions with respect to open (hyperplane) and closed (hypersphere) decision regions

and can use these regions wherever appropriate. Furthermore, the type of region

depends on the data distribution of a given application. [Dor94, Dor94a]

The novel conic section function network has many advantages. Learning is

faster by properly initializing nodes to serve either as radial basis functions or as

hyperplane separators. It combines the speed of hyperspherical networks with the

error-minimization of back-propagation. Furthermore, it is more efficient for more

complex problems and higher dimensional inputs. Although RBF converges quicker

than MLP, it is time-consuming when the dimensionality of the input space is high,

since the number of radial basis functions increases exponentially with the dimension

of the input space. In this case, MLP is preferred. The CSFN allows more optimal

neural network solutions with respect to a given application.

1.5.1. Local or global representations and types of decision regions

Artificial neural networks may be categorized in many different ways and for

some purposes such as classification and neurocontrol the differentiation between

local and global generalization is useful. Network generalization is global if one or

more of the network weights can affect the network output for any and every point

in the input space. MLPs are examples of globally generalizing networks, but at the

expense of slow learning and network wide learning interference, whereas local

generalization occurs in networks for which only a few weights affect the network

27

Chapter 1 - Background Theory of The Neural Models

output response for point within a local region of the input space. RBF networks are

the examples of localized ones, in which learning interference is minimized and

learning is relatively fast owing to the minimum of the weights (only the output

layer’s weights) to be updated. [War92]

(a) (b)

Figure 1.6. (a) Hyperplanar and (b) hyperspherical decision regions

Classification with neural networks can often be conveniently described in

geometric terms. If the inputs presented from two classes are separable, that is if they

lie on opposite sides of some hyperplane, then the perceptron convergence procedure

converges and positions the decision hyperplane between those two classes. Some

hyperplane decision boundaries in weight space are shown in Fig.1.6(a). MLPs with

one or more hidden layers are used to classify non-separable classes. Another type

of decision region is the localized one such as the bounded hyperspherical (e.g.

circular) decision regions. Differing from hyperplanar (open) decision regions which

cover an infinite portion of the input space, the receptive field of each unit is local

and restricted to only a small region in input space. Fig.1.6(b) illustrates the

hyperspherical (closed) decision regions.

28

Chapter 1 - Background Theory of The Neural Models

1.5.2. Conic sections

Conic sections are the shapes obtained when a right circular cone, which has

its vertex above the centre of its base, is cut along a plane at various angles to the

cone’s axes. In other words, the conic sections are formed from the intersection

between a cone and a plane. Mathematically, conic sections are all variations of one

basic shape.

DE te |

CIRCLE ELLIPSE PARABOLA HYPERBOLA

Figure 1.7. Plane sections of a cone

The possible sections of a right circular cone with a plane are illustrated in

Fig.1.7, which gives the intersection curves, forming ellipses, parabolas, and

hyperbolas respectively. There are also circles, which can be considered as a special

case of ellipses where the cutting plane is perpendicular to the axis of cone shown

in Fig.1.7(a).

Zo

Chapter 1 - Background Theory of The Neural Models

More formally, conic sections are the loci of points in a plane where the ratio

of the distance from a fixed point (the focus) to a fixed line (the directrix) is a

constant. The shape of the curve is determined by this ratio, which is called the

eccentricity and is denoted by e. If 0<e<1, the conic section is an ellipse. If e=1, it

is a parabola and if e>1, it is a hyperbola. Fig.1.8 shows the conic sections with

variable eccentricity.

Figure 1.8. Conic sections with variable eccentricity

The definition of the curves can also be expressed by angles. Let a be the

angle between the axis of a right circular cone and its element (the generating lines)

and 0 be the (smaller) angle formed by the axis of the cone and the cutting plane,

and let d be the distance from the vertex of the cone to the cutting plane. The

relation of « and 0 defines the shape of the curve. d affects the scaling or size of the

curve, except when d=0 (degenerate conics case). The magnitude of d is proportional

to the size of the curve. The following cases are formed:

If 8 < a, hyperbola; and if d = 0, two non-parallel lines.

If 8 = a, parabola; and if d = 0, a line.

If 8 > a, ellipse; and if d = 0, a point.

In similar way, the transitions between straight lines to circles via the

intermediate conic sections can be explained by the variation of the opening angle,

2 which is the angle between two opposite surfaces of the cone . Let v be the vertex

30

Chapter 1 - Background Theory of The Neural Models

of the right circular cone. A certain opening angle, 2, is obtained depending on the

height of v . If the height of v equals to the radius of the circle (in case that the

intersection of the cone and plane is a circle), @ is 45 degrees. The shape of the

conic section curve changes with the variations of the opening angle, w. The circular

shape turns first into an ellipse, then into a parabola, and a hyperbola by increasing

w@. When @ equals to 90 degrees the intersection of the cone and the plane changes

into a straight line.

1.5.3. Conic Section Function Network

The idea of the conic section function neural network is to provide a

unification between RBF and MLP networks. The new propagation rule (which will

consist of RBF and MLP propagation rules) can be derived using analytical equations

for a cone. Let x be any point on the surface of the right circular cone. @ can be any

value in the range [-72/2,7/2], v vertex of the cone and a the unity vector defining the

axis of the cone. Thus the equation of the circular cone is

(¥ - ¥) & = cosw|x - v| (1.32)

Fig.1.9 shows a three-dimensional cone with vertex V and opening angle 2m

intersecting by a plane forming a circle, a parabola, and a straight line by varying the

opening angle 2 in two-dimensional space. The angle changes depending on how

high the vertex is. In this figure, straight line (hyperplane) and circle (hypersphere)

represent the decision borders for MLP and RBF, respectively. Other type of decision

borders, such as ellipses and parabolas, represent the intermediate functions.

If the coordinates of the points and vectors are defined by x=(x,,x,), V=(V;,V>)

and a=(a,,a,) for two dimensional space, Eq.1.32 can be written as below

(x,-v,)a,+(x,-v,)a, = cosw (x, -v,)P +(x, =V,)" (1.33)

a1

Chapter 1 - Background Theory of The Neural Models

) 5
Figure 1.9. Three different cones with vertex V and opening

angle 2@ intersecting by an input plane forming variable decision
boundaries - a circle, a parabola, and a straight line.

The propagation rule of conic section function network is described using

Eq.1.33. First of all, the following form is obtained for n-dimensional input space.

n+1
aa

De (x;-v,) a; = cosw [5 ony (1.34)

ae i=l

This form gives the equation for the intersection between the cone and the

input space if the coordinate system is set such that n dimensions are identical to the

n dimensions of the input space by setting x,,,=0. The centre coordinate of the circle

c can be used instead of the coordinate of vertex v since the distance between the x

: point and the vertex v equals to the radius of the circle when the opening angle, 2w,

Chapter 1 - Background Theory of The Neural Models

is 90 degrees. Subtracting the right hand side from the left hand side, the propagation

rule of the CSFN is obtained as

n+1 n+1

Vee », (x,-¢,)a,, - cosa, » Grey (1.35)

Xie =e
n+1

where a; refers to the weights for each connection between the input and hidden layer

units in an MLP network, and ¢; refers to the centre coordinates in an RBF network,

i and j are the indices referring to the units in the input and hidden layer,

respectively, and y, are the activation values of the CSFN neurons. As can be seen

easily, this equation consists of two major parts analogous to the MLP and the RBF.

The equation simply turns into the propagation rule of an MLP network, which is the

dot product (weighted sum) when the @ is 1/2. Second part of the equation gives the

Euclidean distance between the inputs and the centres for an RBF network. Fig.1.10

illustrates the structure of a Conic Section Function Network .

1.5.4. Conic Section Function Network training

Training occurs in two phases: Initialization of a CSFN and learning with a

cone folding. The principle of a CSFN is that the cone of each hidden unit can be

adapted so as to make an automatic decision on the most appropriate region

boundary. This can be achieved by varying the parameter @ between 1/2 (MLP case)

and 7/4 (RBF case). The network can be started with an initialized MLP, with a

pretrained MLP, or with an RBF. Multilayer perceptron can be initialized by setting

decision boundaries between data points or clusters [Smy92, Wey94, Dor94] in

analogy to initialization of RBF. Once the weights and the thresholds of a hidden unit

are set at random or after a cluster analysis, the hidden layer to output weights can

be set using the Delta rule (for the linear associator between hidden and output

35

Chapter 1 - Background Theory of The Neural Models

INPUTS HIDDEN LAYER QUTPUT

Figure 1.10. Conic Section Function Network

layers), or the whole network can be trained by standard back propagation using the

preset weights as starting points.

In the initialization with a pretrained MLP case, an MLP trained by back

propagation is assumed. The weights and centres of all hidden units must be set. This

time the weights are initialized using the weights derived from training. The centre

values are initialized by cluster analysis.

For MLP initializations, the adaptation of the cone can achieve the closing of

initially unbounded decision regions. Opposite to this, the third case of the

initialization is to start the network with an RBF, then, the hyperspherical decision

regions are turned into the open ones wherever appropriate.

34

Chapter 1 - Background Theory of The Neural Models

The cone folding is used to improve or prune a network starting off as one

of the three types initialization. To adapt @, gradient descent algorithm is applied as

a learning rule. There are also mixed training strategies involving back propagation,

however, these techniques are only advised for fine tuning due to the computational

complexity. [Dor94a]

35

CHAPTER

2

Conic Section Function Neural Network

Training

An improved training algorithm for Conic Section Function Neural

network is introduced in this chapter. The details of the Orthogonal

Least Square Algorithm and determination of the parameters are

presented. Two different methods have been used for the training.

These methods are also explained in detail.

2.1. Why Conic Section Function Networks?

As described in the previous chapter, conic section function network (CSFN)

is a novel neural network model based on observation that both hyperplane and

hypersphere are special cases of conic section functions. These are the decision

boundaries of MLP and RBF, respectively. There would be intermediate types of

decision boundaries such as ellipses, hyperbolas or parabolas in between those two

cases which are also all valid for decision regions. The main idea of the use of CSFN

is to generalize the function of a unit to include all these decision regions in only one

network, providing a relationship between an MLP and an RBF unit. The CSFN is

capable of making automatic decisions with respect to open (hyperplane) and closed

(hypersphere) decision regions and can use these regions wherever appropriate,

depending on the data distribution of a given application.

36

Chapter 2 - Conic Section Function Neural Network Training

There are many advantages arising from the conic section function network

training algorithm presented here. It combines the error-minimization of back

propagation with speed of hyperspherical networks so that learning is faster than

MLP. It is more efficient than standard RBF for problems with higher dimensional

inputs. The number of RBF hidden nodes increases exponentially with the input space

dimensionality so that RBF is time-consuming if the number of inputs is large. In this

case, MLP is preferred to RBF but CSFN is better than either alternative.

2.2. Conic Section Function Neural Network Training

The main learning process involves the determination of the centres and

updating weights, centres, and the vertex angle of cone, ®, appropriately. The centres

are determined using orthogonal least squares learning algorithm [Che91] which is

based on choosing radial basis function centres one by one in a rational way until an

adequate network has been constructed. The weights from input layer to hidden layer

are set to 0. The weights from hidden layer to output layer are initially produced

using the output of the hidden layer and the training data by applying a linear

function. The vertex angle is chosen in such a way that the network would start as

RBF. Then, the weights, centres and angle values are updated using error back

propagation so that the network would converge quickly.

2.3. Derivation of The Parameters

Activation function of Conic Section Function Network (CSFN) can be

n+] nt] (2 1)
a rd a ben \2 : Y= 2, G,, ¢,)W-COS@, 2, Gp, Cy)

expressed as follows

37

Chapter 2 - Conic Section Function Neural Network Training

where a,=x,; if unit 7 is an input unit, c, are the centres for the RBF network, w, are

the weights in an MLP, w is the half opening angle, which can be any value in the

range [-n/2,7/2] and determines the different forms of the decision borders, i and j

are the indices referring to units in the input and the hidden layer and p refers to the

number of the patterns. In the work presented here the output layer has weights only

and no RBF contribution. The terms and the connections used in the training

algorithm are basically shown in Fig.2.1.

i=l O

i: input nodes

J : hidden nodes
k : output nodes
p : number of patterns

cos®,=0 for all_k

Figure 2.1. Block diagram of CSFN for training

2.3.1. Placement of the centres using Orthogonal Least Square Algorithms

An orthogonal least squares (OLS) algorithm is used for selecting and

optimally locating a minimal number of hidden neurons to avoid oversize problems

which occur frequently when the centres are randomly selected. The OLS method is

a recursive algorithm for selecting a suitable subset of data points as radial basis

38

Chapter 2 - Conic Section Function Neural Network Training

function centres. The problem of how to select a suitable set of RBF centres from the

data set can be regarded as an example of how to select a subset of significant

regressors from a given candidate set. The training starts with no hidden units. New

hidden units are added to the network at each step of the procedure until the desired

error level is reached. [Che91, Hay94, Leh95, She96]

The OLS algorithm is established in linear regression models, according to

which a desired output d(n) is defined by

M

d(n) = ¥~ p(n) 8, + e(n) , n = 1,2,....,N (2.2)
i=l

where the 0; are the model parameters, the p(n) are the regressors which are some

fixed functions of x(n):

PAn) = p(x) (2.3)

e(n) is the error signal assumed to be uncorrelated with the regressors p(n). The RBF

network is viewed as a special case of the linear regression model given by Eq.2.2.

Using the following matrix notation, Eq.2.2 is rewritten as

d=P0Q+E (2.4)

where

d = [d(1), d(2),...,d(N)]"

y my [P, P25---sPul

© = [0,, 05,..-,9 m1”

P; = [p,(1), p(2),-.-P(N)]" l<i<M

E = [e(1), e(2),...,e(N)]"

The regressor vectors p; form a set of basis vectors and the least square

solution © satisfies the condition that the matrix product PO be the projection of d

onto the space spanned by the orthogonal basis vectors w,. In other words, the square

of the projection P@ is part of the desired output energy that can be counted by the

regressors [Che91].

39

Chapter 2 - Conic Section Function Neural Network Training

The orthogonalization process ensures that each new column added to the

design matrix of the growing subset is orthogonal to all previous columns. In OLS,

the regressor vectors p, are transformed into a corresponding set of orthogonal basis

vectors, and thus makes it possible to calculate the individual contribution to the

desired output energy from each basis vectors denoted by w; = [w,, W>,....Wy]. The

regression matrix P can be decomposed into (see [Che91])

P = WA (2.5)

where A is an M x M triangular matrix with 1’s on the diagonal and 0’s below the

diagonal and W is an N x M matrix with orthogonal columns w, such that

wt W=H (2.6)

where H is diagonal with elements h;:

N
h, = w,tw, = >> wd) w,0), 1<i<M (2.7)

t=1

The space spanned by the set of orthogonal basis vectors w, is the same space

spanned by the set of p;, and Eq.2.4 can be rewritten as

d=Wg+E (2.8)

The orthogonal least square solution ([Che91]) is given by

Ros H'wW'd (2.9)

g,=w'd/(wiw), 1<i<sM (2.10)

The classical Gram-Schmidt method computes one column of A at a time and

orthogonalizes P as follows: at the kth stage make the kth column orthogonal to each

of the k-1 previously orthogonalized columns and repeat the operation for k=2,...,M.

The computational procedure is shown by

40

Chapter 2 - Conic Section Function Neural Network Training

Wa Ries
wp

i fk .
a, = : l<i<k

Fo why, (2.11)
k-1

Wem Py S O 5,W;
i=1

where k = 2,...,M.

In the case of RBF networks, the number of data points x(n) is often very

large and centres are to be chosen as a subset of data set. In general, the number of

all the candidate regressors, M, can be very large and an adequate modelling may

only require M, (<< M) significant regressors. These significant regressors can be

selected using the OLS algorithm operating in a forward regression manner. The sum

of squares or energy of d(n) is

M
d'd =) g}w,'w, + E'E (2.12)

i=]

and an error reduction ratio due to w, can be defined as

e, = g-witw, | (d7d), 1<i<M (2.13)

The forward regression selection procedure is summarized as follows:

- At the first step, for 1 < i < M, compute

A ee a Loic (2.14)
(ww

[err], = (8°Y'w,,) A / (d Td)

Find

[err], = max { [err], , lsisM} (2.15)

and select

4]

Chapter 2 - Conic Section Function Neural Network Training

eee aD)
We awic Dy

- At the kth step where k > 2, for 1 <i < M, i # ij,....i # i,,, compute

Oneaaar iT . Ot = w,’p; | (ww) ; Ltée Jie k
k-1

@e= se. > (o)
Ww," = P; 2 O ie Ww;

a

i i)\ T yy T ee. is (w,”) d / (w,°) w

[err], = @°y'Cw,,)"wO | 7d)

Find

ferro = max. ler pd sh x Masi Fi, Sue be ig}

and select

k-1
ee GBS i

peak Puss Oi;
Jat

where a, = 04°", 1 <j <k.

The procedure is terminated at the M,th step when

M.
s

cn > [err]; < p
j=1

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

where 0 < p <1 is a chosen tolerance. This gives rise to a subset model containing

M, significant regressors [Che91].

In this work, a logarithmic sigmoid function involving with an Euclidean

distance function was used as the regressors p,(n). At the first step, for 1 < i < M,

first centre is placed and the error term is calculated using the equations above. At

the k step, the centres are added one by one until an adequate network has been built.

42

Chapter 2 - Conic Section Function Neural Network Training

2.3.2. Updating weights

The activation function in feedforward networks is defined as

Gy jj O,) Cay

The measure of the error for input/output pair p is given by the sum of

squared errors at the outputs

ry (d,,-a,)° (2.22)

and the general rule for adapting the weights is described by

OE
NS ee (2.23)

ji

The gradient component depends only on the y,; of a single neuron, since the

error at the output of the j’th neuron is contributed to only by the weights w;;, for

i=1,2,..,1, for the fixed j value. Using the chain rule the derivative can be written as

OE, _ 3, Hy ads
aw, dy, ow,

The second term of the product of the Eq.2.24 is the derivative of the dot

product including centres as well as weights and distance function as in Eq.2.1.

by, | ge a 5 2.25
a = aw, ¢ > @, 4 C4) COS, D, Gpi-Cy)] Cor

Since the values a and c;., for i=1,2,..,I, are constant for a fixed pattern at the
ij ?

input, the following equation is obtained:

a8 = (4,0) (2.26)
ji

43

Chapter 2 - Conic Section Function Neural Network Training

The error signal term 5, produced by the j’th neuron is also defined as follows

E
Cas oa (2.27)

The equations for the weight adjustment can be rewritten using the error

signal terms 6 as below

OE
oe ne

ie, 6,4, Cj) 223
ji

AWW = 6,(4,- Ci) (2.29)

Eq.2.29 relates the general formula for delta training/learning weight

adjustment for a single layer network. To update the weights , the delta terms must

be computed for the j’th neuron. The chain rule, therefore, is applied as follows.

5 : (2.30)
OY, Oa, OY,

The second term in Eq.2.30 shows the change in the output as a function of

changes in the input, which is a derivative of the activation function as given below.

Oa...
i. = I, 0, (2.31)

To compute the first term, two different cases are considered. For an output

unit of the network:

aE
DE Me a ut Caz)
Pj

Replacing the terms from Eq.2.31 and 2.32 in Eq.2.30,

4 = / i
by = ,-4,) fj Op) Ge)

is obtained for any output unit.

44

Chapter 2 - Conic Section Function Neural Network Training

The adjustment of weights leading to neuron j in the hidden layer is

proportional to the weighted sum of all 6 values at the output layer of nodes

connecting neuron j with the output. All output layer error terms contribute to the

adjustment of the hidden layer weights as

2 De. 5
2 By Ga,” % Big %e, 3 » a C)Wa- cosw,||a-c, |] (2.34)

Gas,

ues [ola) C,)Wy,- COS@,la-c,|] = wy- cosw.——— (2.35)

i
lla,- ¢;l|

OE
acs

= oe = +) oO. ['w,- cso.] = A (2.36)

KY OG, k la-c,l

For hidden layer units, delta terms in Eq.2.30 is rewritten to the form:

aie, .37
6, f; O,) aA Ge)

As a result, the weights updated can be expressed as follows

Aw. = 16,4, - a)
ae (2.38)

= na,(1-a,)(@,-a,)(@,- Ci)

for output units and

Aw; = n4,(1-a,).A. (a, - Ci) (2.39)

for hidden layer units using the unipolar activation function,

1
Gee (2.40)

l+exp ”

and its derivative

da... / eee m
f; ,,) eel of a,(1 a,,) (2.41)

Ys)

45

Chapter 2 - Conic Section Function Neural Network Training

The bipolar continuous activation function

Beh et oe. el Pi sn
1 + exp ”

(2.42)

can also be used.

2.3.3. Updating centres

The same procedure as in adapting weights is applied for updating the centres.

OE
Ache see (2.43)
Py de;

Applying the chain rule, the derivative is written in two parts: The change in

error as a function of the change in the net input to unit and the derivative of the net

input with respect to the centres.

: —— (2.44)
652 Oy, Oc Ges

a.- ¢, Yo _ “Wy Hcoso st! = B (2.45)
dc;; la-c,l

The centre update for hidden layer units can be written as

Ac, « a,(1- a,).A.B (2.46)

The centres in the output layer are not adapted since cos m = 0 for all k,

output nodes.

2.3.4. Updating opening angle

The rule to update the opening angle @ is described by

46

Chapter 2 - Conic Section Function Neural Network Training

ee 2 (2.47)
Bo Ow

Using the delta rule as mentioned in previous sections the derivative as a

function of the opening angle is obtained in the form of

Poe ema ea oe (2.48)

—# = ginw,. la- c,| = C (2.49)

The angle update is given for the hidden layer units by

A,@, « a, (1- a,).A.C (2.50)
Pred

The contribution of the opening angles and centres at the output layer will not

be taken into account in the training algorithm.

2.4. Summary of The Basic Training Algorithm

The training algorithm has two phases: 1) a network initialization phase with

centre placement (Phase A) and 2) an error back propagation phase (Phase B or C).

Phase A (network initialization and centre placement phase):

Step Al: The number of centres and Sum-Squared Error (SSE) chosen.

First layer weights are set to zero and the opening angle, is started from

t/4, which initializes the network as an RBF.

Step A2 : Training step starts here. A new centre is determined from the input set

using orthogonal least squares algorithm. The output of the hidden layer is

computed and used with the training set to initialize the output layer weights.

The output of the second layer is computed.

Step A3 : Sum-Squared Error is calculated.

Step A4 : Steps A2 and A3 are repeated for the required number of centres.

47

Chapter 2 - Conic Section Function Neural Network Training

Phase B (error back propagation phase):

Step B1 : The error signal vectors 5, of both layers are calculated.

Step B2 : Output layer weights are adjusted by the back propagation algorithm

(see Eq.2.38).

Step B3 : Hidden layer weights, centres and opening angle w are updated (see

Eq.2.36, 2.39, 2.45, 2.46, 2.49, 2.50).

Step B4 : The outputs of the layers are calculated.

Step BS : New SSE is computed. If this is larger than the error goal, go to step B1,

otherwise, terminate the training session.

2.5. Methods For Training

Two different algorithms for training the CSFN were proposed in this work.

The first algorithm is based on updating the weights, the centres, and the opening

angle w in the same epoch as described above. The second algorithm uses the same

Phase A (network initialization ant placement of centres) but differs in the second

phase as follows:

Phase C (error back propagation for the second algorithm):

Step Cl : A predetermined number of training epochs (i.e. Phase B) is Bfecuted but

only weights are updated; centres and angles are not changed.

Step C2 : One training epoch is executed where only the opening angles @ are

adjusted; weights and centres remain same.

Step C3 : Another training epoch is performed to update the centres; weights and

angles are not changed.

The Sum-Squared Error is computed after every training epochs. If the

network output reaches the error goal, then stop training, otherwise, go to first step.

Fig.2.2 shows the flow diagram of the basic training process without back

propagation phase. Fig.2.3 and 2.4 illustrate the flow diagrams of back propagation

phase of the conic section function training algorithm for both methods.

48

Chapter 2 - Conic Section Function Neural Network Training

START

Determine the number of centres, Sma x
Set first layer weights to O

Initialize opening angle @ for RBF

Execute Orthogonal least squares algorithm
to determine a new centre.

Compute hidden layer outputs

Initialize the output layer’s weights
Compute the output of the second layer

Calculate error E

PHASE B OR C
(BACK PROPAGATION PHASE)

STOP

Figure 2.2. Flow diagram of the basic training algorithm

Chapter 2 - Conic Section Function Neural Network Training

START PHASE B

Adjust weights of output layer

Update hidden layer weights, centres
and opening angle

Compute layers’ outputs

Calculate error E and error signal terms 6

Figure 2.3. Flow diagram of back propagation phase for the first
method.

50

Chapter 2 - Conic Section Function Neural Network Training

Determine number of training epoche, | max

Adjust welghte of output layer

Update hidden layer welghte

Compute layere’ outputs
Calculate error E and error elgnal terme

Update opening angles

Compute layere’ outpute
Calculate error E and error elgnal terme

Update centree

Compute layere’ outputs
Calculate error E and error elgnal terme

Figure 2.4. Flow diagram of back propagation phase for the

second algorithm

51

CHAPTER

3

Hardware Design for Conic Section

Function Network

The objective of this research was to design a novel VLSI hardware

for the Conic Section Function Neural Network which contains both

RBF and MLP networks. The contents of this chapter are related to

the basic building blocks needed to implement a CSFN in VLSI

hardware.

3.1. Analogue VLSI Neural Networks

Analogue VLSI implementations of artificial neural networks have been

considered by many researchers during the last few years. Extremely large and high-

speed VLSI chips can be obtained on account of rapid progress of VLSI technology.

Therefore, it is very attractive to construct large-scale artificial neural network

systems found in practical problems with neural network VLSI chips because of its

cost-effectiveness and large computing power.

Fully interconnected networks are very difficult to realize with digital VLSI

technology than with analogue technology because of the requirement of more

transistors to implement basic operations such as multiplication and addition. A

system implemented from analogue devices will occupy much less silicon area than

a corresponding digital system. However, owing to the fault tolerant nature of neural

networks it is hypothesised that analogue VLSI will allow the production of a

a2

CHAPTER 3 - Hardware Design for Conic Section Function Network

massively parallel array on a single chip. Analogue implementations have the

potential for high densities and fast operation and are more appropriate for the

transfer of highly parallel signals. In addition, nonlinearity of analogue devices allows

complex functions, such as an exponential or a square root function to be

accomplished.

The major drawback of analogue neural networks is the lack of thermal

stability. Analogue circuits are more liable to electrical problems associated with

noise while digital circuits offer high noise immunity. The design of analogue circuits

needs much more time and designer skills than is the case for digital circuits. Digital

neural networks can be very efficient when speed is not critical. However, analogue

techniques are more appropriate when speed is important and a great number of

synapses and neurons must be used.

3.2. Conic Section Function Network For VLSI Hardware

There is much research on the mapping of RBF [Sco91, And93, Chu93,

Par93] and MLP [Lon92, Tom93, Sig94, Joh95, Val96] into parallel VLSI hardware.

The regularity of these structures makes them ideal for very large scale integration

(VLSI). Although some hybrid considerations on RBF and MLP networks have been

done, there is almost no research on hardware implementations of this issue.

This research was focused on the VLSI design of analogue neural networks

with the aim of finding a novel hardware approach for a combination of RBF and

MLP in one single network using conic section functions. A VLSI implementation

of a conic section function network (CSFN), which contains both RBF and MLP in

a single circuit, was built up for this purpose.

The advantages of the CSFN are given in chapter 2. This network is also

advantageous in terms of VLSI hardware implementations since it has both RBF and

MLP units. RBF hardware requires input neurons which compute the Euclidean

distance (RBF type neurons) and output neurons which compute a dot product (MLP

53

CHAPTER 3 - Hardware Design for Conic Section Function Network

type neurons). Different applications will require different numbers of each type of

neuron depending on the number of centres and the number of classes, for instance,

4 centres and 16 classes or 18 centres and 2 classes. Fixed hardware for both these

applications would require 18 RBF type neurons and 16 MLP type neurons

(depending on output coding used). However if neurons could be switched between

RBF and MLP type behaviour only 20 neurons would be required thereby adding

greater flexibility when matching fixed hardware to different applications. The CSFN

allows this kind of switching with the capability of automatic decision making as

described in Chapter 1.

3.3. Conic Section Function Network Design

The architecture of the Conic Section Function network (CSFN) is shown in

Fig.3.1. In order to create a CSFN, a synapse and a neuron were designed.

 Vn = Veentre

V, centre

CSFN

OUT

CSFN SYNAPSE

Figure 3.1. CSFN architecture

The synapse module contains an RBF unit and an MLP unit. It is

implemented through analogue multipliers with centre and weight storage. The neuron

performs the decision making between RBF (circles) and MLP (straight lines)

54

CHAPTER 3 - Hardware Design for Conic Section Function Network

through CSF (intermediate decision borders such as ellipses, parabolas and

hyperbolas).

The proposed synapse and neuron design for CSFN are based on CMOS

current-mode circuitry and the standard differential amplifier using MOS transistors

to generate an output current proportional to the difference between two input

voltages. Although such implementations have some drawbacks such as sensitivity

to device nonideality and mismatches, the CSFN is easily realized by these circuits.

3.4. Circuit Building Blocks

At the most basic level, a simple transistor model was considered. At the next

level, a set of elementary, yet powerful analogue circuit building blocks were

designed. The basic building blocks were combined hierarchically into larger circuit

design. The voltages were used to distribute the information and the currents were

used for summation by means of Kirchhoff’s current law.

3.4.1. The transistor model

A simple MOS transistor operated in the saturated region can be used as a

voltage controlled current source as in Fig.3.2.(a). Here, the gate is taken to a

constant potential as is the source. This current source only works for values of V,
put

given by

Vour < Veg + \Vrl - Ves (3.1)

where JV’, is threshold voltage.

The drain-source current, /;,., for this transistor is given by

Ci. W
Ips = Hy Se Ves-Viy Gm)

DD

CHAPTER 3 - Hardware Design for Conic Section Function Network

where ,,C,,, is the device-conductance parameter, W and L are the transistor width

and length, V,,, is the gate-source voltage, and V,, is the transistor threshold voltage

[Al187].

3.4.2. Current mirror

The MOS current mirror is the most basic current-mode circuit building block.

The ideal current source in Fig.3.2(a) could be replaced with a current mirror circuit

as shown in Fig.3.2(b). This circuit consists of two bias current sources, I,, and two

transistors. Assuming the transistors are biased in the saturation region, the current

flowing into the drain of the transistor in left arm is equal to Jp, in Eq.3.2.

on
Vout

 VDD

Iout

Ca)

 VDD

He
(b)

Ix
Figure 3.2 (a) current source (b) current mirror circuit

When the aspect ratios (W/L) of transistors are identical and the gate-source

potential of those are equal, then so are the channel currents. Similarly, when there

is a scale factor between the aspect ratios, then, the output current is scaled by that

factor. Accurate mirroring of the signal current requires perfect matching of the

current mirror transistors.

56

CHAPTER 3 - Hardware Design for Conic Section Function Network

The current mirror produces an output current that is inverted and scaled

version of the input current. A number of signals can be directly connected to the

input to sum many input currents. Thus, the current mirror performs the operations

of signal inversion, scaling, and summation. Using this basic current-mode building

block, summation of input signals, which is required in neuron circuit, is achieved

without demanding any additional circuitry. [All87, Ism94]

3.4.3. Transconductance amplifier

The transconductance amplifier is one of the most important building blocks

in the design of an analogue neural network. Fig.3.3 illustrates the schematic of the

transconductance amplifier circuit. The circuit consists of a current mirror M, - M,,

a differential pair M, - M,, and a bias transistor M,,.

 © VDD

out

M1 7 Mi Mo —— V2

Figure 3.3. Transconductance amplifier circuit

The bias transistor, M,, acts as a current source, setting the current through

the differential amplifier stage, controlling the transconductance G, and the saturated

output current J,. All voltages are assumed to be normalized with respect to the

thermal voltage k7/q where k is the Boltzmann’s constant (1.381 x 10° J/K), T is

the absolute temperature, and g is the charge on the electron. At room temperature,

of

CHAPTER 3 - Hardware Design for Conic Section Function Network

kT/q ~ 0.025 volts. By using the simple model for the transistor in ideal case, the

output current, /,,,. as a function of differential input voltage is given by 2 “our

V. - Vz
- 1, = J, tanh *(>) (3.3)

2V,
I our = 1 1

The transconductance, G,,, is defined as the slope of the output current curve

around the zero input voltage (V, - V,). For small differential voltages, the amplifier

is roughly linear and the transconductance is

al I,
ou Ga ern: oe See (3.4)

™ av, - V;) | yt aY,

For large differential input voltages, | V,- V, | >> V;, the circuit behaves

like a threshold function with asymptotes +I,. Since the transconductance, G,,, is

proportional to the tail current, I,, the gate terminal of the transistor M, is used for

controlling the characteristics of the transconductance amplifier. [Mea89, Mah89,

Ism94]

3.4.4. EEPROM - Analogue storage device

The most important specific problem faced in the implementation of the

analogue VLSI neural networks is the storage of synaptic weights. Also, the Conic

Section Function network needs the storage of the centre values as well as weights

in the synapse module and the storage of the opening angle in the neuron module.

The weight, centre and angle must be adjustable to provide on-chip learning

capability.

Conventional approaches to storing a fixed analogue weight value are to use

either digital storage with some form of digital/analogue conversion or to use volatile

analogue storage, which requires a large capacitor. Both of these storage technologies

require a large silicon area.

58

CHAPTER 3 - Hardware Design for Conic Section Function Network

The most obvious choices to implement an analogue storage cell with MOS

VLSI are nonvolatile devices like floating gate. These devices have been used in

digital and analogue memory [Ong89, Wal89], as adjustable biasing devices [Car89],

and for weight storage in neural networks [Hol89, Kra91, Vit91]. The terminals of

a floating gate device are the drain, source, bulk and a control gate that is

capacitively coupled to the floating gate. Depending on the programming mechanism,

another terminal, the charge injector may be needed.

The charge retention and accurate control of the floating gate charge are the

primary concern for analogue applications. It is also desirable to use no special

processing to achieve EEPROM operation to reduce the cost of fabrication.

Standard process EEPROMs require high voltages to initiate tunnelling due

to thicker insulating oxides between the channel and the floating gate. The approach

used in this work requires much lower voltages to initiate tunnelling due to thinner

insulating oxide between the two polysilicon layers [Gri95]. The structure of the

EEPROM device is shown in Fig.3.4.

ControlGate Injector

SWC CCC 7ODou£°“

Source

Figure 3.4. EEPROM device

It is also preferable, for continuous time operation required, that the terminal

for programming, such as the control gate and tunnelling injector, are separate from

the terminals needed for operation, such as the drain and source. The voltage required

to produce a field sufficient for tunnelling depends upon the geometry and upon the

oxide characteristics [Gri95].

a?

CHAPTER 3 - Hardware Design for Conic Section Function Network

3.5. CSFN Synapse Design

The main function of the synapse cell in CSFN is to achieve a linear

multiplication and to provide reliable storage of the weight and centre values. The

synapse design is based on the standard differential amplifier using MOS transistors

to generate an output current proportional to the difference between two input

voltages. Two differential amplifiers, each composed of differential pairs and the

current mirror, are used in the synapse design to obtain RBF and MLP units

separately. Non-linearities in the transistor responses can be cancelled out, so that

output currents are linearly dependent on the difference of two input voltages.

VSS

Figure 3.5. Differential amplifier to provide voltage differences
between input and centre vectors for both RBF and MLP units

The first differential amplifier shown in Fig.3.5 generates two output currents,

I and I,, which are ideally equal and proportional to (Vin-V centre): One is used for RBF
centre.

unit, the other is for MLP.

60

CHAPTER 3 - Hardware Design for Conic Section Function Network

3.5.1. Design of RBF unit

The schematic of the RBF unit which computes an Euclidean distance is

shown in Fig.3.6. M8 and M9 both operate in the saturation region of the MOS

device characteristic so that the drain-source current is given by Eq.3.2. M7 serves

as a resistor operating in the linear region of the MOS device characteristic so that

the gate voltage of both M8 and M9 are proportional to (V;,-V centre) (but offset to take

into account threshold voltages).

 (from first diff. amp.)

Figure 3.6. RBF unit which computes the Euclidean distance
function

The drain current of M8, I,, is proportional to the square of (Vj.-Vcentre) for
centre.

Vii V

Vin<V

by Eq.3.2. In the same way, M9 generates an output current, I,, for centre

centre: Lhese two currents are, then, summed by using a current mirror. Two

bias voltages, Vp and Vn, are connected to the sources of M7 and M9 to adjust the

offset voltage at the output.

61

CHAPTER 3 - Hardware Design for Conic Section Function Network

A MOS transistor, M10, is connected as an active load with the aim of

computing the Euclidean distance for RBF, that is the square root of the sum of the

squared voltage differences given by

y=fCEtsce,y) (3.5)

Essentially Eq.3.2 is inverted with gate and source commonned so that the

output voltage, V,,,,, is proportional to the square root of the drain current. Thus, an

output voltage proportional to the square root of (V;,-Vcentre) Which is the Euclidean

distance has been obtained. This voltage, then, is applied to the neuron circuit.

3.5.2. Design of MLP unit

In most MLP models, each processing element operates by taking a weighted

sum of its inputs. The sum then passes through an activation function. The second

differential amplifier not only produces an output current, /,, proportional to (V centre”

V,,) but also yields a multiplication of weight and (V;,-V centre) Which is necessary for centre

MLP unit in CSFN. The schematic of MLP unit is illustrated by Fig.3.7.

Le

M15 | |-K}—o Vw

 I (from first diff. amp.)

Vcentre Cnet

VSS "7

Figure 3.7. MLP unit with weight storage transistor

62

CHAPTER 3 - Hardware Design for Conic Section Function Network

The weight value is determined by the voltage V,,. Positive and negative

weight values are obtained by summing the currents /, and /,. For positive weights,

V,, is less than V, so that J, is greater than /,. Summation is achieved across the input

vector by summing currents at node c as in Fig.3.7.

3.5.3. The complete synapse circuit

Fig.3.8 shows the complete synapse circuit with RBF and MLP units. The

output currents generated by M8 and M9 transistors for RBF are summed by using

a current mirror, as in Fig.3.6. The response from other synapses can be summed at

this point by connecting the relevant I,, and Ip, current paths to nodes a and b

respectively. Similarly, the output currents for MLP can be summed at node c.

Figure 3.8. Complete circuit of synapse design

63

CHAPTER 3 - Hardware Design for Conic Section Function Network

3.6. CSFN Neuron Design

The second part of the CSFN circuit design is the neuron. In the general case,

the functional model of the artificial neuron consists of the weighted input

connections, a summation function, and a nonlinear threshold function which

generates the unit output. The inputs to the neuron are multiplied by weighting

factors and then the results are summed in the neuron. The result of the sum is then

put into a hard threshold device or a device with a sigmoid output.

In Conic Section Function networks, the inputs to the neuron are centred by

the centre vectors in additional to the multiplication of the weighting factors, and

then these results are summed in the neuron. The summation of the weighted and

centred inputs is shown in Fig.3.9.

 Vino

CSFN
Vcentreo

Synapse

CSFN

Synapse
 Vcentreo

Vwo © VuLp ee

 Vino

Vcentreo
Synapse

|

ca [ares | le
|
| Vw oO

Figure 3.9. The summation of the inputs

In contrast to the output function of the general neuron model, the CSFN

neuron is designed in such a way that the output of the neuron results in one of three

network functions, RBF, MLP, and CSF. The main problem here is how to combine

64

CHAPTER 3 - Hardware Design for Conic Section Function Network

a local Gaussian function and a sigmoid function, which are needed for RBF and

MLP, respectively. The local function can be defined using two sigmoidal units

shown in Fig.3.10.

Figure 3.10. The combination of two sigmoid function to define

a local function

A pair of shifted sigmoids is subtracted to obtain a local function. This local

function can be made of any width and centred on any point by appropriate selection

of parameters. Two currents, IR1 and IR2, in synapse circuit illustrated in Fig.3.6 and

Fig.3.8 provide these two shifted sigmoidal curves.

The propagation rule of CSFN described by Eq.2.1 is simplified below in

terms of circuit voltages and currents to obtain the required output functions between

RBF, MLP, and CSF.

I our * 2 (V, rer V utp) + Vuze (3.6)

where J out is the output current of the neuron, a is the variable parameter which refers

to the opening angle in conic section functions, Vp, and V,,p are output voltages for

RBF and MLP provided by the synapse circuits.

Another differential amplifier shown in Fig.3.11 is used in the neuron design

to have an output current proportional to (Vpp-Vyp). A voltage source, V,, is used

to determine the variable a, to initialize the network as an RBF, MLP or conic

section function. An output current, J,,,, is obtained depending on this voltage value

65

CHAPTER 3 - Hardware Design for Conic Section Function Network

as V,=f(a). When a=0, J,,, will be proportional to V,,». In the same manner, when

a=1, J,,, will be dependent on the Vp,,. Finally, J,,, will be proportional to Vos; for
> “out

O>a>1.

Vout

Veet Tout

=
V MLP a

 WO as

Figure 3.11. Neuron circuit

Vout attained in neuron circuit shown in Fig.3.11 is in a quite small range

which is not enough to use in a second layer. For this reason, one more differential

amplifier is used for adjusting the output values of the neuron circuit in such a way

that the output of the neuron is in the range between -1V and 1V so that it could be

used as the input of the second layer. This is the possible range to apply for the

inputs in the synapse circuit designed.

The amplifier used to adjust the input-output range for the neuron is again a

standard differential amplifier illustrated in Fig.3.12. In this case, the first layer and

the second layer of the network would have almost in the same input ranges. This is

required to operate the second layer properly. In other words, it allows the RBF,

MLP or CSEN outputs obtained from the first layer to be used as the inputs of the

second layer accurately.

66

CHAPTER 3 - Hardware Design for Conic Section Function Network

Figure 3.12. Amplification circuit

3.7. Network Combinations

Several network combinations using different number of synapses and neurons

have been designed to demonstrate the functionality of the CSF network. This section

shows these combinations.

3.7.1. Network with two synapses and one neuron

The circuit shown in Fig.3.13 has two inputs and one output. It has been

designed to obtain decision borders for RBF, MLP, and CSF networks in two

dimensional case. It contains two synapses and one neuron circuit.

3.7.2. Network with 8 synapses and one neuron

A network containing eight synapses and one neuron was built to demonstrate

the functionality of the CSFN in higher dimensionality. This circuit is shown in Fig.

3.14.

67

CHAPTER 3 - Hardware Design for Conic Section Function Network

Figure 3.14. Network with 8 synapses and one neuron

68

CHAPTER 3 - Hardware Design for Conic Section Function Network

3.7.3. 2-4-2 network

This is a demonstration circuit to show the functionality of the CSFN design

for a particular classification problem including two inputs and two outputs, assuming

that there are four centres predetermined. The circuit contains 16 synapses and 6

neurons. Eight of the synapses and four neurons have been used in the first layer, and

eight synapses and two neurons in the second layer in order to classify the data

produced randomly into two classes determined. Fig.3.15 shows the architecture of

the network.

cd Bia di

$a 4. |

ia a wae

i Ae lL iain Eu

1

ae Second layer

Figure 3.15. 2-4-2 Network

69

CHAPTER 3 - Hardware Design for Conic Section Function Network

3.7.4. 8 by 4 network

Another demonstration circuit containing 8 inputs and four outputs were

constructed to show the operation of the network with real data. This circuit consists

of 32 synapses and 4 neurons. Fig 3.16 shows the 8 by 4 network. This network can

be easily cascaded in order to form wider network combinations with two layers.

p
e
t
"

i
f

ele

te
e
t

|

 E

2
 ae

iz

E
E
E

A
d

» . ae

.

=

mm | =| | =

Figure 3.16. 8 by 4 network

70

CHAPTER 3 - Hardware Design for Conic Section Function Network

3.8. Alternative RBF Unit Design For CSFN Synapse

An alternative RBF unit with Manhattan distance function has been designed

for CSFN synapse implementation. This type of RBF unit needs an activation

function which computes a Manhattan distance between the inputs and the centre

vectors. The Manhattan (city block measure) distance is a simplified version of the

Euclidean distance measure [Bea90]. This method performs the Euclidean measure

without calculating the squared or square root functions as given by

Prete. hye 15 (3.7)

d(X) = Y | x, -c, | 3.8)

Eq.3.8 gives the Manhattan distance for the i-th centre. For a given input

pattern vector, X = (X,,X,,...,X,) of dimension n, the circuit is designed to calculate

the Manhattan distance between the input vector and stored centre vector C, =

(Ci1,Cj25--sCin)-

The Manhattan distance is much faster to compute than the Euclidean.

However, it introduces some error into the measure because the points of equal

distance from a vector lie on a square boundary, as opposed to a circular boundary

for the Euclidean. Anything falling on the square boundary yields the same distance

value. The error can be accepted when the speed of calculation is more important

than the accuracy.

3.8.1. Exclusive OR gate design

The Manhattan distance measure can be performed simply by the exclusive

OR function since |x; -y;| is equivalent to x, XOR y; when the input is represented

by pulse width modulation. Fig.3.17 shows the waveforms of the XOR gate used to

provide Manhattan distance function.

71

CHAPTER 3 - Hardware Design for Conic Section Function Network

T

Lee eel Ti

t1 -——————

— tal

app ecalee ‘sa
° i

<7 a-e—

Ss SNES)
wolff seer be ce

T=t1

T

-———— T

t2
{2

 a x ans js | |
SLO See hile

Figure 3.17. Waveforms of XOR circuit for Manhattan distance

For tl < t2 , the mark to period ratio of the output of the XOR is given by

th+(T-12) _ ay (tie 4225 (3.9)

r i

and for tl > t2 , the mark to period ratio of the output is given by

PG eats) ee. C12 oti J (3.10)
T :

These equations give a pulse width modulation output for all cases as follows:

(aie ee \ (3.11)

For the aim of computing of Manhattan distance, a CMOS Exclusive OR gate

circuit illustrated in Fig.3.18 was designed. Here, two standard CMOS inverters

generate inverse xl and x2 signal, which, along with x1 and x2, control a pair of

12

CHAPTER 3 - Hardware Design for Conic Section Function Network

transmission gates. If x1 = 1, the upper transmission gate is opened, applying inverse

x2 to out, and the lower one is closed. Hence, out = 1 if xl = 1 and x2 = 0.

Similarly, the lower transmission gate makes out = 1 when x1 = 0 and x2 = 1, so out

= xl @ x2.

 VDD

xl

 xe

Figure 3.18. Exclusive OR gate design

3.8.2. 8 Synapses network

An RBF type synaptic circuit with 8 synapses using current mirrors and

exclusive OR gates has been designed. Since all transistors connected to the outputs

of the Exclusive OR gates have same W/L (width/length), therefore the weights to

the neuron are the same because the hidden layer connections are not weighted for

an RBF network. This circuit provides centred and summed inputs for the neuron.

Fig.3.19 shows the schematic of the synaptic circuit.

ed

CHAPTER 3 - Hardware Design for Conic Section Function Network

from

Exclusive °

OR Gate :

 oto the neuron

Figure 3.19. Synaptic circuit

74

CHAPTER

4

Software Simulation Results

A new training algorithm composed of a Cenic Section Function Network

propagation rule which contains Multilayer Perceptron and Radial Basis Function

parts to improve the performance of back propagation is proposed in Chapter 2. Two

different problem has been considered to demonstrate the performance of the training

algorithms: Iris plant classification problem and contact lens fitting problem. The

performances of a standard MLP trained back propagation, a fast back propagation

with adapted learning rates, a standard RBFN using Matlab Neural Network software

toolbox, and the proposed algorithm are compared for these particular problems.

4.1. Iris Plant Classification Problem

The Iris plant database [Fis36] which is perhaps the best known database to

be found in the pattern recognition literature has been chosen for the first application.

Simulations were run using this database. The data set contains 3 classes of 50

instances each, where each class refers to a type of Iris plant, Setosa, Versicolor, and

Virginica. One class, Setosa, is linearly separable from the other two; the latter are

not linearly separable from each other. A training set and a test set were formed

using the 150 samples. The training set contains 120 patterns, 40 from each pattern

class. The remaining 30 patterns were used to test the training algorithms. The details

of the database is given in Appendix 1.

75

CHAPTER 4 - Software Simulation Results

4.1.1. Results for the first CSFN training method

The first training algorithm for conic section function networks is based on

updating weights, centres, and opening angle in the same epoch. Two different cases

have been considered: training with the centre updating and training without the

centre updating. Table 1 shows the results of the first algorithm for these two cases.

Different numbers of centres have been used in training. The learning rate is 0.05 and

the error goal is 2.5 for all cases.

Number of centres Epochs (centre updated) Epochs (no centre

 updated)

a
ae
co ae

Table 4.1. Number of training epochs for different number of centres

of CSEN (learning rate Ir=0.05)

As can be seen from Table 4.1, the results for the training without the centre

update are better than the ones with the centre update. The network convergence is

76

CHAPTER 4 - Software Simulation Results

not stable when the centres are updated. There are some unexpected peaks during the

training shown in Fig.4.1 and 4.2 because the centres are well placed by orthogonal

least square algorithm at the beginning and do not need to be changed after that. If

the updating procedure is performed for the centres in the same epoch as the weights

and opening angle, the network convergence deteriorates due to conflicting changes

in several parameters and the training error sometimes increases due to this.

10

---- 5 centres

— 7 centres

-- 9centres

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

o

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of training epochs

Figure 4.1. The results of the first algorithm for different number

of centres with centre updating.

— 4 centres

*=-= 6 centres

-- 10 centres

S
um
-s
qu
ar
ed

er
ro

r

0 500 1000 1500 2000 2500 3000 3500 4000
Number of training epochs

Figure 4.2. The results of first training algorithm for 4, 6 and 10

centres with centre updating.

TI

CHAPTER 4 - Software Simulation Results

The network does not converge for 4 centres. The number of peaks decreases

with the number of centres as seen from the figures. The results are much better for

the first algorithm if the centres are not updated as can be seen from Fig.4.3. The

network converges smoothly. Fig.4.4 shows the results for 8 and 4 centres.

-- 6centres

---- 8 centres

— 10 centres

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 500 1000 1500 2000 2500 3000

Number of training epochs

Figure 4.3. First algorithm results for 6, 8, and 10 centres when

the centres are not updated (Ir = 0.05).

-- 4centres

— 8 centres

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of training epochs

Figure 4.4. First algorithm results for 8 and 4 centres (no centre

update) and Ir = 0.05.

For small number of centres, such as 4 and 5, the results are quite close to

each other. The network reaches the error goal for those in nearly same number of

training epochs.

78

CHAPTER 4 - Software Simulation Results

The algorithm was investigated for different learning rates without centre

updating to see the effect of the learning rate on the convergence. Fig.4.5 shows the

results obtained by using two different learning rates, 0.01 and 0.05, for 6 centres.

When the learning rate is 0.01, the network is more stable but convergence is slower.

It converges quicker for the learning rate 0.05, but it is not as stable as for Ir = 0.01

and has some peaks.
S
u
m
-
s
q
u
a
r
e
d

er
ro

r

0 500 1000 1500 2000 2500 3000 3500 4000
Number of training epochs

Figure 4.5. First algorithm results for different learning rates (for

6 centres without centre update)

5000

4000

3000

2000

Nu
mb

er

of

tr
ai
ni
ng

ep
oc
hs

1000

4:°626> (7 8): 9) 10, 511 -12* 13,14) 16

number of centres

Figure 4.6. Effect of the number of centres on the number of

training epochs

Fig.4.6 shows how the number of training epochs change by the number of

centres. The network convergence is poor for more than 10 centres due to the

oversize of the centres because too many nodes in the hidden layer cause

AQ

CHAPTER 4 - Software Simulation Results

overgeneralization. In other words, a network with too many parameters learns all the

small details and noise, and gives poor generalization.

The same learning rate was used for updating weights, centres, and opening

angle for the results reported so far. The learning rate for updating the opening angle

was changed independently to see if the results would improve. The hypothesis was

that conflicting changes in the network occur when all parameters are updated in the

same epoch with the same learning rate. Fig.4.7 shows the results for the opening

angle update with different learning rates. The use of 100 times smaller learning rate

for the opening angle update gives a marginal improvement.

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 50 100 150 200 250 300 350 400 450 500
Number of training epochs

Figure 4.7. Different learning rates for updating opening angle

(ir = 0.05 and for 5 centres)

4.1.2. Results for the second CSFN training method

The basis of the second algorithm was to train the network with a different

strategy to get better result. First, the weights are updated for a predetermined

number of training epochs (eight epochs used here). Then, the opening angle and the

centres (when required) were modified, respectively, in separate training epochs.

Table 4.2 shows the results of the second algorithm for Conic Section Function

network when the centres are not updated. The weights are adjusted during 8 training

epochs and then the opening angle is modified for only one training epoch.

80

CHAPTER 4 - Software Simulation Results

Ir=0.01 Ir=0.03 Ir=0.04 Ir=0.05 Ir=0.07

Table 4.2. Training epochs with different learning rates for the second algorithm

Number of centres

5

without centre updating.

Ir=0.01 Ir=0.03 Ir=0.04 1r=0.05 Ir=0.07

Table 4.3. Training epochs with different learning rates for the second algorithm with

Number of centres

3

centre updating.

Table 4.3 shows the results when the centres are updated during the training.

The weights are updated during 8 training steps as before. Then, the opening angle

is adjusted in one training epoch, and in the same manner, the centres are updated

in one training cycle. Fig.4.8, 4.9, and 4.10 show the results for 6, 7, and 8 centres

without centre updating with different learning rates.

10°

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

°.

 —L 4 L —__1— 4 1 A 4.

0 100 200 300 400 500 600 700 800 900 1000
Number of training epochs

Figure 4.8. The second algorithm results for 6 centres (no centre

update)

81

CHAPTER 4 - Software Simulation Results

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 50 100 150 200 250 300 350 400 450
Number of training epochs

Figure 4.9. The second algorithm results for 7 centres (no centre

update)

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

oy

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of training epochs

Figure 4.10 The second algorithm results for 8 centres (no centre

update)

The performance of the algorithm is strongly dependent on learning rate as

can be seen from Fig.4.8, 4.9, and 4.10. For 6 and 7 centres, the number of training

epochs decreases by the increment of learning rate. On the contrary, the training time

increases with the increment of learning rate for 8 centres. The inclusion of more

hidden units does not necessarily significantly reduce the training epochs, i.e. the

82

CHAPTER 4 - Software Simulation Results

time to learning. The learning rate also plays an important role. Depending on the

number of hidden units and the learning rate, the results may even lead to unstable

behaviour. This is not surprising since the effectiveness and convergence of the back

propagation learning algorithm depend strongly on the value of the learning rate.

However, in general, the optimum value of the learning rate depends on the problem

being solved and there is no single learning rate value suitable for different training

cases. This problem seems to be common for all gradient based optimization

schemes. When broad minima yield small gradient values, then a larger value of

learning rate will result in a more rapid convergence. However, for problems with

steep and narrow minima, a small value of learning rate must be chosen to avoid

overshooting the solution. This leads to conclusion that the learning rate should

indeed be chosen experimentally for each problem [Zur95].

Fig.4.11 shows the effect of the learning rate for 8 centres. The open symbols

show the case when the centres are not updated. The closed symbols show when the

centres are updated. The effect of the number of centres is shown in Fig.4.12. Here,

the learning rate is 0.04, which generally gives a good convergence for this problem

with different number of centres.

3000
O without centre update

% with centre update

Z
°o
°

S 2000

2
=
=

So
. 1000
Ss
E
>
=

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Learning rate

Figure 4.11. The effect of the learning rate for 8 centres

83

CHAPTER 4 - Software Simulation Results

Nu
mb
er

of
tr
ai
ni
ng

ep
oc
hs

Number of centres

Figure 4.12 The effect of the number of centres (Ir = 0.04)

Fig.4.13 and 4.14 show the results for 6 and 8 centres with and without centre

updating. The learning rate is 0.05 for 6 centres, and 0.03 for 8 centres. The results

are generally more stable without centre update because the updating may result in

the misplacement of centres since they are already well placed by orthogonal least

square algorithm at the beginning. In general, the convergence is better with centre

update although there are several examples of the better results without centre update.

— without centre update

- - with centre update

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of training epochs

Figure 4.13. Results for 6 centres with Ir=0.05

84

CHAPTER 4 - Software Simulation Results

— without centre update

- — with centre update

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 100 200 300 400 500 600 700 800 900 1000
Number of training epochs

Figure 4.14. Results for 8 centres with Ir=0.03

4.1.3. Results for the back propagation and adaptive back propagation

algorithms

Standard MATLAB neural networks toolbox was used to obtain the results

for back propagation and fast back propagation algorithm with adaptive learning rate.

Fig.4.15 shows some results of the back propagation algorithm for different number

of hidden nodes.

— 6 hidden nodes

--- 7 hidden nodes

-- Qhidden nodes

0 500 1000 1500 2000 2500 3000

Figure 4.15. Back propagation results

85

CHAPTER 4 - Software Simulation Results

Table 4.4 shows the results of back propagation and fast (adaptive) back

propagation algorithms for Iris database. It was seen from the results that both

algorithms were dependent on the random initialization. The network converges in

different number of training epochs depending on the initialization. Also there were

some cases in which the fast back propagation algorithm did not converge. The

programmes were run using different number of training epochs. The average results

were given for 7, 9, 8, and 10 hidden nodes in Table 4.4. The programmes using 6

hidden nodes were run 6 times for the back propagation algorithm and 12 times for

the fast back propagation algorithm, and the results are shown in Table 4.4.

Number of hidden nodes back fast back propagation

propagation

21669 8658

Table 4. Results for back propagation and fast back propagation algorithms

86

CHAPTER 4 - Software Simulation Results

4.1.4. RBF results

Radial basis function network algorithm was run for the Iris database using

MATLAB toolbox. The training algorithm for RBF in this toolbox involves the

Orthogonal Least Squares algorithm to place the centres. It also executes a Gaussian

activation function as the basis function in the hidden layer and a linear function in

the output layer. The Euclidean distance function is used as the propagation rule. It

needed 32 centres to be placed to reach the same error goal used to classify the Iris

data in the other algorithms while CSFN needs less than 10 centres.

4.1.5. Comparison of the algorithms

The performances of an MLP trained with back propagation and fast back

propagation with adaptive learning rates, an RBEN, and the proposed algorithm are

compared using Iris plant database. The sum-squared error goal is 2.5 for all

algorithms. Fig.4.16 shows the comparison of the algorithms.

~~» first CSFN (with centre update)

~— first CSFN (without centre update)

---- second CSFN (with centre update)

— second CSFN (without centre update)

S
u
m
-
—
s
q
u
a
r
e
d

er
ro
r

S
u
m
-
s
q
u
a
r
e
d

e
r
r
o
r

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Number of training epochs Number of training epochs

Figure 4.16. Comparison of the algorithms

87

CHAPTER 4 - Software Simulation Results

For 6 centres, standard MLP needs 4000 to 30000 epochs while second CSFN

algorithm needs only 561 epochs. First CSFN algorithm is also better with 2950

epochs for the same number of centres. MLP trained with fast back propagation gives

some better results than first algorithm, but none better than second. It requires

minimum 1000 epochs and sometimes does not converge depending on random start

while CSEN is not dependent on random initialization. It should be noted that the

CSFN algorithms do not use adaptive learning rates which may lead to further

improvements. CSFN needs fewer centres than RBF. It requires only 6 centres to

reach the same error goal whereas RBF needs 32 centres.

4.2. Lens Fitting Problem

The database for fitting contact lenses has been used as the second application

to test the training algorithm for the conic section function network. The data set

contains three classes where each class refers to the type of contact lenses with which

the patient should be fitted. A training set and a test set were formed using 24

samples. The training set contains 16 patterns, 3 from first two classes, and 10 from

third class. The remaining 8 patterns have been used to test the training algorithm.

The details of the database is given in Appendix 2. This database is relatively simple

and gives results quicker than the Iris database.

First algorithm with no centre update needs 76 training epochs to reach the

error goal of | for 6 centres. It needs 87 training epochs with centre update to reach

the same error goal for the same number of centres.

4.2.1. Results for the second algorithm

Fig.4.17 and 4.18 show the results for 4 and 7 centres with different learning

rates. The results are dependent on the learning rate as for Iris data. The number of

training epochs decreases by the increment of learning rate, and the network has an

88

CHAPTER 4 - Software Simulation Results

S
u
m
-
s
q
u
a
r
e
d

er
ro

r

10 15 20 25
Number of training epochs

Figure 4.17. Results for 4 centres (first 4 epochs are OLS)

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 5 10 15 20 25
Number of training epochs

Figure 4.18. Results for 7 centres (first 7 epochs are OLS)

unstable behaviour for 7 centres with learning rate = 0.09. Fig.4.19 shows the effect

of the learning rate for 5 centres. Fig.4.20 illustrates how the number of centres

effects the training time. The learning rate is 0.05. The network has best convergence

for 5 centres, which is good for hardware implementation.

89

CHAPTER 4 - Software Simulation Results

QO cent.upd.
> no cen.upd.

Nu
mb
er

of

tr
ai
ni
ng

ep
oc
hs

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Learning rate

Figure 4.19. The effect of the learning rate (for 5 centres)

N
u
m
b
e
r

of

tr
ai
ni
ng

ep
oc
hs

Number of centres

Figure 4.20. The effect of the number of centres (Ir=0.05)

4.2.2. The effect of the width

The effect of the width in RBF part of the algorithm was also investigated for

the lens fitting problem. The parameter width is defined in Section 1.3.1. Fig.4.21

shows the results when the width is equal to 1 with learning rates, 0.05 and 0.02.

90

CHAPTER 4 - Software Simulation Results

Fig.4.22 illustrates the effect of the width on the training time. 5 centres have been

used to obtain the results and the learning rate is 0.05 for Fig.4.22.

The network converges quicker when the width is smaller, but it is not very

stable. It converges slowly but smoothly for the larger value of the width.

10

Su
m-

sq
ua

re
d

er
ro
r

3s

0 100 200 300 400 500 600 700
Number of training epochs

Figure 4.21. Results for width = 1 with 5 centres

‘- width = 1.5

S
u
m
-
s
q
u
a
r
e
d

er
ro

r

0 100 200 300 400 500 600 700 800 900
Number of training epochs

Figure 4.22. The effects of the width (Ir=0.05)

91

CHAPTER 4 - Software Simulation Results

4.2.3. Back propagation and fast back propagation algorithms results

The lens fitting problem was applied to back propagation and fast back

propagation algorithms to compare the results. Fig.4.23 shows back propagation

results for 5 and 7 hidden nodes. Fig.4.24 shows the results for the back propagation

algorithm with 7 hidden nodes with learning rates, 0.05 and 0.09.

— 5 hidden nodes

- - 7hidden nodes

10°

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

3

1000 1500 2000 2500

Number of training epochs

Figure 4.23. Back propagation results for 5 and 7 hidden nodes

(Ir = 0.05)

S
u
m
-
s
q
u
a
r
e
d

er
ro

r
0 500 1000 1500 2000 2500 3000

Number of training epochs

Figure 4.24. Back propagation results with different learning

rates for 7 hidden nodes

92

CHAPTER 4 - Software Simulation Results

Fig.4.25 illustrates the fast (adaptive) back propagation algorithm results for

different number of hidden nodes.

10

-—-- 5 hidden nodes

— 6 hidden nodes

-— -— 7 hidden nodes

S
u
m
-
s
q
u
a
r
e
d

er
ro
r

0 100 200 300 400 500 600
Number of training epochs

Figure 4.25. Adaptive back propagation results for different

number of hidden units.

The performance of the back propagation and fast back propagation algorithm

are strongly dependent on the random initialization. There were sometimes no

separation between the classes even though the same error goal has been reached.

The following tables show three different results of fast back propagation

algorithm for the same error goal. The network did not classify the data at first trial.

The second trial was better, and the network classified the data correctly at third

attempt. The first column of the tables gives the first class with the target vector (0.9,

0.1, 0.1). The second and third columns refer to the second class with target vector

(0.1, 0.9, 0.1), and finally, the remaining columns belong to the third class with the

target vector (0.1, 0.1, 0.9).

93

CHAPTER 4 - Software Simulation Results

TARGET MATRIX

Oe. Ones Ot eet a Ooh Orn 2. O71

0.1 Os 200 “Orne. SU. boat ke a OL

0.1 Gf Ob oO U9 9 O80

FAST BACK PROP. No. of hidden nodes = 5,

Test results (first trial):

0.1740 0.0185 0.0006

0.3220 0.8970 0.9664

0.0011 0.0005 0.0013

0.3693

0.0093

0.7724

0.1424

0.8700

0.1546

Test results (second trial):

0.9248 0.3770 0.1129

0.1029 0.4617 0.7196

0.0928. ..0:2235 <0:3121

0.1004

0.0506

0.8824

0.0891

0.0535

0.8894

Test results (third trial):

0.9635 0.0460 0.0450

0.0016 0.8135 0.8176

0.0176 0.3117 0.3146

0.0006

0.1777

0.9899

0.1566

0.0001

0.8563

4.2.4. RBF result

0.1

0.1

0.9

error goal = 1, learning rate = 0.05

0.0004

0.1264

0.9360

0.0006

0.0685

0.9560

0.0297

0.7872

0.2718

0.0216

0.1506

0.9358

0.1097

0.0518

0.8779

0.0531

0.0769

0.9050

0.0004

0.1796

0.9940

0.1231

0.0001

0.9007

0.0018

0.0262

0.9871

The lens fitting problem was applied to standard RBF algorithm in MATLAB

as for Iris data. The training procedure requires 6 centres to be placed when the error

goal is 1 and 10 centres for the error goal, 0.1, whereas, the CSFN algorithm needs

5 centres to classify the same data.

94

CHAPTER 4 - Software Simulation Results

4.3. Discussion

This work was concerned with the use of conic section functions which

contains RBF and MLP parts to improve back propagation training algorithm which

is one of the standard methods used for training of multilayer neural networks. It

reduces the number of centres needed for an RBF and the hidden nodes for an MLP.

Furthermore, it converges to a determined error goal at lower training epochs than

an MLP. The results show that the introduced algorithm here is much better than the

others in most cases, in terms of not only training epochs but also the number of

hidden units and centres since the decision boundaries can match the real data more

closely. This algorithm is much faster and more stable on random initialization than

a standard MLP trained with back propagation and adaptive back propagation. It also

needs less centres than standard RBF. The number of centres and the hidden units

used are important since this work is also aimed at designing a VLSI hardware neural

network.

95

CHAPTER

5

Hardware Simulation Results

This chapter considers the hardware simulation results of the Conic

Section Function network. The circuits designed have been simulated

using cdsSpice simulator in the Cadence design package on a Sun

workstation to show the functionality of the network.

5.1. The Synapse

The synapse must be capable of computing a distance function (for RBF type

of outputs) and providing weighted (for MLP type of outputs) and centred (for both

MLP and RBF type of outputs) connections to the neuron. Section 3.5 describes how

to achieve this. The synapse circuit was simulated using cdsSpice in CADENCE

design package.

5.1.1. Exclusive OR gate results

The Exclusive OR gate shown in Fig.3.18 was first simulated to demonstrate

how the Manhattan distance function can be achieved to use in an RBF unit. x1 and

x2 refer to the input and the centre, respectively. The circuit was simulated for the

various frequencies. The results show that the performance of the circuit was stable

in terms of changes in frequency. Fig.5.1. shows the input and output waveforms of

the Exclusive OR circuit by time.

96

CHAPTER 5 - Hardware Simulation Results

x1 (Vv)

time (ms)

x2 (Vv)

C-

+ > =e =e

S|

|
: Lites

o 41 2
time (ms)

Out (Vv)

5s — - ae ——---

3 ; |

| |

Hesse ects (LS =} UJ

gfe re
o 4S 2

Figure 5.1. Exclusive OR gate waveforms

5.1.2. Results for the RBF unit with an Euclidean function

The second RBF type of unit design computes the Euclidean distance

function. This unit was used for the complete network design. Therefore, the results

for the complete network design depends on the results of this unit.

Firstly, variable basis function centres between -1V and 1V were applied to

the circuit and the input of the synapse was swept in the same voltage range. The

simulation results of RBF type of outputs obtained from the synapse circuit (see

Fig.3.8) with variable centre values are shown in Fig.5.2.

97

CHAPTER 5 - Hardware Simulation Results

Vv (mV)
RBF

22 eeerehee - = - - - sola as

+. . —™- Vcentre=-0.25V
21 = _ me —o— Veentre=0V

mee —+— Veentre=0.25V
PAV ON

wt \,
eles i
7 i rs of \ ;

15 + . \ «

4-7

\/ if
13 ml OAS f l

12454

arcs oe Naa 2 Ss ete cere!

1 0 1

Vin (V)

Figure 5.2. RBF output

5.1.3. Results of MLP unit

Fig.5.3 illustrates the results obtained from MLP type of unit with variable

weight values. Here, the weight input was swept between -2V and -4V to achieve

positive and negative weights for the MLP type of unit. The centre input was held

at OV and bias voltage Vb was -3V.

Vv (mV)
MLP

30 —— Soap SR a ee | a Vwe-4Vv ii
—o~ Vw=-3.5V

=
—+— Vw=-3V 20 4 oO

= +— Vw=-2.5V | OL - + Vw=-2V
+

= if % a ¢ =
eS ae + i: = | w. 0 . .

gt
f 4 =" —_———*— ae +++ ak:

oo >. | ho oO ~~,

a = oO a + 10 + — mi 1 = a 4 a a” oO -20 - t

CSO re aeetern sant e ae
1 9 /

Vin(V)

Figure 5.3. MLP output

98

CHAPTER 5 - Hardware Simulation Results

5.1.4. Effect of the transistor parameters and bias voltages

The effect of the device mismatches and nonideality is one of the drawbacks

of the implementations using MOS transistors. The performance of the complete

synapse circuit with an RBF and MLP unit was investigated to realize how the circuit

operates when there are some differences in actual transistor parameters and bias

voltages than designed ones. Fig.5.4 to 5.9 show the RBF outputs when some of the

transistor parameters and bias voltages are changed to investigate the nonideality.

The centre point was held at 0, and input of the synapse was swept from -1V

to 1V for all. The width of the nmos transistor M8 shown in Fig.3.6 was changed

from 3m to 9um at three steps and the width of the pmos transistor M9 was altered

from 154m to 27m at same steps. The result of the former is shown in Fig.5.4. The

width of the M9 was 221m and it was 6um for M10. The centre point shifts if the

width is increased. The latter is shown in Fig.5.5. The width of the M8 was Sum and

M10 has 6um width. The centre point shifts to the more positive ones with the

increase of the pmos transistor width.

RBF_out (V)

-0.0 — A
cr @

=

a +

Th

4 AY
~~

mA iY

aS is

-0.2 a 8 o y

‘, po %

\ o &
w ¢ g ae

* w=3u |
¢—w=6u

Oo— w=9u

0.3 — ae So

1 0 1

Vin (V)

Figure 5.4. Effect of nmos transistor (M8) in RBF unit

99

CHAPTER 5 - Hardware Simulation Results

RBF_out (V)

0.0 -

=0.1 ir

S
e
o

a

0.2 nN '

; | —— w=15u
—*— w=21u

| —o— w=27u |
-0.3 — % = is —y a er

1 Oo 1

Vin (V)

Figure 5.5. Effect of the pmos transistor (M9) in RBF unit

The width of the transistor M10, which provides the squared root function,

in Fig.3.6 was changed between 3pm and 9m. The widths of M8 and M9 were 5um

and 22m, respectively. The simulated response of the circuit is given in Fig.5.6. As

can be seen this only affects the offset value without making any change to the

characteristic of the RBF output.

RBF_out (V)

0.0

+ ; +
° . *o

“0-1. as 7 wy on
un 4 ra:

$ ° * o

a 2 - ©. - oe

CS ae
a “oy vB

-0.2 — pea eo
= ov

o-oo

| wasn)
| —*— w=6u
—o— w=9u

60,8) pt eh come ves

1 0 1

Vin (V)

Figure 5.6. Effect of the transistor (M10) used for squared root
function

100

CHAPTER 5 - Hardware Simulation Results

Fig.5.7. illustrates the RBF output when the resistor M7 in Fig.3.6 is changed.

The output range becomes smaller as expected and the centre point shifts to more

positive one.

RBF_out (V)

OF

a oe P

P

0.00 7 ‘ PP
em yi

+
~, pes

+ d é *

02" mes Sa) y 8

4 Oe, A. 4 —— w=3u

Stet oO —+— w=6u |
=o weer

-0.3 5 | T par a Eas

1 0 1

Vin (V)

Figure 5.7 Effect of the resistor (M7)

Vn and Vp voltages shown in Fig.3.6 are also important, therefore, the results

of their effect in the RBF unit was presented in Fig.5.8 and 5.9. Changes in Vn

results in shifts at the centre point, whereas, Vp effects both the centre point and the

offset value.

RBF_out (V)

4 9

-0.0 = * a
% y#

p * t ‘ d i

| * r *

ok * . o -

a

Oe a eas Pee
4 ’. cs 2

e / *
° of /

5 + iN x ;
a. “. 4 5 f OS —————————_,

Dig Ky 97 9 Vn = 700mv |
—+— Vn = 750mV

-o—Vn = 800mvV |

OAD 5 ee cee arin Fa 1 ae -—

1 0 1

Vin (V)

Figure 5.8. The effect of Vn

101

CHAPTER 5 - Hardware Simulation Results

RBF_out (V)

Oa

ro

| Nn

0.0 al E " 2.

+ ae iS a
JntH~ ~, OL, 0-9 gr

ae Sets ee
-0.2 - 9-4: *

ae 2 cle cas pe av |
+—Vp = 1.5V |

eo Vp = 1.7V |

SO: ee ee oes gi) cement SBS
1 Oo 1

Vin (V)

Figure 5.9. The effect of Vp

Fig. 5.10 and 5.11 show the effect of the Vb bias voltage (see Fig.3.5) on the

RBF and MLP outputs. When Vb = -3V MLP weight is at 0 since Vw was held

at -3V. By changing the bias voltage Vb, positive weights turns into negative ones,

or vice versa. This also affects the RBF output as seen in Fig.5.10.

RBF_out (V)

0.2

+t Cc

Q Bp

0.14 \ ;

Q 2

-0.0 — b -
d

+ ‘ / . aS : df 3 +

+ ie of : +

-0.2 + ke ee eer care
KN Rie ——Vb = -4Vv

by ene Sea at te 4—Vb = -3V
‘ | -o> Vbpei -2V

0.3. See eee

of Oo 1

Vin (Vv)

Figure 5.10 The effect of Vb on the RBF output

102

CHAPTER 5 - Hardware Simulation Results

MLP_out (V)

0.03 —

O:077
o

ptt ee bt ~+—0—-4—4¢_9 49 4
y 2 o 2

-0.01 — ee

go - nee ak

zh oo, [vb = -av |
. =—— Vb = °-3V

—o—-Vb = -2V |
-0.03 1 — sy oe

i gears
| 0 1

Vin (Vv)

Figure 5.11. The effect of Vb on the MLP output

Finally, the device mismatches on the differential pair in the amplifiers were

analyzed. Fig.5.12 shows the effect of the device mismatches in the differential

amplifier used in MLP unit (see Fig.3.7). The width of one of the differential pair

(M12) was changed from 61m to 7um while the other one (M14) was 6um. It does

not change the slope of the MLP output, which is important to determine the correct

decision borders for MLP, but it does change the offset.

MLP_out (V)

0.04 -

0.03 4 .

0.02 é a” a

0.01 | ° . oe

0.00 Hi : ‘ ws

-0.01 z a

-0.02 —
OSD Br aye ga

 0.038} —+— a -

Vin (V)

Figure 5.12. The effect of the device mismatches (when M12
changes) on MLP output

103

CHAPTER 5 - Hardware Simulation Results

Any mismatches in the differential amplifier in Fig.3.5, which provides the

difference between the inputs and the centres, does not change the outputs

significantly. Fig.5.13 and 5.14 show the effect of the mismatches of the differential

pair on MLP and on RBF outputs in Fig.3.5. The widths of the M3 and M5 were

6um. The width of the M2 was changed from 11.5um to 12.5um at three steps.

MLP_out (mV)

0.03 jad

a v
v

e

0.01% > _ uy
¥

| % e
w

ie
@

| ¥
-0.01 4 ee

ve
¥ = =

w —w=1tu
| ¥ —+— w=11.5u
| | -o- w=12u

=0:036--— eG ES a ———+ =) ——— —

ad Oo 1

Vin (V)

Figure 5.13. The effect of mismatches in first differential
amplifier (when M2 changes) on the MLP output

RBF_out (mV)

0.0 -—

Ns, eo ¥

0.14 “4 #
4 ¥

6 A
‘ [i

as g
4 &

4 v -0.2 4 Ba oo

—— w=11.5u |
—*— w=12u

—o— w=12.5u

0.3 4 i ea li en,

-1 0 1

Vin (V)

Figure 5.14. The effect of the mismatches in the first differential

amplifier (when M2 changes) on RBF output

104

CHAPTER 5 - Hardware Simulation Results

5.2. The Neuron

The neuron was firstly simulated using the circuit with two synapses and one

neuron in Fig.3.13 by applying different input voltage and weight values. A fixed

centre value (0V) was chosen and the input of first synapse, Vinl, was swept from

-1V to 1V to draw the contours of the decision regions for RBF, MLP, and CSF.

Then, the input of the second synapse, Vin2, was, parameterized from -1V to 1V. By

taking different output values and using the graph Vin1 against to Vout, Vin2 was

plotted against to Vin1 for different Vout contours.

Fig.5.15, 5.16 and 5.17 illustrate the simulation results of neuron. As can be

seen, different decision boundaries were obtained, the circles for RBF, the straight

lines for MLP, and the ellipses or parabolas for CSFN.

Vcentre1=Vcentre2=0V

Vini(mV)

1000 = - mal
ligase —=— Vout=116mV

ae os -o— Vout=118mV
ee oe . + Vout=120mV

+ o On a |
i = a e

A a *-s9
/ of = _ 4 »

/ og r =

r
/ 2

°

0 e
\ a

| \ J
Cc .

\ a Q Be LR ehh
* Sy = ¢

+ : :

ne Sa oe + ‘
+ *

*~+-» + ¢

100 ON rane Ely raves stony ees a

1 0 i,

Vin2(V)

Figure 5.15. Decision boundaries for RBF

105

CHAPTER 5 - Hardware Simulation Results

—— Vout=15mV

—=— Vout=25mV Vw2=-4V
—s— Vout=35mV Vwi=-2V —+ Vout=15mV
—o— Vout=25mV } Vw2=-2Vv

Vini(mV) —+— Vout=35mV

1000 ar Tees Som
oO S =

a + " =
=

* a Me = mS
= : ov hoe Z

a
“ m) , Qo w 3 LS

* a *.
a ao a“

=
Oise ar ye *

ww hk a +

, - . s a .

a x +
= A - a

| = x a a

= % ~ “ g

= oe aw * Q
~

yas “ uD

-1000 <_—— | i

-1 0 1

Vin2(V)

Figure 5.16. Decision boundaries for MLP

Va=-3.1V

Vini(mV)

O00; ae a
| —+ Vout=83mV

O14 ~o— Vout=87mV
ie OL, —* Vout=92mV

o \
5

q
oO Oo f

0 Oo i

i s

7d

*

- *

+

*

+
¢

~ *
-1000 So ioe 1

-1 0 i

Vin2(V)

Figure 5.17. Decision boundaries for CSFN

106

CHAPTER 5 - Hardware Simulation Results

The bias voltage, Va, using for opening angle adjustment was -5V for MLP

output, -2.7V for RBF output, and -3.1V for CSF output. The contour voltages were

different for those three outputs because there was an offset difference between the

outputs. The RBF output was around 120 mV while MLP output was changing

between 10 and 40 mV. The CSF output was also between 80-95mV. This offset

difference has been removed by changing some transistor parameters and bias voltage

values in synapse circuit when the complete chip was designed.

Fig.5.18 shows the transitions from MLP through CSFN to RBF with the

change in V, voltage referring the opening angle of the cone.

Vini(mV)

1O00GmEg eh =a San ae
O oO —a— Va=-5V

oO q o—Va=-3.3V
1 / —e Va=-3V

/ * / | + Va=-2.7V
Q ta /

: |

* + /
+ /

nm . g toe

07h pn / a
oO a . J A

+ #0 4 x
oO o he

CoH :

-1000 ———____,-_*— feet

1 0 1

Vin2(V)

Figure 5.18. The transitions from MLP through CSFN to RBF

Fig.5.19 shows the local RBF function obtained from summed outputs of the

synapses as explained in Section 3.6.

107

CHAPTER 5 - Hardware Simulation Results

DC Response
art -

yv Ii4) . Nake

on
= Q

oo"
wre

--"
aaa ee

ge
- Ps

-

4.3 a: RBF output

ae Ss}

No N
Re
la
t

e
t
l

la
ta
?

Ie
 t
at
sy
y

Zs
oi N

\

i - A A \ \

WG

Ve

:
 i \

| Ol

8

Q

Q

Ol

8

Q

Figure 5.19. Local output obtained from sigmoids

Finally, the neuron was simulated using the circuit with eight synapses and

one neuron in Fig.3.14 to show how the circuit acts in RBF mode with a higher

dimensionality. The centres were all set at OV whereas the inputs were split between

two voltages Vinl and Vin2. In Fig.5.20, Vin1 is swept from -1V to 1V with Vin2

held constant at OV so that when Vin1 is equal to OV the input vector is at the RBF

centre in all cases. The response increases rapidly if fewer inputs are held at the

centre voltage as expected. That is if more inputs are connected to Vin1l the

Euclidean distance increases more rapidly as Vin1 diverges from OV.

108

Vin2=0V

V_RBF (mV)

21

20

Thy ” i

Oo
y

my
Ole

Spo

CHAPTER 5 - Hardware Simulation Results

toa

J

|

' _

]

0

Vint (V)

—+6 synapses
—m-4 synapses

| —~—1 synapse

Figure 5.20. The RBF response in higher dimensionality

In Fig.5.21, Vin2 is held constant at 1V so that the input vector never matches

the RBF centre. In this case as fewer inputs are held at the Vin2 voltage the

minimum response gets closer to centre and the minimum value decreases as

expected. In Fig.5.20 and 5.21, different symbols show the number of synapses

connected to the Vin1.

Vin2=1V

V_RBF (mV)

22
21 he I

. i
fe)

—™@-1 synapse
1-3 synapses

“-7 synapses
@\

\Y

joy
\ hb og

' Q Aus Rae ee)
4 \ ae eas

Vint (V)

Figure 5.21. RBF response with higher dimensionality

109

CHAPTER 5 - Hardware Simulation Results

5.3. Demonstration Problem

A simple classification problem with two inputs and two outputs was

considered to illustrate the functionality of the network. A 2-4-2 network (2 inputs -

4 hidden nodes - 2 outputs) shown in Fig.3.15 was built for this particular problem.

The centre values are predetermined as cl(-0.4,0.2), c2(-0.2,-0.4), c3(0.2,0.4), and

c4(0.3,-0.1). It was assumed that class X would cover the centres cl and c4, and class

Y would cover the centres c2 and c3. The contour voltage was 80 mV and the bias

voltage using for the opening angle was -2.9V. The simulation results of the network

designed prove that the network classifies the inputs into correct classes. It is shown

in Fig.5.22.

Vin2(mV)

1000.) —— eae ee a

|
|

|
J |

c4 |
oy yf mw c3

Os / =a
c2 |
= |

| = cl

:

-1000 2 Se oes he eo Ica See es te ae

1 Oo 1

Vint(V)

Figure 5.22. The demonstration circuit results

110

CHAPTER

6

Comparison of Hardware and Software

Results

In this chapter the hardware simulation results of Conic Section Function

Network (CSFN) using Cadence design package will be compared with the software

simulation results obtained from Matlab programme. The previous chapters discussed

these results widely. The aim of the comparison is to show how far the theoretical

work matches the practical work. Software simulation results for Iris database has

been used to implement the network in hardware.

6.1. Implementing The CSFN For Iris Data

The CSFN for Iris data needs four inputs, 3 outputs, and different numbers

of hidden nodes depending on which software simulation results would be used. The

results for 7 centres have been chosen for the application. The 8 by 4 network

demonstration circuit, described in section 3.7.4, was used to show the operation of

the network with real data. By cascading this structure, the circuit have been

implemented with 7 hidden nodes. Fig.6.1 shows the circuit constructed for Iris data.

Four inputs, xl, x2, x3, and x4, of first two 8 by 4 networks have been used to

implement the Iris data inputs. Inputs, x5, were used for biases and the other inputs,

x6, x7, and x8, were not used in the input layer. Then, the outputs of these networks

were connected to the another 8 by 4 network to build 7 hidden nodes.

111

CHAPTER 6 - Comparison of hardware and software results

£
2
6
0
4

€

S5
8

Figure 6.1. The network structure for Iris database application

6.2. Scaling of The Parameters For Hardware

The weights, centres, biases, and opening angle values obtained from software

simulation of CSFN for Iris database have been used to implement the synapse in

hardware. All these parameters were calculated using different scale factors for each.

The following tables show the parameters obtained by Matlab software simulation.

wl and w2 refer to the weight values in the hidden layer and the output layer,

respectively. b/ and b2 are the biases for the hidden and output layer in the same

way. c/ is the centres for hidden layer, and om is the opening angle for output layer.

V2

CHAPTER 6 - Comparison of hardware and software results

wl

w2

bl

b2

cl ll
-2.8052

4.3470

-0.1081

-0.5414

3.3714

-0.7984

-7.3691

-0.1940

-0.2989

0.6964

1.6062

9.8897

0.9552

-6.5109

1.5842

2.3642

9.2650

-2.8185

-3.2011

6.217)

5.1000

6.0000

6.3000

7.2000

6.1000

-0.3851

12.5264

-0.3968

-4.0262

6.9207

-0.8442

-9.7964

0.0550

-2.9171

2.8858

3.5000

2.2000

2.3000

3.6000

2.8000

-6.8662

-3.6557

-0.1945

1.931)

-3.3337

-0.1846

24.5165

22977

-3.0183

-4.6025

1.4000

5.0000

4.4000

6.1000

4.7000

-3.1887

2.4555

-0.6717

2.8575

3.7387

-2.3681

20.3077

4.7750

-3.9775

-1.9550

0.2000

1.5000

1.3000

2.5000

1.2000

113

-0.0099

3.9501

-4.1790

-1.0721

3.8867

-1.0668

-0.1191

5.0229

-5.0017

CHAPTER 6 - Comparison of hardware and software results

6.2000 2.8000 4.8000 1.8000

6.3000 3.3000 4.7000 1.6000

om = -1.0961 -1.5318 1.2194 1.5708 1.5693 -1.5638 1.4838

In hardware design, the positive and negative weights are obtained by

sweeping the weight input Vw, described in Section 3.5.2, between -2V and -4V. The

new weight and bias values have been scaled into this range using the ones obtained

from software. The range for those in software is

-10 < wl,w2,b1,b2 < 10

The new range for the weights and biases should be

-4V < wl,w2,bl,b2 < -2V

The new weights and biases were obtained as follows.

wlnew = 0.1 * wl - 3

-3.2805

-2.5653

-3.0108

-3.0541

-2.6629

-3.0798

-3.7369

wlnew = -3.0385

-1.7474

-3.0397

-3.4026

-2.3079

-3.0844

-3.9796

w2new = 0.1 * w2 - 3

w2new = -3.0194

-3.0299

-2.9304

-2.9945

-3.2917

-2.7114

-3.6866

-3.3656

-3.0194

-2.8069

-3.3334

-3.0185

-0.5483

-2.7702

-3.3018

-3.4603

-3.3189

-2.7544

-3.0672

-2.7142

-2.6261

-3.2368

-0.9692

-2.5225

-3.3978

-3.1955

114

-3.0010 -3.1072 -3.0119

-2.6050 -2.6113 -2.4977

-3.4179 -3.1067 -3.5002

CHAPTER 6 - Comparison of hardware and software results

blnew = 0.1 * bl - 3

blnew = -3.1606

-2.0110

-2.9045

-3.6511

-2.8416

-2.7636

-2.0735

b2new = 0.1 * b2 - 3

b2new = -3.2818

-3.3201

-2.3783

The range for the centres in software is 0 < cl < 8 and it has to be scaled

into the range -1V <cl <1V_ for hardware.

clnew cl * 0.25 - 1

clnew = 0.2750 -0.1250 -0.6500 -0.9500

0.5000 -0.4500 0.2500 -0.6250

0.5750 -0.4250 0.1000 -0.6750

0.8000 -0.1000 0.5250 -0.3750

0.5250 -0.3000 0.1750 -0.7000

0.5500 -0.3000 0.2000 -0.5500

0.5750 -0.1750 0.1750 -0.6000

Lis

CHAPTER 6 - Comparison of hardware and software results

The opening angle changes between -n/2 and 1/2 in software. This has to be

scaled into the range of the input Va, which determines the opening angle as

described in section 3.3. This range is

-4.35V < Va<-3V

The opening angle vector obtained from software was scaled using scaling

factor as follows

omnew = - om * 0.86 - 3

omnew = -3.942 -4.3164 -4.048 -4.35 -4.3486 -4.344 -4.275

The inputs also have to be scaled into the range

-1V < x1,x2,x3,x4 < 1V

since the circuit has been designed to operate in this range. Some samples from each

class of Iris data were scaled and applied to the inputs of the circuit. The output

currents, I_pp- and I yp, were calculated by simulation using Cadence design

package for RBF and MLP parts.

6.3. Hardware And Software Results

Table 6.1, 6.2, and 6.3 show the pattern results for the three classes, Iris

Setosa, Iris Versicolor, and Iris Virginica, respectively. Pattern vectors xl = [5.1,

3.5, 1.4, 0.2] from the first class, Iris Setosa, x2 = [7.0, 3.2, 4.7, 1.4] from the

second class, Iris Versicolor, and x3 = [6.3, 3.3, 6.0, 2.5 | from the third class, Iris

Virginica were chosen. The synapse currents, I_ yp and I_p-, summed over all inputs

are given below identified for each of the seven nodes in the hidden layer.

116

CHAPTER 6 - Comparison of hardware and software results

IC1(2) 51.946n

IC1(3) 33.955n

IC1(4) 117.146n

1C2(1) 40.351n

1C2(2) 46.086n

1C2(3) 18.023n

Table 6.1. Results for Iris Setosa

 x2 = [7.0;3.234.7;1.4] + [0.75V;-0.2V;0.175V;-0. ae

ae ee
IC1(1) 31.998n 86.56

IC1(2) 8.956n 25.15

IC1(3) 8.175n 44.43u

IC1(4) 12.635n 50.3

1C2(1) 8.061n 36.97u

1C2(2) 8.324n

1C2(3) 9.355n

Table 6.2. Results for Iris Versicolor

117

CHAPTER 6 - Comparison of hardware and software results

=> . : 30.5V 5-0.

Raga
IC1(1) 92.309n 99.18.

IC1(2) 9.274n 29.77

IC1(3) 10.953n 44.48u

IC1(4) 9.163n 42.06,

1C2(1) 9.788n 38.52u

1C2(2) 8.713n 46.2711

1C2(3) 16.344n -7.658

Table 6.3. Results for Iris Virginica

100 + |e Class 1

| |™ Class 2

Class 3 |

MA
TL
AB

Oo ® a

 -100 Ree | Teal | T Jae T I Pete a eed “| ~

-10 0 10 20 30 40 50 60 70 80 90 100

CADENCE (uA)

Figure 6.2. Comparison of software (MATLAB) and _ hardware

(CADENCE) results for MLP unit

118

CHAPTER 6 - Comparison of hardware and software results

x

M
A
T
L
A
B

oo
 |

[a Classt | |
@ Class2/| |

© Class3

0 Tagen ; 5 aa] oe} es ore ce

0 50 100

CADENCE (nA)

Figure 6.3. Comparison of software (MATLAB) and _ hardware
(CADENCE) results for RBF unit.

The dot product for MLP and the Euclidean distance for RBF were then

calculated for each three patterns using Matlab programme. The results were, then,

compared with the hardware. Fig.6.2 and 6.3 show the comparison of the hardware

results with the software results. In these figures x-axis refers to the hardware results

from the Cadence and y-axis is the software results from MATLAB. Fig.6.2 shows

the MLP type of outputs and Fig.6.3 shows the RBF type of outputs.

6.4. Discussion

The comparison of the hardware simulation results obtained from Cadence

with the software simulation results using Matlab programme shows good agreement

between practical and theoretical results.

The MLP type outputs are linearly related to the MATLAB results for the

three classes except for one or two rogue results.

119

CHAPTER 6 - Comparison of hardware and software results

The RBF type outputs had a nonlinear relationship to the MATLAB results

whereas a linear dependence was expected. This problem was addressed by

redesigning the circuit so that RBF current increased.

An offset problem was discovered while the outputs of the neurons were

measured. RBF, MLP, and CSF type of outputs had different offset voltages.

The results obtained in this chapter gave ideas for improvements to the chip

to be designed. Some transistor parameters and bias voltage values have been

changed to increase of the RBF type of output current in the synapse circuit. A new

neuron circuit also has been designed to eliminate the offset problem confronted at

the RBF, MLP, and CSF type of outputs.

120

CHAPTER

J

Chip Design

The Conic Section Function network will require less silicon area for

a fixed hardware for different applications than the standard RBF

and MLP networks because fewer hidden nodes are required. This

feature gives greater flexibility in terms of VLSI implementations.

During this work two chips have been designed and fabricated using

the Mietec 2.4um Process under the Europractice agreement.

7.1. Synaptic Circuit

The first chip to be designed was a small test chip to demonstrate the

functionality of an RBF type synaptic circuit. The chip has been designed using the

network with 8 synapses given in Section 3.8.2. This synaptic circuit computes the

Manhattan distance between the input and centre vectors as described in Section 3.8.

The exclusive OR gate design given in Section 3.8.1 and standard current mirrors

have been used to build the circuit. The current mirrors provide a summation of the

output of the synapses in order to connect to the neuron. Fig.7.1 shows the schematic

of the network. Fig.7.2 shows the mask layout of the network and finally, Fig.7.3

shows the mask layout of the chip.

121

CHAPTER 7 - Chip Design

Figure 7.1. The schematic of the synaptic circuit

122

CHAPTER 7 - Chip Design

Figure 7.2. Mask layout of the synaptic circuit

Figure 7.3. Chip mask layout

123

CHAPTER 7 - Chip Design

7.2. The CSFN Chip Design

The complete chip design contains the various building blocks. This section

details the design of these individual blocks through to layout with Cadence design

package.

7.2.1. The synapse

The synapse was designed to achieve the weighted and the centred inputs to

the neuron as described in Section 3.5.3. It consists of both RBF and MLP units with

the capability of computing the Euclidean distance and the dot product. It also needs

the weight and the centre storage cells. To do this, the transistors which are effective

for the storing the weights and the centres were taken out as shown in Fig.7.4 and

replaced with EEPROM type cells. This allows to program the weight or centre

values as required.

RBF_NEG

Figure 7.4. The synapse circuit

124

CHAPTER 7 - Chip Design

Fig.7.5 shows the synapse mask layout without EEPROM programming cells.

Fig. 7.6 shows the EEPROM cells for the weight and centre storage. One EEPROM

cell for the weight storage needs only one transistor, whereas, it needs to place three

transistors in the synapse circuit for the centre storage.

N N N N N N N N N N

ee
BY/ LM

Lh WLLL

 a
ELL ELL

Figure 7.6. EEPROM cell structure for weight and centre storage

125

CHAPTER 7 - Chip Design

7.2.2. The new neuron circuit

A new neuron circuit shown in Fig.7.7 was designed since there has been

some problems with the old one described in Section 3.6 when a real data (Iris

database) has been used. The results of the comparison between hardware and

software simulations showed that the old neuron circuit is not capable to classify the

data correctly because of the mismatches on the offset values of RBF, MLP, and CSF

type of outputs even though it can provide the decision regions appropriately.

Figure 7.7. New neuron circuit

Some modifications in neuron circuit were made to eliminate the offset

problem. The simplified equation given by Eq.3.6 was changed to form an exact

match to the general propagation rule of CSFN (in Eq.2.1). The new simplified

equation is expressed by

1 (7.1) our * V, mip ~ 2 V, RBF

where Vp refers to the dot product for MLP and Vp», refers to the Euclidean

126

CHAPTER 7 - Chip Design

distance for RBF. a is a parameter to determine the opening angle for CSF. a is a

function of bias voltage, Va, as in old neuron circuit.

The differential amplifier required for adjusting the input and output range of

the neuron in old circuit was not used in this new one. To adjust the ranges in new

circuit, some of the bias voltage values have been changed. The modifications in the

neuron circuit allow relatively small structure to implement. Fig.7.8. shows the mask

layout of the neuron.

LLL LLL
LLL LLL

UI
WLLL

ITT
YALL.

Le LLL LLL

Figure 7.9. EEPROM cell for opening angle

127

CHAPTER 7 - Chip Design

The transistor connected to the bias voltage, Va, was taken out from the

neuron circuit and replaced with an EEPROM programming cell as done for some

transistors in synapse circuit. By doing this, it is possible to program and to store the

opening angle without many external connections. The EEPROM cell for the storage

of the opening angle is shown in Fig.7.9.

7.2.3. Row and column selectors

The function of these blocks is to program the required EEPROM cells used

to store the weights and the centres in synapse circuit and the opening angle values

in neuron circuit. To achieve this each of the output lines must be capable of

switching between 0 and 5V independently depending upon if the EEPROM cells are

being programmed or not.

Two decoder circuits have been designed for row selection and column

selection using a simple inverter and an AND gate circuits shown in Fig.7.10 and

Fig.7.12. The mask layouts of the inverter and the AND gate are shown in Fig.7.11

and Fig.7.13.

Figure 7.10. Inverter schematic Figure 7.11. Inverter mask layout

128

CHAPTER 7 - Chip Design

row

AND_out

Figure 7.12. AND gate

SS
SS N SS NS N NS N SS NS SS
SS
S

Figure 7.13. AND gate mask layout

129

CHAPTER 7 - Chip Design

The circuit schematics of the column selector and the row selector are

illustrated in Fig.7.14 and 7.15. Fig.7.16 shows the mask layout of the row selector.

CsA GS2Z

C2

 Gs

C4

Figure 7.14. The column selector

C/W

rOW

 a

Figure 7.15. The row selector

130

CHAPTER 7 - Chip Design

Figure 7.16. Row selector mask layout

7.2.4. The complete chip design

The complete network designed with 4 by 4 synapse array and four neurons.

It contains row and column selectors and EEPROM cells described in this section in

order to program and store the weight, centre, and opening angles. It allows to make

less external connections to the chip. It was designed full custom. No standard cell

from Mietec Design Kit has been used in the chip design. Fig.7.17 shows the floor

plan of the chip. Fig.7.18 shows the mask layout of the complete CSFN. The top

level schematic containing all input and output pins to the network is shown in

Fig.7.19. This schematic is used by the automatic place and route software to obtain

the final mask layout of the chip illustrated in Fig.7.20.

131

CHAPTER 7 - Chip Design

COLUMN SELECTOR

SYNAPSE ARRAY

WEIGHT AND CENTRE STORAGE

SYNAPSE ARRAY

WEIGHT AND CENTRE STORAGE

SYNAPSE ARRAY

WEIGHT AND CENTRE STORAGE

 Y
O
L
O
A
I
A
S

MO
Y

SYNAPSE ARRAY

WEIGHT AND CENTRE STORAGE

NEURONS outputs

OPENING ANGLE STORAGE

Figure 7.17. The floor plan of the chip

132

CHAPTER 7 - Chip Design

Figure 7.18. The mask layout of CSFN

133

CHAPTER 7 - Chip Design

Analog Power Supply

<

Figure 7.19. The top level schematic of the CSFN

134

 ra
Po be

L-]

a

&

pa
le

h
o
m
e

- Feet eenteeeel

CHAPTER

8

Chip Results

The real performance of the neural network building blocks can be proven in

actual environment and when they are built into a complete neural network. Even

though the blocks work perfectly in theory, especially when tested as single circuits,

unexpected behaviour can usually be observed when a circuit is moved from the test

environment to its real environment of operation. This chapter covers the actual

results for the two chips described in Chapter 7 that have been fabricated using the

Mietec 2.4 um process under the Europractice agreement.

8.1. Synaptic Circuit With Manhattan Distance Function

The reason for building a synaptic circuit was simply to demonstrate the

behaviour of the synapses when they are summed in order to connect to the neuron.

The first chip described in Section 7.1 has eight RBF type of synapses providing a

Manhattan distance function and standard current mirrors to provide a summation

circuit for these synapses. The alternative synapse design given in Section 3.8 has

been used to built the synaptic circuit. The choice of Manhattan distance instead of

Euclidean was to demonstrate the behaviour of a different function for an RBF unit

because the Euclidean distance function has been already used in the design of the

second chip.

136

CHAPTER 8 - Chip results

8.1.1. Testing of the first chip

Two different resistors, 10kQ and 100kQ have been connected to the output

of the synaptic circuit shown in Fig.7.1. All the inputs were connected to the ground

at the beginning. Then, at each step, one more input was set to the logic level 1.

Finally, all eight inputs were logic 1. The summation of the output currents of the

synapses have been measured at every step. Meanwhile, the circuit has been

simulated using Cadence design package with the same parameters. The experimental

results were, then, compared with the simulation results obtained from Cadence.

90 Ns Rs ED cea Ae ee Es ee ene ee

80 --| o

a ae

= |

s

i OO 57) |
Ss | |
oO 1 ff 2 |

cae
//
1 eget

40 -4 | -o- experimental |
|—=-simulation |

30 al T] | “Tk] t*] i T it T] “T roo el

Op gt 225k aoe 5)" 6) Aree noe 9

number of inputs

Figure 8.1. Output current of the synaptic circuit for R=100kQ

Fig.8.1 shows the summed output current of the synaptic circuit when the

output resistor value is 100kQ. Fig.8.2. shows the measurement of the same output

current when the output resistor is 10kQ. The x axis in figures refers to the number

of inputs connected to the "high" logic level. As can be seen from Fig.8.1 and 8.2,

the simulation results and the experimental results of the chip are very close. To see

La7,

CHAPTER 8 - Chip results

if there is any difference from chip to chip, 8 chips have been tested and the results

were in good agreement to within +5% for all chips.

800 a
= .

700 — eC sar
p

i
= 600 - //
= | / |

_— lh

1500 — }/
ee ZS F oO

406; ny te |
| a | o— experimental |

1 |-=-simulation

900 an eee ee

OF wee ee, ae goed. £ Soe

number of inputs

Figure 8.2. Output current of the synaptic circuit for R=10kQ

8.2. Results of The CSFN Chip

The Conic Section Function network (CSFN) chip with 4 by 4 synapse array

and four neurons was tested to see the performance of the network in real

environment. First of all, the RBF and MLP type of synapse voltages have been

measured with various centre and weight values. This was done by programming the

EEPROM cells using for the centre and weight storage. To charge a programming

device the injector is pulsed between OV and S5V and the top plate of the polyl /

poly2 capacitor is held approximately at 20V. The pulse width is lms. The row and

column select inputs are used to select the programming cell that would be

programmed.

138

CHAPTER 8 - Chip results

The Advantech PCL-818HG multifunction data acquisition card was used to

obtain the pulses to programme the EEPROM devices and the inputs to select the

rows and columns for the chips fabricated during this work. The card has 16 digital

outputs, 16 digital inputs, 16 analog inputs and one analog output. The card was

programmed by using a custom C code (see Appendix 5) which used the library

routines provided by the manufacturer.

To measure the output of the synapses, one of the inputs was swept from -1V

to 1V at 1kHz frequency (the circuit was very stable to changes in the frequency) and

other three inputs were connected to the ground. For the RBF output, the

programming cell storing the centre value was programmed during 1000

programming pulses at first, then it was programmed for another 2000 programming

pulses in two steps. Fig.8.3. shows the RBF type output obtained from the chip. The

centre point shifts at every programming step as can be seen from this figure. Fig.8.4.

shows how the RBF centre value changes with the programming cycles.

80 ——
+1000 cycles ycles

70 a" | -2000 cycles
aN = 3000 cycles |

Coo ‘ SET eer, oP aS

50 4 «=

40 —\

20 7] oe ‘

RB
F

ou
tp
ut

(m
V)

10 ne +

-10 - oo _ * -30 Sl See Si 6 al a ce ci i = i “—

Input voltage (V)

Figure 8.3. RBF type output

139

CHAPTER 8 - Chip results

O:55.—]

A

en0 225

=
>) "

3s -0.1 +
wo
> Y

© yr
2 -0.4 - ifs
@®

Oo 4 ;
i

= OV é

ie en “1.0 4)

0 1000 2000 3000 4000

cycles

Figure 8.4. Variation of the centre point

The same procedure was applied to obtain MLP type of output with positive

and negative weights. The EEPROM cell storing the weight values was programmed

during 1000, 2500, and 3500 programming pulses. Fig.8.5 shows the MLP type

output.

40. Se ee ee
—+¢— initial

rt —>- 1000 cycles hi
t —4«— 2500 cycles |

30 | -2- 3500 cycles |
. df

BONE ar / A
> a : A |
< % * x

Ss o 2
a 10° =] ’
S x
9° © oO

= Se
So Oar oF

et Ke ¥

-10 Sho gate ‘
— *

oO a of + |

+

-20 ee ; alot Fala =r

-1 0 1

Input voltage (V)

Figure 8.5. MLP type output

140

CHAPTER 8 - Chip results

8.2.1. Neuron output

The final testing step of the chip was to obtain results for the output of the

neurons. At this point of the experiment, some problems were discovered at the

setting of the opening angle values in the network. It was difficult to programme

opening angle so that the outputs could operate as RBF, MLP, and CSF. Therefore,

another strategy has been used to show if the network operates functionally instead

of programming the EEPROMs. The bias voltage, Vb, which affects the output was

changed between -3V to -2.4V and output of the neuron was measured to see if RBF,

MLP, and CSF type of outputs can be obtained from the neuron. Figure 8.6 shows

the output of the neuron by varying the bias voltage. The results of the neuron shows

the requested type of decision boundaries can be obtained by using this Conic Section

Function network although it failed to programme opening angle.

100

—+— Vb=-3V
—— Vb=-2.8V
—s— Vb=-2.65V
—o— Vb=-2.5V
—a— Vb=-2.4V

a

Ou
tp

ut

of

ne
ur

on

(m
V)

°o
 + Q a ge

 -100 ae]

-1 0 1

Input voltage (V)

Figure 8.6. Neuron output

141

CHAPTER 8 - Chip results

8.3. Discussion

Unexpected behaviour can be expected when a neural network is tested in the

actual environment because of the process variations. The actual results of the first

chip were very close to the results in the simulation environment. However, there

were some problems encountered with the second chip. The EEPROM programming

cells using for the storage of the parameters were not quite reliable to obtain

requested storage values for the centres, weights, and especially for the opening

angle. These parameters were not easily programmable. It is always difficult to know

the value of the EEPROMs at the beginning. But the results proved that the Conic

Section Function network operates as expected functionally. On-chip learning may

be achieved with a better programming cell design.

142

CHAPTER

9

Conclusions

The aim of this thesis was to improve a training algorithm for the

back propagation learning rule using conic section functions in

software and to implement an analogue VLSI hardware for Conic

Section Function neural networks. This chapter summarizes the results

of the software and hardware simulations and experimental results of

the CSFN implemented in analogue VLSI hardware. Some suggestions

are given about the future improvements of the work.

9.1. Software Results

A new training algorithm to improve the performance of back propagation

using conic section functions is proposed. The Conic Section Function Network

(CSFN) introduced in this thesis uses a new propagation rule which consists of both

MLP and RBF propagation rules. This network converts the open decision boundaries

in an MLP to closed ones in an RBF, or vice versa. It reduces the number of centres

needed for an RBF and the number of hidden nodes for an MLP. This is important

since this work is also aimed at designing a VLSI hardware neural network.

Furthermore, it converges to a determined error goal at lower training epochs than

a standard MLP.

Two training methods were improved for CSFN. Both methods contain

initialization and back propagation phases. In the initialization phase, the weights, the

143

CHAPTER 9 - Conclusions

centres, and the opening angle parameters are set. The centres are placed with an

Orthogonal Least Square Algorithm. In the first method all parameters are updated

in the same training epoch in the back propagation phase. In the second method, the

weights are updated for a predetermined number of training epochs, and then, the

opening angle is updated in a different training epoch, Finally, the centres are

updated (if required).

Simulations were run using two different databases: the Iris plant database and

the contact lens fitting database. The performances of a standard MLP trained back

propagation, a fast back propagation using adapted learning rates, a standard RBFN,

and the proposed algorithm are compared. Databases for Iris plant classification and

for contact lens fitting problem were used to compare the algorithms. The results

show that the new training algorithm is much better than the others in most cases, in

terms of not only training epochs but also the number of hidden units and centres.

When iris plant database is used, for 6 centres, standard MLP needs 4000 to

30000 epochs while second algorithm needs only 561 epochs. The first algorithm is

also better with 2950 epochs for the same number of centres. MLP trained with fast

back propagation gives some better results than the first algorithm, but none better

than the second. It requires minimum 1000 epochs and sometimes does not converge

depending on a random start while CSFN is not dependent on random initialization.

CSFN needs fewer centres than RBF. It requires only 6 centres to reach the same

error goal while RBF needs 32 centres. The second algorithm converges at only 363

training epochs for 8 centres.

The effect of the learning rate was investigated using lens fitting database.

The results shown that the convergence of the network depends on the learning rate

as well as the number of centres chosen. For this special problem, the CSFN again

gives much better results than the others. The performance of the standard back

propagation and adaptive back propagation is quite unstable and the network needs

longer training times to classify data correctly. The standard RBF needs at least 7

144

CHAPTER 9 - Conclusions

centres to be placed to solve the problem, whereas, the CSFN network can converge

even with 4 centres depending on the learning rate.

9.2. Hardware Simulation Results

A novel analogue VLSI hardware design for a Conic Section Function neural

network which allows the use of RBF and MLP propagation rules on a single chip,

depending on the data distribution of a given application, is proposed. The network

designed can operate in either MLP or RBF modes. An intermediate behaviour is also

reported which is analogous to the CSFN and has open and closed decision regions.

This novel approach will give a greater flexibility for matching fixed hardware to

applications in areas such as robotics, character recognition, time series prediction and

biomedical signal analysis.

| Several circuits have been designed and simulated to show the performance

of the CSFN in hardware. The cdsSpice simulator in Cadence design package was

used to simulate the circuits. The results of RBF synapse with variable basis function

centres and of MLP synapse with variable weight values have been obtained. Also,

different decision boundaries were obtained using a circuit with two synapses and one

neuron; circles for RBF, straight lines for MLP, and ellipses or parabolas for CSFN.

This shows that the CSFN designed during this work is able to switch the neurons

between RBF type and MLP type through CSF by varying only a single parameter,

the opening angle. The simulation results of the network with eight synapses show

that the CSFN can be with in higher dimensionality.

9.3. Software And Hardware Simulations

The software and hardware simulation results were compared to show if the

theoretical work matches with the practical one. The parameters obtained from

145

CHAPTER 9 - Conclusions

software results using Iris plant data have been used in hardware. The comparison

shows that the matching is satisfactory.

9.4. Experimental Results

Experimental results of the first small test chip shown that the experimental

results match with the simulation results. The actual results of the CSFN chip

designed show that the CSFN operates as expected functionally, i.e. it is possible to

obtain different decision boundaries by varying some voltage values. However,

weight, centre and opening angle storage need to be reconsidered and improved.

9.5. Further Work

@ Demonstration applications - The training algorithms need to be simulated

for the larger database. The hardware demonstration circuits need to be tested and

simulated with real database in order to determine the system performance.

@ Software improvement - The dependency of the learning rate could be

improved by using an adaptive learning algorithm for CSFN. Faster training times

could be achieved by network pruning and data compression techniques.

@ Hardware improvement - The problems with the storage of the parameters

could be eliminated by using standard EEPROM type cells to store the weights,

centres, and the opening angle. A larger network needs to be designed and tested in

order to use in real world applications, for example, 80 inputs and 16 hidden nodes

for character recognition of facsimile output.

146

References

[All87] P.E.Allen, D.R.Holberg. CMOS analog circuit design. The Dryden Press,

USA, 1987.

[And93] J.Anderson, J.C.Platt, D.B.Kirk. An analog VLSI chip for radial basis

functions. Advances in Neural Information Processing Systems 5, 765-771. San

Mateo, CA: Morgan Kaufmann, 1993.

[Aub96] J.P.Aubin. Neural networks and qualitative physics: A viability approach.

Cambridge University Press, 1996.

[Bea90] R.Beale, T.Jackson. Neural computing: an introduction. Institute of Physics

Publishing, Bristol, UK, 1990.

[Bor96] A.G.Bors, and I.Pitas. Median radial basis function neural network. JEEE

Transactions on Neural Networks, Vol.7, No.6, 1351-1364, November 1996.

[Bos96] S.Bosman. Locally weighted approximations: yet another type of neural

network. Master’s thesis, Intelligent Autonomous Systems group, Dept. of Computer

Science, Univ. of Amsterdam, July 1996.

[Bot91] S.M.Botros, C.G.Atkeson. Generalization properties of radial basis functions.

In Advances in Neural Information Processing Systems 3 (R.P.Lippman, J.E.Moody,

and D.S.Touretzky, ed.), San Mateo, CA: Morgan Kaufmann, 707-713, 1991.

[Bro88] D.S.Broomhead, D.Lowe. Multivariable functional interpolating and adaptive

networks. Complex Systems, 321-355, 1988.

[Car89] L.R.Carley. Trimming analog circuits with floating-gate analog MOS

memory. JEEE Journal of Solid State Circuits, Vol. 24, No.6, 1569-1575, December

1989.

147

References

[Car93] A.Carling. Introducing neural networks. Sigma Press, Wilmslow, UK, 1992.

1993,

[Car94] H.C.Card. Analog VLSI neural learning circuits - A tutorial. In VLSI for

Neural Networks and Artificial Intelligence, edited by J.G.Delgado-Frias, and

W.R.Moore, Plenum Press, New York, 1994.

[Che91] S.Chen, C.F.N.Cowan, P.M.Grant. Orthogonal Least Squares learning

algorithm for Radial Basis Function Networks. JEEE Transactions on Neural

Networks, Vol.2, No.2, 302-309, March 1991.

[Che93] S.Chen, P.M.Grant, S.McLaughlin, and B.Mulgrew. Complex-valued radial

basis function networks. JEE 3rd International Conference on Artificial Neural

Networks, No.372, 148-152, 1993.

[Chu92] P.S.Churchland, and T.J.Sejnowski. The computational brain. Cambridge,

MA: MIT Press, 1992.

[Chu93] S.Churcher, D.J.Baxter, A.Hamilton, A.F.Murray, H.M.Reekie. Generic

analog neural computation - The EPSILON chip. In Advances in Neural Information

Processing Systems 5 (S.J.Hanson, J.D.Cowan, C.L.Giles ed.), San Mateo, CA:

Morgan Kaufmann, 773-780, 1993.

[Chu93a] S.Churcher, A.F.Murray, H.M.Reekie. Programmable analogue VLSI for

radial basis function networks. Electronic Letters, Vol.29, 18:1603-1605, 1993.

[Cic93] A.Cichocki, R.Unbehauen. Neural networks for optimization and signal

processing. John-Wiley and Sons, September 1993.

[Del91] T.Delbriick. "Bump" circuits for computing similarity and dissimilarity of

analog voltages. Proceedings of the Int. Joint Conf. on Neural Networks IJCNN91,

Seattle, No.1992, Vol.I, 475 -479, 1991.

[Dor94] G.Dorffner, and G.Porenta. On using feedforward neural networks for

clinical diagnostic taskas. In Artificial Intelligence in Medicine. 1994.

[Dor94a] G.Dorffner. Unified framework for MLPs and RBFNs: Introducing conic

section function networks. Cybernetics and Systems, 25: 511-554, 1994.

148

References

[Fis36] R.A.Fisher. The use of multiple measurements in taxonomic problems.

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to mathematical

Statistics", John Wiley, NY, 1950.

[Gev92] S.Geva, and J.Sitte. A constructive method for multivariate function

approximation by multilayer perceptrons. JEEE Transactions on Neural Networks,

Vol.3, No.4, 621-624, July 1992.

[Gib90] G.J.Gibson, and C.F.N.Cowan. On the decision regions of multilayer

perceptrons. Proc. IEEE, Vol.78, No.10, 1590-1594, October 1990.

[Gos89] K.Goser, U.Hilleringman, U.Rueckert, K.Schumacher. VLSI technologies for

artificial neural networks. JEEE Micro, 28-44, December 1989.

[Gri95] P.J.Griffiths. Implementation considerations for pulse width modulated neural

networks with analogue weight storage. PhD dissertation, University of Liverpool,

December 1995.

[Hag96] M.T.Hagan, H.B.Demuth, M.Beale. Neural network design. PWS Publishing

Company, Boston, 1996.

[Ham90] D.Hammerstrom. A VLSI architecture for high performance, low cost, on-

chip learning. Proc. Int. Joint Conf. on Neural Networks, Vol.I, 537-544, June 1990.

[Hay94] S.Haykin, Neural networks: A comprehensive foundation. Macmillan College

Publishing, New York, 1994.

[Hec91] R.Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1991.

[Her91] J.Hertz, A.Krogh, and R.G.Palmer. Jntroduction to the theory of neural

computation. Computation and Neural Systems Series, Addison-Wesley, 1991.

[Hin89] G.E.Hinton. Connectionist learning procedures. Artificial Intelligence 40,

185-234, 1989.

[Hir93] M.Hirahara, N.Oka. A hybrid model composed of a multilayer perceptron

and a radial basis function network, Proc. of 1993 Int. Joint Conf on Neural

Networks, IJCNN’93, Nagoya, 1353-1356, 1993.

[Hol89] M.Holler, S.Tam, S.Castro, R.Benson. An electrically trainable artificial

neural network (ETANN) with 10240 ’floating gate’ synapses. Data sheet. 1989.

149

References

[Hol91] T.Holcomb, M.Morari. Local training for Radial Basis Function Networks

towards solving the hidden units problem, Proc. of the American Control Conference,

Vol.3, 2331-2336, 1991.

[Hus92] D.R.Hush, B.Horne, and J.M.Salas. Error surfaces for multilayer perceptrons.

IEEE Transactions on Systems, Man, and Cybernetics, Vol.22, No.5, 1152-1161,

September/October 1992.

[Hus93] D.R.Hush, and B.G.Horne. Progress in supervised neural networks. JEEE

Signal Processing Magazine. 8-39, January 1993.

[Hwa91] J.N.Hwang, J.J.Choi, S.Oh, R.J.Marks II. Query-based learning applied to

partially trained multilayer perceptrons. JEEE Transactions on Neural Networks,

Vol.2, No.1, 131-136, January 1991.

[Ism94] M.Ismail, T.Fiez. Analog VLSI Signal and Information Processing. Mc-

Graw-Hill, Inc., 1994.

[Joh95] D.E.Johnson, J.S.Marsland, W.Eccleston. Neural network implementation

using a single MOST per synapse. JEEE Transactions on Neural Net. Vol.6, No.4,

1008-1011, 1995.

[Jon96] C.G.H.Jondarr. Back propagation family album. Technical Report C/TR96-05,

Dept. of Computing, Macquarie University, August 1996.

[Jor96] M.I.Jordan, and C.M.Bishop. Neural Networks. 4.) Memo No.1562,

Massachusetts Institute of Technology, Artificial Intelligence Laboratory, March

1996.

[Kad92] V.Kadirkamanathan, M.Niranjan, and F.Fallside. Models of dynamic

complexity for time-series prediction. Proc. ICASSP (San Francisco), Vol.II, 269-272,

1992.

[Kra91] A.Kramer, C.K.Sin, R.Chu, and P.K.Ko. Compact EEPROM-based weight

functions. In Advances in Neural Information Processing Systems 3 (R.P.Lippman,

J.E.Moody, and D.S.Touretzky, ed.), San Mateo, CA: Morgan Kaufmann, 1001-1007,

1991;

150

References

[Kr693] B.J.A.Krése, P.P.van der Smagt. An introduction to neural networks. Univ.

of Amsterdam, January 1993.

[Lee91] S.Lee, and R.M.Kil. A Gaussian potential function network with

hierarchically self-organizing learning. Neural Networks, Vol.4, 207-224, 1991.

[Lee91a] Y.Lee, S.Oh, and M.W.Kim. The effect of initial weights on premature

saturation in back-propagation learning. Proceedings of the Int. Joint Conf. on Neural

Networks IJCNN9Y1, Seattle, No.1992, 765-770, 1991.

[Leh95] M.Lehtokangas, J.Saarinen, K.Kaski. Accelerating training of radial basis

function networks with Cascade-Correlation algorithm. Neurocomputing 9, 207-213,

1995.

[Lip87] R.P.Lippmann. An introduction to computing with neural nets. JEEE ASSP

Magazine, 4-22, April 1987.

[Lon92] J.B.Lont, and W.Guggenbiihl. Analog CMOS implementation of a multilayer

perceptron with nonlinear synapses. JEEE Transactions on Neural Networks, Vol.3,

No.3, 457-465, May 1992.

[Lop96] P.I.Lopez. Programmable VLSI systolic processors for neural network and

matrix computations. These No. 1525, EPFL, Lausanne, 1996.

[Mah89] M.N.C.Maher, S.P.Deweerth, M.A.Mahowald, and C.A.Mead. Implementing

neural architectures using analog VLSI circuits. JEEE Transactions on Circuits and

Systems, Vol.36, No.5, 643-652, May 1989.

[Man89] J.R.Mann, S.Gilbert. An analog self-organizing neural network chip. In

Advances in Neural Information Processing Systems I, D.S.Touretzky, ed., San

Mateo, CA: Morgan Kaufmann, 739-747, 1989.

[Mar92] M.Maruyama, F.Girosi, and T.Poggio. A connection between GRBF and

MLP. 4./. Memo No.1291, Massachusets Institute of Technology, 1992.

[Mea89] C.Mead. Analog VLSI and Neural Systems. Addison-Wesley. 1989.

[Mel91] B.W.Mel, S.M.Omohundro. How receptive field parameters affect neural

learning. In Advances in Neural Information Processing Systems 3 (R.P.Lippman,

151

References

J.E.Moody, and D.S.Touretzky, ed.), San Mateo, CA: Morgan Kaufmann, 757-763,

1991,

[Miy94] T.Miyano, F.Girosi. Forecasting global temperature variations by neural

networks. A.J. Memo No.1447, Massachusets Institute of Technology, August 1994.

[Moe96] P.D.Moerland, and E.Fiesler. Hardware-friendly learning algorithms for

neural networks: an overview. Proc. of Micro Neuro’96, February 12-14, Lausanne,

Switzerland, 1996.

[Moo88] J.Moody, and C.Darken. Learning with localized receptive fields. Proc. of

the 1988 Connectionist Models Summer School, 133-143, 1988.

[Moo89] J.Moody, C.J.Darken. Fast learning in network of locally-tuned processing

units. Neural Computation 1:281-294, 1989.

[Mor95] M.Moreira, andE.Fiesler. Neural networks with adaptive learning rate and

momentum terms. JDIAP Technical Report, No.95-04, October 1995.

[Mur89] A.F.Murray, A.Hamilton, L.Tarassenko. Programmable analog pulse-firing

neural networks. In Advances in Neural Information Processing Systems 1,

D.S.Touretzky, ed., San Mateo, CA: Morgan Kaufmann, 671-677, 1989.

[Mur89a] A.F.Murray. Pulse arithmetic in VLSI neural networks. JEEE Micro, 64-74,

Dec 1989.

[Mur91] A.F.Murray, D.Del Corso, and L.Tarrasenko, Pulse-stream VLSI neural

networks mixing analog and digital techniques. JEEE Transactions on Neural

Networks, Vol.2, No.2, 193-204, March 1991.

[Mye93] D.J.Myers, J.M.Vincent, and D.A.Orrey. HANNIBAL: A VLSI building

block for neural networks with on-chip backpropagation learning. Neurocomputing

55,2973 7,°1993:

[Neu93] The logicon projection network. in Neural Computing : A Technology

Handbook for Professional Il/PLUS and NeuralWorks Explorer, NeuralWare Inc.,

USA, 209-226, 1993.

[Ogi69] C.S.Ogilvy. Excursions in geometry. Oxford University Press, New York,

1969.

152

References

[Ong89] T.C.Ong, P.K.Ko, C.Hu. The EEPROM as an analog memory device. JEEE

Transactions on Electron Devices, Vol.36, 1840-1841, 1989.

[Par93] C.Park, K.Buckmann, J.Diamond, U.Santoni, S.The, M.Holler, M.Glier,

C.L.Scofield, L.Nunez. A radial basis function neural network with on-chip learning.

Proceedings of International Joint Conference on Neural Networks, 3:3035-3038,

1993.

[Per92] P.Peretto. An introduction to the modeling of neural networks. Cambridge

University Press, 1992.

[Pla91] J.C.Platt. Learning by combining memorization and gradient descent. In

Advances in Neural Information Processing Systems 3 (R.P.Lippman, J.E.Moody, and

D.S.Touretzky, ed.), San Mateo, CA: Morgan Kaufmann, 714-720, 1991.

[Pog89] T.Poggio, and F.Girosi. A theory of networks for approximation and

learning. A.J. Memo No.1140, Massachusets Institute and Technology, July 1989.

[Pog90] T.Poggio, and F.Girosi. Networks for approximation and learning. Proc. of

the IEEE, Vol.78, No.9, 1481-1497, September 1990.

[Reh94] S.E.Rehan, M.I.Elmasry. A sampled-data CMOS VLSI implementation of

a multi-character and recognition system. In VLSI Artificial Neural Networks

Engineering. Kluwer Academic Publishers, 33-81, 1994.

[Rey91] L.M.Reyneri, and E.Filippi. An analysis on the performance of silicon

implementations of backpropagation algorithms for artificial neural networks. JEEE

Transactions on Computers, Vol.40, No.12, 1380-1389, December 1991.

[Rie97] M.Riedmiller, and H.Braun. RPROP - A fast adaptive learning algorithm. To

appear in Proceedings of ISCIS VII, 1997.

[Ros89] O.Rossetto, C.Jutten, J.Herault, I.Kreuzer. Analog VLSI synaptic matrices

as building blocks for neural networks. JEEE Micro, 56-63, December 1989.

[Rum86] D.E.Rumelhart, J.L.McLelland. Parallel Distributed Processing, Vol.1,

Cambridge, MA:MIT Press, 1986.

153

References

[Rum87] D.E.Rumelhart, G.E.Hinton, R.J. Williams. Learning internal representations

by error propagation. in Parallel Distributed Processing, ed. D.E. Rumelhart and J.L.

McClelland, Vol.1, Cambridge, MA: MIT Press, 318-362, 1987.

[Rut94] Jon-Erik Ruth. Low-power stochastic arithmetic feed-forward neural network.

Main subject thesis, Dept. of Informatics, Univ. of Oslo, August 1994.

[San89] T.D.Sanger. Optimal unsupervised learning in feedforward neural networks.

Master’s thesis. Massachusets Institute of Technology, January 1989.

[Sco91] C.L.Scofield, and D.L.Reilly. Into silicon: Real time learning in a high

density RBF neural network. Vol.I, 551-556, 1991.

[She96] A.Sherstinsky, and R.W.Picard. On the efficiency of the orthogonal least

squares training method for radial basis function networks. JEEE Transactions on

Neural Networks, Vol.7, No.1, 195-200, January 1996.

[Sig94] R.L.Sigvartsen. An analog neural network with on-chip learning. Main

subject thesis, Dept. of Informatics, Univ. of Oslo, August 1994.

[Sma95] P.van der Smagt, and F.Groen. Approximation with neural networks:

Between local and global approximation. Proc. of the 1995 Int. Conf. on Neural

Networks, Perth, Australia. 1995.

[Smy92] S.G.Smyth. Designing multilayer perceptrons from nearest neighbor

systems. IEEE Transactions on Neural Networks, 3(2) 329-333, 1992.

[Tar94] L.Tarassenko, S.Roberts. Supervised and unsupervised learning in radial basis

function classifiers. JEEE Proc.- Vis. Image Signal Process., Vol.141, No.4, 210-216,

August 1994.

[Thi96] G.Thimm, P.Moerland, E.Fiesler. The interchangeability of learning rate and

gain in backpropagation neural networks. Neural Computation 8(2), Feb. 1996.

[Tol90] T.Tollenaere. SuperSAB: Fast adaptive back propagation with good scaling

properties. Neural Networks, Vol.3, 561-573, 1990.

[Tom93] J.Tombs, L.Tarassenko. A fast, novel, cascadable design for multilayer

networks. JEE 3rd Int. Conf. on Artificial Neural Networks, No.372, 64-67, 1993.

154

References

[Tre89] P.Treleaven, M.Pacheco, M.Vellasco. VLSI architectures for neural networks.

IEEE Micro, 8-27, December 1989.

[Tso89] A.C.Tsoi. Multilayer perceptron trained using radial basis functions.

Electronics Letters, Vol.25, No.19, 1296-1297, September 1989.

[Val96] M. Valle, D.D.Caviglia, and G.M.Bisio. An experimental analog VLSI neural

network with on-chip back-propagation learning. Analog Integrated Circuits and

Signal Processing, 9, 231-245, 1996.

[Ver89] M.Verleysen, P.G.A.Jespers. An analog VLSI implementation of Hopfield’s

neural network. JEEE Micro, 46-55, December 1989.

[Vir94] M.A.Viredaz. Design and analysis of a systolic array for neural computation.

These No.1264, EPFL, Lausanne, 1994.

[Vit91] E.Vittoz, H.Oguey, M.A.Maher, O.Nys, E.Dijkstra, and M.Chevroulet.

Analog storage of adjustable synaptic weights. In VLS/ design of neural networks,

edited by U.Ramacher, and U.Riickert. Kluwer Academic Publishers, 47-63, 1991.

[Vys93] V.Vysniauskas, F.C.A.Groen, B.J.A.Krose. The optimal number of learning

samples and hidden units in function approximation with a feedforward network.

Technical Report CS-93-15, Univ. of Amsterdam, November 1993.

[Wal89] M. Walker, P.Hasler, L.Akers. A CMOS neural network for pattern

association. JEEE Micro, 68-73, October 1989.

[War92] K.Warwick, G.W.Irwin, and K.J.Hunt. Neural networks for control and

systems. Peter Peregrinus Ltd., London, UK, 1992.

[War95] K.Warwick. The control of dynamical systems by neural networks.

IEEE/IAS Int. Conf. Industrial Automation Control - Proceedings, 341-346, 1995.

[Was93] P.D.Wasserman. Advanced methods in neural computing. Van Nostrand

Reinhold, New York, 1993.

[Wey94] N.Weymaere, J.P.Martens. On the initialization and optimization of

multilayer perceptrons. JEEE Transactions on Neural Networks, Vol.5, No.5, 738-

751, September 1994.

155

References

[Whi92] D.A.White, D.A.Sofke. Handbook of intelligent control: Neural, fuzzy, and

adaptive approaches, Van Nostrand Reinhold, New York, 1992.

[Wil92] G.D.Wilensky, and N. Manukian. The projection neural network. JEEE

IJCNN Int. Joint Conf. on Neural Networks. Vol.2, 358-367, 1992.

[Zur95] J.M.Zurada. Introduction to artificial neural systems. PWS Publishing.

Boston, 1995.

156

List of Publications

[1] T. Yildirim, J.S.Marsland. An RBF/MLP hybrid neural network implemented in

VLSI hardware. Conf. Proceedings of NEURAP’95 Neural Networks and their

applications, Marseilles, March 20-22, pp.156-160, 1996.

[2] T. Yildirim, J.S.Marsland. Conic section function network synapse and neuron

implementation in VLSI hardware. Proceedings of the IEEE International Conf. on

Neural Networks (ICNN’96), Washington DC, USA, Vol.2, pp.974-979, June 1996.

[3] T.Yildirim, J.S.Marsland. A unified framework for connectionist models. To

appear in Springer’s Perspectives in Neural Computing Series. Ed. John Taylor.

[4] T.Yildirim, J.S.Marsland. Optimization by back propagation of error in conic

section functions. Accepted for publication and presentation in J/nternational

Conference on Vision, Recognition, Action: Neural Models of Mind and Machine,

Boston, May 28-31, 1997.

[5] T. Yildirim, J.S.Marsland. Improved back propagation training algorithm using

conic section functions. Accepted for publication and presentation in JEEE

International Conference on Neural Networks (ICNN’97), Houston, Texas, USA, June

9-12, 1997.

157

Appendix

Iris Plant Database

1. Sources:

(a) Creator: R.A. Fisher

(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

(c) Date: July, 1988

2. Past Usage:

1 Fisher,R.A. "The use of multiple measurements in taxonomic problems"

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions

to Mathematical Statistics" (John Wiley, NY, 1950).

. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.

(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System

Structure and Classification Rule for Recognition in Partially Exposed

Environments". [EEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. PAMI-2, No. 1, 67-71.

-- Results: Very low misclassification rates (0% for the setosa class)

. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". [EEE

Transactions on Information Theory, May 1972, 431-433.

-- Results: Very low misclassification rates again

. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al’s AUTOCLASS II

158

Appendix | - Iris Plant Database

conceptual clustering system finds 3 classes in the data.

3. Relevant Information:

--- This is perhaps the best known database to be found in the pattern

recognition literature. Fisher’s paper is a classic in the field

and is referenced frequently to this day. (See Duda & Hart, for

example.) The data set contains 3 classes of 50 instances each,

where each class refers to a type of iris plant. One class is

linearly separable from the other 2; the latter are NOT linearly

separable from each other. This is an exceedingly simple domain.

--- Predicted attribute: class of iris plant.

4. Number of Instances: 150 (50 in each of three classes)

5. Number of Attributes: 4 numeric, predictive attributes and the class

6. Attribute Information:

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class: -- Iris Setosa

-- Iris Versicolour

-- Iris Virginica

7. Missing Attribute Values: None

8.Summary Statistics:

Min Max Mean SD _ Class Correlation

sepal length: 4.3 7.9 5.84 0.83 0.7826

sepal width : 2.0 4.4 3.05 0.43 -0.4194

petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)

petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

159

Appendix 1 - Iris Plant Database

9. Class Distribution: 33.3% for each of 3 classes.

10. Data set:

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

5.4,3.9,1.7,0.4,Iris-setosa

4.6,3.4,1.4,0.3,Iris-setosa

5.0,3.4,1.5,0.2,Iris-setosa

4.4,2.9,1.4,0.2,Iris-setosa

4.9,3.1,1.5,0.1,Iris-setosa

5.4,3.7,1.5,0.2,Iris-setosa

4.8,3.4,1.6,0.2,Iris-setosa

4.8,3.0,1.4,0.1,Iris-setosa

4.3,3.0,1.1,0.1,Iris-setosa

5.8,4.0,1.2,0.2,Iris-setosa

5.7,4.4,1.5,0.4, Iris-setosa

5.4,3.9,1.3,0.4,Iris-setosa

5.1,3.5,1.4,0.3,Iris-setosa

5.7,3.8,1.7,0.3,Iris-setosa

5.1,3.8,1.5,0.3,Iris-setosa

5.4,3.4,1.7,0.2,Iris-setosa

5.1,3.7,1.5,0.4,Iris-setosa

4.6,3.6,1.0,0.2,Iris-setosa

5.1,3.3,1.7,0.5,Iris-setosa

4.8,3.4,1.9,0.2,Iris-setosa

5.0,3.0,1.6,0.2,Iris-setosa

5.0,3.4,1.6,0.4,Iris-setosa

5.2,3.5,1.5,0.2,Iris-setosa

5.2,3.4,1.4,0.2,Iris-setosa

4.7,3.2,1.6,0.2,Iris-setosa

4.8,3.1,1.6,0.2,Iris-setosa

5.4,3.4,1.5,0.4,Iris-setosa

5.2,4.1,1.5,0.1,Iris-setosa

5.5,4.2,1.4,0.2,Iris-setosa

4.9,3.1,1.5,0.1,Lris-setosa

5.0,3.2,1.2,0.2,Iris-setosa

5.5,3.5,1.3,0.2,Iris-setosa

160

Appendix 1 - Iris Plant Database

4.9,3.1,1.5,0.1,Iris-setosa

4.4,3.0,1.3,0.2,Iris-setosa

5.1,3.4,1.5,0.2,Iris-setosa

5.0,3.5,1.3,0.3,Iris-setosa

4.5,2.3,1.3,0.3,Iris-setosa

4.4,3.2,1.3,0.2,Iris-setosa

5.0,3.5,1.6,0.6,Iris-setosa

5.1,3.8,1.9,0.4, Iris-setosa

4.8,3.0,1.4,0.3,Iris-setosa

5.1,3.8,1.6,0.2,Iris-setosa

4.6,3.2,1.4,0.2,Iris-setosa

5.3,3.7,1.5,0.2,Iris-setosa

5.0,3.3,1.4,0.2,Iris-setosa

7.0,3.2,4.7,1.4,Iris-versicolor

6.4,3.2,4.5,1.5,Iris-versicolor

6.9,3.1,4.9,1.5,Iris-versicolor

5.5,2.3,4.0,1.3,Iris-versicolor

6.5,2.8,4.6,1.5,Iris-versicolor

5.7,2.8,4.5,1.3,Iris-versicolor

6.3,3.3,4.7,1.6,Iris-versicolor

4.9,2.4,3.3,1.0,Iris-versicolor

6.6,2.9,4.6,1.3,Iris-versicolor

5.2,2.7,3.9,1.4,Iris-versicolor

5.0,2.0,3.5,1.0,Iris-versicolor

5.9,3.0,4.2,1.5,Iris-versicolor

6.0,2.2,4.0,1.0,Iris-versicolor

6.1,2.9,4.7,1.4,Iris-versicolor

5.6,2.9,3.6,1.3,Iris-versicolor

6.7,3.1,4.4,1.4,Iris-versicolor

5.6,3.0,4.5,1.5,Iris-versicolor

5.8,2.7,4.1,1.0,Iris-versicolor

6.2,2.2,4.5,1.5,Iris-versicolor

5.6,2.5,3.9,1.1,Iris-versicolor

5.9,3.2,4.8,1.8,Iris-versicolor

6.1,2.8,4.0,1.3,Iris-versicolor

6.3,2.5,4.9,1.5,Iris-versicolor

6.1,2.8,4.7,1.2,Iris-versicolor

6.4,2.9,4.3,1.3,Iris-versicolor

6.6,3.0,4.4,1.4,Iris-versicolor

6.8,2.8,4.8,1.4,Iris-versicolor

6.7,3.0,5.0,1.7,Iris-versicolor

161

Appendix 1 - Iris Plant Database

6.0,2.9,4.5,1.5,Iris-versicolor

5.7,2.6,3.5,1.0,Iris-versicolor

5.5,2.4,3.8,1.1,Iris-versicolor

5.5,2.4,3.7,1.0,Iris-versicolor

5.8,2.7,3.9,1.2,Iris-versicolor

6.0,2.7,5.1,1.6,Iris-versicolor

5.4,3.0,4.5,1.5,Iris-versicolor

6.0,3.4,4.5,1.6,Iris-versicolor

6.7,3.1,4.7,1.5,Iris-versicolor

6.3,2.3,4.4,1.3,Iris-versicolor

5.6,3.0,4.1,1.3,Iris-versicolor

5.5,2.5,4.0,1.3,Iris-versicolor

5.5,2.6,4.4,1.2,Iris-versicolor

6.1,3.0,4.6,1.4,Iris-versicolor

5.8,2.6,4.0,1.2,Iris-versicolor

5.0,2.3,3.3,1.0,Iris-versicolor

5.6,2.7,4.2,1.3,Iris-versicolor

5.7,3.0,4.2,1.2,Iris-versicolor

5.7,2.9,4.2,1.3,Iris-versicolor

6.2,2.9,4.3,1.3,Iris-versicolor

5.1,2.5,3.0,1.1,Iris-versicolor

5.7,2.8,4.1,1.3,Iris-versicolor

6.3,3.3,6.0,2.5,Iris-virginica

5.8,2.7,5.1,1.9,Iris-virginica

7.1,3.0,5.9,2.1,Iris-virginica

6.3,2.9,5.6,1.8,Iris-virginica

6.5,3.0,5.8,2.2,Iris-virginica

7.6,3.0,6.6,2.1,Iris-virginica

4.9,2.5,4.5,1.7,Iris-virginica

7.3,2.9,6.3,1.8,Iris-virginica

6.7,2.5,5.8,1.8,Iris-virginica

7.2,3.6,6.1,2.5,Iris-virginica

6.5,3.2,5.1,2.0,Iris-virginica

6.4,2.7,5.3,1.9,Iris-virginica

6.8,3.0,5.5,2.1,Iris-virginica

5.7,2.5,5.0,2.0, Iris-virginica

5.8,2.8,5.1,2.4,Iris-virginica

6.4,3.2,5.3,2.3,Iris-virginica

6.5,3.0,5.5,1.8,Iris-virginica

7.7,3.8,6.7,2.2,Iris-virginica

7.7,2.6,6.9,2.3,lris-virginica

162

Appendix 1 - Iris Plant Database

6.0,2.2,5.0,1.5,Iris-virginica

6.9,3.2,5.7,2.3,Iris-virginica

5.6,2.8,4.9,2.0,Iris-virginica

7.7,2.8,6.7,2.0,Iris-virginica

6.3,2.7,4.9, 1.8, Iris-virginica

6.7,3.3,5.7,2.1,Iris-virginica

7.2,3.2,6.0,1.8,Iris-virginica

6.2,2.8,4.8,1.8,Iris-virginica

6.1,3.0,4.9,1.8,Iris-virginica

6.4,2.8,5.6,2.1,Iris-virginica

7.2,3.0,5.8,1.6,Iris-virginica

7.4,2.8,6.1,1.9,Iris-virginica

7.9,3.8,6.4,2.0,Iris-virginica

6.4,2.8,5.6,2.2,Iris-virginica

6.3,2.8,5.1,1.5,Iris-virginica

6.1,2.6,5.6,1.4,Iris-virginica

7.7,3.0,6.1,2.3,Iris-virginica

6.3,3.4,5.6,2.4, Iris-virginica

6.4,3.1,5.5,1.8,Iris-virginica

6.0,3.0,4.8,1.8,Iris-virginica

6.9,3.1,5.4,2.1,Iris-virginica

6.7,3.1,5.6,2.4,Iris-virginica

6.9,3.1,5.1,2.3,Iris-virginica

5.8,2.7,5.1,1.9,Iris-virginica

6.8,3.2,5.9,2.3, Iris-virginica

6.7,3.3,5.7,2.5,Iris-virginica

6.7,3.0,5.2,2.3,Iris-virginica

6.3,2.5,5.0,1.9,Iris-virginica

6.5,3.0,5.2,2.0,Iris-virginica

6.2,3.4,5.4,2.3,Iris-virginica

5.9,3.0,5.1,1.8,Iris-virginica

163

Appendix

2

Database for fitting contact lenses

REE 7 Oa a a a a I RSI Pie tie i BRS

1. Sources:

(a) Cendrowska, J. "PRISM: An algorithm for inducing modular rules",

International Journal of Man-Machine Studies, 1987, 27, 349-370

(b) Donor: Benoit Julien (Julien@ce.cmu.edu)

(c) Date: 1 August 1990

2. Past Usage:

1. See above.

2. Witten, I. H. & MacDonald, B. A. (1988). Using concept learning for

knowledge acquisition. International Journal of Man-Machine Studies, 27, (pp.

349-370).

Notes: This database is complete (all possible combinations of attribute-value pairs

are represented). Each instance is complete and correct. 9 rules cover the

training set.

3. Relevant Information:

The examples are complete and noise free. The examples highly simplified the

problem. The attributes do not fully describe all the factors affecting the decision as

to which type, if any, to fit.

4. Number of Instances: 24

5. Number of Attributes: 4 (all nominal)

164

Appendix 2 - Database For Fitting Contact Lenses

6.

Ts

8.

2,

Attribute Information:

-- 3 Classes

1 : The patient should be fitted with hard contact lenses,

2 : The patient should be fitted with soft contact lenses,

3 : The patient should not be fitted with contact lenses.

1. Age of the patient: (1) young, (2) pre-presbyopic, (3) presbyopic

2. Spectacle prescription: (1) myope, (2) hypermetrope

3. Astigmatic: (1) no, (2) yes

4. Tear production rate: (1) reduced, (2) normal

Number of Missing Attribute Values: 0

Class Distribution:

1. hard contact lenses: 4

2. soft contact lenses: 5

3. no contact lenses: 15

Data set: The first four columns refer to attributes and the last column refers to

the type of class.

S
O

6
0

O
R

O
N

G
h

er
”

G
O

t
O
:

et

=

—
>

—

No

—_ &

PP eS

T, bale ee

ei oh

Peslguge Di)

La

1 eh 2 ce

We2te 8

Pe Or

2s oe

Coot ekg

Be De WSS

ook et

165

Appendix 2 - Database For Fitting Contact Lenses

Po he Zed TY 3

1a Loe 2

IS i QAg as

1687 22 aes

Pees aok Te bs

PSeecS? ble 2 yg

DS 8 e238

20 ee > aera od

21 Baek eS

Mb fee ae oe

Zoro ek 3

eee Ot Oe a hes

166

Appendix

3

Conic Section Function Neural Network

Training Program I

OG I CR ICI CCI CII IG I CI IC IC CA A CG CR CR RO CR CI I ROI CR Kk 2 2k ok

% CONIC SECTION FUNCTION NETWORK TRAINING PROGRAM I (in MATLAB code)
% This program uses the first training algorithm. It places the centres using
% orthogonal least square algorithm, updates weights, centres, and opening angle.
% The program also tests the network.
Oe 2 2 2k 2 ke 2k 2 22 2 2A 2 2 2 2 2 2 2 2 RR RR A 2k 2A 2k 2k 2k ok 2k 2k 2k ko 2 ok ok 2k ok ok

%
% cl - Matrix of centre vectors.

% p - Matrix of input vectors.

% wl - Weight matrix of hidden layer.
% om - Opening angle vector.

% bl - Bias vector of hidden layer.
% w2 - Weight matrix of output layer.
% b2 - Bias vector of output layer.
% al - Outputs of the hidden layer.
% a2 - Outputs of the second layer.

%

function y = dist(c,p)

% DIST Euclidean distances between the vectors

[s,r] = size(c);

[r2,q] = size(p);
if (r ~= r2), error? Matrix sizes do not match’), end

y = zeros(s,q);

if r ==

for i=1:s

= C(i,:)’ *ones(1,q);

167

Appendix 3 - Conic Section Function Neural Network Training Program I

y(i,:) = abs(x-p);
end

else

for i=1:s

x = c(i,:)’*ones(1,q);

y(i,:) = sum((x-p).”2) .” 0.5;

end

end

function y = dotp(cl,p,w1)

% DOTP Dot product between vectors.

[s.r] = size(cl);

[12,q] = size(p);
ql = abs(s-q);
y = zeros(s,q);

ifr == 1

for i=1:s

= cl(i,:)’*ones(1,q);

y(i,:) = abs(x-p);
end

else

for i=l:q

for k=1:s

x = cl(k,:)’*ones(1,q);

pn = (x-p);
Z = pn(:,i);

n = wl(k,:);

y(k,i) = sum(n.*z’);

end

end

end

function y = consec(cl,p,wl,om)

% CONSEC Design conic section function network

if nargin < 1 , error(’Not enough input arguments’),end
[s,r] = size(cl);

[12,q] = size(p);
if (r~=r2) , error(’ Matrix sizes do not match.’),end

y = zeros(s,q);

a = cos(om);

b = dist(cl,p);

for i=1:q

x(i,:) = a.*b(:,1)’;

end

y = dotp(cl,p,wl) - x’;

168

Appendix 3 - Conic Section Function Neural Network Training Program I

function [al,a2] = simcon(cl,p,w1,om,b1,w2,b2)

% SIMCON Simulate conic section function network.

if nargin < 5, error’ Not enough input arguments’),end

if nargout <= |

al = logsig(w2*logsig(consec(cl,p,wl,om),b1),b2);

else

al = logsig(consec(cl,p,w1,om),b1);

a2 = logsig(w2*al,b2);

end

% 246 ee 2 2 ee 2 2 2g ig 2 2 2g 2 2 2 2k fe 2 2 fe 2 2k 2 2 2 2k 2 2k fe 2 kk 2 ke 2 2 2 22 2 2 2 2 2 2 2 2 2 2g 2 2 2g OK kK 2K 2 KOK

% MAIN PROGRAM
% Dye fe 2 2k fe ie 2 2k fe 2 2k 2c 2c 2k 2 2g 2k fe 2c 2k fe 2 2k 2 2k se 2 2k 2 2k 2 2 2 2 ke 2 2 2 2 2 2 2 iE 2 2 2 2 a 2 2 2K 2 ok ok ok

figure(gcf)

setfsize(350,350);

% Read training data from the file

cla reset

input = fopen(’matlab/input.dat’,’r’);

p = fscanf(input,’%f\n’,[4,120]);

fclose(input);

output = fopen(’ matlab/output.dat’,’r’);

t = fscanf(output,’%f\n’,[3,120]);

fclose(output);

% DESIGN NETWORK

echo on

df= 10; % frequency of progress displays (in neurons).

me = 100; % maximum number of neurons.

eg = 2.5; % sum-squared error goal.

sc = 1; % spread constant radial basis functions.

echo off

tp = [df me eg sc];

% PLOTTING FLAG

[r,q] = size(p),
[s2,q] = size(t);
plottype = max(r,s2) == 1;

% RADIAL BASIS LAYER OUTPUTS WITH ORTHOGONAL LEAST SQUARES ALGORITHM

b = sqrt(-log(.5))/tp(4);

P = logsig(dist(p’,p)*b);

PP = sum(P.*P)’;

d=t;

dd = sum(d.*d)’;

169

Appendix 3 - Conic Section Function Neural Network Training Program I

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

Qe (Ped): 2) 7/3(dde*2PP’);

% PICK VECTOR WITH MOST "ERROR"

pick = nnfmc(e);

used = [];

left = 1:q;

C = P(:,pick);

P(:,pick) = []; PP(pick,:) = [];
e(:,pick) = [];
used = [used left(pick)];

left(pick) = [];

% CALCULATE ACTUAL ERROR

cl = p(-,used)’;

sl=cl;

[S,Q] = size(s1);

if max(S,Q) > 1, sl = Q; end

x = ones(s1,1)*feval(logsig’,’ output’);

[S,Q] = size(t);
if max(S,Q) > 1, s2 = S; end

[w2,b2] = feval(feval(logsig’,’init’),s2,x);

[crr,css] = size(cl);

om = pi/4*ones(1,crr);

wl = zeros(crr,r);

% CALCULATE OUTPUTS

al = logsig(consec(cl,p,wl,om)*b);

a2 = logsig(w2(:,1:1)*al,b2);

sse = sumsqr(t-a2);

% TRAINING RECORD

tr = zeros(1,me);

tr(1) = sse;

sserr = fopen(matlab/sse.dat’,’a’);

fprintf(sserr,’%f\n’,sse);

fclose(sserr);

% PLOTTING

newplot;

messagel = sprintf RBF: %%g/%g epochs, sse = %%g.\n’,me);
fprintf(message1,0,sse)

if plottype

h = plotfa(p,t,p,a2);

else

h = ploterr(tr(1),eg);

end

170

Appendix 3 - Conic Section Function Neural Network Training Program I

for k = 1:9

% CHECK ERROR
if (sse < eg), break, end

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

oj = C(:,k);

%---- VECTOR CALCULATION FOR CENTRES

a= cj’ * P/ (cj’*ej);
P=P-cj*a;

PP =‘sum(P.*P)’;

€= (Pe ted) x62): /a(dde PRs):

% PICK VECTOR WITH MOST "ERROR"

pick = nnfmc(e);

C= [C, PG,pick)];

P(:,pick) = []; PP(pick,:) = [];
e(:,pick) = [];
used = [used left(pick)];

left(pick) = [];

% CALCULATE ACTUAL ERROR

cl = p(,used)’;

[cr,cc] = size(cl);

sl=cl;

[S,Q] = size(s1);

if max(S,Q) > 1, sl = S; end

x = ones(sl,1) * feval(logsig’,’ output’);

[S,Q] = size(t);
if max(S,Q) > 1, s2 = S; end

[w2,b2] = feval(feval(logsig’,’init’),s2,x);

om = pi/4*ones(1,cr);

wl = zeros(cr,r);

al = logsig(consec(cl,p,wl,om)*b);

a2 = logsig(w2*al,b2);

sse = sumsqr(t-a2);

% TRAINING RECORD

tr(k+1) = sse;

sserr = fopen(’ matlab/sse.dat’,’a’);

fprintf(sserr,’ Yf\n’,sse);

fclose(sserr);

171

Appendix 3 - Conic Section Function Neural Network Training Program I

% PLOTTING
if rem(k,df) ==

fprintf(message1,k,sse)

if plottype

delete(h);

h = plot(p,a2,’m’);

drawnow;

else

h = ploterr(tr(1:(k+1)),eg,h);

end

end

end

[S1,R] = size(cl);

bl = ones(S1,1)*b;

% TRAINING RECORD

tr = tr(1:(k+1))

% PLOTTING

if rem(k,df) ~= 0

fprintf(message1,k,sse)

if plottype

delete(h);

plot(p,a2,’m’);
drawnow;

else

ploterr(tr,eg,h);

end

end

hold off

echo on

% TRAINING NETWORK
% This uses backpropagation to train the conic section function network.

df = 10; % Frequency of progress displays (in epochs).

me = 40000; % Maximum number of epochs to train.

eg = 2.5; % Sum-squared error goal.

Ir = 0.05; % Learning rate.

tp = [df me eg Ir];

% Training begins...please wait (this takes a while!)...

echo off

% TRAINING PARAMETERS

dfl = feval(logsig’,’ delta’);

df2 = feval(logsig’,’ delta’);

172

Appendix 3 - Conic Section Function Neural Network Training Program |

% INITIALIZATION OF PARAMETERS

[crr,css] = size(cl);

om = pi/4*ones(1,crr);

wl = zeros(crr,r);

f = consec(cl,p,w1l,om)*b;

al = logsig(f,b1);

a2 = logsig(w2*al,b2);

e = t-a2;

SSE = sumsaqr(e);

% PLOTTING

clg

message = sprintf? TRAINBP: %%g/%g epochs, SSE = %%g.\n’,me);

fprintf(message,0,SSE)

if plottype

h = plotfa(pn,t,pn,a2);

else

h = ploterr(tr(k),eg);

end

for i=k:me

% CHECK PHASE

if SSE < eg, i=i-1; break, end

% BACKPROPAGATION PHASE

d2 = feval(df2,a2,e);

dl = feval(dfl,al,d2,w2);

% UPDATE CENTRES

pn = zeros(r,q);

for j=l:r

newc = cl(:,j)*ones(1,q);

newp = p(j,:)’ *ones(1,crr);

pn = (newc-newp’);

dis = dist(cl,p);

for y=1:crr

for z=1:q

if dis(y,z)==0

dis(y,z)=0.01;

end

end

end

div = pn./dis;

[pnr,pnc] = size(pn);

173

Appendix 3 - Conic Section Function Neural Network Training Program I

for l=1:pne

dif(:,1) = cos(om)’.*div(:,1);

end

newwl = wl(:,j)*ones(1,q);

diff = -neww1l + dif;

end

d3 = al.*(1-al).*(w2’*d2);

% UPDATE ANGLE
difom = sin(om)*dist(cl,p);

d4 = al.*(1-al).*(w2’*d2);

% LEARNING PHASE

for m=1:crr

cn = cl(m,:)’*ones(1,q);

pnew = (cn-p);
end

[dw1,db1] = learnbp(pnew,d1,Ir);

[dw2,db2] = learnbp(al,d2, Ir);

dcen = learnbp(diff(1:4,:),d3, Ir);

dom = (learnbp(difom,d4,Ir/10))’;

% NEW PARAMETERS

cl =cl + dcen;

wl =wl + dwl;

bl = bl + dbl;

w2 = w2 + dw?2;

b2 = b2 + db2;

om = om + dom;

[omr,omc] = size(om);

for s=l:omc

if om(1,s) > pi/2

om(1,s) = pi/2;

end

if om(1,s) < -pi/2

om(1,s) = -pi/2;

end

end

% PRESENTATION PHASE

f = consec(cl,p,wl,om)*b;

al = logsig(f,b1);

a2 = logsig(w2*al,b2);

e = t-a2;

SSE = sumsaqr(e);

174

Appendix 3 - Conic Section Function Neural Network Training Program I

% TRAINING RECORD

tr(i+1) = SSE;

sserr = fopen(’matlab/sse.dat’,’a’);

fprintf(sserr,’ %f\n’ SSE);

fclose(sserr);

% PLOTTING

if rem(i,df) ==

fprintf(message,i,SSE)

if plottype

delete(h);

h = plot(pn,a2);

drawnow;

else

h = ploterr(tr(1:(i+1)),eg,h);

end

end

end

% TRAINING RECORD

tr = tr(1:(i+1));

% PLOTTING

if rem(i,df) ~= 0

fprintf(message,i,SSE)

if plottype

delete(h);

plot(pn,a2);
drawnow;

else

ploterr(tr,eg,h);

end

end

% PLOT ERRORS

ploterr(tr,eg);

% TEST THE NETWORK

% Read test data from the file

test = fopen(’matlab/test.dat’,’r’);

p = fscanf(test,’ %f\n’,[4,30]);

fclose(test);

for v=1:30

ax(:,v) = simcon(p(:,v),C1,W1,B1,W2,B2);

end

end

175

Appendix

4

Conic Section Function Neural Network

Training Program II

op 2 2 A 2 ee 2 ee 2 eK A A 2 EA EA EAE A ER AR A A 2

% CONIC SECTION FUNCTION NETWORK TRAINING PROGRAM II (in MATLAB code)
% This program uses the second training algorithm.

Gj ee ek 2 ee 2 ee 2 eK 2 Ae OR A 2 AE 2 EK AE A EA A 2 ER A A RE ER EE 2 ER OK

function [al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2)

% HYBRID Design conic section function network

if nargin <7 , error(’Not enough input arguments’),end
[s.r] = size(cl);

[12,q] = size(p);
if (r~=r2) , error(’ Matrix sizes do not match.’),end

f = consec(cl,p,wl,om)*b;

al = logsig(f,b1);

a2 = logsig(w2*al,b2);

% 2 ee 2 Ae 2 AR 2 2 A 2 2 2 2k 2 2 2 ek 2k 2 2 2k 2 2 2 2k 2 2 2 2 2k 2 2k 2 2 2 2 2k ok ok OK ok

% MAIN PROGRAM
% Fe Ee 2 2 ee 2 2 2 2 fe 22 2 2k 2k 2k 2 2 2 2 2 2 2 2 2 2 2 2 KK 2 OR OK OK OK Ko OK KOK

figure(gcef)

setfsize(350,350);

cla reset

% Read training data from the file

input = fopen(’matlab/input.dat’,’r’);

p = fscanf(input,’%f\n’,[4,120]);

fclose(input);

output = fopen(’ matlab/output.dat’,’r’);

t = fscanf(output,’%of\n’,[3,120]);

fclose(output);

176

Appendix 4 - Conic Section Function Neural Network Training Program II

% DESIGN NETWORK

echo on

df= 10; % frequency of progress displays (in neurons).

me = 100; % maximum number of neurons.

eg = 0.02; % sum-squared error goal.

sc=1; % spread constant radial basis functions.

sl =6; % the number of centres

echo off

tp = [df me eg sc];

% PLOTTING FLAG

[r,q] = size(p);
[s2,q] = size(t);

plottype = max(r,s2) == 1;

% RADIAL BASIS LAYER OUTPUTS

b = sqrt(-log(.5))/tp(4);

P = logsig(dist(p’,p)*b);
PP = sum(P.*P)’;

d=t;

dd = sum(d.*d)’;

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

Cathe je. 2) / (dd Ppa):

%PICK VECTOR WITH MOST "ERROR"

pick = nnfmc(e);

used = [];

left = 1:q;

@i= RE pick):

P(:,pick) = []; PP(pick,:) = [];
e(:,pick) = [];
used = [used left(pick)];

left(pick) = [];

% CALCULATE ACTUAL ERROR

cl = p(:,used)’;

sl =cl;

[crr,css] = size(cl);

om = pi/4*ones(1,crr);

wl = zeros(crr,r);

al = logsig(consec(cl,p,wl,om)*b);

[w2,b2] = solvelin(al,t);

a2 = logsig(w2(:,1:1)*al,b2);

sse = sumsqr(t-a2);

Vie

Appendix 4 - Conic Section Function Neural Network Training Program II

% TRAINING RECORD
tr = zeros(1,me);

tr(1) = sse;

sserr = fopen(’matlab/sse.dat’,’a’);

fprintf(sserr,’%f\n’,sse);

fclose(sserr);

% PLOTTING
newplot;

messagel = sprintf? RBF: %%g/%g epochs, sse = %%g.\n’,me);
fprintf(message1,0,sse)
if plottype

h = plotfa(p,t,p,a2);
“else

h = ploterr(tr(1),eg);

end

for k = 1:s1-1

% CHECK ERROR

if (sse < eg), break, end

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS
cj = C.K);

% VECTOR CALCULATION FOR CENTRES

a= cj’ * P/ (cj’*ej);
P=P-cq*a;

PP = sum(P.*P)’;

e—((Ptd)ya2)2/ (dd *sPP*):

% PICK VECTOR WITH MOST "ERROR"

pick = nnfmc(e);

C = [C, P(:,pick)];

P(:,pick) = []; PP(pick,:) = [];
e(:,pick) = [];
used = [used left(pick)];

left(pick) = [];

% CALCULATE ACTUAL ERROR

cl = p(:,used)’;

[cr,cc] = size(cl);

om = pi/4*ones(1,cr);

wl = zeros(cr,r);

al = logsig(consec(cl,p,wl,om)*b);

[w2,b2] = solvelin(al,t);

a2 = logsig(w2*al,b2);

sse = sumsqr(t-a2);

178

Appendix 4 - Conic Section Function Neural Network Training Program II

% TRAINING RECORD

tr(k+1) = sse;

sserr = fopen(’matlab/.dat’,’a’);

fprintf(sserr,’ %f\n’ ,sse);

fclose(sserr);

% PLOTTING

if rem(k,df) ==

fprintf(message1,k,sse)

if plottype

delete(h);

h = plot(p,a2,’m’);

drawnow;

else

h = ploterr(tr(1:(k+1)),eg,h);

end

end

end

[S1,R] = size(cl);

bl = ones(S1,1)*b;

% TRAINING RECORD

tr = tr(1:(k+1));

% PLOTTING

if rem(k,df) ~= 0

fprintf(messagel,k,sse)

if plottype

delete(h);

plot(p,a2,’m’);
drawnow;

else

ploterr(tr,eg,h);

end

end

hold off

echo on

% TRAINING THE NETWORK
% This uses backpropagation to train the conic section function network

df= 10; % Frequency of progress displays (in epochs).

me = 50000; % Maximum number of epochs to train.

eg = 2.5; % Sum-squared error goal.

Ir = 0.03; % Learning rate.

tp = [df me eg Ir];

% Training begins...please wait (this takes a while!)...

echo off

179

Appendix 4 - Conic Section Function Neural Network Training Program II

% TRAINING PARAMETERS

dfl = feval(logsig’,’ delta’);

df2 = feval(logsig’,’ delta’);

[crr,css] = size(cl);

om = pi/4*ones(1,crr);

wl = zeros(crr,r);

{al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2);

e = t-a2;

SSE = sumsaqr(e);

% PLOTTING
clg

message = sprintf? TRAINBP: %%g/%g epochs, SSE = %%g.\n’,me);

fprintf(message,0,SSE)

if plottype

h = plotfa(pn,t,pn,a2);

else

h = ploterr(tr(k),eg);

end

for i=k:me

% CHECK PHASE

if SSE < eg, i=i-1; break, end

% BACKPROPAGATION PHASE.

d2 = feval(df2,a2,e);

dl = feval(dfl1,al,d2,w2);

% LEARNING PHASE

for ii=1:8

for m=1:crr

cn = cl(m,:)’*ones(1,q);

pnew = (cn-p);
end

[dw1,db1] = learnbp(pnew,d1,Ir);

[dw2,db2] = learnbp(al,d2,Ir);

wl =wl + dwl;

bl = bl + dbl;

w2 = w2 + dw2;

b2 = b2 + db2;

% PRESENTATION PHASE

[al,a2] = hybrid(cl,p,w1l,om,b,b1,w2,b2);

e = t-a2;

SSE = sumsqr(e);

180

Appendix 4 - Conic Section Function Neural Network Training Program II

% TRAINING RECORD

tr1(iit+1) = SSE;

end

% UPDATE ANGLE

d2 = feval(df2,a2,e);

dl = feval(dfl,al,d2,w2);

difom = sin(om)*dist(cl,p);

dom = (learnbp(difom,d1,Ir))’;

om = om + dom;

[omr,omc] = size(om);

for s=l:omc

if om(1,s) > pi/2

om(1,s) = pi/2;

end

if om(1,s) < -pi/2

om(1,s) = -pi/2;

end

end

[al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2);

e = t-a2;

d2 = feval(df2,a2,e);

dl = feval(dfl,al,d2,w2);

% UPDATE CENTRES

pn = zeros(r,q);

for j=l:r

newc = cl(:,j)*ones(1,q);

newp = p(j,:)’ *ones(1,crr);

pn = (newc-newp’);

dis = dist(cl,p);

for y=1:crr

for z=1:q

if dis(y,z)==0

dis(y,z)=0.01;

end

end

end

div = pn./dis;

[pnr,pnc] = size(pn);
for |=1:pne

dif(:,1) = cos(om)’.*div(:,]);

end

newwl = wl(:,j)*ones(1,q);

diff = -newwl + dif;

end

dcen = learnbp(diff(1:4,:),d1,Ir);

cl =cl + dcen;

181

Appendix 4 - Conic Section Function Neural Network Training Program II

[al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2);

e = t-a2;

tr(it+1) = SSE;

sserr = fopen(’matlab/sse.dat’,’a’);

fprintf(sserr,’%of\n’ SSE);

fclose(sserr);

% PLOTTING

if rem(i,df) ==

fprintf(message,i,SSE)

if plottype

delete(h);

h = plot(pn,a2);

drawnow;

else

h = ploterr(tr(1:(i+1)),eg,h);

end

end

end

% TRAINING RECORD

tr = tr(1:G+1));

% PLOTTING

if rem(i,df) ~= 0

fprintf(message,i,SSE)

if plottype

delete(h);

plot(pn,a2);
drawnow;

else

ploterr(tr,eg,h);

end

end

% ERRORS
ploterr(tr,eg);

% TEST THE NETWORK

% Read test data from the file

test = fopen(’ matlab/test.dat’,’r’);

p = fscanf(test,’%f\n’,[4,30]);

fclose(test);

for v=1:30

ax(:,v) = simcon(p(:,v),C1,W1,B1,W2,B2)

end

end

182

Appendix

>

The Interface Card Control Program

*

9 2 2 2 2 2 2 2 2 2 2 2 2g 2 2 ie 2 2 2 2 kk ie fe ig 2g 2g 2g fg fe ofc fe fe fe 2c 2 2 2k 2k 2g oie ke oie 2k 2 2 2 2 2k 2 2 2k ie ie fe ie 2 2k 2k 2k 2k 2k 2k 2k ok ok OK

* This program controls the Advantech PCL-818HG multifunction data *

* aquisition card, which is used to program the EEPROMs. .

* The programming voltage, the frequency, and the number of cycles *

* can all be controlled. .
28 2 2 22 2 2 2 2 2 2 2 2 2 2k 2 2g 2 2 2 2k 2 kg 2g ig 2g 2 2c 2g fe fe fe fe oie oie 2 2 2k 2k 2k ie oie 2 2k 2 2k 2 2 2k 2 2 2 2 2 oi ok ok ok 2K 2k ok 28 2k 2K OK OK

/*

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <dos.h>

extern pcl818HG(int, unsigned int *);

unsigned int param[60];

unsigned int data[100]; /* D/A output data buffer ei
unsigned int far * dat;

unsigned char datal[100]; /* Digital output data buffer *)
unsigned char far * dat];

int del,cycles,counter,dc;

char temp;

float volts;

void main(void)

{
dat = data;

datl = datal;

param[0] = 0; /* Board number z/

param[1] = 0x200; /* Base I/O address */

param[5] = 50; /* Pacer rate = 1M / (50 * 100) =200 Hz = */

param[6] = 100;

param[7] = 0; /* Trigger mode, 0 : pacer trigger ey

183

Appendix 5 - The Interface Card Control Program

param[10] = FP_OFF(dat); /* Offset of A/D data buffer A */

param[11] = FP_SEG(dat); /* Segment of A/D data buffer A =)

param[12] = 0; /* Data buffer B address, if not used, */

param[13] = 0; /* must set to 0. Py
param[14] = 1; /* A/D conversion number 7

param[15] = 0; /* A/D conversion start channel */

param[16] = 0; /* A/D conversion stop channel //

param[17] = 4; /* Overall gain code, 0 : +/- 5V of
param[20] = FP_OFF(dat); /* Offset of D/A output data buffer A a)

param[21] = FP_SEG(dat); /* Segment of D/A output data buffer A */
param[22] = 0; /* Output data buffer B address, if not oi

param[23] = 0; /* used,must set to 0. */

param[24] = 1; /* D/A conversion number eT,
param[25] = 0; /* D/A conversion start channel */
param[26] = 0; /* D/A conversion stop channel x)

param[33] = FP_OFF(dat);

param[34] = FP_SEG(dat);

param[35] = 0;

param[36] = 0;

pcel818HG(3, param); /* Func 3 : Hardware initialization */
if (param[45] != 0) {

printf(" DRIVER INITIALIZATION FAILED !");
exit(1);

}

pcl818HG(4, param); /* Func 4 : A/D initialization =)

if (param[45] != 0) {

printf(" A/D INITIALIZATION FAILED !");
exit(1);

}

pcel818HG(12, param); /* Func 12 : D/A initialization zi)
if (param[45] != 0) {

printf(" D/A INITIALIZATION FAILED !");
exit(1);

}

printf("\nENTER DIGITAL OUTPUT DATA (00 - 255): ");
scanf("%d",&datal[0]); /* Enter digital output data ys

clrscr();

printf(" EEPROM Demonstration Program");
data[0]=data1 [0];

pcel818HG(29, param); /* Func 29: "N" times of digital output _*/
if (param[45] != 0) {

184

Appendix 5 - The Interface Card Control Program

printf(" digital output failed !");

exit(1);

printf("\n\n\nDigital Value set!");

printf(\nPress Enter to continue");

scanf("%oc",&temp);

printf("\n\n\nEnter Programming Voltage (0 - 10V): ");

scanf("%f" ,& volts);

printf("\n\n\nEnter Pulse Delay Value: ");

scanf("%d",& del);

printf("\n\n\nEnter Number of Cycles: ");

scanf("%od" &cycles);

counter=0;

do

{
counter++;

/* Output programming voltage */

data[0]=4095*volts/10;

pcel818HG(13, param); /* Func 13 : "N" times of D/A output =
if (param[45] != 0) {

printf(" D/A OUTPUT FAILED !");
exit(1);

}

dc=0;

do

{
de++;

}while(dc != del+8000);

/* Output OV */

data[0]=0;

pcel818HG(13, param); /* Func 13: "N" times of D/A output */
if (param[45] != 0) {

printf(" D/A OUTPUT FAILED !");
exit(1);

}

pcel818HG(5, param); /* Func 5 : "N" times of A/D. input Hl
if (param[45] != 0) { WIVE}

printf(" A/D INPUT FAILED UR

exit(1);

}

>.

Appendix 5 - The Interface Card Control Program

dc=0;

do

{
dcizt

}while(de != del);

}while(counter != cycles);

printf("STOP !");

186

