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Abstract 

  

The ability of the biological brain to perform very complex tasks has inspired 

scientists to study the field of neural computation and to try to implement artificial 

neural systems. In recent years, many neural algorithms and several neural hardware 

systems have been proposed. 

This thesis is concerned with the use of conic section functions which contains 

RBF (Radial Basis Function) and MLP (Multilayer Perceptron) networks. The work 

is concentrated in two areas: The implementation of learning algorithms for the Conic 

Section Function Neural (CSFN) network and the implementation of the CSFN in 

analogue hardware. 

A new training algorithm composed of a propagation rule which contains 

MLP and RBF parts to improve the performance of back propagation is proposed. 

The network using this propagation rule is known as a Conic Section Function 

Network. This network converts the open decision boundaries in an MLP to closed 

ones in an RBF. A training algorithm has been implemented in MATLAB. The 

performance of the proposed algorithm is compared with existing MLP and RBF 

algorithms. 

An analogue VLSI hardware design for a Conic Section Function Neural 

network which allows the use of RBF and MLP propagation rules on a single chip, 

depending on the data distribution of a given application, is proposed. CSFN contains 

hyperplane and hypersphere decision regions for MLP and RBF, respectively. 

A novel synapse and neuron circuit for a CSFN has been designed in analogue 

hardware to compute both the dot product (weighted sum) for MLP and the 

Euclidean distance between input vectors and centres for RBF. These two propagation 

rules are then aggregated to form a conic section function network. The designed 

circuits were simulated using cdsSpice simulator in Cadence design package for 

different number of synapses and neurons. 

Two chips, a synaptic circuit for a CSFN and a Conic Section Function 

Neural network, have been designed using Cadence design package with Mietec 

2.4m technology. These chips have been fabricated and tested. 
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Introduction 

The research on artificial neural networks has seen a spectacular growth in the 

last few years. Artificial neural networks are systems based on special algorithms 

derived from the field of neuroscience with the inspiration of the structure and 

function of the biological systems. 

Both Multilayer Perceptrons (MLP) and Radial Basis Function (RBF) are 

feedforward mapping networks that have been successfully used in many areas such 

as pattern recognition, classification problems, time series prediction, etc. Many 

researchers have developed training algorithms for RBF and MLP. Open boundary 

networks, such as MLP, minimize the output error through gradient descent. The 

most popular training algorithm used for MLPs is error back propagation [Rum86], 

but it needs long training times and a large number of hidden nodes for complicated 

problems which have many concavities and convexities in the mapping function. It 

can also get stuck at local error minima. In contrast, RBF networks are trained with 

different methods such as in [Che91, Moo89] which provide fast training. The 

prototypes are placed with closed decision boundaries around training data points. 

The positions and/or sizes of the prototypes are adjusted. 

There has been great debate over which algorithm is the most suitable for 

training of both RBF and MLP networks and also how it is possible to combine these 

two networks to get better results for practical applications, considering the 

relationship between RBF and MLP. The main properties of these networks have to 

be considered, such as the propagation rule, activation function, and learning 
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algorithm, to make a good connection between the networks. In general case, MLP 

has a combination of dot product as propagation rule, sigmoid as an activation 

function and the error back propagation as learning rule. Differing from this, the RBF 

network has a propagation rule based on Euclidean distance, some basis functions 

(mostly Gaussian) as the activation function, and a Delta learning rule. Furthermore, 

output unit of RBF networks is linear while it is nonlinear for MLPs. 

In the literature there are some alternative combinations of layers with 

different units or combined units of different types in one layer. Maruyama, Girosi 

and Poggio established a connection between generalized RBF and MLP observing 

that the radial basis function associated with the sigmoid is an activation function that 

is a good approximation to Gaussian Basis functions for a range of values of the bias 

parameter [Mar92]. Tarassenko and Roberts trained an RBF classifier with error back 

propagation and showed that it gives almost identical results to those obtained with 

an MLP [Tar94]. Hirahara and Oka developed a hybrid model composed of an MLP 

and an RBF. This used an MLP module and an RBF module separately, and 

combined those modules using a linear combiner [Hir93]. Platt presented an RBF 

network with a strategy for allocating new units and a learning rule by combining 

memorization and gradient descent [Pla91]. In [Wil92], a projection neural network 

is proposed. Both closed decision regions (hyperspheres and hyperellipses) and open 

ones (hyperplanes) are accommodated in this network. Dorffner introduced Conic 

Section Function neural networks (CSFN) to combine MLP and RBF [Dor94, 

Dor94a]. Other authors [Gev92, Smy92, Tso89, Wey94] give important advances in 

RBF/MLP hybrid networks and in different combinations of training algorithms for 

either networks. 

The various methods for mapping RBF [Sco91, And93, Chu93, Par93] and 

MLP [Lon92, Tom93, Sig94, Joh95, Val96] into parallel VLSI hardware also have 

been developed. The regularity of these structures makes them ideal for very large 

scale integration (VLSI). Although some hybrid considerations on RBF and MLP 
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networks have been done, there is little research reported on hardware 

implementations of these hybrids. 

This thesis is based on the design a Conic Section Function Neural network 

which is a unified framework for the RBF and MLP networks. The work undertaken 

considers improved training algorithms for CSFN in software and the implementation 

of CSFN in analogue hardware. 

The thesis is divided into nine chapters. In Chapter 1, overview of 

feedforward neural networks with general architecture of MLP and RBF networks is 

presented and Conic Section Function networks are introduced. The theoretical 

equations and the learning strategies for those three networks are also described. 

A new training algorithm improved during this work for Conic Section 

Function neural network is introduced in Chapter 2. The parameters for the training 

are derived and the equations are presented. 

In Chapter 3, the necessary hardware to build a Conic Section Function neural 

network is presented. The design of the various blocks required for the network is 

discussed. All the designs used the Cadence design package with the Mietec 2.4um 

process technology. 

Chapter 4 presents and discusses the software simulation results of improved 

training algorithm for CSFN. The results for two different problems, Iris plant 

classification and lens fitting problem, are presented. The comparison of the CSFN 

results with the back propagation, adaptive back propagation, and RBF networks 

obtained using Matlab neural network toolbox are also discussed. 

The hardware simulation results using Cadence package are presented in 

Chapter 5. All the decision boundaries obtained by the circuits designed and the 

effects of the device nonidealities and mismatches on the results are demonstrated. 

The results of the various circuits designed during the work, including a 

demonstration circuit, are discussed. 

A comparison of hardware and software simulation results using Iris plant 

database (well known pattern recognition database) are presented in Chapter 6. The 
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behaviour of the CSFN in hardware using the parameters obtained from software 

simulation for Iris data is investigated. 

Chapter 7 describes the two chips designed during this work. The design of 

the various building blocks required to construct a complete CSFN chip is discussed. 

Chapter 8 shows the actual results obtained from the chips fabricated. 

Finally, Chapter 9 draws conclusions for both software and hardware design 

and discusses the goals achieved within the presented work. 
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CHAPTER 

1 

Background Theory of The Neural 

Models 

In this chapter a brief introduction to feed forward neural networks is 

given. The particular types of these networks - Multilayer Perceptron 

(MLP) Network, Radial Basis Function Network (RBF), and Conic 

Section Function Network (CSFN) - with the learning rules are also 

described. 

1.1. Feedforward Networks 

A neural network is a massively parallel interconnected network of elementary 

units called neurons. The inputs of each neuron are combined and the neuron 

produces an output if the weighted sum of inputs exceeds a threshold value. In all 

types of neural networks the problem is to map a set of input patterns to a set of 

output patterns. To solve this problem at least a layer of input neurons and a layer 

of output neurons are required. If the output patterns are very different from the input 

patterns, as in a nonlinearly separable problem such as the parity problem, hidden 

layer neurons are also needed [Her91, Rum86]. The term “hidden layer’ refers to a 

layer of neurons which is not directly connected to the inputs or outputs. The neuron 

interconnection pattern is perhaps the most distinguishing characteristics of a neural 
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model. If the information flows through the network from input to output, without 

feedback of outputs, then, the models of this class are called feedforward networks. 

[Rut94, Tre89, War92] 

Feedforward networks are characterized by their lack of oriented loops of 

interconnections. When an input is presented to the first layer, each layer of neurons 

can calculate its output based on the activations of the previous one until an output 

is present at the output layer. This computation is called the propagation of the input. 

Therefore, the feedforward network is a layered structure which provides a mapping 

between input and output. The exact form of the function is determined by the 

number of layers, the number of neurons in each layer, the activation function used 

and the weights. Only the weights can be optimized to minimize the error on the 

learning samples; the other settings have to be chosen before learning. The weights 

are used to scale the contribution from the neuron in the previous layer. The input 

to a neuron is a summation of all the weights connected to the neuron. The output 

of a neuron is a threshold function of its input. The threshold (activation) function 

can be chosen either as a sign function, a linear, or semilinear function, or a sigmoid 

function. Since these networks have no memory, they are only capable of 

implementing static mapping. Adding feedback allows the network to produce 

dynamic mapping. [Bos96, Her91, Per92, Sig94, Was93] 

1.1.1. Single-layer Feedforward Networks 

The simplest form of a layered network has an input layer of source nodes 

that projects onto an output layer of neurons, but not vice versa. Such a network 

called a single-layer network, where single layer term refers to the output layer of 

computation nodes (neurons). These are also known as simple perceptrons. The input 

layer of source nodes is not counted because no computation is performed there. A 

linear associative memory is an example of a single-layer neural network. [Hay94, 

Her91]
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1.1.2. Multilayer Feedforward Networks 

A multilayer feedforward network is a combination of L single-layer networks 

with full connections between successive layers, as illustrated in Fig.1.1. 

INPUT HIDDEN OUTPUT 
LAYER LAYERS LAYER 

inputs outputs 

  

  

C) Processing element 

Weighted connection 

  

Figure 1.1. Multilayered feedforward network 

The network shown in Fig.1.1 is fully connected in the sense that every node 

in each layer of the network is connected to every other node in the adjacent forward 

layer. The units of a feedforward network can be grouped into classes or layers /. 

Each layer consists of units which receive their input from units in layers below its
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own and send their output to units in layers above its own. There are no connections 

within the layers. [Car92, Kr693] 

The x; inputs are fed into the first layer of x,, hidden units. The input units 

are simply fan-out’ units: no processing takes place in these units. The activation of 

a hidden unit (neuron /) is a function f, of the weighted inputs plus a bias, as given 

in Eq.1.1. 

Xo = SCD Wy Xp: + 8) =H Oy) (1.1) 

where w;, is the weight of input i to neuron /, x,, is input i, that is, output 7 from the 

previous layer, for input pattern p and 6, is the threshold value (bias). The output of 

the hidden units is distributed over the next layer of x, hidden units until the last 

layer of hidden units, of which the outputs are fed into a layer of x, output units (see 

Fig.1.1). [K1r693, Rut94, Vys93] 

By adding one or more hidden layers, the network is able to extract higher- 

order statistics, for the network acquires a global perspective despite its local 

connectivity by virtue of the extra set of synaptic connections and the extra 

dimension of neural interactions [Chu92]. The ability of hidden neurons to extract 

higher-order statistics is particularly valuable when the size of input layer is large 

[Hay94]. 

1.1.3. Learning in Feedforward Networks 

There are several different methods to set synaptic weights and threshold 

values in feedforward networks. Learning methods may be grouped as supervised and 

unsupervised, with a great many paradigms implementing each method. There are 

also hybrid approaches including both algorithms. 
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1.1.3.1. Supervised learning 

The most common examples of this learning rule is the original Perceptron 

and the backpropagation of error algorithm that will be explained in the following 

sections. In supervised learning algorithm, the network is taught how to respond on 

a particular training set of input-output patterns ((x,,y,) vector pairs). One vector is 

applied to the input of the network; the other is used as a target representing the 

desired output. The (x,,y,) pairs used during training are usually assumed to be 

examples of a fixed function f, for instance, y, = {x,). Training is accomplished by 

adjusting the network weights so as to minimize the difference between the desired 

and actual network outputs. [ Hec91, Rut94, Was93] 

Another commonly encountered situation is where the supervised learning 

process is an iterative procedure. In iterative training, application of an input vector 

causes the network to produce an output vector. This is compared to the target vector, 

thereby producing an error signal which is then used to modify the network weights. 

This weight correction may be general, equally applied as a reinforcement to all parts 

of the network, or it may be specific, with each weight receiving an appropriate 

adjustment. In either case the weight adjustment is intended to be in a direction that 

reduces the difference between the output and target vectors. Vectors from the 

training set are applied to the network repeatedly until the error is at an acceptably 

low value. If the training process is successful, the network is capable of performing 

the desired mapping. The iterative case can be described for an L-layer perceptron 

by the following equations (for 1 <i<N,,,0<1<L-1): 

N; 

u(1+1)=-% w,(Cl+1)a(l) +6, Cla 1) 

oe (1.2) 

= 

= wel +) a, (1) 

~
 i o
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a,(l+1)=f(u,(l+1) (1.3) 

where a,(1)(u,(1)) denotes the activation function value (net input) of jth neuron at the 

ith layer; 0,(1) (or wio(1)) is the bias of the jth neuron at the /th layer; w;(1) implies 

the weight value linked between the ith neuron at the /th layer and the jth neuron at 

the (/-1)th layer: and f is the nonlinear activation function. [Hwa91, Was93] 

1.1.3.2. Unsupervised learning 

Unsupervised or self-organized learning algorithms use patterns that are 

typically redundant raw data having no labels regarding their class membership, or 

associations. In this mode of learning, the desired response is not known and, there 

is no external teacher or critic to oversee the learning process. Thus, explicit error 

information cannot be used to improve network behaviour. Since no information is 

available as to correctness or incorrectness of responses, the network must discover 

itself any possibly existing patterns, regularities, separating properties, etc. 

Unsupervised learning requires only input vectors to train the network. During the 

training process the network weights are adjusted so that similar inputs produce 

similar outputs. 

The most common technique of unsupervised learning is to perform clustering 

as the unsupervised classification of objects without providing information about the 

actual classes. One possible network adaptation rule is that a pattern added to the 

cluster has to be closer to the centre of the cluster than to the centre of any other 

cluster. 

The competitive learning rule also can be used to perform unsupervised 

learning, using a neural network that consists of two layers, namely, an input layer 

and a competitive layer. The input layer receives the available data. The competitive 
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layer consists of neurons which compete with each other for the opportunity to 

respond to features contained in the input data. In its simplest form, the network 

operates in accordance with a "winner-take-all" strategy, that is, the neuron with the 

greatest total input wins the competition and turns on; all the other neurons turn off. 

[Hay94, Was93, Zur95] 

1.1.4. The Delta Rule 

This rule has been applied most often with purely linear output units. For such 

a perceptron with a single output unit, the output is simply given by 

Oo =D, w, x, + 8 (1.4) 
J 

The error function, which measures how far away the network is from the solution 

set, as indicated by the name least mean square, is the summed square error. That is, 

the total error, EZ, is defined to be 

E- E°-1¥9 @? - 0% (1.5) 
P 2 > 

where the index p ranges over the set of input patterns and E” represents the error on 

pattern p. The variable @’ is the desired (or target) output when pattern p is presented, 

and o” is the actual output for this pattern. The LMS procedure finds the values of 

all the weights that minimize the error function by a method called gradient descent. 

The idea is to make a change in the weight proportional to the negative of the 

derivative of the error as measured on the current pattern with respect to each weight: 

OE? 
AWW; = Lea (1.6) 

J 

where y is a constant of proportionality. The derivative is 
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OE? _ OE? do? (1.7) 

oo? | 
Bw. = x; (1.8) 

j 

and 

Pp GET 2 o(d bee aby (1.9) 
do? 

such that 

= 1.10 AY; yx, (1.10) 

where 6” = d@’ - o” is the difference between the target output and the actual output 

for pattern p. 

The delta rule modifies appropriately for target and actual outputs of either 

polarity and for both continuous and binary input and output units. 

1.2. Multilayer Perceptron 

Multilayer Perceptrons (MLPs) are the most common neural network model, 

consisting of successive linear transformations followed by processing with nonlinear 

activation functions. They have been used successfully in a variety of information 

processing problems including pattern recognition, image processing, nonlinear 

control, and prediction of chaotic time series. MLPs represent a generalization of the 

single layer perceptron which are only able to construct linear decision boundaries 

and solve simple logic functions. However, by cascading perceptrons in layers 

complex decision boundaries and arbitrary Boolean expressions can be implemented. 
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They are also capable of implementing nonlinear transformations for function 

approximation. Their major weakness lies in the extremely slow learning rates, that 

is in the number of training epochs the network requires to perform the desired 

mapping. [Hay94, Hus92, Hus93, Lip87] 

The network consists of a set of sensory units (source nodes) that constitute 

the input layer, one or more hidden layers of computation nodes, and an output layer 

of computation nodes. Each layer computes the activation function of a weighted sum 

of the layer’s inputs. The input signal propagates through the network in a forward 

direction, on a layer-by-layer basis. 

A multilayer perceptron has three distinctive characteristics: 

1. The model of each neuron in the network includes a nonlinearity at the 

output end. The important point to emphasize here is that the nonlinearity is smooth, 

that is differentiable everywhere. The commonly used form of nonlinearity that 

satisfies this requirement is a sigmoidal nonlinearity defined by the logistic function 

given below. 

1 
= 1.11 

0 1 + exp(-v,) oe) 

where v, is the net internal activity level of neuron j, and y, is the output of the 

neuron. 

2. The network contains one or more layers of hidden units that are not part 

of the input or output of the network and they enable the network to learn complex 

tasks by extracting progressively more meaningful features from the input patterns. 

3. The network exhibits a high degree of connectivity determined by the 

synapses of the network. A change in the connectivity requires a change in the 

weights of synaptic connections.
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1.2.1. Learning in Multilayer Perceptrons 

The learning problem for MLPs can be viewed as a nonlinear optimization 

problem in which the goal is to find the set of network weights that minimize the 

error function on the available prototypes. The computational requirements of the 

multilayer perceptrons can be divided into two categories [Car92, Hay94, Mye93]: 

(1) evaluation of the output of the net (forward pass); 

(2) evaluation of an updated set of weight values for the net, as defined by 

the training algorithm (backward pass). 

In the forward pass, for each input/output pair, the input pattern is applied by 

setting the states of the input units. A forward route is taken through the network and 

the total input to a unit is defined as usual to be the total of all the inputs from the 

other units. For the forward pass, the computation required at each node is shown in 

Pre fez: 

  

    

  

  

Figure 1.2. Simple neuron model 

For evaluation of the net output, referring to the Fig.1.2, the following 

computations are required for neuron /: 

- Summation of weighted inputs plus a threshold ¢, of neuron j to form 9;: 

  

10
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=) wy yt t (1.12) 

- To evaluate the activation function output, the sigmoidal function given by Eq.1.11 

is used. During the forward pass the synaptic weights of the network are all fixed. 

In the backward pass, the process is reversed, starting at the output layer and, 

armed with the actual and required output patterns, an error value can be found for 

each output unit. The procedure is worked backwards through the layers and the error 

is used to apply the appropriate weight changes to each unit in the network. During 

the backward pass, the synaptic weights are all readjusted in accordance with the 

error correction rule which is known as error back-propagation algorithm. Fig.1.3 

illustrates the stage of these two passes for the back-propagation method. 

Forward Pass 

   

     
    

  

   
    

  

Apply 
input 

pattern 

Update states 
of units 
in network 

   
    

      

Result at 
output layer 

  
Compare 
results 

Desired result 

Backward Pass 

Use error to apply 
weight changes Difference is 
  the error back through 

the network     
Figure 1.3. The stages of the forward and backward pass for the 

error back propagation method 

  

be
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1.2.2. The Back-propagation training algorithm 

Back-propagation algorithm is perhaps the most widely used training 

procedure for feedforward neural networks. It is an iterative optimization of the error 

function representing a measure of the performance of the network. The algorithm 

cycles through the training data as follows. 

- Initialization. Start with a reasonable network configuration, and set all the 

synaptic weights and threshold levels of the network to small random numbers that 

are uniformly distributed. 

- Presentation of training examples. 

- Forward computation. Produce output pattern and compare this pattern with 

the desired output pattern and generate an error signal if there is a difference. 

- Backward computation. Feed the error signal to the output neurons, and 

propagate it through the network by proceeding backwards, and change the weights 

and thresholds on basis of the error signal to reduce the difference between the output 

and the target. 

- Iteration. Iterate the computation by presenting new epochs of training 

examples to the network until the free parameters of the network stabilize their values 

and the average squared error computed over the entire training set is at a minimum 

or acceptably small value. 

The learning algorithm for multilayer perceptrons can be expressed using 

generalized Delta Rule, also known as LMS learning procedure, and gradient descent 

since multilayer perceptrons have nonlinear activation functions. [Jon96, Rie97, 

Rum87, Rut94, Zur95] 

12
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1.2.3. The Generalized Delta Rule 

The delta rule for linear functions, which is presented in Section 1.1.4, must 

be generalized for nonlinear activation functions. The activation is a differentiable 

function of the total input, given by 

a? = Fi?) (1.13) 

in which 

iP = » wa? + 0, (1.14) 
a 

The error measure E is defined as the overall measure of the error at the 

output units: 

Bas ee oy ee 
Hof P (1.15) 

E? = » @ - ay 

where d, are the desired values while EZ” is the error for pattern p. The derivative of 

  

the error is 

hn eae (1.16) 
OW, Or OW, 

From the Eq.1.14 the second factor is 

ar = qP (1.17) 

and the error signal term is defined by 
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Ap vt OBE riage g ae (1.18) 
ai? da? di? 

  

Here, the second factor is simply the derivative of the activation function 7 

for the ith unit, evaluated at the net input i? to that unit. 

oa, 
oe = Fi?) (1.19) 

i. 

From the definition of E” 

Pp 
= -(d? - a?) (1.20) 

a; 

which is the same result obtained with standard delta rule. Substituting this and Eq. 

1.19 the error signal term is obtained as follows: 

5? = d? - a?)F', (i?) (1.21) 

for any output unit i. It gives an update rule which is equivalent to the delta rule, 

resulting in a gradient descent on the error surface if the weight change is made 

according to: 

AWW = votat (1:22) 

Here, the weight of a connection is adjusted by an amount proportional to the 

product of an error signal 5, on the unit i receiving the input and the output of the 

unit 7 sending this signal along the connection. 

If the activation function .Y is the sigmoid function as defined in Eq.1.11: 

14
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Gps FU) = a (1.23) 

l+e" 

In this case the derivative is equal to 

Fi?) = aP(1 - a’) (1.24) 

such that the error signal for an output unit can be written as: 

5? = (d? - aP)aP(1 - a?) (1.25) 

The error signal for a hidden unit is determined recursively in terms of error 

signals of the units to which it directly connects and the weights of those connections. 

Again for the sigmoid activation function: 

bP = Fi?) 5,? wy = a1 - a?) yy? Wai (1.26) 
h h 

where the gradient descent rule gives the input to hidden connections. 

1.2.4. Adaptive learning rate and momentum 

The learning procedure requires that the change in weight is made by gradient 

descent rule. This can be very slow if learning rate y is small. Practically, y is chosen 

as large as possible without leading to oscillation. One way to avoid oscillation at 

large y is to make the change in weight dependent of the past weight change by 

adding a momentum term, a, as a constant which determines the effect of the 

previous weight change: 

Aw,(t + 1) = y6? a? + wdw,(t) (1.27) 

where ¢ indexes the presentation number. 

15
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When no momentum term is used, learning takes a long time before the 

minimum has been reached with a low learning rate, whereas for high learning rates 

the minimum is never reached because of oscillations. When adding the momentum 

term, the minimum will be reached faster. [Kr693, Zur95] 

1.3. Radial Basis Functions 

The Radial Basis Functions (RBF) approach to approximating functions 

consists of modelling an input-output mapping as a linear combination of radially 

symmetric functions [Bot91, Bro88, Pog90]. Functional estimation is an important 

problem in data analysis and pattern recognition problems. The properties of RBF’s 

are attracting a great deal of interest due to their rapid training, generality, and 

simplicity. Although closely related, these networks have been given such diverse 

names as "localized receptive fields", "locally-tuned processing units" [Moo88, 

Moo89], "Gaussian potential functions" [Lee91], and "regularization networks" 

[Pog90]. RBF networks have been used successfully for learning difficult input-output 

mapping such as phoneme recognition, digit classification, hand printed character 

recognition, and time series prediction. 

Like the standard multilayer perceptron (MLP), the architecture of RBF is also 

motivated by biological neural networks since locally-tuned representations are 

common in both biological and artificial neural networks. Neurons with response 

characteristics which are "locally-tuned" or "selective" for some range of the input 

variables are found in many parts of nervous systems. For example, the cochlear 

stereocilia cells have locally-tuned response to frequency, while cells in the visual 

cortex respond selectively to stimulation from localized regions of the body surface 

[Moo88, Moo89]. It should be noted that the receptive field of a neuron in the visual 

cortex (and other areas) of the human brain is determined by the connectivity of the 

neuron, that is, the extent over which the dendrites of a neuron connect to adjacent 

  

16



Chapter 1 - Background Theory of The Neural Modeis 

  

neurons while the basis function network’s receptive field range is controlled by the 

shape of the exponential weighting function. 

In the context of a neural network, the hidden units provide a set of "kernel 

functions" that constitute an arbitrary "basis" for the input patterns (vectors) when 

they are expanded into the hidden-unit space; these kernel functions are called radial 

basis functions. These are generally non-linear functions that are built up into one 

function that can partition the pattern space successfully using hyperspheroids. Each 

kernel is associated with an activation region from the input space with respect to the 

data sample local densities and its output is fed to an output unit [Bor96, Hay94]. 

C 3) 

x F(x) 

Figure 1.4. Single neuron for RBF network 

Fig.1.4 shows the simplified neuron case which is one-dimensional basis 

function. Here, a hidden layer neuron has only a single input, x. When x=c, the 

function is 1.0 if the exponential function below is applied for this neuron. 

F = exp[ - (x - oc)? / 207] 1.28 

Thus c determines the value of x which produces the maximum output from the 

neuron: the response at other values of x drops quickly as x deviates from c, 

becoming negligible in value when x is far from c. From this it may be seen that the 

output has a significant response to the input x only over a range of values of x called 

the receptive field of the neuron, the size of which is determined by the value of o. 

/By analogy to the normal distribution of statistics which has the same shape, c may 

be called the mean and o the standard deviation of the response curve of the neuron. 

17
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An RBF network which has a feedforward topology can be considered as a 

two-layer fully interconnected network whose output nodes form a linear combination 

of the basis functions computed by the hidden layer nodes. The network is designed 

to perform a nonlinear mapping from the input space to hidden space, followed by 

a linear mapping from the hidden space to the output space. The basic architecture 

of the RBF network is shown in Fig.1.5. Here, inputs x,, X5, ...., X, Comprising an 

input vector x, are applied to all neurons in the hidden layers. 

INPUTS HIDDEN LAYER OUTPUT 

out 

  
Figure 1.5. Radial Basis Function Network 

An RBF is a multidimensional function which depends on the distance 

r= || x-c || (where || . || denotes a vector form ) between the input vector x and 

the centre c. The first layer of an RBF network computes this distance of the input 
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to the network to a set of stored memories. Each basis function is a nonlinear 

function of a corresponding distance. The basis functions in the hidden layer produce 

a localised response to the input vector. (The basis functions encode the inputs by 

computing how close the inputs are to the centres of the receptive field instead of just 

evaluating the weighted sum of the inputs. ) 

The network contains, similar to ‘the basic perceptron network, only one 

hidden layer, but in contrast to the perceptron the RBF network does not extend to 

more hidden layers (Moreover, hidden layer connections are not weighted, i.e. each 

hidden node (neuron) receives each input value unaltered.) The hidden nodes are 

processing units which perform a radial basis function. Furthermore, the activation 

functions (RBFs) are, in general, nonmonotonic, in contrast to the monotonic sigmoid 

function of the perceptron. However, similar to the perceptron the output unit 

performs simple weighted summation of RBFs hidden layer outputs. The RBF 

network computes a linear combination of the radial basis functions to give the 

estimate. ) 

The general form of an RBF is 

N 

Fe) = ¥ wo (Ix - el) ae) 

where 

w, are the coefficients or weights of c, 

The known data points c; € R°, i = 1,2,...,N are taken to be the centres of the 

radial basis functions. he 

{( | X-C; | )|i = 1,2,....N} is a set of N arbitrary (generally nonlinear) 

functions, known as radial-basis functions. This functional form is pre-selected with 

the centres c; being some fixed points in N-dimensional space appropriately spanning 

the input domain. 

N is the number of centres. 
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x is the input to the network. The radial basis function technique consists of 

choosing a function Y that has the above form. 

The advantage of using the radial basis approach is that once the radial basis 

functions have been chosen, all that is left to determine are the coefficients w,, to 

allow them to partition the space correctly. In a basic RBF network the centres c, 

and distance scaling (width) parameters are usually fixed (i.e. they are not adjustable 

during the learning process) and only the coefficients w, (synaptic weights) are 

adjustable parameters. 

1.3.1. The choice of Radial Basis Functions 

The type of basis function that must be used depends on the function that is 

approximated. For instance, a feedforward network with two radial basis type basis 

functions may be advantageous when an XOR classification is made. However, it 

may be better to use sigmoidal hidden units which are global in character when a 

smooth function (e.g. inverse kinematics of a robot arm) must be approximated 

[Sma95]. 

The choice of which radial basis functions to use is usually made in one of 

two ways. In the absence of any knowledge about the data, the basis functions are 

chosen so that they fit points evenly distributed through the set of possible inputs. If 

there is some knowledge as to the overall structure of the inputs, then it is better to 

try and mirror that structure in the choice of functions. This is most easily achieved 

by choosing a subset of the input points, which should have a similar distribution to 

the overall input, as the points to be fitted. The typical choices for radial basis 

functions are 

(i) (tr) =r _ piecewise linear approximations, 

(ii) (r)=r° cubic approximation, 

(iii) $(r) = exp(-r?/o?) Gaussian function, 
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(iv) (r) =r’log(r) thin plate splines, 

(v) (rt) = V(@?+0?) multiquadratic function, 

(vi) (rt) = (r?+0?)'’ inverse multiquadratic function, 

where o is a real coefficient called the width or scaling parameter [Cic93]. Of the 

above described functions the most popular and widely used is the Gaussian function 

which has a peak at the centre c and decreases monotonically as the distance measure 

| : | is taken to be Euclidean: 

lx-c] = @-e) (1.30) 

where c represents the centre of hypersphere. The Euclidean distance function, 

otherwise referred to as L” norm, is only one of a large number of functions that can 

be used. The L! or city block norm can be used without significantly changing the 

results, but with a large reduction in the required computations. In this case the 

distance function is calculated as follows: 

Dey, hee ee (1.31) 
k 

Theoretical investigations and practical results, however, seem to show that 

the type of nonlinearity $(.) is not crucial to the performance of RBF networks 

[Che91]. If a sufficient number of hidden layer neurons are provided then the 

nonlinear function can be well approximated by varying the centres c,, the "width" 

scaling parameter o and the output layer weights. 

1.3.2. Radial Basis Function network training 

The RBF representation can be implemented in the form of a two-layered 

network: the hidden layer with nonlinear activation functions and the linear output 

layer. Training an RBF network consists in determining appropriate values for the 
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free parameters in both layers. In other words, only the hidden layer and output layer 

need to be trained. This is because the input layer acts as a fan-out only for the input 

vectors and therefore all the weights on the links between the input layer and the 

hidden layer are fixed to 1.0. 

In general, an RBF network is specified by three sets of parameters: the 

centres c,, the width or distance scaling parameters o, and the synaptic weights w, 

(i=1,2,..,h). During training these adjustable parameters of the network are set so as 

to minimize the average error between the actual network output and the desired 

output over the vectors in a training set.) The parameters for the radial basis function 

can be determined in three steps. 

1.3.2.1. Locations of the centres 

The vectors c, are determined in the first step of the training. The performance 

of an RBF network critically depends on the chosen centres. There are many 

alternatives for the determination of the location of the centres of the receptive fields. 

For example, a centre and corresponding hidden layer neuron could be located at 

each input ‘vector in the training set. Because training vectors tend to occur in 

clusters, this method will, in general, result in more hidden layer neurons than are 

necessary. The result would be long training times and slow operation during 

reference, due to the large amount of computation required. The simplest technique 

is to choose centre vectors randomly from the subset of training data. However, in 

such a case the number of hidden units must be relatively large in order to cover the 

entire input domain. 

A better approach, the K-means clustering algorithm, finds a set of cluster 

centres and a partition of the training data into subsets. Each cluster centre is 

associated with one of the / hidden units in the RBF network. The basic idea of this 

algorithm is to distribute the centres c; according to the natural measure of the 
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attractor, i.e. if the density of data points is high so is the density of centres [Cic93]. 

There are many clustering algorithms, some of which will be discussed in the next 

section. 

1.3.2.1.1. Learning algorithms for RBF network 

An advantage of the RBF network is that linear learning laws can be derived. 

Many such learning algorithms have been developed for RBF networks [Che89]. 

(i) Least Squares algorithm with fixed centres [Bro88] : 

The location of the RBF centres are randomly selected from network input 

data or from the region where input data exist. This is considered to be a sensible 

approach, provided that the training data are distributed in a representative manner 

for the problem at hand. Once the centres have been fixed, the least squares algorithm 

is used to identify weights in supervised mode. 

(ii) Orthogonal Least Squares algorithm [Che91] : 

This is a powerful constructive algorithm based on a block of training data. 

The algorithm identifies appropriate RBF centres from the training data and estimates 

the corresponding weights simultaneously in an efficient manner. It will be explained 

further in a separate section because it has been used in this work. 

(iii) Recursive clustering and LS algorithm [Che91, Moo88] : 

In this algorithm, the RBF centres are adjusted using a recursive clustering 

algorithm and the weights are updated using the recursive least squares algorithm. In 

this approach, the radial basis functions are permitted to move the locations of their 

‘\. centres in a self organized way, whereas the linear weights of the output layer are 

‘. s : . 
computed using a supervised learning rule. In other words, the network undergoes a 

‘ 
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hybrid learning process. The self organized component of the learning process serves 

to allocate network resources in a meaningful way by placing the centres of the radial 

basis functions in only those regions of the input space where significant data are 

present. 

(iv) Dynamic complexity learning algorithm [Kad92] : 

In this recursive learning procedure, whether to add a new basis function to 

the network is based on the angle formed between a new basis function and the 

existing basis functions and the prediction error. 

1.3.2.2. Determination of the scaling parameter 

In this second step of the training, the scaling parameter o; is the determined 

for every RBF unit by the P-Nearest Neighbour heuristic [Cic93]. For the 

determination of this parameter the P-nearest cluster centres are located and the 

distances between the current cluster centre and those P-nearest cluster centres are 

then combined into the width parameter o. The diameter of the receptive region, 

determined by the value of o, can have a profound effect upon the accuracy of the 

system. The object is to cover the input space with receptive fields as uniformly as 

possible. If the spacing between centres is not uniform, each centre may have its own 

value of o. If the centres are widely separated from others, o must be large enough 

to cover the gap, whereas, if the centres are close to others o must be small to 

represent the cluster accurately. Once the clusters centres and widths are found, these 

remain unchanged throughout the rest of training and testing of the network. 

1.3.2.3. Training of the weights 

The weight matrix also must be trained after the centres and widths of each 

hidden layer neuron are assigned values. In this final stage, an appropriate set for the 
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weighted connections of the hidden layer is determined by the Linear Least Squares 

method using the matrix of hidden layer and the training output data, so that it 

minimises or reduces the error to a desired value. The generalized Least Squares 

method is implemented with the Singular Value Decomposition algorithm, which 

guarantees the optimum solution. [Hol91] 

1.4. Comparison of Multilayer Perceptrons and RBF Networks 

Multilayer perceptrons and radial basis function networks are both examples 

of nonlinear layered feedforward networks and they are both universal approximators. 

The main difference between these two network is the characteristics of their hidden 

units. The MLP is based on units with non-local activation functions such as 

sigmoidal basis functions whereas the RBF is based on units with local activation 

functions such as Gaussian. The former unit type leads to decision regions that cover 

an infinite portion of the space, whereas the latter results in bounded hyperspherical 

decision regions, in other words, RBF type of units only cover small localized 

regions. )Which of the two types of decision regions is the most appropriate depends 

on the data distribution of a given application. [Dor94a, Hir93] 

An RBF network (in its most basic form) has a single hidden layer, whereas 

an MLP may have one or more hidden layers. In RBF networks, the connections 

between input layer and hidden layer are not weighted while those are weighted for 

an MLP network.| [Hay4, Bea90] 

The activation function of each hidden unit in an MLP computes the dot 

product of the input vector and the synaptic weight vector of that unit. However, the 

activation function of each unit in an RBF network computes the distance (usually 

in Euclidean norm) between the input vector and the centre of that unit. 

The hidden layer of an RBF network is mostly nonlinear, whereas the output 

layer is linear. On the other hand, the hidden and output layers of an MLP used as 
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a classifier are usually all nonlinear: however, when the MLP is used to solve 

nonlinear regression problems, a linear layer for the output is usually the preferred 

choice. 

MLPs construct global approximations to nonlinear input-output mappings. 

Consequently, they are capable of generalization in regions of the input space where 

a little or no training data are available. On the other hand, RBF networks using 

exponentially decaying localized nonlinearities (e.g. Gaussian functions) build local 

approximations to nonlinear input-output mapping, with the result that these networks 

are capable of fast learning and reduced sensitivity to the order of presentation of 

training data. In many cases, however, in order to represent a mapping to some 

desired degree of smoothness, the number of radial basis functions required to span 

the input space adequately may have to be very large. [Hay94] 

The important advantage of the RBF network is that it offers training times 

one to three orders of magnitude faster than the standard back-propagation algorithm 

used for the multilayer perceptron of similar power and generality. It also can 

guarantee convergence. | MLP is preferred to RBF when the dimensionality of the 

input space is high since the number of radial basis functions increase exponentially 

with the dimension of the input space.) This implies that the location of the centres 

of the basis function should be chosen with considerable care. However, to determine 

precisely where to locate the centres of the RBF networks, prior information is 

needed about the magnitudes of the input signals. The MLP does not require such 

information. In this case, MLP provides a more efficient solution. (Whi92, War92, 

Bea90] 

1.5. Conic Section Function Neural Networks 

The conic section function neural network (CSFN), first described by 

Dorffner, is a novel neural network model based on the observation that both 
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hyperplane (straight line) and hypersphere (circle) are special cases of the conic 

section function. These are the decision boundaries of MLP and RBF, respectively. 

There would be intermediate types of decision boundaries such as ellipses, hyperbolas 

or parabolas in between those two cases which are also all valid for decision regions. | 

The idea brought forward by Dorffner is to generalize the function of a unit 

to include all these decision regions in only one network, providing a relationship 

between an MLP unit and an RBF unit. The CSFN is capable of making automatic 

decisions with respect to open (hyperplane) and closed (hypersphere) decision regions 

and can use these regions wherever appropriate. Furthermore, the type of region 

depends on the data distribution of a given application. [Dor94, Dor94a] 

The novel conic section function network has many advantages. Learning is 

faster by properly initializing nodes to serve either as radial basis functions or as 

hyperplane separators. It combines the speed of hyperspherical networks with the 

error-minimization of back-propagation. Furthermore, it is more efficient for more 

complex problems and higher dimensional inputs. Although RBF converges quicker 

than MLP, it is time-consuming when the dimensionality of the input space is high, 

since the number of radial basis functions increases exponentially with the dimension 

of the input space. In this case, MLP is preferred. The CSFN allows more optimal 

neural network solutions with respect to a given application. 

1.5.1. Local or global representations and types of decision regions 

Artificial neural networks may be categorized in many different ways and for 

some purposes such as classification and neurocontrol the differentiation between 

local and global generalization is useful. Network generalization is global if one or 

more of the network weights can affect the network output for any and every point 

in the input space. MLPs are examples of globally generalizing networks, but at the 

expense of slow learning and network wide learning interference, whereas local 

generalization occurs in networks for which only a few weights affect the network 
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output response for point within a local region of the input space. RBF networks are 

the examples of localized ones, in which learning interference is minimized and 

learning is relatively fast owing to the minimum of the weights (only the output 

layer’s weights) to be updated. [War92] 

  

  

(a) (b) 

Figure 1.6. (a) Hyperplanar and (b) hyperspherical decision regions 

Classification with neural networks can often be conveniently described in 

geometric terms. If the inputs presented from two classes are separable, that is if they 

lie on opposite sides of some hyperplane, then the perceptron convergence procedure 

converges and positions the decision hyperplane between those two classes. Some 

hyperplane decision boundaries in weight space are shown in Fig.1.6(a). MLPs with 

one or more hidden layers are used to classify non-separable classes. Another type 

of decision region is the localized one such as the bounded hyperspherical (e.g. 

circular) decision regions. Differing from hyperplanar (open) decision regions which 

cover an infinite portion of the input space, the receptive field of each unit is local 

and restricted to only a small region in input space. Fig.1.6(b) illustrates the 

hyperspherical (closed) decision regions. 
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1.5.2. Conic sections 

Conic sections are the shapes obtained when a right circular cone, which has 

its vertex above the centre of its base, is cut along a plane at various angles to the 

cone’s axes. In other words, the conic sections are formed from the intersection 

between a cone and a plane. Mathematically, conic sections are all variations of one 

basic shape. 

   
DE te | 

CIRCLE ELLIPSE PARABOLA HYPERBOLA 

Figure 1.7. Plane sections of a cone 

The possible sections of a right circular cone with a plane are illustrated in 

Fig.1.7, which gives the intersection curves, forming ellipses, parabolas, and 

hyperbolas respectively. There are also circles, which can be considered as a special 

case of ellipses where the cutting plane is perpendicular to the axis of cone shown 

in Fig.1.7(a). 
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More formally, conic sections are the loci of points in a plane where the ratio 

of the distance from a fixed point (the focus) to a fixed line (the directrix) is a 

constant. The shape of the curve is determined by this ratio, which is called the 

eccentricity and is denoted by e. If 0<e<1, the conic section is an ellipse. If e=1, it 

is a parabola and if e>1, it is a hyperbola. Fig.1.8 shows the conic sections with 

variable eccentricity. 

Figure 1.8. Conic sections with variable eccentricity 

The definition of the curves can also be expressed by angles. Let a be the 

angle between the axis of a right circular cone and its element (the generating lines) 

and 0 be the (smaller) angle formed by the axis of the cone and the cutting plane, 

and let d be the distance from the vertex of the cone to the cutting plane. The 

relation of « and 0 defines the shape of the curve. d affects the scaling or size of the 

curve, except when d=0 (degenerate conics case). The magnitude of d is proportional 

to the size of the curve. The following cases are formed: 

If 8 < a, hyperbola; and if d = 0, two non-parallel lines. 

If 8 = a, parabola; and if d = 0, a line. 

If 8 > a, ellipse; and if d = 0, a point. 

In similar way, the transitions between straight lines to circles via the 

intermediate conic sections can be explained by the variation of the opening angle, 

2 which is the angle between two opposite surfaces of the cone . Let v be the vertex 
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of the right circular cone. A certain opening angle, 2, is obtained depending on the 

height of v . If the height of v equals to the radius of the circle (in case that the 

intersection of the cone and plane is a circle), @ is 45 degrees. The shape of the 

conic section curve changes with the variations of the opening angle, w. The circular 

shape turns first into an ellipse, then into a parabola, and a hyperbola by increasing 

w@. When @ equals to 90 degrees the intersection of the cone and the plane changes 

into a straight line. 

1.5.3. Conic Section Function Network 

The idea of the conic section function neural network is to provide a 

unification between RBF and MLP networks. The new propagation rule (which will 

consist of RBF and MLP propagation rules) can be derived using analytical equations 

for a cone. Let x be any point on the surface of the right circular cone. @ can be any 

value in the range [-72/2,7/2], v vertex of the cone and a the unity vector defining the 

axis of the cone. Thus the equation of the circular cone is 

(¥ - ¥) & = cosw|x - v| (1.32) 

Fig.1.9 shows a three-dimensional cone with vertex V and opening angle 2m 

intersecting by a plane forming a circle, a parabola, and a straight line by varying the 

opening angle 2 in two-dimensional space. The angle changes depending on how 

high the vertex is. In this figure, straight line (hyperplane) and circle (hypersphere) 

represent the decision borders for MLP and RBF, respectively. Other type of decision 

borders, such as ellipses and parabolas, represent the intermediate functions. 

If the coordinates of the points and vectors are defined by x=(x,,x,), V=(V;,V>) 

and a=(a,,a,) for two dimensional space, Eq.1.32 can be written as below 

(x,-v,)a,+(x,-v,)a, = cosw (x, -v,)P +(x, =V,)" (1.33) 
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) 5 
Figure 1.9. Three different cones with vertex V and opening 

angle 2@ intersecting by an input plane forming variable decision 
boundaries - a circle, a parabola, and a straight line. 

The propagation rule of conic section function network is described using 

Eq.1.33. First of all, the following form is obtained for n-dimensional input space. 

n+1 
aa 

De (x;-v,) a; = cosw [5 ony (1.34) 

ae i=l 

This form gives the equation for the intersection between the cone and the 

input space if the coordinate system is set such that n dimensions are identical to the 

n dimensions of the input space by setting x,,,=0. The centre coordinate of the circle 

c can be used instead of the coordinate of vertex v since the distance between the x 

: point and the vertex v equals to the radius of the circle when the opening angle, 2w, 
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is 90 degrees. Subtracting the right hand side from the left hand side, the propagation 

rule of the CSFN is obtained as 

n+1 n+1 

Vee », (x,-¢,)a,, - cosa, » Grey (1.35) 

Xie =e 
n+1 

where a; refers to the weights for each connection between the input and hidden layer 

units in an MLP network, and ¢; refers to the centre coordinates in an RBF network, 

i and j are the indices referring to the units in the input and hidden layer, 

respectively, and y, are the activation values of the CSFN neurons. As can be seen 

easily, this equation consists of two major parts analogous to the MLP and the RBF. 

The equation simply turns into the propagation rule of an MLP network, which is the 

dot product (weighted sum) when the @ is 1/2. Second part of the equation gives the 

Euclidean distance between the inputs and the centres for an RBF network. Fig.1.10 

illustrates the structure of a Conic Section Function Network . 

1.5.4. Conic Section Function Network training 

Training occurs in two phases: Initialization of a CSFN and learning with a 

cone folding. The principle of a CSFN is that the cone of each hidden unit can be 

adapted so as to make an automatic decision on the most appropriate region 

boundary. This can be achieved by varying the parameter @ between 1/2 (MLP case) 

and 7/4 (RBF case). The network can be started with an initialized MLP, with a 

pretrained MLP, or with an RBF. Multilayer perceptron can be initialized by setting 

decision boundaries between data points or clusters [Smy92, Wey94, Dor94] in 

analogy to initialization of RBF. Once the weights and the thresholds of a hidden unit 

are set at random or after a cluster analysis, the hidden layer to output weights can 

be set using the Delta rule (for the linear associator between hidden and output 
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Figure 1.10. Conic Section Function Network 

layers), or the whole network can be trained by standard back propagation using the 

preset weights as starting points. 

In the initialization with a pretrained MLP case, an MLP trained by back 

propagation is assumed. The weights and centres of all hidden units must be set. This 

time the weights are initialized using the weights derived from training. The centre 

values are initialized by cluster analysis. 

For MLP initializations, the adaptation of the cone can achieve the closing of 

initially unbounded decision regions. Opposite to this, the third case of the 

initialization is to start the network with an RBF, then, the hyperspherical decision 

regions are turned into the open ones wherever appropriate. 
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The cone folding is used to improve or prune a network starting off as one 

of the three types initialization. To adapt @, gradient descent algorithm is applied as 

a learning rule. There are also mixed training strategies involving back propagation, 

however, these techniques are only advised for fine tuning due to the computational 

complexity. [Dor94a] 
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An improved training algorithm for Conic Section Function Neural 

network is introduced in this chapter. The details of the Orthogonal 

Least Square Algorithm and determination of the parameters are 

presented. Two different methods have been used for the training. 

These methods are also explained in detail. 

2.1. Why Conic Section Function Networks? 

As described in the previous chapter, conic section function network (CSFN) 

is a novel neural network model based on observation that both hyperplane and 

hypersphere are special cases of conic section functions. These are the decision 

boundaries of MLP and RBF, respectively. There would be intermediate types of 

decision boundaries such as ellipses, hyperbolas or parabolas in between those two 

cases which are also all valid for decision regions. The main idea of the use of CSFN 

is to generalize the function of a unit to include all these decision regions in only one 

network, providing a relationship between an MLP and an RBF unit. The CSFN is 

capable of making automatic decisions with respect to open (hyperplane) and closed 

(hypersphere) decision regions and can use these regions wherever appropriate, 

depending on the data distribution of a given application. 
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There are many advantages arising from the conic section function network 

training algorithm presented here. It combines the error-minimization of back 

propagation with speed of hyperspherical networks so that learning is faster than 

MLP. It is more efficient than standard RBF for problems with higher dimensional 

inputs. The number of RBF hidden nodes increases exponentially with the input space 

dimensionality so that RBF is time-consuming if the number of inputs is large. In this 

case, MLP is preferred to RBF but CSFN is better than either alternative. 

2.2. Conic Section Function Neural Network Training 

The main learning process involves the determination of the centres and 

updating weights, centres, and the vertex angle of cone, ®, appropriately. The centres 

are determined using orthogonal least squares learning algorithm [Che91] which is 

based on choosing radial basis function centres one by one in a rational way until an 

adequate network has been constructed. The weights from input layer to hidden layer 

are set to 0. The weights from hidden layer to output layer are initially produced 

using the output of the hidden layer and the training data by applying a linear 

function. The vertex angle is chosen in such a way that the network would start as 

RBF. Then, the weights, centres and angle values are updated using error back 

propagation so that the network would converge quickly. 

2.3. Derivation of The Parameters 

Activation function of Conic Section Function Network (CSFN) can be 

n+] nt] (2 1) 
a rd a ben \2 : Y= 2, G,, ¢,)W-COS@, 2, Gp, Cy) 

expressed as follows 
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where a,=x,; if unit 7 is an input unit, c, are the centres for the RBF network, w, are 

the weights in an MLP, w is the half opening angle, which can be any value in the 

range [-n/2,7/2] and determines the different forms of the decision borders, i and j 

are the indices referring to units in the input and the hidden layer and p refers to the 

number of the patterns. In the work presented here the output layer has weights only 

and no RBF contribution. The terms and the connections used in the training 

algorithm are basically shown in Fig.2.1. 

  

  

  

i=l O 

  

    
i: input nodes 

J : hidden nodes 
k : output nodes 
p : number of patterns 

cos®,=0 for all_k 

Figure 2.1. Block diagram of CSFN for training 

2.3.1. Placement of the centres using Orthogonal Least Square Algorithms 

An orthogonal least squares (OLS) algorithm is used for selecting and 

optimally locating a minimal number of hidden neurons to avoid oversize problems 

which occur frequently when the centres are randomly selected. The OLS method is 

a recursive algorithm for selecting a suitable subset of data points as radial basis 
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function centres. The problem of how to select a suitable set of RBF centres from the 

data set can be regarded as an example of how to select a subset of significant 

regressors from a given candidate set. The training starts with no hidden units. New 

hidden units are added to the network at each step of the procedure until the desired 

error level is reached. [Che91, Hay94, Leh95, She96] 

The OLS algorithm is established in linear regression models, according to 

which a desired output d(n) is defined by 

M 

d(n) = ¥~ p(n) 8, + e(n) , n = 1,2,....,N (2.2) 
i=l 

where the 0; are the model parameters, the p(n) are the regressors which are some 

fixed functions of x(n): 

PAn) = p(x) (2.3) 

e(n) is the error signal assumed to be uncorrelated with the regressors p(n). The RBF 

network is viewed as a special case of the linear regression model given by Eq.2.2. 

Using the following matrix notation, Eq.2.2 is rewritten as 

d=P0Q+E (2.4) 

where 

d = [d(1), d(2),...,d(N)]" 

y my [P, P25---sPul 

© = [0,, 05,..-,9 m1” 

P; = [p,(1), p(2),-.-P(N)]" l<i<M 

E = [e(1), e(2),...,e(N)]" 

The regressor vectors p; form a set of basis vectors and the least square 

solution © satisfies the condition that the matrix product PO be the projection of d 

onto the space spanned by the orthogonal basis vectors w,. In other words, the square 

of the projection P@ is part of the desired output energy that can be counted by the 

regressors [Che91]. 
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The orthogonalization process ensures that each new column added to the 

design matrix of the growing subset is orthogonal to all previous columns. In OLS, 

the regressor vectors p, are transformed into a corresponding set of orthogonal basis 

vectors, and thus makes it possible to calculate the individual contribution to the 

desired output energy from each basis vectors denoted by w; = [w,, W>,....Wy]. The 

regression matrix P can be decomposed into (see [Che91]) 

P = WA (2.5) 

where A is an M x M triangular matrix with 1’s on the diagonal and 0’s below the 

diagonal and W is an N x M matrix with orthogonal columns w, such that 

wt W=H (2.6) 

where H is diagonal with elements h;: 

N 
h, = w,tw, = >> wd) w,0), 1<i<M (2.7) 

t=1 

The space spanned by the set of orthogonal basis vectors w, is the same space 

spanned by the set of p;, and Eq.2.4 can be rewritten as 

d=Wg+E (2.8) 

The orthogonal least square solution ([Che91]) is given by 

Ros H'wW'd (2.9) 

g,=w'd/(wiw), 1<i<sM (2.10) 

The classical Gram-Schmidt method computes one column of A at a time and 

orthogonalizes P as follows: at the kth stage make the kth column orthogonal to each 

of the k-1 previously orthogonalized columns and repeat the operation for k=2,...,M. 

The computational procedure is shown by 
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Wa Ries 
wp 

i fk . 
a, = : l<i<k 

Fo why, (2.11) 
k-1 

Wem Py S O 5,W; 
i=1 

where k = 2,...,M. 

In the case of RBF networks, the number of data points x(n) is often very 

large and centres are to be chosen as a subset of data set. In general, the number of 

all the candidate regressors, M, can be very large and an adequate modelling may 

only require M, ( << M ) significant regressors. These significant regressors can be 

selected using the OLS algorithm operating in a forward regression manner. The sum 

of squares or energy of d(n) is 

M 
d'd =) g}w,'w, + E'E (2.12) 

i=] 

and an error reduction ratio due to w, can be defined as 

e, = g-witw, | (d7d), 1<i<M (2.13) 

The forward regression selection procedure is summarized as follows: 

- At the first step, for 1 < i < M, compute 

A ee a Loic (2.14) 
(ww 

[err], = (8°Y'w,,) A / (d Td) 

Find 

[err], = max { [err], , lsisM} (2.15) 

and select 
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eee aD) 
We awic Dy 

- At the kth step where k > 2, for 1 <i < M, i # ij,....i # i,,, compute 

Oneaaar iT . Ot = w,’p; | (ww) ; Ltée Jie k 
k-1 

@e= se. > (o) 
Ww," = P; 2 O ie Ww; 

a 

i i)\ T yy T ee. is (w,”) d / (w,°) w 
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Find 
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and select 

k-1 
ee GBS i 

peak Puss Oi; 
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where a, = 04°", 1 <j <k. 

The procedure is terminated at the M,th step when 

M. 
s 

cn > [err]; < p 
j=1 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

where 0 < p <1 is a chosen tolerance. This gives rise to a subset model containing 

M, significant regressors [Che91]. 

In this work, a logarithmic sigmoid function involving with an Euclidean 

distance function was used as the regressors p,(n). At the first step, for 1 < i < M, 

first centre is placed and the error term is calculated using the equations above. At 

the k step, the centres are added one by one until an adequate network has been built. 
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2.3.2. Updating weights 

The activation function in feedforward networks is defined as 

Gy jj O,) Cay 

The measure of the error for input/output pair p is given by the sum of 

squared errors at the outputs 

ry (d,,-a,)° (2.22) 

and the general rule for adapting the weights is described by 

OE 
NS ee (2.23) 

ji 

The gradient component depends only on the y,; of a single neuron, since the 

error at the output of the j’th neuron is contributed to only by the weights w;;, for 

i=1,2,..,1, for the fixed j value. Using the chain rule the derivative can be written as 

OE, _ 3, Hy ads 
aw, dy, ow, 

The second term of the product of the Eq.2.24 is the derivative of the dot 

product including centres as well as weights and distance function as in Eq.2.1. 

by, | ge a 5 2.25 
a = aw, ¢ > @, 4 C4) COS, D, Gpi-Cy) ] Cor 

Since the values a and c;., for i=1,2,..,I, are constant for a fixed pattern at the 
ij ? 

input, the following equation is obtained: 

a8 = (4,0) (2.26) 
ji 
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The error signal term 5, produced by the j’th neuron is also defined as follows 

E 
Cas oa (2.27) 

The equations for the weight adjustment can be rewritten using the error 

signal terms 6 as below 

OE 
oe ne 

ie, 6,4, Cj) 223 
ji 

AWW = 6,(4,- Ci) (2.29) 

Eq.2.29 relates the general formula for delta training/learning weight 

adjustment for a single layer network. To update the weights , the delta terms must 

be computed for the j’th neuron. The chain rule, therefore, is applied as follows. 

5 : (2.30) 
OY, Oa, OY, 

The second term in Eq.2.30 shows the change in the output as a function of 

changes in the input, which is a derivative of the activation function as given below. 

Oa... 
i. = I, 0, (2.31) 

To compute the first term, two different cases are considered. For an output 

unit of the network: 

aE 
DE Me a ut Caz) 
Pj 

Replacing the terms from Eq.2.31 and 2.32 in Eq.2.30, 

4 = / i 
by = ,-4,) fj Op) Ge) 

is obtained for any output unit. 
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The adjustment of weights leading to neuron j in the hidden layer is 

proportional to the weighted sum of all 6 values at the output layer of nodes 

connecting neuron j with the output. All output layer error terms contribute to the 

adjustment of the hidden layer weights as 

2 De. 5 
2 By Ga,” % Big %e, 3 » a C)Wa- cosw,||a-c, | ] (2.34) 

  

Gas, 

ues [ ola) C,)Wy,- COS@,la-c,| ] = wy- cosw.——— (2.35) 

i 
lla,- ¢;l| 

OE 
acs 

= oe = +) oO. ['w,- cso. ] = A (2.36) 

KY OG, k la-c,l 

For hidden layer units, delta terms in Eq.2.30 is rewritten to the form: 

aie, .37 
6, f; O,) aA Ge) 

As a result, the weights updated can be expressed as follows 

Aw. = 16,4, - a) 
ae (2.38) 

= na,(1-a,)(@,-a,)(@,- Ci) 

for output units and 

Aw; = n4,(1-a,).A. (a, - Ci) (2.39) 

for hidden layer units using the unipolar activation function, 

1 
Gee (2.40) 

l+exp ” 

and its derivative 

da... / eee m 
f; ,,) eel of a,(1 a,,) (2.41) 

Ys) 
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The bipolar continuous activation function 

Beh et oe. el Pi sn 
1 + exp ” 

(2.42) 

can also be used. 

2.3.3. Updating centres 

The same procedure as in adapting weights is applied for updating the centres. 

OE 
Ache see (2.43) 
Py de; 

Applying the chain rule, the derivative is written in two parts: The change in 

error as a function of the change in the net input to unit and the derivative of the net 

input with respect to the centres. 

: —— (2.44) 
652 Oy, Oc Ges 

a.- ¢, Yo _ “Wy Hcoso st! = B (2.45) 
dc;; la-c,l 

The centre update for hidden layer units can be written as 

Ac, « a,(1- a,).A.B (2.46) 

The centres in the output layer are not adapted since cos m = 0 for all k, 

output nodes. 

2.3.4. Updating opening angle 

The rule to update the opening angle @ is described by 
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ee 2 (2.47) 
Bo Ow 

Using the delta rule as mentioned in previous sections the derivative as a 

function of the opening angle is obtained in the form of 

Poe ema ea oe (2.48) 

—# = ginw,. la- c,| = C (2.49) 

The angle update is given for the hidden layer units by 

A,@, « a, (1- a,).A.C (2.50) 
Pred 

The contribution of the opening angles and centres at the output layer will not 

be taken into account in the training algorithm. 

2.4. Summary of The Basic Training Algorithm 

The training algorithm has two phases: 1) a network initialization phase with 

centre placement (Phase A) and 2) an error back propagation phase (Phase B or C). 

Phase A (network initialization and centre placement phase): 

Step Al: The number of centres and Sum-Squared Error (SSE) chosen. 

First layer weights are set to zero and the opening angle, is started from 

t/4, which initializes the network as an RBF. 

Step A2 : Training step starts here. A new centre is determined from the input set 

using orthogonal least squares algorithm. The output of the hidden layer is 

computed and used with the training set to initialize the output layer weights. 

The output of the second layer is computed. 

Step A3 : Sum-Squared Error is calculated. 

Step A4 : Steps A2 and A3 are repeated for the required number of centres. 
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Phase B (error back propagation phase): 

Step B1 : The error signal vectors 5, of both layers are calculated. 

Step B2 : Output layer weights are adjusted by the back propagation algorithm 

(see Eq.2.38). 

Step B3 : Hidden layer weights, centres and opening angle w are updated (see 

Eq.2.36, 2.39, 2.45, 2.46, 2.49, 2.50). 

Step B4 : The outputs of the layers are calculated. 

Step BS : New SSE is computed. If this is larger than the error goal, go to step B1, 

otherwise, terminate the training session. 

2.5. Methods For Training 

Two different algorithms for training the CSFN were proposed in this work. 

The first algorithm is based on updating the weights, the centres, and the opening 

angle w in the same epoch as described above. The second algorithm uses the same 

Phase A (network initialization ant placement of centres) but differs in the second 

phase as follows: 

Phase C (error back propagation for the second algorithm): 

Step Cl : A predetermined number of training epochs (i.e. Phase B) is Bfecuted but 

only weights are updated; centres and angles are not changed. 

Step C2 : One training epoch is executed where only the opening angles @ are 

adjusted; weights and centres remain same. 

Step C3 : Another training epoch is performed to update the centres; weights and 

angles are not changed. 

The Sum-Squared Error is computed after every training epochs. If the 

network output reaches the error goal, then stop training, otherwise, go to first step. 

Fig.2.2 shows the flow diagram of the basic training process without back 

propagation phase. Fig.2.3 and 2.4 illustrate the flow diagrams of back propagation 

phase of the conic section function training algorithm for both methods. 
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START 

Determine the number of centres, Sma x 
Set first layer weights to O 

Initialize opening angle @ for RBF 

Execute Orthogonal least squares algorithm 
to determine a new centre. 

Compute hidden layer outputs 

Initialize the output layer’s weights 
Compute the output of the second layer 

Calculate error E 

    

   

   

  

   

  

PHASE B OR C 
(BACK PROPAGATION PHASE) 

    

STOP 

Figure 2.2. Flow diagram of the basic training algorithm 

 



Chapter 2 - Conic Section Function Neural Network Training 

START PHASE B 

Adjust weights of output layer 

Update hidden layer weights, centres 
and opening angle 

Compute layers’ outputs 

Calculate error E and error signal terms 6 

    
       

         

  
   

Figure 2.3. Flow diagram of back propagation phase for the first 
method. 
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Determine number of training epoche, | max 

Adjust welghte of output layer 

Update hidden layer welghte 

Compute layere’ outputs 
Calculate error E and error elgnal terme 

    

  

     

     

Update opening angles 

Compute layere’ outpute 
Calculate error E and error elgnal terme 

  

   

Update centree 

Compute layere’ outputs 
Calculate error E and error elgnal terme 

  

   

Figure 2.4. Flow diagram of back propagation phase for the 

second algorithm 
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CHAPTER 

3 

Hardware Design for Conic Section 

Function Network 

  

The objective of this research was to design a novel VLSI hardware 

for the Conic Section Function Neural Network which contains both 

RBF and MLP networks. The contents of this chapter are related to 

the basic building blocks needed to implement a CSFN in VLSI 

hardware. 

3.1. Analogue VLSI Neural Networks 

Analogue VLSI implementations of artificial neural networks have been 

considered by many researchers during the last few years. Extremely large and high- 

speed VLSI chips can be obtained on account of rapid progress of VLSI technology. 

Therefore, it is very attractive to construct large-scale artificial neural network 

systems found in practical problems with neural network VLSI chips because of its 

cost-effectiveness and large computing power. 

Fully interconnected networks are very difficult to realize with digital VLSI 

technology than with analogue technology because of the requirement of more 

transistors to implement basic operations such as multiplication and addition. A 

system implemented from analogue devices will occupy much less silicon area than 

a corresponding digital system. However, owing to the fault tolerant nature of neural 

networks it is hypothesised that analogue VLSI will allow the production of a 
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massively parallel array on a single chip. Analogue implementations have the 

potential for high densities and fast operation and are more appropriate for the 

transfer of highly parallel signals. In addition, nonlinearity of analogue devices allows 

complex functions, such as an exponential or a square root function to be 

accomplished. 

The major drawback of analogue neural networks is the lack of thermal 

stability. Analogue circuits are more liable to electrical problems associated with 

noise while digital circuits offer high noise immunity. The design of analogue circuits 

needs much more time and designer skills than is the case for digital circuits. Digital 

neural networks can be very efficient when speed is not critical. However, analogue 

techniques are more appropriate when speed is important and a great number of 

synapses and neurons must be used. 

3.2. Conic Section Function Network For VLSI Hardware 

There is much research on the mapping of RBF [Sco91, And93, Chu93, 

Par93] and MLP [Lon92, Tom93, Sig94, Joh95, Val96] into parallel VLSI hardware. 

The regularity of these structures makes them ideal for very large scale integration 

(VLSI). Although some hybrid considerations on RBF and MLP networks have been 

done, there is almost no research on hardware implementations of this issue. 

This research was focused on the VLSI design of analogue neural networks 

with the aim of finding a novel hardware approach for a combination of RBF and 

MLP in one single network using conic section functions. A VLSI implementation 

of a conic section function network (CSFN), which contains both RBF and MLP in 

a single circuit, was built up for this purpose. 

The advantages of the CSFN are given in chapter 2. This network is also 

advantageous in terms of VLSI hardware implementations since it has both RBF and 

MLP units. RBF hardware requires input neurons which compute the Euclidean 

distance (RBF type neurons) and output neurons which compute a dot product (MLP 
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type neurons). Different applications will require different numbers of each type of 

neuron depending on the number of centres and the number of classes, for instance, 

4 centres and 16 classes or 18 centres and 2 classes. Fixed hardware for both these 

applications would require 18 RBF type neurons and 16 MLP type neurons 

(depending on output coding used). However if neurons could be switched between 

RBF and MLP type behaviour only 20 neurons would be required thereby adding 

greater flexibility when matching fixed hardware to different applications. The CSFN 

allows this kind of switching with the capability of automatic decision making as 

described in Chapter 1. 

3.3. Conic Section Function Network Design 

The architecture of the Conic Section Function network (CSFN) is shown in 

Fig.3.1. In order to create a CSFN, a synapse and a neuron were designed. 

      Vn = Veentre 

V, centre 

CSFN 

OUT   

    
CSFN SYNAPSE 

Figure 3.1. CSFN architecture 

The synapse module contains an RBF unit and an MLP unit. It is 

implemented through analogue multipliers with centre and weight storage. The neuron 

performs the decision making between RBF (circles) and MLP (straight lines) 
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through CSF (intermediate decision borders such as ellipses, parabolas and 

hyperbolas). 

The proposed synapse and neuron design for CSFN are based on CMOS 

current-mode circuitry and the standard differential amplifier using MOS transistors 

to generate an output current proportional to the difference between two input 

voltages. Although such implementations have some drawbacks such as sensitivity 

to device nonideality and mismatches, the CSFN is easily realized by these circuits. 

3.4. Circuit Building Blocks 

At the most basic level, a simple transistor model was considered. At the next 

level, a set of elementary, yet powerful analogue circuit building blocks were 

designed. The basic building blocks were combined hierarchically into larger circuit 

design. The voltages were used to distribute the information and the currents were 

used for summation by means of Kirchhoff’s current law. 

3.4.1. The transistor model 

A simple MOS transistor operated in the saturated region can be used as a 

voltage controlled current source as in Fig.3.2.(a). Here, the gate is taken to a 

constant potential as is the source. This current source only works for values of V, 
put 

given by 

Vour < Veg + \Vrl - Ves (3.1) 

where JV’, is threshold voltage. 

The drain-source current, /;,., for this transistor is given by 

Ci. W 
Ips = Hy Se Ves-Viy Gm) 
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where ,,C,,, is the device-conductance parameter, W and L are the transistor width 

and length, V,,, is the gate-source voltage, and V,, is the transistor threshold voltage 

[Al187]. 

3.4.2. Current mirror 

The MOS current mirror is the most basic current-mode circuit building block. 

The ideal current source in Fig.3.2(a) could be replaced with a current mirror circuit 

as shown in Fig.3.2(b). This circuit consists of two bias current sources, I,, and two 

transistors. Assuming the transistors are biased in the saturation region, the current 

flowing into the drain of the transistor in left arm is equal to Jp, in Eq.3.2. 

on 
Vout 

  VDD 

Iout   

Ca) 

  VDD 

He 
(b) 

Ix     
Figure 3.2 (a) current source (b) current mirror circuit 

When the aspect ratios (W/L) of transistors are identical and the gate-source 

potential of those are equal, then so are the channel currents. Similarly, when there 

is a scale factor between the aspect ratios, then, the output current is scaled by that 

factor. Accurate mirroring of the signal current requires perfect matching of the 

current mirror transistors. 
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The current mirror produces an output current that is inverted and scaled 

version of the input current. A number of signals can be directly connected to the 

input to sum many input currents. Thus, the current mirror performs the operations 

of signal inversion, scaling, and summation. Using this basic current-mode building 

block, summation of input signals, which is required in neuron circuit, is achieved 

without demanding any additional circuitry. [All87, Ism94] 

3.4.3. Transconductance amplifier 

The transconductance amplifier is one of the most important building blocks 

in the design of an analogue neural network. Fig.3.3 illustrates the schematic of the 

transconductance amplifier circuit. The circuit consists of a current mirror M, - M,, 

a differential pair M, - M,, and a bias transistor M,,. 

  © VDD 

out 

M1 7 Mi Mo —— V2 

    

  

Figure 3.3. Transconductance amplifier circuit 

The bias transistor, M,, acts as a current source, setting the current through 

the differential amplifier stage, controlling the transconductance G, and the saturated 

output current J,. All voltages are assumed to be normalized with respect to the 

thermal voltage k7/q where k is the Boltzmann’s constant (1.381 x 10° J/K), T is 

the absolute temperature, and g is the charge on the electron. At room temperature, 
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kT/q ~ 0.025 volts. By using the simple model for the transistor in ideal case, the 

output current, /,,,. as a function of differential input voltage is given by 2 “our 

V. - Vz 
- 1, = J, tanh *( >) (3.3) 

2V, 
I our = 1 1 

The transconductance, G,,, is defined as the slope of the output current curve 

around the zero input voltage (V, - V,). For small differential voltages, the amplifier 

is roughly linear and the transconductance is 

al I, 
ou Ga ern: oe See (3.4) 

™ av, - V;) | yt aY, 

For large differential input voltages, | V,- V, | >> V;, the circuit behaves 

like a threshold function with asymptotes +I,. Since the transconductance, G,,, is 

proportional to the tail current, I,, the gate terminal of the transistor M, is used for 

controlling the characteristics of the transconductance amplifier. [Mea89, Mah89, 

Ism94] 

3.4.4. EEPROM - Analogue storage device 

The most important specific problem faced in the implementation of the 

analogue VLSI neural networks is the storage of synaptic weights. Also, the Conic 

Section Function network needs the storage of the centre values as well as weights 

in the synapse module and the storage of the opening angle in the neuron module. 

The weight, centre and angle must be adjustable to provide on-chip learning 

capability. 

Conventional approaches to storing a fixed analogue weight value are to use 

either digital storage with some form of digital/analogue conversion or to use volatile 

analogue storage, which requires a large capacitor. Both of these storage technologies 

require a large silicon area. 
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The most obvious choices to implement an analogue storage cell with MOS 

VLSI are nonvolatile devices like floating gate. These devices have been used in 

digital and analogue memory [Ong89, Wal89], as adjustable biasing devices [Car89], 

and for weight storage in neural networks [Hol89, Kra91, Vit91]. The terminals of 

a floating gate device are the drain, source, bulk and a control gate that is 

capacitively coupled to the floating gate. Depending on the programming mechanism, 

another terminal, the charge injector may be needed. 

The charge retention and accurate control of the floating gate charge are the 

primary concern for analogue applications. It is also desirable to use no special 

processing to achieve EEPROM operation to reduce the cost of fabrication. 

Standard process EEPROMs require high voltages to initiate tunnelling due 

to thicker insulating oxides between the channel and the floating gate. The approach 

used in this work requires much lower voltages to initiate tunnelling due to thinner 

insulating oxide between the two polysilicon layers [Gri95]. The structure of the 

EEPROM device is shown in Fig.3.4. 

ControlGate Injector 

  

  

SWC CCC 7ODou£°“ 

Source 

Figure 3.4. EEPROM device 

It is also preferable, for continuous time operation required, that the terminal 

for programming, such as the control gate and tunnelling injector, are separate from 

the terminals needed for operation, such as the drain and source. The voltage required 

to produce a field sufficient for tunnelling depends upon the geometry and upon the 

oxide characteristics [Gri95]. 
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3.5. CSFN Synapse Design 

The main function of the synapse cell in CSFN is to achieve a linear 

multiplication and to provide reliable storage of the weight and centre values. The 

synapse design is based on the standard differential amplifier using MOS transistors 

to generate an output current proportional to the difference between two input 

voltages. Two differential amplifiers, each composed of differential pairs and the 

current mirror, are used in the synapse design to obtain RBF and MLP units 

separately. Non-linearities in the transistor responses can be cancelled out, so that 

output currents are linearly dependent on the difference of two input voltages. 

  

  

VSS 

Figure 3.5. Differential amplifier to provide voltage differences 
between input and centre vectors for both RBF and MLP units 

The first differential amplifier shown in Fig.3.5 generates two output currents, 

I and I,, which are ideally equal and proportional to (Vin-V centre): One is used for RBF 
centre. 

unit, the other is for MLP. 

60



CHAPTER 3 - Hardware Design for Conic Section Function Network 

3.5.1. Design of RBF unit 

The schematic of the RBF unit which computes an Euclidean distance is 

shown in Fig.3.6. M8 and M9 both operate in the saturation region of the MOS 

device characteristic so that the drain-source current is given by Eq.3.2. M7 serves 

as a resistor operating in the linear region of the MOS device characteristic so that 

the gate voltage of both M8 and M9 are proportional to (V;,-V centre) (but offset to take 

into account threshold voltages). 

   (from first diff. amp.) 

Figure 3.6. RBF unit which computes the Euclidean distance 
function 

The drain current of M8, I,, is proportional to the square of (Vj.-Vcentre) for 
centre. 

Vii V 

Vin<V 

by Eq.3.2. In the same way, M9 generates an output current, I,, for centre 

centre: Lhese two currents are, then, summed by using a current mirror. Two 

bias voltages, Vp and Vn, are connected to the sources of M7 and M9 to adjust the 

offset voltage at the output. 
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A MOS transistor, M10, is connected as an active load with the aim of 

computing the Euclidean distance for RBF, that is the square root of the sum of the 

squared voltage differences given by 

y=fCEtsce,y) (3.5) 

Essentially Eq.3.2 is inverted with gate and source commonned so that the 

output voltage, V,,,,, is proportional to the square root of the drain current. Thus, an 

output voltage proportional to the square root of (V;,-Vcentre) Which is the Euclidean 

distance has been obtained. This voltage, then, is applied to the neuron circuit. 

3.5.2. Design of MLP unit 

In most MLP models, each processing element operates by taking a weighted 

sum of its inputs. The sum then passes through an activation function. The second 

differential amplifier not only produces an output current, /,, proportional to (V centre” 

V,,) but also yields a multiplication of weight and (V;,-V centre) Which is necessary for centre 

MLP unit in CSFN. The schematic of MLP unit is illustrated by Fig.3.7. 

Le 

M15 | |-K}—o Vw 

   I (from first diff. amp.) 

Vcentre Cnet 

  

VSS "7 

Figure 3.7. MLP unit with weight storage transistor 
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The weight value is determined by the voltage V,,. Positive and negative 

weight values are obtained by summing the currents /, and /,. For positive weights, 

V,, is less than V, so that J, is greater than /,. Summation is achieved across the input 

vector by summing currents at node c as in Fig.3.7. 

3.5.3. The complete synapse circuit 

Fig.3.8 shows the complete synapse circuit with RBF and MLP units. The 

output currents generated by M8 and M9 transistors for RBF are summed by using 

a current mirror, as in Fig.3.6. The response from other synapses can be summed at 

this point by connecting the relevant I,, and Ip, current paths to nodes a and b 

respectively. Similarly, the output currents for MLP can be summed at node c. 

  
Figure 3.8. Complete circuit of synapse design 
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3.6. CSFN Neuron Design 

The second part of the CSFN circuit design is the neuron. In the general case, 

the functional model of the artificial neuron consists of the weighted input 

connections, a summation function, and a nonlinear threshold function which 

generates the unit output. The inputs to the neuron are multiplied by weighting 

factors and then the results are summed in the neuron. The result of the sum is then 

put into a hard threshold device or a device with a sigmoid output. 

In Conic Section Function networks, the inputs to the neuron are centred by 

the centre vectors in additional to the multiplication of the weighting factors, and 

then these results are summed in the neuron. The summation of the weighted and 

centred inputs is shown in Fig.3.9. 

   
     Vino 

     

  

CSFN 
Vcentreo 

Synapse      
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| 
| Vw oO 

Figure 3.9. The summation of the inputs 

In contrast to the output function of the general neuron model, the CSFN 

neuron is designed in such a way that the output of the neuron results in one of three 

network functions, RBF, MLP, and CSF. The main problem here is how to combine 
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a local Gaussian function and a sigmoid function, which are needed for RBF and 

MLP, respectively. The local function can be defined using two sigmoidal units 

shown in Fig.3.10. 

Figure 3.10. The combination of two sigmoid function to define 

a local function 

A pair of shifted sigmoids is subtracted to obtain a local function. This local 

function can be made of any width and centred on any point by appropriate selection 

of parameters. Two currents, IR1 and IR2, in synapse circuit illustrated in Fig.3.6 and 

Fig.3.8 provide these two shifted sigmoidal curves. 

The propagation rule of CSFN described by Eq.2.1 is simplified below in 

terms of circuit voltages and currents to obtain the required output functions between 

RBF, MLP, and CSF. 

I our * 2 (V, rer V utp) + Vuze (3.6) 

where J out is the output current of the neuron, a is the variable parameter which refers 

to the opening angle in conic section functions, Vp, and V,,p are output voltages for 

RBF and MLP provided by the synapse circuits. 

Another differential amplifier shown in Fig.3.11 is used in the neuron design 

to have an output current proportional to (Vpp-Vyp). A voltage source, V,, is used 

to determine the variable a, to initialize the network as an RBF, MLP or conic 

section function. An output current, J,,,, is obtained depending on this voltage value 
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as V,=f(a). When a=0, J,,, will be proportional to V,,». In the same manner, when 

a=1, J,,, will be dependent on the Vp,,. Finally, J,,, will be proportional to Vos; for 
> “out 

  

O>a>1. 

Vout 

Veet Tout 

= 
V MLP a 

  WO as 

  
Figure 3.11. Neuron circuit 

Vout attained in neuron circuit shown in Fig.3.11 is in a quite small range 

which is not enough to use in a second layer. For this reason, one more differential 

amplifier is used for adjusting the output values of the neuron circuit in such a way 

that the output of the neuron is in the range between -1V and 1V so that it could be 

used as the input of the second layer. This is the possible range to apply for the 

inputs in the synapse circuit designed. 

The amplifier used to adjust the input-output range for the neuron is again a 

standard differential amplifier illustrated in Fig.3.12. In this case, the first layer and 

the second layer of the network would have almost in the same input ranges. This is 

required to operate the second layer properly. In other words, it allows the RBF, 

MLP or CSEN outputs obtained from the first layer to be used as the inputs of the 

second layer accurately. 
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Figure 3.12. Amplification circuit 

3.7. Network Combinations 

Several network combinations using different number of synapses and neurons 

have been designed to demonstrate the functionality of the CSF network. This section 

shows these combinations. 

3.7.1. Network with two synapses and one neuron 

The circuit shown in Fig.3.13 has two inputs and one output. It has been 

designed to obtain decision borders for RBF, MLP, and CSF networks in two 

dimensional case. It contains two synapses and one neuron circuit. 

3.7.2. Network with 8 synapses and one neuron 

A network containing eight synapses and one neuron was built to demonstrate 

the functionality of the CSFN in higher dimensionality. This circuit is shown in Fig. 

3.14. 
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Figure 3.14. Network with 8 synapses and one neuron 
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3.7.3. 2-4-2 network 

This is a demonstration circuit to show the functionality of the CSFN design 

for a particular classification problem including two inputs and two outputs, assuming 

that there are four centres predetermined. The circuit contains 16 synapses and 6 

neurons. Eight of the synapses and four neurons have been used in the first layer, and 

eight synapses and two neurons in the second layer in order to classify the data 

produced randomly into two classes determined. Fig.3.15 shows the architecture of 

the network. 
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Figure 3.15. 2-4-2 Network 
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3.7.4. 8 by 4 network 

Another demonstration circuit containing 8 inputs and four outputs were 

constructed to show the operation of the network with real data. This circuit consists 

of 32 synapses and 4 neurons. Fig 3.16 shows the 8 by 4 network. This network can 

be easily cascaded in order to form wider network combinations with two layers. 
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Figure 3.16. 8 by 4 network 
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3.8. Alternative RBF Unit Design For CSFN Synapse 

An alternative RBF unit with Manhattan distance function has been designed 

for CSFN synapse implementation. This type of RBF unit needs an activation 

function which computes a Manhattan distance between the inputs and the centre 

vectors. The Manhattan (city block measure) distance is a simplified version of the 

Euclidean distance measure [Bea90]. This method performs the Euclidean measure 

without calculating the squared or square root functions as given by 

Prete. hye 15 (3.7) 

d(X) = Y | x, -c, | 3.8) 

Eq.3.8 gives the Manhattan distance for the i-th centre. For a given input 

pattern vector, X = (X,,X,,...,X,) of dimension n, the circuit is designed to calculate 

the Manhattan distance between the input vector and stored centre vector C, = 

(Ci1,Cj25--sCin)- 

The Manhattan distance is much faster to compute than the Euclidean. 

However, it introduces some error into the measure because the points of equal 

distance from a vector lie on a square boundary, as opposed to a circular boundary 

for the Euclidean. Anything falling on the square boundary yields the same distance 

value. The error can be accepted when the speed of calculation is more important 

than the accuracy. 

3.8.1. Exclusive OR gate design 

The Manhattan distance measure can be performed simply by the exclusive 

OR function since |x; -y;| is equivalent to x, XOR y; when the input is represented 

by pulse width modulation. Fig.3.17 shows the waveforms of the XOR gate used to 

provide Manhattan distance function. 
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Figure 3.17. Waveforms of XOR circuit for Manhattan distance 

For tl < t2 , the mark to period ratio of the output of the XOR is given by 

th+(T-12) _ ay (tie 4225 (3.9) 

r i 

and for tl > t2 , the mark to period ratio of the output is given by 

PG eats) ee. C12 oti J (3.10) 
T : 

These equations give a pulse width modulation output for all cases as follows: 

(aie ee \ (3.11) 

For the aim of computing of Manhattan distance, a CMOS Exclusive OR gate 

circuit illustrated in Fig.3.18 was designed. Here, two standard CMOS inverters 

generate inverse xl and x2 signal, which, along with x1 and x2, control a pair of 
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transmission gates. If x1 = 1, the upper transmission gate is opened, applying inverse 

x2 to out, and the lower one is closed. Hence, out = 1 if xl = 1 and x2 = 0. 

Similarly, the lower transmission gate makes out = 1 when x1 = 0 and x2 = 1, so out 

= xl @ x2. 

  VDD 

xl 

  

      

    xe   
  

  

Figure 3.18. Exclusive OR gate design 

3.8.2. 8 Synapses network 

An RBF type synaptic circuit with 8 synapses using current mirrors and 

exclusive OR gates has been designed. Since all transistors connected to the outputs 

of the Exclusive OR gates have same W/L (width/length), therefore the weights to 

the neuron are the same because the hidden layer connections are not weighted for 

an RBF network. This circuit provides centred and summed inputs for the neuron. 

Fig.3.19 shows the schematic of the synaptic circuit. 
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Figure 3.19. Synaptic circuit 
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CHAPTER 

4 

Software Simulation Results 

  

A new training algorithm composed of a Cenic Section Function Network 

propagation rule which contains Multilayer Perceptron and Radial Basis Function 

parts to improve the performance of back propagation is proposed in Chapter 2. Two 

different problem has been considered to demonstrate the performance of the training 

algorithms: Iris plant classification problem and contact lens fitting problem. The 

performances of a standard MLP trained back propagation, a fast back propagation 

with adapted learning rates, a standard RBFN using Matlab Neural Network software 

toolbox, and the proposed algorithm are compared for these particular problems. 

4.1. Iris Plant Classification Problem 

The Iris plant database [Fis36] which is perhaps the best known database to 

be found in the pattern recognition literature has been chosen for the first application. 

Simulations were run using this database. The data set contains 3 classes of 50 

instances each, where each class refers to a type of Iris plant, Setosa, Versicolor, and 

Virginica. One class, Setosa, is linearly separable from the other two; the latter are 

not linearly separable from each other. A training set and a test set were formed 

using the 150 samples. The training set contains 120 patterns, 40 from each pattern 

class. The remaining 30 patterns were used to test the training algorithms. The details 

of the database is given in Appendix 1. 
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4.1.1. Results for the first CSFN training method 

The first training algorithm for conic section function networks is based on 

updating weights, centres, and opening angle in the same epoch. Two different cases 

have been considered: training with the centre updating and training without the 

centre updating. Table 1 shows the results of the first algorithm for these two cases. 

Different numbers of centres have been used in training. The learning rate is 0.05 and 

the error goal is 2.5 for all cases. 

     

  

               

  

     

    

   

Number of centres Epochs (centre updated) Epochs (no centre 

   updated) 

a 
ae 
co ae 

  

   

      

     
Table 4.1. Number of training epochs for different number of centres 

of CSEN (learning rate Ir=0.05) 

As can be seen from Table 4.1, the results for the training without the centre 

update are better than the ones with the centre update. The network convergence is 
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not stable when the centres are updated. There are some unexpected peaks during the 

training shown in Fig.4.1 and 4.2 because the centres are well placed by orthogonal 

least square algorithm at the beginning and do not need to be changed after that. If 

the updating procedure is performed for the centres in the same epoch as the weights 

and opening angle, the network convergence deteriorates due to conflicting changes 

in several parameters and the training error sometimes increases due to this. 
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Figure 4.1. The results of the first algorithm for different number 

of centres with centre updating. 
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Figure 4.2. The results of first training algorithm for 4, 6 and 10 

centres with centre updating. 
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The network does not converge for 4 centres. The number of peaks decreases 

with the number of centres as seen from the figures. The results are much better for 

the first algorithm if the centres are not updated as can be seen from Fig.4.3. The 

network converges smoothly. Fig.4.4 shows the results for 8 and 4 centres. 
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Figure 4.3. First algorithm results for 6, 8, and 10 centres when 

the centres are not updated (Ir = 0.05). 
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Figure 4.4. First algorithm results for 8 and 4 centres (no centre 

update) and Ir = 0.05. 

For small number of centres, such as 4 and 5, the results are quite close to 

each other. The network reaches the error goal for those in nearly same number of 

training epochs. 
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The algorithm was investigated for different learning rates without centre 

updating to see the effect of the learning rate on the convergence. Fig.4.5 shows the 

results obtained by using two different learning rates, 0.01 and 0.05, for 6 centres. 

When the learning rate is 0.01, the network is more stable but convergence is slower. 

It converges quicker for the learning rate 0.05, but it is not as stable as for Ir = 0.01 

and has some peaks. 
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Figure 4.5. First algorithm results for different learning rates (for 

6 centres without centre update) 
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Figure 4.6. Effect of the number of centres on the number of 

training epochs 

Fig.4.6 shows how the number of training epochs change by the number of 

centres. The network convergence is poor for more than 10 centres due to the 

oversize of the centres because too many nodes in the hidden layer cause 
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overgeneralization. In other words, a network with too many parameters learns all the 

small details and noise, and gives poor generalization. 

The same learning rate was used for updating weights, centres, and opening 

angle for the results reported so far. The learning rate for updating the opening angle 

was changed independently to see if the results would improve. The hypothesis was 

that conflicting changes in the network occur when all parameters are updated in the 

same epoch with the same learning rate. Fig.4.7 shows the results for the opening 

angle update with different learning rates. The use of 100 times smaller learning rate 

for the opening angle update gives a marginal improvement. 
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Figure 4.7. Different learning rates for updating opening angle 

(ir = 0.05 and for 5 centres) 

4.1.2. Results for the second CSFN training method 

The basis of the second algorithm was to train the network with a different 

strategy to get better result. First, the weights are updated for a predetermined 

number of training epochs (eight epochs used here). Then, the opening angle and the 

centres (when required) were modified, respectively, in separate training epochs. 

Table 4.2 shows the results of the second algorithm for Conic Section Function 

network when the centres are not updated. The weights are adjusted during 8 training 

epochs and then the opening angle is modified for only one training epoch. 
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Ir=0.01 Ir=0.03 Ir=0.04 Ir=0.05 Ir=0.07 

Table 4.2. Training epochs with different learning rates for the second algorithm 

      

  

   
Number of centres 

   

  

5 

without centre updating. 

Ir=0.01 Ir=0.03 Ir=0.04 1r=0.05 Ir=0.07 

Table 4.3. Training epochs with different learning rates for the second algorithm with 

      

  

   
Number of centres 

    

   
3 

  

centre updating. 

Table 4.3 shows the results when the centres are updated during the training. 

The weights are updated during 8 training steps as before. Then, the opening angle 

is adjusted in one training epoch, and in the same manner, the centres are updated 

in one training cycle. Fig.4.8, 4.9, and 4.10 show the results for 6, 7, and 8 centres 

without centre updating with different learning rates. 
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Figure 4.8. The second algorithm results for 6 centres (no centre 

update) 
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Figure 4.9. The second algorithm results for 7 centres (no centre 

update) 
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Figure 4.10 The second algorithm results for 8 centres (no centre 

update) 

The performance of the algorithm is strongly dependent on learning rate as 

can be seen from Fig.4.8, 4.9, and 4.10. For 6 and 7 centres, the number of training 

epochs decreases by the increment of learning rate. On the contrary, the training time 

increases with the increment of learning rate for 8 centres. The inclusion of more 

hidden units does not necessarily significantly reduce the training epochs, i.e. the 
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time to learning. The learning rate also plays an important role. Depending on the 

number of hidden units and the learning rate, the results may even lead to unstable 

behaviour. This is not surprising since the effectiveness and convergence of the back 

propagation learning algorithm depend strongly on the value of the learning rate. 

However, in general, the optimum value of the learning rate depends on the problem 

being solved and there is no single learning rate value suitable for different training 

cases. This problem seems to be common for all gradient based optimization 

schemes. When broad minima yield small gradient values, then a larger value of 

learning rate will result in a more rapid convergence. However, for problems with 

steep and narrow minima, a small value of learning rate must be chosen to avoid 

overshooting the solution. This leads to conclusion that the learning rate should 

indeed be chosen experimentally for each problem [Zur95]. 

Fig.4.11 shows the effect of the learning rate for 8 centres. The open symbols 

show the case when the centres are not updated. The closed symbols show when the 

centres are updated. The effect of the number of centres is shown in Fig.4.12. Here, 

the learning rate is 0.04, which generally gives a good convergence for this problem 

with different number of centres. 
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Figure 4.11. The effect of the learning rate for 8 centres 
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Figure 4.12 The effect of the number of centres (Ir = 0.04) 

Fig.4.13 and 4.14 show the results for 6 and 8 centres with and without centre 

updating. The learning rate is 0.05 for 6 centres, and 0.03 for 8 centres. The results 

are generally more stable without centre update because the updating may result in 

the misplacement of centres since they are already well placed by orthogonal least 

square algorithm at the beginning. In general, the convergence is better with centre 

update although there are several examples of the better results without centre update. 
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Figure 4.13. Results for 6 centres with Ir=0.05 
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Figure 4.14. Results for 8 centres with Ir=0.03 

4.1.3. Results for the back propagation and adaptive back propagation 

algorithms 

Standard MATLAB neural networks toolbox was used to obtain the results 

for back propagation and fast back propagation algorithm with adaptive learning rate. 

Fig.4.15 shows some results of the back propagation algorithm for different number 

of hidden nodes. 
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-- Qhidden nodes 
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Figure 4.15. Back propagation results 
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Table 4.4 shows the results of back propagation and fast (adaptive) back 

propagation algorithms for Iris database. It was seen from the results that both 

algorithms were dependent on the random initialization. The network converges in 

different number of training epochs depending on the initialization. Also there were 

some cases in which the fast back propagation algorithm did not converge. The 

programmes were run using different number of training epochs. The average results 

were given for 7, 9, 8, and 10 hidden nodes in Table 4.4. The programmes using 6 

hidden nodes were run 6 times for the back propagation algorithm and 12 times for 

the fast back propagation algorithm, and the results are shown in Table 4.4. 

Number of hidden nodes back fast back propagation 

propagation 

21669 8658 

  
Table 4. Results for back propagation and fast back propagation algorithms 
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4.1.4. RBF results 

Radial basis function network algorithm was run for the Iris database using 

MATLAB toolbox. The training algorithm for RBF in this toolbox involves the 

Orthogonal Least Squares algorithm to place the centres. It also executes a Gaussian 

activation function as the basis function in the hidden layer and a linear function in 

the output layer. The Euclidean distance function is used as the propagation rule. It 

needed 32 centres to be placed to reach the same error goal used to classify the Iris 

data in the other algorithms while CSFN needs less than 10 centres. 

4.1.5. Comparison of the algorithms 

The performances of an MLP trained with back propagation and fast back 

propagation with adaptive learning rates, an RBEN, and the proposed algorithm are 

compared using Iris plant database. The sum-squared error goal is 2.5 for all 

algorithms. Fig.4.16 shows the comparison of the algorithms. 
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Figure 4.16. Comparison of the algorithms 
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For 6 centres, standard MLP needs 4000 to 30000 epochs while second CSFN 

algorithm needs only 561 epochs. First CSFN algorithm is also better with 2950 

epochs for the same number of centres. MLP trained with fast back propagation gives 

some better results than first algorithm, but none better than second. It requires 

minimum 1000 epochs and sometimes does not converge depending on random start 

while CSEN is not dependent on random initialization. It should be noted that the 

CSFN algorithms do not use adaptive learning rates which may lead to further 

improvements. CSFN needs fewer centres than RBF. It requires only 6 centres to 

reach the same error goal whereas RBF needs 32 centres. 

4.2. Lens Fitting Problem 

The database for fitting contact lenses has been used as the second application 

to test the training algorithm for the conic section function network. The data set 

contains three classes where each class refers to the type of contact lenses with which 

the patient should be fitted. A training set and a test set were formed using 24 

samples. The training set contains 16 patterns, 3 from first two classes, and 10 from 

third class. The remaining 8 patterns have been used to test the training algorithm. 

The details of the database is given in Appendix 2. This database is relatively simple 

and gives results quicker than the Iris database. 

First algorithm with no centre update needs 76 training epochs to reach the 

error goal of | for 6 centres. It needs 87 training epochs with centre update to reach 

the same error goal for the same number of centres. 

4.2.1. Results for the second algorithm 

Fig.4.17 and 4.18 show the results for 4 and 7 centres with different learning 

rates. The results are dependent on the learning rate as for Iris data. The number of 

training epochs decreases by the increment of learning rate, and the network has an 
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Figure 4.17. Results for 4 centres (first 4 epochs are OLS) 
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Figure 4.18. Results for 7 centres (first 7 epochs are OLS) 

unstable behaviour for 7 centres with learning rate = 0.09. Fig.4.19 shows the effect 

of the learning rate for 5 centres. Fig.4.20 illustrates how the number of centres 

effects the training time. The learning rate is 0.05. The network has best convergence 

for 5 centres, which is good for hardware implementation. 
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Figure 4.19. The effect of the learning rate (for 5 centres) 
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Figure 4.20. The effect of the number of centres (Ir=0.05) 

4.2.2. The effect of the width 

The effect of the width in RBF part of the algorithm was also investigated for 

the lens fitting problem. The parameter width is defined in Section 1.3.1. Fig.4.21 

shows the results when the width is equal to 1 with learning rates, 0.05 and 0.02. 
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Fig.4.22 illustrates the effect of the width on the training time. 5 centres have been 

used to obtain the results and the learning rate is 0.05 for Fig.4.22. 

The network converges quicker when the width is smaller, but it is not very 

stable. It converges slowly but smoothly for the larger value of the width. 
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Figure 4.21. Results for width = 1 with 5 centres 

‘- width = 1.5 

S
u
m
-
s
q
u
a
r
e
d
 

er
ro

r 

  

0 100 200 300 400 500 600 700 800 900 
Number of training epochs 

Figure 4.22. The effects of the width (Ir=0.05) 
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4.2.3. Back propagation and fast back propagation algorithms results 

The lens fitting problem was applied to back propagation and fast back 

propagation algorithms to compare the results. Fig.4.23 shows back propagation 

results for 5 and 7 hidden nodes. Fig.4.24 shows the results for the back propagation 

algorithm with 7 hidden nodes with learning rates, 0.05 and 0.09. 
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Figure 4.23. Back propagation results for 5 and 7 hidden nodes 

(Ir = 0.05) 
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Figure 4.24. Back propagation results with different learning 

rates for 7 hidden nodes 
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Fig.4.25 illustrates the fast (adaptive) back propagation algorithm results for 

different number of hidden nodes. 
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Figure 4.25. Adaptive back propagation results for different 

number of hidden units. 

The performance of the back propagation and fast back propagation algorithm 

are strongly dependent on the random initialization. There were sometimes no 

separation between the classes even though the same error goal has been reached. 

The following tables show three different results of fast back propagation 

algorithm for the same error goal. The network did not classify the data at first trial. 

The second trial was better, and the network classified the data correctly at third 

attempt. The first column of the tables gives the first class with the target vector (0.9, 

0.1, 0.1). The second and third columns refer to the second class with target vector 

(0.1, 0.9, 0.1), and finally, the remaining columns belong to the third class with the 

target vector (0.1, 0.1, 0.9). 
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TARGET MATRIX 

Oe. Ones Ot eet a Ooh Orn 2. O71 

0.1 Os 200 “Orne. SU. boat ke a OL 

0.1 Gf Ob oO U9 9 O80 

FAST BACK PROP. No. of hidden nodes = 5, 

Test results (first trial): 

0.1740 0.0185 0.0006 

0.3220 0.8970 0.9664 

0.0011 0.0005 0.0013 

0.3693 

0.0093 

0.7724 

0.1424 

0.8700 

0.1546 

Test results (second trial): 

0.9248 0.3770 0.1129 

0.1029 0.4617 0.7196 

0.0928. ..0:2235 <0:3121 

0.1004 

0.0506 

0.8824 

0.0891 

0.0535 

0.8894 

Test results (third trial): 

0.9635 0.0460 0.0450 

0.0016 0.8135 0.8176 

0.0176 0.3117 0.3146 

0.0006 

0.1777 

0.9899 

0.1566 

0.0001 

0.8563 

4.2.4. RBF result 

0.1 

0.1 

0.9 

error goal = 1, learning rate = 0.05 

0.0004 

0.1264 

0.9360 

0.0006 

0.0685 

0.9560 

0.0297 

0.7872 

0.2718 

0.0216 

0.1506 

0.9358 

0.1097 

0.0518 

0.8779 

0.0531 

0.0769 

0.9050 

0.0004 

0.1796 

0.9940 

0.1231 

0.0001 

0.9007 

0.0018 

0.0262 

0.9871 

The lens fitting problem was applied to standard RBF algorithm in MATLAB 

as for Iris data. The training procedure requires 6 centres to be placed when the error 

goal is 1 and 10 centres for the error goal, 0.1, whereas, the CSFN algorithm needs 

5 centres to classify the same data. 
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4.3. Discussion 

This work was concerned with the use of conic section functions which 

contains RBF and MLP parts to improve back propagation training algorithm which 

is one of the standard methods used for training of multilayer neural networks. It 

reduces the number of centres needed for an RBF and the hidden nodes for an MLP. 

Furthermore, it converges to a determined error goal at lower training epochs than 

an MLP. The results show that the introduced algorithm here is much better than the 

others in most cases, in terms of not only training epochs but also the number of 

hidden units and centres since the decision boundaries can match the real data more 

closely. This algorithm is much faster and more stable on random initialization than 

a standard MLP trained with back propagation and adaptive back propagation. It also 

needs less centres than standard RBF. The number of centres and the hidden units 

used are important since this work is also aimed at designing a VLSI hardware neural 

network. 
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CHAPTER 

5 

Hardware Simulation Results 

  

This chapter considers the hardware simulation results of the Conic 

Section Function network. The circuits designed have been simulated 

using cdsSpice simulator in the Cadence design package on a Sun 

workstation to show the functionality of the network. 

5.1. The Synapse 

The synapse must be capable of computing a distance function (for RBF type 

of outputs) and providing weighted (for MLP type of outputs) and centred (for both 

MLP and RBF type of outputs) connections to the neuron. Section 3.5 describes how 

to achieve this. The synapse circuit was simulated using cdsSpice in CADENCE 

design package. 

5.1.1. Exclusive OR gate results 

The Exclusive OR gate shown in Fig.3.18 was first simulated to demonstrate 

how the Manhattan distance function can be achieved to use in an RBF unit. x1 and 

x2 refer to the input and the centre, respectively. The circuit was simulated for the 

various frequencies. The results show that the performance of the circuit was stable 

in terms of changes in frequency. Fig.5.1. shows the input and output waveforms of 

the Exclusive OR circuit by time. 
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Figure 5.1. Exclusive OR gate waveforms 

5.1.2. Results for the RBF unit with an Euclidean function 

The second RBF type of unit design computes the Euclidean distance 

function. This unit was used for the complete network design. Therefore, the results 

for the complete network design depends on the results of this unit. 

Firstly, variable basis function centres between -1V and 1V were applied to 

the circuit and the input of the synapse was swept in the same voltage range. The 

simulation results of RBF type of outputs obtained from the synapse circuit (see 

Fig.3.8) with variable centre values are shown in Fig.5.2. 
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Figure 5.2. RBF output 

5.1.3. Results of MLP unit 

Fig.5.3 illustrates the results obtained from MLP type of unit with variable 

weight values. Here, the weight input was swept between -2V and -4V to achieve 

positive and negative weights for the MLP type of unit. The centre input was held 

at OV and bias voltage Vb was -3V. 
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Figure 5.3. MLP output 
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5.1.4. Effect of the transistor parameters and bias voltages 

The effect of the device mismatches and nonideality is one of the drawbacks 

of the implementations using MOS transistors. The performance of the complete 

synapse circuit with an RBF and MLP unit was investigated to realize how the circuit 

operates when there are some differences in actual transistor parameters and bias 

voltages than designed ones. Fig.5.4 to 5.9 show the RBF outputs when some of the 

transistor parameters and bias voltages are changed to investigate the nonideality. 

The centre point was held at 0, and input of the synapse was swept from -1V 

to 1V for all. The width of the nmos transistor M8 shown in Fig.3.6 was changed 

from 3m to 9um at three steps and the width of the pmos transistor M9 was altered 

from 154m to 27m at same steps. The result of the former is shown in Fig.5.4. The 

width of the M9 was 221m and it was 6um for M10. The centre point shifts if the 

width is increased. The latter is shown in Fig.5.5. The width of the M8 was Sum and 

M10 has 6um width. The centre point shifts to the more positive ones with the 

increase of the pmos transistor width. 
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Figure 5.5. Effect of the pmos transistor (M9) in RBF unit 

The width of the transistor M10, which provides the squared root function, 

in Fig.3.6 was changed between 3pm and 9m. The widths of M8 and M9 were 5um 

and 22m, respectively. The simulated response of the circuit is given in Fig.5.6. As 

can be seen this only affects the offset value without making any change to the 

characteristic of the RBF output. 
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Fig.5.7. illustrates the RBF output when the resistor M7 in Fig.3.6 is changed. 

The output range becomes smaller as expected and the centre point shifts to more 

positive one. 
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Figure 5.7 Effect of the resistor (M7) 

Vn and Vp voltages shown in Fig.3.6 are also important, therefore, the results 

of their effect in the RBF unit was presented in Fig.5.8 and 5.9. Changes in Vn 

results in shifts at the centre point, whereas, Vp effects both the centre point and the 

offset value. 

RBF_out (V) 

    

4 9 

-0.0 = * a 
% y# 

p * t ‘ d i 

| * r * 

ok * . o - 

a 

Oe a eas Pee 
4 ’. cs 2 

e / * 
° of / 

5 + iN x ; 
a. “. 4 5 f OS —————————_, 

Dig Ky 97 9 Vn = 700mv | 
—+— Vn = 750mV 

-o—Vn = 800mvV | 

OAD 5 ee cee arin Fa 1 ae -— 

1 0 1 

Vin (V) 

Figure 5.8. The effect of Vn 

101



CHAPTER 5 - Hardware Simulation Results 

    

RBF_out (V) 

Oa 

ro 

| Nn 

0.0 al E " 2. 

+ ae iS a 
JntH~ ~, OL, 0-9 gr 

ae Sets ee 
-0.2 - 9-4: * 

ae 2 cle cas pe av | 
+—Vp = 1.5V | 

eo Vp = 1.7V | 

SO: ee ee oes gi) cement SBS 
1 Oo 1 

Vin (V) 

Figure 5.9. The effect of Vp 

Fig. 5.10 and 5.11 show the effect of the Vb bias voltage (see Fig.3.5) on the 

RBF and MLP outputs. When Vb = -3V MLP weight is at 0 since Vw was held 

at -3V. By changing the bias voltage Vb, positive weights turns into negative ones, 

or vice versa. This also affects the RBF output as seen in Fig.5.10. 
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Figure 5.11. The effect of Vb on the MLP output 

Finally, the device mismatches on the differential pair in the amplifiers were 

analyzed. Fig.5.12 shows the effect of the device mismatches in the differential 

amplifier used in MLP unit (see Fig.3.7). The width of one of the differential pair 

(M12) was changed from 61m to 7um while the other one (M14) was 6um. It does 

not change the slope of the MLP output, which is important to determine the correct 

decision borders for MLP, but it does change the offset. 
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Figure 5.12. The effect of the device mismatches (when M12 
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Any mismatches in the differential amplifier in Fig.3.5, which provides the 

difference between the inputs and the centres, does not change the outputs 

significantly. Fig.5.13 and 5.14 show the effect of the mismatches of the differential 

pair on MLP and on RBF outputs in Fig.3.5. The widths of the M3 and M5 were 

6um. The width of the M2 was changed from 11.5um to 12.5um at three steps. 
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5.2. The Neuron 

The neuron was firstly simulated using the circuit with two synapses and one 

neuron in Fig.3.13 by applying different input voltage and weight values. A fixed 

centre value (0V) was chosen and the input of first synapse, Vinl, was swept from 

-1V to 1V to draw the contours of the decision regions for RBF, MLP, and CSF. 

Then, the input of the second synapse, Vin2, was, parameterized from -1V to 1V. By 

taking different output values and using the graph Vin1 against to Vout, Vin2 was 

plotted against to Vin1 for different Vout contours. 

Fig.5.15, 5.16 and 5.17 illustrate the simulation results of neuron. As can be 

seen, different decision boundaries were obtained, the circles for RBF, the straight 

lines for MLP, and the ellipses or parabolas for CSFN. 
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The bias voltage, Va, using for opening angle adjustment was -5V for MLP 

output, -2.7V for RBF output, and -3.1V for CSF output. The contour voltages were 

different for those three outputs because there was an offset difference between the 

outputs. The RBF output was around 120 mV while MLP output was changing 

between 10 and 40 mV. The CSF output was also between 80-95mV. This offset 

difference has been removed by changing some transistor parameters and bias voltage 

values in synapse circuit when the complete chip was designed. 

Fig.5.18 shows the transitions from MLP through CSFN to RBF with the 

change in V, voltage referring the opening angle of the cone. 
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Figure 5.18. The transitions from MLP through CSFN to RBF 

Fig.5.19 shows the local RBF function obtained from summed outputs of the 

synapses as explained in Section 3.6. 
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Figure 5.19. Local output obtained from sigmoids 

Finally, the neuron was simulated using the circuit with eight synapses and 

one neuron in Fig.3.14 to show how the circuit acts in RBF mode with a higher 

dimensionality. The centres were all set at OV whereas the inputs were split between 

two voltages Vinl and Vin2. In Fig.5.20, Vin1 is swept from -1V to 1V with Vin2 

held constant at OV so that when Vin1 is equal to OV the input vector is at the RBF 

centre in all cases. The response increases rapidly if fewer inputs are held at the 

centre voltage as expected. That is if more inputs are connected to Vin1l the 

Euclidean distance increases more rapidly as Vin1 diverges from OV. 
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Figure 5.20. The RBF response in higher dimensionality 

In Fig.5.21, Vin2 is held constant at 1V so that the input vector never matches 

the RBF centre. In this case as fewer inputs are held at the Vin2 voltage the 

minimum response gets closer to centre and the minimum value decreases as 

expected. In Fig.5.20 and 5.21, different symbols show the number of synapses 

connected to the Vin1. 
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Figure 5.21. RBF response with higher dimensionality 
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5.3. Demonstration Problem 

A simple classification problem with two inputs and two outputs was 

considered to illustrate the functionality of the network. A 2-4-2 network (2 inputs - 

4 hidden nodes - 2 outputs) shown in Fig.3.15 was built for this particular problem. 

The centre values are predetermined as cl(-0.4,0.2), c2(-0.2,-0.4), c3(0.2,0.4), and 

c4(0.3,-0.1). It was assumed that class X would cover the centres cl and c4, and class 

Y would cover the centres c2 and c3. The contour voltage was 80 mV and the bias 

voltage using for the opening angle was -2.9V. The simulation results of the network 

designed prove that the network classifies the inputs into correct classes. It is shown 

in Fig.5.22. 
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CHAPTER 

6 

Comparison of Hardware and Software 

Results 

  

In this chapter the hardware simulation results of Conic Section Function 

Network (CSFN) using Cadence design package will be compared with the software 

simulation results obtained from Matlab programme. The previous chapters discussed 

these results widely. The aim of the comparison is to show how far the theoretical 

work matches the practical work. Software simulation results for Iris database has 

been used to implement the network in hardware. 

6.1. Implementing The CSFN For Iris Data 

The CSFN for Iris data needs four inputs, 3 outputs, and different numbers 

of hidden nodes depending on which software simulation results would be used. The 

results for 7 centres have been chosen for the application. The 8 by 4 network 

demonstration circuit, described in section 3.7.4, was used to show the operation of 

the network with real data. By cascading this structure, the circuit have been 

implemented with 7 hidden nodes. Fig.6.1 shows the circuit constructed for Iris data. 

Four inputs, xl, x2, x3, and x4, of first two 8 by 4 networks have been used to 

implement the Iris data inputs. Inputs, x5, were used for biases and the other inputs, 

x6, x7, and x8, were not used in the input layer. Then, the outputs of these networks 

were connected to the another 8 by 4 network to build 7 hidden nodes. 
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Figure 6.1. The network structure for Iris database application 

6.2. Scaling of The Parameters For Hardware 

The weights, centres, biases, and opening angle values obtained from software 

simulation of CSFN for Iris database have been used to implement the synapse in 

hardware. All these parameters were calculated using different scale factors for each. 

The following tables show the parameters obtained by Matlab software simulation. 

wl and w2 refer to the weight values in the hidden layer and the output layer, 

respectively. b/ and b2 are the biases for the hidden and output layer in the same 

way. c/ is the centres for hidden layer, and om is the opening angle for output layer. 
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wl 

w2 

bl 

b2 

cl ll 
-2.8052 

4.3470 

-0.1081 

-0.5414 

3.3714 

-0.7984 

-7.3691 

-0.1940 

-0.2989 

0.6964 

1.6062 

9.8897 

0.9552 

-6.5109 

1.5842 

2.3642 

9.2650 

-2.8185 

-3.2011 

6.217) 

5.1000 

6.0000 

6.3000 

7.2000 

6.1000 

-0.3851 

12.5264 

-0.3968 

-4.0262 

6.9207 

-0.8442 

-9.7964 

0.0550 

-2.9171 

2.8858 

3.5000 

2.2000 

2.3000 

3.6000 

2.8000 

-6.8662 

-3.6557 

-0.1945 

1.931) 

-3.3337 

-0.1846 

24.5165 

22977 

-3.0183 

-4.6025 

1.4000 

5.0000 

4.4000 

6.1000 

4.7000 

-3.1887 

2.4555 

-0.6717 

2.8575 

3.7387 

-2.3681 

20.3077 

4.7750 

-3.9775 

-1.9550 

0.2000 

1.5000 

1.3000 

2.5000 

1.2000 
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-0.0099 

3.9501 

-4.1790 

-1.0721 

3.8867 

-1.0668 

-0.1191 

5.0229 

-5.0017
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6.2000 2.8000 4.8000 1.8000 

6.3000 3.3000 4.7000 1.6000 

om = -1.0961 -1.5318 1.2194 1.5708 1.5693 -1.5638 1.4838 

In hardware design, the positive and negative weights are obtained by 

sweeping the weight input Vw, described in Section 3.5.2, between -2V and -4V. The 

new weight and bias values have been scaled into this range using the ones obtained 

from software. The range for those in software is 

-10 < wl,w2,b1,b2 < 10 

The new range for the weights and biases should be 

-4V < wl,w2,bl,b2 < -2V 

The new weights and biases were obtained as follows. 

wlnew = 0.1 * wl - 3 

-3.2805 

-2.5653 

-3.0108 

-3.0541 

-2.6629 

-3.0798 

-3.7369 

wlnew = -3.0385 

-1.7474 

-3.0397 

-3.4026 

-2.3079 

-3.0844 

-3.9796 

w2new = 0.1 * w2 - 3 

w2new = -3.0194 

-3.0299 

-2.9304 

-2.9945 

-3.2917 

-2.7114 

-3.6866 

-3.3656 

-3.0194 

-2.8069 

-3.3334 

-3.0185 

-0.5483 

-2.7702 

-3.3018 

-3.4603 

-3.3189 

-2.7544 

-3.0672 

-2.7142 

-2.6261 

-3.2368 

-0.9692 

-2.5225 

-3.3978 

-3.1955 
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blnew = 0.1 * bl - 3 

blnew = -3.1606 

-2.0110 

-2.9045 

-3.6511 

-2.8416 

-2.7636 

-2.0735 

b2new = 0.1 * b2 - 3 

b2new = -3.2818 

-3.3201 

-2.3783 

The range for the centres in software is 0 < cl < 8 and it has to be scaled 

into the range -1V <cl <1V_ for hardware. 

clnew cl * 0.25 - 1 

clnew = 0.2750 -0.1250 -0.6500 -0.9500 

0.5000 -0.4500 0.2500 -0.6250 

0.5750 -0.4250 0.1000 -0.6750 

0.8000 -0.1000 0.5250 -0.3750 

0.5250 -0.3000 0.1750 -0.7000 

0.5500 -0.3000 0.2000 -0.5500 

0.5750 -0.1750 0.1750 -0.6000 
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CHAPTER 6 - Comparison of hardware and software results 

The opening angle changes between -n/2 and 1/2 in software. This has to be 

scaled into the range of the input Va, which determines the opening angle as 

described in section 3.3. This range is 

-4.35V < Va<-3V 

The opening angle vector obtained from software was scaled using scaling 

factor as follows 

  

omnew = - om * 0.86 - 3 

omnew = -3.942 -4.3164 -4.048 -4.35 -4.3486 -4.344 -4.275 

The inputs also have to be scaled into the range 

-1V < x1,x2,x3,x4 < 1V 

since the circuit has been designed to operate in this range. Some samples from each 

class of Iris data were scaled and applied to the inputs of the circuit. The output 

currents, I_pp- and I yp, were calculated by simulation using Cadence design 

package for RBF and MLP parts. 

6.3. Hardware And Software Results 

Table 6.1, 6.2, and 6.3 show the pattern results for the three classes, Iris 

Setosa, Iris Versicolor, and Iris Virginica, respectively. Pattern vectors xl = [ 5.1, 

3.5, 1.4, 0.2 ] from the first class, Iris Setosa, x2 = [ 7.0, 3.2, 4.7, 1.4 ] from the 

second class, Iris Versicolor, and x3 = [ 6.3, 3.3, 6.0, 2.5 | from the third class, Iris 

Virginica were chosen. The synapse currents, I_ yp and I_p-, summed over all inputs 

are given below identified for each of the seven nodes in the hidden layer. 
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IC1(2) 51.946n 

IC1(3) 33.955n 

IC1(4) 117.146n 

1C2(1) 40.351n 

1C2(2) 46.086n 

1C2(3) 18.023n 

Table 6.1. Results for Iris Setosa 

  
    

  

   x2 = [7.0;3.234.7;1.4] + [0.75V;-0.2V;0.175V;-0. ae 

ae ee 
IC1(1) 31.998n 86.56 

IC1(2) 8.956n 25.15 

IC1(3) 8.175n 44.43u 

IC1(4) 12.635n 50.3 

1C2(1) 8.061n 36.97u 

1C2(2) 8.324n 

1C2(3) 9.355n 

Table 6.2. Results for Iris Versicolor 
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=> . : 30.5V 5-0. 

Raga 
IC1(1) 92.309n 99.18. 

IC1(2) 9.274n 29.77 

IC1(3) 10.953n 44.48u 

IC1(4) 9.163n 42.06, 

1C2(1) 9.788n 38.52u 

1C2(2) 8.713n 46.2711 

1C2(3) 16.344n -7.658 

Table 6.3. Results for Iris Virginica 
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Figure 6.2. Comparison of software (MATLAB) and _ hardware 

(CADENCE) results for MLP unit 
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Figure 6.3. Comparison of software (MATLAB) and _ hardware 
(CADENCE) results for RBF unit. 

The dot product for MLP and the Euclidean distance for RBF were then 

calculated for each three patterns using Matlab programme. The results were, then, 

compared with the hardware. Fig.6.2 and 6.3 show the comparison of the hardware 

results with the software results. In these figures x-axis refers to the hardware results 

from the Cadence and y-axis is the software results from MATLAB. Fig.6.2 shows 

the MLP type of outputs and Fig.6.3 shows the RBF type of outputs. 

6.4. Discussion 

The comparison of the hardware simulation results obtained from Cadence 

with the software simulation results using Matlab programme shows good agreement 

between practical and theoretical results. 

The MLP type outputs are linearly related to the MATLAB results for the 

three classes except for one or two rogue results. 
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The RBF type outputs had a nonlinear relationship to the MATLAB results 

whereas a linear dependence was expected. This problem was addressed by 

redesigning the circuit so that RBF current increased. 

An offset problem was discovered while the outputs of the neurons were 

measured. RBF, MLP, and CSF type of outputs had different offset voltages. 

The results obtained in this chapter gave ideas for improvements to the chip 

to be designed. Some transistor parameters and bias voltage values have been 

changed to increase of the RBF type of output current in the synapse circuit. A new 

neuron circuit also has been designed to eliminate the offset problem confronted at 

the RBF, MLP, and CSF type of outputs. 

120



CHAPTER 

J 

Chip Design 

  

The Conic Section Function network will require less silicon area for 

a fixed hardware for different applications than the standard RBF 

and MLP networks because fewer hidden nodes are required. This 

feature gives greater flexibility in terms of VLSI implementations. 

During this work two chips have been designed and fabricated using 

the Mietec 2.4um Process under the Europractice agreement. 

7.1. Synaptic Circuit 

The first chip to be designed was a small test chip to demonstrate the 

functionality of an RBF type synaptic circuit. The chip has been designed using the 

network with 8 synapses given in Section 3.8.2. This synaptic circuit computes the 

Manhattan distance between the input and centre vectors as described in Section 3.8. 

The exclusive OR gate design given in Section 3.8.1 and standard current mirrors 

have been used to build the circuit. The current mirrors provide a summation of the 

output of the synapses in order to connect to the neuron. Fig.7.1 shows the schematic 

of the network. Fig.7.2 shows the mask layout of the network and finally, Fig.7.3 

shows the mask layout of the chip. 
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Figure 7.1. The schematic of the synaptic circuit 
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Figure 7.2. Mask layout of the synaptic circuit 

  
Figure 7.3. Chip mask layout 
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7.2. The CSFN Chip Design 

The complete chip design contains the various building blocks. This section 

details the design of these individual blocks through to layout with Cadence design 

package. 

7.2.1. The synapse 

The synapse was designed to achieve the weighted and the centred inputs to 

the neuron as described in Section 3.5.3. It consists of both RBF and MLP units with 

the capability of computing the Euclidean distance and the dot product. It also needs 

the weight and the centre storage cells. To do this, the transistors which are effective 

for the storing the weights and the centres were taken out as shown in Fig.7.4 and 

replaced with EEPROM type cells. This allows to program the weight or centre 

values as required. 

RBF_NEG 

  

Figure 7.4. The synapse circuit 
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Fig.7.5 shows the synapse mask layout without EEPROM programming cells. 

Fig. 7.6 shows the EEPROM cells for the weight and centre storage. One EEPROM 

cell for the weight storage needs only one transistor, whereas, it needs to place three 

transistors in the synapse circuit for the centre storage. 

N N N N N N N N N N 

ee 
BY/ LM 

Lh WLLL 

      a 
ELL ELL     

Figure 7.6. EEPROM cell structure for weight and centre storage 
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7.2.2. The new neuron circuit 

A new neuron circuit shown in Fig.7.7 was designed since there has been 

some problems with the old one described in Section 3.6 when a real data (Iris 

database) has been used. The results of the comparison between hardware and 

software simulations showed that the old neuron circuit is not capable to classify the 

data correctly because of the mismatches on the offset values of RBF, MLP, and CSF 

type of outputs even though it can provide the decision regions appropriately. 

  

Figure 7.7. New neuron circuit 

Some modifications in neuron circuit were made to eliminate the offset 

problem. The simplified equation given by Eq.3.6 was changed to form an exact 

match to the general propagation rule of CSFN (in Eq.2.1). The new simplified 

equation is expressed by 

1 (7.1) our * V, mip ~ 2 V, RBF 

where Vp refers to the dot product for MLP and Vp», refers to the Euclidean 
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distance for RBF. a is a parameter to determine the opening angle for CSF. a is a 

function of bias voltage, Va, as in old neuron circuit. 

The differential amplifier required for adjusting the input and output range of 

the neuron in old circuit was not used in this new one. To adjust the ranges in new 

circuit, some of the bias voltage values have been changed. The modifications in the 

neuron circuit allow relatively small structure to implement. Fig.7.8. shows the mask 

layout of the neuron. 
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Figure 7.9. EEPROM cell for opening angle 
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The transistor connected to the bias voltage, Va, was taken out from the 

neuron circuit and replaced with an EEPROM programming cell as done for some 

transistors in synapse circuit. By doing this, it is possible to program and to store the 

opening angle without many external connections. The EEPROM cell for the storage 

of the opening angle is shown in Fig.7.9. 

7.2.3. Row and column selectors 

The function of these blocks is to program the required EEPROM cells used 

to store the weights and the centres in synapse circuit and the opening angle values 

in neuron circuit. To achieve this each of the output lines must be capable of 

switching between 0 and 5V independently depending upon if the EEPROM cells are 

being programmed or not. 

Two decoder circuits have been designed for row selection and column 

selection using a simple inverter and an AND gate circuits shown in Fig.7.10 and 

Fig.7.12. The mask layouts of the inverter and the AND gate are shown in Fig.7.11 

and Fig.7.13. 

    

  

       
Figure 7.10. Inverter schematic Figure 7.11. Inverter mask layout 
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row 

AND_out 

  
Figure 7.12. AND gate 
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Figure 7.13. AND gate mask layout 
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The circuit schematics of the column selector and the row selector are 

illustrated in Fig.7.14 and 7.15. Fig.7.16 shows the mask layout of the row selector. 

CsA GS2Z 

  

C2 
  

  Gs 

C4 

Figure 7.14. The column selector 

C/W 

rOW   

  a 

Figure 7.15. The row selector 
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Figure 7.16. Row selector mask layout 

7.2.4. The complete chip design 

The complete network designed with 4 by 4 synapse array and four neurons. 

It contains row and column selectors and EEPROM cells described in this section in 

order to program and store the weight, centre, and opening angles. It allows to make 

less external connections to the chip. It was designed full custom. No standard cell 

from Mietec Design Kit has been used in the chip design. Fig.7.17 shows the floor 

plan of the chip. Fig.7.18 shows the mask layout of the complete CSFN. The top 

level schematic containing all input and output pins to the network is shown in 

Fig.7.19. This schematic is used by the automatic place and route software to obtain 

the final mask layout of the chip illustrated in Fig.7.20. 
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COLUMN SELECTOR 
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Figure 7.17. The floor plan of the chip 
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Figure 7.18. The mask layout of CSFN 
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Analog Power Supply 

< 

Figure 7.19. The top level schematic of the CSFN 
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CHAPTER 

8 

Chip Results 

The real performance of the neural network building blocks can be proven in 

actual environment and when they are built into a complete neural network. Even 

though the blocks work perfectly in theory, especially when tested as single circuits, 

unexpected behaviour can usually be observed when a circuit is moved from the test 

environment to its real environment of operation. This chapter covers the actual 

results for the two chips described in Chapter 7 that have been fabricated using the 

Mietec 2.4 um process under the Europractice agreement. 

8.1. Synaptic Circuit With Manhattan Distance Function 

The reason for building a synaptic circuit was simply to demonstrate the 

behaviour of the synapses when they are summed in order to connect to the neuron. 

The first chip described in Section 7.1 has eight RBF type of synapses providing a 

Manhattan distance function and standard current mirrors to provide a summation 

circuit for these synapses. The alternative synapse design given in Section 3.8 has 

been used to built the synaptic circuit. The choice of Manhattan distance instead of 

Euclidean was to demonstrate the behaviour of a different function for an RBF unit 

because the Euclidean distance function has been already used in the design of the 

second chip. 
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8.1.1. Testing of the first chip 

Two different resistors, 10kQ and 100kQ have been connected to the output 

of the synaptic circuit shown in Fig.7.1. All the inputs were connected to the ground 

at the beginning. Then, at each step, one more input was set to the logic level 1. 

Finally, all eight inputs were logic 1. The summation of the output currents of the 

synapses have been measured at every step. Meanwhile, the circuit has been 

simulated using Cadence design package with the same parameters. The experimental 

results were, then, compared with the simulation results obtained from Cadence. 
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Figure 8.1. Output current of the synaptic circuit for R=100kQ 

Fig.8.1 shows the summed output current of the synaptic circuit when the 

output resistor value is 100kQ. Fig.8.2. shows the measurement of the same output 

current when the output resistor is 10kQ. The x axis in figures refers to the number 

of inputs connected to the "high" logic level. As can be seen from Fig.8.1 and 8.2, 

the simulation results and the experimental results of the chip are very close. To see 
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CHAPTER 8 - Chip results 

if there is any difference from chip to chip, 8 chips have been tested and the results 

were in good agreement to within +5% for all chips. 
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Figure 8.2. Output current of the synaptic circuit for R=10kQ 

8.2. Results of The CSFN Chip 

The Conic Section Function network (CSFN) chip with 4 by 4 synapse array 

and four neurons was tested to see the performance of the network in real 

environment. First of all, the RBF and MLP type of synapse voltages have been 

measured with various centre and weight values. This was done by programming the 

EEPROM cells using for the centre and weight storage. To charge a programming 

device the injector is pulsed between OV and S5V and the top plate of the polyl / 

poly2 capacitor is held approximately at 20V. The pulse width is lms. The row and 

column select inputs are used to select the programming cell that would be 

programmed. 
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The Advantech PCL-818HG multifunction data acquisition card was used to 

obtain the pulses to programme the EEPROM devices and the inputs to select the 

rows and columns for the chips fabricated during this work. The card has 16 digital 

outputs, 16 digital inputs, 16 analog inputs and one analog output. The card was 

programmed by using a custom C code (see Appendix 5) which used the library 

routines provided by the manufacturer. 

To measure the output of the synapses, one of the inputs was swept from -1V 

to 1V at 1kHz frequency (the circuit was very stable to changes in the frequency) and 

other three inputs were connected to the ground. For the RBF output, the 

programming cell storing the centre value was programmed during 1000 

programming pulses at first, then it was programmed for another 2000 programming 

pulses in two steps. Fig.8.3. shows the RBF type output obtained from the chip. The 

centre point shifts at every programming step as can be seen from this figure. Fig.8.4. 

shows how the RBF centre value changes with the programming cycles. 
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Figure 8.3. RBF type output 
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Figure 8.4. Variation of the centre point 

The same procedure was applied to obtain MLP type of output with positive 

and negative weights. The EEPROM cell storing the weight values was programmed 

during 1000, 2500, and 3500 programming pulses. Fig.8.5 shows the MLP type 
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Figure 8.5. MLP type output 

140



CHAPTER 8 - Chip results 

8.2.1. Neuron output 

The final testing step of the chip was to obtain results for the output of the 

neurons. At this point of the experiment, some problems were discovered at the 

setting of the opening angle values in the network. It was difficult to programme 

opening angle so that the outputs could operate as RBF, MLP, and CSF. Therefore, 

another strategy has been used to show if the network operates functionally instead 

of programming the EEPROMs. The bias voltage, Vb, which affects the output was 

changed between -3V to -2.4V and output of the neuron was measured to see if RBF, 

MLP, and CSF type of outputs can be obtained from the neuron. Figure 8.6 shows 

the output of the neuron by varying the bias voltage. The results of the neuron shows 

the requested type of decision boundaries can be obtained by using this Conic Section 

Function network although it failed to programme opening angle. 
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Figure 8.6. Neuron output 
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8.3. Discussion 

Unexpected behaviour can be expected when a neural network is tested in the 

actual environment because of the process variations. The actual results of the first 

chip were very close to the results in the simulation environment. However, there 

were some problems encountered with the second chip. The EEPROM programming 

cells using for the storage of the parameters were not quite reliable to obtain 

requested storage values for the centres, weights, and especially for the opening 

angle. These parameters were not easily programmable. It is always difficult to know 

the value of the EEPROMs at the beginning. But the results proved that the Conic 

Section Function network operates as expected functionally. On-chip learning may 

be achieved with a better programming cell design. 
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Conclusions 

The aim of this thesis was to improve a training algorithm for the 

back propagation learning rule using conic section functions in 

software and to implement an analogue VLSI hardware for Conic 

Section Function neural networks. This chapter summarizes the results 

of the software and hardware simulations and experimental results of 

the CSFN implemented in analogue VLSI hardware. Some suggestions 

are given about the future improvements of the work. 

9.1. Software Results 

A new training algorithm to improve the performance of back propagation 

using conic section functions is proposed. The Conic Section Function Network 

(CSFN) introduced in this thesis uses a new propagation rule which consists of both 

MLP and RBF propagation rules. This network converts the open decision boundaries 

in an MLP to closed ones in an RBF, or vice versa. It reduces the number of centres 

needed for an RBF and the number of hidden nodes for an MLP. This is important 

since this work is also aimed at designing a VLSI hardware neural network. 

Furthermore, it converges to a determined error goal at lower training epochs than 

a standard MLP. 

Two training methods were improved for CSFN. Both methods contain 

initialization and back propagation phases. In the initialization phase, the weights, the 
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centres, and the opening angle parameters are set. The centres are placed with an 

Orthogonal Least Square Algorithm. In the first method all parameters are updated 

in the same training epoch in the back propagation phase. In the second method, the 

weights are updated for a predetermined number of training epochs, and then, the 

opening angle is updated in a different training epoch, Finally, the centres are 

updated (if required). 

Simulations were run using two different databases: the Iris plant database and 

the contact lens fitting database. The performances of a standard MLP trained back 

propagation, a fast back propagation using adapted learning rates, a standard RBFN, 

and the proposed algorithm are compared. Databases for Iris plant classification and 

for contact lens fitting problem were used to compare the algorithms. The results 

show that the new training algorithm is much better than the others in most cases, in 

terms of not only training epochs but also the number of hidden units and centres. 

When iris plant database is used, for 6 centres, standard MLP needs 4000 to 

30000 epochs while second algorithm needs only 561 epochs. The first algorithm is 

also better with 2950 epochs for the same number of centres. MLP trained with fast 

back propagation gives some better results than the first algorithm, but none better 

than the second. It requires minimum 1000 epochs and sometimes does not converge 

depending on a random start while CSFN is not dependent on random initialization. 

CSFN needs fewer centres than RBF. It requires only 6 centres to reach the same 

error goal while RBF needs 32 centres. The second algorithm converges at only 363 

training epochs for 8 centres. 

The effect of the learning rate was investigated using lens fitting database. 

The results shown that the convergence of the network depends on the learning rate 

as well as the number of centres chosen. For this special problem, the CSFN again 

gives much better results than the others. The performance of the standard back 

propagation and adaptive back propagation is quite unstable and the network needs 

longer training times to classify data correctly. The standard RBF needs at least 7 
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centres to be placed to solve the problem, whereas, the CSFN network can converge 

even with 4 centres depending on the learning rate. 

9.2. Hardware Simulation Results 

A novel analogue VLSI hardware design for a Conic Section Function neural 

network which allows the use of RBF and MLP propagation rules on a single chip, 

depending on the data distribution of a given application, is proposed. The network 

designed can operate in either MLP or RBF modes. An intermediate behaviour is also 

reported which is analogous to the CSFN and has open and closed decision regions. 

This novel approach will give a greater flexibility for matching fixed hardware to 

applications in areas such as robotics, character recognition, time series prediction and 

biomedical signal analysis. 

| Several circuits have been designed and simulated to show the performance 

of the CSFN in hardware. The cdsSpice simulator in Cadence design package was 

used to simulate the circuits. The results of RBF synapse with variable basis function 

centres and of MLP synapse with variable weight values have been obtained. Also, 

different decision boundaries were obtained using a circuit with two synapses and one 

neuron; circles for RBF, straight lines for MLP, and ellipses or parabolas for CSFN. 

This shows that the CSFN designed during this work is able to switch the neurons 

between RBF type and MLP type through CSF by varying only a single parameter, 

the opening angle. The simulation results of the network with eight synapses show 

that the CSFN can be with in higher dimensionality. 

9.3. Software And Hardware Simulations 

The software and hardware simulation results were compared to show if the 

theoretical work matches with the practical one. The parameters obtained from 
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software results using Iris plant data have been used in hardware. The comparison 

shows that the matching is satisfactory. 

9.4. Experimental Results 

Experimental results of the first small test chip shown that the experimental 

results match with the simulation results. The actual results of the CSFN chip 

designed show that the CSFN operates as expected functionally, i.e. it is possible to 

obtain different decision boundaries by varying some voltage values. However, 

weight, centre and opening angle storage need to be reconsidered and improved. 

9.5. Further Work 

@ Demonstration applications - The training algorithms need to be simulated 

for the larger database. The hardware demonstration circuits need to be tested and 

simulated with real database in order to determine the system performance. 

@ Software improvement - The dependency of the learning rate could be 

improved by using an adaptive learning algorithm for CSFN. Faster training times 

could be achieved by network pruning and data compression techniques. 

@ Hardware improvement - The problems with the storage of the parameters 

could be eliminated by using standard EEPROM type cells to store the weights, 

centres, and the opening angle. A larger network needs to be designed and tested in 

order to use in real world applications, for example, 80 inputs and 16 hidden nodes 

for character recognition of facsimile output. 
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Appendix 

Iris Plant Database 

  

1. Sources: 

(a) Creator: R.A. Fisher 

(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) 

(c) Date: July, 1988 

2. Past Usage: 

1 Fisher,R.A. "The use of multiple measurements in taxonomic problems" 

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions 

to Mathematical Statistics" (John Wiley, NY, 1950). 

. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis. 

(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218. 

. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System 

Structure and Classification Rule for Recognition in Partially Exposed 

Environments". [EEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. PAMI-2, No. 1, 67-71. 

-- Results: Very low misclassification rates (0% for the setosa class) 

. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". [EEE 

Transactions on Information Theory, May 1972, 431-433. 

-- Results: Very low misclassification rates again 

. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al’s AUTOCLASS II 
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conceptual clustering system finds 3 classes in the data. 

3. Relevant Information: 

--- This is perhaps the best known database to be found in the pattern 

recognition literature. Fisher’s paper is a classic in the field 

and is referenced frequently to this day. (See Duda & Hart, for 

example.) The data set contains 3 classes of 50 instances each, 

where each class refers to a type of iris plant. One class is 

linearly separable from the other 2; the latter are NOT linearly 

separable from each other. This is an exceedingly simple domain. 

--- Predicted attribute: class of iris plant. 

4. Number of Instances: 150 (50 in each of three classes) 

5. Number of Attributes: 4 numeric, predictive attributes and the class 

6. Attribute Information: 

1. sepal length in cm 

2. sepal width in cm 

3. petal length in cm 

4. petal width in cm 

5. class: -- Iris Setosa 

-- Iris Versicolour 

-- Iris Virginica 

7. Missing Attribute Values: None 

8.Summary Statistics: 

Min Max Mean SD _ Class Correlation 

sepal length: 4.3 7.9 5.84 0.83 0.7826 

sepal width : 2.0 4.4 3.05 0.43 -0.4194 

petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) 

petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) 
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9. Class Distribution: 33.3% for each of 3 classes. 

10. Data set: 

5.1,3.5,1.4,0.2,Iris-setosa 

4.9,3.0,1.4,0.2,Iris-setosa 

4.7,3.2,1.3,0.2,Iris-setosa 

4.6,3.1,1.5,0.2,Iris-setosa 

5.0,3.6,1.4,0.2,Iris-setosa 

5.4,3.9,1.7,0.4,Iris-setosa 

4.6,3.4,1.4,0.3,Iris-setosa 

5.0,3.4,1.5,0.2,Iris-setosa 

4.4,2.9,1.4,0.2,Iris-setosa 

4.9,3.1,1.5,0.1,Iris-setosa 

5.4,3.7,1.5,0.2,Iris-setosa 

4.8,3.4,1.6,0.2,Iris-setosa 

4.8,3.0,1.4,0.1,Iris-setosa 

4.3,3.0,1.1,0.1,Iris-setosa 

5.8,4.0,1.2,0.2,Iris-setosa 

5.7,4.4,1.5,0.4, Iris-setosa 

5.4,3.9,1.3,0.4,Iris-setosa 

5.1,3.5,1.4,0.3,Iris-setosa 

5.7,3.8,1.7,0.3,Iris-setosa 

5.1,3.8,1.5,0.3,Iris-setosa 

5.4,3.4,1.7,0.2,Iris-setosa 

5.1,3.7,1.5,0.4,Iris-setosa 

4.6,3.6,1.0,0.2,Iris-setosa 

5.1,3.3,1.7,0.5,Iris-setosa 

4.8,3.4,1.9,0.2,Iris-setosa 

5.0,3.0,1.6,0.2,Iris-setosa 

5.0,3.4,1.6,0.4,Iris-setosa 

5.2,3.5,1.5,0.2,Iris-setosa 

5.2,3.4,1.4,0.2,Iris-setosa 

4.7,3.2,1.6,0.2,Iris-setosa 

4.8,3.1,1.6,0.2,Iris-setosa 

5.4,3.4,1.5,0.4,Iris-setosa 

5.2,4.1,1.5,0.1,Iris-setosa 

5.5,4.2,1.4,0.2,Iris-setosa 

4.9,3.1,1.5,0.1,Lris-setosa 

5.0,3.2,1.2,0.2,Iris-setosa 

5.5,3.5,1.3,0.2,Iris-setosa 
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4.9,3.1,1.5,0.1,Iris-setosa 

4.4,3.0,1.3,0.2,Iris-setosa 

5.1,3.4,1.5,0.2,Iris-setosa 

5.0,3.5,1.3,0.3,Iris-setosa 

4.5,2.3,1.3,0.3,Iris-setosa 

4.4,3.2,1.3,0.2,Iris-setosa 

5.0,3.5,1.6,0.6,Iris-setosa 

5.1,3.8,1.9,0.4, Iris-setosa 

4.8,3.0,1.4,0.3,Iris-setosa 

5.1,3.8,1.6,0.2,Iris-setosa 

4.6,3.2,1.4,0.2,Iris-setosa 

5.3,3.7,1.5,0.2,Iris-setosa 

5.0,3.3,1.4,0.2,Iris-setosa 

7.0,3.2,4.7,1.4,Iris-versicolor 

6.4,3.2,4.5,1.5,Iris-versicolor 

6.9,3.1,4.9,1.5,Iris-versicolor 

5.5,2.3,4.0,1.3,Iris-versicolor 

6.5,2.8,4.6,1.5,Iris-versicolor 

5.7,2.8,4.5,1.3,Iris-versicolor 

6.3,3.3,4.7,1.6,Iris-versicolor 

4.9,2.4,3.3,1.0,Iris-versicolor 

6.6,2.9,4.6,1.3,Iris-versicolor 

5.2,2.7,3.9,1.4,Iris-versicolor 

5.0,2.0,3.5,1.0,Iris-versicolor 

5.9,3.0,4.2,1.5,Iris-versicolor 

6.0,2.2,4.0,1.0,Iris-versicolor 

6.1,2.9,4.7,1.4,Iris-versicolor 

5.6,2.9,3.6,1.3,Iris-versicolor 

6.7,3.1,4.4,1.4,Iris-versicolor 

5.6,3.0,4.5,1.5,Iris-versicolor 

5.8,2.7,4.1,1.0,Iris-versicolor 

6.2,2.2,4.5,1.5,Iris-versicolor 

5.6,2.5,3.9,1.1,Iris-versicolor 

5.9,3.2,4.8,1.8,Iris-versicolor 

6.1,2.8,4.0,1.3,Iris-versicolor 

6.3,2.5,4.9,1.5,Iris-versicolor 

6.1,2.8,4.7,1.2,Iris-versicolor 

6.4,2.9,4.3,1.3,Iris-versicolor 

6.6,3.0,4.4,1.4,Iris-versicolor 

6.8,2.8,4.8,1.4,Iris-versicolor 

6.7,3.0,5.0,1.7,Iris-versicolor 
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6.0,2.9,4.5,1.5,Iris-versicolor 

5.7,2.6,3.5,1.0,Iris-versicolor 

5.5,2.4,3.8,1.1,Iris-versicolor 

5.5,2.4,3.7,1.0,Iris-versicolor 

5.8,2.7,3.9,1.2,Iris-versicolor 

6.0,2.7,5.1,1.6,Iris-versicolor 

5.4,3.0,4.5,1.5,Iris-versicolor 

6.0,3.4,4.5,1.6,Iris-versicolor 

6.7,3.1,4.7,1.5,Iris-versicolor 

6.3,2.3,4.4,1.3,Iris-versicolor 

5.6,3.0,4.1,1.3,Iris-versicolor 

5.5,2.5,4.0,1.3,Iris-versicolor 

5.5,2.6,4.4,1.2,Iris-versicolor 

6.1,3.0,4.6,1.4,Iris-versicolor 

5.8,2.6,4.0,1.2,Iris-versicolor 

5.0,2.3,3.3,1.0,Iris-versicolor 

5.6,2.7,4.2,1.3,Iris-versicolor 

5.7,3.0,4.2,1.2,Iris-versicolor 

5.7,2.9,4.2,1.3,Iris-versicolor 

6.2,2.9,4.3,1.3,Iris-versicolor 

5.1,2.5,3.0,1.1,Iris-versicolor 

5.7,2.8,4.1,1.3,Iris-versicolor 

6.3,3.3,6.0,2.5,Iris-virginica 

5.8,2.7,5.1,1.9,Iris-virginica 

7.1,3.0,5.9,2.1,Iris-virginica 

6.3,2.9,5.6,1.8,Iris-virginica 

6.5,3.0,5.8,2.2,Iris-virginica 

7.6,3.0,6.6,2.1,Iris-virginica 

4.9,2.5,4.5,1.7,Iris-virginica 

7.3,2.9,6.3,1.8,Iris-virginica 

6.7,2.5,5.8,1.8,Iris-virginica 

7.2,3.6,6.1,2.5,Iris-virginica 

6.5,3.2,5.1,2.0,Iris-virginica 

6.4,2.7,5.3,1.9,Iris-virginica 

6.8,3.0,5.5,2.1,Iris-virginica 

5.7,2.5,5.0,2.0, Iris-virginica 

5.8,2.8,5.1,2.4,Iris-virginica 

6.4,3.2,5.3,2.3,Iris-virginica 

6.5,3.0,5.5,1.8,Iris-virginica 

7.7,3.8,6.7,2.2,Iris-virginica 

7.7,2.6,6.9,2.3,lris-virginica 
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6.0,2.2,5.0,1.5,Iris-virginica 

6.9,3.2,5.7,2.3,Iris-virginica 

5.6,2.8,4.9,2.0,Iris-virginica 

7.7,2.8,6.7,2.0,Iris-virginica 

6.3,2.7,4.9, 1.8, Iris-virginica 

6.7,3.3,5.7,2.1,Iris-virginica 

7.2,3.2,6.0,1.8,Iris-virginica 

6.2,2.8,4.8,1.8,Iris-virginica 

6.1,3.0,4.9,1.8,Iris-virginica 

6.4,2.8,5.6,2.1,Iris-virginica 

7.2,3.0,5.8,1.6,Iris-virginica 

7.4,2.8,6.1,1.9,Iris-virginica 

7.9,3.8,6.4,2.0,Iris-virginica 

6.4,2.8,5.6,2.2,Iris-virginica 

6.3,2.8,5.1,1.5,Iris-virginica 

6.1,2.6,5.6,1.4,Iris-virginica 

7.7,3.0,6.1,2.3,Iris-virginica 

6.3,3.4,5.6,2.4, Iris-virginica 

6.4,3.1,5.5,1.8,Iris-virginica 

6.0,3.0,4.8,1.8,Iris-virginica 

6.9,3.1,5.4,2.1,Iris-virginica 

6.7,3.1,5.6,2.4,Iris-virginica 

6.9,3.1,5.1,2.3,Iris-virginica 

5.8,2.7,5.1,1.9,Iris-virginica 

6.8,3.2,5.9,2.3, Iris-virginica 

6.7,3.3,5.7,2.5,Iris-virginica 

6.7,3.0,5.2,2.3,Iris-virginica 

6.3,2.5,5.0,1.9,Iris-virginica 

6.5,3.0,5.2,2.0,Iris-virginica 

6.2,3.4,5.4,2.3,Iris-virginica 

5.9,3.0,5.1,1.8,Iris-virginica 
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2 

Database for fitting contact lenses 

REE 7 Oa a a a a I RSI Pie tie i BRS 

1. Sources: 

(a) Cendrowska, J. "PRISM: An algorithm for inducing modular rules", 

International Journal of Man-Machine Studies, 1987, 27, 349-370 

(b) Donor: Benoit Julien (Julien@ce.cmu.edu) 

(c) Date: 1 August 1990 

2. Past Usage: 

1. See above. 

2. Witten, I. H. & MacDonald, B. A. (1988). Using concept learning for 

knowledge acquisition. International Journal of Man-Machine Studies, 27, (pp. 

349-370). 

Notes: This database is complete (all possible combinations of attribute-value pairs 

are represented). Each instance is complete and correct. 9 rules cover the 

training set. 

3. Relevant Information: 

The examples are complete and noise free. The examples highly simplified the 

problem. The attributes do not fully describe all the factors affecting the decision as 

to which type, if any, to fit. 

4. Number of Instances: 24 

5. Number of Attributes: 4 (all nominal) 
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6. 

Ts 

8. 

2, 

Attribute Information: 

-- 3 Classes 

1 : The patient should be fitted with hard contact lenses, 

2 : The patient should be fitted with soft contact lenses, 

3 : The patient should not be fitted with contact lenses. 

1. Age of the patient: (1) young, (2) pre-presbyopic, (3) presbyopic 

2. Spectacle prescription: (1) myope, (2) hypermetrope 

3. Astigmatic: (1) no, (2) yes 

4. Tear production rate: (1) reduced, (2) normal 

Number of Missing Attribute Values: 0 

Class Distribution: 

1. hard contact lenses: 4 

2. soft contact lenses: 5 

3. no contact lenses: 15 

Data set: The first four columns refer to attributes and the last column refers to 

the type of class. 

S
O
 

6
0
 

O
R
 

O
N
 

G
h
 

er
” 

G
O
 

t
O
:
 

et
 

=
 

—
>
 

—
 

No
 

—_ &
 

PP eS 

T, bale ee 

ei oh 

Peslguge Di) 

La 

1 eh 2 ce 

We2te 8 

Pe Or 

2s oe 

Coot ekg 

Be De WSS 

ook et 

165



Appendix 2 - Database For Fitting Contact Lenses 

Po he Zed TY 3 

1a Loe 2 

IS i QAg as 

1687 22 aes 

Pees aok Te bs 

PSeecS? ble 2 yg 

DS 8 e238 

20 ee > aera od 

21 Baek eS 

Mb fee ae oe 

Zoro ek 3 

eee Ot Oe a hes 

166



  

Appendix 

3 

Conic Section Function Neural Network 

Training Program I 

  

OG I CR ICI CCI CII IG I CI IC IC CA A CG CR CR RO CR CI I ROI CR Kk 2 2k ok 

% CONIC SECTION FUNCTION NETWORK TRAINING PROGRAM I (in MATLAB code) 
% This program uses the first training algorithm. It places the centres using 
% orthogonal least square algorithm, updates weights, centres, and opening angle. 
% The program also tests the network. 
Oe 2 2 2k 2 ke 2k 2 22 2 2A 2 2 2 2 2 2 2 2 RR RR A 2k 2A 2k 2k 2k ok 2k 2k 2k ko 2 ok ok 2k ok ok 

% 
% cl - Matrix of centre vectors. 

% p - Matrix of input vectors. 

% wl - Weight matrix of hidden layer. 
% om - Opening angle vector. 

% bl - Bias vector of hidden layer. 
% w2 - Weight matrix of output layer. 
% b2 - Bias vector of output layer. 
% al - Outputs of the hidden layer. 
% a2 - Outputs of the second layer. 

% 

function y = dist(c,p) 

% DIST Euclidean distances between the vectors 

[s,r] = size(c); 

[r2,q] = size(p); 
if (r ~= r2), error? Matrix sizes do not match’), end 

y = zeros(s,q); 

if r == 

for i=1:s 

= C(i,:)’ *ones(1,q); 
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y(i,:) = abs(x-p); 
end 

else 

for i=1:s 

x = c(i,:)’*ones(1,q); 

y(i,:) = sum((x-p).”2) .” 0.5; 

end 

end 

function y = dotp(cl,p,w1) 

% DOTP Dot product between vectors. 

[s.r] = size(cl); 

[12,q] = size(p); 
ql = abs(s-q); 
y = zeros(s,q); 

ifr == 1 

for i=1:s 

= cl(i,:)’*ones(1,q); 

y(i,:) = abs(x-p); 
end 

else 

for i=l:q 

for k=1:s 

x = cl(k,:)’*ones(1,q); 

pn = (x-p); 
Z = pn(:,i); 

n = wl(k,:); 

y(k,i) = sum(n.*z’); 

end 

end 

end 

function y = consec(cl,p,wl,om) 

% CONSEC Design conic section function network 

if nargin < 1 , error(’Not enough input arguments’),end 
[s,r] = size(cl); 

[12,q] = size(p); 
if (r~=r2) , error(’ Matrix sizes do not match.’),end 

y = zeros(s,q); 

a = cos(om); 

b = dist(cl,p); 

for i=1:q 

x(i,:) = a.*b(:,1)’; 

end 

y = dotp(cl,p,wl) - x’; 
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function [al,a2] = simcon(cl,p,w1,om,b1,w2,b2) 

% SIMCON Simulate conic section function network. 

if nargin < 5, error’ Not enough input arguments’),end 

if nargout <= | 

al = logsig(w2*logsig(consec(cl,p,wl,om),b1),b2); 

else 

al = logsig(consec(cl,p,w1,om),b1); 

a2 = logsig(w2*al,b2); 

end 

% 246 ee 2 2 ee 2 2 2g ig 2 2 2g 2 2 2 2k fe 2 2 fe 2 2k 2 2 2 2k 2 2k fe 2 kk 2 ke 2 2 2 22 2 2 2 2 2 2 2 2 2 2g 2 2 2g OK kK 2K 2 KOK 

% MAIN PROGRAM 
% Dye fe 2 2k fe ie 2 2k fe 2 2k 2c 2c 2k 2 2g 2k fe 2c 2k fe 2 2k 2 2k se 2 2k 2 2k 2 2 2 2 ke 2 2 2 2 2 2 2 iE 2 2 2 2 a 2 2 2K 2 ok ok ok 

figure(gcf) 

setfsize(350,350); 

% Read training data from the file 

cla reset 

input = fopen(’matlab/input.dat’,’r’); 

p = fscanf(input,’%f\n’,[4,120]); 

fclose(input); 

output = fopen(’ matlab/output.dat’,’r’); 

t = fscanf(output,’%f\n’,[3,120]); 

fclose(output); 

% DESIGN NETWORK 

echo on 

df= 10; % frequency of progress displays (in neurons). 

me = 100; % maximum number of neurons. 

eg = 2.5; % sum-squared error goal. 

sc = 1;  % spread constant radial basis functions. 

echo off 

tp = [df me eg sc]; 

% PLOTTING FLAG 

[r,q] = size(p), 
[s2,q] = size(t); 
plottype = max(r,s2) == 1; 

% RADIAL BASIS LAYER OUTPUTS WITH ORTHOGONAL LEAST SQUARES ALGORITHM 

b = sqrt(-log(.5))/tp(4); 

P = logsig(dist(p’,p)*b); 

PP = sum(P.*P)’; 

d=t; 

dd = sum(d.*d)’; 
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% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 

Qe (Ped): 2) 7/3(dde*2PP’ ); 

% PICK VECTOR WITH MOST "ERROR" 

pick = nnfmc(e); 

used = []; 

left = 1:q; 

C = P(:,pick); 

P(:,pick) = []; PP(pick,:) = []; 
e(:,pick) = []; 
used = [used left(pick)]; 

left(pick) = []; 

% CALCULATE ACTUAL ERROR 

cl = p(-,used)’; 

sl=cl; 

[S,Q] = size(s1); 

if max(S,Q) > 1, sl = Q; end 

x = ones(s1,1)*feval( logsig’,’ output’); 

[S,Q] = size(t); 
if max(S,Q) > 1, s2 = S; end 

[w2,b2] = feval(feval( logsig’,’init’),s2,x); 

[crr,css] = size(cl); 

om = pi/4*ones(1,crr); 

wl = zeros(crr,r); 

% CALCULATE OUTPUTS 

al = logsig(consec(cl,p,wl,om)*b); 

a2 = logsig(w2(:,1:1)*al,b2); 

sse = sumsqr(t-a2); 

% TRAINING RECORD 

tr = zeros(1,me); 

tr(1) = sse; 

sserr = fopen( matlab/sse.dat’,’a’); 

fprintf(sserr,’%f\n’,sse); 

fclose(sserr); 

% PLOTTING 

newplot; 

messagel = sprintf RBF: %%g/%g epochs, sse = %%g.\n’,me); 
fprintf(message1,0,sse) 

if plottype 

h = plotfa(p,t,p,a2); 

else 

h = ploterr(tr(1),eg); 

end 
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for k = 1:9 

% CHECK ERROR 
if (sse < eg), break, end 

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 

oj = C(:,k); 

%---- VECTOR CALCULATION FOR CENTRES 

a= cj’ * P/ (cj’*ej); 
P=P-cj*a; 

PP =‘sum(P.*P)’; 

€= (Pe ted) x62): /a(dde PRs): 

% PICK VECTOR WITH MOST "ERROR" 

pick = nnfmc(e); 

C= [C, PG,pick)]; 

P(:,pick) = []; PP(pick,:) = []; 
e(:,pick) = []; 
used = [used left(pick)]; 

left(pick) = []; 

% CALCULATE ACTUAL ERROR 

cl = p(,used)’; 

[cr,cc] = size(cl); 

sl=cl; 

[S,Q] = size(s1); 

if max(S,Q) > 1, sl = S; end 

x = ones(sl,1) * feval( logsig’,’ output’); 

[S,Q] = size(t); 
if max(S,Q) > 1, s2 = S; end 

[w2,b2] = feval(feval( logsig’,’init’),s2,x); 

om = pi/4*ones(1,cr); 

wl = zeros(cr,r); 

al = logsig(consec(cl,p,wl,om)*b); 

a2 = logsig(w2*al,b2); 

sse = sumsqr(t-a2); 

% TRAINING RECORD 

tr(k+1) = sse; 

sserr = fopen(’ matlab/sse.dat’,’a’); 

fprintf(sserr,’ Yf\n’,sse); 

fclose(sserr); 
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% PLOTTING 
if rem(k,df) == 

fprintf(message1,k,sse) 

if plottype 

delete(h); 

h = plot(p,a2,’m’); 

drawnow; 

else 

h = ploterr(tr(1:(k+1)),eg,h); 

end 

end 

end 

[S1,R] = size(cl); 

bl = ones(S1,1)*b; 

% TRAINING RECORD 

tr = tr(1:(k+1)) 

% PLOTTING 

if rem(k,df) ~= 0 

fprintf(message1,k,sse) 

if plottype 

delete(h); 

plot(p,a2,’m’); 
drawnow; 

else 

ploterr(tr,eg,h); 

end 

end 

hold off 

echo on 

% TRAINING NETWORK 
% This uses backpropagation to train the conic section function network. 

df = 10; % Frequency of progress displays (in epochs). 

me = 40000; % Maximum number of epochs to train. 

eg = 2.5; % Sum-squared error goal. 

Ir = 0.05; % Learning rate. 

tp = [df me eg Ir]; 

% Training begins...please wait (this takes a while!)... 

echo off 

% TRAINING PARAMETERS 

dfl = feval( logsig’,’ delta’); 

df2 = feval( logsig’,’ delta’); 
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% INITIALIZATION OF PARAMETERS 

[crr,css] = size(cl); 

om = pi/4*ones(1,crr); 

wl = zeros(crr,r); 

f = consec(cl,p,w1l,om)*b; 

al = logsig(f,b1); 

a2 = logsig(w2*al,b2); 

e = t-a2; 

SSE = sumsaqr(e); 

% PLOTTING 

clg 

message = sprintf? TRAINBP: %%g/%g epochs, SSE = %%g.\n’,me); 

fprintf(message,0,SSE) 

if plottype 

h = plotfa(pn,t,pn,a2); 

else 

h = ploterr(tr(k),eg); 

end 

for i=k:me 

% CHECK PHASE 

if SSE < eg, i=i-1; break, end 

% BACKPROPAGATION PHASE 

d2 = feval(df2,a2,e); 

dl = feval(dfl,al,d2,w2); 

% UPDATE CENTRES 

pn = zeros(r,q); 

for j=l:r 

newc = cl(:,j)*ones(1,q); 

newp = p(j,:)’ *ones(1,crr); 

pn = (newc-newp’); 

dis = dist(cl,p); 

for y=1:crr 

for z=1:q 

if dis(y,z)==0 

dis(y,z)=0.01; 

end 

end 

end 

div = pn./dis; 

[pnr,pnc] = size(pn); 
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for l=1:pne 

dif(:,1) = cos(om)’.*div(:,1); 

end 

newwl = wl(:,j)*ones(1,q); 

diff = -neww1l + dif; 

end 

d3 = al.*(1-al).*(w2’*d2); 

% UPDATE ANGLE 
difom = sin(om)*dist(cl,p); 

d4 = al.*(1-al).*(w2’*d2); 

% LEARNING PHASE 

for m=1:crr 

cn = cl(m,:)’*ones(1,q); 

pnew = (cn-p); 
end 

[dw1,db1] = learnbp(pnew,d1,Ir); 

[dw2,db2] = learnbp(al,d2, Ir); 

dcen = learnbp(diff(1:4,:),d3, Ir); 

dom = (learnbp(difom,d4,Ir/10))’; 

% NEW PARAMETERS 

cl =cl + dcen; 

wl =wl + dwl; 

bl = bl + dbl; 

w2 = w2 + dw?2; 

b2 = b2 + db2; 

om = om + dom; 

[omr,omc] = size(om); 

for s=l:omc 

if om(1,s) > pi/2 

om(1,s) = pi/2; 

end 

if om(1,s) < -pi/2 

om(1,s) = -pi/2; 

end 

end 

% PRESENTATION PHASE 

f = consec(cl,p,wl,om)*b; 

al = logsig(f,b1); 

a2 = logsig(w2*al,b2); 

e = t-a2; 

SSE = sumsaqr(e); 
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% TRAINING RECORD 

tr(i+1) = SSE; 

sserr = fopen(’matlab/sse.dat’,’a’); 

fprintf(sserr,’ %f\n’ SSE); 

fclose(sserr); 

% PLOTTING 

if rem(i,df) == 

fprintf(message,i,SSE) 

if plottype 

delete(h); 

h = plot(pn,a2); 

drawnow; 

else 

h = ploterr(tr(1:(i+1)),eg,h); 

end 

end 

end 

% TRAINING RECORD 

tr = tr(1:(i+1)); 

% PLOTTING 

if rem(i,df) ~= 0 

fprintf(message,i,SSE) 

if plottype 

delete(h); 

plot(pn,a2); 
drawnow; 

else 

ploterr(tr,eg,h); 

end 

end 

% PLOT ERRORS 

ploterr(tr,eg); 

% TEST THE NETWORK 

% Read test data from the file 

test = fopen(’matlab/test.dat’,’r’); 

p = fscanf(test,’ %f\n’,[4,30]); 

fclose(test); 

for v=1:30 

ax(:,v) = simcon(p(:,v),C1,W1,B1,W2,B2); 

end 

end 
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op 2 2 A 2 ee 2 ee 2 eK A A 2 EA EA EAE A ER AR A A 2 

% CONIC SECTION FUNCTION NETWORK TRAINING PROGRAM II (in MATLAB code) 
% This program uses the second training algorithm. 

Gj ee ek 2 ee 2 ee 2 eK 2 Ae OR A 2 AE 2 EK AE A EA A 2 ER A A RE ER EE 2 ER OK 

function [al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2) 

% HYBRID Design conic section function network 

if nargin <7 , error(’Not enough input arguments’),end 
[s.r] = size(cl); 

[12,q] = size(p); 
if (r~=r2) , error(’ Matrix sizes do not match.’),end 

f = consec(cl,p,wl,om)*b; 

al = logsig(f,b1); 

a2 = logsig(w2*al,b2); 

% 2 ee 2 Ae 2 AR 2 2 A 2 2 2 2k 2 2 2 ek 2k 2 2 2k 2 2 2 2k 2 2 2 2 2k 2 2k 2 2 2 2 2k ok ok OK ok 

% MAIN PROGRAM 
% Fe Ee 2 2 ee 2 2 2 2 fe 22 2 2k 2k 2k 2 2 2 2 2 2 2 2 2 2 2 2 KK 2 OR OK OK OK Ko OK KOK 

figure(gcef) 

setfsize(350,350); 

cla reset 

% Read training data from the file 

input = fopen(’matlab/input.dat’,’r’); 

p = fscanf(input,’%f\n’,[4,120]); 

fclose(input); 

output = fopen(’ matlab/output.dat’,’r’); 

t = fscanf(output,’%of\n’,[3,120]); 

fclose(output); 
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% DESIGN NETWORK 

echo on 

df= 10; % frequency of progress displays (in neurons). 

me = 100; % maximum number of neurons. 

eg = 0.02; % sum-squared error goal. 

sc=1; % spread constant radial basis functions. 

sl =6; % the number of centres 

echo off 

tp = [df me eg sc]; 

% PLOTTING FLAG 

[r,q] = size(p); 
[s2,q] = size(t); 

plottype = max(r,s2) == 1; 

% RADIAL BASIS LAYER OUTPUTS 

b = sqrt(-log(.5))/tp(4); 

P = logsig(dist(p’,p)*b); 
PP = sum(P.*P)’; 

d=t; 

dd = sum(d.*d)’; 

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 

Cathe je. 2) / (dd Ppa): 

%PICK VECTOR WITH MOST "ERROR" 

pick = nnfmc(e); 

used = []; 

left = 1:q; 

@i= RE pick): 

P(:,pick) = []; PP(pick,:) = []; 
e(:,pick) = []; 
used = [used left(pick)]; 

left(pick) = []; 

% CALCULATE ACTUAL ERROR 

cl = p(:,used)’; 

sl =cl; 

[crr,css] = size(cl); 

om = pi/4*ones(1,crr); 

wl = zeros(crr,r); 

al = logsig(consec(cl,p,wl,om)*b); 

[w2,b2] = solvelin(al,t); 

a2 = logsig(w2(:,1:1)*al,b2); 

sse = sumsqr(t-a2); 
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% TRAINING RECORD 
tr = zeros(1,me); 

tr(1) = sse; 

sserr = fopen(’matlab/sse.dat’,’a’); 

fprintf(sserr,’%f\n’,sse); 

fclose(sserr); 

% PLOTTING 
newplot; 

messagel = sprintf? RBF: %%g/%g epochs, sse = %%g.\n’,me); 
fprintf(message1,0,sse) 
if plottype 

h = plotfa(p,t,p,a2); 
“else 

h = ploterr(tr(1),eg); 

end 

for k = 1:s1-1 

% CHECK ERROR 

if (sse < eg), break, end 

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 
cj = C.K); 

% VECTOR CALCULATION FOR CENTRES 

a= cj’ * P/ (cj’*ej); 
P=P-cq*a; 

PP = sum(P.*P)’; 

e—((Ptd)ya2)2/ (dd *sPP*): 

% PICK VECTOR WITH MOST "ERROR" 

pick = nnfmc(e); 

C = [C, P(:,pick)]; 

P(:,pick) = []; PP(pick,:) = []; 
e(:,pick) = []; 
used = [used left(pick)]; 

left(pick) = []; 

% CALCULATE ACTUAL ERROR 

cl = p(:,used)’; 

[cr,cc] = size(cl); 

om = pi/4*ones(1,cr); 

wl = zeros(cr,r); 

al = logsig(consec(cl,p,wl,om)*b); 

[w2,b2] = solvelin(al,t); 

a2 = logsig(w2*al,b2); 

sse = sumsqr(t-a2); 
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% TRAINING RECORD 

tr(k+1) = sse; 

sserr = fopen(’matlab/.dat’,’a’); 

fprintf(sserr,’ %f\n’ ,sse); 

fclose(sserr); 

% PLOTTING 

if rem(k,df) == 

fprintf(message1,k,sse) 

if plottype 

delete(h); 

h = plot(p,a2,’m’); 

drawnow; 

else 

h = ploterr(tr(1:(k+1)),eg,h); 

end 

end 

end 

[S1,R] = size(cl); 

bl = ones(S1,1)*b; 

% TRAINING RECORD 

tr = tr(1:(k+1)); 

% PLOTTING 

if rem(k,df) ~= 0 

fprintf(messagel,k,sse) 

if plottype 

delete(h); 

plot(p,a2,’m’); 
drawnow; 

else 

ploterr(tr,eg,h); 

end 

end 

hold off 

echo on 

% TRAINING THE NETWORK 
% This uses backpropagation to train the conic section function network 

df= 10; % Frequency of progress displays (in epochs). 

me = 50000; % Maximum number of epochs to train. 

eg = 2.5; % Sum-squared error goal. 

Ir = 0.03; % Learning rate. 

tp = [df me eg Ir]; 

% Training begins...please wait (this takes a while!)... 

echo off 
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% TRAINING PARAMETERS 

dfl = feval( logsig’,’ delta’); 

df2 = feval( logsig’,’ delta’); 

[crr,css] = size(cl); 

om = pi/4*ones(1,crr); 

wl = zeros(crr,r); 

{al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2); 

e = t-a2; 

SSE = sumsaqr(e); 

% PLOTTING 
clg 

message = sprintf? TRAINBP: %%g/%g epochs, SSE = %%g.\n’,me); 

fprintf(message,0,SSE) 

if plottype 

h = plotfa(pn,t,pn,a2); 

else 

h = ploterr(tr(k),eg); 

end 

for i=k:me 

% CHECK PHASE 

if SSE < eg, i=i-1; break, end 

% BACKPROPAGATION PHASE. 

d2 = feval(df2,a2,e); 

dl = feval(dfl1,al,d2,w2); 

% LEARNING PHASE 

for ii=1:8 

for m=1:crr 

cn = cl(m,:)’*ones(1,q); 

pnew = (cn-p); 
end 

[dw1,db1] = learnbp(pnew,d1,Ir); 

[dw2,db2] = learnbp(al,d2,Ir); 

wl =wl + dwl; 

bl = bl + dbl; 

w2 = w2 + dw2; 

b2 = b2 + db2; 

% PRESENTATION PHASE 

[al,a2] = hybrid(cl,p,w1l,om,b,b1,w2,b2); 

e = t-a2; 

SSE = sumsqr(e); 
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% TRAINING RECORD 

tr1(iit+1) = SSE; 

end 

% UPDATE ANGLE 

d2 = feval(df2,a2,e); 

dl = feval(dfl,al,d2,w2); 

difom = sin(om)*dist(cl,p); 

dom = (learnbp(difom,d1,Ir))’; 

om = om + dom; 

[omr,omc] = size(om); 

for s=l:omc 

if om(1,s) > pi/2 

om(1,s) = pi/2; 

end 

if om(1,s) < -pi/2 

om(1,s) = -pi/2; 

end 

end 

[al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2); 

e = t-a2; 

d2 = feval(df2,a2,e); 

dl = feval(dfl,al,d2,w2); 

% UPDATE CENTRES 

pn = zeros(r,q); 

for j=l:r 

newc = cl(:,j)*ones(1,q); 

newp = p(j,:)’ *ones(1,crr); 

pn = (newc-newp’); 

dis = dist(cl,p); 

for y=1:crr 

for z=1:q 

if dis(y,z)==0 

dis(y,z)=0.01; 

end 

end 

end 

div = pn./dis; 

[pnr,pnc] = size(pn); 
for |=1:pne 

dif(:,1) = cos(om)’.*div(:,]); 

end 

newwl = wl(:,j)*ones(1,q); 

diff = -newwl + dif; 

end 

dcen = learnbp(diff(1:4,:),d1,Ir); 

cl =cl + dcen; 
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[al,a2] = hybrid(cl,p,w1,om,b,b1,w2,b2); 

e = t-a2; 

tr(it+1) = SSE; 

sserr = fopen(’matlab/sse.dat’,’a’); 

fprintf(sserr,’%of\n’ SSE); 

fclose(sserr); 

% PLOTTING 

if rem(i,df) == 

fprintf(message,i,SSE) 

if plottype 

delete(h); 

h = plot(pn,a2); 

drawnow; 

else 

h = ploterr(tr(1:(i+1)),eg,h); 

end 

end 

end 

% TRAINING RECORD 

tr = tr(1:G+1)); 

% PLOTTING 

if rem(i,df) ~= 0 

fprintf(message,i,SSE) 

if plottype 

delete(h); 

plot(pn,a2); 
drawnow; 

else 

ploterr(tr,eg,h); 

end 

end 

% ERRORS 
ploterr(tr,eg); 

% TEST THE NETWORK 

% Read test data from the file 

test = fopen(’ matlab/test.dat’,’r’); 

p = fscanf(test,’%f\n’,[4,30]); 

fclose(test); 

for v=1:30 

ax(:,v) = simcon(p(:,v),C1,W1,B1,W2,B2) 

end 

end 
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> 

The Interface Card Control Program 

  

* 

9 2 2 2 2 2 2 2 2 2 2 2 2g 2 2 ie 2 2 2 2 kk ie fe ig 2g 2g 2g fg fe ofc fe fe fe 2c 2 2 2k 2k 2g oie ke oie 2k 2 2 2 2 2k 2 2 2k ie ie fe ie 2 2k 2k 2k 2k 2k 2k 2k ok ok OK 

* This program controls the Advantech PCL-818HG multifunction data * 

* aquisition card, which is used to program the EEPROMs. . 

* The programming voltage, the frequency, and the number of cycles * 

* can all be controlled. . 
28 2 2 22 2 2 2 2 2 2 2 2 2 2k 2 2g 2 2 2 2k 2 kg 2g ig 2g 2 2c 2g fe fe fe fe oie oie 2 2 2k 2k 2k ie oie 2 2k 2 2k 2 2 2k 2 2 2 2 2 oi ok ok ok 2K 2k ok 28 2k 2K OK OK 

/* 

#include <stdio.h> 

#include <conio.h> 

#include <stdlib.h> 

#include <dos.h> 

extern pcl818HG(int, unsigned int *); 

unsigned int param[60]; 

unsigned int data[100]; /* D/A output data buffer ei 
unsigned int far * dat; 

unsigned char datal[100]; /* Digital output data buffer *) 
unsigned char far * dat]; 

int del,cycles,counter,dc; 

char temp; 

float volts; 

void main(void) 

{ 
dat = data; 

datl = datal; 

param[0] = 0; /* Board number z/ 

param[1] = 0x200; /* Base I/O address */ 

param[5] = 50; /* Pacer rate = 1M / (50 * 100) =200 Hz = */ 

param[6] = 100; 

param[7] = 0; /* Trigger mode, 0 : pacer trigger ey 
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param[10] = FP_OFF(dat); /* Offset of A/D data buffer A */ 

param[11] = FP_SEG(dat); /* Segment of A/D data buffer A =) 

param[12] = 0; /* Data buffer B address, if not used, */ 

param[13] = 0; /* must set to 0. Py 
param[14] = 1; /* A/D conversion number 7 

param[15] = 0; /* A/D conversion start channel */ 

param[16] = 0; /* A/D conversion stop channel // 

param[17] = 4; /* Overall gain code, 0 : +/- 5V of 
param[20] = FP_OFF(dat); /* Offset of D/A output data buffer A a) 

param[21] = FP_SEG(dat); /* Segment of D/A output data buffer A */ 
param[22] = 0; /* Output data buffer B address, if not oi 

param[23] = 0; /* used,must set to 0. */ 

param[24] = 1; /* D/A conversion number eT, 
param[25] = 0; /* D/A conversion start channel */ 
param[26] = 0; /* D/A conversion stop channel x) 

param[33] = FP_OFF(dat); 

param[34] = FP_SEG(dat); 

param[35] = 0; 

param[36] = 0; 

pcel818HG(3, param); /* Func 3 : Hardware initialization */ 
if (param[45] != 0) { 

printf(" DRIVER INITIALIZATION FAILED !"); 
exit(1); 

} 

pcl818HG(4, param); /* Func 4 : A/D initialization =) 

if (param[45] != 0) { 

printf(" A/D INITIALIZATION FAILED !"); 
exit(1); 

} 

pcel818HG(12, param); /* Func 12 : D/A initialization zi) 
if (param[45] != 0) { 

printf(" D/A INITIALIZATION FAILED !"); 
exit(1); 

} 

printf("\nENTER DIGITAL OUTPUT DATA (00 - 255): "); 
scanf("%d",&datal[0]);  /* Enter digital output data ys 

clrscr(); 

printf(" EEPROM Demonstration Program"); 
data[0]=data1 [0]; 

pcel818HG(29, param); /* Func 29: "N" times of digital output _*/ 
if (param[45] != 0) { 
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printf(" digital output failed !"); 

exit(1); 

printf("\n\n\nDigital Value set!"); 

printf(\nPress Enter to continue"); 

scanf("%oc",&temp); 

printf("\n\n\nEnter Programming Voltage (0 - 10V): "); 

scanf("%f" ,& volts); 

printf("\n\n\nEnter Pulse Delay Value: "); 

scanf("%d",& del); 

printf("\n\n\nEnter Number of Cycles: "); 

scanf("%od" &cycles); 

counter=0; 

do 

{ 
counter++; 

/* Output programming voltage */ 

data[0]=4095*volts/10; 

pcel818HG(13, param); /* Func 13 : "N" times of D/A output = 
if (param[45] != 0) { 

printf(" D/A OUTPUT FAILED !"); 
exit(1); 

} 

dc=0; 

do 

{ 
de++; 

}while(dc != del+8000); 

/* Output OV */ 

data[0]=0; 

pcel818HG(13, param); /* Func 13: "N" times of D/A output */ 
if (param[45] != 0) { 

printf(" D/A OUTPUT FAILED !"); 
exit(1); 

} 

pcel818HG(5, param); /* Func 5 : "N" times of A/D. input Hl 
if (param[45] != 0) { WIVE} 

printf(" A/D INPUT FAILED UR 

exit(1); 

} 
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dc=0; 

do 

{ 
dcizt 

}while(de != del); 

}while(counter != cycles); 

printf("STOP !"); 
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